WO2017141875A1 - Scorer and corrugated cardboard sheet manufacturing device - Google Patents

Scorer and corrugated cardboard sheet manufacturing device Download PDF

Info

Publication number
WO2017141875A1
WO2017141875A1 PCT/JP2017/005167 JP2017005167W WO2017141875A1 WO 2017141875 A1 WO2017141875 A1 WO 2017141875A1 JP 2017005167 W JP2017005167 W JP 2017005167W WO 2017141875 A1 WO2017141875 A1 WO 2017141875A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruled line
motor
roll
limit value
torque
Prior art date
Application number
PCT/JP2017/005167
Other languages
French (fr)
Japanese (ja)
Inventor
竹本 衆一
永岡 隆
忠 栗原
直行 福重
Original Assignee
三菱重工印刷紙工機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工印刷紙工機械株式会社 filed Critical 三菱重工印刷紙工機械株式会社
Publication of WO2017141875A1 publication Critical patent/WO2017141875A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/25Surface scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/20Corrugating; Corrugating combined with laminating to other layers
    • B31F1/24Making webs in which the channel of each corrugation is transverse to the web feed

Definitions

  • the present invention relates to a scorer that performs ruled line processing on a corrugated cardboard sheet, and a corrugated sheet manufacturing apparatus using the scorer.
  • a corrugated board manufacturing apparatus is generally provided with a scorer that performs ruled line processing continuously along the cardboard sheet transport direction (hereinafter referred to as “sheet transport direction”).
  • sheet transport direction By performing ruled line processing on the corrugated cardboard sheet, it is possible to improve the bendability of the corrugated cardboard sheet.
  • a set of ruled line rolls composed of a pair of upper and lower ruled lines provided on the upper and lower sides across a cardboard sheet conveyance path (hereinafter referred to as “sheet conveyance path”) is arranged in the sheet width direction (sheet conveyance).
  • sheet conveyance path A plurality of horizontal directions).
  • ruled line roll when the upper ruled line roll and the lower ruled line roll are not distinguished, they are referred to as “ruled line roll”.
  • Each ruled line roll rotates in the sheet conveying direction.
  • a convex portion that is continuous in the circumferential direction is formed on the circumferential surface of one ruled line roll (for example, the upper ruled line roll), and the other ruled line roll (for example, the lower ruled line roll) has a circle.
  • Concave portions that are continuous in the circumferential direction are formed on the peripheral surface.
  • the corrugated cardboard sheet conveyed through the sheet conveyance path is pressed against the concave part of the other ruled line roll by the convex part of one ruled line roll, and the ruled lines are continuously formed along the sheet conveying direction.
  • the pair of upper ruled line rolls and lower ruled line rolls constituting the ruled line roll group is configured to be movable along the sheet width direction in synchronization, and the position of each ruled line roll group, that is, the ruled line processing position is appropriately changed according to the order. Is done.
  • the upper ruled line roll is configured to be movable between a processing position where the ruled line processing is performed in contact with the cardboard sheet and a standby position spaced upward from the cardboard sheet, and a period during which preparations for the next order are performed (hereinafter, , Also referred to as “standby period”), the upper ruled line roll is moved from the processing position to be a standby position.
  • the lower ruled line roll is provided with a motor for rotating the lower ruled line roll in the sheet conveying direction (hereinafter referred to as “ruled line motor”).
  • ruled line motor a motor for rotating the lower ruled line roll in the sheet conveying direction
  • the motor rotation speed is idled.
  • the circumferential speed of the ruled line roll is increased so as to approach the conveying speed of the corrugated board sheet, in other words, the line speed of the corrugated board manufacturing apparatus.
  • a motor for driving such a ruled line roll it is desirable to adopt a motor having a small capacity (rated output) as much as possible and a small size because it can save installation space and maintenance space and reduce manufacturing costs. Yes.
  • the present invention has been devised in view of the above-described problems, and can reduce the space for arranging the ruled line motor and the space for maintaining the ruled line motor, and can reduce the manufacturing cost.
  • An object of the present invention is to provide a scorer and a cardboard sheet manufacturing apparatus.
  • the scorer of the present invention is a scorer that performs ruled line processing on a corrugated cardboard sheet conveyed at a predetermined line speed by a double facer and a cut-off.
  • a ruled line motor that rotationally drives the ruled line roll, a roll moving mechanism that moves the ruled line roll to a standby position where the cardboard sheet is not pressed, or a processing position where the cardboard sheet is pressed to perform the ruled line processing, and production
  • a control device that performs control based on a command received from the management device, and the control device controls a roll movement control unit that controls the operation of the roll movement mechanism and a motor output that is an output of the ruled line motor.
  • a motor output control unit wherein the motor output control unit is configured such that the torque of the ruled line motor is set to the ruled line motor.
  • the motor output is controlled within a range that does not exceed the limit value, and the torque limit value of the ruled line motor is a normal limit value that is equal to or lower than the torque rating value and exceeds the torque rating value only within a predetermined period. This is characterized in that two limit values, ie, a high limit value that allows the
  • a torque limit value setting means for setting the torque limit value is provided, and the motor output control unit reduces the motor output to an idling output when receiving a current order end command from the production management device.
  • the motor output is set so that the peripheral speed of the ruled line roll approaches the line speed.
  • the torque limit value setting means preferably sets the torque limit value to the high limit value while the output increase control is being performed.
  • the roll movement control unit When the roll movement control unit receives the new order start command from the production management device, the roll movement control unit moves the ruled line roll from the standby position to the processing position, and the torque limit value is determined by the ruled line roll. While in the processing position, it is preferable to set the normal limit value.
  • the ruled line motor is a motor having a lower rated output than a motor for a double facer provided in the double facer.
  • the ruled line motor is preferably a motor having a lower rated output than the cut-off motor provided for the cut-off.
  • the cardboard sheet is provided with a main ruled line roll for processing a main ruled line, and the ruled line roll includes the main ruled line roll.
  • the special ruled line roll is disposed on the upstream side of the main ruled line roll in the conveyance direction of the cardboard sheet.
  • the ruled line motor of the special ruled line roll is a motor having a lower rated output than a motor that rotationally drives the main ruled line roll.
  • the corrugated board sheet manufacturing apparatus of the present invention is characterized by including any of the scorers (1) to (9), a double facer, and a cutoff.
  • the normal limit value equal to or lower than the torque rating value and the high limit value higher than the torque rating value and allowed to exceed only within a predetermined period are provided. Since it has a limit value, it is possible to cope with rapid acceleration / deceleration for a short period of time.
  • the ruled line roll is driven by the corrugated sheet conveyed by the double facer and the cut-off, thereby suppressing the decrease in the line speed. can do.
  • a ruled line motor having a small rated output and a small size as compared with a case where a motor whose torque does not exceed the rated torque value even during a short period of rapid acceleration / deceleration.
  • the space for arranging the ruled line motor and the space for maintaining the ruled line motor can be made smaller than the conventional scorer, and the manufacturing cost can be reduced.
  • FIG. 1 is a schematic diagram showing the overall configuration of a corrugated board manufacturing system according to an embodiment of the present invention.
  • 2A, 2B, and 2C are schematic views showing the configuration of the slitter scorer according to an embodiment of the present invention.
  • FIG. 2A is a side view of the slitter scorer
  • FIG. 2B is a longitudinal section of a concave roll used for a ruled line roll
  • FIG. 2C is a longitudinal sectional view of a convex roll used for a ruled line roll.
  • FIG. 3 is a side view showing a configuration of the special rule unit and the main rule unit according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the overall configuration of a corrugated board manufacturing system according to an embodiment of the present invention.
  • FIG. 2A, 2B, and 2C are schematic views showing the configuration of the slitter scorer according to an embodiment of the present invention.
  • FIG. 2A is a side view of the s
  • FIG. 4 is a schematic diagram showing a control configuration of the corrugated board manufacturing apparatus according to an embodiment of the present invention, and is a diagram showing a control block together with a perspective view of a main part of the corrugated board manufacturing apparatus.
  • FIG. 5 is a time chart illustrating a case where the production order is changed in the order of normal order, special ruled order, and normal order.
  • a direction in which various sheet materials such as a back liner, a core, a front liner, a single-stage sheet, and a cardboard sheet handled in the corrugated board manufacturing apparatus are referred to as a sheet conveyance direction A.
  • a direction orthogonal to the sheet conveying direction A is referred to as a sheet width direction W.
  • FIG. 1 is a schematic diagram showing an overall configuration of a corrugated board manufacturing system according to a first embodiment of the present invention.
  • the corrugated sheet manufacturing system according to this embodiment includes a corrugated sheet manufacturing apparatus 100 and a production management apparatus 200 that controls the corrugated sheet manufacturing apparatus 100.
  • the corrugated board manufacturing apparatus 100 rolls the back liner preheater 10 for heating the back liner 20, the core preheater 12 for heating the core 21 and the core 21 heated by the core preheater 12.
  • the front liner preheater 14 for heating the sheet, the glue machine 15 for gluing to the single stage sheet 22 heated by the single stage sheet preheater 13, and the front liner 23 heated by the front liner preheater 14 are attached to the single stage sheet 22 glued by the glue machine 15.
  • Corrugated cardboard sheets double-sided cardboard sheets 24, the slitter scorer 17 which performs vertical cutting, that is, cutting along the sheet conveying direction A and ruled line processing, and the slitter scorer 17 were subjected to vertical cutting and ruled line processing.
  • a cut-off 18 that cuts the corrugated cardboard sheet 24 into a plate by cutting it along the sheet width direction W, and a stacker 19 that stacks the corrugated cardboard sheets 24 in the order of completion are provided.
  • a hot plate and a loop-shaped pressure belt are arranged so as to sandwich the conveyance path of the single-stage sheet 22 and the front liner 23 from above and below.
  • the pressure belt is rotationally driven by a motor Md, and presses the one-stage sheet 22 and the front liner 23 that are vertically overlapped between the pressure belt and the heat plate toward the heat plate, and then the one-step sheet. 22 and the front liner 23 are conveyed.
  • the single-stage sheet 22 and the front liner 23 are heated by a hot plate while being pressed, so that the single-stage sheet 22 and the front liner 23 are bonded together to form a cardboard sheet 24.
  • a pair of an upper knife cylinder and a lower knife cylinder are disposed so as to sandwich the conveyance path of the cardboard sheet 24 from above and below.
  • the upper knife cylinder and the lower knife cylinder are rotationally driven by motors Mc 1 and Mc 2 at substantially the same peripheral speed as the conveying speed (hereinafter also referred to as “line speed”) VL of the cardboard sheet 24, respectively.
  • the cardboard sheet 24 fed between the upper knife cylinder and the lower knife cylinder by the conveyor is sandwiched between the knife fixed to the upper knife cylinder peripheral surface and the knife fixed to the lower knife cylinder peripheral surface, and then traversed. Will be judged.
  • the corrugated cardboard sheet 24 that has been cut into a plate shape is transported to the stacker 19 by a transport conveyor on the downstream side.
  • the rotation of the upper knife cylinder and the lower knife cylinder has a function of conveying the cardboard sheet 24 as well as traversing the cardboard sheet 24.
  • the slitter scorer 17 includes a first slitter scorer unit (hereinafter also referred to as “first unit” or “slitter scorer unit”) 170F arranged along the sheet conveying direction A, and a second slitter scorer unit (hereinafter referred to as “second”). 170S ”(also referred to as“ unit ”or“ slitter scorer unit ”).
  • FIG. 2A shows a state where the first unit 170F is on standby and the second unit 170S is in operation.
  • various rolls 31a, 31b, 32a, 32b, 33a, and 33b which will be described later, perform vertical cutting and ruled line processing on the cardboard sheet 24.
  • first unit 170F in FIG. 1 In the unit that has been pressed and is in a standby state (first unit 170F in FIG.
  • various rolls 31a disposed above the conveyance path (hereinafter referred to as “sheet conveyance path”) L1 of the cardboard sheet 24, 32a and the roll 33b arranged below the sheet conveying path L1 are separated from the cardboard sheet 24, and the various rolls 31a, 31b, 32a, 32b, 33a, 33b do not press the cardboard sheet 24 (processing is performed). (Do not do) state.
  • the standby unit (first unit 170F in FIG. 2A) performs preparatory work such as setting change for changing the production order (position change of various rolls 31a, 31b, 32a, 32b, 33a, 33b).
  • first unit 170F and the second unit 170F are not distinguished from each other, they are referred to as a slitter scorer unit 170 or a unit 170.
  • the production order is also expressed as an order
  • the change of the production order is also expressed as an order change.
  • Each slitter scorer unit 170 includes a special ruled line unit (scorer, also referred to as “special ruled unit” hereinafter) 171, a main ruled line unit (hereinafter also referred to as “main ruled unit”) 172, and a slitter unit 173 arranged in this order from the upstream side. Composed.
  • special ruled unit corer, also referred to as “special ruled unit” hereinafter
  • main ruled unit main ruled line unit
  • slitter unit 173 arranged in this order from the upstream side. Composed.
  • the special rule unit 171 is opposed to the sheet conveyance path L1 across the sheet conveyance path L1, and the upper ruled line roll 31a is arranged on the upper side of the sheet conveyance path L1, and the lower is arranged on the lower side of the sheet conveyance path L1.
  • a ruled line roll 31b is provided.
  • the upper ruled line roll 31a is a concave roll 30A in which a concave part 30b continuous in the circumferential direction is formed at a substantially central part of the circumferential surface 30a, and the lower ruled line roll 31b is shown in FIG. 2C.
  • the convex roll 30B by which the convex part 30c continued in the circumferential direction was formed in the approximate center part of the circumferential surface 30a.
  • the upper ruled line roll 31a and the lower ruled line roll 31b are paired up and down to constitute a ruled line roll set.
  • a plurality of ruled line roll sets are arranged in parallel along the sheet width direction W.
  • a plurality of upper ruled line rolls 31 a are arranged in parallel along the sheet width direction W
  • a plurality of lower ruled line rolls 31 b are arranged in parallel along the sheet width direction W.
  • the plurality of upper ruled line rolls 31a are fixed to a common drive shaft 131a (not shown in FIG. 4) and are conveyed during the processing of special ruled lines.
  • the cardboard sheet 24 is rotated simultaneously.
  • the plurality of lower ruled line rolls 31b are fixed to a common drive shaft 131b and are rotationally driven all at once by a common ruled line motor (hereinafter also referred to as “motor”) M1 connected to the drive shaft 131b as will be described later.
  • motor common ruled line motor
  • the ruled line motor M1 has a smaller rated output than the motor Md of the double facer 16, the motors Mc1 and Mc2 of the cutoff 18 and the motor M2 of the main ruled unit 172, and is a small size motor. Further, each ruled line roll set is configured to be movable in the sheet width direction W in accordance with a special ruled line location set for each production order (a location where a special ruled line is inserted into the cardboard sheet 24).
  • Each of the main ruled units 172 is opposed to the sheet conveying path L1, and has an upper ruled line roll 32a arranged on the upper side of the sheet conveying path L1, and a lower ruled line roll 32b arranged on the lower side of the sheet conveying path L1.
  • the upper ruled line roll 32a is a convex roll 30B shown in FIG. 2B
  • the lower ruled line roll 32b is shown in FIG. 2B.
  • the upper ruled line roll 32a and the lower ruled line roll 32b are paired up and down to form a ruled line roll set, and the ruled line roll set is arranged in two stages along the sheet conveying direction A.
  • a plurality of ruled line roll sets are arranged in parallel along the sheet width direction W.
  • a plurality of upper ruled line rolls 32 a are arranged in parallel along the sheet width direction and a plurality of lower ruled line rolls 32 b are arranged in parallel along the sheet width direction W for each stage.
  • a plurality of upper ruled line rolls 32a are fixed to a common rotating shaft 132a, and during the processing of the main ruled lines, they are rotated simultaneously by being driven by the conveyed cardboard sheet 24.
  • the plurality of lower ruled line rolls 32b are fixed to a common drive shaft 132b and simultaneously rotated by a common motor M2 connected to the drive shaft 132b as will be described later.
  • Each ruled line roll set is configured to be movable in the sheet width direction W in accordance with a main ruled line location set for each production order (a location where the main ruled line is inserted into the cardboard sheet 24).
  • main ruled lines are continuously formed on the upper surface of the corrugated cardboard sheet 24 along the sheet conveying direction A by the respective ruled line roll groups.
  • the main ruled line is for making it easy to bend the cardboard sheet 24 when assembling the cardboard sheet 24 into a box shape.
  • the number of main ruled lines that can be processed into the corrugated cardboard sheet 24 is increased by arranging the ruled line roll sets in two stages along the sheet conveying direction A as described above.
  • the corrugated sheet 24 is pushed into the recess 30 b of the upper ruled line roll 31 a by the convex part 30 c of the lower ruled line roll 31 b in each set of ruled line rolls.
  • special ruled lines are continuously formed on the lower surface of the corrugated cardboard sheet 24 along the sheet conveying direction A by the respective ruled line roll groups.
  • the special ruled line is an auxiliary ruled line with respect to the main ruled line. In this case, the special ruled line is formed on the surface opposite to the main ruled line.
  • FIG. 2A for convenience, in the second unit 170S, the convex portions 30c of the ruled line rolls 31b and 32a are shown not to be pushed into the concave portions 30b of the ruled line rolls 31a and 32b.
  • the slitter unit 173 is disposed so as to face the sheet conveying path L1, and includes a pressing roll 33a disposed on the upper side of the sheet conveying path L1 and a slitter knife 33b disposed on the lower side of the sheet conveying path L1.
  • the slitter knife 33b is a thin disk-shaped rotary knife.
  • the pressing roll 33a and the slitter knife 33b are paired up and down, and a plurality of sets are arranged in parallel along the sheet width direction W.
  • Each of the pressing rolls 33a and the slitter knife 33b is configured to be movable in the sheet width direction W according to the set slit position.
  • the corrugated cardboard sheet 24 is continuously cut along the sheet conveying direction A by sandwiching the corrugated cardboard sheet 24 between the pair of pressing rolls 33a and the slitter knife 33b.
  • the special rule unit 171 and the main rule unit 172 will be further described with reference to FIG.
  • the special rule unit 171 includes an upper ruled line unit 31A and a lower ruled line unit 31B with the sheet conveying path L1 interposed therebetween.
  • the upper ruled line unit 31A includes an upper support member 31c, an upper moving member 31d, and an upper ruled line roll 31a.
  • the upper support member 31 c has a hollow rectangular parallelepiped shape, and is arranged extending in the sheet width direction W.
  • Guide rails 31g extending substantially horizontally in the seat width direction W are respectively attached to the upper and lower portions of the downstream side surface of the upper support member 31c.
  • the upper moving member 31d is provided for each upper ruled line roll 31a, and supports the upper ruled line roll 31a rotatably at the lower part thereof.
  • the plurality of upper moving members 31d are supported so as to be movable along the pair of upper and lower guide rails 31g and 31g, respectively, and have a driving device (not shown), individually moved in the sheet width direction W, It can be moved to a position corresponding to the special ruled line location.
  • Both ends in the sheet width direction W of the upper support member 31c are respectively engaged with guide rails (not shown) that are attached to a pair of apparatus frames (not shown) so as to extend in the vertical direction. It is movable in the direction of approaching / separating from the cardboard sheet 24.
  • a servo motor mechanism (roll moving mechanism) 31e is attached to the apparatus frame.
  • a movable shaft 31f is provided below the servo motor mechanism 31e so as to advance and retract in the vertical direction.
  • the lower end portion of the movable shaft 31f is fixed to both end portions of the upper surface of the upper support member 31c, and the upper support member 31c is moved up and down by driving the servo motor mechanism 31e to move the movable shaft 31f forward and backward.
  • 31 a is configured to move substantially vertically between a standby position where no ruled line processing is performed and a processing position where ruled line processing is performed.
  • the lower ruled line unit 31B includes a lower support member 31h, a lower moving member 31j, and a lower ruled line roll 31b.
