WO2017150365A1 - シール構造及びターボ機械 - Google Patents

シール構造及びターボ機械 Download PDF

Info

Publication number
WO2017150365A1
WO2017150365A1 PCT/JP2017/007028 JP2017007028W WO2017150365A1 WO 2017150365 A1 WO2017150365 A1 WO 2017150365A1 JP 2017007028 W JP2017007028 W JP 2017007028W WO 2017150365 A1 WO2017150365 A1 WO 2017150365A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
stationary
seal
side recess
rotating
Prior art date
Application number
PCT/JP2017/007028
Other languages
English (en)
French (fr)
Inventor
松本 和幸
健一 藤川
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201780013860.0A priority Critical patent/CN108699915B/zh
Priority to KR1020187024427A priority patent/KR102110066B1/ko
Priority to DE112017001043.8T priority patent/DE112017001043T5/de
Priority to US16/079,242 priority patent/US10669876B2/en
Publication of WO2017150365A1 publication Critical patent/WO2017150365A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals

Definitions

  • the present invention relates to a seal structure suitable for suppressing unstable vibrations, a seal structure for suppressing leakage of a working fluid from between two relatively rotating structures, and a turbomachine using the seal structure.
  • a turbo machine such as a steam turbine, a gas turbine, and a turbo compressor
  • a working fluid such as steam leaks (leaks) from a gap formed between the stationary structure and the rotating structure
  • the leakage of the working fluid is caused in the turbine. It causes a loss of efficiency (leakage loss).
  • a sealing fin is formed in the gap to form a sealing structure (see, for example, Patent Document 1).
  • the seal excitation force acts on the rotating structure so as to promote the swinging of the rotating structure against minute vibrations of the rotating structure generated for some reason, and thus causes unstable vibration.
  • the seal excitation force will be further described.
  • the working fluid flowing in the seal portion flows not only in the axial (flow direction) velocity component but also in the circumferential velocity component.
  • the flow in the circumferential direction is referred to as “swirl flow”), and the seal excitation force is caused by this swirl flow.
  • Patent Document 2 As a technique for suppressing such unstable vibration of the turbine, there is a technique disclosed in Patent Document 2.
  • the technique disclosed in Patent Document 2 will be described.
  • the reference numerals used in Patent Document 2 are shown in parentheses.
  • a plurality of seal fins (42) are provided along the rotor axial direction (L) so as to face the shroud (12) provided on the top of the rotor blade (11).
  • the seal ring (41) to which these seal fins (42) are attached is provided with groove portions (43) having the same depth (D2) between the seal fins (42).
  • the depth (D2) of the groove (43) is set to such an extent that the strength for supporting the seal fin (42) is not lowered.
  • the space between the seal fins (42) can be made substantially larger than in the case of a conventional steam turbine seal structure without a groove, and steam whirl (unstable) (Vibration) can be suppressed (see paragraphs [0025] to [0028], FIG. 4).
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a seal structure and a turbo machine that can effectively suppress unstable vibration.
  • the seal structure of the present invention has a rotating structure that rotates in a predetermined direction around an axial center line, and is opposed in the radial direction with a gap formed on the outer peripheral side of the rotating structure.
  • the depth dimension is set to be smaller in the second stationary side recess arranged on the downstream side of the first stationary side recess in the flow direction than in the first stationary side recess on the side. It is said.
  • the stationary structure is a turbine casing, a plurality of the rotating structures are installed along the axial direction, and are tip shrouds attached to the tips of the moving blades, and the seal fins are the tip shrouds. It is preferable to arrange
  • three or more stationary recesses are provided along the flow direction, and the depth dimension is set to be smaller toward the downstream side in the flow direction.
  • a plurality of the seal fins are provided along the flow direction, and the first seal fin on the most upstream side in the flow direction and the second disposed on the immediately downstream side of the first seal fin in the flow direction. It is preferable that the first stationary side recess is provided between the seal fin and each other.
  • the depth dimension of the first stationary side recess is set to be larger than twice the pitch between the first seal fin and the second seal fin.
  • the pitch between the seal fins is preferably set to be the same.
  • At least one of the seal fins is provided at a predetermined distance in the axial direction from the adjacent stationary recess.
  • At least one of the first stationary side recess and the second stationary side recess is extended in the radial direction.
  • At least one of the stationary side recesses is provided with an axial recess extending in the axial direction.
  • the stationary side recess is provided between the seal fins, and is a dimension related to the axial direction, and a total dimension of the stationary side recess and the axial recess is the dimension of the seal fin. It is preferable that the pitch be set larger than the pitch between them.
  • a rotation-side recess is provided in the rotary structure so as to face the stationary-side recess, and the rotation-side recess is at least a first provided facing the first stationary-side recess. It is preferable that a rotation side recess or a second rotation side recess provided to face the second stationary side recess is provided.
  • the rotary structure is provided with the first rotation side recess and the second rotation side recess, and a distance between a bottom surface of the first stationary side recess and a bottom surface of the first rotation side recess.
  • the distance between the bottom surface of the second stationary side recess and the bottom surface of the second rotation side recess is set shorter.
  • a turbo machine has a rotating structure that rotates in a predetermined direction around an axial center line, and is opposed in the radial direction with a gap formed on the outer peripheral side of the rotating structure. And a sealing structure according to any one of (1) to (12).
  • the rotating structure includes a plurality of tip shrouds provided in the axial direction, and the stationary structure includes a turbine casing that surrounds the plurality of tip shrouds, of the plurality of tip shrouds, It is preferable that the turbine has the seal structure for at least one tip shroud.
  • the at least one tip shroud is a tip shroud disposed closest to the inlet of the working fluid.
  • the at least one tip shroud is a tip shroud disposed in the center in the axial direction.
  • the first stationary side recess is formed on the inner peripheral surface of the cavity of the stationary structure housing the rotating structure and the seal fin from the upstream side as a stationary side recess that alleviates the nonuniformity of the static pressure distribution.
  • the second stationary side recess are provided in this order, and the depth dimension of the second stationary side recess is set smaller than that of the first stationary side recess. Rather than having the same depth dimension in the first stationary side recess and the second stationary side recess, the depth dimension of the downstream second stationary side recess having a small non-uniformity is set to be small and stationary.
  • a reduction in the strength of the structure can be suppressed, and accordingly, the depth dimension of the first stationary recess on the upstream side having a large non-uniformity can be set large while ensuring the strength of the stationary structure. Therefore, according to the present invention, it is possible to effectively suppress unstable vibration while suppressing a decrease in strength of the stationary structure due to providing the recess.
  • FIG. 1 is a schematic longitudinal sectional view showing an overall configuration of a steam turbine according to each embodiment of the present invention.
  • FIG. 2 is a schematic view showing the configuration of the seal structure according to the first embodiment of the present invention, and is a cross-sectional view cut along the radial direction.
  • FIG. 3 is a schematic view showing the configuration of the seal structure according to the second embodiment of the present invention, and is a cross-sectional view cut along the radial direction.
  • FIG. 4 is a schematic view showing the configuration of the seal structure according to the third embodiment of the present invention, and is a cross-sectional view cut along the radial direction.
  • upstream and downstream mean upstream and downstream of the flow component of the leak steam SL in the axial direction A unless otherwise specified. That is, the left side in FIGS. 1 to 4 is the upstream side, and the right side is the downstream side.
  • the direction toward the rotor axial center line (hereinafter also referred to as “axial center line”) CL of the steam turbine is defined as the inner peripheral side or the inner side, and the opposite side, the direction away from the axial center line CL is described as the outer peripheral side or the outer side.
  • the term “circumferential direction” means the circumferential direction centered on the axial center line CL unless otherwise specified.
  • the steam turbine 1 of the present embodiment includes a turbine casing (stationary structure, hereinafter also referred to as “casing”) 10 and a generator (not shown) that is rotatably provided inside the casing 10.
  • the rotor shaft 30 is transmitted to a machine, the stationary blade 60 provided on the casing 10, the rotor blade 50 provided on the rotor shaft 30, and the rotor shaft 30 is rotatably supported around the axis line CL.
  • the bearing part 70 is provided.
  • the stationary blade 60 and the moving blade 50 are blades extending in the radial direction R of the rotor shaft 30. While the casing 10 is stationary, the rotor blade 50 rotates around the axis line CL. That is, the casing 10 and the moving blade 50 (including a chip shroud 4 described later) rotate relative to each other.
  • the casing 10 has an internal space hermetically sealed and a flow path for steam (fluid) S.
  • the steam S is introduced from a main inlet 21 formed in the casing 10 through a steam supply pipe 20 connected to a steam supply source (not shown) and discharged from a steam discharge pipe 22 connected to the downstream side of the steam turbine 1. Is done.
  • a ring-shaped partition plate outer ring 11 is firmly fixed to the inner wall surface of the casing 10.
  • the bearing unit 70 includes a journal bearing device 71 and a thrust bearing device 72, and rotatably supports the rotor shaft 30.
  • the stationary blades 60 extend from the casing 10 toward the inner peripheral side, and constitute a group of annular stationary blades arranged radially so as to surround the rotor shaft 30, and are respectively held by the partition plate outer ring 11 described above. ing.
  • a plurality of annular stator blade groups composed of a plurality of stator blades 60 are formed at intervals in the axial direction A of the rotor shaft 30 and convert the pressure energy of the steam S into velocity energy and are adjacent to the downstream side. It flows into the moving blade 50.
  • the rotor blades 50 are firmly attached to the disk 32 formed on the outer peripheral portion of the rotor shaft body 31 of the rotor shaft 30 and are arranged radially in the downstream side of each annular stator blade group to constitute the annular rotor blade group. is doing. These annular stator blade groups and annular rotor blade groups are grouped into one stage. The tip portions of the plurality of blades 50 constituting each blade group are connected by a ring-shaped tip shroud (rotary structure) 4.
  • a cavity 12 that is recessed from the inner peripheral surface of the partition plate outer ring 11 is formed between the plurality of partition plate outer rings 11.
  • the cavity 12 is an annular space centered on the axis CL, and has an inner peripheral surface (hereinafter also referred to as “cavity bottom surface”) 13 of the casing 10 as a bottom surface.
  • the cavity 12 houses the chip shroud 4, and the cavity bottom surface 13 is opposed to the chip shroud 4 in the radial direction R via the gap Gd.
