WO2018070316A1 - 摩擦撹拌接合方法および装置 - Google Patents

摩擦撹拌接合方法および装置 Download PDF

Info

Publication number
WO2018070316A1
WO2018070316A1 PCT/JP2017/036092 JP2017036092W WO2018070316A1 WO 2018070316 A1 WO2018070316 A1 WO 2018070316A1 JP 2017036092 W JP2017036092 W JP 2017036092W WO 2018070316 A1 WO2018070316 A1 WO 2018070316A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
steel plate
friction stir
joining
stir welding
Prior art date
Application number
PCT/JP2017/036092
Other languages
English (en)
French (fr)
Inventor
松下 宗生
公一 谷口
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201780055151.9A priority Critical patent/CN109689276B/zh
Priority to JP2017558591A priority patent/JP6493564B2/ja
Priority to KR1020197006475A priority patent/KR102173603B1/ko
Publication of WO2018070316A1 publication Critical patent/WO2018070316A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment

Definitions

  • the rotary tool is inserted into an unjoined portion between the workpieces and moved while rotating, and the workpiece is softened by frictional heat with the rotary tool, and the softened portion is stirred by the rotary tool.
  • the present invention relates to a friction stir welding method in which joining is performed without adding a filler material by using the generated plastic flow, and an apparatus for realizing the friction stir welding method.
  • Patent Document 1 As a friction welding method, in Patent Document 1, by rotating both or one of a pair of metal materials, the metal material generates frictional heat and softens, while the softened portion is stirred to cause plastic flow. Thus, a technique for joining metal materials is disclosed.
  • Patent Document 2 a tool made of a material that is substantially harder than a workpiece is inserted into an unjoined portion of the workpiece, and the tool is moved while being rotated.
  • a method is disclosed in which workpieces are continuously joined in the longitudinal direction by heat and plastic flow.
  • the friction welding method described in Patent Document 1 is a method of rotating workpieces and welding them by frictional heat between workpieces.
  • the friction stir welding method disclosed in Patent Document 2 is a method of joining by moving a tool while rotating a joining member in a fixed state.
  • the friction stir welding method since the tool is moved and joined, even a member that is substantially infinitely long with respect to the welding direction has an advantage that it can be continuously solid-phase joined in the longitudinal direction.
  • it is a solid-phase joining using the plastic flow of the metal by the frictional heat of a tool and a joining member, it can join, without melt
  • the heating temperature is low, deformation after joining is small, the joint is not melted, so there are few defects, and in addition, there are many advantages such as not requiring a filler material.
  • the friction stir welding method is a method of joining low melting point metal materials represented by aluminum alloys and magnesium alloys, and its use is expanding in the fields of aircraft, ships, railway vehicles, automobiles, and the like.
  • the reason for this is that these low melting point metal materials are difficult to obtain satisfactory characteristics of the joints by conventional arc welding methods, and the productivity is improved and the quality is high by applying the friction stir welding method. It is because a junction can be obtained.
  • the application of friction stir welding to structural steel which is mainly applied as a structural material such as buildings, ships, heavy machinery, pipelines, and automobiles, is subject to solidification cracking and hydrogen cracking, which are problems in conventional fusion welding. Can be avoided, and the structural change of the steel material can be suppressed, so that it can be expected that the joint performance is excellent. Further, in the friction stir welding method, a clean interface is created by stirring the bonding interface with a rotating tool and the clean surfaces are brought into contact with each other. Therefore, an advantage that a preparatory step such as diffusion bonding is unnecessary can be expected. Thus, the application of the friction stir welding method to structural steel is expected to have many advantages. However, since there is a problem in joining workability such as suppression of defect generation during joining and an increase in joining speed, the friction stir welding method has not been widely used in structural steel compared to low melting point metal materials.
  • Patent Document 5 and Patent Document 6 disclose a joining method in which a heating means is added for the purpose of improving joining workability.
  • Patent Document 5 includes a heating unit using an induction heating device, and by heating the workpieces before and after joining, friction that increases the joining speed and eliminates cracks in the joined part.
  • a stir welding method is disclosed.
  • Patent Document 6 has a heating means using a laser device, and the workpiece is partially heated immediately before joining, thereby suppressing the microstructure change around the heating region due to preheating and increasing the joining speed.
  • a friction stir welding apparatus which is designed to be simplified is disclosed.
  • Patent Document 5 and Patent Document 6 do not consider the surface temperature, depth, and the like of the heating region of the workpieces by heating before bonding, and therefore, sufficient bonding workability cannot be obtained. Furthermore, the microstructure around the heating region may change due to overheating, which may adversely affect the properties of the joint joint, particularly the joint strength.
  • Patent Document 7 the position of the heating region, the surface temperature, the depth, and the like are limited with respect to partially heating the workpieces immediately before bonding, and sufficient strength is obtained and the bonding workability is improved.
  • a friction stir welding method is disclosed.
  • the relationship between the position of partial heating of the workpiece and the frictional heat generated by the dynamic friction coefficient between the rotating tool material or the material coated on the surface of the rotating tool and the workpiece is effective for bonding workability. No influence is taken into account.
  • the present invention has been made in view of the above-mentioned present situation, and at the time of friction stir welding, an object of the present invention is to solve the plastic flow failure due to insufficient heating of work materials and to improve the joining workability with sufficient strength. To do.
  • the relationship between the position of partial heating of the workpiece and the frictional heat generation due to the dynamic friction coefficient between the rotating tool material or the material coated on the surface of the rotating tool and the workpiece affects the workability.
  • the present invention is based on the above knowledge, and in particular, when the friction stir welding method is applied to the joining of structural steel, the plastic flow failure due to insufficient heating of the work material is solved, and sufficient In addition to high strength, it is intended to improve the joining workability.
  • the gist configuration of the present invention is as follows. [1] A shoulder portion and a pin portion that is arranged on the shoulder portion and shares the rotation axis with the shoulder portion, and the shoulder portion and the pin portion are made of a material harder than a steel plate that is a workpiece.
  • the rotating tool is inserted into an unjoined portion between the steel plates and rotated to move in the joining direction, and the softened portion is softened by the frictional heat between the rotating tool and the steel plate while the softened part is moved with the rotating tool.
  • a friction stir welding method in which steel plates are joined to each other by causing plastic flow by stirring, and the dynamic friction coefficient between the material of the rotating tool or the material coated on the surface of the rotating tool and the steel plate is 0.
  • a region where the surface temperature T S (° C.) of the steel sheet heated by the heating means provided in front of the rotating tool in the joining direction satisfies the following formula (1) is defined as a heating region.
  • the heating area and the front The minimum distance to the rotating tool is not more than the diameter of the shoulder of the rotating tool, the area of the heating region is not more than the area of the maximum diameter portion of the pin portion of the rotating tool, and is 65% of the area of the heating region.
  • % Of the surface of the steel plate is a straight line that passes through the rotation axis of the rotary tool and is parallel to the welding direction, and is parallel to the welding center line and to the retreating side of the pin portion of the rotary tool.
  • T A1 is a temperature represented by the following formula (2).
  • T A1 (° C.) 723-10.7 [% Mn] ⁇ 16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] ⁇
  • Said [% M] is content (mass%) of M element in the steel plate which is a workpiece, and is set to 0 when not containing.
  • a friction stir welding method according to [4], wherein a cooling means is provided behind the rear heating means in the joining direction, and the cooling means cools the joint heated by the rear heating means. .
  • a cooling means is provided behind the rotating tool in the joining direction, and the cooling means cools the joining portion of the steel sheet. Friction stirring according to any one of [1] to [3] Joining method.
  • a friction stir welding method according to [6], wherein a rear heating unit is provided behind the cooling unit in the joining direction, and the rear heating unit heats the joint cooled by the cooling unit. .
  • a friction stir welding apparatus for joining unjoined portions between steel plates as workpieces comprising a shoulder portion and a pin portion arranged on the shoulder portion and sharing the rotation axis with the shoulder portion.
  • the shoulder portion and the pin portion are made of a material harder than the steel plate, and move in the joining direction while rotating in a state where the shoulder portion and the pin portion are inserted in the unjoined portion between the steel plates, so that the steel plate is caused by frictional heat.
  • a rotating tool that causes plastic flow by stirring the softened portion while being softened, a heating means that is provided in front of the rotating tool in the joining direction, and that heats the steel sheet, and realizes the following state 1
  • a friction stir that has a dynamic friction coefficient of 0.6 or less between the material of the rotary tool or the material coated on the surface of the rotary tool and the steel plate. Joining device.
  • T A1 is a temperature represented by the following formula (2).
  • T A1 (° C.) 723-10.7 [% Mn] ⁇ 16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] ⁇
  • Said [% M] is content (mass%) of M element in the steel plate which is a workpiece, and is set to 0 when not containing.
  • the friction stir welding apparatus according to [8], wherein the control unit controls the rotating tool and the heating unit so as to realize the following state 2.
  • the friction stir welding apparatus according to [11], further including a cooling unit that cools the joint, and the cooling unit is provided behind the rear heating unit in the joining direction.
  • the friction stirrer according to any one of [8] to [10], further including a cooling unit that cools a bonded portion of the steel plates, the cooling unit being provided at the rear in the bonding direction of the rotary tool. Joining device.
  • the friction stir welding apparatus according to [13], further including a rear heating unit that heats the joint, and the rear heating unit is provided behind the cooling unit in the joining direction.
  • the present invention it is possible to eliminate the plastic flow failure due to insufficient heating of the workpiece and improve the workability of the friction stir welding. Furthermore, a change in the microstructure around the heating region is also suppressed, and a high joint strength can be obtained at the joint.
  • FIG. 1 is a schematic diagram illustrating a friction stir welding method according to the present embodiment.
  • FIG. 2 is a diagram (top view and AA cross-sectional view) showing an example of a heating region in a preheating process, a cooling region and a reheating region in a process performed after bonding.
  • FIG. 3 is a diagram showing the relationship between the temperature and tensile strength of the steel plates to be joined by the friction stir welding method according to this embodiment.
  • FIG. 4 is a diagram showing a cross-sectional dimension of the rotary tool.
  • FIG. 1 is a schematic diagram illustrating a friction stir welding method and a friction stir welding apparatus according to the present embodiment.
  • the friction stir welding method according to the present embodiment as shown in FIG. 1, the rotary tool is inserted into an unjoined portion between the steel plates and moved in the joining direction while rotating, and the frictional heat between the rotary tool and the steel plate is obtained. While the steel plates are softened by the above, the softened portion is stirred with a rotating tool to cause plastic flow, thereby joining the steel plates together.
  • the rotating tool includes a shoulder portion and a pin portion that is arranged on the shoulder portion and shares the rotation axis with the shoulder portion, and at least the shoulder portion and the pin portion are harder than the steel plate that is the workpiece. It is formed by the material.
  • reference numeral 1 is a rotary tool
  • 2 is a rotating shaft
  • 3 is a steel plate
  • 4 is a joint
  • 5 is a heating means
  • 6 is a cooling means
  • 7 is backward heating.
  • Means 8 a shoulder of the rotary tool
  • 9 a pin part of the rotary tool
  • 15 a control means.
  • indicates the tilt angle of the rotating tool.