  • the lower support member 31h has a hollow rectangular parallelepiped shape and is disposed so as to extend in the seat width direction W, and both end portions are fixed to the pair of device frames.
  • Guide rails 31k and 31k extending substantially horizontally in the width direction are respectively attached to the upper and lower portions of the downstream side surface of the lower support member 31h.
  • the lower moving member 31j is provided for each lower ruled line roll 31b, and the lower ruled line roll 31b is rotatably supported at the upper part thereof.
  • Each of the plurality of lower moving members 31j is supported so as to be movable along the guide rails 31k and has a driving device (not shown), and individually moves in the sheet width direction W to a position corresponding to the ruled line processing. It can be moved.
  • the main ruler unit 172 is provided with a pair of upper ruled line units 32A and lower ruled line units 32B provided in a pair along the sheet conveyance path L1 with the sheet conveyance path L1 interposed therebetween.
  • the upper ruled line unit 32A differs from the upper ruled line unit 31A provided in the special ruled unit 171 only by replacing the upper ruled line roll 31a (concave roll 30A) with the upper ruled line roll 32a (convex roll 30B). The description is omitted because it is the same.
  • the lower ruled line unit 32B is different from the lower ruled line unit 31B provided in the special ruled unit 171 only by replacing the lower ruled line roll 31b (convex roll 30B) with the lower ruled line roll 32b (concave roll 30A). Since the configuration of is the same, the description thereof is omitted.
  • the corrugated board manufacturing apparatus 100 obtains order information (production schedule, number of manufactured sheets, sheet width dimensions of the corrugated board 24, locations for ruled lines, etc.) from a higher-level production management system, and the corrugated board manufacturing apparatus 100
  • order information production schedule, number of manufactured sheets, sheet width dimensions of the corrugated board 24, locations for ruled lines, etc.
  • the production management device 200 that controls the entire system 100, and the output command and order information are acquired from the production management device 200.
  • the operation of the slitter scorer 17, the operation of the double facer 16, and the cut A local controller (control device) 2 for controlling the operation of the off 18 is provided.
  • the controller 2 includes at least a line speed control unit 2a, a roll movement control unit 2b, a motor output control unit 2c, and a torque limit value setting unit 2d.
  • the line speed control unit 2a controls the rotational speed of the motor Md that drives the drive roller 16a of the double facer 16 and the rotational speeds of the motors Mc1 and Mc2 that drive the knife cylinders 18A and 18B of the cutoff 18.
  • the drive roller 16a is wound around a pressure belt (not shown) of the double facer 16 and drives the pressure belt.
  • the pressure belt and knife cylinders 18A and 18B of the double facer 16 also serve as a conveying means for the cardboard sheet 24.
  • the line speed control unit 2a controls the rotational speeds of the motors Md, Mc1 and Mc2, thereby The conveyance speed, that is, the line speed VL is controlled.
  • the motors Md, Mc1 and Mc2 are respectively provided with encoders Ed, Ec1 and Ec2 for detecting the rotational speed, and the detection results of the encoders Ed, Ec1 and Ec2 are output to the line speed control unit 2a. .
  • the line speed control unit 2a controls the rotational speeds of the motors Md, Mc1, and Mc2 so that a predetermined line speed VL is obtained based on the detection results of the encoders Ed, Ec1, and Ec2.
  • knives on the peripheral surfaces of the knife cylinders 18A and 18B are omitted.
  • the roll movement control unit 2b and the motor output control unit 2c control the operation of the ruled line units 31A, 31B, 32A, and 32B (see FIG. 3) of the ruled line units 171 and 172. Since the operation control / control system of the ruled line units 31A, 31B, 32A, 32B by the roll movement control unit 2b and the motor output control unit 2c is the same, only the control system related to one special ruled unit 171 is shown in FIG. In FIG. 4, the upper ruled line unit 31A and the lower ruled line unit 31B are shown in a simplified manner.
  • the roll movement control unit 2b from the production management apparatus 200, terminates the current order (currently the order in which the special ruled line is processed by the first unit 170F) (hereinafter referred to as “current order termination command”). (Noted) is received, the operation of the servo motor mechanism 31e (see FIG. 3) is controlled to retract the movable shaft 31f (see FIG. 3) upward. As a result, as indicated by an arrow ay1, the upper ruled line roll 31a rises to a standby position separated from the cardboard sheet 24.
  • the roll movement control unit 2b receives a current order end command from the production management apparatus 200, and then prepares a command for making a preparation for a new order (a new order for processing a special ruled line by the first unit 170F) (hereinafter, “ When receiving a “new order preparation command”, the ruled line roll set at the standby position is moved laterally to a predetermined position along the sheet width direction W as indicated by an arrow ax1. That is, the operation of the driving device (not shown) provided for each upper ruled line roll 31a is controlled, and the operation of the driving device (not shown) provided for each lower ruled line roll 31b is controlled, so that the ruled line roll group is formed.
  • the pair of upper ruled line rolls 31a and lower ruled line rolls 31b constituting the same are moved side by side to the ruled line location of the next order in synchronization.
  • the number of ruled line roll groups that are not used that is, the number of ruled line roll groups that exceed the number of ruled lines, is used. Then, the position of the next-order corrugated cardboard sheet 24 is controlled to the outside in the sheet width direction W.
  • the roll movement control unit 2b When the roll movement control unit 2b receives from the production management device 200 a command to start a new order after receiving a new order preparation command (hereinafter referred to as a “new order start command”), the roll motor control unit 2b (servo motor mechanism 31e ( The operation of (see FIG. 3) is controlled to extend the movable shaft 31f (see FIG. 3) downward. As a result, as indicated by an arrow ay2, the upper ruled line roll 31a is lowered to a processing position where the cardboard sheet 24 is pressed against the lower ruled line roll 31b.
  • a new order start command a command to start a new order after receiving a new order preparation command
  • the motor output control unit 2c determines that the estimated torque (hereinafter referred to as “motor torque”) Tr of the motor M1 of the special rule unit 171 is the torque limit value Tlmt (+) on the acceleration side and the torque limit on the deceleration side (brake side).
  • the output of the motor M1 is controlled within a range not deviating from the normal torque range between the value Tlmt ( ⁇ ) and the rotational speed of the lower ruled line roll 31b is controlled.
  • the motor M1 is composed of a servo motor provided with a motor amplifier AM1, and the motor output control unit 2c sends a rotational speed command value (hereinafter referred to as “motor command rotational speed” or “command command” to the motor amplifier AM1.
  • the motor amplifier AM1 outputs a current corresponding to the rotational speed command value (hereinafter referred to as “motor current”) to the motor M1, and also the value of this motor current (hereinafter referred to as “motor current value Im”). Output to controller 2.
  • the motor output control unit 2c monitors the motor current value Im received from the motor amplifier AM1, estimates the motor torque Tr based on the motor current value Im, and reduces the motor torque Tr within a range that does not deviate from the appropriate range.
  • the rotational speed of the ruled line roll 31b is controlled.
  • the motor output control unit 2c prevents the motor torque Tr from exceeding the acceleration-side torque limit value Tlmt (+) and does not exceed the deceleration-side torque limit value Tlmt ( ⁇ ) to the deceleration side.
  • the rotational speed of the lower ruled line roll 31b is controlled.
  • the torque limit value Tlmt (+) and the torque limit value Tlmt ( ⁇ ) are not distinguished, they are expressed as the torque limit value Tlmt.
  • the motor output control unit 2c performs output reduction control when receiving the current order end command from the production management device 200. That is, the rotational speed command value output to the motor amplifier AM1 is rapidly reduced to an idling speed that is lower than that during ruled line processing.
  • the motor output control unit 2c performs output increase control. That is, the motor output control unit 2c outputs the rotational speed command value output to the motor amplifier AM1 at a speed where the peripheral speed of the lower ruled line roll 31b is slightly higher than the line speed VL (for example, the line speed VL ⁇ 103%). ) To increase rapidly.
  • the torque limit value Tlmt is set for the motor amplifier AM1.
  • the motor output control unit 2c outputs the rotational speed command value in a range where the motor torque Tr estimated from the motor current value Im does not exceed the torque limit value Tlmt, but the actual motor torque exceeds the torque limit value Tlmt.
  • the motor amplifier AM1 limits the motor current so that the actual motor torque value T does not exceed the torque limit value Tlmt regardless of the rotation speed command value from the motor output control unit 2c.
  • the torque limit value setting means 2d sets the torque limit value Tlmt for the motor amplifier AM1.
  • the torque limit value Tlmt (+) on the acceleration side is normally set to a normal limit value Tlmt (+) _ L that is equal to or less than the rated torque value T0 (+), and output increase control is performed by the motor output control unit 2c. Is being set to a high limit value Tlmt (+) _ H that is larger than the rated torque value T0 (+).
  • the torque limit value Tlmt ( ⁇ ) on the deceleration side is normally set to the torque rating value T0 ( ⁇ ) or less [equal to the torque rating value T0 ( ⁇ ) or to the deceleration side from the torque rating value T0 ( ⁇ ).
  • the lower limit is set to the normal limit value Tlmt ( ⁇ ) _ L, and while the output reduction control is being performed by the motor output control unit 2c, the higher limit value Tlmt that is larger than the rated torque value T0 ( ⁇ ) on the deceleration side.
  • Tlmt the normal limit value
  • Tlmt_L the normal limit values
  • Tlmt_H the high limit values
  • the torque rated value T0 (+) means that unless the motor torque Tr becomes higher than this torque (rated value T0 (+)), the motor M1 does not cause an overload and the motor M1 is continuously applied. This is the torque that can be driven.
  • the torque rated value T0 ( ⁇ ) means that the motor M1 is overloaded as long as the motor torque Tr does not become larger than the torque (rated value T0 ( ⁇ )) on the decelerating side (not a large brake torque). The torque is such that the motor M1 can be operated continuously.
  • the torque rating value T0 (+) and the torque rating value T0 ( ⁇ ) are not distinguished, they are expressed as the torque rating value T0.
  • the motor M1 if the motor M1 is in a short period ⁇ t, it will not cause an overload even if the torque is higher than the torque rating value T0, and the allowable torque (torque that will not cause an overload) is: The shorter the time for continuous operation at that torque, the higher the time.
  • a period during which output reduction control or output increase control is performed by the motor output control unit 2c that is, a period during which the deceleration torque increases with sudden deceleration of the motor M1 after the current order end command, and a motor after the new order preparation command
  • the period in which the acceleration torque increases with the rapid acceleration of M1) is a short period in which overload does not occur even when the torque of the motor M1 becomes higher than the torque rating value T0.
  • the torque limit value Tlmt is set to a torque limit value Tlmt_H that is larger than the torque rating value T0.
  • This torque control value Tlmt_H is set within a torque range that is allowed for a magnitude that does not cause a problem in a short period, that is, a period in which the torque is higher than the torque rated value T0.
  • the torque limit value Tlmt is set to the normal limit value Tlmt_L.
  • FIG. 5 is a time chart illustrating a case where the production order is changed in the order of normal order (order in which special ruled lines are not processed), order with special rules (order in which special ruled lines are processed), and normal order 2. .
  • normal order order in which special ruled lines are not processed
  • special rules order in which special ruled lines are processed
  • normal order 2 normal order 2.
  • the rotational speed (hereinafter referred to as “motor actual rotational speed”) N ′, the estimated value of the motor torque Tr estimated from the motor current value Im, and the torque limit value Tlmt are shown in this order from the top.
  • the motor command rotational speed N is indicated by a solid line
  • the motor actual rotational speed N ′ is indicated by a dotted line.
  • the motor torque Tr is indicated by a solid line
  • the torque limit value Tlmt is indicated by a one-dot chain line.
  • the production management apparatus 200 obtains a production order schedule (in this case, production is performed in the order of normal order 1, special ruled order, and normal order 2) as shown in FIG. 5 from the higher-level production management system. ing.
  • the production management device 200 outputs various control commands to the local controller 2 based on the production order schedule.
  • the line speed VL is controlled as shown in FIG. 5 by the controller 2 receiving a command from the production management apparatus 200 controlling the motor Md of the double facer 16 and the motors Mc1 and Mc2 of the cutoff 18 in synchronization. .
  • the line speed VL is controlled by the controller 2 to a relatively slow speed VL1 for a certain period before and after the order change from the normal order 1 to a special rule (time t2).
  • time t2 When a predetermined period set in anticipation of a period until the state is stabilized, the rotational speeds of the motors Mc1 and Mc2 are accelerated (time point t3). As a result, the line speed VL becomes a relatively high speed VL2 (time t4).
  • the line speed VL is set to a relatively slow speed VL1 again during a certain period before the order change from the special ruled order to the normal order 2 (time t7) (that is, until the production state is stabilized).
  • the rotational speed of the motors Mc1 and Mc2 is decelerated by the controller 2 (time t5).
  • the line speed VL becomes a relatively slow speed VL1 (time point t6).
  • Various commands are output from the production management device 200 to the controller 2 in accordance with the production schedule shown in FIG. Specifically, first, a new order preparation command (preparation command) is output from the production management device 200 to the controller 2 (time point t1). The new order preparation command is output prior to the order change from the normal order 1 to the special ruled order in anticipation of a predetermined period until the preparation of the special rule unit 171 is completed.
  • the controller 2 moves each ruled line roll set of the special ruled unit 171 of the waiting slitter scorer 17F to the ruled line location designated by the special ruled order.
  • the controller 2 sets the standby position among the ruled line roll sets moved to the ruled line locations.
  • the upper ruled line roll 31a is lowered all at once to a processing position for pressing the corrugated cardboard sheet 24 (special ruled line processing is started).
  • the controller 2 is in the processing position (for the slitter scorer 17F being processed) each upper ruled line roll 31a. To the standby position all at once.
  • the upper ruled line roll 31a of the slitter scorer 17F is in the standby position, and at the time t1, the lower ruled line roll 31b is in an idling state.
  • idling rotation speed Na Controlled by idling rotation speed Na.
  • the lower ruled line roll 31b has a circumferential speed slightly higher than the line speed VL1 at that time.
  • the motor command rotational speed N is increased to the rotational speed N1 (for example, the rotational speed corresponding to the peripheral speed of the line speed VL1 ⁇ 103%).
  • the upper ruled line roll 31a is lowered from the standby position to a processing position for pressing the cardboard sheet 24 against the lower ruled line roll 31b.
  • the lower ruled line roll 31b and the motor M1 are loaded. Therefore, as will be described later, the motor torque Tr is limited, and the rollers 31a and 31b are rotated at the line speed VL1 by the corrugated cardboard sheet 24 conveyed by the double facer 16 or the cutoff 18.
  • the command rotational speed N output from the controller 2 to the motor M1 is increased or decreased in accordance with the acceleration / deceleration of the line speed VL until time t7. That is, the command rotational speed N is increased to the rotational speed N2 (> N1) at the time point t4 and returned to the rotational speed N1 at the time point t6. Then, when the current order end command is output from the production management device 200 to the controller 2 at time t7 and the upper ruled line roll 31a reaches the standby position, the command rotational speed N of the lower ruled line roll 31b is set to the idling rotational speed Na.
  • Tr rated value T0 (+) ⁇ 200%).
  • the acceleration-side torque limit value Tlmt (+) is set to a high limit that is allowed only for a predetermined period ⁇ t (> t1′ ⁇ t) that is greater than the torque rating value T0 (+).
  • the torque limit value Tlmt ( ⁇ ) on the deceleration side is also smaller than the torque rated value T0 ( ⁇ ) (larger on the deceleration side) and is allowed only for a predetermined period ⁇ t (> t1′ ⁇ t).
  • the motor amplifier AM1 increases the motor current so that the motor M1 outputs the motor command rotational speed N while canceling out this load.
  • the motor torque Tr reaches the normal limit value Tlmt (+) _ L (for example, 80% of the rated torque value T0 (+)) and is limited to the normal limit value Tlmt (+) _ L, as described above.
  • the motor M1 and the lower ruled line roll 31b are rotated by the corrugated cardboard sheet 24 conveyed by the double facer 16 or the cut-off 18.
  • the period from when the current order end command is output from the production management device 200 at the time t7 until the motor command rotational speed is suddenly reduced is constant and the limit value Tlmt. Is normally set to the limit value Tlmt_L.
  • the limit value Tlmt ( ⁇ ) of the limit value on the deceleration side is also a normal limit value Tlmt (+) _ L (for example, torque rating value T0) that is smaller on the deceleration side than the torque rating value T0 ( ⁇ ) on the deceleration side. 80% of (-)). Note that while the motor command rotational speed N is set to be decelerated from time t5 to time t6, the motor torque Tr is negative and the brake is applied (here, 50% of the torque rated value T0 ( ⁇ )).
  • the period during which the motor torque Tr exceeds the rated torque value T0 ( ⁇ ) on the deceleration side (a period outside the allowable range) is small, and the motor M1 may exceed the rated torque value T0 ( ⁇ ) on the deceleration side if the period is short. Since the motor M1 does not cause an overload error, the torque limit value Tlmt ( ⁇ ) on the deceleration side is set to be larger than the torque rating value T0 ( ⁇ ) for a predetermined period ⁇ t (> t7) during the period including the time points t7 to t7 ′.
  • Tlmt ( ⁇ ) _ H T0 ( ⁇ ) ⁇ 300%).
  • the acceleration speed torque limit value Tlmt (+) is also larger than the torque rated value T0 (+) and is allowed only for a predetermined period ⁇ t (> t7′ ⁇ t7), which is a high limit value Tlmt (+).
  • the following effects can be obtained.
  • output increase control for quickly accelerating the rotational speed of the motor M1 from the idling speed to the line speed VL is performed only for a short period.
  • output reduction control for rapidly reducing the rotational speed of the motor M1 to the idling speed is performed for a short period. While the output increase control and the output decrease control are being performed, the torque Tr of the motor M1 increases toward the acceleration side or the deceleration side.
  • the torque limit value Tlmt is a high limit value Tlmt_H that exceeds the torque rating value T0.
  • the high limit value Tlmt_H is a limit value that is allowed only within a predetermined period, but since the output increase control is performed in a short period, the ruled line motor M1 is prevented from stopping due to an overload error. it can. Except for the period when the output increase control is performed by the motor output control unit 2c, the torque limit value Tlmt is set to a normal limit value Tlmt_L lower than the torque rating value T0.
  • the torque of the lower ruled line roll 31b is normally limited to the limit value Tlmt_L, but even if it is not sufficient to maintain the line speed VL, it is conveyed by the double facer 16 and the cutoff 18. Since the ruled line rolls 31a and 31b are rotated by the corrugated cardboard sheet 24, it is possible to suppress a decrease in the line speed VL.
  • the rated output is lower than when using a motor whose torque does not exceed the rated value T0 even during output increase control, or a motor capable of making the peripheral speed higher than the line speed VL during ruled line processing.
  • a small size ruled line motor can be adopted. Thereby, the space for arranging the ruled line motor and the space for maintaining the ruled line motor can be reduced as compared with the conventional scorer, and the manufacturing cost of the special ruled unit 171 can be reduced.
  • the torque limit value Tlmt for the motor amplifier AM1 is switched to one of the normal limit value Tlmt_L and the high limit value Tlmt_H, but is not limited to this mode.
  • Two limit values, the normal limit value Tlmt_L and the high limit value Tlmt_H, may be set constant for the motor amplifier AM1.
  • the torque limit value Tlmt is high within a predetermined period ⁇ t (a period in which the motor M1 does not cause an overload error if it is equal to or less than the high limit value Tlmt_H).
  • the limit value Tlmt_H functions and the period in which the motor torque Tr exceeds the normal limit value Tlmt_L exceeds the predetermined period ⁇ t
  • the normal limit value Tlmt_L functions as the torque limit value Tlmt.
  • the scorer of the present invention is applied to the special rule unit 171, but it can also be applied to the main rule unit 172.
  • the lower ruled line roll 32b of the main ruled unit 172 may be included in the ruled line roll according to the present invention. Even in the main ruler unit 172, the standby lower ruled line roll 32b is suddenly accelerated / decelerated by the motor when the order is changed.
  • the motor Md of the double facer 16 and the cutoff 18 are applied to this motor. It is possible to use a small-sized motor having a lower rated output than the motors Mc1 and Mc2 and a lower rated output than the motor of the conventional main ruler unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
  • Making Paper Articles (AREA)

