WO2017150013A1 - 温度検出回路 - Google Patents

温度検出回路 Download PDF

Info

Publication number
WO2017150013A1
WO2017150013A1 PCT/JP2017/002432 JP2017002432W WO2017150013A1 WO 2017150013 A1 WO2017150013 A1 WO 2017150013A1 JP 2017002432 W JP2017002432 W JP 2017002432W WO 2017150013 A1 WO2017150013 A1 WO 2017150013A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
voltage
circuit
measurement
diagnostic signal
Prior art date
Application number
PCT/JP2017/002432
Other languages
English (en)
French (fr)
Inventor
矢野 準也
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201780014179.8A priority Critical patent/CN108700475A/zh
Priority to US16/077,918 priority patent/US11211645B2/en
Priority to JP2018502593A priority patent/JP6911006B2/ja
Publication of WO2017150013A1 publication Critical patent/WO2017150013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a temperature detection circuit that detects the temperature of a measurement object.
  • a temperature detection circuit includes a temperature measurement circuit that outputs a temperature measurement voltage corresponding to the temperature of the measurement object, and an MPU (Micro Processor Unit) that calculates the temperature based on the temperature measurement voltage.
  • the temperature detection circuit includes a temperature monitoring circuit which is a redundant circuit. The temperature monitoring circuit monitors the temperature based on the temperature measurement voltage, and if the temperature is abnormal, notifies the MPU and the safety stop device of the abnormality. Thereby, the quality and reliability of the device provided with the temperature detection circuit can be improved. It is necessary to diagnose such a failure of the temperature monitoring circuit at a desired timing.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a temperature detection circuit capable of diagnosing a failure of the temperature monitoring circuit while suppressing an increase in circuit scale and cost.
  • a temperature detection circuit includes a temperature measurement circuit that outputs a temperature measurement voltage corresponding to a temperature to a measurement node, and an arithmetic circuit that calculates a temperature based on the temperature measurement voltage. And a temperature monitoring circuit for enabling an abnormality detection signal indicating a temperature abnormality when the temperature measurement voltage is within a predetermined abnormal voltage range, and a diagnostic signal to the measurement node at the time of failure diagnosis of the temperature monitoring circuit And a diagnostic signal generation circuit for changing the temperature measurement voltage.
  • the present invention it is possible to detect a failure of the temperature monitoring circuit while suppressing an increase in circuit scale and cost.
  • FIG. 1 is a circuit diagram of a temperature detection circuit 1 according to an embodiment of the present invention.
  • the temperature detection circuit 1 includes a temperature measurement circuit 10, an arithmetic circuit 20, a temperature monitoring circuit 30, and a diagnostic signal generation circuit 40.
  • the temperature measurement circuit 10 outputs a temperature measurement voltage V1 corresponding to the temperature of the measurement object to the measurement node N1.
  • the measurement object is not particularly limited, and is, for example, a vehicle power supply device, an aircraft power supply device, a marine power supply device, or a stationary power supply device.
  • the measurement object may be a secondary battery included in these power supply devices.
  • the arithmetic circuit 20 is, for example, an MPU, and has an input terminal 20a, an input terminal 20b, and an output terminal 20c connected to the measurement node N1.
  • the arithmetic circuit 20 calculates the temperature based on the temperature measurement voltage V1 input to the input terminal 20a.
  • the arithmetic circuit 20 includes an AD converter, AD converts the temperature measurement voltage V1 by the AD converter, and processes the obtained digital signal to obtain the temperature. If the obtained temperature is abnormal, the arithmetic circuit 20 notifies the abnormality to the outside.
  • the configuration of the arithmetic circuit 20 can be realized by cooperation of hardware resources and software resources or only by hardware resources.
  • hardware resources analog elements, microcomputers, DSPs, ROMs, RAMs, FPGAs, and other LSIs can be used.
  • Firmware and other programs can be used as software resources.
  • the temperature monitoring circuit 30 is connected to the measurement node N1 and monitors the temperature based on the temperature measurement voltage V1.
  • the temperature monitoring circuit 30 validates the abnormality detection signal V2 indicating a temperature abnormality when the temperature measurement voltage V1 is within a predetermined abnormal voltage range.
  • the temperature monitoring circuit 30 outputs the abnormality detection signal V2 to the input terminal 20b of the arithmetic circuit 20, the external safety stop device 100, and the like.
  • the temperature monitoring circuit 30 invalidates the abnormality detection signal V2 when the temperature measurement voltage V1 is outside the abnormal voltage range.
  • the abnormal voltage range corresponds to the temperature range when an abnormality occurs in the measurement object.
  • the arithmetic circuit 20 notifies the abnormality to the outside.
  • the safety stop device 100 stops the operation of the measurement object when the abnormality detection signal V2 becomes valid.
  • the temperature monitoring circuit 30 detects the abnormality detection signal when a temperature abnormality occurs in the measurement object.
  • V2 can be enabled.
  • the arithmetic circuit 20 diagnoses the failure of the temperature monitoring circuit 30 at a predetermined diagnosis timing. At the time of failure diagnosis, the arithmetic circuit 20 outputs the control voltage V3 from the output terminal 20c to the diagnostic signal generation circuit 40, and confirms whether the abnormality detection signal V2 is correctly valid or invalid according to the control voltage V3. Thereby, the arithmetic circuit 20 can diagnose whether the temperature monitoring circuit 30 is out of order.
  • the diagnosis timing is, for example, when the measurement object is activated, when the operation is completed, or during temporary suspension.
  • the arithmetic circuit 20 includes a DA converter, and the DA converter converts the pre-programmed digital data to generate the control voltage V3.
  • the diagnostic signal generation circuit 40 is connected to the measurement node N1, and supplies a diagnostic signal to the measurement node N1 according to the control voltage V3 when the temperature monitoring circuit 30 is diagnosed for failure. Regardless of the temperature, the temperature measurement voltage V1 is changed. Specifically, the diagnostic signal generation circuit 40 changes the temperature measurement voltage V1 to a value within the abnormal voltage range according to the control voltage V3 during failure diagnosis. The diagnostic signal generation circuit 40 may change the temperature measurement voltage V1 to a value within the abnormal voltage range and a value outside the abnormal voltage range according to the control voltage V3 during failure diagnosis.
