JP2008045497A - Drive method and device of uniaxial eccentric screw pump - Google Patents

Drive method and device of uniaxial eccentric screw pump Download PDF

Info

Publication number
JP2008045497A
JP2008045497A JP2006222461A JP2006222461A JP2008045497A JP 2008045497 A JP2008045497 A JP 2008045497A JP 2006222461 A JP2006222461 A JP 2006222461A JP 2006222461 A JP2006222461 A JP 2006222461A JP 2008045497 A JP2008045497 A JP 2008045497A
Authority
JP
Japan
Prior art keywords
pump
frequency
eccentric screw
torque
screw pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006222461A
Other languages
Japanese (ja)
Inventor
Makoto Abe
誠 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heishin Ltd
Original Assignee
Heishin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heishin Ltd filed Critical Heishin Ltd
Priority to JP2006222461A priority Critical patent/JP2008045497A/en
Publication of JP2008045497A publication Critical patent/JP2008045497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive device of a uniaxial eccentric screw pump, which can use an electric motor of appropriate power depending on power required for a pump, can eliminate malfunction in start of the pump, and can simplify structure of a whole device, reduce weight and size, and improve efficiency. <P>SOLUTION: The drive device 6 for a uniaxial eccentric screw pump 1 is provided with the electric motor 6m controlled by an inverter control means 6c. An inverter parameter of a control means incorporated in an inverter 6i is set to accelerate the pump in two-stages of a first-stage acceleration and a second-stage acceleration. In the first-stage acceleration, a frequency is instantaneously increased from a starting frequency of 0 to 3 Hz up to an intermediate frequency of around 6 Hz, in the start of the pump 1. In the second-stage acceleration, the frequency is slowly increased from the intermediate frequency to a target frequency (for example, 30 Hz) in normal operation of the pump. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、液状食品、液状薬品、固形物含有液、スラリー、高粘度液などの各種被移送物を移送するための一軸偏心ねじポンプにおいて、インバータ制御の電動モータ(インバータモータともいう)によりポンプを起動して運転する駆動方法とその駆動装置に関する。   The present invention relates to a single-shaft eccentric screw pump for transferring various transferred objects such as liquid foods, liquid chemicals, solid-containing liquids, slurries, and high-viscosity liquids, and is pumped by an inverter-controlled electric motor (also referred to as an inverter motor). The present invention relates to a driving method and a driving apparatus for driving the vehicle by starting up.

この種の一軸偏心ねじポンプ(図1の符号1参照)では、公知のように、例えば、ポンプケーシングに電動モータがモータブラケットを介して連結されており、電動モータの出力軸をポンプ駆動軸の一端側と一体に接続し、このポンプ駆動軸の他端側に金属製のカップリングロッドおよびユニバーサルジョイントを介して接続した雄ねじ形ロータ(図1の符号5参照)を、一般的にゴム製の雌ねじ形ステータ(図1の符号3参照)内に回転自在に嵌挿して偏心回転させることにより被移送物を移送する構造からなる。図示は省略するが、電動モータの出力軸がプーリおよびベルトを介してポンプ駆動軸に連結された構造の一軸偏心ねじポンプもある。こうした構造を備える一軸偏心ねじポンプのトルク特性は、定トルクに近い特性であるが、一般的な使用範囲では起動トルクが通常運転時の運転トルクに比べて大きいという特徴がある(図5参照)。これは、弾力性を有するゴム製などのステータの雌ねじ孔内に嵌挿された状態で雄ねじ形ロータがステータとの間で乾いた接触状態から回転が開始されるために、ポンプ起動の際の負荷が大きく、運転状態に比べて強大なトルクを要するからである。   In this type of single-shaft eccentric screw pump (see reference numeral 1 in FIG. 1), as is well known, for example, an electric motor is connected to a pump casing via a motor bracket, and the output shaft of the electric motor is connected to the pump drive shaft. An externally threaded rotor (see reference numeral 5 in FIG. 1) connected integrally to one end side and connected to the other end side of the pump drive shaft via a metal coupling rod and a universal joint is generally made of rubber. It has a structure in which an object to be transferred is transferred by being rotatably inserted into a female screw type stator (see reference numeral 3 in FIG. 1) and rotated eccentrically. Although not shown, there is also a uniaxial eccentric screw pump having a structure in which an output shaft of an electric motor is connected to a pump drive shaft via a pulley and a belt. The torque characteristic of a single-shaft eccentric screw pump having such a structure is a characteristic close to a constant torque, but has a characteristic that the starting torque is larger than the operating torque during normal operation in a general operating range (see FIG. 5). . This is because rotation is started from a dry contact state between the externally threaded rotor and the stator in a state of being inserted into the internally threaded hole of the stator made of rubber or the like having elasticity. This is because the load is large and a strong torque is required compared to the operating state.