Abstract

Provided are a scorer and a corrugated cardboard sheet manufacturing device with which a space for arranging a ruled line motor and a space for maintaining the ruled line motor can be reduced, and manufacturing/fabrication cost can be reduced. The scorer is provided with a ruled line motor (M1) that rotationally drives a ruled line roll (31b) and a control device (2) that performs control based on a command received from a production management device (200). The control device (2) is provided with a motor output control unit (2c) that controls a motor output which is the output of the ruled line motor (M1). The motor output control unit (2c) controls the motor output within a range in which the torque of the ruled line motor (M1) does not exceed a torque limit value set for the ruled line motor (M1). The torque limit value of the ruled line motor (M1) includes two limit values of a normal limit value less than or equal to a torque rated value, and a high limit value higher than the torque rated value and allowed to be exceeded only within a prescribed period.

Description

スコアラ及び段ボールシート製造装置Scorer and corrugated sheet manufacturing apparatus
 本発明は、段ボールシートに罫線加工を施すスコアラ及びそれを使用した段ボールシート製造装置に関する。 The present invention relates to a scorer that performs ruled line processing on a corrugated cardboard sheet, and a corrugated sheet manufacturing apparatus using the scorer.
 段ボールシート製造装置には、一般的に、段ボールシートの搬送方向(以下「シート搬送方向」と表記する)に沿って連続的に罫線加工を施すスコアラが備えられている。段ボールシートに罫線加工を施すことで、段ボールシートの折り曲げ性を良好にすることができる。
 スコアラには、段ボールシートの搬送経路(以下「シート搬送経路」と表記する)を挟んで上下一対に設けられた上罫線ロールと下罫線ロールとからなる罫線ロール組が、シート幅方向(シート搬送方向と直交する水平方向)に沿って複数設けられている。以下、上罫線ロールと下罫線ロールとを区別しない場合には「罫線ロール」と表記する。各罫線ロールは、それぞれシート搬送方向に回転する。
A corrugated board manufacturing apparatus is generally provided with a scorer that performs ruled line processing continuously along the cardboard sheet transport direction (hereinafter referred to as “sheet transport direction”). By performing ruled line processing on the corrugated cardboard sheet, it is possible to improve the bendability of the corrugated cardboard sheet.
In the scorer, a set of ruled line rolls composed of a pair of upper and lower ruled lines provided on the upper and lower sides across a cardboard sheet conveyance path (hereinafter referred to as “sheet conveyance path”) is arranged in the sheet width direction (sheet conveyance). A plurality of horizontal directions). Hereinafter, when the upper ruled line roll and the lower ruled line roll are not distinguished, they are referred to as “ruled line roll”. Each ruled line roll rotates in the sheet conveying direction.
 上罫線ロールと下罫線ロールとの内、一方の罫線ロール(例えば上罫線ロール)の円周面には周方向に連続した凸部が形成され、他方の罫線ロール(例えば下罫線ロール)の円周面には周方向に連続した凹部が形成されている。シート搬送経路を搬送される段ボールシートは、一方の罫線ロールの前記凸部により他方の罫線ロールの前記凹部に押圧されて、シート搬送方向に沿って罫線が連続的に形成される。(例えば特許文献1参照。) Of the upper ruled line roll and the lower ruled line roll, a convex portion that is continuous in the circumferential direction is formed on the circumferential surface of one ruled line roll (for example, the upper ruled line roll), and the other ruled line roll (for example, the lower ruled line roll) has a circle. Concave portions that are continuous in the circumferential direction are formed on the peripheral surface. The corrugated cardboard sheet conveyed through the sheet conveyance path is pressed against the concave part of the other ruled line roll by the convex part of one ruled line roll, and the ruled lines are continuously formed along the sheet conveying direction. (For example, refer to Patent Document 1.)
特開2006-168281号公報JP 2006-168281 A
 罫線ロール組を構成する一対の上罫線ロールと下罫線ロールとは、同期してシート幅方向に沿って移動可能に構成され、オーダに応じて各罫線ロール組の位置つまり罫線加工箇所は適宜変更される。上罫線ロールは、段ボールシートに接して罫線加工を施す加工位置と、段ボールシートから上方に離隔する待機位置との間で移動可能に構成されており、次オーダに対する前準備が行なわれる期間(以下、「待機期間」とも表記する)は、上罫線ロールを加工位置から移動させて待機位置とする。これにより、下罫線ロールと上罫線ロールとの押圧状態が解除されて、下罫線ロール及び上罫線ロールがシート幅方向へ移動可能となり、各罫線ロール組を次オーダに応じた位置へと移動させることができる。 The pair of upper ruled line rolls and lower ruled line rolls constituting the ruled line roll group is configured to be movable along the sheet width direction in synchronization, and the position of each ruled line roll group, that is, the ruled line processing position is appropriately changed according to the order. Is done. The upper ruled line roll is configured to be movable between a processing position where the ruled line processing is performed in contact with the cardboard sheet and a standby position spaced upward from the cardboard sheet, and a period during which preparations for the next order are performed (hereinafter, , Also referred to as “standby period”), the upper ruled line roll is moved from the processing position to be a standby position. Thereby, the pressing state of the lower ruled line roll and the upper ruled line roll is released, the lower ruled line roll and the upper ruled line roll can be moved in the sheet width direction, and each ruled line roll set is moved to a position corresponding to the next order. be able to.
 下罫線ロールには、下罫線ロールをシート搬送方向に回転駆動するモータ(以下「罫線モータと表記する」)が設けられている。待機期間は、罫線ロールが罫線加工を行わないので、罫線モータの回転速度をアイドリング速度まで低下させるが、次オーダの罫線加工を実際に開始する前に、今度は、モータの回転速度を、アイドリング速度から、罫線ロールの周速が段ボールシートの搬送速度、換言すれば段ボールシート製造装置のライン速度に近づくように上昇させる。
 このような罫線ロールを駆動するモータには、設置スペースやメンテナンススペースの省スペース化及び製造コスト削減を図れることから、できるだけ容量(定格出力)が小さく小型サイズのものを採用することが望まれている。
The lower ruled line roll is provided with a motor for rotating the lower ruled line roll in the sheet conveying direction (hereinafter referred to as “ruled line motor”). During the standby period, the ruled line roll does not perform ruled line processing, so the rotation speed of the ruled line motor is reduced to the idling speed, but before actually starting the next order of ruled line processing, this time the motor rotation speed is idled. From the speed, the circumferential speed of the ruled line roll is increased so as to approach the conveying speed of the corrugated board sheet, in other words, the line speed of the corrugated board manufacturing apparatus.
As a motor for driving such a ruled line roll, it is desirable to adopt a motor having a small capacity (rated output) as much as possible and a small size because it can save installation space and maintenance space and reduce manufacturing costs. Yes.
 本発明は、上記のような課題に鑑み創案されたもので、罫線モータを配置するためのスペース及び罫線モータをメンテナンスするためのスペースを小さくすることができると共に製造コストの削減を図ることができる、スコアラ及び段ボールシート製造装置を提供することを目的とする。 The present invention has been devised in view of the above-described problems, and can reduce the space for arranging the ruled line motor and the space for maintaining the ruled line motor, and can reduce the manufacturing cost. An object of the present invention is to provide a scorer and a cardboard sheet manufacturing apparatus.
 (1)上記の目的を達成するために、本発明のスコアラは、ダブルフェーサとカットオフとにより所定のライン速度で搬送される段ボールシートに対し、罫線加工を施すスコアラであって、罫線ロールと、前記罫線ロールを回転駆動する罫線モータと、前記罫線ロールを、前記段ボールシートを押圧しない待機位置、又は、前記段ボールシートを押圧して前記罫線加工を施す加工位置に移動させるロール移動機構と、生産管理装置から受信した指令に基づいて制御を行う制御装置とを備え、前記制御装置は、前記ロール移動機構の作動を制御するロール移動制御部と、前記罫線モータの出力であるモータ出力を制御するモータ出力制御部とを備え、前記モータ出力制御部は、前記罫線モータのトルクが、前記罫線モータに設定されるトルク制限値を超えない範囲で前記モータ出力を制御し、前記罫線モータのトルク制限値には、トルク定格値以下の通常制限値と、前記トルク定格値よりも高く且つ所定期間内に限って超えることを許容される高制限値との2つの制限値が設定されていることを特徴としている。 (1) In order to achieve the above object, the scorer of the present invention is a scorer that performs ruled line processing on a corrugated cardboard sheet conveyed at a predetermined line speed by a double facer and a cut-off. A ruled line motor that rotationally drives the ruled line roll, a roll moving mechanism that moves the ruled line roll to a standby position where the cardboard sheet is not pressed, or a processing position where the cardboard sheet is pressed to perform the ruled line processing, and production A control device that performs control based on a command received from the management device, and the control device controls a roll movement control unit that controls the operation of the roll movement mechanism and a motor output that is an output of the ruled line motor. A motor output control unit, wherein the motor output control unit is configured such that the torque of the ruled line motor is set to the ruled line motor. The motor output is controlled within a range that does not exceed the limit value, and the torque limit value of the ruled line motor is a normal limit value that is equal to or lower than the torque rating value and exceeds the torque rating value only within a predetermined period. This is characterized in that two limit values, ie, a high limit value that allows the
 (2)前記トルク制限値を設定するトルク制限値設定手段を備え、前記モータ出力制御部は、前記生産管理装置から現オーダ終了指令を受信したときには、前記モータ出力をアイドリング出力まで減少させる出力減少制御を行う一方、前記生産管理装置から、新オーダ開始指令よりも前に予め発信される新オーダ準備指令を受信したときには、前記罫線ロールの周速が前記ライン速度に近づくように、前記モータ出力を前記アイドリング出力から増加させる出力増加制御を行い、前記トルク制限値設定手段は、前記トルク制限値を、前記出力増加制御が行われている間は、前記高制限値に設定することが好ましい。 (2) A torque limit value setting means for setting the torque limit value is provided, and the motor output control unit reduces the motor output to an idling output when receiving a current order end command from the production management device. On the other hand, when receiving a new order preparation command sent in advance before the new order start command from the production management device, the motor output is set so that the peripheral speed of the ruled line roll approaches the line speed. The torque limit value setting means preferably sets the torque limit value to the high limit value while the output increase control is being performed.
 (3)前記ロール移動制御部は、前記生産管理装置から前記新オーダ開始指令を受信したときには、前記罫線ロールを前記待機位置から前記加工位置に移動させ、前記トルク制限値は、前記罫線ロールが前記加工位置にある間は、前記通常制限値に設定されることが好ましい。 (3) When the roll movement control unit receives the new order start command from the production management device, the roll movement control unit moves the ruled line roll from the standby position to the processing position, and the torque limit value is determined by the ruled line roll. While in the processing position, it is preferable to set the normal limit value.
 (4)前記罫線モータは、前記ダブルフェーサに備えられたダブルフェーサ用モータよりも、定格出力の低いモータであることが好ましい。 (4) It is preferable that the ruled line motor is a motor having a lower rated output than a motor for a double facer provided in the double facer.
 (5)罫線モータは、前記カットオフに備えられたカットオフ用モータよりも、定格出力の低いモータであることが好ましい。 (5) The ruled line motor is preferably a motor having a lower rated output than the cut-off motor provided for the cut-off.
 (6)前記段ボールシートに主罫線を加工する主罫線ロールを備え、前記罫線ロールには、前記主罫線ロールが含まれていることが好ましい。 (6) It is preferable that the cardboard sheet is provided with a main ruled line roll for processing a main ruled line, and the ruled line roll includes the main ruled line roll.
 (7)前記段ボールシートに主罫線を加工する主罫線ロールと、前記段ボールシートに特殊罫線を加工する特殊罫線ロールとを備え、前記罫線ロールには、前記特殊罫線ロールが含まれていることが好ましい。 (7) A main ruled line roll that processes a main ruled line on the cardboard sheet and a special ruled line roll that processes a special ruled line on the cardboard sheet, and the ruled line roll includes the special ruled line roll. preferable.
 (8)前記特殊罫線ロールは、前記段ボールシートの搬送方向で、主罫線ロールの上流側に配設されることが好ましい。 (8) It is preferable that the special ruled line roll is disposed on the upstream side of the main ruled line roll in the conveyance direction of the cardboard sheet.
 (9)前記特殊罫線ロールの前記罫線モータは、前記主罫線ロールを回転駆動するモータよりも、定格出力の低いモータであることが好ましい。 (9) It is preferable that the ruled line motor of the special ruled line roll is a motor having a lower rated output than a motor that rotationally drives the main ruled line roll.
 (10)上記の目的を達成するために、本発明の段ボールシート製造装置は、(1)~(9)の何れかのスコアラと、ダブルフェーサと、カットオフとを備えたことを特徴としている。 (10) In order to achieve the above object, the corrugated board sheet manufacturing apparatus of the present invention is characterized by including any of the scorers (1) to (9), a double facer, and a cutoff.
 本発明によれば、罫線モータのトルク制限値として、トルク定格値以下の通常制限値と、トルク定格値よりも高く且つ所定期間内に限って超えることを許容される高制限値との2つの制限値を有しているので、短期間の急加減速に対応することが可能となる。
 また、罫線モータ自体でライン速度相当のトルクを出力することができない場合でも、ダブルフェーサとカットオフとにより搬送される段ボールシートによって罫線ロールが連れ回されるようになるため、ライン速度の低下を抑制することができる。
 したがって、短期間の急加減速中においてもトルクがトルク定格値を超えないモータを採用する場合に比べて、定格出力が低くサイズの小さな罫線モータを採用することができる。これにより、従来のスコアラよりも、罫線モータを配置するためのスペース及び罫線モータをメンテナンスするためのスペースを小さくすることができると共に製作コストを低減することができる。
According to the present invention, as the torque limit value of the ruled line motor, the normal limit value equal to or lower than the torque rating value and the high limit value higher than the torque rating value and allowed to exceed only within a predetermined period are provided. Since it has a limit value, it is possible to cope with rapid acceleration / deceleration for a short period of time.
In addition, even if the ruled line motor itself cannot output the torque equivalent to the line speed, the ruled line roll is driven by the corrugated sheet conveyed by the double facer and the cut-off, thereby suppressing the decrease in the line speed. can do.
Accordingly, it is possible to employ a ruled line motor having a small rated output and a small size as compared with a case where a motor whose torque does not exceed the rated torque value even during a short period of rapid acceleration / deceleration. Thereby, the space for arranging the ruled line motor and the space for maintaining the ruled line motor can be made smaller than the conventional scorer, and the manufacturing cost can be reduced.
図1は、本発明の一実施形態の段ボールシート製造システムの全体構成を示す模式図である。FIG. 1 is a schematic diagram showing the overall configuration of a corrugated board manufacturing system according to an embodiment of the present invention. 図2A,図2B及び図2Cは、本発明の一実施形態のスリッタスコアラの構成を示す模式図であり、図2Aはスリッタスコアラの側面図、図2Bは罫線ロールに使用される凹状ロールの縦断面図、図2Cは罫線ロールに使用される凸状ロールの縦断面図、である。2A, 2B, and 2C are schematic views showing the configuration of the slitter scorer according to an embodiment of the present invention. FIG. 2A is a side view of the slitter scorer, and FIG. 2B is a longitudinal section of a concave roll used for a ruled line roll. FIG. 2C is a longitudinal sectional view of a convex roll used for a ruled line roll. 図3は、本発明の一実施形態の特罫ユニット及び主罫ユニットの構成を示す側面図である。FIG. 3 is a side view showing a configuration of the special rule unit and the main rule unit according to the embodiment of the present invention. 図4は、本発明の一実施形態の段ボールシート製造装置の制御構成を示す模式図であり、段ボールシート製造装置の要部斜視図と共に制御ブロックを併せて示す図である。FIG. 4 is a schematic diagram showing a control configuration of the corrugated board manufacturing apparatus according to an embodiment of the present invention, and is a diagram showing a control block together with a perspective view of a main part of the corrugated board manufacturing apparatus. 図5は、生産オーダが、通常オーダ,特罫有りオーダ及び通常オーダの順に変更される場合を例示するタイムチャートである。FIG. 5 is a time chart illustrating a case where the production order is changed in the order of normal order, special ruled order, and normal order.
 以下、図面を参照して、本発明の各実施の形態について説明する。
 以下の説明では、段ボールシート製造装置で扱う裏ライナ,中芯,表ライナ,片段シート及び段ボールシートなどの各種シート材が搬送される方向を、シート搬送方向Aと表記する。また、シート搬送方向Aと直交する方向をシート幅方向Wと表記する。
 また、特段の説明がなく上流と記載した場合は、シート搬送方向Aにおける上流を意味するものとし、同様に、特段の説明がなく下流と記載した場合は、シート搬送方向Aにおける下流を意味するものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following description, a direction in which various sheet materials such as a back liner, a core, a front liner, a single-stage sheet, and a cardboard sheet handled in the corrugated board manufacturing apparatus are referred to as a sheet conveyance direction A. A direction orthogonal to the sheet conveying direction A is referred to as a sheet width direction W.