  • leak steam a part of the steam S (for example, about several percent) steam flow (leak flow, hereinafter also referred to as “leak steam”) SL does not flow into the rotor blade 50 but leaks into the gap Gd. Since the energy of the leak steam SL is not converted into rotational energy, the leak steam SL causes a leak loss that reduces the efficiency of the steam turbine 1.
  • each gap Gd between the casing 10 and each chip shroud 4 is provided with a seal structure 2 as the first embodiment of the present invention.
  • each chip shroud 4 is provided with the seal structure 2 as the first embodiment of the present invention.
  • the tip shroud 4 has a ring shape as described above, and has a rectangular cross-sectional shape that is long in the axial direction A as shown in FIG.
  • the cavity bottom surface 13 is provided with seal fins 6A, 6B, 6C extending toward the inner periphery toward the chip shroud 4 (not shown in FIG. 1).
  • the pitches B1 and B2 refer to the distance between the center lines of the seal fins 6A, 6B, and 6C in the thickness direction (in other words, the axial direction A).
  • seal fins 6A, 6B, and 6C are referred to as seal fins 6. Note that the seal fins 6A, 6B, and 6C need not have the same shape, and may have different shapes.
  • the cavity bottom surface 13 includes a casing recess (hereinafter referred to as “recess” or “radial recess”) extending in the radial direction R toward the outer peripheral side between the seal fins 6A, 6B, 6C. 14A and 14B are formed.
  • the recesses 14A and 14B are not distinguished, they are referred to as the recesses 14.
  • the recess 14 is a ring-shaped recess formed over the entire circumference of the cavity bottom surface 13 with the axial center line CL as the center, and is a ring-shaped recess facing each other and having a width in the radial direction R.
  • the recess 14 is set shallower toward the downstream side, and the depth L2 of the downstream recess 14B is set smaller (shallow) than the depth L1 of the upstream recess 14A ( L2 ⁇ L1).
  • the cavity bottom surface 13 and the bottom surface 14c defining the recesses 14A and 14B are circumferential surfaces centered on the axis line CL, and the depths L1 and L2 of the recesses 14A and 14B are: This is the distance in the radial direction R between the cavity bottom surface 13 and the bottom surface 14c.
  • Each recess 14 is formed with a predetermined distance ⁇ B ( ⁇ B> 0) with respect to the adjacent seal fin 6 in the axial direction A.
  • the recesses 14 ⁇ / b> A and 14 ⁇ / b> B have a function as an absorber (hereinafter referred to as “absorber function”) that reduces non-uniformity (non-uniformity) of the static pressure distribution.
  • a recess 14A having a relatively large depth dimension and a large volume (relatively high absorber function) is provided on the upstream side where the nonuniformity of the static pressure distribution is relatively large.
  • a recess 14B having a relatively small depth dimension and a small volume (relatively low absorber function) is provided.
  • the absorber function can be improved, while the strength of the casing 10 is reduced.
  • the depth dimension L2 of the recess 14B is set to be small, thereby suppressing the strength of the casing 10 from being lowered more than necessary.
  • the depth dimension L1 of the recess 14A can be set large to improve the absorber function by the amount that the depth dimension L2 of the recess 14B is reduced. . Therefore, compared with the case where the depth dimensions L1 and L2 of the recesses 14A and 14B are set to the same dimension, it is possible to effectively suppress the unstable vibration of the turbine while suppressing the decrease in the strength of the casing 10.
  • the depth L1 of the recess 14A between the seal fin 6A and the seal fin 6B is set to be larger than twice the pitch B1 between the seal fin 6A and the seal fin 6B.
  • L1> B1 ⁇ 2 the static pressure distribution can be made uniform, and the unstable vibration of the turbine can be more effectively suppressed.
  • each recess 14 is formed with a predetermined distance ⁇ B with respect to the adjacent seal fin 6 in the axial direction A ( ⁇ B> 0).
  • the seal structure 2A of the second embodiment of the present invention extends in the axial direction A from the outer peripheral end to the downstream side in the radial recess 14A with respect to the seal structure 2 of the first embodiment shown in FIG.
  • the existing axial recess 14A ' is connected continuously, and the axial recess 14B' extending in the axial direction A from the outer peripheral end toward the downstream side is connected to the radial recess 14B.
  • the axial recesses 14A 'and 14B' are recesses that are open in the radial recesses 14A and 14B and are formed in a ring shape around the axial center line CL.
  • the axial recesses 14A ′ and 14B ′ are defined by an outer peripheral side bottom surface 14d, an inner peripheral side bottom surface 14f, and a side surface 14e.
  • the outer peripheral side bottom surface 14d and the inner peripheral side bottom surface 14f face each other and are ring-shaped surfaces each having a width in the axial direction A.
  • the outer peripheral side bottom surface 14d is formed flush with the bottom surface 14c of the radial recess 14.
  • the side surface 14e is a ring-shaped surface that connects the downstream edges of the bottom surfaces 14d and 14f and has a width in the radial direction R.
  • the radial recess 14A can be substantially enlarged.
  • the total axial dimension D1 of the radial recess 14A and the axial recess 14A ′. Is set larger than the pitch B1 between the fins 6A and 6B (D1> B1).
  • the axial recess 14B ′ the radial recess 14B can be substantially enlarged.
  • D2 is set larger than the pitch B2 between the fins 6B and 6C (D2> B2). Since other structures are the same as the seal structure 2 of the first embodiment, description thereof is omitted.
  • the nonuniformity (nonuniformity) of the static pressure distribution is alleviated. Since the volume of the recess to be increased can be increased, unstable vibration of the turbine can be more effectively suppressed than in the first embodiment.
  • the dimension in the axial direction A is set to the pitch B1 and B2 of the seal fins 6A, 6B and 6C.
  • the dimensions of the axial recesses A in the radial recesses 14A and 14B are set to be smaller than the pitches B1 and B2, although partially. Can also be long.
  • the downstream radial recess 14B is formed shallower than the upstream radial recess 14A, an empty space is formed on the downstream side of the outer periphery of the radial recess 14A. Using this empty space, the axial recess 14A ′ can be formed on the downstream side of the outer peripheral portion of the radial recess 14A, and the recess can be efficiently arranged.
  • the axial recesses 14A 'and 14B' are provided at the outer peripheral ends of the radial recesses 14A and 14B.
  • the axial recesses 14A 'and 14B' may be provided at the outer peripheral ends of the radial recesses 14A and 14B.
  • the axial recess 14 ⁇ / b> A ′ may be connected to an intermediate portion in the radial direction R of the radial recess 14 ⁇ / b> A.
  • the axial recesses 14A 'and 14B' are provided on the downstream side of the radial recesses 14A and 14B.
  • the axial recesses 14A 'and 14B' are provided in the radial recesses. It may be provided upstream of the locations 14A and 14B.
  • the seal structure 2B of the third embodiment of the present invention is a shroud recess (hereinafter also referred to as “recess”) 41A formed in the chip shroud 4 with respect to the seal structure 2 of the first embodiment shown in FIG. , 41B are added.
  • the shroud recess 41A first rotation side recess
  • the shroud recess 41B second rotation side recess
  • the recesses 41 ⁇ / b> A and 41 ⁇ / b> B are not distinguished, they are referred to as the recesses 41.
  • the recess 41 is a ring-shaped recess formed over the entire circumference of the outer peripheral surface 42 of the shroud 4 with the axial center line CL as the center.
  • the recess 41 is recessed from the outer peripheral surface of the chip shroud 4 to the inner peripheral side (that is, extends along the radial direction R), and is opposed to each other and has a ring-shaped side surface 41a having a width in the radial direction R. , 41b and a ring-shaped bottom surface 41c having a width in the axial direction A by connecting the inner peripheral edges of these side surfaces 41a, 41b.
  • the depth dimension L2 of the casing recess 14B disposed facing the shroud recess 41B is smaller than the depth dimension L1 of the casing recess 14A disposed facing the shroud recess 41A. Is set.
  • the depth dimension L2 ′ of the downstream shroud recess 41B is set smaller (shallow) than the depth dimension L1 ′ of the upstream shroud recess 41A (L2 ′ ⁇ L1 ′).
  • the height of the space 100A between the recesses 14A and 41A (that is, the distance between the “bottom surface 14c of the casing recess 14A” and the “bottom surface 41c of the shroud recess 41A”) H1 is greater than the recess 14B.
  • the height dimension of the space 100B (that is, the distance between the “bottom surface 14c of the casing recess 14B” and the “bottom surface 41c of the shroud recess 41B”) H2 is set to be smaller ( H1> H2).
  • the spaces 100A and 100B substantially expand the gap Gd between the cavity bottom surface 13 and the chip shroud 4 to alleviate the non-uniformity of the static pressure distribution.
  • the larger space 100A is provided on the upstream side with larger non-uniformity
  • the smaller space 100B is provided on the downstream side with relatively smaller non-uniformity.
  • the space 100A and the space 100B are not distinguished, they are referred to as the space 100.
  • the outer peripheral surface 42 of the chip shroud 4 and the bottom surface 41c that defines the recesses 41A and 41B are circumferential surfaces centering on the axial center line CL, respectively, and the depths L1 ′, S1 of the shroud recesses 41A and 41B are provided.
  • L2 ′ is the distance in the radial direction R between the outer peripheral surface 42 and the bottom surface 41c of the chip shroud 4.
  • the height dimension H1 is a distance in the radial direction R between the bottom surface 14c of the casing recess 14A and the bottom surface 41c of the shroud recess 41A
  • the height dimension H2 is the distance between the bottom surface 14c of the casing recess 14B and the bottom surface 14c.
  • the shroud recess 41 is provided in addition to the casing recess 14, and the space 100 formed between the recesses 14 and 41 is set to be smaller toward the downstream side. Therefore, the unstable vibration of the turbine can be suppressed while suppressing the decrease in the strength of the casing 10 more effectively than in the first embodiment.
  • the depth dimension L2 ′ of the shroud recess 41B is set smaller than the depth dimension L1 ′ of the shroud recess 41A, but it is smaller than the height dimension H1 of the upstream space 100A. If the height dimension H2 of the downstream space 100B is smaller, it is not necessary to set the depth dimension L2 ′ smaller than the depth dimension L1 ′.
  • the depth dimension L1 ′ and the depth dimension L2 ′ may be the same dimension.
  • the casing recess 14 and the shroud recess 41 arranged opposite to the casing recess 14 are set as one set, and two sets are provided for one chip shroud 4. Three or more sets may be provided for one chip shroud 4.
  • the height dimension H2 of the second space 100B from the upstream side may be the same as the height dimension of the third and subsequent spaces (between the recess 14 and the recess 41) from the upstream side.
  • an axial recess may be provided in at least one of the recess 14A and the recess 14B.
  • the seal structure of the present invention is applied to each chip shroud 4, but only the seal structure of the present invention is applied to some (at least one) chip shrouds 4. But you can.
  • the seal structure of the present invention is applied to some chip shrouds 4, the non-uniformity of static pressure is maximized, so that it is closest to the main flow inlet 21 that is the inlet of the steam S (in other words, the highest pressure)
  • the seal structure of the present invention it is preferable to apply the seal structure of the present invention to the tip shroud 4A (see FIG. 1).
  • the amplitude is maximized in the center in the axial direction A, so that the tip shroud 4B (see FIG. 1) in the center in the axial direction A
  • the tip shroud 4B in the center in the axial direction A
  • the seal structure of the present invention is applied to the tip shroud closest to, a synergistic effect is obtained.
  • the present invention can also be applied to a seal of a turbo machine other than the steam turbine, such as a gas turbine or a turbo compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