  • AS indicates an advancing side
  • RS indicates a retreating side.
  • the advancing side is defined as the side where the tool rotation direction and the joining direction coincide with each other
  • the retreating side is defined as the side where the tool rotation direction and the joining direction are opposite to each other.
  • the butted portion that is not yet joined just by butting the steel plates 3 is described as “unjoined portion”, and the portion joined and integrated by plastic flow is described as “joined portion”. To do.
  • a pre-heat treatment process for heating the steel plate 3 by the heating means 5 provided in front of the rotary tool 1 moving in the joining direction is important.
  • the conditions of the pre-heat treatment process will be described with reference to FIG.
  • FIG. 2 is a diagram (top view and AA sectional view) showing an example of a heating region in a preheating process, a cooling region and a reheating region in a process performed after bonding.
  • the joining center line 10 indicates a straight line passing through the rotation axis 2 of the rotary tool 1 on the surface of the steel plate 3 and parallel to the joining direction.
  • the RS line 11 is a straight line parallel to the joining center line 10 and separated to the retreating side by the same distance as the maximum radius of the pin portion 9 of the rotary tool, 12 is a heating area, and 13 is a cooling area.
  • 14 is a reheating region.
  • a indicates the diameter of the shoulder 8 of the rotary tool
  • b indicates the maximum diameter of the pin portion 9 of the rotary tool
  • X indicates the minimum distance between the heating region 12 and the rotary tool 1
  • D indicates the depth of the heating region 12.
  • T indicates the thickness of the steel plate 3.
  • FIG. 3 is a diagram showing the relationship between the temperature and tensile strength of the steel plates to be joined by the friction stir welding method according to this embodiment.
  • the steel plate 3 to be joined by the friction stir welding method of the present embodiment is generally about 30% strength at room temperature at a temperature of about 80% of TA1 , which is the transformation temperature of steel. It becomes. Moreover, when it becomes higher than this temperature, the intensity
  • T S ⁇ 0.8 ⁇ T A1
  • T A1 (° C.) of steel
  • T A1 (° C.) 723-10.7 [% Mn] ⁇ 16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] ⁇ (2) Said [% M] is content (mass%) of M element in the steel plate 3 which is a workpiece, and is set to 0 when not containing.
  • T S of the steel plate 3 in the heating region 12 does not increase excessively.
  • a temperature gradient (temperature variation on the surface) may exist on the surface of the heating region 12.
  • the high surface temperature is preferably 1.5 ⁇ T M ° C. or less.
  • the surface temperature of the steel plate 3 in the heating region 12 is less than T M ° C. before contacting the rotary tool 1 that passes through the heating region 12. Thereby, the damage of the rotary tool 1 and the alteration of the microstructure around the heating region 12 due to an excessive increase in the temperature of the joint 4 can be avoided.
  • T M (° C.) is the melting point of the steel plate 3 as the workpiece.
  • Minimum distance X between the heating region on the surface of the steel plate and the rotating tool less than the diameter of the shoulder of the rotating tool If the minimum distance X between the heating region 12 on the surface of the steel plate 3 and the rotating tool 1 becomes too large, heating is performed before joining. The temperature in the region 12 is lowered and the effect of preheating is not sufficiently obtained. For this reason, in the friction stir welding method according to the present embodiment, the minimum distance X between the heating region 12 on the surface of the steel plate 3 and the rotary tool 1 moving in the joining direction is equal to or less than the diameter of the shoulder 8 of the rotary tool.
  • the minimum distance X between the heating region 12 and the rotating tool 1 becomes too small, the rotating tool 1 may be damaged by the heat of the heating means 5, so that it moves in the joining direction with the heating region 12 on the surface of the steel plate 3.
  • the minimum distance X to the rotating tool 1 is preferably 0.1 times or more the diameter of the shoulder 8 of the rotating tool.
  • the diameter of the shoulder 8 of the rotary tool in the present embodiment is, for example, about 8 to 60 mm.
  • the moving speed of the rotary tool 1 is preferably 200 mm / min or more and 3000 mm / min or less.
  • the area of the heating region on the surface of the steel sheet not more than the area of the maximum diameter portion of the pin portion of the rotating tool
  • the microstructure of the heating region 12 and its peripheral region changes.
  • the martensite is tempered to cause softening and greatly reduce the joint strength.
  • the area of the heating region 12 on the surface of the steel plate 3 is equal to or less than the area of the maximum diameter portion of the pin portion 9 of the rotary tool.
  • the area of the heating region 12 on the surface of the steel plate 3 is preferably 0.1 times or more the area of the maximum diameter portion in the pin portion 9 of the rotary tool.
  • the maximum diameter of the pin portion 9 of the rotary tool in this embodiment is, for example, about 2 to 50 mm.
  • the maximum diameter of the pin portion 9 of the rotary tool is the maximum diameter among the diameters obtained at the cut surface when one pin portion is cut in a cross section perpendicular to the axial direction.
  • FIG. 4 is a diagram showing the cross-sectional dimensions of the rotary tool.
  • the diameter of the pin portion 9 of the rotary tool when the diameter of the pin portion 9 of the rotary tool does not change along the axial direction, the diameter (4 mm in the figure) of the pin portion 9 of the rotary tool is set to the diameter of the pin portion 9 of the rotary tool.
  • the maximum diameter may be used.
  • the largest diameter may be the maximum diameter of the pin portion 9 of the rotating tool. 4 indicates the probe length, and the probe length is calculated by the difference in height between the tip portion of the pin portion 9 of the rotary tool and the highest position of the shoulder portion 8 of the rotary tool. Length.
  • the shape of the heating region 12 may be any shape such as a circle, an ellipse, or a rectangle.
  • the shape of the maximum diameter portion of the pin portion 9 of the rotary tool is usually circular or elliptical.
  • the area of the heating region located between the joining center line and the RS wire 65% or more of the area of the heating region on the surface of the steel plate
  • the plastic flow starts from the advanced side As described above, along the rotational direction of the rotary tool 1, it passes through the joining direction front, the retreating side, and the joining direction rear, and the advanced side is the end point. Since the advanced side is the starting point of plastic flow, insufficient heating of the steel plate 3 as the workpiece is likely to occur. For this reason, when plastic flow is insufficient and defects occur, most of them occur on the advanced side. Therefore, on the surface of the steel plate 3, the advancing side is preferentially heated and the steel plate is softened to promote plastic flow, suppress the occurrence of defects, and increase the joining speed.
  • the dynamic friction coefficient between the material of the rotary tool 1 or the material coated on the surface of the rotary tool 1 and the steel plate 3 to be joined is 0.6 or less, it is between the rotary tool 1 and the steel plate 3.
  • the generated frictional heat and plastic flow are reduced.
  • the advanced side is a region that is a starting point of plastic flow in front of the rotary tool 1 and is a region where frictional heat between the rotary tool 1 and the steel plate 3 is greatly generated.
  • the dynamic friction coefficient tends to decrease in a high temperature state, if this part is heated to a high temperature by preheating, if the dynamic friction coefficient between the rotary tool 1 and the steel plate 3 is small, sufficient frictional heat generation cannot be obtained.
  • the dynamic friction coefficient between the material of the rotary tool 1 or the material coated on the surface of the rotary tool 1 and the steel plate 3 is 0.6 or less, 65% of the area of the heating region 12 on the surface of the steel plate 3.
  • the above is positioned between the junction center line 10 and the RS wire 11 parallel to the junction center line 10 to preferentially heat the retreating side. This promotes plastic flow on the retreating side, which is the middle of plastic flow, while ensuring frictional heat generation on the advanced side, which is the starting point of plastic flow, suppresses the occurrence of defects, and increases the joining speed. Can be planned.
  • the area range of the heating region 12 located between the bonding center line 10 and the RS line 11 is preferably 70% or more, more preferably 80% or more, and may be 100%.
  • the center of the heating region 12 is positioned between the RS line 11 and the straight line passing through the midpoint between the junction center line 10 and the RS line 11.
  • the center of the heating region 12 is positioned on the retreating side with respect to the bonding center line 10, and the distance from the center of the heating region 12 to the bonding center line 10 is set to 0 of the maximum radius in the pin portion 9 of the rotary tool. It is preferable to be 5 times or more and 1 time or less.
  • the steel plate 3 joined by the friction stir welding method of the present embodiment has a strength of about 30% of the strength at normal temperature at a temperature of about 80% of TA1 , which is the transformation temperature of the steel. Moreover, when it becomes higher than this temperature, the intensity
  • T A1 (° C.) can be obtained by the following formula (2).
  • T A1 (° C.) 723-10.7 [% Mn] ⁇ 16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] ⁇ (2) Said [% M] is content (mass%) of M element in the steel plate 3 which is a workpiece, and is set to 0 when not containing.
  • the strength of the steel plate 3 tends to decrease as the temperature rises if it exceeds 0.8 ⁇ T A1 ° C, it is preferable to adjust so that the temperature of the steel plate 3 in the heating region 12 does not rise too much.
  • the temperature in the thickness direction of the steel plate 3 in the heating region 12 is It is preferable that the temperature is lower than T M ° C. before contacting the rotary tool 1 passing through the heating region 12.
  • T M (° C.) is the melting point of the steel sheet 3 as the workpiece.
  • the depth D of the heating zone depth D of 30% of the thickness t or more heating region 12 of the steel sheet, the steel sheet in the region where the temperature T D in the thickness direction of the heating area 12 is 0.8 ⁇ T A1 ° C. or higher 3 is defined by the maximum depth from the surface.
  • the depth D of the heating region 12 is preferably 30% or more of the thickness t of the steel plate 3. By setting the depth D of the heating region 12 to 30% or more of the thickness t of the steel plate 3, plastic flow is further promoted, which is advantageous for reducing the load applied to the rotary tool 1 and increasing the joining speed.
  • the depth D of the heating region 12 is more preferably 50% or more of the thickness of the steel plate 3.
  • the thickness D is preferably 90% or less of the thickness t of the steel plate 3.
  • the friction stir welding apparatus includes a control unit 15.
  • the control means 15 controls the operations of the rotary tool 1 and the heating means 5.
  • the control means 15 may control operations of the rear heating means 7 and the cooling means 6.
  • the heating means 5 used in the pre-heat treatment process is not particularly limited, but is preferably a laser heating device.
  • a laser having a high energy density as a heat source, it is possible to more accurately control the preheat treatment process conditions, and it is possible to improve the joining workability without impairing the joint characteristics.
  • the joining conditions other than those described above are not particularly limited.
  • the moving speed of the heating means 5 used in the pre-heat treatment process may be approximately the same as the joining speed.
  • the laser output and beam diameter may be suitably set according to joining conditions.
  • the cooling means 6 is disposed behind the rotating tool 1 moving in the joining direction.
  • the joint joint strength may be improved by providing the cooling means 6.
  • a cooling means 6 is provided behind the rotating tool 1 moving in the joining direction, and the joining portion 4 of the steel plate 3 is cooled by the cooling means 6 and the cooling rate is appropriately controlled. Strength can be improved.
  • a cooling device that ejects an inert gas is preferably used.
  • the cooling rate in this case is preferably 30 to 300 ° C./s in the range of 800 ° C. to 500 ° C., for example.
  • argon gas or helium gas can be used as the inert gas.
  • the hardenability of the steel plate 3 that is a work material is high, it may be excessively hardened and the toughness of the joint joint is lowered.
  • excessive heating is suppressed by providing a rear heating means 7 for heating a rear portion close to the rotary tool 1 at the rear in the joining direction of the rotary tool 1 and gradually cooling it while appropriately controlling the cooling rate.
  • the rear heating means 7 it is preferable to use, for example, a high-frequency induction heating or a heating device using a laser as a heat source.
  • the slow cooling rate is preferably 10 to 30 ° C./s in the range of 800 ° C. to 500 ° C., for example.
  • the rear heating means 7 may be provided behind the rotating tool moving in the joining direction and behind the cooling means 6, and the joined portion 4 of the steel plate 3 may be reheated by the rear heating means 7. Thereby, when the joining part 4 is quenched by cooling by the cooling means 6 and hardened excessively, the joint characteristics having both strength and toughness can be obtained by suppressing the hardness by tempering by the rear heating means 7.