Further, when there is no special explanation and it is described as upstream, it means upstream in the sheet conveyance direction A, and similarly, when there is no special explanation and it is described as downstream, it means downstream in the sheet conveyance direction A. Shall.
 以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。 The embodiment described below is merely an example, and there is no intention of excluding various modifications and application of technology that are not explicitly described in the following embodiment. Each configuration of the following embodiments can be implemented with various modifications without departing from the spirit thereof, and can be selected as necessary or can be appropriately combined.
 [1.段ボールシート製造システムの全体構成]
 図1は本発明の第1実施形態に係る段ボールシート製造システムの全体構成を示す模式図である。
 本実施形態に係る段ボールシート製造システムは、段ボールシート製造装置100と段ボールシート製造装置100を制御する生産管理装置200とにより構成されている。
[1. Overall configuration of corrugated sheet manufacturing system]
FIG. 1 is a schematic diagram showing an overall configuration of a corrugated board manufacturing system according to a first embodiment of the present invention.
The corrugated sheet manufacturing system according to this embodiment includes a corrugated sheet manufacturing apparatus 100 and a production management apparatus 200 that controls the corrugated sheet manufacturing apparatus 100.
 段ボールシート製造装置100は、主な構成装置として、裏ライナ20を加熱する裏ライナプレヒータ10、中芯21を加熱する中芯プレヒータ12、中芯プレヒータ12で加熱された中芯21を段繰りして糊付けし、裏ライナプレヒータ10で加熱された裏ライナ20を貼り合わせるシングルフェーサ11、シングルフェーサ11により形成された片段シート22(片面段ボールシート)を加熱する片段シートプレヒータ13、表ライナ23を加熱する表ライナプレヒータ14、片段シートプレヒータ13により加熱された片段シート22に糊付けするグルーマシン15、グルーマシン15により糊付けされた片段シート22に表ライナプレヒータ14により加熱された表ライナ23を貼り合わせて段ボールシート(両面段ボールシート)24を作成するダブルフェーサ16、ダブルフェーサ16で作成された段ボールシート24に縦断裁つまりシート搬送方向Aに沿った断裁や罫線加工を行うスリッタスコアラ17、スリッタスコアラ17で縦断裁や罫線加工を行われた段ボールシート24を横断裁つまりシート幅方向Wに沿った断裁を行って板状とするカットオフ18、及び板状とされた段ボールシート24を完成順にスタックするスタッカ19を備えている。 The corrugated board manufacturing apparatus 100, as main components, rolls the back liner preheater 10 for heating the back liner 20, the core preheater 12 for heating the core 21 and the core 21 heated by the core preheater 12. The single facer 11 to which the back liner 20 heated by the back liner preheater 10 is bonded, the single-stage sheet preheater 13 for heating the single-stage sheet 22 (single-sided cardboard sheet) formed by the single facer 11, and the front liner 23 The front liner preheater 14 for heating the sheet, the glue machine 15 for gluing to the single stage sheet 22 heated by the single stage sheet preheater 13, and the front liner 23 heated by the front liner preheater 14 are attached to the single stage sheet 22 glued by the glue machine 15. Corrugated cardboard sheets (double-sided cardboard sheets 24, the slitter scorer 17 which performs vertical cutting, that is, cutting along the sheet conveying direction A and ruled line processing, and the slitter scorer 17 were subjected to vertical cutting and ruled line processing. A cut-off 18 that cuts the corrugated cardboard sheet 24 into a plate by cutting it along the sheet width direction W, and a stacker 19 that stacks the corrugated cardboard sheets 24 in the order of completion are provided.
 ダブルフェーサ16では、片段シート22及び表ライナ23の搬送経路を上下から挟むようにして熱板とループ状の加圧ベルトとが配置されている。加圧ベルトは、モータMdによって回転駆動され、加圧ベルトと熱板との間で、上下に重なりあった状態の片段シート22と表ライナ23とを熱板に向けて加圧しながら、片段シート22及び表ライナ23を搬送する。片段シート22及び表ライナ23は、加圧されながら熱板によって加熱されることで、互いに貼り合わされて段ボールシート24となる。 In the double facer 16, a hot plate and a loop-shaped pressure belt are arranged so as to sandwich the conveyance path of the single-stage sheet 22 and the front liner 23 from above and below. The pressure belt is rotationally driven by a motor Md, and presses the one-stage sheet 22 and the front liner 23 that are vertically overlapped between the pressure belt and the heat plate toward the heat plate, and then the one-step sheet. 22 and the front liner 23 are conveyed. The single-stage sheet 22 and the front liner 23 are heated by a hot plate while being pressed, so that the single-stage sheet 22 and the front liner 23 are bonded together to form a cardboard sheet 24.
 カットオフ18では、段ボールシート24の搬送経路を上下から挟むようにして上ナイフシリンダと下ナイフシリンダとが一対に配置されている。
 上ナイフシリンダと下ナイフシリンダとは、それぞれ、モータMc1,Mc2によって段ボールシート24の搬送速度(以下「ライン速度」とも表記する)VLと略同じ周速で回転駆動されており、上流側の搬送コンベアにより上ナイフシリンダと下ナイフシリンダと間に送り込まれた段ボールシート24は、上ナイフシリンダ周面に固定されたナイフと、下ナイフシリンダの周面に固定されたナイフとで挟みつけられて横断裁される。横断裁され板状となった段ボールシート24は、下流側の搬送コンベアによってスタッカ19へと搬送される。上ナイフシリンダと下ナイフシリンダとの回転は、段ボールシート24を横断裁するだけでなく段ボールシート24を搬送する機能も担っている。
In the cut-off 18, a pair of an upper knife cylinder and a lower knife cylinder are disposed so as to sandwich the conveyance path of the cardboard sheet 24 from above and below.
The upper knife cylinder and the lower knife cylinder are rotationally driven by motors Mc 1 and Mc 2 at substantially the same peripheral speed as the conveying speed (hereinafter also referred to as “line speed”) VL of the cardboard sheet 24, respectively. The cardboard sheet 24 fed between the upper knife cylinder and the lower knife cylinder by the conveyor is sandwiched between the knife fixed to the upper knife cylinder peripheral surface and the knife fixed to the lower knife cylinder peripheral surface, and then traversed. Will be judged. The corrugated cardboard sheet 24 that has been cut into a plate shape is transported to the stacker 19 by a transport conveyor on the downstream side. The rotation of the upper knife cylinder and the lower knife cylinder has a function of conveying the cardboard sheet 24 as well as traversing the cardboard sheet 24.
 [2.スリッタスコアラの構成]
 以下、スリッタスコアラ17について、図2A,図2B及び図2Cを参照して説明する。
 スリッタスコアラ17は、シート搬送方向Aに沿って配置された第1スリッタスコアラユニット(以下「第1ユニット」又は「スリッタスコアラユニット」とも表記する)170Fと、第2スリッタスコアラユニット(以下「第2ユニット」又は「スリッタスコアラユニット」とも表記する)170Sとから構成されている。
[2. Structure of slitter scorer]
Hereinafter, the slitter scorer 17 will be described with reference to FIGS. 2A, 2B, and 2C.
The slitter scorer 17 includes a first slitter scorer unit (hereinafter also referred to as “first unit” or “slitter scorer unit”) 170F arranged along the sheet conveying direction A, and a second slitter scorer unit (hereinafter referred to as “second”). 170S ”(also referred to as“ unit ”or“ slitter scorer unit ”).
 第1ユニット170Fと第2ユニット170Sとは、一方が稼動中(以下「加工中」とも表記する)に、他方は待機中とされるようになっている。図2Aは、第1ユニット170Fが待機中であり、第2ユニット170Sが稼働中の状態を示している。稼動中のユニット(図2Aでは第2ユニット170S)では、段ボールシート24に対して縦断裁や罫線加工を行うための後述の各種ロール31a,31b,32a,32b,33a,33bが段ボールシート24を押圧した状態とされ、待機中のユニット(図2Aでは第1ユニット170F)では、段ボールシート24の搬送経路(以下「シート搬送経路」と表記する)L1よりも上に配置された各種ロール31a,32a及びシート搬送経路L1よりも下方に配置されたロール33bが、段ボールシート24から離隔した状態とされ、各種ロール31a,31b,32a,32b,33a,33bが段ボールシート24を押圧しない(加工を行わない)状態とされる。待機中のユニット(図2Aでは第1ユニット170F)は、生産オーダの変更のための設定変え(各種ロール31a,31b,32a,32b,33a,33bの位置変更)などの準備作業を行なう。
 以下、第1ユニット170Fと第2ユニット170Fとを区別しない場合には、スリッタスコアラユニット170又はユニット170と表記する。また、生産オーダをオーダとも表記し、生産オーダの変更をオーダチェンジとも表記する。
One of the first unit 170F and the second unit 170S is in operation (hereinafter also referred to as “processing”), and the other is on standby. FIG. 2A shows a state where the first unit 170F is on standby and the second unit 170S is in operation. In the unit in operation (second unit 170S in FIG. 2A), various rolls 31a, 31b, 32a, 32b, 33a, and 33b, which will be described later, perform vertical cutting and ruled line processing on the cardboard sheet 24. In the unit that has been pressed and is in a standby state (first unit 170F in FIG. 2A), various rolls 31a disposed above the conveyance path (hereinafter referred to as “sheet conveyance path”) L1 of the cardboard sheet 24, 32a and the roll 33b arranged below the sheet conveying path L1 are separated from the cardboard sheet 24, and the various rolls 31a, 31b, 32a, 32b, 33a, 33b do not press the cardboard sheet 24 (processing is performed). (Do not do) state. The standby unit (first unit 170F in FIG. 2A) performs preparatory work such as setting change for changing the production order (position change of various rolls 31a, 31b, 32a, 32b, 33a, 33b).
Hereinafter, when the first unit 170F and the second unit 170F are not distinguished from each other, they are referred to as a slitter scorer unit 170 or a unit 170. The production order is also expressed as an order, and the change of the production order is also expressed as an order change.
 各スリッタスコアラユニット170は、特殊罫線ユニット(スコアラ、以下「特罫ユニット」とも表記する)171,主罫線ユニット(以下「主罫ユニット」とも表記する)172,スリッタユニット173を上流からこの順に並べて構成される。 Each slitter scorer unit 170 includes a special ruled line unit (scorer, also referred to as “special ruled unit” hereinafter) 171, a main ruled line unit (hereinafter also referred to as “main ruled unit”) 172, and a slitter unit 173 arranged in this order from the upstream side. Composed.
 特罫ユニット171には、段ボールシート24のシート搬送経路L1を挟んで対向配置され、シート搬送経路L1の上側に配置される上罫線ロール31aと、シート搬送経路L1の下側に配置される下罫線ロール31bとが備えられている。上罫線ロール31aは、図2Bに示すように、円周面30aの略中央部に、周方向に連続した凹部30bが形成された凹状ロール30Aであり、下罫線ロール31bは、図2Cに示すように、円周面30aの略中央部に、周方向に連続した凸部30cが形成された凸状ロール30Bである。上罫線ロール31aと下罫線ロール31bとは上下一対となって罫線ロール組を構成している。
 罫線ロール組は、シート幅方向Wに沿って複数組並設されている。換言すれば、上罫線ロール31aはシート幅方向Wに沿って複数並設され、下罫線ロール31bはシート幅方向Wに沿って複数並設されている。
The special rule unit 171 is opposed to the sheet conveyance path L1 across the sheet conveyance path L1, and the upper ruled line roll 31a is arranged on the upper side of the sheet conveyance path L1, and the lower is arranged on the lower side of the sheet conveyance path L1. A ruled line roll 31b is provided. As shown in FIG. 2B, the upper ruled line roll 31a is a concave roll 30A in which a concave part 30b continuous in the circumferential direction is formed at a substantially central part of the circumferential surface 30a, and the lower ruled line roll 31b is shown in FIG. 2C. Thus, it is the convex roll 30B by which the convex part 30c continued in the circumferential direction was formed in the approximate center part of the circumferential surface 30a. The upper ruled line roll 31a and the lower ruled line roll 31b are paired up and down to constitute a ruled line roll set.
A plurality of ruled line roll sets are arranged in parallel along the sheet width direction W. In other words, a plurality of upper ruled line rolls 31 a are arranged in parallel along the sheet width direction W, and a plurality of lower ruled line rolls 31 b are arranged in parallel along the sheet width direction W.
 図2A,図2B,図2C,図3及び図4に示すように、複数の上罫線ロール31aは共通の駆動軸131a(図4では省略)に固定され、特殊罫線の加工中は、搬送される段ボールシート24に従動して一斉に回転する。複数の下罫線ロール31bは共通の駆動軸131bに固定され、後述するようにこの駆動軸131bに連結された共通の罫線モータ(以下「モータ」とも表記する)M1によって一斉に回転駆動される。この罫線モータM1は、ダブルフェーサ16のモータMd,カットオフ18のモータMc1,Mc2及び主罫ユニット172のモータM2の何れよりも定格出力が低く、小型サイズのモータである。
 また、各罫線ロール組は、それぞれ、生産オーダ毎に設定された特殊罫線箇所(段ボールシート24に対して特殊罫線が入れられる箇所)に応じてシート幅方向Wに移動可能に構成されている。
As shown in FIGS. 2A, 2B, 2C, 3 and 4, the plurality of upper ruled line rolls 31a are fixed to a common drive shaft 131a (not shown in FIG. 4) and are conveyed during the processing of special ruled lines. The cardboard sheet 24 is rotated simultaneously. The plurality of lower ruled line rolls 31b are fixed to a common drive shaft 131b and are rotationally driven all at once by a common ruled line motor (hereinafter also referred to as “motor”) M1 connected to the drive shaft 131b as will be described later. The ruled line motor M1 has a smaller rated output than the motor Md of the double facer 16, the motors Mc1 and Mc2 of the cutoff 18 and the motor M2 of the main ruled unit 172, and is a small size motor.
Further, each ruled line roll set is configured to be movable in the sheet width direction W in accordance with a special ruled line location set for each production order (a location where a special ruled line is inserted into the cardboard sheet 24).
 各主罫ユニット172は、シート搬送経路L1を挟んで対向配置され、シート搬送経路L1の上側に配置される上罫線ロール32aと、シート搬送経路L1の下側に配置される下罫線ロール32bとが備えられている。特罫ユニット171の上罫線ロール31a及び下罫線ロール31bとは逆に、主罫ユニット172では、上罫線ロール32aは、図2Bに示す凸状ロール30Bであり、下罫線ロール32bは、図2Bに示す凹状ロール30Aである。上罫線ロール32aと下罫線ロール32bとは上下一対となって罫線ロール組を構成し、罫線ロール組は、シート搬送方向Aに沿って2段に配置されている。 Each of the main ruled units 172 is opposed to the sheet conveying path L1, and has an upper ruled line roll 32a arranged on the upper side of the sheet conveying path L1, and a lower ruled line roll 32b arranged on the lower side of the sheet conveying path L1. Is provided. Contrary to the upper ruled line roll 31a and the lower ruled line roll 31b of the special ruled unit 171, in the main ruled unit 172, the upper ruled line roll 32a is a convex roll 30B shown in FIG. 2B, and the lower ruled line roll 32b is shown in FIG. 2B. The concave roll 30A shown in FIG. The upper ruled line roll 32a and the lower ruled line roll 32b are paired up and down to form a ruled line roll set, and the ruled line roll set is arranged in two stages along the sheet conveying direction A.
 各段において、罫線ロール組はシート幅方向Wに沿って複数組並設されている。換言すれば、各段毎に、上罫線ロール32aはシート幅方向に沿って複数並設され、下罫線ロール32bはシート幅方向Wに沿って複数並設されている。各段毎に、複数の上罫線ロール32aは共通の回転軸132aに固定され、主罫線の加工中は、搬送される段ボールシート24に従動して一斉に回転する。各段毎に、複数の下罫線ロール32bは共通の駆動軸132bに固定されると共に後述するようにこの駆動軸132bに連結された共通のモータM2によって一斉に回転駆動される。
 また、各罫線ロール組は、それぞれ、生産オーダ毎に設定された主罫線箇所(段ボールシート24に対して主罫線が入れられる箇所)に応じてシート幅方向Wに移動可能に構成されている。
In each stage, a plurality of ruled line roll sets are arranged in parallel along the sheet width direction W. In other words, a plurality of upper ruled line rolls 32 a are arranged in parallel along the sheet width direction and a plurality of lower ruled line rolls 32 b are arranged in parallel along the sheet width direction W for each stage. For each stage, a plurality of upper ruled line rolls 32a are fixed to a common rotating shaft 132a, and during the processing of the main ruled lines, they are rotated simultaneously by being driven by the conveyed cardboard sheet 24. For each stage, the plurality of lower ruled line rolls 32b are fixed to a common drive shaft 132b and simultaneously rotated by a common motor M2 connected to the drive shaft 132b as will be described later.
Each ruled line roll set is configured to be movable in the sheet width direction W in accordance with a main ruled line location set for each production order (a location where the main ruled line is inserted into the cardboard sheet 24).
 主罫ユニット172では、加工中、段ボールシート24は、各罫線ロール組において、上罫線ロール32aの凸部30cによって下罫線ロール32bの凹部30bに押し込まれる。これによって、段ボールシート24の上面に、各罫線ロール組によりそれぞれシート搬送方向Aに沿って主罫線が連続的に形成される。主罫線は、段ボールシート24を箱状に組み立てる際に段ボールシート24を折り曲げ易いようにするためのものである。この主罫ユニット172では、上述のように罫線ロール組をシート搬送方向Aに沿って2段に配置することで、段ボールシート24に加工できる主罫線の本数を増やしている。 In the main ruler unit 172, during processing, the corrugated cardboard sheet 24 is pushed into the recess 30b of the lower ruled line roll 32b by the convex part 30c of the upper ruled line roll 32a in each set of ruled line rolls. Accordingly, main ruled lines are continuously formed on the upper surface of the corrugated cardboard sheet 24 along the sheet conveying direction A by the respective ruled line roll groups. The main ruled line is for making it easy to bend the cardboard sheet 24 when assembling the cardboard sheet 24 into a box shape. In the main ruler unit 172, the number of main ruled lines that can be processed into the corrugated cardboard sheet 24 is increased by arranging the ruled line roll sets in two stages along the sheet conveying direction A as described above.
 特罫ユニット171では、加工中、段ボールシート24は、各罫線ロール組において、下罫線ロール31bの凸部30cによって上罫線ロール31aの凹部30bに押し込まれる。これによって、段ボールシート24の下面に、各罫線ロール組によりそれぞれシート搬送方向Aに沿って特殊罫線が連続的に形成される。特殊罫線は、主罫線に対して補助的な罫線であり、この場合は、主罫線とは反対側の面に形成される。