  • the diagnostic signal generation circuit 40 sets the output to a high impedance according to the control voltage V3 except during failure diagnosis. Thereby, it is possible to prevent the diagnostic signal generation circuit 40 from affecting the temperature measurement voltage V1 while detecting the temperature. Therefore, an accurate temperature can be detected.
  • the present invention is not limited thereto.
  • the temperature measurement circuit 10 includes a voltage dividing resistor Rd and a temperature sensing element 11.
  • the voltage dividing resistor Rd has one end to which the power supply voltage (first fixed voltage) VDD is supplied and the other end connected to the measurement node N1.
  • the temperature sensing element 11 is thermally coupled to the measurement object so that the temperature of the measurement object can be accurately detected.
  • the temperature sensing element 11 is an element whose resistance value changes according to temperature, and is, for example, a thermistor.
  • the temperature sensing element 11 has one end connected to the measurement node N1 and the other end to which a ground voltage (second fixed voltage) is supplied.
  • the temperature-sensitive element 11 has a resistance value that decreases as the temperature increases.
  • the voltage dividing resistor Rd and the temperature sensing element 11 constitute a voltage dividing circuit. With this configuration, the temperature measurement circuit 10 converts the resistance value of the temperature sensing element 11 into the temperature measurement voltage V1.
  • the temperature monitoring circuit 30 includes a comparator 31 and a comparator 32.
  • the comparator 31 has a non-inverting input terminal to which the reference voltage Vref1 is supplied, an inverting input terminal connected to the measurement node N1, and an output terminal that outputs the abnormality detection signal V2.
  • the comparator 32 has an inverting input terminal to which the reference voltage Vref2 is supplied, a non-inverting input terminal connected to the measurement node N1, and an output terminal connected to the output terminal of the comparator 31.
  • the reference voltage Vref1 is higher than the reference voltage Vref2.
  • the abnormal voltage range is a range from the reference voltage Vref1 to the reference voltage Vref2.
  • the comparators 31 and 32 function as window type comparators.
  • the diagnostic signal generation circuit 40 includes a first transistor TR1, a second transistor TR2, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
  • the first transistor TR1 is an NPN-type bipolar transistor, and has a base to which the control voltage V3 is supplied via the third resistor R3, a collector to which the power supply voltage VDD is supplied, and an emitter.
  • the first resistor R1 has one end connected to the emitter of the first transistor TR1 and the other end to which a ground voltage is supplied.
  • the second transistor TR2 is an NPN bipolar transistor, and has a base connected to the emitter of the first transistor TR1 via a fourth resistor R4, a collector connected to the measurement node N1, and an emitter.
  • the second resistor R2 has one end connected to the emitter of the second transistor TR2 and the other end to which a ground voltage is supplied.
  • the first transistor TR1 and the first resistor R1 constitute an emitter follower circuit.
  • the second transistor TR2 and the second resistor R2 constitute an open collector circuit.
  • the diagnostic signal generation circuit 40 draws a current from the measurement node N1 at the time of failure diagnosis and increases the current flowing through the voltage dividing resistor Rd, so that the temperature measurement voltage is independent of the temperature of the measurement object measured by the temperature measurement circuit 10. V1 is changed.
  • the current drawn from the measurement node N1 by the diagnostic signal generation circuit 40 corresponds to the above-described failure diagnostic signal.
  • the base current and the collector current flowing through the first and second transistors TR1 and TR2 change according to the control voltage V3, and the current flowing through the voltage dividing resistor Rd also changes accordingly.
  • the temperature measurement voltage V1 changes as the collector-emitter voltage of the second transistor TR2 changes according to the control voltage V3.
  • control voltage V3 is set to 0 V, for example, and the diagnostic signal generation circuit 40 stops drawing current. At this time, the collector of the second transistor TR2 has a high impedance.
  • FIG. 2 is a diagram showing the relationship between the temperature measurement voltage V1 of the temperature detection circuit 1 of FIG. 1 and the control voltage V3 of the abnormality detection signal V2.
  • the temperature of the temperature sensing element 11 is 25 ° C., and the temperature monitoring circuit 30 is not broken.
  • the arithmetic circuit 20 calculates the temperature as 25 ° C. Since the temperature measurement voltage V1 is outside the abnormal voltage range VR1, the abnormality detection signal V2 is low level, that is, invalid.
  • the temperature measurement voltage V1 becomes equal to the reference voltage Vref2.
  • the control voltage V3 becomes a voltage V3d higher than the voltage V3c
  • the temperature measurement voltage V1 becomes equal to the reference voltage Vref1. Therefore, when the control voltage V3 is between the voltage V3c and the voltage V3d, the temperature measurement voltage V1 is between the reference voltage Vref1 and the reference voltage Vref2, that is, within the abnormal voltage range VR1. In this case, the abnormality detection signal V2 is valid.
  • the control voltage V3 becomes higher than the voltage V3d
  • the temperature measurement voltage V1 becomes higher than the reference voltage Vref1. Therefore, in this case, the abnormality detection signal V2 is invalid.
  • the abnormality detection signal V2 is invalid when the control voltage V3 is set between the voltage V3c and the voltage V3d, it can be diagnosed that the temperature monitoring circuit 30 has failed.
  • control voltage V3 when the control voltage V3 is set between the voltage V3b and the voltage V3c or higher than the voltage V3d and the abnormality detection signal V2 is valid, it can be diagnosed that the temperature monitoring circuit 30 is broken. Thereby, it is possible to diagnose a failure in which the reference voltage Vref1 or the reference voltage Vref2 is incorrect.
  • the arithmetic circuit 20 may decrease the control voltage V3 stepwise from the power supply voltage VDD to the voltage V3b or 0V, or may increase stepwise from the voltage V3b or 0V to the power supply voltage VDD. Thereby, a failure can be diagnosed with higher accuracy.
  • FIG. 3 is a diagram showing the relationship between the temperature measurement voltage V1 and the control voltage V3 of the temperature detection circuit 1 of FIG. 1 at a plurality of temperatures.