  • the cooling rate in this case is preferably 30 to 300 ° C./s in the range of 800 ° C. to 500 ° C., for example, and the reheating temperature is preferably 550 to 650 ° C., for example.
  • a cooling means 6 may be provided behind the rotating tool 1 moving in the joining direction and behind the rear heating means 7, and the joint 4 of the steel plate 3 may be cooled by the cooling means 6.
  • the cooling rate in this case is, for example, about 10 to 30 ° C./s in the range of 800 ° C. to 600 ° C. (gradual cooling range), and then 30 to 30 ° C. in the range of 600 ° C. to 400 ° C. (rapid cooling range). It is preferably about 300 ° C./s.
  • the rotational speed of the rotary tool 1 is set in the range of 100 to 1000 rpm, the torque of the rotary tool 1 is suppressed, and the target is to increase the welding speed to 1000 mm / min or higher.
  • the torque of the rotary tool 1 is preferably suppressed to 90 N ⁇ m or less.
  • the torque of the rotary tool 1 is preferably suppressed to less than 75 N ⁇ m.
  • general structural steel and carbon steel for example, JIS (Japanese Industrial Standards) G 3106 welded rolled steel, JIS G 4051 for mechanical structure Carbon steel or the like can be used. It can also be applied to high-strength structural steel having a tensile strength of 800 MPa or more, and a strength of 85% or more of the tensile strength of the steel plate (base material), and further, a strength of 90% or more can be obtained at the joint 4.
  • Example 1 Friction stir welding was performed using a steel plate having a plate thickness of 1.6 mm and having a chemical composition and tensile strength shown in Table 1 below. The joint butt surfaces were joined in one pass on one side in a so-called I-shaped groove with no angle, and with a surface condition of the degree of milling. Table 2 shows the welding conditions of the friction stir welding.
  • the rotary tool having the cross-sectional dimensions shown in FIG. 4 (shoulder diameter a: 12 mm, pin portion maximum diameter b: 4 mm, probe length c: 1.4 mm) was used.
  • the rotary tool used in Example 1 is a rotary tool whose surface is coated with titanium nitride (TiN) by physical vapor deposition (PVD) using tungsten carbide (WC) as a raw material. At the time of bonding, the bonded portion was shielded with argon gas to prevent surface oxidation.
  • the coefficient of dynamic friction between the surface of the rotating tool of WC having a TiN coating treatment on the surface and the steel sheet was 0.6 or less.
  • the dynamic friction coefficient between the tool material surface and the steel plate was measured by the following measurement method. Using a ball-on-disk friction and wear tester, a disk made of the target material was pressed against a steel ball having a diameter of 6 mm while rotating with a load of 5 N, and the test was performed at a rotational speed of 100 mm / s and a sliding distance of 300 m. The test was performed at room temperature and without lubrication.
  • the steel ball used in the test is a steel ball made of a material having a chemical component of SUJ2 defined in JIS G 4805 and processed as a steel ball for bearings.
  • the steel plate I in Table 1 Prior to the bonding, in order to confirm the heating region by preheating using a laser as a heat source, the steel plate I in Table 1 was subjected to laser irradiation under the irradiation conditions (laser moving speed, laser output, and beam diameter) shown in Table 3. Light was irradiated and the surface temperature was measured by thermography. Furthermore, the cross section of the laser irradiation part was observed, and the microstructure was observed with a nital etchant.
  • laser moving speed, laser output, and beam diameter shown in Table 3.
  • the region having the transformation point (T A1 ° C) or higher is darkest, and is less than the transformation point (T A1 ° C) existing outside, but a high hardness structure such as martensite in the base material is tempered. Since the region is etched relatively thin, the region where the transformation point (T A1 ° C) or higher, the tempering region below the transformation point (T A1 ° C), and the base material region can be distinguished. is there. Furthermore, from the knowledge of heat treatment of steel, it is known that the tempering region below the transformation point (T A1 ° C) coincides with the region of 0.8 x T A1 ° C or more and less than T A1 ° C.
  • the depth D 0 of the region where the transformation point (T A1 ° C) or higher and the depth of the region where the temperature becomes 0.8 ⁇ T A1 ° C or higher (of the heating region) Depth D) was measured.
  • the region of 0.8 ⁇ T A1 ° C or more was a circular shape having a diameter of 3.5 mm. Since the maximum diameter of the pin portion of the rotating tool used here is 4.0 mm, the area of the heating region in the irradiation condition A is equal to or less than the area of the maximum diameter portion of the pin portion of the rotating tool.
  • the region of 0.8 ⁇ T A1 ° C. or higher was a circular shape having a diameter of 2.0 mm. Therefore, similarly to the above, the area of the heating region in the irradiation condition B is equal to or smaller than the area of the maximum diameter portion of the pin portion of the rotary tool.
  • the region of 0.8 ⁇ T A1 ° C. or higher was a circular shape with a diameter of 4.5 mm. Since the maximum diameter of the pin part of the rotary tool used here is 4.0 mm, the area of the heating region in the irradiation condition C exceeds the area of the maximum diameter part of the pin part of the rotary tool.
  • the region of 0.8 ⁇ T A1 ° C. or higher is an ellipse having a major axis in the laser moving direction and a minor axis in the direction perpendicular to the laser moving direction, the major axis is 3.8 mm, and the minor axis is 3. It was 2 mm. Since the maximum diameter of the pin portion of the rotating tool used here is 4.0 mm, the area of the heating region in the irradiation condition D is equal to or less than the area of the maximum diameter portion of the pin portion of the rotating tool.
  • the region where the temperature is 0.8 ⁇ T A1 ° C or more is an ellipse having a major axis in the laser moving direction and a minor axis in the direction perpendicular to the laser moving direction.
  • the major axis is 2.2 mm and the minor axis is 1. It was 8 mm. Therefore, similarly to the above, the area of the heating region under the irradiation condition E is equal to or smaller than the area of the maximum diameter portion of the pin portion of the rotary tool.
  • the region where the temperature is 0.8 ⁇ T A1 ° C or more is an ellipse having a major axis in the laser movement direction and a minor axis in the direction perpendicular to the laser movement direction.
  • the major axis is 4.9 mm and the minor axis is 4.1 mm. Met. Since the maximum diameter of the pin part of the rotary tool used here is 4.0 mm, the area of the heating region under the irradiation condition F exceeds the area of the maximum diameter part of the pin part of the rotary tool.
  • the depth of the region becomes T A1 ° C. or higher and the depth of the turned region D 0 and 0.8 ⁇ T A1 ° C. or higher
  • the depth (depth D of the heating region) was 0.28 mm and 0.30 mm, respectively. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region, which is the depth of the region that is 0.8 ⁇ T A1 ° C or higher, is about the thickness t of the steel plate. 18.8%.
  • the depth D 0 of the region where T A1 ° C or higher and the depth of the region where 0.8 ⁇ T A1 ° C or higher are 0.47 mm and 0, respectively. .50 mm. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 31.3% of the thickness t of the steel plate.
  • the depth D 0 of the region where T A1 ° C or higher and the depth of the region where 0.8 ⁇ T A1 ° C or higher are 0.09 mm and 0, respectively. .10 mm. Since the thickness t of the steel plate that is the workpiece is 1.6 mm, the depth D of the heating region is about 6.3% of the thickness t of the steel plate.
  • the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 ⁇ T A1 ° C or higher are 0.30 mm and 0, respectively. .32 mm. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region, which is the depth of the region that is 0.8 ⁇ T A1 ° C or higher, is about the thickness t of the steel plate. 20.0%.
  • the depth D 0 of the region that is T A1 ° C or higher and the depth of the region that is 0.8 ⁇ T A1 ° C or higher are 0.51 mm and 0, respectively. .54 mm. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 33.8% of the thickness t of the steel plate.
  • the depth D 0 of the region that is T A1 ° C or higher and the depth of the region that is 0.8 ⁇ T A1 ° C or higher are 0.10 mm and 0, respectively. .11 mm. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 6.9% of the thickness t of the steel plate.
  • Table 5 shows preheating process conditions by laser irradiation performed before joining the workpieces
  • Table 6 shows process conditions performed after joining.
  • cooling by gas ejection was performed, and in the heating (and reheating), induction heating was performed.
  • Table 7 shows the measured value of the torque of the rotating tool when the joining is performed and the measured value of the tensile strength of the obtained joint.
  • the tensile strength of the joint joint is the result of taking a tensile test piece having the size of No. 1 test piece specified in JIS Z 3121 and conducting a tensile test. The greater the torque of the rotating tool, the lower the plastic fluidity and the more likely to cause defects.
  • Invention Examples 1 to 10 even when the joining speed was 400 mm / min, a joint strength of 90% or more of the tensile strength of the steel sheet as the base material was obtained.
  • the torque of the rotary tools of Invention Examples 1 to 10 was 72 N ⁇ m or less, and the plastic fluidity was also good.
  • Invention Examples 6, 7, and 8 in which only cooling / reheating or cooling was performed after joining, joint joint strength equivalent to the tensile strength of the base material was obtained.
  • Invention Examples 9 and 10 in which only heating / cooling or heating was performed after joining, a joint strength of 93% or more of the tensile strength of the base material was obtained.
  • Invention Examples 11 to 20 even when the joining speed is increased to 1000 mm / min, a joint strength of 85% or more of the tensile strength of the base material is obtained, and the torque of the rotary tool is 90 N ⁇ m. It was the following. In particular, in Invention Examples 16, 17, and 18 in which only cooling / reheating or cooling was performed after joining, a joint joint strength of 99% or more of the tensile strength of the base material was obtained. In Invention Examples 19 and 20, in which only reheating / cooling or reheating was performed after joining, a joint joint strength of 95% or more of the tensile strength of the base material was obtained.
  • Example 7 Friction stir welding was performed using a steel plate having a plate thickness of 1.6 mm and a chemical composition and tensile strength shown in Table 1 above. The joint butt surfaces were joined in one pass on one side in a so-called I-shaped groove with no angle, and with a surface condition of the degree of milling. The welding conditions for friction stir welding are shown in Table 2 above.
  • Example 2 the rotary tool having the cross-sectional dimensions (shoulder diameter a: 12 mm, pin portion maximum diameter b: 4 mm, probe length c: 1.4 mm) shown in FIG. 4 was used.
  • the rotary tool used in Example 2 is made of tungsten carbide (WC) as a raw material and is not subjected to coating treatment, and tungsten carbide (WC) is used as a raw material and is coated with titanium nitride (TiN) by physical vapor deposition (PVD).
  • the surface is made of tungsten carbide (WC), the surface is coated with aluminum chromium nitride (AlCrN), or the material is cubic boron nitride (CBN). .
  • the bonded portion was shielded with argon gas to prevent surface oxidation.
  • the coefficient of dynamic friction between the surface of the rotating tool and the steel sheet is 0.7 when tungsten carbide (WC) is not used as a raw material, and titanium nitride (PVD) is used as titanium nitride (WC) as a raw material.
  • PVD titanium nitride
  • the dynamic friction coefficient between the tool material surface and the steel plate was measured by the same measurement method as in Example 1.
  • Table 8 shows the preheating process conditions by laser irradiation performed before joining the workpieces.
  • WC is a rotating tool that is not coated with tungsten carbide (WC) as a material
  • titanium nitride (TiN) is coated by physical vapor deposition (PVD) with tungsten carbide (WC) as a material
  • PVD physical vapor deposition
  • WC + TiN as the rotary tool
  • WC + AlCrN as the rotary tool coated with aluminum chromium nitride (AlCrN) using tungsten carbide (WC) as the raw material
  • CBN cubic boron nitride
  • Example 2 the post-joining process was not performed.
  • “(AS)” and “(RS)” in the distance from the junction center line to the center of the heating region indicate that the center of the heating region is located on the advansing side and the retreating side from the junction center line, respectively.
  • Table 9 shows the measured values of the torque of the rotating tool and the measured values of the tensile strength of the obtained joints when bonding is performed.
  • the tensile strength of the joint joint is the result of taking a tensile test piece having the size of No. 1 test piece specified in JIS Z 3121 and conducting a tensile test. The greater the torque of the rotating tool, the lower the plastic fluidity and the more likely to cause defects.
  • Comparative Examples 15 and 16 the unbonded portion remained and bonding could not be performed. For this reason, in Comparative Examples 15 and 16, measurement of torque and the like of the rotary tool is not performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