 なお、図2Aでは、便宜上、第2ユニット170Sにおいて、罫線ロール31b,32aの凸部30cが、罫線ロール31a,32bの凹部30bに押し込まれていないように示している。
In the special rule unit 171, during processing, the corrugated sheet 24 is pushed into the recess 30 b of the upper ruled line roll 31 a by the convex part 30 c of the lower ruled line roll 31 b in each set of ruled line rolls. Thus, special ruled lines are continuously formed on the lower surface of the corrugated cardboard sheet 24 along the sheet conveying direction A by the respective ruled line roll groups. The special ruled line is an auxiliary ruled line with respect to the main ruled line. In this case, the special ruled line is formed on the surface opposite to the main ruled line.
In FIG. 2A, for convenience, in the second unit 170S, the convex portions 30c of the ruled line rolls 31b and 32a are shown not to be pushed into the concave portions 30b of the ruled line rolls 31a and 32b.
 スリッタユニット173は、シート搬送経路L1を挟んで対向配置され、シート搬送経路L1の上側に配置される押さえロール33aと、シート搬送経路L1の下側に配置されるスリッタナイフ33bとが備えられている。スリッタナイフ33bは、薄い円板状の回転式ナイフである。押さえロール33aとスリッタナイフ33bとは上下一対となって、シート幅方向Wに沿って複数組並設されており、それぞれ、設定されたスリットの位置に応じてシート幅方向Wに移動可能に構成されている。
 スリッタユニット173では、対となる押さえロール33aとスリッタナイフ33bとで段ボールシート24を挟みつけることで、段ボールシート24をシート搬送方向Aに沿って連続的に縦断裁する。
The slitter unit 173 is disposed so as to face the sheet conveying path L1, and includes a pressing roll 33a disposed on the upper side of the sheet conveying path L1 and a slitter knife 33b disposed on the lower side of the sheet conveying path L1. Yes. The slitter knife 33b is a thin disk-shaped rotary knife. The pressing roll 33a and the slitter knife 33b are paired up and down, and a plurality of sets are arranged in parallel along the sheet width direction W. Each of the pressing rolls 33a and the slitter knife 33b is configured to be movable in the sheet width direction W according to the set slit position. Has been.
In the slitter unit 173, the corrugated cardboard sheet 24 is continuously cut along the sheet conveying direction A by sandwiching the corrugated cardboard sheet 24 between the pair of pressing rolls 33a and the slitter knife 33b.
 図3を参照して、特罫ユニット171及び主罫ユニット172についてさらに説明する。
 特罫ユニット171には、シート搬送経路L1を挟んで、上罫線ユニット31Aと下罫線ユニット31Bとが備えられている。
 上罫線ユニット31Aには、上支持部材31cと、上移動部材31dと、上罫線ロール31aとが備えられている。
The special rule unit 171 and the main rule unit 172 will be further described with reference to FIG.
The special rule unit 171 includes an upper ruled line unit 31A and a lower ruled line unit 31B with the sheet conveying path L1 interposed therebetween.
The upper ruled line unit 31A includes an upper support member 31c, an upper moving member 31d, and an upper ruled line roll 31a.
 上支持部材31cは、中空の直方体形状をし、シート幅方向Wに延在して配置されている。
 上支持部材31cの下流側側面の上部および下部には、シート幅方向Wに略水平に延在する案内レール31gがそれぞれ取付けられている。上移動部材31dは、上罫線ロール31a毎に設けられており、その下部で上罫線ロール31aを回転自在に支持している。
 複数の上移動部材31dは、それぞれ前記の上下一対の案内レール31g,31gに沿って移動可能に支持されると共に図示しない駆動装置を有しており、個別にシート幅方向Wに移動して、特殊罫線箇所に対応した位置まで移動できるようになっている。
 上支持部材31cのシート幅方向W両端は、一対の装置フレーム(図示略)に上下方向に延在して取付けられたガイドレール(図示略)にそれぞれ係合され、上支持部材31cは上下方向(段ボールシート24に対して接近・離間する方向)に移動可能となっている。
 また、装置フレームには、サーボモータ機構(ロール移動機構)31eが取付けられている。サーボモータ機構31eの下部には、可動軸31fが上下方向に進退可能に設けられている。可動軸31fの下端部は、上支持部材31cの上面両端部に固定されており、サーボモータ機構31eを駆動して可動軸31fを進退させることによって上支持部材31cを上下動させ、上罫線ロール31aを、罫線加工を行わない待機位置と、罫線加工を行う加工位置との間で略上下方向に移動させるように構成されている。
The upper support member 31 c has a hollow rectangular parallelepiped shape, and is arranged extending in the sheet width direction W.
Guide rails 31g extending substantially horizontally in the seat width direction W are respectively attached to the upper and lower portions of the downstream side surface of the upper support member 31c. The upper moving member 31d is provided for each upper ruled line roll 31a, and supports the upper ruled line roll 31a rotatably at the lower part thereof.
The plurality of upper moving members 31d are supported so as to be movable along the pair of upper and lower guide rails 31g and 31g, respectively, and have a driving device (not shown), individually moved in the sheet width direction W, It can be moved to a position corresponding to the special ruled line location.
Both ends in the sheet width direction W of the upper support member 31c are respectively engaged with guide rails (not shown) that are attached to a pair of apparatus frames (not shown) so as to extend in the vertical direction. It is movable in the direction of approaching / separating from the cardboard sheet 24.
A servo motor mechanism (roll moving mechanism) 31e is attached to the apparatus frame. A movable shaft 31f is provided below the servo motor mechanism 31e so as to advance and retract in the vertical direction. The lower end portion of the movable shaft 31f is fixed to both end portions of the upper surface of the upper support member 31c, and the upper support member 31c is moved up and down by driving the servo motor mechanism 31e to move the movable shaft 31f forward and backward. 31 a is configured to move substantially vertically between a standby position where no ruled line processing is performed and a processing position where ruled line processing is performed.
 下罫線ユニット31Bには、下支持部材31hと、下移動部材31jと、下罫線ロール31bとが備えられている。
 下支持部材31hは、中空の直方体形状をし、シート幅方向Wに延在して配置され、両端部は前記一対の装置フレームに固定されている。
 下支持部材31hの下流側側面の上部および下部には、それぞれ幅方向に略水平に延在する案内レール31k,31kが取付けられている。
 下移動部材31jは、下罫線ロール31b毎に設けられており、その上部で下罫線ロール31bを回転自在に支持している。複数の下移動部材31jは、それぞれ案内レール31kに沿って移動可能に支持されると共に図示しない駆動装置を有しており、個別にシート幅方向Wに移動して、罫線加工に対応した位置まで移動できるようになっている。
The lower ruled line unit 31B includes a lower support member 31h, a lower moving member 31j, and a lower ruled line roll 31b.
The lower support member 31h has a hollow rectangular parallelepiped shape and is disposed so as to extend in the seat width direction W, and both end portions are fixed to the pair of device frames.
Guide rails 31k and 31k extending substantially horizontally in the width direction are respectively attached to the upper and lower portions of the downstream side surface of the lower support member 31h.
The lower moving member 31j is provided for each lower ruled line roll 31b, and the lower ruled line roll 31b is rotatably supported at the upper part thereof. Each of the plurality of lower moving members 31j is supported so as to be movable along the guide rails 31k and has a driving device (not shown), and individually moves in the sheet width direction W to a position corresponding to the ruled line processing. It can be moved.
 主罫ユニット172には、シート搬送経路L1を挟んで一対に設けられた上罫線ユニット32Aと下罫線ユニット32Bとが、シート搬送経路L1に沿って二段設けられている。上罫線ユニット32Aは、特罫ユニット171に設けられた上罫線ユニット31Aに対し、上罫線ロール31a(凹状ロール30A)を上罫線ロール32a(凸状ロール30B)に置き換えただけでその他の構成は同じなので説明を省略する。同様に、下罫線ユニット32Bは、特罫ユニット171に設けられた下罫線ユニット31Bに対し、下罫線ロール31b(凸状ロール30B)を下罫線ロール32b(凹状ロール30A)に置き換えただけでその他の構成は同じなので説明を省略する。 The main ruler unit 172 is provided with a pair of upper ruled line units 32A and lower ruled line units 32B provided in a pair along the sheet conveyance path L1 with the sheet conveyance path L1 interposed therebetween. The upper ruled line unit 32A differs from the upper ruled line unit 31A provided in the special ruled unit 171 only by replacing the upper ruled line roll 31a (concave roll 30A) with the upper ruled line roll 32a (convex roll 30B). The description is omitted because it is the same. Similarly, the lower ruled line unit 32B is different from the lower ruled line unit 31B provided in the special ruled unit 171 only by replacing the lower ruled line roll 31b (convex roll 30B) with the lower ruled line roll 32b (concave roll 30A). Since the configuration of is the same, the description thereof is omitted.
 [3.制御構成] [3. Control configuration]
 以下、コントローラ2の制御構成について図4を参照して説明する。
 段ボールシート製造装置100には、上位の生産管理システムからオーダ情報(生産スケジュールや、製作シート数や、段ボールシート24のシート幅寸法や、罫線を入れる箇所など)を取得して、段ボールシート製造装置100の全体を制御する生産管理装置200と、生産管理装置200から出力指令やオーダ情報を取得し、この出力指令やオーダ情報に基づいて、スリッタスコアラ17の作動や、ダブルフェーサ16の作動や、カットオフ18の作動を制御するローカルのコントローラ(制御装置)2を備えている。
Hereinafter, the control configuration of the controller 2 will be described with reference to FIG.
The corrugated board manufacturing apparatus 100 obtains order information (production schedule, number of manufactured sheets, sheet width dimensions of the corrugated board 24, locations for ruled lines, etc.) from a higher-level production management system, and the corrugated board manufacturing apparatus 100 The production management device 200 that controls the entire system 100, and the output command and order information are acquired from the production management device 200. Based on the output command and order information, the operation of the slitter scorer 17, the operation of the double facer 16, and the cut A local controller (control device) 2 for controlling the operation of the off 18 is provided.
 コントローラ2は、少なくとも、ライン速度制御部2aと、ロール移動制御部2bと、モータ出力制御部2cと、トルク制限値設定手段2dとを備えている。 The controller 2 includes at least a line speed control unit 2a, a roll movement control unit 2b, a motor output control unit 2c, and a torque limit value setting unit 2d.
 ライン速度制御部2aは、ダブルフェーサ16の駆動ローラ16aを駆動するモータMdの回転速度と、カットオフ18のナイフシリンダ18A,18Bを駆動する各モータMc1,Mc2の各回転速度を制御する。駆動ローラ16aは、ダブルフェーサ16の加圧ベルト(図示略)に卷回され、この加圧ベルトを駆動する。
 ダブルフェーサ16の加圧ベルト及びナイフシリンダ18A,18Bは段ボールシート24の搬送手段を兼ねており、ライン速度制御部2aは、モータMd,Mc1,Mc2の回転速度を制御することで、段ボールシート24の搬送速度つまりライン速度VLを制御する。
 また、モータMd,Mc1,Mc2には、回転速度を検出するエンコーダEd,Ec1,Ec2がそれぞれ付設されており、エンコーダEd,Ec1,Ec2の各検出結果はライン速度制御部2aにそれぞれ出力される。ライン速度制御部2aは、エンコーダEd,Ec1,Ec2の各検出結果に基づいて所定のライン速度VLが得られるように、モータMd,Mc1,Mc2の回転速度を制御する。
 なお、図4では、ナイフシリンダ18A,18Bの周面のナイフは省略している。
The line speed control unit 2a controls the rotational speed of the motor Md that drives the drive roller 16a of the double facer 16 and the rotational speeds of the motors Mc1 and Mc2 that drive the knife cylinders 18A and 18B of the cutoff 18. The drive roller 16a is wound around a pressure belt (not shown) of the double facer 16 and drives the pressure belt.
The pressure belt and knife cylinders 18A and 18B of the double facer 16 also serve as a conveying means for the cardboard sheet 24. The line speed control unit 2a controls the rotational speeds of the motors Md, Mc1 and Mc2, thereby The conveyance speed, that is, the line speed VL is controlled.
The motors Md, Mc1 and Mc2 are respectively provided with encoders Ed, Ec1 and Ec2 for detecting the rotational speed, and the detection results of the encoders Ed, Ec1 and Ec2 are output to the line speed control unit 2a. . The line speed control unit 2a controls the rotational speeds of the motors Md, Mc1, and Mc2 so that a predetermined line speed VL is obtained based on the detection results of the encoders Ed, Ec1, and Ec2.
In FIG. 4, knives on the peripheral surfaces of the knife cylinders 18A and 18B are omitted.
 ロール移動制御部2b及びモータ出力制御部2cは、罫線ユニット171,172の罫線ユニット31A,31B,32A,32B(図3参照)の作動を制御する。ロール移動制御部2b及びモータ出力制御部2cによる罫線ユニット31A,31B,32A,32Bの作動制御・制御系統は同様なので、図4では便宜的に、一つの特罫ユニット171に関する制御系統のみ示す。また、図4では、上罫線ユニット31Aと下罫線ユニット31Bとを簡略化して示す。 The roll movement control unit 2b and the motor output control unit 2c control the operation of the ruled line units 31A, 31B, 32A, and 32B (see FIG. 3) of the ruled line units 171 and 172. Since the operation control / control system of the ruled line units 31A, 31B, 32A, 32B by the roll movement control unit 2b and the motor output control unit 2c is the same, only the control system related to one special ruled unit 171 is shown in FIG. In FIG. 4, the upper ruled line unit 31A and the lower ruled line unit 31B are shown in a simplified manner.
 具体的には、ロール移動制御部2bは、生産管理装置200から、現オーダ(現在、第1ユニット170Fで特殊罫線を加工しているオーダ)を終了させる指令(以下「現オーダ終了指令」と表記する)を受信すると、サーボモータ機構31e(図3参照)の作動を制御して可動軸31f(図3参照)を上方へ縮退させる。これにより、矢印ay1で示すように、上罫線ロール31aが段ボールシート24から離隔した待機位置へと上昇する。 Specifically, the roll movement control unit 2b, from the production management apparatus 200, terminates the current order (currently the order in which the special ruled line is processed by the first unit 170F) (hereinafter referred to as “current order termination command”). (Noted) is received, the operation of the servo motor mechanism 31e (see FIG. 3) is controlled to retract the movable shaft 31f (see FIG. 3) upward. As a result, as indicated by an arrow ay1, the upper ruled line roll 31a rises to a standby position separated from the cardboard sheet 24.
 また、ロール移動制御部2bは、生産管理装置200から、現オーダ終了指令を受信した後、新オーダ(第1ユニット170Fで特殊罫線を加工する新たなオーダ)に対する準備を行わせる指令(以下「新オーダ準備指令」と表記する)を受信すると、待機位置の罫線ロール組を、矢印ax1で示すように適宜シート幅方向Wに沿って所定位置まで横移動させる。つまり、上罫線ロール31a毎に装備された駆動装置(図示略)の作動を制御すると共に、下罫線ロール31b毎に装備された駆動装置(図示略)の作動を制御して、罫線ロール組を構成する一対の上罫線ロール31aと下罫線ロール31bとを同期して、次オーダの罫線箇所へと横移動させる。 In addition, the roll movement control unit 2b receives a current order end command from the production management apparatus 200, and then prepares a command for making a preparation for a new order (a new order for processing a special ruled line by the first unit 170F) (hereinafter, “ When receiving a “new order preparation command”, the ruled line roll set at the standby position is moved laterally to a predetermined position along the sheet width direction W as indicated by an arrow ax1. That is, the operation of the driving device (not shown) provided for each upper ruled line roll 31a is controlled, and the operation of the driving device (not shown) provided for each lower ruled line roll 31b is controlled, so that the ruled line roll group is formed. The pair of upper ruled line rolls 31a and lower ruled line rolls 31b constituting the same are moved side by side to the ruled line location of the next order in synchronization.
 なお、罫線ロール組の個数(ここでは5組)よりも、段ボールシート24に加工される罫線の本数が少ない場合には、使用されない罫線ロール組すなわち罫線の本数を超えた分の罫線ロール組は、次オーダの段ボールシート24のシート幅方向W外側に位置制御される。 When the number of ruled lines processed on the cardboard sheet 24 is smaller than the number of ruled line roll groups (here, 5 groups), the number of ruled line roll groups that are not used, that is, the number of ruled line roll groups that exceed the number of ruled lines, is used. Then, the position of the next-order corrugated cardboard sheet 24 is controlled to the outside in the sheet width direction W.
 そして、ロール移動制御部2bは、生産管理装置200から、新オーダ準備指令を受信後、新オーダを開始させる指令(以下「新オーダ開始指令」と表記する)を受信すると、サーボモータ機構31e(図3参照)の作動を制御して、可動軸31f(図3参照)を下方に伸長させる。これにより、矢印ay2で示すように、上罫線ロール31aが、段ボールシート24を下罫線ロール31bへと押圧する加工位置へと下降する。 When the roll movement control unit 2b receives from the production management device 200 a command to start a new order after receiving a new order preparation command (hereinafter referred to as a “new order start command”), the roll motor control unit 2b (servo motor mechanism 31e ( The operation of (see FIG. 3) is controlled to extend the movable shaft 31f (see FIG. 3) downward. As a result, as indicated by an arrow ay2, the upper ruled line roll 31a is lowered to a processing position where the cardboard sheet 24 is pressed against the lower ruled line roll 31b.
 モータ出力制御部2cは、特罫ユニット171のモータM1の推定トルク(以下「モータトルク」と表記する)Trが、加速側のトルク制限値Tlmt(+)と減速側(ブレーキ側)のトルク制限値Tlmt(-)との間の通常トルク域から外れない範囲で、モータM1の出力を制御して、下罫線ロール31bの回転速度を制御する。
 具体的に説明すると、モータM1は、モータアンプAM1を備えたサーボモータにより構成されており、モータ出力制御部2cは、モータアンプAM1に回転速度指令値(以下「モータ指令回転数」又は「指令回転数」とも表記する)を出力する。モータアンプAM1は、回転速度指令値に応じた電流(以下「モータ電流」と表記する)をモータM1に出力すると共に、このモータ電流の値(以下、「モータ電流値Im」と表記する)をコントローラ2へ出力する。モータ出力制御部2cは、モータアンプAM1から受信したモータ電流値Imを監視し、このモータ電流値Imに基づいてモータトルクTrを推定し、このモータトルクTrが、適正範囲から外れない範囲で下罫線ロール31bの回転速度を制御する。換言すれば、モータ出力制御部2cは、モータトルクTrが、加速側のトルク制限値Tlmt(+)を超えないように、且つ、減速側のトルク制限値Tlmt(-)を減速側に超えないように下罫線ロール31bの回転速度を制御する。