従来、上記インバータモータの制御は、周波数に応じて電圧を変更するインバータVF制御によって行われており、この種の制御を用いたインバータ駆動によるモータの始動トルクは、通常定格トルクの100〜150%前後である。そこで始動トルクを向上するために、センサレスベクトル制御を採用することによって改善を図ってきた結果、現状では始動トルクは最大で定格トルクの200%程度まで向上している。   Conventionally, the control of the inverter motor is performed by inverter VF control that changes the voltage according to the frequency, and the starting torque of the motor driven by the inverter using this type of control is normally 100 to 150% of the rated torque. Before and after. Therefore, as a result of improvement by adopting sensorless vector control in order to improve the starting torque, at present, the starting torque is increased to about 200% of the rated torque at the maximum.

以上の状況から、一軸偏心ねじポンプを駆動するための電動モータは、ポンプの運転トルクに基づいて決定されるものではなく、起動トルクで決定されている。したがって、ポンプのトルク・回転速度特性を線図で表した図5に示すように、起動トルクは通常、運転トルクの2倍以上と大きいので、結果的に普通の運転時に必要な定格トルクよりも過大なパワーをもつ電動モータを選定することになる。   From the above situation, the electric motor for driving the uniaxial eccentric screw pump is not determined based on the operating torque of the pump, but is determined based on the starting torque. Therefore, as shown in FIG. 5 which shows the torque / rotational speed characteristics of the pump as a diagram, the starting torque is usually larger than twice the operating torque, and as a result, it is higher than the rated torque required during normal operation. An electric motor with excessive power will be selected.

一方、ポンプの運転トルクを基準にして電動モータを選定した場合には、現状で最大の200%程度まで始動トルクが向上するセンサレスベクトル制御を採用したとしても、起動時に想定以上の負荷がかかって起動不良を引き起こすおそれがある。   On the other hand, when an electric motor is selected based on the operating torque of the pump, even if sensorless vector control that increases the starting torque up to about 200% at the present is adopted, a load higher than expected is applied at startup. There is a risk of starting failure.

また、電動モータの出力軸回転数を適正にするとともに始動トルクの不足を補うために、電動モータとポンプとの間に減速装置(減速機に動力伝達手段を含む)または減速機を介設する方法もしくは減速装置または減速機付きインバータモータを備えた一軸偏心ねじポンプが用いられている。しかし、このポンプの場合、減速装置または減速機を設けることにより、減速機自体の損失が生じ、効率の低下を招くという不都合がある。   Further, in order to make the output shaft speed of the electric motor appropriate and to make up for the shortage of the starting torque, a reduction gear (including a power transmission means in the reduction gear) or a reduction gear is interposed between the electric motor and the pump. A single-shaft eccentric screw pump with a method or reduction gear or an inverter motor with a reduction gear is used. However, in the case of this pump, there is a disadvantage that the reduction of the speed reducer itself is caused by providing the speed reducer or the speed reducer, and the efficiency is lowered.

ところで、図4(a)〜(c)は特許出願人が製造している各ポンプ型式A〜Mの13機種の一軸偏心ねじポンプについて、始動トルク率を変更して起運比(起動トルク/運転トルク)を求め、比較したデータを示す表である。図4(a)は始動トルク率100%(定格トルクの100%)、同図(b)は始動トルク率150%(定格トルクの150%)、同図(c)は始動トルク率300%(定格トルクの300%)である。図4の(a)(b)については起運比(起動トルク/運転トルク)>1であるのに対し、図4(c)については起運比(起動トルク/運転トルク)<1である。そして、起運比>1の場合には、電動モータの動力(必要な容量)が起動トルクで決まるが、起運比<1の場合は、電動モータの動力(必要な容量)が運転トルクで決まることになる。なお、第1圧・第2圧・第3圧は、ポンプに作用する圧力を第3圧を最高圧力として3段階で表している。   By the way, FIGS. 4 (a) to 4 (c) show the motive ratio (starting torque / starting torque / change of starting torque ratio) for 13 types of single-shaft eccentric screw pumps of the pump types A to M manufactured by the patent applicant. It is a table | surface which shows the data which calculated | required and compared the (operation torque). 4A shows a starting torque ratio of 100% (100% of rated torque), FIG. 4B shows a starting torque ratio of 150% (150% of rated torque), and FIG. 4C shows a starting torque ratio of 300% ( 300% of the rated torque). 4 (a) and 4 (b), the luck ratio (starting torque / running torque)> 1, whereas in FIG. 4 (c), the luck ratio (starting torque / running torque) <1. . When the motive ratio> 1, the power (necessary capacity) of the electric motor is determined by the starting torque. When the motive ratio <1, the power (necessary capacity) of the electric motor is the operating torque. It will be decided. The first pressure, the second pressure, and the third pressure are expressed in three stages with the pressure acting on the pump being the third pressure as the maximum pressure.

この発明は上述の点に鑑みなされたもので、ポンプの必要な動力に応じた適正な動力の電動モータが使用でき、ポンプ起動時の起動不良を解消でき、駆動装置の小型化で装置全体の構造の簡略化、軽量化および小型化ならびに効率化が図れる一軸偏心ねじポンプの駆動方法と駆動装置を提供しようとするものである。   The present invention has been made in view of the above points. An electric motor having an appropriate power corresponding to the required power of the pump can be used, and the starting failure at the start of the pump can be eliminated. It is an object of the present invention to provide a driving method and a driving apparatus for a single-shaft eccentric screw pump that can be simplified in structure, reduced in weight, reduced in size, and improved in efficiency.