  • FIG. 3 shows the temperature measurement voltage V1 when the temperature of the temperature sensing element 11 is ⁇ 50 ° C., ⁇ 40 ° C., 25 ° C., 65 ° C., 95 ° C., and 120 ° C.
  • the temperature measurement voltage V1 is a value indicated according to each temperature.
  • the temperature measurement voltage V1 decreases as the temperature increases.
  • the reference voltage Vref1 corresponds to the temperature measurement voltage V1 of 70 ° C.
  • the reference voltage Vref2 corresponds to the temperature measurement voltage V1 of 90 ° C.
  • the temperature measurement voltage V1 increases from the minimum value as the control voltage V3 becomes higher than the voltage V3b at each temperature.
  • the control voltage V3 is in the range from the voltage V3b to the voltage V3e
  • the temperature measurement voltage V1 changes from less than the reference voltage Vref2 to higher than the reference voltage Vref1 when the temperature is ⁇ 50 ° C. to 120 ° C. Therefore, by changing the control voltage V3 from the voltage V3b to the voltage V3e, the abnormality detection signal V2 is effectively changed from invalid to invalid after the abnormality detection signal V2 is effectively changed regardless of the temperature of the measurement object measured by the temperature measurement circuit 10. Can be changed. Therefore, the failure of the temperature monitoring circuit 30 can be diagnosed with higher accuracy regardless of the temperature at the time of failure diagnosis.
  • the diagnostic signal generation circuit 40 changes the temperature measurement voltage V1 regardless of the temperature of the measurement object measured by the temperature measurement circuit 10. I am doing so.
  • the temperature monitoring circuit 30 is correctly operated in a normal temperature environment without providing a switch between the measurement node N1 and the temperature monitoring circuit 30 so that the temperature monitoring voltage V1 is not supplied to the temperature monitoring circuit 30. Whether or not the detection signal V2 is valid can be confirmed. Therefore, a failure of the temperature monitoring circuit 30 can be diagnosed while suppressing an increase in circuit scale and cost.
  • switch elements such as MOS (Metal Oxide Semiconductor) transistors may be used as the first and second transistors TR1 and TR2.
  • MOS Metal Oxide Semiconductor
  • the abnormal voltage range may be set to a certain reference voltage or less or a certain reference voltage or more.
  • a temperature measurement circuit (10) for outputting a temperature measurement voltage corresponding to the temperature to the measurement node (N1);
  • An arithmetic circuit (20) for calculating a temperature based on the temperature measurement voltage;
  • a temperature monitoring circuit (30) for enabling an abnormality detection signal indicating a temperature abnormality when the temperature measurement voltage is within a predetermined abnormal voltage range;
  • a diagnostic signal generation circuit (40) for supplying a diagnostic signal to the measurement node (N1) to change the temperature measurement voltage at the time of failure diagnosis of the temperature monitoring circuit (30);
  • a temperature detection circuit (1) comprising: According to this, failure of the temperature monitoring circuit (30) can be diagnosed while suppressing an increase in circuit scale and cost.
  • the temperature measuring circuit (10) A voltage dividing resistor (Rd) having one end to which a first fixed voltage is supplied and the other end connected to the measurement node (N1); A temperature-sensitive element (11) having one end connected to the measurement node (N1) and the other end to which a second fixed voltage is supplied and having a resistance value that varies with temperature;
  • the temperature detection circuit (1) according to item 1, wherein the diagnostic signal generation circuit (40) draws a current from the measurement node (N1) and changes the temperature measurement voltage during the failure diagnosis. . According to this, the temperature measurement voltage can be changed with a simple circuit regardless of the temperature.
  • the diagnostic signal generation circuit (40) A first transistor (TR1) having a base to which a control voltage is supplied and a collector to which the first fixed voltage is supplied; A first resistor (R1) having one end connected to the emitter of the first transistor (TR1) and the other end to which the second fixed voltage is supplied; A second transistor (TR2) having a base connected to the emitter of the first transistor (TR1) and a collector connected to the measurement node (N1); A second resistor (R2) having the other end connected to the emitter of the second transistor (TR2) and the other end to which the second fixed voltage is supplied; Item 4.
  • the temperature detection circuit (1) according to item 2 or 3, characterized by comprising: According to this, the diagnostic signal generation circuit (40) can be realized with a simple configuration.
  • the temperature detection circuit according to any one of items 1 to 4, wherein the diagnostic signal generation circuit (40) changes the temperature measurement voltage to a value within the abnormal voltage range during the failure diagnosis. (1). According to this, it is possible to diagnose a failure of the temperature monitoring circuit (30) in a short time by confirming whether the abnormality detection signal is valid.
  • the diagnostic signal generation circuit (40) changes the temperature measurement voltage between a value within the abnormal voltage range and a value outside the abnormal voltage range during the failure diagnosis.
  • the temperature detection circuit (1) according to item 1. According to this, it is confirmed whether the abnormality detection signal is valid when the temperature measurement voltage is within the abnormal voltage range, and whether the abnormality detection signal is invalid when the temperature measurement voltage is outside the abnormal voltage range.
  • the failure of the temperature monitoring circuit (30) can be diagnosed with higher accuracy. Confirm that either the abnormality detection signal is valid when the temperature measurement voltage is within the abnormal voltage range or that the abnormality detection signal is invalid when the temperature measurement voltage is outside the abnormal voltage range. Thus, the failure of the temperature monitoring circuit (30) may be diagnosed. [Item 7]
  • the arithmetic circuit (20) reduces the control voltage stepwise from the first fixed voltage or increases the control voltage stepwise from the second fixed voltage during the failure diagnosis. Item 5.
  • the temperature measurement circuit (10) outputs the temperature measurement voltage corresponding to the temperature of the secondary battery,
  • the temperature detection circuit according to any one of items 1 to 7, wherein the abnormal voltage range corresponds to a temperature range when an abnormality occurs in the secondary battery. According to this, the abnormality of the secondary battery can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