接合方向へ移動する回転ツールの前方に設けた加熱手段により、被加工材となる鋼板を加熱する予熱処理プロセスを行い、当該予熱処理プロセスにおける加熱領域の表面温度や面積、位置などを厳密に制御する摩擦撹拌接合方法を提供する。 構造用鋼の摩擦撹拌接合に際し、鋼板との動摩擦係数が0.6以下となる素材を有する回転ツールを用い、回転ツールの前方に設けた加熱手段により加熱される加熱領域の面積の65%以上が、鋼板の表面における回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、接合中央線に平行であってリトリーティングサイドへ回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する。

Description

摩擦撹拌接合方法および装置
 本発明は、回転ツールを被加工材間の未接合部に挿入し回転させながら移動させ、この回転ツールとの摩擦熱による被加工材の軟化と、その軟化部を回転ツールが撹拌することにより生じる塑性流動と、を利用して、溶加材を添加することなく接合を行う摩擦撹拌接合方法および当該摩擦撹拌接合方法を実現する装置に関する。
 摩擦溶接法として、特許文献1には、一対の金属材料の両方または片方を回転することにより、金属材料に摩擦熱を生じさせて軟化させながら、その軟化した部位を撹拌して塑性流動を起こすことによって、金属材料を接合する技術が開示されている。
 しかしながら、この技術は、接合対象とする金属材料を回転させるものであるから、接合する金属材料の形状や寸法に限界がある。
 特許文献2には、被加工材よりも実質的に硬い材質からなるツールを被加工材の未接合部に挿入し、このツールを回転させながら移動させることにより、ツールと被加工材との間に生じる熱と塑性流動によって、被加工材を長手方向に連続的に接合する方法が開示されている。
 特許文献1に記載された摩擦溶接法は、被加工材同士を回転させ、被加工材同士の摩擦熱によって溶接する方法である。特許文献2に開示された摩擦撹拌接合法は、接合部材を固定した状態で、ツールを回転させながら移動することにより接合する方法である。このように、摩擦撹拌接合法ではツールを移動させて接合するので溶接方向に対して実質的に無限に長い部材であっても、その長手方向に連続的に固相接合できる利点がある。また、ツールと接合部材との摩擦熱による金属の塑性流動を利用した固相接合であるので、接合部を溶融することなく接合できる。さらに、加熱温度が低いので接合後の変形が少なく、接合部は溶融されないので欠陥が少なく、加えて溶加材を必要としないなど多くの利点がある。
 摩擦撹拌接合法は、アルミニウム合金やマグネシウム合金に代表される低融点金属材料の接合法として、航空機、船舶、鉄道車輌および自動車等の分野で利用が広がってきている。この理由としては、これらの低融点金属材料は、従来のアーク溶接法では接合部の満足な特性を得ることが難しく、摩擦撹拌接合法を適用することにより生産性が向上すると共に、品質の高い接合部を得ることができるからである。
 一方、建築物や船舶、重機、パイプライン、自動車といった構造物の素材として主に適用されている構造用鋼に対する摩擦撹拌接合法の適用は、従来の溶融溶接で課題となる凝固割れや水素割れを回避できるとともに、鋼材の組織変化をも抑制できるので、継手性能に優れることが期待できる。また、摩擦撹拌接合法では、回転ツールにより接合界面を撹拌することで清浄面を創出して清浄面同士を接触させるので、拡散接合のような前準備工程は不要であるという利点も期待できる。このように、構造用鋼に対する摩擦撹拌接合法の適用は、多くの利点が期待される。しかし、接合時における欠陥発生の抑制や接合速度の高速度化といった接合施工性に問題があることから、低融点金属材料と比較して構造用鋼では摩擦撹拌接合法の普及が進んでいない。
 構造用鋼の摩擦撹拌接合においては、特許文献3および特許文献4に記載されているように、回転ツールとして多結晶硼素窒化物(PCBN)や窒化珪素(Si)などの高耐磨耗性材料を用いている。これらのセラミックスは脆いので、回転ツールの破損を防止するために、接合する鋼板の板厚やその施工条件が著しく制限される。
 特許文献5および特許文献6には、接合施工性の向上を目的として、加熱手段を付加した接合方法が開示されている。
 例えば、特許文献5には、誘導加熱装置を用いた加熱手段を有し、接合前後に被加工材の加熱を行うことで、接合速度の高速度化や接合部の割れの解消を図った摩擦撹拌接合法が開示されている。
 特許文献6には、レーザ装置を用いた加熱手段を有し、接合直前に被加工材を部分的に加熱することで、予熱による加熱領域周辺のミクロ組織変化を抑制しつつ接合速度の高速度化を図った摩擦撹拌接合装置が開示されている。
 しかしながら、特許文献5および特許文献6の技術では、接合前の加熱による被加工材の加熱領域の表面温度や深さ等について考慮されておらず、そのため、十分な接合施工性が得られない。さらに、過剰加熱により加熱領域周辺のミクロ組織が変化し、接合継手特性、特に、接合継手強度に悪影響を及ぼす場合があった。
 特許文献7には、接合直前に被加工材を部分的に加熱することに関して、加熱領域の位置、表面温度や深さ等について限定されており、十分な強度を得るとともに、接合施工性を向上させた摩擦撹拌接合方法が開示されている。しかしながら、被加工材の部分的な加熱の位置と、回転ツールの素材もしくは回転ツールの表面に被覆した素材と被接合材の間の動摩擦係数に支配される摩擦発熱との関係が接合施工性に及ぼす影響については何ら考慮されていない。
特開昭62-183979号公報 特表平7-505090号公報 特表2003-532542号公報 特表2003-532543号公報 特開2003-94175号公報 特開2005-288474号公報 国際公開第2015/045299号
 本発明は、上記現状を鑑みてなされたもので、摩擦撹拌接合に際し、被加工材の加熱不足による塑性流動不良を解消して、十分な強度とともに、接合施工性の向上を図ることを目的とする。特に、被加工材の部分的な加熱の位置と、回転ツールの素材もしくは回転ツールの表面に被覆した素材と被接合材の間の動摩擦係数による摩擦発熱との関係が接合施工性に及ぼす影響を考慮し、予熱処理プロセス条件を厳密に精査した摩擦撹拌接合方法と当該摩擦撹拌接合方法を実現する装置を提供することを課題とする。
 発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、下記知見を得た。
a)通常の摩擦撹拌接合では、接合のために必要な熱源が、回転ツールと被加工材との間で発生する摩擦熱のみである。そのため、構造用鋼を摩擦撹拌接合法により接合する場合には、被加工材である構造用鋼を軟化させるために必要な熱量を十分に確保できない。その結果、接合部において十分な塑性流動が得られず、接合速度の低下や接合欠陥の発生などの接合施工性の劣化が懸念される。
 上記技術を工業化する上で非常に重要となる接合施工性の劣化を回避するには、摩擦撹拌接合前の予熱処理プロセスが有効であると考えられる。
b)しかしながら、摩擦撹拌接合前の予熱処理プロセスを行う際に、予熱熱量が過剰になると、加熱領域周辺のミクロ組織が変化する問題が生じる。特に、マルテンサイト組織により強化された高張力鋼板の場合は、加熱領域周辺が、フェライト-オーステナイト変態温度以下での加熱であっても、マルテンサイトが焼き戻されることで軟化が生じ、接合継手強度を著しく低下させる。
 そこで、発明者らは、摩擦撹拌接合前の予熱処理プロセス条件について種々検討した。
 その結果、
c)レーザなどのエネルギー密度の高い熱源を用いることで、予熱処理プロセスでの加熱領域の表面温度、面積、位置を厳密に制御し、また必要に応じて加熱領域の厚さ方向における温度についても適正に制御する。それにより、接合継手強度等の接合継手特性の劣化を招くことなく、接合施工性を向上できるとの知見を得た。
d)特に、上記の被加工材の部分的な加熱の位置に関しては、回転ツールの素材もしくは回転ツールの表面に被覆した素材と被接合材の間の動摩擦係数に支配される摩擦発熱との関係により、接合施工性を向上する効果が生じる領域が変化するとの知見を得た。
e)通常の摩擦撹拌接合では、接合完了後、接合部が自然放冷状態となるので、鋼材製造時の圧延プロセスで行われているような熱履歴管理によるミクロ組織制御を適用できないという問題があった。しかし、接合完了直後に、接合部に対し、加熱処理や冷却処理を組み合わせたプロセスを実施することで、接合継手特性をさらに向上できるとの知見を得た。
 本発明は、上記知見に立脚するものであり、特に、摩擦撹拌接合方法を構造用鋼の接合に適用した場合に懸念される、被加工材の加熱不足による塑性流動不良を解消して、十分な強度と共に、接合施工性の向上を図るものである。
 すなわち、本発明の要旨構成は次のとおりである。
[1]肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、前記肩部および前記ピン部が被加工材である鋼板よりも硬い材質からなる回転ツールを、鋼板間の未接合部に挿入して回転させながら接合方向に移動させ、前記回転ツールと前記鋼板との摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて鋼板同士を接合する摩擦撹拌接合方法であって、前記回転ツールの素材、もしくは前記回転ツールの表面に被覆された素材と前記鋼板との動摩擦係数がは0.6以下であり、前記回転ツールの接合方向前方に設けられた加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記回転ツールとの最小距離は、前記回転ツールの肩部の直径以下であり、前記加熱領域の面積は、前記回転ツールのピン部の最大径部の面積以下であり、前記加熱領域の面積の65%以上は、前記鋼板の表面における前記回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する摩擦撹拌接合方法。
≧0.8×TA1・・・(1)
A1は、下記式(2)で示される温度である。
A1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
 上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
[2]前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの最大深さを加熱領域の深さDとしたとき、前記加熱領域の深さDは、前記鋼板の厚さの30%以上である請求項1に記載の摩擦撹拌接合方法。
≧0.8×TA1・・・(3)
[3]前記加熱手段は、レーザ加熱装置である[1]または[2]に記載の摩擦撹拌接合方法。
[4]前記回転ツールの接合方向後方には後方加熱手段が設けられており、該後方加熱手段は、前記鋼板の接合部を加熱する[1]から[3]のいずれか1つに記載の摩擦撹拌接合方法。
[5]前記後方加熱手段の接合方向後方には冷却手段が設けられており、該冷却手段は、前記後方加熱手段により加熱された前記接合部を冷却する[4]に記載の摩擦撹拌接合方法。
[6]前記回転ツールの接合方向後方には冷却手段が設けられており、該冷却手段は、前記鋼板の接合部を冷却する[1]から[3]のいずれか1つに記載の摩擦撹拌接合方法。
[7]前記冷却手段の接合方向後方には後方加熱手段が設けられており、該後方加熱手段は、前記冷却手段により冷却された前記接合部を加熱する[6]に記載の摩擦撹拌接合方法。
[8]被加工材である鋼板間の未接合部を接合する摩擦撹拌接合装置であって、肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、前記肩部および前記ピン部は、前記鋼板よりも硬い材質からなり、前記鋼板間の未接合部に挿入された状態で回転しながら接合方向に移動することで、摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を撹拌することにより塑性流動を生じさせる回転ツールと、該回転ツールの接合方向前方に設けられ、前記鋼板を加熱する加熱手段と、下記状態1を実現するように前記回転ツール及び前記加熱手段を制御する制御手段と、を有し、前記回転ツールの素材、もしくは前記回転ツールの表面に被覆した素材と前記鋼板との動摩擦係数は0.6以下である摩擦撹拌接合装置。
(状態1)
 前記加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記回転ツールとの最小距離は、前記回転ツールの肩部の直径以下であり、前記加熱領域の面積は、前記回転ツールのピン部の最大径部の面積以下であり、前記加熱領域の面積の65%以上は、前記鋼板の表面における前記回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する。
≧0.8×TA1・・・(1)
A1は、下記式(2)で示される温度である。
A1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
 上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
[9]前記制御手段は、以下の状態2を実現するように前記回転ツール及び前記加熱手段を制御する[8]に記載の摩擦撹拌接合装置。
(状態2)
 前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの最大深さを加熱領域の深さDとしたとき、前記加熱領域の深さDがは、前記鋼板の厚さの30%以上である。
≧0.8×TA1・・・(3)
[10]前記加熱手段は、レーザ加熱装置である[8]または[9]に記載の摩擦撹拌接合装置。
[11]前記鋼板の接合部を加熱する後方加熱手段をさらに有し、該後方加熱手段は、前記回転ツールの接合方向後方に設けられる[8]から[10]のいずれか1つに記載の摩擦撹拌接合装置。
[12]前記接合部を冷却する冷却手段をさらに有し、該冷却手段は、前記後方加熱手段の接合方向後方に設けられる[11]に記載の摩擦撹拌接合装置。
[13]前記鋼板の接合部を冷却する冷却手段をさらに有し、該冷却手段は、前記回転ツールの接合方向後方に設けられる[8]から[10]のいずれか1つに記載の摩擦撹拌接合装置。
[14]前記接合部を加熱する後方加熱手段をさらに有し、該後方加熱手段は、前記冷却手段の接合方向後方に設けられる[13]に記載の摩擦撹拌接合装置。
 本発明によれば、被加工材の加熱不足による塑性流動不良を解消して、摩擦撹拌接合の接合施工性の向上を図ることができる。さらには、加熱領域周辺のミクロ組織の変化も抑制して、接合部において高い継手強度を得ることができる。
図1は、本実施形態に係る摩擦撹拌接合方法を説明する概略図である。 図2は、予熱プロセスにおける加熱領域、接合後に行ったプロセスにおける冷却領域および再加熱領域の一例を示す図(上面図およびA-A断面図)である。 図3は、本実施形態に係る摩擦撹拌接合方法で接合する鋼板の温度と引張強さの関係を示す図である。 図4は、回転ツールの断面寸法を示す図である。
 以下、本発明を本発明の実施形態を通じて具体的に説明する。図1は、本実施形態に係る摩擦撹拌接合方法および摩擦撹拌接合装置を説明する概略図である。本実施形態に係る破擦撹拌接合方法では、図1に示すように、回転ツールを、鋼板間の未接合部に挿入して回転させながら接合方向に移動させ、回転ツールと鋼板との摩擦熱により該鋼板を軟化させつつ、その軟化した部位を回転ツールで撹拌することにより塑性流動を生じさせて、鋼板同士を接合する。ここで、回転ツールは、肩部と、この肩部に配され、この肩部と回転軸を共有するピン部と、を含み、少なくとも肩部およびピン部は被加工材である鋼板よりも硬い材質により形成される。
 図1中、符号1は回転ツールであり、2は回転軸であり、3は鋼板であり、4は接合部であり、5は加熱手段であり、6は冷却手段であり、7は後方加熱手段であり、8は回転ツールの肩部であり、9は回転ツールのピン部であり、15は制御手段である。αは回転ツールの傾斜角度を示す。「AS」は、アドバンシングサイドを示し、「RS」は、リトリーティングサイドを示す。ここで、アドバンシングサイドとは、ツール回転方向と接合方向が一致する側であり、リトリーティングサイドとは、ツール回転方向と接合方向が反対となる側であるとそれぞれ定義する。
 本実施形態では、鋼板3を突き合わせただけで未だ接合されていない状態にある突き合わせ部分を「未接合部」と記載し、塑性流動により接合されて一体化された部分を「接合部」と記載する。
 本実施形態の摩擦撹拌接合方法では、接合方向へ移動する回転ツール1の前方に設けた加熱手段5により鋼板3を加熱する予熱処理プロセスが重要である。以下、この予熱処理プロセスの条件を、図2を参照しながら説明する。
 図2は、予熱プロセスにおける加熱領域、接合後に行ったプロセスにおける冷却領域および再加熱領域の一例を示す図(上面図およびA-A断面図)である。図2中、接合中央線10は、鋼板3の表面における回転ツール1の回転軸2を通り接合方向に平行な直線を示す。RS線11は、接合中央線10に平行で、かつリトリーティングサイドへ回転ツールのピン部9の最大半径と同じ距離だけ隔てた直線であり、12は加熱領域であり、13は冷却領域であり、14は再加熱領域である。aは回転ツールの肩部8の直径を示し、bは回転ツールのピン部9の最大径を示し、Xは加熱領域12と回転ツール1との最小距離を示し、Dは加熱領域12の深さを示し、tは鋼板3の厚さを示す。