 以下、トルク制限値Tlmt(+)及びトルク制限値Tlmt(-)を区別しない場合にはトルク制限値Tlmtと表記する。
The motor output control unit 2c determines that the estimated torque (hereinafter referred to as “motor torque”) Tr of the motor M1 of the special rule unit 171 is the torque limit value Tlmt (+) on the acceleration side and the torque limit on the deceleration side (brake side). The output of the motor M1 is controlled within a range not deviating from the normal torque range between the value Tlmt (−) and the rotational speed of the lower ruled line roll 31b is controlled.
More specifically, the motor M1 is composed of a servo motor provided with a motor amplifier AM1, and the motor output control unit 2c sends a rotational speed command value (hereinafter referred to as “motor command rotational speed” or “command command” to the motor amplifier AM1. "Revolution number") is output. The motor amplifier AM1 outputs a current corresponding to the rotational speed command value (hereinafter referred to as “motor current”) to the motor M1, and also the value of this motor current (hereinafter referred to as “motor current value Im”). Output to controller 2. The motor output control unit 2c monitors the motor current value Im received from the motor amplifier AM1, estimates the motor torque Tr based on the motor current value Im, and reduces the motor torque Tr within a range that does not deviate from the appropriate range. The rotational speed of the ruled line roll 31b is controlled. In other words, the motor output control unit 2c prevents the motor torque Tr from exceeding the acceleration-side torque limit value Tlmt (+) and does not exceed the deceleration-side torque limit value Tlmt (−) to the deceleration side. Thus, the rotational speed of the lower ruled line roll 31b is controlled.
Hereinafter, when the torque limit value Tlmt (+) and the torque limit value Tlmt (−) are not distinguished, they are expressed as the torque limit value Tlmt.
 また、モータ出力制御部2cは、生産管理装置200から、現オーダ終了指令を受信すると出力減少制御を行う。すなわち、モータアンプAM1に出力する回転速度指令値を、罫線加工中よりも低速のアイドリング速度に急減させる。また、モータ出力制御部2cは、生産管理装置200から、新オーダ準備指令を受信すると出力増加制御を行う。すなわち、モータ出力制御部2cは、モータアンプAM1に出力する回転速度指令値を、下罫線ロール31bの周速が、早期に、ライン速度VLよりもやや高めの速度(例えばライン速度VL×103%)となるように急増させる。 Also, the motor output control unit 2c performs output reduction control when receiving the current order end command from the production management device 200. That is, the rotational speed command value output to the motor amplifier AM1 is rapidly reduced to an idling speed that is lower than that during ruled line processing. In addition, when the motor output control unit 2c receives a new order preparation command from the production management device 200, the motor output control unit 2c performs output increase control. That is, the motor output control unit 2c outputs the rotational speed command value output to the motor amplifier AM1 at a speed where the peripheral speed of the lower ruled line roll 31b is slightly higher than the line speed VL (for example, the line speed VL × 103%). ) To increase rapidly.
 ここで、トルク制限値TlmtはモータアンプAM1に対して設定されるものである。モータ出力制御部2cは、モータ電流値Imから推定されるモータトルクTrが、トルク制限値Tlmtを超えない範囲で回転速度指令値を出力するが、実際のモータトルクがトルク制限値Tlmtを超えるような場合には、モータアンプAM1は、モータ出力制御部2cから回転速度指令値に拘わらず、実際のモータトルク値Tがトルク制限値Tlmtを超えないようにモータ電流を制限する。 Here, the torque limit value Tlmt is set for the motor amplifier AM1. The motor output control unit 2c outputs the rotational speed command value in a range where the motor torque Tr estimated from the motor current value Im does not exceed the torque limit value Tlmt, but the actual motor torque exceeds the torque limit value Tlmt. In this case, the motor amplifier AM1 limits the motor current so that the actual motor torque value T does not exceed the torque limit value Tlmt regardless of the rotation speed command value from the motor output control unit 2c.
 トルク制限値設定手段2dは、トルク制限値TlmtをモータアンプAM1に対して設定する。具体的には、加速側のトルク制限値Tlmt(+)を、通常は、トルク定格値T0(+)以下の通常制限値Tlmt(+)_Lに設定し、モータ出力制御部2cにより出力増加制御が行われている最中は、トルク定格値T0(+)よりも大きな高制限値Tlmt(+)_Hに設定する。また、減速側のトルク制限値Tlmt(-)を、通常は、トルク定格値T0(-)以下の〔トルク定格値T0(-)と等しい又はトルク定格値T0(-)よりも減速側に対して小さい〕通常制限値Tlmt(-)_Lに設定し、モータ出力制御部2cにより出力減少制御が行われている最中は、トルク定格値T0(-)よりも減速側に大きな高制限値Tlmt(-)_Hに設定する。以下、通常制限値Tlmt(+)_L,Tlmt(-)_Lを区別しない場合には通常制限値Tlmt_Lと表記し、高制限値Tlmt(+)_H,Tlmt(-)_Hを区別しない場合には高制限値Tlmt_Hと表記する。 The torque limit value setting means 2d sets the torque limit value Tlmt for the motor amplifier AM1. Specifically, the torque limit value Tlmt (+) on the acceleration side is normally set to a normal limit value Tlmt (+) _ L that is equal to or less than the rated torque value T0 (+), and output increase control is performed by the motor output control unit 2c. Is being set to a high limit value Tlmt (+) _ H that is larger than the rated torque value T0 (+). In addition, the torque limit value Tlmt (−) on the deceleration side is normally set to the torque rating value T0 (−) or less [equal to the torque rating value T0 (−) or to the deceleration side from the torque rating value T0 (−). The lower limit is set to the normal limit value Tlmt (−) _ L, and while the output reduction control is being performed by the motor output control unit 2c, the higher limit value Tlmt that is larger than the rated torque value T0 (−) on the deceleration side. Set to (-) _ H. Hereinafter, when the normal limit values Tlmt (+) _ L and Tlmt (−) _ L are not distinguished from each other, they are referred to as normal limit values Tlmt_L, and when the high limit values Tlmt (+) _ H and Tlmt (−) _ H are not distinguished from each other. This is expressed as a high limit value Tlmt_H.
 ここで、トルク定格値T0(+)とは、モータトルクTrが、このトルク(定格値T0(+))よりも高くならない限り、モータM1が過負荷を起こすことなく、モータM1を連続して運転することができるトルクである。また、トルク定格値T0(-)とは、モータトルクTrが、このトルク(定格値T0(-))よりも減速側に大きくならない(大きなブレーキトルクとならない)限りモータM1が過負荷を起こすことなく、モータM1を連続して運転することができるトルクである。以下、トルク定格値T0(+)及びトルク定格値T0(-)を区別しない場合にはトルク定格値T0と表記する。 Here, the torque rated value T0 (+) means that unless the motor torque Tr becomes higher than this torque (rated value T0 (+)), the motor M1 does not cause an overload and the motor M1 is continuously applied. This is the torque that can be driven. The torque rated value T0 (−) means that the motor M1 is overloaded as long as the motor torque Tr does not become larger than the torque (rated value T0 (−)) on the decelerating side (not a large brake torque). The torque is such that the motor M1 can be operated continuously. Hereinafter, when the torque rating value T0 (+) and the torque rating value T0 (−) are not distinguished, they are expressed as the torque rating value T0.
 ここで、モータM1は、短期間Δtであれば、トルクがトルク定格値T0よりも高くなっても過負荷を起こすことがなく、許容されるトルク(過負荷を起こすことがないトルク)は、そのトルクで連続して運転される時間が短くなるほど高くなる。
 モータ出力制御部2cにより出力減少制御や出力増加制御が行われる期間(すなわち、現オーダ終了指令後のモータM1の急減速に伴い減速トルクが高めになる期間、及び、新オーダ準備指令後のモータM1の急加速に伴い加速トルクが高めになる期間)は、モータM1のトルクがトルク定格値T0よりも高くなっても過負荷を起こすことがない短期間である。そこで、これらの短期間については、トルク制限値Tlmtをトルク定格値T0よりも大きなトルク制限値Tlmt_Hに設定している。このトルク制御値Tlmt_Hは、短期間であれば問題を生じない大きさ、つまり、トルクがトルク定格値T0よりも高めになる期間に対して許容されトルクの範囲内に設定されている。これにより、モータM1の短期間の急加減速に対応できるようにしている。
 また、少なくとも罫線ロールが加工位置にある間は、モータM1は急加減速されないのでトルク制限値Tlmtを、通常制限値Tlmt_Lに設定している。
Here, if the motor M1 is in a short period Δt, it will not cause an overload even if the torque is higher than the torque rating value T0, and the allowable torque (torque that will not cause an overload) is: The shorter the time for continuous operation at that torque, the higher the time.
A period during which output reduction control or output increase control is performed by the motor output control unit 2c (that is, a period during which the deceleration torque increases with sudden deceleration of the motor M1 after the current order end command, and a motor after the new order preparation command The period in which the acceleration torque increases with the rapid acceleration of M1) is a short period in which overload does not occur even when the torque of the motor M1 becomes higher than the torque rating value T0. Therefore, for these short periods, the torque limit value Tlmt is set to a torque limit value Tlmt_H that is larger than the torque rating value T0. This torque control value Tlmt_H is set within a torque range that is allowed for a magnitude that does not cause a problem in a short period, that is, a period in which the torque is higher than the torque rated value T0. As a result, it is possible to cope with short-term rapid acceleration / deceleration of the motor M1.
Further, since the motor M1 is not rapidly accelerated or decelerated at least while the ruled line roll is in the processing position, the torque limit value Tlmt is set to the normal limit value Tlmt_L.
 [4.作用効果]
 本発明の一実施形態としてのスリッタスコアラによる作用効果を、図5を参照して説明する。
 図5は、生産オーダが、通常オーダ(特殊罫線が加工されないオーダ)1,特罫有りオーダ(特殊罫線が加工されるオーダ)及び通常オーダ2の順に変更される場合を例示するタイムチャートである。図5では、生産スケジュールと、ライン速度VLと、生産管理装置200からコントローラ2への指令と、特罫ユニットのモータM1への回転速度指令値(モータ指令回転数)N及び実際のモータM1の回転速度(以下「モータ実回転数」と表記する)N′と、モータ電流値Imから推定されたモータトルクTrの推定値及びトルク制限値Tlmtとを上からこの順に並べて示す。
 なお、モータ指令回転数Nを実線で示し、モータ実回転数N′を点線で示す。また、モータトルクTrを実線で示し、トルク制限値Tlmtを一点鎖線で示す。
[4. Effect]
The effect by the slitter scorer as one embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a time chart illustrating a case where the production order is changed in the order of normal order (order in which special ruled lines are not processed), order with special rules (order in which special ruled lines are processed), and normal order 2. . In FIG. 5, the production schedule, the line speed VL, the command from the production management device 200 to the controller 2, the rotational speed command value (motor command rotational speed) N to the motor M1 of the special rule unit, and the actual motor M1 The rotational speed (hereinafter referred to as “motor actual rotational speed”) N ′, the estimated value of the motor torque Tr estimated from the motor current value Im, and the torque limit value Tlmt are shown in this order from the top.
The motor command rotational speed N is indicated by a solid line, and the motor actual rotational speed N ′ is indicated by a dotted line. Further, the motor torque Tr is indicated by a solid line, and the torque limit value Tlmt is indicated by a one-dot chain line.
 以下の例では、第1スリッタスコアラ17Fの制御を例に取り説明する。
 生産管理装置200は、上位の生産管理システムより、図5に示すような生産オーダのスケジュール(ここでは、通常オーダ1,特罫有りオーダ及び通常オーダ2の順で生産が行われる)を取得している。生産管理装置200は、この生産オーダのスケジュールに基づいて、ローカルのコントローラ2に各種制御指令を出力する。
In the following example, the control of the first slitter scorer 17F will be described as an example.
The production management apparatus 200 obtains a production order schedule (in this case, production is performed in the order of normal order 1, special ruled order, and normal order 2) as shown in FIG. 5 from the higher-level production management system. ing. The production management device 200 outputs various control commands to the local controller 2 based on the production order schedule.
 ライン速度VLは、生産管理装置200から指令を受けたコントローラ2が、ダブルフェーサ16のモータMd及びカットオフ18のモータMc1,Mc2を同期して制御することにより、図5に示すように制御される。
 具体的には、コントローラ2により、ライン速度VLは、通常オーダ1から特罫有りへのオーダチェンジ時(時点t2)の前後一定期間は比較的遅い速度VL1に制御され、オーダチェンジしてから生産状態が安定するまでの期間を見込んで設定された所定の期間が経過すると、モータMc1,Mc2の回転速度を加速させる(時点t3)。これにより、ライン速度VLが比較的速い速度VL2となる(時点t4)。また、ライン速度VLが、特罫有りオーダから通常オーダ2へのオーダチェンジ時(時点t7)の前後一定の期間(つまり生産状態が安定するまで)に再び比較的遅い速度VL1となるように、コントローラ2により、モータMc1,Mc2の回転速度を減速させる(時点t5)。これにより、ライン速度VLが比較的遅い速度VL1となる(時点t6)。
The line speed VL is controlled as shown in FIG. 5 by the controller 2 receiving a command from the production management apparatus 200 controlling the motor Md of the double facer 16 and the motors Mc1 and Mc2 of the cutoff 18 in synchronization. .
Specifically, the line speed VL is controlled by the controller 2 to a relatively slow speed VL1 for a certain period before and after the order change from the normal order 1 to a special rule (time t2). When a predetermined period set in anticipation of a period until the state is stabilized, the rotational speeds of the motors Mc1 and Mc2 are accelerated (time point t3). As a result, the line speed VL becomes a relatively high speed VL2 (time t4). Further, the line speed VL is set to a relatively slow speed VL1 again during a certain period before the order change from the special ruled order to the normal order 2 (time t7) (that is, until the production state is stabilized). The rotational speed of the motors Mc1 and Mc2 is decelerated by the controller 2 (time t5). As a result, the line speed VL becomes a relatively slow speed VL1 (time point t6).
 図5に示す生産スケジュールにしたがって、生産管理装置200から各種指令がコントローラ2に出力される。
 具体的には、先ず、生産管理装置200から、新オーダ準備指令(準備指令)がコントローラ2に出力される(時点t1)。この新オーダ準備指令は、特罫ユニット171の準備が完了するまでの所定の期間を見込んで、通常オーダ1から特罫有りオーダへのオーダチェンジに先立って出力される。新オーダ準備指令を受信すると、コントローラ2は、待機中のスリッタスコアラ17Fの特罫ユニット171の各罫線ロール組を、特罫有りオーダで指定された罫線箇所に移動させる。
 その後、生産管理装置200から新オーダ開始指令(運転指令)がコントローラ2に出力されると(時点t2)、コントローラ2は、前記の罫線箇所に移動させた各罫線ロール組の内、待機位置の上罫線ロール31aを、段ボールシート24に押圧する加工位置に一斉に下降させる(特殊罫線加工を開始する)。
 そして、生産管理装置200から現オーダ終了指令(停止指令)がコントローラ2に出力されると(時点t7)、コントローラ2は、加工位置にある(加工中のスリッタスコアラ17Fの)各上罫線ロール31aを待機位置へと一斉に上昇させる。
Various commands are output from the production management device 200 to the controller 2 in accordance with the production schedule shown in FIG.
Specifically, first, a new order preparation command (preparation command) is output from the production management device 200 to the controller 2 (time point t1). The new order preparation command is output prior to the order change from the normal order 1 to the special ruled order in anticipation of a predetermined period until the preparation of the special rule unit 171 is completed. When receiving the new order preparation command, the controller 2 moves each ruled line roll set of the special ruled unit 171 of the waiting slitter scorer 17F to the ruled line location designated by the special ruled order.
Thereafter, when a new order start command (operation command) is output from the production management apparatus 200 to the controller 2 (time t2), the controller 2 sets the standby position among the ruled line roll sets moved to the ruled line locations. The upper ruled line roll 31a is lowered all at once to a processing position for pressing the corrugated cardboard sheet 24 (special ruled line processing is started).
When the current order end command (stop command) is output from the production management device 200 to the controller 2 (at time t7), the controller 2 is in the processing position (for the slitter scorer 17F being processed) each upper ruled line roll 31a. To the standby position all at once.
 生産管理装置200から新オーダ開始指令(運転指令)がコントローラ2に出力されるまでは、スリッタスコアラ17Fの上罫線ロール31aは待機位置にあり、時点t1では、下罫線ロール31bはアイドリング状態とされる(アイドリング回転速度Naに制御される)。生産管理装置200から、新オーダ準備指令(準備指令)がコントローラ2に出力されると(時点t1)、下罫線ロール31bはその周面速度がその時のライン速度VL1よりもやや高速となるようにモータ指令回転数Nが回転速度N1(例えばライン速度VL1×103%の周速に相当する回転速度)まで引き上げられる。
 そして、生産管理装置200から、新オーダ開始指令がコントローラ2に出力されると(時点t2)、上罫線ロール31aは待機位置から段ボールシート24を下罫線ロール31bに押圧する加工位置に下降するので、下罫線ロール31b及びモータM1には負荷が掛かる。このため、後述するようにモータトルクTrが制限されて、ローラ31a,31bはダブルフェーサ16やカットオフ18により搬送される段ボールシート24によってライン速度VL1で連れ回されるようになる。