不安定振動を効果的に抑制できるようにした、シール構造及びターボ機械を提供する。 軸心線(CL)周りに所定方向に回転する回転構造体(4)と、回転構造体(4)の外周側に隙間(Gd)を空けて径方向(R)に対向する静止構造体(10)との間の隙間(Gd)から、作動流体のリーク流(SL)の流れを抑制する、シール構造であって、静止構造体(10)には、回転構造体(4)を収容するキャビティ(12)が備えられると共に、このキャビティ(12)の内周面(13)には、軸心線(CL)側に向かって延在するシールフィン(6)が設けられると共に、リーク流(SL)の流れ方向に沿って複数の静止側凹所(14)が設けられ、前記流れ方向で最上流側の第1静止側凹所(14A)よりも、前記流れ方向で第1静止側凹所(14A)の直下流側に配置された第2静止側凹所(14B)のほうが、深さ寸法を小さく設定さる。

Description

シール構造及びターボ機械
 本発明は、不安定振動を抑制するのに好適な、相対回転する二つ構造体の相互間から作動流体がリークすることを抑制するシール構造及びそれを使用したターボ機械に関する。
 蒸気タービン,ガスタービン及びターボ圧縮機などのターボ機械においては、静止構造体と回転構造体との間にできる隙間から蒸気などの作動流体が漏洩(リーク)すると、この作動流体のリークがタービンにおける効率の損失(リーク損失)を引き起こす。このため、ターボ機械では、作動流体のリークを防止するために、当該隙間にシール用フィンを設けてシール構造を形成する(例えば特許文献1参照)。
 ところで、ターボ機械においては、不安定振動と考えられる低周波振動が発生することがある。不安定振動が発生すると動作不良に繋がるおそれがあるためターボ機械を停止しなければならない。不安定振動が発生する大きな要因の一つとして考えられているのが、シール励振力である。何らかの原因により発生した回転構造体の微小振動に対して、シール励振力は、回転構造体の振れ回りを助長させるように回転構造体に作用し、ひいては不安定振動を引き起こす。
 シール励振力についてさらに説明すると、シール部分(シール用フィンが設けられた部分)を流れる作動流体は、軸方向(流れ方向)速度成分だけでなく、周方向速度成分を持って流れており、(以下、この周方向に向かう流れを「旋回流」と呼ぶ)、シール励振力は、この旋回流が原因で生じる。
 つまり、回転構造体が径方向へ微小に変位すると(偏心すると)、回転構造体とシール用フィンとの間の流路が狭まって静圧が高くなる部分と、当該流路が広がって静圧が低くなる部分とが発生すると共に、リークした作動流体の旋回流に起因してシール用フィンの上流側と下流とで静圧分布に位相差が生じ、このような静圧の不均一性に起因した力が回転体に作用してシール励振力が生じる。
 このようなタービンの不安定振動を抑制する技術として特許文献2に開示された技術がある。以下、特許文献2に開示された技術を説明する。その説明では、参考に、特許文献2で使用されている符号を括弧付きで示す。
 特許文献2に開示された技術では、動翼(11)の頂部に設けられたシュラウド(12)に対向して複数のシールフィン(42)がロータ軸心線方向(L)に沿って複数設けられ、これらのシールフィン(42)が取り付けられたシールリング(41)には、シールフィン(42)の各相互間において同一深さ(D2)の溝部(43)が設けられている。溝部(43)の深さ(D2)は、シールフィン(42)を支持する強度を低下させない程度に設定されている。溝部(43)を設けることにより、シールフィン(42)の相互間の空間を、溝部が無い従来の蒸気タービンのシール構造の場合と比べて実質的に大きくすることができ、スチームホワール(不安定振動)の発生を抑制することができるとしている(段落[0025]~[0028]、図4など参照)。
特開2011-208602号公報 特開2013-076341号公報
 しかしながら、特許文献2に開示された技術では、溝部(43)の深さ(D2)は、シールフィン(42)を支持する強度を低下させない程度に制限されてしまう。このため、シールフィン(42)の相互間の空間を実質的に拡大できる範囲、ひいては不安定振動の発生を抑制する効果も制限されてしまう。
 本発明は、上記のような課題に鑑み創案されたもので、不安定振動を効果的に抑制できるようにした、シール構造及びターボ機械を提供することを目的とする。
 (1)上記の目的を達成するために、本発明のシール構造は、軸心線周りに所定方向に回転する回転構造体と、前記回転構造体の外周側に隙間を空けて径方向に対向する静止構造体との間の前記隙間から、作動流体のリーク流の流れを抑制する、シール構造であって、前記静止構造体には、前記回転構造体を収容するキャビティが備えられると共に、前記キャビティの内周面には、前記軸心線側に向かって延在するシールフィンが設けられると共に、静止側凹所が前記リーク流の流れ方向に沿って複数設けられ、前記流れ方向で最上流側の第1静止側凹所よりも、前記流れ方向で前記第1静止側凹所の直下流側に配置された第2静止側凹所のほうが、深さ寸法を小さく設定されたことを特徴としている。
 (2)前記静止構造体はタービンケーシングであり、前記回転構造体は、軸方向に沿って複数設置され、動翼の先端に取り付けられたチップシュラウドであって、前記シールフィンは、前記チップシュラウドに対して前記径方向に対向して配置されることが好ましい。
 (3)前記静止側凹所が前記流れ方向に沿って3つ以上備えられ、前記深さ寸法が、前記流れ方向で下流側になるほど小さく設定されことが好ましい。
 (4)前記シールフィンが前記流れ方向に沿って複数設けられ、前記流れ方向で最上流側の第1シールフィンと、前記流れ方向で前記第1シールフィンの直下流側に配置された第2シールフィンとの相互間に、前記第1静止側凹所が設けられることが好ましい。
 (5)前記第1静止側凹所の前記深さ寸法は、前記第1シールフィンと前記第2シールフィンとの間のピッチの2倍よりも大きく設定されたることが好ましい。
 (6)前記シールフィンの相互間のピッチは互いに同一に設定されることが好ましい。
 (7)前記シールフィンの少なくとも1つは、隣接する前記静止側凹所から軸方向に所定の距離をあけて設けられることが好ましい。
 (8)前記第1静止側凹所と前記第2静止側凹所との少なくとも一方が、前記径方向に延設されることが好ましい。
 (9)前記静止側凹所の少なくとも一つに、軸方向に延設された軸方向凹所が連設されたことが好ましい。
 (10)前記静止側凹所は、前記シールフィンの相互間に設けられ、前記軸方向に関する寸法であって前記静止側凹所と前記軸方向凹所とのトータルの寸法が、前記シールフィンの相互間のピッチよりも大きく設定されることが好ましい。
 (11)前記静止側凹所に対向して前記回転構造体に回転側凹所が設けられ、前記回転側凹所として、少なくとも、前記第1静止側凹所に対向して設けられた第1回転側凹所、又は、前記第2静止側凹所に対向して設けられた第2回転側凹所が設けられことが好ましい。
 (12)前記回転構造体に前記第1回転側凹所及び前記第2回転側凹所が設けられ、前記第1静止側凹所の底面と前記第1回転側凹所の底面との距離よりも、前記第2静止側凹所の底面と前記第2回転側凹所の底面との距離のほうが短く設定されることが好ましい。
 (13)上記の目的を達成するために、本発明のターボ機械は、軸心線周りに所定方向に回転する回転構造体と、前記回転構造体の外周側に隙間を空けて径方向に対向する静止構造体と、(1)~(12)の何れかに記載のシール構造を備えたことを特徴とすることを特徴としている。
 (14)前記回転構造体として、前記軸方向に複数設けられたチップシュラウドを備えると共に、前記静止構造体として、前記複数のチップシュラウドを囲うタービンケーシングを備え、前記複数のチップシュラウドの内の、少なくとも一つのチップシュラウドに対し、前記シール構造を備えたタービンであることが好ましい。