 加熱領域における鋼板の表面温度T:T≧0.8×TA1
 図3は、本実施形態に係る摩擦撹拌接合方法で接合する鋼板の温度と引張強さの関係を示す図である。本実施形態の摩擦撹拌接合方法で接合する鋼板3は、図3に示すように、通常、鋼の変態温度であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、銅板3の強度はさらに低下する。よって、鋼板3の表面温度Tが0.8×TA1℃以上を満足するように鋼板3を予め軟化させ、当該鋼板3を撹拌し、塑性流動を促進する。これにより、回転ツール1にかかる負荷が低減され、接合速度を高速度化できる。このため、本実施形態における摩擦撹拌接合方法では、鋼板3の表面温度Tが下記式(1)を満足する領域を加熱領域12とする。
 T≧0.8×TA1・・・(1)
 鋼の変態温度TA1(℃)は、下記式(2)により求めることができる。
 TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
 上記[%M]は、被加工材である鋼板3におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
 0.8×TA1℃超では温度の上昇と共に鋼板3の強度が低下する傾向があるので、加熱領域12における鋼板3の表面温度Tが上昇し過ぎないように調節することが好ましい。具体的に、厚さ方向へ加熱領域12を確保するには加熱領域12の表面に温度勾配(表面における温度のばらつき)が存在しても良いが、その場合、加熱領域12において鋼板3の最も高い表面温度は1.5×T℃以下であることが好ましい。さらに、加熱領域12における鋼板3の表面温度を、加熱領域12を通過する回転ツール1と接触するまでにT℃未満にすることが好ましい。これにより、接合部4の温度が過度に上昇することによる回転ツール1の損傷や、加熱領域12の周辺のミクロ組織の変質を避けることができる。TM(℃)は被加工材である鋼板3の融点である。
 鋼板の表面における加熱領域と回転ツールとの最小距離X:回転ツールの肩部の直径以下
 鋼板3の表面における加熱領域12と回転ツール1との最小距離Xが大きくなり過ぎると、接合前に加熱領域12における温度が低下し、予熱による効果が十分に得られない。このため、本実施形態に係る摩擦撹拌接合方法において、鋼板3の表面における加熱領域12と接合方向へ移動する回転ツール1との最小距離Xは、回転ツールの肩部8の直径以下である。
 ただし、加熱領域12と回転ツール1との最小距離Xが小さくなり過ぎると、回転ツール1が加熱手段5による熱で損傷する恐れがあるので、鋼板3の表面における加熱領域12と接合方向へ移動する回転ツール1との最小距離Xは、回転ツールの肩部8の直径の0.1倍以上であることが好ましい。本実施形態における回転ツールの肩部8の直径は、例えば、8~60mm程度である。予熱による効果を十分に得るために、回転ツール1の移動速度は、200mm/min以上3000mm/min以下であることが好ましい。
 鋼板の表面における加熱領域の面積:回転ツールのピン部の最大径部の面積以下
 加熱領域12が大きくなり過ぎると加熱領域12およびその周辺領域のミクロ組織が変化する。特に、マルテンサイト組織により強化された高張力鋼板の場合は、フェライト-オーステナイト変態温度以下での加熱であっても、マルテンサイトが焼き戻されることで軟化を生じ、接合継手強度を大幅に低下させる。このため、本実施形態に係る摩擦撹拌接合方法において、鋼板3の表面における加熱領域12の面積は、回転ツールのピン部9の最大径部の面積以下である。
 一方、加熱領域12の面積が小さくなりすぎると、予熱による効果が十分に得られなくなる。よって、鋼板3の表面における加熱領域12の面積は、回転ツールのピン部9における最大径部の面積の0.1倍以上であることが好ましい。
 本実施形態における回転ツールのピン部9の最大径は、例えば、2~50mm程度である。回転ツールのピン部9の最大径は、1つのピン部を軸線方向と垂直な断面で切断した際の切断面で得られる直径のうち最大のものである。
 図4は、回転ツールの断面寸法を示す図である。図4に示すように、回転ツールのピン部9の直径が軸線方向に沿って変わらない場合には、回転ツールのピン部9の上面の直径(図では4mm)を回転ツールのピン部9の最大径としてよい。回転ツールのピン部9がテーパ形状等を有し、軸線方向の位置によってピン径が異なる場合には、最も大きい直径を回転ツールのピン部9の最大径としてよい。図4の符号cは、プローブ長さを示し、プローブ長さとは、回転ツールのピン部9の先端部と、回転ツールの肩部8の最も高い位置との間の高さの差で算出される長さである。
 加熱領域12の形状は、円形、楕円形、矩形など任意の形状であってよい。回転ツールのピン部9の最大径部の形状は、通常、円形又は楕円形である。
 鋼板の表面において、接合中央線とRS線との間に位置する加熱領域の面積:鋼板の表面における加熱領域の面積の65%以上
 鋼板3の摩擦撹拌接合において、塑性流動はアドバンシングサイドを始点として、回転ツール1の回転方向に沿って、接合方向前方、リトリーティングサイド、接合方向後方を通り、アドバンシングサイドが終点となる。アドバンシングサイドは、塑性流動の始点となるので、被加工材である鋼板3の加熱不足が生じ易い。このため、塑性流動が不十分で欠陥が発生する場合には、その殆どがアドバンシングサイドで発生する。従って、鋼板3の表面において、アドバンシングサイドを優先的に加熱し、鋼板を軟化させることで塑性流動を促進し、欠陥の発生を抑え、接合速度の高速度化を図ることができる。
 しかしながら、回転ツール1の素材、もしくは回転ツール1の表面に被覆した素材と被接合材である鋼板3との動摩擦係数が0.6以下である場合は、回転ツール1と鋼板3との間に生じる摩擦熱、塑性流動が小さくなる。アドバンシングサイドは、回転ツール1の前方において塑性流動の始点となる部位であり回転ツール1と鋼板3との間の摩擦熱が大きく発生する領域である。しかしながら、高温状態では動摩擦係数は減少する傾向があるので、この部位を予熱により高温とすると、回転ツール1と鋼板3との動摩擦係数が小さい場合、十分な摩擦発熱が得られない。一方、リトリーティングサイドは、塑性流動の中間に位置するので、この位置での塑性流動が不十分となると、塑性流動の終点となるアドバンシングサイドでの欠陥の発生に大きな影響を及ぼす。特に回転ツール1と鋼板3との動摩擦係数が小さい場合には、十分な塑性流動が得られない。
 従って、回転ツール1の素材、もしくは回転ツール1の表面に被覆した素材と鋼板3との動摩擦係数が0.6以下である場合には、鋼板3の表面において、加熱領域12の面積の65%以上を、接合中央線10と、接合中央線10に平行なRS線11との間に位置させ、リトリーティングサイドを優先的に加熱する。これにより、塑性流動の始点となるアドバンシングサイドでの摩擦発熱を確保しながら、塑性流動の中間となるリトリーティングサイドでの塑性流動を促進し、欠陥の発生を抑え、接合速度の高速化を図ることができる。接合中央線10とRS線11との間に位置する加熱領域12の面積の範囲は、70%以上であることが好ましく、80%以上であることがより好ましく、100%であってもよい。
 また、リトリーティングサイドを優先的に加熱するという観点からは、加熱領域12の中心を、接合中央線10とRS線11の中間点を通る直線と、RS線11との間に位置させる。換言すれば、加熱領域12の中心を接合中央線10よりもリトリーティングサイドに位置させ、さらに加熱領域12の中心から接合中央線10までの距離を、回転ツールのピン部9における最大半径の0.5倍以上1倍以下とすることが好ましい。
 加熱領域の厚さ方向の領域における温度T:T≧0.8×TA1
 前述したように、本実施形態の摩擦撹拌接合方法で接合する鋼板3は、鋼の変態温度であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、鋼板3の強度は、さらに低下する。よって、加熱領域12の厚さ方向の領域においても、温度を0.8×TA1℃以上として鋼板3を予め軟化させることが好ましい。これにより、回転ツール1にかかる負荷がさらに低減され、接合速度をさらに高速度化できる。従って、加熱領域12の厚さ方向の領域における温度Tが下記式(3)を満足する領域における鋼板3の表面からの深さを加熱領域12の深さDとした。
 T≧0.8×TA1・・・(3)
 TA1(℃)は下記式(2)により求めることができる。
 TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
 上記[%M]は、被加工材である鋼板3におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
 ただし、0.8×TA1℃超では温度の上昇と共に鋼板3の強度は低下する傾向があるので、加熱領域12における鋼板3の温度が上昇し過ぎないように調節することが好ましい。具体的に、厚さ方向へ加熱領域12を確保するには加熱領域12の厚さ方向に温度勾配(厚さ方向に沿った温度のばらつき)が存在してもよいが、その場合、加熱領域12における鋼板3の厚さ方向の最も高い温度は1.5×T℃以下であることが好ましい。さらに、接合部4の温度が過度に上昇することによる回転ツール1の損傷や、加熱領域12の周辺のミクロ組織の変質を避けるために、加熱領域12における鋼板3の厚さ方向の温度を、加熱領域12を通過する回転ツール1と接触するまでにT℃未満とすることが好ましい。T(℃)は、被加工材である鋼板3の融点である。
 加熱領域の深さD:鋼板の厚さtの30%以上
 加熱領域12の深さDは、加熱領域12の厚さ方向の温度Tが0.8×TA1℃以上となる領域の鋼板3の表面からの最大深さで規定される。この加熱領域12の深さDは、鋼板3の厚さtの30%以上であることが好ましい。加熱領域12の深さDを鋼板3の厚さtの30%以上とすることで、塑性流動がさらに促進され、回転ツール1にかかる負荷低減および接合速度の高速度化に有利となる。加熱領域12の深さDは、鋼板3の厚さの50%以上であることがより好ましい。
 しかしながら、加熱領域12の深さDが、鋼板3の厚さtの90%を超えると、加熱が過多となり、加熱領域12の周辺のミクロ組織の変化が懸念されるので、加熱領域12の深さDは、鋼板3の厚さtの90%以下であることが好ましい。
 上述した条件を実現するために、本実施形態に係る摩擦撹拌接合装置は、制御手段15を備える。制御手段15は、回転ツール1及び加熱手段5の動作を制御する。制御手段15は、後方加熱手段7や冷却手段6等の動作を制御してもよい。
 また、予熱処理プロセスで使用する加熱手段5は、特に限定されるものではないが、レーザ加熱装置であることが好ましい。エネルギー密度の高いレーザを熱源に用いることで、予熱処理プロセス条件の制御をより正確に行うことができ、接合継手特性を損なうことなく接合施工性の向上を図ることができる。
 上記以外の接合条件については特に限定されず、例えば、予熱処理プロセスで使用する加熱手段5の移動速度は、接合速度と同程度としてよい。また、この加熱手段5にレーザ加熱装置を用いる場合、そのレーザ出力やビーム径は、接合条件に応じて適宜設定してよい。
 以上、本実施形態の摩擦撹拌接合方法および装置における予熱処理プロセスについて説明したが、本実施形態の摩擦撹拌接合方法および装置では、接合方向へ移動する回転ツール1の接合方向後方に冷却手段6を設け、その冷却手段6により接合継手強度を改善させてもよい。
 通常、接合完了後、接合部4は自然放冷状態となるので、被加工材である鋼板3の焼入れ性が低い場合は、接合継手の強度が十分に得られない。これに対して、接合方向へ移動する回転ツール1の接合方向後方に冷却手段6を設け、冷却手段6で鋼板3の接合部4を冷却し、冷却速度を適切に制御することで、焼入れによる強度向上を図ることができる。冷却手段6としては、例えば、不活性ガスを噴出する冷却装置を用いることが好ましい。この場合の冷却速度は、例えば、800℃から500℃の範囲において30~300℃/sであることが好ましい。不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス等を用いることができる。
 被加工材である鋼板3の焼入れ性が高い場合は、過度に硬化する可能性があり接合継手の靭性を低下させる。これに対して、回転ツール1に近接する後方部分を加熱する後方加熱手段7を回転ツール1の接合方向後方に設け、冷却速度を適切に制御しながら徐冷することで、過度な硬化を抑制できる。後方加熱手段7としては、例えば、高周波誘導加熱、レーザを熱源とした加熱装置を用いることが好ましい。この場合の徐冷速度は、例えば、800℃から500℃の範囲において10~30℃/sであることが好ましい。
 接合方向へ移動する回転ツールの接合方向後方で、かつ冷却手段6の接合方向後方に後方加熱手段7を設け、後方加熱手段7により鋼板3の接合部4を再加熱してもよい。これにより、接合部4が冷却手段6による冷却で焼入れされ、過度に硬化した場合に、後方加熱手段7で焼き戻しすることにより硬度を抑え、強度と靭性を併せ持つ継手特性が得られる。この場合の冷却速度は、例えば、800℃から500℃の範囲において30~300℃/sであることが好ましく、再加熱温度として、例えば、550~650℃であることが好ましい。
 さらに、接合方向へ移動する回転ツール1の接合方向後方で、かつ後方加熱手段7の接合方向後方に、冷却手段6を設け、冷却手段6により鋼板3の接合部4を冷却してもよい。
 この場合には、接合直後において、後方加熱手段7で徐冷を行い、その後、冷却手段6で急冷を行うことで、組織を複合化でき、強度と延性を併せ持つ継手特性が得られる。この場合の冷却速度は、例えば、800℃から600℃の範囲(徐冷の範囲)において10~30℃/s程度であり、その後、600℃から400℃の範囲(急冷の範囲)において30~300℃/s程度であることが好ましい。
 上記以外の接合条件については、常法に従えばよいが、回転ツール1のトルクが大きいほど鋼板3の塑性流動性は低いので、欠陥などが生じ易くなる。
 従って、本実施形態の摩擦撹拌接合方法および装置では、回転ツール1の回転数を100~1000rpmの範囲とし、回転ツール1のトルクを抑え、接合速度を1000mm/min以上に高速化することを目標とする。接合速度を500mm/min超1000mm/min以下に高速化する場合には、回転ツール1のトルクを90N・m以下に抑えることが好ましい。これにより、回転ツール1が接合中に破損する、もしくは未接合部分が残る状態を回避できる。また、接合速度を500mm/min以下にする場合には、回転ツール1のトルクを75N・m未満に抑えることが好ましい。これにより、塑性流動性を確保しつつ回転ツール1の負荷を緩和できる。
 また、本実施形態の摩擦撹拌接合方法の対象鋼種としては、一般的な構造用鋼や炭素鋼、例えば、JIS(日本工業規格) G 3106の溶接構造用圧延鋼材、JIS G 4051の機械構造用炭素鋼などを用いることができる。引張強度が800MPa以上の高強度構造用鋼にも適用でき、接合部4において、鋼板(母材)の引張強度の85%以上の強度、さらには90%以上の強度が得られる。
(実施例1)
 板厚が1.6mmであって、下記表1に示す化学組成、引張強さの鋼板を用いて、摩擦撹拌接合を実施した。継手突合せ面は、角度をつけない、いわゆるI型開先でフライス加工程度の表面状態により片面1パスで接合を行った。摩擦撹拌接合の接合条件を表2に示す。実施例1では、図4に示した断面寸法形状(肩部直径a:12mm、ピン部の最大径b:4mm、プローブ長さc:1.4mm)の回転ツールを用いた。実施例1で用いた回転ツールは、炭化タングステン(WC)を素材とし、物理蒸着(PVD)により窒化チタン(TiN)の被覆処理が表面に施された回転ツールである。接合時にはアルゴンガスにより接合部をシールドし、表面の酸化を防止した。TiNの被覆処理を表面に施したWCの回転ツールの表面と鋼板との動摩擦係数は、0.6以下であった。
 ツール素材表面と鋼板との動摩擦係数は、以下の測定方法で測定した。ボールオンディスク摩擦摩耗試験機を用いて、対象素材からなるディスクを回転させながら固定された直径6mmの鋼球に荷重5Nで押し付け、回転速度100mm/sで滑り距離300mで試験を行った。試験は室温、無潤滑で行った。試験に用いた鋼球は、JIS G 4805で規定されるSUJ2の化学成分を有する素材から成り、軸受け用鋼球として加工処理された鋼球である。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 また、接合に先立ち、レーザを熱源に用いた予熱による加熱領域を確認するため、表1の鋼板Iに対して、表3に示す各照射条件(レーザ移動速度、レーザ出力およびビーム径)でレーザ光を照射して、表面温度をサーモグラフィにより測定した。さらに、レーザ照射部の断面を観察し、ナイタール腐食液によるミクロ組織観察を行った。
Figure JPOXMLDOC01-appb-T000003
 