Until the new order start command (operation command) is output from the production management device 200 to the controller 2, the upper ruled line roll 31a of the slitter scorer 17F is in the standby position, and at the time t1, the lower ruled line roll 31b is in an idling state. (Controlled by idling rotation speed Na). When a new order preparation command (preparation command) is output from the production management apparatus 200 to the controller 2 (time point t1), the lower ruled line roll 31b has a circumferential speed slightly higher than the line speed VL1 at that time. The motor command rotational speed N is increased to the rotational speed N1 (for example, the rotational speed corresponding to the peripheral speed of the line speed VL1 × 103%).
When a new order start command is output from the production management apparatus 200 to the controller 2 (time t2), the upper ruled line roll 31a is lowered from the standby position to a processing position for pressing the cardboard sheet 24 against the lower ruled line roll 31b. The lower ruled line roll 31b and the motor M1 are loaded. Therefore, as will be described later, the motor torque Tr is limited, and the rollers 31a and 31b are rotated at the line speed VL1 by the corrugated cardboard sheet 24 conveyed by the double facer 16 or the cutoff 18.
 以降、時点t7まで、ライン速度VLの加減速にあわせて、コントローラ2からモータM1に出力される指令回転数Nが増減される。すなわち、指令回転数Nは、時点t4で回転速度N2(>N1)に増大され、時点t6で回転速度N1に戻される。そして、時点t7において生産管理装置200から現オーダ終了指令がコントローラ2に出力され、上罫線ロール31aが待機位置になると、下罫線ロール31bの指令回転数Nはアイドリング回転速度Naとされる。 Thereafter, the command rotational speed N output from the controller 2 to the motor M1 is increased or decreased in accordance with the acceleration / deceleration of the line speed VL until time t7. That is, the command rotational speed N is increased to the rotational speed N2 (> N1) at the time point t4 and returned to the rotational speed N1 at the time point t6. Then, when the current order end command is output from the production management device 200 to the controller 2 at time t7 and the upper ruled line roll 31a reaches the standby position, the command rotational speed N of the lower ruled line roll 31b is set to the idling rotational speed Na.
 モータ1の電流値Imに基づいて推定されるモータトルクTrは、時点t1までは、モータM1がアイドリング状態とされるので、加速側のモータ定格値T0(+)よりも十分に低い値なる(例えばモータTr=定格値T0(+)×5%)。これに対し、モータ指令回転数Nを急増させる時点t1~t1′は、モータトルクTrは、定格値T0(+)よりも遙かに高くなる(例えばTr=定格値T0(+)×200%)。しかしながら、モータトルクTrがトルク定格値T0(+)を超える期間は僅かであり、モータM1は期間が短ければ定格値T0(+)を越えてもモータM1は過負荷エラーを起こさないので、時点t1~t1′を含む期間については、加速側のトルク制限値Tlmt(+)を、トルク定格値T0(+)よりも大きく所定期間Δt(>t1′-t)に限って許容される高制限値Tlmt(+)_Hに設定している(例えばTlmt(+)_H=T0(+)×300%)。また、ここでは、減速側のトルク制限値Tlmt(-)も、トルク定格値T0(-)よりも小さく(減速側に大きく)所定期間Δt(>t1′-t)に限って許容される高制限値Tlmt(-)_Hに値に設定している(例えばTlmt(-)=T0(-)×300%)。
 これにより、時点t1~t1′におけるモータ実回転数N′の急増(モータM1の急加速)を達成できるようにしている。
The motor torque Tr estimated based on the current value Im of the motor 1 is sufficiently lower than the motor rated value T0 (+) on the acceleration side because the motor M1 is in an idling state until time t1 ( For example, motor Tr = rated value T0 (+) × 5%). On the other hand, the motor torque Tr is much higher than the rated value T0 (+) at the time t1 to t1 ′ when the motor command rotational speed N is rapidly increased (for example, Tr = rated value T0 (+) × 200%). ). However, the period during which the motor torque Tr exceeds the torque rated value T0 (+) is small, and the motor M1 does not cause an overload error if the motor M1 exceeds the rated value T0 (+) if the period is short. For a period including t1 to t1 ′, the acceleration-side torque limit value Tlmt (+) is set to a high limit that is allowed only for a predetermined period Δt (> t1′−t) that is greater than the torque rating value T0 (+). The value Tlmt (+) _ H is set (for example, Tlmt (+) _ H = T0 (+) × 300%). Here, the torque limit value Tlmt (−) on the deceleration side is also smaller than the torque rated value T0 (−) (larger on the deceleration side) and is allowed only for a predetermined period Δt (> t1′−t). The limit value Tlmt (−) _ H is set to a value (for example, Tlmt (−) = T0 (−) × 300%).
This makes it possible to achieve a rapid increase in the actual motor speed N ′ (rapid acceleration of the motor M1) from time t1 to t1 ′.
 時点t1′で、モータ実回転数N′がライン速度VL1相当の回転数まで上昇すると、その後はモータ実回転数N′は略一定とされるので、モータ電流が減少してモータトルクTrが減少する(ここでは、定格値T0(+)の20%まで減少する)。そこで制御値Tlmtは通常制限値Tlmt(L)(例えばトルク定格値T0の80%)に変更される。そして、時点t2で新オーダ開始指令(運転指令)が出力されて上罫線ロール31aが下降位置になって段ボールシート24に罫線加工を開始すると、下罫線ロール31bには負荷が掛かる。このため、モータアンプAM1は、この負荷分を相殺しつつモータM1にモータ指令回転数Nを出力させるべく、モータ電流を増加させる。この結果、モータトルクTrは、通常制限値Tlmt(+)_L(例えばトルク定格値T0(+)の80%)に達して、この通常制限値Tlmt(+)_Lに制限され、上述したようにモータM1及び下罫線ロール31bが、ダブルフェーサ16やカットオフ18により搬送される段ボールシート24によって連れ回されるようになる。 When the actual motor speed N ′ increases to the speed corresponding to the line speed VL1 at the time point t1 ′, the actual motor speed N ′ becomes substantially constant after that, so that the motor current decreases and the motor torque Tr decreases. (Here, it is reduced to 20% of the rated value T0 (+)). Therefore, the control value Tlmt is changed to a normal limit value Tlmt (L) (for example, 80% of the torque rated value T0). When a new order start command (operation command) is output at time t2 and the upper ruled line roll 31a is in the lowered position and the ruled line processing is started on the cardboard sheet 24, a load is applied to the lower ruled line roll 31b. Therefore, the motor amplifier AM1 increases the motor current so that the motor M1 outputs the motor command rotational speed N while canceling out this load. As a result, the motor torque Tr reaches the normal limit value Tlmt (+) _ L (for example, 80% of the rated torque value T0 (+)) and is limited to the normal limit value Tlmt (+) _ L, as described above. The motor M1 and the lower ruled line roll 31b are rotated by the corrugated cardboard sheet 24 conveyed by the double facer 16 or the cut-off 18.
 以降、時点t7で生産管理装置200から現オーダ終了指令が出力されてモータ指令回転数を急減させるまでの期間(すなわちモータ指令回転数を急減させる必要のない期間)は、一定して制限値Tlmtは通常制限値Tlmt_Lに設定される。図5に示す例では、モータトルクTrは通常制限値Tlmt(+)_Lに制限され(Tr=Tlmt(+)_L)、モータM1及び下罫線ロール31bはダブルフェーサ16やカットオフ18により搬送される段ボールシート24によって連れ回される。また、この期間は、減速側の制限値の制限値Tlmt(-)も、減速側のトルク定格値T0(-)よりも減速側に小さな通常制限値Tlmt(+)_L(例えばトルク定格値T0(-)の80%)に設定される。なお、時点t5~t6においてモータ指令回転数Nが減速設定される最中は、モータトルクTrはマイナスとされブレーキが掛けられる(ここでは、トルク定格値T0(-)の50%)。 Thereafter, the period from when the current order end command is output from the production management device 200 at the time t7 until the motor command rotational speed is suddenly reduced (that is, the period during which the motor command rotational speed does not need to be suddenly reduced) is constant and the limit value Tlmt. Is normally set to the limit value Tlmt_L. In the example shown in FIG. 5, the motor torque Tr is limited to the normal limit value Tlmt (+) _ L (Tr = Tlmt (+) _ L), and the motor M1 and the lower ruled line roll 31b are conveyed by the double facer 16 and the cutoff 18. It is carried around by the cardboard sheet 24. During this period, the limit value Tlmt (−) of the limit value on the deceleration side is also a normal limit value Tlmt (+) _ L (for example, torque rating value T0) that is smaller on the deceleration side than the torque rating value T0 (−) on the deceleration side. 80% of (-)). Note that while the motor command rotational speed N is set to be decelerated from time t5 to time t6, the motor torque Tr is negative and the brake is applied (here, 50% of the torque rated value T0 (−)).
 そして、時点t7で、生産管理装置200から現オーダ終了指令が出力されて、上罫線ロール31aが待機位置とされると、モータ指令回転数Nがアイドリング回転数Naまで急減される(モータM1の急減速される)。モータ実回転数N′が急減してアイドリング回転数Naとなるまでの間(時点t7~t7′)、トルク定格値T0(-)よりも減速側に大きなトルク(例えば減速側のトルク定格値T0(-)×200%)を作用させる。モータトルクTrがトルク定格値T0(-)を減速側に超える期間(許容域から外れる期間)は僅かであり、モータM1は期間が短ければトルク定格値T0(-)を減速側に越えてもモータM1は過負荷エラーを起こさないので、時点t7~t7′を含む期間については、減速側のトルク制限値Tlmt(-)を、トルク定格値T0(-)よりも大きく所定期間Δt(>t7′-t7)に限って許容される高制限値Tlmt(-)_Hに設定している(例えばTlmt(-)_H=T0(-)×300%)。また、ここでは、加速速のトルク制限値Tlmt(+)も、トルク定格値T0(+)よりも大きく所定期間Δt(>t7′-t7)に限って許容される高制限値Tlmt(+)_Hに値に設定している(例えばTlmt(+)=T0(+)×300%)。 At time t7, when the current order end command is output from the production management device 200 and the upper ruled line roll 31a is set to the standby position, the motor command rotational speed N is rapidly reduced to the idling rotational speed Na (the motor M1). Suddenly decelerate). During the time until the actual motor speed N ′ suddenly decreases to the idling speed Na (time t7 to t7 ′), a torque larger than the torque rating value T0 (−) on the deceleration side (for example, the torque rating value T0 on the deceleration side) (−) × 200%) is applied. The period during which the motor torque Tr exceeds the rated torque value T0 (−) on the deceleration side (a period outside the allowable range) is small, and the motor M1 may exceed the rated torque value T0 (−) on the deceleration side if the period is short. Since the motor M1 does not cause an overload error, the torque limit value Tlmt (−) on the deceleration side is set to be larger than the torque rating value T0 (−) for a predetermined period Δt (> t7) during the period including the time points t7 to t7 ′. It is set to a high limit value Tlmt (−) _ H that is allowed only for '−t7) (for example, Tlmt (−) _ H = T0 (−) × 300%). Further, here, the acceleration speed torque limit value Tlmt (+) is also larger than the torque rated value T0 (+) and is allowed only for a predetermined period Δt (> t7′−t7), which is a high limit value Tlmt (+). The value is set to _H (for example, Tlmt (+) = T0 (+) × 300%).
 したがって、本発明の一実施形態のスリッタスコアラによれば以下のような効果が得られる。
 生産管理装置200から、新オーダ準備指令が発信されると、モータM1の回転速度をアイドリング速度からライン速度VLに向けて速やかに加速する出力増加制御が短期間だけ行われる。また、生産管理装置200から、現オーダ終了指令が発信されると、モータM1の回転速度をアイドリング速度まで速やかに減速する出力減少制御が短期間だけ行われる。
 出力増加制御や出力減少制御が行われている間は、モータM1のトルクTrは加速側又は減速側に高めとなるが、この間、トルク制限値Tlmtとして、トルク定格値T0を超える高制限値Tlmt_Hが使用される。高制限値Tlmt_Hは、所定期間内に限って許容される制限値であるが、出力増加制御が行われるのは短期間であるため、罫線モータM1が過負荷エラーにより停止してしまうことを防止できる。
 また、モータ出力制御部2cにより出力増加制御が行われている期間を除いて、トルク制限値Tlmtは、トルク定格値T0よりも低い通常制限値Tlmt_Lに設定される。このため、罫線加工時は、下罫線ロール31bのトルクは通常制限値Tlmt_Lに制限されるが、ライン速度VLを維持するには十分でなかったとしても、ダブルフェーサ16とカットオフ18とにより搬送される段ボールシート24によって罫線ロール31a,31bが連れ回されるようになるため、ライン速度VLの低下を抑制することができる。
Therefore, according to the slitter scorer of one embodiment of the present invention, the following effects can be obtained.
When a new order preparation command is transmitted from the production management device 200, output increase control for quickly accelerating the rotational speed of the motor M1 from the idling speed to the line speed VL is performed only for a short period. Further, when a current order end command is transmitted from the production management device 200, output reduction control for rapidly reducing the rotational speed of the motor M1 to the idling speed is performed for a short period.
While the output increase control and the output decrease control are being performed, the torque Tr of the motor M1 increases toward the acceleration side or the deceleration side. During this time, the torque limit value Tlmt is a high limit value Tlmt_H that exceeds the torque rating value T0. Is used. The high limit value Tlmt_H is a limit value that is allowed only within a predetermined period, but since the output increase control is performed in a short period, the ruled line motor M1 is prevented from stopping due to an overload error. it can.
Except for the period when the output increase control is performed by the motor output control unit 2c, the torque limit value Tlmt is set to a normal limit value Tlmt_L lower than the torque rating value T0. For this reason, at the time of ruled line processing, the torque of the lower ruled line roll 31b is normally limited to the limit value Tlmt_L, but even if it is not sufficient to maintain the line speed VL, it is conveyed by the double facer 16 and the cutoff 18. Since the ruled line rolls 31a and 31b are rotated by the corrugated cardboard sheet 24, it is possible to suppress a decrease in the line speed VL.
 したがって、出力増加制御中においてもトルクが定格値T0を超えないモータや、罫線加工時に周速をライン速度VLよりも高速とすることが可能なモータを採用する場合に比べて、定格出力が低く小型サイズの罫線モータを採用することができる。これにより、従来のスコアラよりも、罫線モータを配置するためのスペース及び罫線モータをメンテナンスするためのスペースを小さくすることができると共に、特罫ユニット171の製作コストを低減することができる。 Therefore, the rated output is lower than when using a motor whose torque does not exceed the rated value T0 even during output increase control, or a motor capable of making the peripheral speed higher than the line speed VL during ruled line processing. A small size ruled line motor can be adopted. Thereby, the space for arranging the ruled line motor and the space for maintaining the ruled line motor can be reduced as compared with the conventional scorer, and the manufacturing cost of the special ruled unit 171 can be reduced.
 [5.その他]
 (1)上記実施形態では、モータアンプAM1に対するトルク制限値Tlmtを、通常制限値Tlmt_Lと高制限値Tlmt_Hとの二つの何れかに切り替えて設定するようにしたがこの態様に限定されない。モータアンプAM1に対して、通常制限値Tlmt_Lと高制限値Tlmt_Hとの二つの制限値が一定して設定されるようにしてもよい。この場合、モータトルクTrが通常制限値Tlmt_Lを越えた期間が、所定期間Δt(高制限値Tlmt_H以下であればモータM1が過負荷エラーを起こさない期間)以内については、トルク制限値Tlmtとして高制限値Tlmt_Hが機能し、モータトルクTrが通常制限値Tlmt_Lを越える期間が所定期間Δtを超えると、トルク制限値Tlmtとして通常制限値Tlmt_Lが機能するようになる。
[5. Others]
(1) In the above embodiment, the torque limit value Tlmt for the motor amplifier AM1 is switched to one of the normal limit value Tlmt_L and the high limit value Tlmt_H, but is not limited to this mode. Two limit values, the normal limit value Tlmt_L and the high limit value Tlmt_H, may be set constant for the motor amplifier AM1. In this case, when the motor torque Tr exceeds the normal limit value Tlmt_L, the torque limit value Tlmt is high within a predetermined period Δt (a period in which the motor M1 does not cause an overload error if it is equal to or less than the high limit value Tlmt_H). When the limit value Tlmt_H functions and the period in which the motor torque Tr exceeds the normal limit value Tlmt_L exceeds the predetermined period Δt, the normal limit value Tlmt_L functions as the torque limit value Tlmt.
 (2)上記実施形態では、本発明のスコアラを、特罫ユニット171に適用したが、主罫ユニット172に適用することもできる。換言すれば、本発明に係る罫線ロールに、主罫ユニット172の下罫線ロール32bを含めてもよい。
 主罫ユニット172においてもオーダチェンジの際に待機中の下罫線ロール32bをモータにより急加速/急減速させるので、本発明を適用することで、このモータに、ダブルフェーサ16のモータMdやカットオフ18のモータMc1,Mc2よりも定格出力が低く、且つ、従来の主罫ユニットのモータよりも定格出力が低い小型サイズのモータを使用することが可能となる。
(2) In the above embodiment, the scorer of the present invention is applied to the special rule unit 171, but it can also be applied to the main rule unit 172. In other words, the lower ruled line roll 32b of the main ruled unit 172 may be included in the ruled line roll according to the present invention.
Even in the main ruler unit 172, the standby lower ruled line roll 32b is suddenly accelerated / decelerated by the motor when the order is changed. By applying the present invention, the motor Md of the double facer 16 and the cutoff 18 are applied to this motor. It is possible to use a small-sized motor having a lower rated output than the motors Mc1 and Mc2 and a lower rated output than the motor of the conventional main ruler unit.
 (3)上記実施形態では、本発明のスコアラを、スリッタと一体のスリッタスコアラに適用した例を説明したが、スリッタとは別体のスコアラに適用することもできる。 (3) In the above embodiment, the example in which the scorer of the present invention is applied to the slitter scorer integrated with the slitter has been described. However, the scorer can be applied to a scorer separate from the slitter.
 2 コントローラ(制御装置)
 2a ライン速度制御部
 2b ロール移動制御部
 2c モータ出力制御部
 2d トルク制限値設定手段
 16 ダブルフェーサ
 17 スリッタスコアラ
 18 カットオフ
 24 段ボールシート
 31a,32a 上罫線ロール
 31b,32b 下罫線ロール
 31e サーボモータ機構(ロール移動機構)
 100 段ボールシート製造装置
 171 特殊罫線ユニット(スコアラ)
 172 主罫線ユニット(スコアラ)
 170F 第1スリッタスコアラユニット
 170S 第2スリッタスコアラユニット
 172 主罫線ユニット
 200 生産管理装置
 M1 罫線モータ
 Mc1,Mc2,Md モータ
 Tlmt トルク制限値
 Tlmt_L 通常制限値
 Tlmt_H 高制限値
 T0 トルク定格値
 