 (15)前記少なくとも一つのチップシュラウドが、前記作動流体の入口の最も近くに配置されたチップシュラウドであることが好ましい。
 (16)前記少なくとも一つのチップシュラウドが、軸方向中央に配置されたチップシュラウドであることが好ましい。
 本発明では、回転構造体とシールフィンとを収容する静止構造体のキャビティの内周面に、静圧分布の不均一性を緩和する静止側凹所として、上流側から、第1静止側凹所と、第2静止側凹所とがこの順に設けられると共に、第1静止側凹所よりも第2静止側凹所のほうが、深さ寸法を小さく設定されている。
 第1静止側凹所と第2静止側凹所とで深さ寸法を同じにするよりも、前記不均一性の小さな下流側の第2静止側凹所の深さ寸法を小さく設定して静止構造体の強度の低下を抑制し、その分、前記不均一性の大きな上流側の第1静止側凹所の深さ寸法を、静止構造体の強度を確保しつつ大きく設定することができる。
 したがって、本発明によれば、凹所を設けることによる静止構造体の強度の低下を抑制しつつ、不安定振動を効果的に抑制できる。
図1は、本発明の各実施形態に係る蒸気タービンの全体構成を示す模式的な縦断面図である。 図2は、本発明の第1実施形態に係るシール構造の構成を示す模式図であって径方向に沿って切断した断面図である。 図3は、本発明の第2実施形態に係るシール構造の構成を示す模式図であって径方向に沿って切断した断面図である。 図4は、本発明の第3実施形態に係るシール構造の構成を示す模式図であって径方向に沿って切断した断面図である。
 以下、図面を参照して、本発明の実施の形態について説明する。
 本実施形態では、本発明のシール構造及びターボ機械を蒸気タービンに適用した例を説明する。
 なお、以下に示す各実施形態はあくまでも例示に過ぎず、以下の各実施形態で明示しな
い種々の変形や技術の適用を排除する意図はない。以下の各実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができると共に、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
 以下の説明では上流,下流と記載した場合は、特段の説明がない限り、リーク蒸気SLの軸方向Aの流れ成分に関する上流,下流を意味するものとする。すなわち、図1~図4における左側を上流側、右側を下流側とする。
 また、蒸気タービンのロータ軸心線(以下、「軸心線」とも呼ぶ)CLに向く方向を内周側又は内側とし、その反対側、軸心線CLから離れる方向を外周側又は外側として説明する。
 また、以下の説明で周方向と記載した場合は、特段の説明がない限り、軸心線CLを中心とした周方向を意味するものとする。
[1.第1実施形態]
 [1-1.蒸気タービンの全体構成]
 本実施形態の蒸気タービン1について図1を参照して説明する。
 本実施形態の蒸気タービン1は、図1に示すように、タービンケーシング(静止構造体、以下「ケーシング」とも呼ぶ)10と、ケーシング10の内部に回転自在に設けられ、動力を図示しない発電機等の機械に伝達するロータ軸30と、ケーシング10に設けられた静翼60と、ロータ軸30に設けられた動翼50と、軸心線CLを中心にロータ軸30を回転可能に支持する軸受部70とを備えて構成されている。静翼60及び動翼50はロータ軸30の径方向Rに延びるブレードである。
 ケーシング10は静止しているのに対し、動翼50は軸心線CLを中心に回転する。つまり、ケーシング10と動翼50(後述のチップシュラウド4を含む)とは相対回転する。
 ケーシング10は、内部空間が気密に封止されていると共に、蒸気(流体)Sの流路とされている。蒸気Sは、図示しない蒸気供給源と接続された蒸気供給管20を介して、ケーシング10に形成された主流入口21から導入され、蒸気タービン1の下流側に接続された蒸気排出管22から排出される。
 また、ケーシング10の内壁面にはリング状の仕切板外輪11が強固に固定されている。
 軸受部70は、ジャーナル軸受装置71及びスラスト軸受装置72を備えており、ロータ軸30を回転自在に支持している。
 静翼60は、ケーシング10から内周側に向かって伸び、ロータ軸30を囲繞するように放射状に多数配置される環状静翼群を構成しており、それぞれ上述した仕切板外輪11に保持されている。
 これら複数の静翼60からなる環状静翼群は、ロータ軸30の軸方向Aに間隔を空けて複数形成されており、蒸気Sの圧力エネルギーを速度エネルギーに変換して、下流側に隣接する動翼50に流入させる。
 動翼50は、ロータ軸30のロータ軸本体31の外周部に形成されたディスク32に強固に取り付けられ、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
 これら環状静翼群と環状動翼群とは、一組一段とされている。各動翼群を構成する複数の動翼50の先端部同士は、リング状のチップシュラウド(回転構造体)4により連結されている。
 [1-2.シール構造]
 本実施形態のシール構造について、図2を参照して説明する。
 複数の仕切板外輪11の各相互間には、図2に示すように、仕切板外輪11の内周面から窪んだキャビティ12が形成されている。キャビティ12は、軸心線CLを中心とする円環状の空間であり、ケーシング10の内周面(以下、「キャビティ底面」とも表記する)13を底面とする。
 キャビティ12には、チップシュラウド4が収容され、キャビティ底面13は、チップシュラウド4と隙間Gdを介して径方向Rに対向している。
 蒸気Sのうち大部分の蒸気SMは、動翼50に流入し、そのエネルギーが回転エネルギーに変換され、この結果、ロータ軸30に回転が付与される。その一方、蒸気Sのうち一部(例えば、約数%)の蒸気の流れ(リーク流、以下「リーク蒸気」とも呼ぶ)SLは、動翼50に流入せずに隙間Gdにリークする。リーク蒸気SLのエネルギーは回転エネルギーに変換されないので、リーク蒸気SLは、蒸気タービン1の効率を低下させるリーク損失を招く。
 そこで、ケーシング10と各チップシュラウド4との間の各隙間Gdには、それぞれ、本発明の第1実施形態としてのシール構造2が設けられている。換言すれば、各チップシュラウド4に対して本発明の第1実施形態としてのシール構造2がそれぞれ設けられている。
 以下、シール構造2について説明する。
 チップシュラウド4は、上述したようにリング状のものであり、図2に示すような軸方向Aに長い矩形の横断面形状を、全周に亘って一定に有している。
 キャビティ底面13には、チップシュラウド4に向かって内周側に延在するシールフィン6A,6B,6Cが設けられている(図1では省略)。これらのシールフィン6A,6B,6Cは同一形状に設定されており、軸心線CLを中心としたリング状であって、図2に示す径方向Rに長い矩形の横断面形状を全周に亘って一定に有している。
 また、シールフィン6A,6B,6Cは、軸方向Aに沿って所定のピッチB1,B2で配設されており、本実施形態では、シールフィン6Aとシールフィン6BとのピッチB1と、シールフィン6Bとシールフィン6CとのピッチB2とは同一寸法に設定されている(B1=B2)。つまり、シールフィン6A,6B,6Cは等ピッチで配置されている。
 ここでいうピッチB1,B2とは、シールフィン6A,6B,6Cの厚さ方向(換言すれば軸方向A)中心線の相互間距離をいう。
 以下、シールフィン6A,6B,6Cを区別しない場合には、シールフィン6と表記する。
 なお、シールフィン6A,6B,6Cは同一形状である必要はなく、異なる形状であってもよい。