回路規模とコストの増大を抑制しつつ温度監視回路の故障を診断できる温度検出回路を提供するために、温度検出回路(1)は、温度計測回路(10)と、演算回路(20)と、温度監視回路(30)と、診断信号生成回路(40)とを備える。温度計測回路(10)は、温度に応じた温度計測電圧(V1)を計測ノード(N1)に出力する。演算回路(20)は、温度計測電圧(V1)に基づいて温度を演算する。温度監視回路(30)は、温度計測電圧(V1)が予め定められた異常電圧範囲内にある場合、温度異常を示す異常検知信号(V2)を有効にする。診断信号生成回路(40)は、温度監視回路(30)の故障診断時、計測ノード(N1)に診断信号を供給して、温度計測電圧(V1)を変化させる。

Description

温度検出回路
 本発明は、計測対象物の温度を検出する温度検出回路に関する。
 計測対象物の温度に応じた温度計測電圧を出力する温度計測回路と、温度計測電圧に基づいて温度を演算するMPU(Micro Processor Unit)とを備える温度検出回路が知られている。MPUの回路故障やソフトウェアの誤動作により正しく温度が検出されない場合を考慮して、温度検出回路は、冗長回路である温度監視回路を備えている。温度監視回路は、温度計測電圧に基づいて温度を監視し、温度が異常な場合、MPUおよび安全停止装置などに異常を通知する。これにより、温度検出回路が設けられる機器の品質および信頼性を向上できる。このような温度監視回路の故障を所望のタイミングで診断する必要がある。
特開2015-118068号公報
 しかし、温度が異常にならない限り温度監視回路は作動しないため、通常の温度では温度監視回路の故障を診断できない。そこで、故障診断の際、温度監視回路に温度計測電圧が供給されないよう温度監視回路と温度計測回路とをスイッチにより切り離した上で、温度監視回路へ故障診断用の信号を入力する技術が考えられる。しかし、このような技術では回路規模とコストが増大する。
 本発明はこうした状況に鑑みなされたものであり、その目的は、回路規模とコストの増大を抑制しつつ温度監視回路の故障を診断できる温度検出回路を提供することにある。
 上記課題を解決するために、本発明のある態様の温度検出回路は、温度に応じた温度計測電圧を計測ノードに出力する温度計測回路と、前記温度計測電圧に基づいて温度を演算する演算回路と、前記温度計測電圧が予め定められた異常電圧範囲内にある場合、温度異常を示す異常検知信号を有効にする温度監視回路と、前記温度監視回路の故障診断時、前記計測ノードに診断信号を供給して、前記温度計測電圧を変化させる診断信号生成回路と、を備える。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、回路規模とコストの増大を抑制しつつ温度監視回路の故障を検出できる。
本発明の一実施形態に係る温度検出回路の回路図である。 図1の温度検出回路の温度計測電圧と異常検知信号の制御電圧との関係を示す図である。 複数の温度における図1の温度検出回路の温度計測電圧と制御電圧との関係を示す図である。
 図1は、本発明の一実施形態に係る温度検出回路1の回路図である。温度検出回路1は、温度計測回路10と、演算回路20と、温度監視回路30と、診断信号生成回路40とを備える。
 温度計測回路10は、計測対象物の温度に応じた温度計測電圧V1を計測ノードN1に出力する。計測対象物は、特に限定されないが、例えば、車両用電源装置、航空用電源装置、船舶用電源装置、または、定置型電源装置などである。計測対象物は、これらの電源装置に含まれる二次電池であってもよい。
 演算回路20は、例えばMPUであり、計測ノードN1に接続された入力端子20aと、入力端子20bと、出力端子20cとを有する。演算回路20は、入力端子20aに入力された温度計測電圧V1に基づいて温度を演算する。演算回路20は、AD変換器を含んでおり、AD変換器により温度計測電圧V1をAD変換し、得られたデジタル信号を処理して温度を得る。演算回路20は、得られた温度が異常である場合、外部に異常を通知する。
 演算回路20の構成は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコンピュータ、DSP、ROM、RAM、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
 温度監視回路30は、計測ノードN1に接続され、温度計測電圧V1に基づいて温度を監視する。温度監視回路30は、温度計測電圧V1が予め定められた異常電圧範囲内にある場合、温度異常を示す異常検知信号V2を有効にする。温度監視回路30は、異常検知信号V2を演算回路20の入力端子20bおよび外部の安全停止装置100などに出力する。温度監視回路30は、温度計測電圧V1が異常電圧範囲外にある場合、異常検知信号V2を無効にする。異常電圧範囲は、計測対象物に異常が生じている場合の温度範囲に対応する。演算回路20は、異常検知信号V2が有効になると、外部に異常を通知する。安全停止装置100は、異常検知信号V2が有効になると、計測対象物の動作を停止させる。
 このような構成により、演算回路20の回路故障やソフトウェアの誤動作により正しく温度が検出されない場合であっても、計測対象物に温度異常が生じている場合には、温度監視回路30が異常検知信号V2を有効にすることができる。
 演算回路20は、所定の診断タイミングで温度監視回路30の故障を診断する。故障診断時、演算回路20は、出力端子20cから診断信号生成回路40に制御電圧V3を出力し、制御電圧V3に応じて異常検知信号V2が正しく有効または無効になるか確認する。これにより、演算回路20は、温度監視回路30が故障しているか否か診断できる。診断タイミングは、例えば、計測対象物の起動時、動作終了時、一時停止中などである。演算回路20は、DA変換器を有しており、このDA変換器により、予めプログラムされたデジタルデータをDA変換して制御電圧V3を生成する。
 診断信号生成回路40は、計測ノードN1に接続され、温度監視回路30の故障診断時、制御電圧V3に応じて計測ノードN1に診断信号を供給して、温度計測回路10が測定する測定対象物の温度とは無関係に温度計測電圧V1を変化させる。具体的には、診断信号生成回路40は、故障診断時、制御電圧V3に応じて温度計測電圧V1を異常電圧範囲内の値に変化させる。診断信号生成回路40は、故障診断時、制御電圧V3に応じて温度計測電圧V1を異常電圧範囲内の値と異常電圧範囲外の値に変化させてもよい。
 診断信号生成回路40は、故障診断時以外では、制御電圧V3に応じて出力を高インピーダンスに設定する。これにより、温度を検出する間、診断信号生成回路40が温度計測電圧V1に影響を与えないようにできる。そのため、正確な温度を検出できる。