 ここで、変態点(TA1℃)以上となった領域は最も濃く、その外側に存在する変態点(TA1℃)未満であるが母材中のマルテンサイトなどの高硬度組織が焼き戻される領域は比較的薄くエッチングされるので、変態点(TA1℃)以上となった領域と、変態点(TA1℃)未満での焼き戻し領域と、母材の領域とは、それぞれ識別可能である。さらに、鉄鋼の熱処理の知見より、変態点(TA1℃)未満での焼き戻し領域は、0.8×TA1℃以上かつTA1℃未満の領域と一致することが知られている。このようなナイタール腐食液によるミクロ組織観察より、変態点(TA1℃)以上となった領域の深さD、および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)を測定した。
 これらの測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表4に示すように、サーモグラフィによる表面温度測定結果から、照射条件Aにおいて、0.8×TA1℃以上となる領域は、直径3.5mmの円形状であった。ここで用いた回転ツールのピン部の最大直径は4.0mmであるので、照射条件Aにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 照射条件Bにおいて、0.8×TA1℃以上となる領域は、直径2.0mmの円形状であった。従って、上記と同様に、照射条件Bにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 照射条件Cにおいて、0.8×TA1℃以上となる領域は、直径4.5mmの円形状であった。ここで用いた回転ツールのピン部の最大直径は4.0mmであるので、照射条件Cにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積を超えることとなる。
 照射条件Dにおいて、0.8×TA1℃以上となる領域は、レーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円形となり、長径は3.8mm、短径は3.2mmであった。ここで用いた回転ツールのピン部の最大直径は4.0mmであるので、照射条件Dにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 照射条件Eにおいて、0.8×TA1℃以上となる領域は、レーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円形となり、長径は2.2mm、短径は1.8mmであった。従って、上記と同様に、照射条件Eにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。
 照射条件Fにおいて、0.8×TA1℃以上となる領域はレーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円形となり、長径は4.9mm、短径は4.1mmであった。ここで用いた回転ツールのピン部の最大直径は4.0mmであるので、照射条件Fにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積を超えることとなる。
 また、表4に示すように、レーザ照射部の断面観察から、照射条件Aにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.28mm、0.30mmであった。被加工材である鋼板の厚さtは1.6mmであるので、0.8×TA1℃以上となった領域の深さである加熱領域の深さDは、鋼板の厚さtの約18.8%となる。
 照射条件Bにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.47mm、0.50mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約31.3%となる。
 照射条件Cにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.09mm、0.10mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約6.3%となる。
 照射条件Dにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.30mm、0.32mmであった。被加工材である鋼板の厚さtは1.6mmであるので、0.8×TA1℃以上となった領域の深さである加熱領域の深さDは、鋼板の厚さtの約20.0%となる。
 照射条件Eにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.51mm、0.54mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約33.8%となる。
 照射条件Fにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.10mm、0.11mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約6.9%となる。
 被加工材の接合前に行ったレーザ照射による予熱プロセス条件を表5に示し、接合後に行ったプロセス条件を表6に示す。ここで、接合後に行ったプロセスにおける冷却ではガス噴出による冷却を、加熱(および再加熱)では誘導加熱をそれぞれ行った。
 表5、表6中、予熱プロセス条件および接合後に行ったプロセス条件における「-」は、それぞれ予熱プロセスおよび冷却や加熱といった接合後のプロセスを行わなかった場合を示す。また、接合中央線から加熱領域中心までの距離における「(AS)」、「(RS)」との記載は、加熱領域の中心が、接合中央線からそれぞれアドバンシングサイド、リトリーティングサイドにあることを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 
 また、表7に、接合を実施した際の回転ツールのトルクの測定値と、得られた接合継手の引張強さの測定値を示す。接合継手の引張強さは、JIS Z 3121で規定する1号試験片の寸法の引張試験片を採取し、引張試験を行った結果である。回転ツールのトルクが大きいほど塑性流動性が低く、欠陥などが生じ易くなる。
Figure JPOXMLDOC01-appb-T000007
 