 キャビティ底面13には、シールフィン6A,6B,6Cの各相互間において、外周側に向かって径方向Rに延設されたケーシング凹所(以下、「凹所」又は「径方向凹所」とも呼ぶ)14A,14Bが形成されている。以下、凹所14A,14Bを区別しない場合には凹所14と表記する。凹所14は、本実施形態では、軸心線CLを中心としてキャビティ底面13の全周に亘って形成されたリング状の凹所であり、互いに対向し径方向Rに幅を持ったリング状の側面14a,14bと、これらの側面14a,14bの外周縁を繋ぎ軸方向Aに幅を持ったリング状の底面14cとにより画成されている。
 凹所14は、下流側になるほど浅く設定されており、上流側の凹所14Aの深さ寸法L1よりも下流側の凹所14Bの深さ寸法L2のほうが小さく(浅く)設定されている(L2<L1)。
 ここで、キャビティ底面13、及び、凹所14A,14Bを画成する底面14cはそれぞれ軸心線CLを中心とした円周面であり、凹所14A,14Bの深さL1,L2とは、キャビティ底面13と底面14cとの径方向Rに関する距離である。
 また、各凹所14は、軸方向Aに関して、隣接するシールフィン6に対して所定の距離ΔB(ΔB>0)をあけて形成されている。
 [1-3.作用・効果]
 本発明の第1実施形態としてのシール構造2の作用・効果を、図2を参照して説明する。
 「発明が解決しようとする課題」の欄に記載したように、キャビティ底面13やチップシュラウド4の周辺の静圧分布が、周方向に対して不均一になることがある。しかし、キャビティ底面13には、凹所14A,14Bが設けられていることから、隙間Gdを実質的に拡大することとなり、周方向の静圧分布のばらつきを緩和することができる。つまり、凹所14A,14Bは、静圧分布の不均一性(非一様性)を緩和するアブソーバとしての機能(以下、「アブソーバ機能」と呼ぶ)を有している。
 また、静圧分布の不均一性は、上流側ほど大きく、下流側になるほど小さくなる傾向を有している。そこで、シール構造2では、静圧分布の不均一性が相対的に大きな上流側には、相対的に深さ寸法が大きく容積の大きな(アブソーバ機能が相対的に高い)凹所14Aを設け、静圧分布の不均一性が相対的に小さな下流側には、相対的に深さ寸法が小さく容積の小さな(アブソーバ機能が相対的に低い)凹所14Bを設けるようにしている。
 凹所14A,14Bを深くするほど、アブソーバ機能を向上させることができる一方、ケーシング10の強度を低下させることとなる。しかし、このシール構造2では、静圧分布の不均一性の小さな下流側では、凹所14Bの深さ寸法L2を小さく設定してケーシング10の強度を必要以上に低下させることを抑制している。そして、凹所14Bの深さ寸法L2を小さくした分だけ、静圧分布の不均一性の大きな上流側では、凹所14Aの深さ寸法L1を大きく設定してアブソーバ機能を向上させることができる。
 したがって、凹所14A,14Bの深さ寸法L1,L2を同一寸法に設定する場合に比べて、ケーシング10の強度の低下を抑制しつつタービンの不安定振動を効果的に抑制できる。
 さらに、シールフィン6Aとシールフィン6Bとの間の凹所14A、すなわち最上流側の凹所14Aの深さ寸法L1を、シールフィン6Aとシールフィン6BとのピッチB1の2倍よりも大きく設定したので(L1>B1×2)、静圧分布の均一化ひいてはタービンの不安定振動の抑制を一層効果的に行うことができる。
 また、各凹所14は、軸方向Aに関して、隣接するシールフィン6に対して所定の距離ΔBをあけて形成されている(ΔB>0)。換言すれば、各シールフィン6には、その付け根部(シールフィン6とキャビティ底面13との接続部)を支持する支持部が、凹所14から所定の距離ΔBに亘って形成されている。したがって、シールフィン6を、凹所14の側面14aや側面14bと面一に設ける場合(ΔB=0)に比べて、シールフィン6の付け根の強度を向上させることができる。
[2.第2実施形態]
 以下、図3を参照して本発明の第2実施形態について説明する。なお、第1実施形態と同一要素については同一の符号を付し、その説明を省略する。
 [2-1.シール構造]
 本発明の第2実施形態のシール構造2Aは、図2に示す第1実施形態のシール構造2に対して、径方向凹所14Aに、その外周端から下流側に向かって軸方向Aに延在する軸方向凹所14A′を連設し、径方向凹所14Bに、その外周端から下流側に向かって軸方向Aに延在する軸方向凹所14B′を連設したものである。
 軸方向凹所14A′,14B′は、径方向凹所14A,14B側が開口すると共に軸心線CLを中心としてリング状に形成された凹所である。軸方向凹所14A′,14B′は、外周側底面14d,内周側底面14f及び側面14eにより画成されている。外周側底面14d,内周側底面14fは、互いに対向し、それぞれ軸方向Aに幅を持ったリング状の面である。また、外周側底面14dは、径方向凹所14の底面14cに面一に形成されている。側面14eは、これらの底面14d,14fの下流縁を繋ぎ径方向Rに幅を持ったリング状の面である。
 軸方向凹所14A′を設けることにより径方向凹所14Aを実質的に拡大することができ、本実施形態では、径方向凹所14Aと軸方向凹所14A′とのトータルの軸方向寸法D1を、フィン6Aとフィン6BとのピッチB1よりも大きく設定している(D1>B1)。同様に、軸方向凹所14B′を設けることにより径方向凹所14Bを実質的に拡大することができ、本実施形態では、凹所14Bと軸方向凹所14B′とのトータルの軸方向寸法D2を、フィン6Bとフィン6CとのピッチB2よりも大きく設定している(D2>B2)。
 その他の構造は第1実施形態のシール構造2と同様であるので説明を省略する。
 [2-2.作用・効果]
 本発明の第2実施形態によれば、径方向凹所14A,14Bに加えて軸方向凹所14A′,14B′を設けることにより、静圧分布の不均一性(非一様性)を緩和する凹所の容積を増加させることができるので、タービンの不安定振動を、第1実施形態よりも効果的に抑制することができる。
 特に、シールフィン6A,6B,6Cの各相互間において径方向Rに延在する径方向凹所14A,14Bだけでは、軸方向Aの寸法を、シールフィン6A,6B,6CのピッチB1,B2よりも大きな寸法とすることはできないが、軸方向凹所14A′,14B′を設けることで、部分的ではあるが、径方向凹所14A,14Bの軸方向Aの寸法をピッチB1,B2よりも長くすることができる。
 また、上流側の径方向凹所14Aよりも下流側の径方向凹所14Bが浅く形成されているので、径方向凹所14Aの外周部下流側には空きスペースが形成されることとなる。この空きスペースを利用して径方向凹所14Aの外周部下流側に軸方向凹所14A′を形成することができ、効率的に凹所を配置することができる。
 [2-3.その他]
 (1)上記第2実施形態では、軸方向凹所14A′,14B′を、径方向凹所14A,14Bの外周端に設けたが、径方向凹所14A,14Bの外周端に設けることは必須ではない。例えば、図3に二点鎖線で示すように、径方向凹所14Aの径方向Rに関する中間部に軸方向凹所14A′を連接するようにしてもよい。
 (2)上記第2実施形態では、軸方向凹所14A′,14B′を、径方向凹所14A,14Bの下流側に設けたが、軸方向凹所14A′,14B′を、径方向凹所14A,14Bの上流側に設けてもよい。
[3.第3実施形態]
 以下、図4を参照して本発明の第3実施形態について説明する。なお、第1実施形態と同一要素については同一の符号を付し、その説明を省略する。
 [3-1.シール構造]
 本発明の第3実施形態のシール構造2Bは、図2に示す第1実施形態のシール構造2に対して、チップシュラウド4に形成されたシュラウド凹所(以下、「凹所」とも呼ぶ)41A,41Bが追加されたものである。シュラウド凹所41A(第1回転側凹所)はケーシング凹所14Aに対向して配置され、シュラウド凹所41B(第2回転側凹所)はケーシング凹所14Bに対向して配置されている。以下、凹所41A,41Bを区別しない場合には凹所41と表記する。