 以下、温度計測回路10、温度監視回路30および診断信号生成回路40の回路構成の一例について説明するが、これに限らない。
 温度計測回路10は、分圧抵抗Rdと、感温素子11とを有する。分圧抵抗Rdは、電源電圧(第1固定電圧)VDDが供給される一端と、計測ノードN1に接続された他端とを有する。
 感温素子11は、計測対象物の温度を精度良く検出できるよう、計測対象物に熱結合される。感温素子11は、温度に応じて抵抗値が変化する素子であり、例えば、サーミスタである。感温素子11は、計測ノードN1に接続された一端と、接地電圧(第2固定電圧)が供給される他端とを有する。本実施形態では、感温素子11は、温度が増加するほど抵抗値が減少するが、これとは逆の特性であってもよい。
 分圧抵抗Rdと感温素子11は、分圧回路を構成している。この構成により、温度計測回路10は、感温素子11の抵抗値を温度計測電圧V1に変換する
 温度監視回路30は、コンパレータ31と、コンパレータ32とを有する。
 コンパレータ31は、基準電圧Vref1が供給される非反転入力端子と、計測ノードN1に接続された反転入力端子と、異常検知信号V2を出力する出力端子とを有する。コンパレータ32は、基準電圧Vref2が供給される反転入力端子と、計測ノードN1に接続された非反転入力端子と、コンパレータ31の出力端子に接続された出力端子とを有する。
 基準電圧Vref1は、基準電圧Vref2より高い。異常電圧範囲は、基準電圧Vref1以上、基準電圧Vref2以下の範囲である。コンパレータ31,32は、ウィンドウ型のコンパレータとして機能する。
 診断信号生成回路40は、第1トランジスタTR1と、第2トランジスタTR2と、第1抵抗R1と、第2抵抗R2と、第3抵抗R3と、第4抵抗R4とを有する。
 第1トランジスタTR1は、NPN型バイポーラトランジスタであり、第3抵抗R3を介して制御電圧V3が供給されるベースと、電源電圧VDDが供給されるコレクタと、エミッタとを有する。
 第1抵抗R1は、第1トランジスタTR1のエミッタに接続された一端と、接地電圧が供給される他端とを有する。
 第2トランジスタTR2は、NPN型バイポーラトランジスタであり、第1トランジスタTR1のエミッタに第4抵抗R4を介して接続されたベースと、計測ノードN1に接続されたコレクタと、エミッタとを有する。
 第2抵抗R2は、第2トランジスタTR2のエミッタに接続された一端と、接地電圧が供給される他端とを有する。
 第1トランジスタTR1と第1抵抗R1は、エミッタフォロワ回路を構成している。第2トランジスタTR2と第2抵抗R2は、オープンコレクタ回路を構成している。
 診断信号生成回路40は、故障診断時、計測ノードN1から電流を引き込んで、分圧抵抗Rdに流れる電流を増加させ、温度計測回路10が測定する測定対象物の温度とは無関係に温度計測電圧V1を変化させる。診断信号生成回路40が計測ノードN1から引き込む電流は、前述の故障診断信号に対応する。具体的には、制御電圧V3に応じて第1および第2トランジスタTR1,TR2に流れるベース電流およびコレクタ電流が変化し、これにより分圧抵抗Rdに流れる電流も変化する。結果として、制御電圧V3に応じて第2トランジスタTR2のコレクタ・エミッタ間電圧が変化することにより温度計測電圧V1が変化する。
 故障診断時以外では、制御電圧V3は例えば0Vに設定され、診断信号生成回路40は電流の引き込みを停止する。この時、第2トランジスタTR2のコレクタは、高インピーダンスになっている。
 図2は、図1の温度検出回路1の温度計測電圧V1と異常検知信号V2の制御電圧V3との関係を示す図である。図2では、感温素子11の温度は25℃であり、温度監視回路30は故障していない。
 制御電圧V3が0Vから電圧V3aの間では、第1および第2トランジスタTR1,TR2にコレクタ電流が流れない。そのため、温度計測電圧V1は、25℃を示す値となっている。この時、演算回路20は温度を25℃と演算する。温度計測電圧V1は異常電圧範囲VR1外であるため、異常検知信号V2は、ローレベル、即ち無効である。
 制御電圧V3が電圧V3aより高くなると、第2トランジスタTR2にコレクタ電流が流れ、温度計測電圧V1は、25℃を示す値より低下する。
 制御電圧V3が電圧V3aより高い電圧V3b付近になると、第2トランジスタTR2により多くのコレクタ電流が流れ、温度計測電圧V1は最小値となる。この最小値は、基準電圧Vref2より低い。そのため、制御電圧V3が電圧V3aから電圧V3bの間で異常検知信号V2が一旦ハイレベル、即ち有効になるが、電圧V3bでは異常検知信号V2は無効である。
 制御電圧V3が電圧V3bより高くなるほど、第2トランジスタTR2に流れるコレクタ電流が減少し、温度計測電圧V1は最小値より高くなる。
 制御電圧V3が電圧V3bより高い電圧V3cになると、温度計測電圧V1は基準電圧Vref2と等しくなる。制御電圧V3が電圧V3cより高い電圧V3dになると、温度計測電圧V1は基準電圧Vref1と等しくなる。そのため、制御電圧V3が電圧V3cから電圧V3dの間では、温度計測電圧V1は基準電圧Vref1と基準電圧Vref2との間、すなわち異常電圧範囲VR1内にある。この場合、異常検知信号V2は有効である。
 制御電圧V3が電圧V3dより高くなるほど、温度計測電圧V1は基準電圧Vref1より高くなる。そのため、この場合には異常検知信号V2は無効である。
 以上から、制御電圧V3が電圧V3cから電圧V3dの間に設定された時に異常検知信号V2が無効である場合、温度監視回路30が故障していると診断できる。
 また、制御電圧V3が電圧V3bから電圧V3cの間、または、電圧V3dより高く設定され、異常検知信号V2が有効である場合、温度監視回路30が故障していると診断できる。これにより、基準電圧Vref1または基準電圧Vref2が誤っている故障も診断できる。
 演算回路20は、制御電圧V3を、電源電圧VDDから電圧V3bまたは0Vまで段階的に低下させてもよく、電圧V3bまたは0Vから電源電圧VDDまで段階的に増加させてもよい。これにより、より高精度に故障を診断できる。
 図3は、複数の温度における図1の温度検出回路1の温度計測電圧V1と制御電圧V3との関係を示す図である。図3では、感温素子11の温度が-50℃、-40℃、25℃、65℃、95℃、120℃の場合の温度計測電圧V1を示している。
 制御電圧V3が0Vから電圧V3aの間では、温度計測電圧V1は、それぞれの温度に応じて示される値となっている。温度が増加するほど、温度計測電圧V1は低下する。