 表7より、発明例1~10では、接合速度を400mm/minとした場合であっても、母材となる鋼板の引張強さの90%以上の接合継手強度が得られた。発明例1~10の回転ツールのトルクは72N・m以下であり、塑性流動性も良好であった。特に、接合後に冷却・再加熱または冷却のみを行った発明例6、7、および8では、母材の引張強さと同等の接合継手強度が得られた。接合後に加熱・冷却または加熱のみを行った発明例9、10では、母材の引張強さの93%以上の接合継手強度が得られた。
 一方、比較例1~6では、回転ツールのトルクが75N・m以上となり、塑性流動性に劣っていた。
 発明例11~20では、接合速度を1000mm/minに高速度化した場合であっても、母材の引張強さの85%以上の接合継手強度が得られ、回転ツールのトルクも90N・m以下であった。特に、接合後に冷却・再加熱または冷却のみを行った発明例16、17および18では、母材の引張強さの99%以上の接合継手強度が得られた。接合後に再加熱・冷却または再加熱のみを行った発明例19、20では、母材の引張強さの95%以上の接合継手強度が得られた。
 一方、比較例7では回転ツールが接合中に破損し、接合できなかった。比較例8~12は、未接合部分が残る状態となって接合ができず、健全な継手は得られなかった。このため、比較例7~12では、回転ツールトルク等の測定は行っていない。
(実施例2)
 板厚が1.6mmであって、上記表1に示す化学組成、引張強さの鋼板を用いて、摩擦撹拌接合を実施した。継手突合せ面は、角度をつけない、いわゆるI型開先でフライス加工程度の表面状態により片面1パスで接合を行った。摩擦撹拌接合の接合条件を上記表2に示す。実施例2では、図4に示した断面寸法形状(肩部直径a:12mm、ピン部の最大径b:4mm、プローブ長さc:1.4mm)の回転ツールを用いた。実施例2で用いた回転ツールは、炭化タングステン(WC)を素材とし、被覆処理を施していないもの、炭化タングステン(WC)を素材とし、物理蒸着(PVD)により窒化チタン(TiN)の被覆処理を表面に施したもの、炭化タングステン(WC)を素材とし、表面に窒化アルミクロム(AlCrN)の被覆処理を表面に施したもの、または、立方晶窒化ホウ素(CBN)を素材としたものである。
 接合時にはアルゴンガスにより接合部をシールドし、表面の酸化を防止した。回転ツールの表面と鋼板との動摩擦係数は、炭化タングステン(WC)を素材として被覆処理を施していないものの場合は0.7、炭化タングステン(WC)を素材として物理蒸着(PVD)により窒化チタン(TiN)の被覆処理を施したものの場合は0.5、炭化タングステン(WC)を素材として窒化アルミクロム(AlCrN)の被覆処理を施したものの場合は0.4、立方晶窒化ホウ素(CBN)を素材としたものの場合は0.3であった。
 ツール素材表面と鋼板との動摩擦係数は、実施例1と同じ測定方法で測定した。
 被加工材の接合前に行ったレーザ照射による予熱プロセス条件を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 
 表8中、炭化タングステン(WC)を素材として皮膜処理を施していない回転ツールを「WC」、炭化タングステン(WC)を素材として物理蒸着(PVD)により窒化チタン(TiN)の被覆処理を施した回転ツールを「WC+TiN」、炭化タングステン(WC)を素材として窒化アルミクロム(AlCrN)の被覆処理を施した回転ツールを「WC+AlCrN」、立方晶窒化ホウ素(CBN)を素材とした回転ツールを「CBN」と示す。予熱プロセス条件におけるレーザ照射条件は表3に示す通りであり、また、各レーザ照射条件により形成される加熱領域の表面形状、深さは表4に示す通りである。
 実施例2では、接合後のプロセスを行わなかった。接合中央線から加熱領域中心までの距離における「(AS)」、「(RS)」は、加熱領域の中心が、接合中央線からそれぞれアドバンシングサイド、リトリーティングサイドにあることを示す。
 表9に、接合を実施した際の回転ツールのトルクの測定値と、得られた接合継手の引張強さの測定値を示す。接合継手の引張強さは、JIS Z 3121で規定する1号試験片の寸法の引張試験片を採取し、引張試験を行った結果である。回転ツールのトルクが大きいほど塑性流動性が低く、欠陥などが生じ易くなる。
Figure JPOXMLDOC01-appb-T000009
 