 凹所41は、本実施形態では、軸心線CLを中心として、シュラウド4の外周面42の全周に亘って形成されたリング状の凹所である。凹所41は、チップシュラウド4の外周面から内周側に凹んでおり(すなわち径方向Rに沿って延設されており)、互いに対向し径方向Rに幅を持ったリング状の側面41a,41bと、これらの側面41a,41bの内周縁を繋ぎ軸方向Aに幅を持ったリング状の底面41cとにより画成されている。
 上述した通り、シュラウド凹所41Aと対向して配置されるケーシング凹所14Aの深さ寸法L1よりも、シュラウド凹所41Bと対向して配置されるケーシング凹所14Bの深さ寸法L2のほうが小さく設定されている。加えて、上流側のシュラウド凹所41Aの深さ寸法L1′よりも、下流側のシュラウド凹所41Bの深さ寸法L2′は小さく(浅く)設定されている(L2′<L1′)。
したがって、凹所14A,41Aの相互間の空間100Aの高さ寸法(すなわち、「ケーシング凹所14Aの底面14c」と「シュラウド凹所41Aの底面41c」との距離)H1よりも、凹所14B,41Bの相互間の空間100Bの高さ寸法(すなわち、「ケーシング凹所14Bの底面14c」と「シュラウド凹所41Bの底面41c」との距離)H2のほうが小さく設定されていることとなる(H1>H2)。
 空間100A,100Bは、キャビティ底面13とチップシュラウド4との間の隙間Gdを実質的に拡大して静圧分布の不均一性を緩和するものであり、第1実施形態と同様に、相対的に不均一性の大きな上流側ほど大きな空間100Aを設け、相対的に不均一性の小さな下流側ほど小さな空間100Bを設けている。以下、空間100Aと空間100Bとを区別しない場合には空間100と呼ぶ。
 ここで、チップシュラウド4の外周面42及び凹所41A,41Bを画成する底面41cはそれぞれ軸心線CLを中心とした円周面であり、シュラウド凹所41A,41Bの深さL1′,L2′とは、チップシュラウド4の外周面42と底面41cとの径方向Rに関する距離である。また、高さ寸法H1とは、ケーシング凹所14Aの底面14cと、シュラウド凹所41Aの底面41cとの径方向Rに関する距離であり、高さ寸法H2とは、ケーシング凹所14Bの底面14cと、シュラウド凹所41Bの底面41cとの径方向Rに関する距離である。
 [3-2.作用・効果]
 本発明の第3実施形態によれば、ケーシング凹所14に加えてシュラウド凹所41を設けると共に、凹所14,41の相互間に形成される空間100を下流側になるほど小さく設定しているので、第1実施形態よりも効果的に、ケーシング10の強度の低下を抑制しつつタービンの不安定振動を抑制することができる。
 [3-3.その他]
 (1)上記第3実施形態では、シュラウド凹所41Aの深さ寸法L1′よりもシュラウド凹所41Bの深さ寸法L2′を小さく設定したが、上流側の空間100Aの高さ寸法H1よりも下流側の空間100Bの高さ寸法H2のほうが小さければ、深さ寸法L1′よりも深さ寸法L2′を小さく設定する必要はない。例えば、上記第3実施形態において、深さ寸法L1′と深さ寸法L2′とを同じ寸法としてもよい。
 (2)上記第3実施形態では、ケーシング凹所14と、このケーシング凹所14に対向
配置されたシュラウド凹所41とを一組として、二組を一つのチップシュラウド4に対して設けたが、一つのチップシュラウド4に対して三組以上設けてもよい。この場合、下流になるほど、ケーシング凹所14とシュラウド凹所41との間に形成される空間100の高さ寸法を小さくするのが好ましいが、最上流側の空間100Aの高さ寸法H1よりも、上流側から二番目の空間100Bの高さ寸法H2が小さければ、これに限定されない。例えば、上流側から二番目の空間100Bの高さ寸法H2と、上流側から三番目以降の(凹所14と凹所41との間の)空間の高さ寸法とを同じ寸法としてもよい。
 (3)上記第3実施形態においても、第2実施形態と同様に、凹所14A及び凹所14Bの少なくとも一方に軸方向凹所を設けても良い。
[4.その他]
 (1)上記各実施形態では、各チップシュラウド4に対し、シールフィン6を3個設け、ケーシング凹所14をシールフィン6の各相互間に計2個設けたが、一つのチップシュラウド4に対して設けるシールフィン6の個数及びケーシング凹所14の個数はこれらの個数に限定されない。一つのチップシュラウド4に対してケーシング凹所14を3個以上設ける場合は、下流側になるほどケーシング凹所14の深さ寸法を短くするのが好ましいが、最上流側のケーシング凹所14Aの深さ寸法L1よりも、上流側から二番目のケーシング凹所14Bの深さ寸法L2が小さければ、これに限定されない。例えば、上流側から二番目のケーシング凹所14の深さ寸法と、上流側から三番目以降のケーシング凹所14の深さ寸法とを同じ寸法としてもよい。
 (2)上記各実施形態の蒸気タービンでは、各チップシュラウド4に対し本発明のシール構造を適用したが、一部の(少なくとも一つの)チップシュラウド4に対し本発明のシール構造を適用するだけでもよい。
 一部のチップシュラウド4に本発明のシール構造を適用する場合には、静圧の不均一性が最大となることから、蒸気Sの入口である主流入口21に最も近い(換言すれば最も高圧側)のチップシュラウド4A(図1参照)に本発明のシール構造を適用するのが好ましい。
 または、ロータ軸30の一次モードでの不安定振動が発生した場合、振幅は、軸方向Aで中央において最大になるので、軸方向Aで中央のチップシュラウド4B(図1参照)に本発明のシール構造を適用するのが好ましい。
 蒸気タービンが、軸方向Aで中央から蒸気が供給される場合には、軸方向Aで中央のチップシュラウドが主流入口21に最も近いチップシュラウドになるので、この軸方向Aで中央且つ主流入口21に最も近いチップシュラウドに本発明のシール構造を適用すると相乗的な効果が得られる。
 (3)上記実施形態では、蒸気タービンに本発明を適用した例を説明したが、本発明は、ガスタービンやターボ圧縮機など、蒸気タービン以外のターボ機械のシールにも適用することができる。
 1 蒸気タービン(ターボ機械)
 2,2A,2B シール構造
 4 チップシュラウド(回転構造体)
 4A 最も上流側に配置されたチップシュラウド
 4B リーク蒸気SLの流れ方向で中央に配置されたチップシュラウド
 6,6A,6B,6C シールフィン
 10 タービンケーシング(静止構造体)
 12 キャビティ
 13 キャビティ底面(内周面)
 14 ケーシング凹所(静止側凹所)
 14A ケーシング凹所(第1静止側凹所)
 14B ケーシング凹所(第2静止側凹所)
 14A′,14B′ 軸方向凹所
 14a,14b 凹所14,14A,14Bを画成する側面
 14c 凹所14,14A,14Bを画成する底面
 14d,14f 軸方向凹所14A′,14B′を画成する底面
 14e 軸方向凹所14A′,14B′を画成する側面
 20 蒸気供給管
 21 主流入口
 30 ロータ軸
 31 ロータ軸本体
 50 動翼
 41 シュラウド凹所
 41A シュラウド凹所(第1回転側凹所)
 41B シュラウド凹所(第2回転側凹所)
 42 シュラウド4の外周面
 60 静翼
 100,100A,100B ケーシング凹所14とシュラウド凹所41との相互間の空間
 A 軸方向
 B1 シールフィン6A,6Bの軸方向Aに関するピッチ
 D1,D2 最大寸法
 B2 シールフィン6B,6Cの軸方向Aに関するピッチ
 CL ロータ軸心線(軸心線)
 Gd 隙間
 L1 凹所14Aの深さ寸法
 L2 凹所14Bの深さ寸法
 R 径方向
 S 蒸気(作動流体)
 SL リーク蒸気(リーク流)
 ΔB シールフィン6と凹所14との距離