 図示する例では、基準電圧Vref1は70℃の温度計測電圧V1に対応し、基準電圧Vref2は90℃の温度計測電圧V1に対応する。温度を検出する時に温度計測電圧V1が異常電圧範囲VR1内にある場合、温度は70~90℃であり、計測対象物が異常であり、異常検知信号V2が有効になる。
 図2と同様に、各温度において、制御電圧V3が電圧V3bより高くなるほど、温度計測電圧V1は最小値より増加する。制御電圧V3が電圧V3bから電圧V3eの範囲では、温度が-50℃~120℃において、温度計測電圧V1は、基準電圧Vref2未満から基準電圧Vref1より高く変化する。したがって、制御電圧V3を電圧V3bから電圧V3eまで変化させることで、温度計測回路10が測定する測定対象物の温度によらず、異常検知信号V2を無効から有効に変化させた後、有効から無効に変化させることができる。そのため、故障診断時の温度によらず、温度監視回路30の故障をより高精度に診断できる。
 このように、本実施形態によれば、温度監視回路30の故障診断時、診断信号生成回路40が、温度計測回路10が測定する測定対象物の温度とは無関係に温度計測電圧V1を変化させるようにしている。これにより、計測ノードN1と温度監視回路30との間にスイッチを設けて温度監視回路30に温度計測電圧V1が供給されないようにすることなく、通常の温度環境において、温度監視回路30が正しく異常検知信号V2を有効にするか否か確認することができる。従って、回路規模とコストの増大を抑制しつつ温度監視回路30の故障を診断できる。
 以上、本発明を実施形態をもとに説明した。これら実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば、第1および第2トランジスタTR1,TR2として、MOS(Metal Oxide Semiconductor)トランジスタなどの他のスイッチ素子を用いてもよい。
 また、異常電圧範囲を基準電圧Vref1以上、基準電圧Vref2以下の範囲に設定する一例について説明したが、異常電圧範囲をある基準電圧以下またはある基準電圧以上に設定してもよい。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 温度に応じた温度計測電圧を計測ノード(N1)に出力する温度計測回路(10)と、
 前記温度計測電圧に基づいて温度を演算する演算回路(20)と、
 前記温度計測電圧が予め定められた異常電圧範囲内にある場合、温度異常を示す異常検知信号を有効にする温度監視回路(30)と、
 前記温度監視回路(30)の故障診断時、前記計測ノード(N1)に診断信号を供給して、前記温度計測電圧を変化させる診断信号生成回路(40)と、
 を備えることを特徴とする温度検出回路(1)。
 これによれば、回路規模とコストの増大を抑制しつつ温度監視回路(30)の故障を診断できる。
[項目2]
 前記温度計測回路(10)は、
 第1固定電圧が供給される一端と、前記計測ノード(N1)に接続された他端とを有する分圧抵抗(Rd)と、
 前記計測ノード(N1)に接続された一端と、第2固定電圧が供給される他端とを有し、温度に応じて抵抗値が変化する感温素子(11)と、を有し、
 前記診断信号生成回路(40)は、前記故障診断時、電流を前記計測ノード(N1)から引き込んで、前記温度計測電圧を変化させることを特徴とする項目1に記載の温度検出回路(1)。
 これによれば、簡単な回路で温度に無関係に温度計測電圧を変化させることができる。[項目3]
 前記診断信号生成回路(40)は、前記故障診断時以外では、前記電流の引き込みを停止することを特徴とする項目2に記載の温度検出回路(1)。
 これによれば、温度を検出する間、診断信号生成回路(40)が温度計測電圧に影響を与えないようにできる。そのため、正確な温度を検出できる。
[項目4]
 前記診断信号生成回路(40)は、
 制御電圧が供給されるベースと、前記第1固定電圧が供給されるコレクタと、を有する第1トランジスタ(TR1)と、
 前記第1トランジスタ(TR1)のエミッタに接続された一端と、前記第2固定電圧が供給される他端とを有する第1抵抗(R1)と、
 前記第1トランジスタ(TR1)のエミッタに接続されたベースと、前記計測ノード(N1)に接続されたコレクタと、を有する第2トランジスタ(TR2)と、
 前記第2トランジスタ(TR2)のエミッタに接続された他端と、前記第2固定電圧が供給される他端とを有する第2抵抗(R2)と、
 を有することを特徴とする項目2または3に記載の温度検出回路(1)。
 これによれば、簡単な構成で診断信号生成回路(40)を実現できる。
[項目5]
 前記診断信号生成回路(40)は、前記故障診断時、前記温度計測電圧を前記異常電圧範囲内の値に変化させることを特徴とする項目1から4のいずれか1項に記載の温度検出回路(1)。
 これによれば、異常検知信号が有効になるか確認することにより、短時間で温度監視回路(30)の故障を診断できる。
[項目6]
 前記診断信号生成回路(40)は、前記故障診断時、前記温度計測電圧を前記異常電圧範囲内の値と前記異常電圧範囲外の値に変化させることを特徴とする項目1から4のいずれか1項に記載の温度検出回路(1)。
 これによれば、温度計測電圧が異常電圧範囲内の値の時に異常検知信号が有効になるか確認し、温度計測電圧が異常電圧範囲外の値の時に異常検知信号が無効になるか確認することにより、温度監視回路(30)の故障をより高精度に診断できる。なお、温度計測電圧が異常電圧範囲内の値の時に異常検知信号が有効になることと、温度計測電圧が異常電圧範囲外の値の時に異常検知信号が無効になることのどちらか一方を確認することで温度監視回路(30)の故障を診断してもよい。
[項目7]
 前記演算回路(20)は、前記故障診断時、前記制御電圧を前記第1固定電圧から段階的に低下させるか、または、前記制御電圧を前記第2固定電圧から段階的に増加させることを特徴とする項目4に記載の温度検出回路(1)。
 これによれば、温度監視回路の故障をより高精度に診断できる。
[項目8]
 前記温度計測回路(10)は、二次電池の温度に応じた前記温度計測電圧を出力し、
 前記異常電圧範囲は、前記二次電池に異常が生じている場合の温度範囲に対応することを特徴とする項目1から7のいずれか1項に記載の温度検出回路。
 これによれば、二次電池の異常を検出できる。
1…温度検出回路、10…温度計測回路、11…感温素子、Rd…分圧抵抗、20…演算回路、30…温度監視回路、40…診断信号生成回路、R1…第1抵抗、TR1…第1トランジスタ、R2…第2抵抗、TR2…第2トランジスタ。