2 Controller (control device)
2a Line speed control unit 2b Roll movement control unit 2c Motor output control unit 2d Torque limit value setting means 16 Double facer 17 Slitter scorer 18 Cut off 24 Corrugated cardboard sheets 31a, 32a Upper ruled line rolls 31b, 32b Lower ruled line rolls 31e Servo motor mechanism (roll Moving mechanism)
100 Corrugated cardboard manufacturing equipment 171 Special ruled line unit (scorer)
172 Main ruled line unit (scorer)
170F 1st slitter scorer unit 170S 2nd slitter scorer unit 172 Main ruled line unit 200 Production control device M1 Ruled line motor Mc1, Mc2, Md Motor Tlmt Torque limit value Tlmt_L Normal limit value Tlmt_H High limit value T0 Torque rating value

Claims (10)

  1.  ダブルフェーサとカットオフとにより所定のライン速度で搬送される段ボールシートに対し、罫線加工を施すスコアラであって、
     罫線ロールと、
     前記罫線ロールを回転駆動する罫線モータと、
     前記罫線ロールを、前記段ボールシートを押圧しない待機位置、又は、前記段ボールシートを押圧して前記罫線加工を施す加工位置に移動させるロール移動機構と、
     生産管理装置から受信した指令に基づいて制御を行う制御装置とを備え、
     前記制御装置は、
     前記ロール移動機構の作動を制御するロール移動制御部と、
     前記罫線モータの出力であるモータ出力を制御するモータ出力制御部とを備え、
     前記モータ出力制御部は、前記罫線モータのトルクが、前記罫線モータに設定されるトルク制限値を超えない範囲で前記モータ出力を制御し、
     前記罫線モータのトルク制限値には、トルク定格値以下の通常制限値と、前記トルク定格値よりも高く且つ所定期間内に限って超えることを許容される高制限値との2つの制限値が設定されている
    ことを特徴とするスコアラ。
    A scorer that performs ruled line processing on a cardboard sheet conveyed at a predetermined line speed by a double facer and a cut-off,
    Ruled line rolls,
    A ruled line motor for rotating the ruled line roll;
    A roll moving mechanism for moving the ruled line roll to a standby position where the cardboard sheet is not pressed, or to a processing position where the cardboard sheet is pressed to perform the ruled line processing;
    A control device that performs control based on a command received from the production management device;
    The controller is
    A roll movement control unit for controlling the operation of the roll movement mechanism;
    A motor output control unit that controls a motor output that is an output of the ruled line motor;
    The motor output control unit controls the motor output within a range in which the torque of the ruled line motor does not exceed a torque limit value set in the ruled line motor;
    The torque limit value of the ruled line motor includes two limit values: a normal limit value equal to or lower than the torque rating value and a high limit value that is higher than the torque rating value and allowed to exceed only within a predetermined period. A scorer characterized by being set.
  2.  前記トルク制限値を設定するトルク制限値設定手段を備え、
     前記モータ出力制御部は、前記生産管理装置から現オーダ終了指令を受信したときには、前記モータ出力をアイドリング出力まで減少させる出力減少制御を行う一方、前記生産管理装置から、新オーダ開始指令よりも前に予め発信される新オーダ準備指令を受信したときには、前記罫線ロールの周速が前記ライン速度に近づくように、前記モータ出力を前記アイドリング出力から増加させる出力増加制御を行い、
     前記トルク制限値設定手段は、前記トルク制限値を、前記出力増加制御が行われている間は、前記高制限値に設定する
    ことを特徴とする、請求項1記載のスコアラ。
    A torque limit value setting means for setting the torque limit value;
    When the motor output control unit receives the current order end command from the production management device, the motor output control unit performs output reduction control to reduce the motor output to the idling output, while the production management device receives a command before the new order start command. When a new order preparation command transmitted in advance is received, output increase control is performed to increase the motor output from the idling output so that the peripheral speed of the ruled line roll approaches the line speed,
    The scorer according to claim 1, wherein the torque limit value setting means sets the torque limit value to the high limit value while the output increase control is being performed.
  3.  前記ロール移動制御部は、前記生産管理装置から前記新オーダ開始指令を受信したときには、前記罫線ロールを前記待機位置から前記加工位置に移動させ、
     前記トルク制限値は、前記罫線ロールが前記加工位置にある間は、前記通常制限値に設定される
    ことを特徴とする、請求項1又は2記載のスコアラ。
    When the roll movement control unit receives the new order start command from the production management device, the roll movement control unit moves the ruled line roll from the standby position to the processing position,
    The scorer according to claim 1 or 2, wherein the torque limit value is set to the normal limit value while the ruled line roll is in the processing position.
  4.  前記罫線モータは、前記ダブルフェーサに備えられたダブルフェーサ用モータよりも、定格出力の低いモータである
    ことを特徴とする、請求項1~3の何れか一項に記載のスコアラ。
    The scorer according to any one of claims 1 to 3, wherein the ruled line motor is a motor having a lower rated output than a motor for a double facer provided in the double facer.
  5.  前記罫線モータは、前記カットオフに備えられたカットオフ用モータよりも、定格出力の低いモータである
    ことを特徴とする、請求項1~4の何れか一項に記載のスコアラ。
    The scorer according to any one of claims 1 to 4, wherein the ruled line motor is a motor having a lower rated output than a cut-off motor provided for the cut-off.
  6.  前記段ボールシートに主罫線を加工する主罫線ロールを備え、
     前記罫線ロールには、前記主罫線ロールが含まれている
    ことを特徴とする、請求項1~5の何れか一項に記載のスコアラ。
    A main ruled line roll for processing the main ruled line on the cardboard sheet;
    The scorer according to any one of claims 1 to 5, wherein the ruled line roll includes the main ruled line roll.
  7.  前記段ボールシートに主罫線を加工する主罫線ロールと、
     前記段ボールシートに特殊罫線を加工する特殊罫線ロールとを備え、
     前記罫線ロールには、前記特殊罫線ロールが含まれている
    ことを特徴とする、請求項1~6の何れか一項に記載のスコアラ。
    A main ruled line roll for processing the main ruled line on the cardboard sheet;
    A special ruled line roll for processing special ruled lines on the cardboard sheet;
    The scorer according to any one of claims 1 to 6, wherein the ruled line roll includes the special ruled line roll.
  8.  前記特殊罫線ロールは、前記段ボールシートの搬送方向で、主罫線ロールの上流側に配設されることを特徴とする、請求項7に記載のスコアラ。 The scorer according to claim 7, wherein the special ruled line roll is disposed on the upstream side of the main ruled line roll in the conveying direction of the cardboard sheet.
  9.  前記特殊罫線ロールの前記罫線モータは、前記主罫線ロールを回転駆動するモータよりも、定格出力の低いモータである
    ことを特徴とする、請求項1~請求項5の何れか一項を引用する請求項7、又は、請求項1~請求項5の何れか一項を引用する請求項8に記載のスコアラ。
    The crease motor of the special crease roll is a motor having a lower rated output than a motor that rotationally drives the main crease roll. 9. The scorer according to claim 7, which cites any one of claim 7 or claim 1 to claim 5.
  10.  請求項1~9の何れか一項に記載のスコアラと、ダブルフェーサと、カットオフとを備えたことを特徴とする、段ボールシート製造装置。
     
    A corrugated board manufacturing apparatus comprising the scorer according to any one of claims 1 to 9, a double facer, and a cut-off.
PCT/JP2017/005167 2016-02-18 2017-02-13 Scorer and corrugated cardboard sheet manufacturing device WO2017141875A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016028775A JP6734070B2 (en) 2016-02-18 2016-02-18 Scorer and corrugated board manufacturing equipment
JP2016-028775 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017141875A1 true WO2017141875A1 (en) 2017-08-24

Family

ID=59625983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005167 WO2017141875A1 (en) 2016-02-18 2017-02-13 Scorer and corrugated cardboard sheet manufacturing device

Country Status (2)

Country Link
JP (1) JP6734070B2 (en)
WO (1) WO2017141875A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527625B2 (en) 2020-03-30 2024-08-05 株式会社Isowa Corrugated cardboard box making machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114509A (en) * 1986-10-30 1988-05-19 Suzuki Motor Co Ltd Control system of electric motor car
JPH10194216A (en) * 1997-01-09 1998-07-28 Ishida Co Ltd Packaging machine for article
JP2008045497A (en) * 2006-08-17 2008-02-28 Heishin Engineering & Equipment Co Ltd Drive method and device of uniaxial eccentric screw pump
JP2008291073A (en) * 2007-05-23 2008-12-04 Asahi Kasei Chemicals Corp Mechanical part made of resin
JP2012152937A (en) * 2011-01-24 2012-08-16 Isowa Corp Device for manufacturing of corrugated fiberboard sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820887B2 (en) * 2001-01-18 2006-09-13 株式会社明電舎 AC servo motor overload protection device
JP5597475B2 (en) * 2010-08-06 2014-10-01 株式会社Isowa Cardboard sheet slitter scorer device, slitter knife and scorer position correction control method therefor
JP2015050840A (en) * 2013-09-02 2015-03-16 パナソニック株式会社 Overload protection method and servo motor drive method in servo system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114509A (en) * 1986-10-30 1988-05-19 Suzuki Motor Co Ltd Control system of electric motor car
JPH10194216A (en) * 1997-01-09 1998-07-28 Ishida Co Ltd Packaging machine for article
JP2008045497A (en) * 2006-08-17 2008-02-28 Heishin Engineering & Equipment Co Ltd Drive method and device of uniaxial eccentric screw pump
JP2008291073A (en) * 2007-05-23 2008-12-04 Asahi Kasei Chemicals Corp Mechanical part made of resin
JP2012152937A (en) * 2011-01-24 2012-08-16 Isowa Corp Device for manufacturing of corrugated fiberboard sheet

Also Published As

Publication number Publication date
JP6734070B2 (en) 2020-08-05
JP2017144650A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JPH0750194Y2 (en) Rotary Sha
US11890829B2 (en) Cardboard box dividing device and cardboard box production device
US11541565B2 (en) Cardboard box dividing device and cardboard box production device
US11345108B2 (en) Cardboard box dividing device and cardboard box production device
JP2004525046A (en) Flexible strip folding apparatus and method
JP2009137288A (en) Slitter scorer apparatus for corrugated paperboard sheet, and corrugation apparatus
WO2017141875A1 (en) Scorer and corrugated cardboard sheet manufacturing device
KR101479884B1 (en) Trim-processing method in corrugating machine, corrugating machine, and edge-cutting device
WO2012165615A1 (en) Optical film conveyance method and conveyance apparatus
JP2022093368A (en) Device and method for forming shingled stream of under or overlapping sheets
WO2018155507A1 (en) Corrugated board web cutting device and corrugated board manufacturing device
WO2018155533A1 (en) Sheet supply device and carton forming machine
JPH05318626A (en) Slotter devic in corrugated fibreboard box making machine
JP5548291B1 (en) Sheet material position adjustment method
EP2176154A1 (en) Printing press folder with parallel process transport tapes
WO2020175213A1 (en) Edge-cutting device
JP2007283456A (en) Sheet material cutting apparatus
US6676064B1 (en) Apparatus and method for initiating the winding of webs
CN216945549U (en) Sheet stock feeding mechanism and sheet stock lamination feeding mechanism
JP3610660B2 (en) Panel continuous cutting equipment
JPH04113927U (en) corrugate machine
US20230063869A1 (en) Slitter-scorer apparatus
JPH09300492A (en) Method and apparatus for passing paper through in corrugating machine
WO2012084713A1 (en) Method for correcting the position of a sheet in transport direction and sheet processing machine
CN116553265A (en) Sheet feeding mechanism, sheet lamination feeding mechanism and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753132

Country of ref document: EP

Kind code of ref document: A1