Claims (16)

  1.  軸心線周りに所定方向に回転する回転構造体と、前記回転構造体の外周側に隙間を空けて径方向に対向する静止構造体との間の前記隙間から、作動流体のリーク流の流れを抑制する、シール構造であって、
     前記静止構造体には、前記回転構造体を収容するキャビティが備えられると共に、
     前記キャビティの内周面には、前記軸心線側に向かって延在するシールフィンが設けられると共に、静止側凹所が前記リーク流の流れ方向に沿って複数設けられ、
     前記流れ方向で最上流側の第1静止側凹所よりも、前記流れ方向で前記第1静止側凹所の直下流側に配置された第2静止側凹所のほうが、深さ寸法を小さく設定された
    ことを特徴とするシール構造。
  2.  前記静止構造体はタービンケーシングであり、
     前記回転構造体は、軸方向に沿って複数設置され、動翼の先端に取り付けられたチップシュラウドであって、
     前記シールフィンは、前記チップシュラウドに対して前記径方向に対向して配置されたことを特徴とする、請求項1に記載のシール構造。
  3.  前記静止側凹所が前記流れ方向に沿って3つ以上備えられ、前記深さ寸法が、前記流れ方向で下流側になるほど小さく設定された
    ことを特徴とする、請求項1又は2に記載のシール構造。
  4.  前記シールフィンが前記流れ方向に沿って複数設けられ、
     前記流れ方向で最上流側の第1シールフィンと、前記流れ方向で前記第1シールフィンの直下流側に配置された第2シールフィンとの相互間に、前記第1静止側凹所が設けられた
    ことを特徴とする請求項1~3の何れか一項に記載のシール構造。
  5.  前記第1静止側凹所の前記深さ寸法は、前記第1シールフィンと前記第2シールフィンとの間のピッチの2倍よりも大きく設定された
    ことを特徴とする請求項4に記載のシール構造。
  6.  前記シールフィンの相互間のピッチは互いに同一に設定された
    ことを特徴とする請求項1~5の何れか一項に記載のシール構造。
  7.  前記シールフィンの少なくとも1つは、隣接する前記静止側凹所から軸方向に所定の距離をあけて設けられた
    ことを特徴とする請求項1~6の何れか一項に記載のシール構造。
  8.  前記第1静止側凹所と前記第2静止側凹所との少なくとも一方が、前記径方向に延設された
    ことを特徴とする請求項1~7の何れか一項に記載のシール構造。
  9.  前記静止側凹所の少なくとも一つに、軸方向に延設された軸方向凹所が連設された
    ことを特徴とする請求項1~8の何れか一項に記載のシール構造。
  10.  前記静止側凹所は、前記シールフィンの相互間に設けられ、
     前記軸方向に関する寸法であって前記静止側凹所と前記軸方向凹所とのトータルの寸法が、前記シールフィンの相互間のピッチよりも大きく設定された
    ことを特徴とする請求項9に記載のシール構造。
  11.  前記静止側凹所に対向して前記回転構造体に回転側凹所が設けられ、
     前記回転側凹所として、少なくとも、前記第1静止側凹所に対向して設けられた第1回転側凹所、又は、前記第2静止側凹所に対向して設けられた第2回転側凹所が設けられたことを特徴とする請求項1~請求項10の何れか一項に記載のシール構造。
  12.  前記回転構造体に前記第1回転側凹所及び前記第2回転側凹所が設けられ、
     前記第1静止側凹所の底面と前記第1回転側凹所の底面との距離よりも、前記第2静止側凹所の底面と前記第2回転側凹所の底面との距離のほうが短く設定された
    ことを特徴とする請求項11に記載のシール構造。
  13.  軸心線周りに所定方向に回転する回転構造体と、前記回転構造体の外周側に隙間を空けて径方向に対向する静止構造体と、請求項1~12の何れか一項に記載のシール構造を備えた
    ことを特徴とする、ターボ機械。
  14.  前記回転構造体として、前記軸方向に複数設けられたチップシュラウドを備えると共に、前記静止構造体として、前記複数のチップシュラウドを囲うタービンケーシングを備え、
     前記複数のチップシュラウドの内の、少なくとも一つのチップシュラウドに対し、前記シール構造を備えたタービンであることを特徴とする、請求項13に記載のターボ機械。
  15.  前記少なくとも一つのチップシュラウドが、前記作動流体の入口の最も近くに配置されたチップシュラウドである
    ことを特徴とする、請求項14に記載のターボ機械。
  16.  前記少なくとも一つのチップシュラウドが、軸方向中央に配置されたチップシュラウドである
    ことを特徴とする、請求項14又は請求項15に記載のターボ機械。