Claims (8)

  1.  温度に応じた温度計測電圧を計測ノードに出力する温度計測回路と、
     前記温度計測電圧に基づいて温度を演算する演算回路と、
     前記温度計測電圧が予め定められた異常電圧範囲内にある場合、温度異常を示す異常検知信号を有効にする温度監視回路と、
     前記温度監視回路の故障診断時、前記計測ノードに診断信号を供給して、前記温度計測電圧を変化させる診断信号生成回路と、
     を備えることを特徴とする温度検出回路。
  2.  前記温度計測回路は、
     第1固定電圧が供給される一端と、前記計測ノードに接続された他端とを有する分圧抵抗と、
     前記計測ノードに接続された一端と、第2固定電圧が供給される他端とを有し、温度に応じて抵抗値が変化する感温素子と、を有し、
     前記診断信号生成回路は、前記故障診断時、前記計測ノードから電流を引き込んで、前記温度計測電圧を変化させることを特徴とする請求項1に記載の温度検出回路。
  3.  前記診断信号生成回路は、前記故障診断時以外では、前記電流の引き込みを停止することを特徴とする請求項2に記載の温度検出回路。
  4.  前記診断信号生成回路は、
     制御電圧が供給されるベースと、前記第1固定電圧が供給されるコレクタと、を有する第1トランジスタと、
     前記第1トランジスタのエミッタに接続された一端と、前記第2固定電圧が供給される他端とを有する第1抵抗と、
     前記第1トランジスタのエミッタに接続されたベースと、前記計測ノードに接続されたコレクタと、を有する第2トランジスタと、
     前記第2トランジスタのエミッタに接続された他端と、前記第2固定電圧が供給される他端とを有する第2抵抗と、
     を有することを特徴とする請求項2または3に記載の温度検出回路。
  5.  前記診断信号生成回路は、前記故障診断時、前記温度計測電圧を前記異常電圧範囲内の値に変化させることを特徴とする請求項1から4のいずれか1項に記載の温度検出回路。
  6.  前記診断信号生成回路は、前記故障診断時、前記温度計測電圧を前記異常電圧範囲内の値と前記異常電圧範囲外の値に変化させることを特徴とする請求項1から4のいずれか1項に記載の温度検出回路。
  7.  前記演算回路は、前記故障診断時、前記制御電圧を前記第1固定電圧から段階的に低下させるか、または、前記制御電圧を前記第2固定電圧から段階的に増加させることを特徴とする請求項4に記載の温度検出回路。
  8.  前記温度計測回路は、二次電池の温度に応じた前記温度計測電圧を出力し、
     前記異常電圧範囲は、前記二次電池に異常が生じている場合の温度範囲に対応することを特徴とする請求項1から7のいずれか1項に記載の温度検出回路。
PCT/JP2017/002432 2016-02-29 2017-01-25 温度検出回路 WO2017150013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780014179.8A CN108700475A (zh) 2016-02-29 2017-01-25 温度检测电路
US16/077,918 US11211645B2 (en) 2016-02-29 2017-01-25 Temperature detection circuit
JP2018502593A JP6911006B2 (ja) 2016-02-29 2017-01-25 温度検出回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038313 2016-02-29
JP2016038313 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150013A1 true WO2017150013A1 (ja) 2017-09-08