 表9より、発明例21~26では、接合速度を400mm/minとした場合であっても、母材となる鋼板の引張強さの90%以上の接合継手強度が得られた。発明例21~26の回転ツールのトルクは65N・m以下であり、塑性流動性も良好であった。
 一方、比較例13、14では、回転ツールのトルクが75N・m以上となり、塑性流動性に劣っていた。
 表9より、発明例27~32では、接合速度を1000mm/minに高速度化した場合であっても、母材の引張強さの85%以上の接合継手強度が得られ、回転ツールのトルクも81N・m以下であった。
 一方、比較例15、16では未接合部分が残る状態となって接合ができなかった。このため、比較例15、16では、回転ツールのトルク等の測定は行っていない。
 1  回転ツール
 2  回転軸
 3  鋼板
 4  接合部
 5  加熱手段
 6  冷却手段
 7  後方加熱手段
 8  回転ツールの肩部
 9  回転ツールのピン部
 10  接合中央線
 11  RS線
 12  加熱領域
 13  冷却領域
 14  再加熱領域
 15  制御手段
 a  回転ツールの肩部直径
 b  回転ツールのピン部の最大径
 c  回転ツールのプローブ長さ
 X  加熱領域と回転ツールとの最小距離
 D  加熱領域の深さ
 t  鋼板の厚さ
 α  回転ツールの傾斜角度

Claims (14)

  1.  肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、前記肩部とおよび前記ピン部が被加工材である鋼板よりも硬い材質からなる回転ツールを、鋼板間の未接合部に挿入して回転させながら接合方向に移動させ、前記回転ツールと前記鋼板との摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて鋼板同士を接合する摩擦撹拌接合方法であって、
     前記回転ツールの素材、もしくは前記回転ツールの表面に被覆された素材と前記鋼板との動摩擦係数は0.6以下であり、
     前記回転ツールの接合方向前方に設けられた加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記回転ツールとの最小距離は、前記回転ツールの肩部の直径以下であり、
     前記加熱領域の面積は、前記回転ツールのピン部の最大径部の面積以下であり、
     前記加熱領域の面積の65%以上は、前記鋼板の表面における前記回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する摩擦撹拌接合方法。
     T≧0.8×TA1・・・(1)
     TA1は、下記式(2)で示される温度である。
     TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
     上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
  2.  前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの最大深さを加熱領域の深さDとしたとき、前記加熱領域の深さDは、前記鋼板の厚さの30%以上である請求項1に記載の摩擦撹拌接合方法。
     T≧0.8×TA1・・・(3)
  3.  前記加熱手段は、レーザ加熱装置である請求項1または請求項2に記載の摩擦撹拌接合方法。
  4.  前記回転ツールの接合方向後方には後方加熱手段が設けられており、該後方加熱手段は、前記鋼板の接合部を加熱する請求項1から請求項3のいずれか一項に記載の摩擦撹拌接合方法。
  5.  前記後方加熱手段の接合方向後方には冷却手段が設けられており、該冷却手段は、前記後方加熱手段により加熱された前記接合部を冷却する請求項4に記載の摩擦撹拌接合方法。
  6.  前記回転ツールの接合方向後方には冷却手段が設けられており、該冷却手段は、前記鋼板の接合部を冷却する請求項1から請求項3のいずれか一項に記載の摩擦撹拌接合方法。
  7.  前記冷却手段の接合方向後方には後方加熱手段が設けられており、該後方加熱手段は、前記冷却手段により冷却された前記接合部を加熱する請求項6に記載の摩擦撹拌接合方法。
  8.  被加工材である鋼板間の未接合部を接合する摩擦撹拌接合装置であって、
     肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、前記肩部および前記ピン部は、前記鋼板よりも硬い材質からなり、前記鋼板間の未接合部に挿入された状態で回転しながら接合方向に移動することで、摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を撹拌することにより塑性流動を生じさせる回転ツールと、
     該回転ツールの接合方向前方に設けられ、前記鋼板を加熱する加熱手段と、
     下記状態1を実現するように前記回転ツール及び前記加熱手段を制御する制御手段と、を有し、
     前記回転ツールの素材、もしくは前記回転ツールの表面に被覆した素材と前記鋼板との動摩擦係数は0.6以下である摩擦撹拌接合装置。
    (状態1)
     前記加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記回転ツールとの最小距離は、前記回転ツールの肩部の直径以下であり、
     前記加熱領域の面積は、前記回転ツールのピン部の最大径部の面積以下であり、
     前記加熱領域の面積の65%以上は、前記鋼板の表面における前記回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する。
     T≧0.8×TA1・・・(1)
     TA1は、下記式(2)で示される温度である。
     TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
     上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
  9.  前記制御手段は、以下の状態2を実現するように前記回転ツール及び前記加熱手段を制御する請求項8に記載の摩擦撹拌接合装置。
    (状態2)
     前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの最大深さを加熱領域の深さDとしたとき、前記加熱領域の深さDは、前記鋼板の厚さの30%以上である。
     T≧0.8×TA1・・・(3)
  10.  前記加熱手段は、レーザ加熱装置である請求項8または請求項9に記載の摩擦撹拌接合装置。
  11.  前記鋼板の接合部を加熱する後方加熱手段をさらに有し、
     該後方加熱手段は、前記回転ツールの接合方向後方に設けられる請求項8から請求項10のいずれか一項に記載の摩擦撹拌接合装置。
  12.  前記接合部を冷却する冷却手段をさらに有し、
     該冷却手段は、前記後方加熱手段の接合方向後方に設けられる請求項11に記載の摩擦撹拌接合装置。
  13.  前記鋼板の接合部を冷却する冷却手段をさらに有し、
     該冷却手段は、前記回転ツールの接合方向後方に設けられる請求項8から請求項10のいずれか一項に記載の摩擦撹拌接合装置。
  14.  前記接合部を加熱する後方加熱手段をさらに有し、
     該後方加熱手段は、前記冷却手段の接合方向後方に設けられる請求項13に記載の摩擦撹拌接合装置。
PCT/JP2017/036092 2016-10-11 2017-10-04 摩擦撹拌接合方法および装置 WO2018070316A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780055151.9A CN109689276B (zh) 2016-10-11 2017-10-04 摩擦搅拌接合方法及装置
JP2017558591A JP6493564B2 (ja) 2016-10-11 2017-10-04 摩擦撹拌接合方法および装置
KR1020197006475A KR102173603B1 (ko) 2016-10-11 2017-10-04 마찰 교반 접합 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199830 2016-10-11
JP2016-199830 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018070316A1 true WO2018070316A1 (ja) 2018-04-19

Family

ID=61905648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036092 WO2018070316A1 (ja) 2016-10-11 2017-10-04 摩擦撹拌接合方法および装置

Country Status (4)

Country Link
JP (1) JP6493564B2 (ja)
KR (1) KR102173603B1 (ja)
CN (1) CN109689276B (ja)
WO (1) WO2018070316A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111421223A (zh) * 2020-05-07 2020-07-17 铜陵学院 一种用于异种材料的搅拌摩擦对接焊装置及其加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193489A (ja) * 2009-11-02 2014-10-09 Megastir Technologies Llc 心棒
WO2015045299A1 (ja) * 2013-09-30 2015-04-02 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8601083D0 (en) 1986-01-17 1986-02-19 Welding Inst Friction welding
GB9125978D0 (en) 1991-12-06 1992-02-05 Welding Inst Hot shear butt welding
KR100815654B1 (ko) 2000-05-08 2008-03-20 브라이엄 영 유니버시티 마찰교반용접 도구 및 마찰교반용접하기 위한 방법
DE10036170C1 (de) * 2000-07-25 2001-12-06 Eads Deutschland Gmbh Laserunterstütztes Reibrührschweißverfahren
WO2002070187A1 (en) * 2001-03-07 2002-09-12 Honda Giken Kogyo Kabusihiki Kaisha Friction agitation joining method, method for manufacturing joined butted members, and friction agitation joining apparatus
JP4235874B2 (ja) 2001-09-20 2009-03-11 株式会社安川電機 摩擦撹拌接合法の加熱装置
JP4313714B2 (ja) 2004-03-31 2009-08-12 日本車輌製造株式会社 摩擦撹拌接合装置及び摩擦撹拌接合方法
US20060231595A1 (en) * 2005-04-14 2006-10-19 James Florian Quinn Method for friction stir welding of dissimilar materials
JP2015045299A (ja) 2013-08-29 2015-03-12 トヨタ自動車株式会社 自動車の冷却システム
CN105579183B (zh) * 2013-09-30 2018-10-26 杰富意钢铁株式会社 钢板的摩擦搅拌接合方法及接合接头的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193489A (ja) * 2009-11-02 2014-10-09 Megastir Technologies Llc 心棒
WO2015045299A1 (ja) * 2013-09-30 2015-04-02 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111421223A (zh) * 2020-05-07 2020-07-17 铜陵学院 一种用于异种材料的搅拌摩擦对接焊装置及其加工方法
CN111421223B (zh) * 2020-05-07 2023-11-24 铜陵学院 一种用于异种材料的搅拌摩擦对接焊装置及其加工方法

Also Published As

Publication number Publication date
KR20190039743A (ko) 2019-04-15
JPWO2018070316A1 (ja) 2018-10-11
JP6493564B2 (ja) 2019-04-03
CN109689276B (zh) 2021-08-10
KR102173603B1 (ko) 2020-11-03
CN109689276A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6497451B2 (ja) 摩擦撹拌接合方法および装置
JP5943142B2 (ja) 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法
JP6004147B1 (ja) 構造用鋼の摩擦撹拌接合装置
JP6332561B2 (ja) 構造用鋼の摩擦撹拌接合方法及び装置
JP6992773B2 (ja) 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置
JP6332562B2 (ja) 構造用鋼の摩擦撹拌接合方法及び装置
JP6493564B2 (ja) 摩擦撹拌接合方法および装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017558591

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860487

Country of ref document: EP

Kind code of ref document: A1