     
PCT/JP2017/007028 2016-02-29 2017-02-24 シール構造及びターボ機械 WO2017150365A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780013860.0A CN108699915B (zh) 2016-02-29 2017-02-24 密封构造及涡轮机械
KR1020187024427A KR102110066B1 (ko) 2016-02-29 2017-02-24 시일 구조 및 터보 기계
DE112017001043.8T DE112017001043T5 (de) 2016-02-29 2017-02-24 Dichtstruktur und Strömungsmaschine
US16/079,242 US10669876B2 (en) 2016-02-29 2017-02-24 Seal structure and turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038047 2016-02-29
JP2016038047A JP6712873B2 (ja) 2016-02-29 2016-02-29 シール構造及びターボ機械

Publications (1)

Publication Number Publication Date
WO2017150365A1 true WO2017150365A1 (ja) 2017-09-08

Family

ID=59742959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007028 WO2017150365A1 (ja) 2016-02-29 2017-02-24 シール構造及びターボ機械

Country Status (6)

Country Link
US (1) US10669876B2 (ja)
JP (1) JP6712873B2 (ja)
KR (1) KR102110066B1 (ja)
CN (1) CN108699915B (ja)
DE (1) DE112017001043T5 (ja)
WO (1) WO2017150365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100204A (ja) * 2017-11-29 2019-06-24 三菱重工業株式会社 タービン、動翼

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623138B2 (ja) * 2016-10-13 2019-12-18 株式会社神戸製鋼所 ラビリンスシール
JP6684842B2 (ja) 2018-03-29 2020-04-22 三菱重工業株式会社 タービン動翼及び回転機械
JP7349248B2 (ja) * 2019-03-08 2023-09-22 三菱重工業株式会社 回転機械、及びシールリング

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632598A (en) * 1995-01-17 1997-05-27 Dresser-Rand Shrouded axial flow turbo machine utilizing multiple labrinth seals
JP2013124554A (ja) * 2011-12-13 2013-06-24 Mitsubishi Heavy Ind Ltd タービン
WO2015115558A1 (ja) * 2014-01-30 2015-08-06 三菱日立パワーシステムズ株式会社 シール構造、及び回転機械

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104952A (ja) 2004-09-30 2006-04-20 Toshiba Corp 流体機械の旋回流防止装置
JP5484990B2 (ja) 2010-03-30 2014-05-07 三菱重工業株式会社 タービン
US8434766B2 (en) * 2010-08-18 2013-05-07 General Electric Company Turbine engine seals
JP5709447B2 (ja) * 2010-09-28 2015-04-30 三菱日立パワーシステムズ株式会社 タービン
JP2012102831A (ja) 2010-11-12 2012-05-31 Hitachi Ltd ラビリンスシール装置、およびそれを用いたターボ機械
JP5518022B2 (ja) * 2011-09-20 2014-06-11 三菱重工業株式会社 タービン
JP2013076341A (ja) 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd 蒸気タービンのシール構造
JP5972374B2 (ja) * 2012-07-11 2016-08-17 三菱日立パワーシステムズ株式会社 軸流流体機械
JPWO2014077058A1 (ja) 2012-11-13 2017-01-05 三菱重工コンプレッサ株式会社 回転機械
US9995164B2 (en) * 2012-12-13 2018-06-12 Mitsubishi Hitachi Power Systems, Ltd. Rotating fluid machine
JP5951890B2 (ja) * 2013-04-03 2016-07-13 三菱重工業株式会社 回転機械
JP6131177B2 (ja) 2013-12-03 2017-05-17 三菱重工業株式会社 シール構造、及び回転機械
US8939707B1 (en) * 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone terraced ridges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632598A (en) * 1995-01-17 1997-05-27 Dresser-Rand Shrouded axial flow turbo machine utilizing multiple labrinth seals
JP2013124554A (ja) * 2011-12-13 2013-06-24 Mitsubishi Heavy Ind Ltd タービン
WO2015115558A1 (ja) * 2014-01-30 2015-08-06 三菱日立パワーシステムズ株式会社 シール構造、及び回転機械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100204A (ja) * 2017-11-29 2019-06-24 三菱重工業株式会社 タービン、動翼

Also Published As

Publication number Publication date
JP6712873B2 (ja) 2020-06-24
JP2017155625A (ja) 2017-09-07
CN108699915B (zh) 2021-01-15
CN108699915A (zh) 2018-10-23
KR102110066B1 (ko) 2020-05-12
US10669876B2 (en) 2020-06-02
DE112017001043T5 (de) 2018-12-20
US20190048735A1 (en) 2019-02-14
KR20180107176A (ko) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2017150365A1 (ja) シール構造及びターボ機械
JP2012102831A (ja) ラビリンスシール装置、およびそれを用いたターボ機械
JP5972374B2 (ja) 軸流流体機械
KR20150003331A (ko) 나선형 및 나선형-원통형 혼합 패턴을 구비한 고 감쇠 래비린스 시일
US11187097B2 (en) Rotary machine
JP2017106395A (ja) シール構造及びタービン
JP2014141912A (ja) 回転機械
JP6684842B2 (ja) タービン動翼及び回転機械
JP2011012631A (ja) タービン
JP6066948B2 (ja) シュラウド、動翼体、及び回転機械
JP2013076341A (ja) 蒸気タービンのシール構造
WO2017098944A1 (ja) シールフィン,シール構造及びターボ機械
JP2014152696A (ja) ラビリンスシール装置、およびそれを用いたターボ機械
JP2013177866A (ja) ターボ機械
JP2017160861A (ja) ターボ機械
JP7349248B2 (ja) 回転機械、及びシールリング
JP6662661B2 (ja) シール構造及びターボ機械
US10060534B2 (en) Sealing structure for turbine
JP7476125B2 (ja) 遠心回転機械
JP2013142435A (ja) シール装置
US11927112B2 (en) Sealing device and rotary machine
JP5956086B2 (ja) 軸流タービン
US20230175411A1 (en) Rotary machine
KR20180052426A (ko) 터빈의 회전체 냉각구조
JP2010275957A (ja) タービン

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024427

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759831

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759831

Country of ref document: EP

Kind code of ref document: A1