Family

ID=59743769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002432 WO2017150013A1 (ja) 2016-02-29 2017-01-25 温度検出回路

Country Status (4)

Country Link
US (1) US11211645B2 (ja)
JP (1) JP6911006B2 (ja)
CN (1) CN108700475A (ja)
WO (1) WO2017150013A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047736A1 (ja) * 2022-08-30 2024-03-07 理化工業株式会社 温度測定装置および異常検知方法
WO2024106137A1 (ja) * 2022-11-15 2024-05-23 パナソニックエナジー株式会社 電池パック、温度測定回路及び電池パックの故障診断方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092497B2 (en) * 2018-10-31 2021-08-17 Taiwan Semiconductor Manufacturing Company Limited Temperature protection circuit
KR102332444B1 (ko) 2019-12-23 2021-11-26 삼성에스디아이 주식회사 열 폭주 검출 장치, 배터리 시스템 및 배터리 시스템의 열 폭주 검출 방법
CN112285473A (zh) * 2020-10-30 2021-01-29 尹永云 一种电动自行车电池过放电检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616827A (en) * 1979-07-23 1981-02-18 Hitachi Ltd Car exhaust temperature alarm unit
JP2014167418A (ja) * 2013-02-28 2014-09-11 Noritz Corp 異常検出装置および給湯装置
JP2014185992A (ja) * 2013-03-25 2014-10-02 Fuji Xerox Co Ltd 温度検出装置、画像形成装置及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922423B2 (ja) * 1994-06-07 1999-07-26 ニッタン株式会社 熱感知器
JP3697757B2 (ja) 1995-10-24 2005-09-21 松下電器産業株式会社 サーミスタ回路監視装置
JP2006126053A (ja) * 2004-10-29 2006-05-18 Jidosha Denki Kogyo Co Ltd 故障検出装置
US7986129B2 (en) * 2008-01-02 2011-07-26 Cooper Technologies Company Method and system for float charging a battery
CN102109550B (zh) * 2009-12-25 2013-04-17 台达电子工业股份有限公司 过电压与过温度检测电路
KR101189885B1 (ko) * 2010-10-19 2012-10-10 산요덴키가부시키가이샤 전원 장치 및 이를 사용한 차량 및 축전 장치
JP2015118068A (ja) 2013-12-20 2015-06-25 株式会社ノーリツ アナログ信号入力回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616827A (en) * 1979-07-23 1981-02-18 Hitachi Ltd Car exhaust temperature alarm unit
JP2014167418A (ja) * 2013-02-28 2014-09-11 Noritz Corp 異常検出装置および給湯装置
JP2014185992A (ja) * 2013-03-25 2014-10-02 Fuji Xerox Co Ltd 温度検出装置、画像形成装置及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047736A1 (ja) * 2022-08-30 2024-03-07 理化工業株式会社 温度測定装置および異常検知方法
WO2024106137A1 (ja) * 2022-11-15 2024-05-23 パナソニックエナジー株式会社 電池パック、温度測定回路及び電池パックの故障診断方法

Also Published As

Publication number Publication date
CN108700475A (zh) 2018-10-23
US11211645B2 (en) 2021-12-28
US20190051952A1 (en) 2019-02-14
JPWO2017150013A1 (ja) 2018-12-20
JP6911006B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2017150013A1 (ja) 温度検出回路
JP6158029B2 (ja) 電子制御装置
CN107257915B (zh) 具有改进的故障识别的测量电桥组件和方法
JP4940305B2 (ja) 温度依存の抵抗性デバイスを用いた識別
EP2988136B1 (en) Sensor interface circuits
JP5832751B2 (ja) 自己診断可能な電子回路及び磁界検出装置
US8154312B2 (en) Sensor system
US9574925B2 (en) Fluid measurement device having a circuit for precise flow measurement
CN108132108B (zh) 温度检测装置及其温度检测方法
JP6329648B2 (ja) 故障検出装置
JP5769130B2 (ja) 信号入力回路の診断方法および装置
CN115683395A (zh) 热电偶的断路检测电路和断路检测方法
JP6673154B2 (ja) オープンコレクタ方式の回転センサの自己診断回路
JP2013205345A (ja) 温度検出装置
JP6705732B2 (ja) アナログ出力装置
KR20210074528A (ko) 온도 센싱 회로
JP2015021954A (ja) 電流制御装置
JP6989404B2 (ja) 半導体集積回路
JP7353225B2 (ja) 半導体装置および環境発電システム
KR102035924B1 (ko) 고장진단회로 일체형 브릿지 구조의 압력센서 및 브릿지 구조 압력센서의 고장진단 방법
JP2017101951A (ja) 酸素濃度センサへの入力回路
JP2012185136A (ja) 温度測定装置
US20180233932A1 (en) Measurement apparatus and on-board battery charger
CN117686108A (zh) 一种热电阻的温度采集和故障监测装置及其控制方法
JP2021085856A (ja) 異常検出装置、電気機器、画像形成装置、電気機器の異常検出方法、及び異常検出プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759485

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759485

Country of ref document: EP

Kind code of ref document: A1