上記の目的を達成するために本発明に係る一軸偏心ねじポンプの駆動方法は、インバータ制御の電動モータを備えた一軸偏心ねじポンプの駆動方法であって、前記ポンプの起動時に始動周波数から中間周波数まで瞬時に上昇する第1段加速とし、前記ポンプの起動後に前記中間周波数からポンプの通常運転である目標周波数までゆっくりと加速する第2段加速との2段階加速により駆動することを特徴とする。   In order to achieve the above object, a driving method of a single-shaft eccentric screw pump according to the present invention is a driving method of a single-shaft eccentric screw pump provided with an inverter-controlled electric motor, and the intermediate frequency from a starting frequency when the pump is started. First stage acceleration that rises instantaneously until the pump is driven, and is driven by two-stage acceleration with second stage acceleration that slowly accelerates from the intermediate frequency to the target frequency that is normal operation of the pump after the pump is started. .

上記の構成を有する本発明の一軸偏心ねじポンプの駆動方法によれば、ポンプを起動するときに、電動モータの始動トルクが定格トルクの約300%以上のトルクが発生するので、十分な始動トルクが得られる。これによりポンプの起動に必要な、いわゆる起動トルクが運転トルクに比べてに大きい一軸偏心ねじポンプにおいても確実にポンプが起動する。一方、ポンプはいったん起動すると、図5に示すように通常の運転に必要なトルクは急激に低下するので、従来と同様に目標の周波数(例えば30Hz)までゆっくりと上昇し、ポンプは2段階で加速されることになる。したがって、電動モータの選定に関しては、容量(動力)が運転トルクを満たす電動モータを選定すればよい。つまり、運転トルクを基準に電動モータを選定すればよいので、従来に比べて電動モータの容量が小さくて済む。また、従来と違って、始動トルクを高めるために減速装置または減速機を使用する必要がない。これにより、従来に比べて小容量(小動力)の電動モータを使用でき、装置全体の構造が簡略化され、小型・軽量化および効率化が図れる。   According to the driving method of the single-shaft eccentric screw pump of the present invention having the above-described configuration, when the pump is started, a starting torque of the electric motor is generated that is approximately 300% or more of the rated torque. Is obtained. As a result, even in a uniaxial eccentric screw pump in which a so-called starting torque necessary for starting the pump is larger than the operating torque, the pump is reliably started. On the other hand, once the pump is started, the torque required for normal operation rapidly decreases as shown in FIG. 5, so that it slowly rises to the target frequency (for example, 30 Hz) as in the prior art. It will be accelerated. Therefore, regarding the selection of the electric motor, an electric motor whose capacity (power) satisfies the operating torque may be selected. That is, since the electric motor may be selected based on the operating torque, the capacity of the electric motor can be reduced as compared with the conventional case. Further, unlike the prior art, it is not necessary to use a reduction gear or a reduction gear to increase the starting torque. As a result, an electric motor having a small capacity (small power) can be used as compared with the conventional one, the structure of the entire apparatus is simplified, and a reduction in size, weight and efficiency can be achieved.

請求項2に記載のように、前記始動周波数を0〜3Hzとし、中間周波数を6Hz前後とし、前記第1段加速(始動周波数から中間周波数まで加速する)時間を0〜1秒以内にすることができる。   The start frequency is 0 to 3 Hz, the intermediate frequency is around 6 Hz, and the first stage acceleration (acceleration from the start frequency to the intermediate frequency) time is within 0 to 1 second. Can do.

このように加速時間を最大限短縮して中間周波数まで瞬時(1秒以内)に上昇させてモータの回転数を加速すれば、始動トルクが定格トルクのほぼ3倍以上発生するので、始動トルクが必要かつ十分に発揮され、起動トルクが運転トルクに比べて大きい一軸偏心ねじポンプの起動を確実に遂行できる。なお、始動周波数から中間周波数までの上昇時間が例えば2秒乃至それ以上になると、始動トルクが定格トルクの3倍以上になるという上記効果は得られなくなる。これは、本発明が電動モータの直入れ(インバータを介さずに直接電力をモータへ供給する)により奏する作用効果を狙ったものであるから、2秒以上に延びると、直入れ効果が生じなくなるためである。   Thus, if the acceleration time is shortened to the maximum and the motor speed is increased instantaneously (within 1 second) up to the intermediate frequency, the starting torque is generated more than three times the rated torque. The uniaxial eccentric screw pump can be reliably started up when necessary and sufficient and the starting torque is larger than the operating torque. When the rising time from the starting frequency to the intermediate frequency is, for example, 2 seconds or more, the above effect that the starting torque becomes three times or more than the rated torque cannot be obtained. This is intended for the effect of the present invention achieved by direct insertion of an electric motor (supplying electric power directly to the motor without going through an inverter). Because.

上記の目的を達成するために本発明に係る一軸偏心ねじポンプの駆動装置は、インバータ制御手段で制御される電動モータを備えた一軸偏心ねじポンプの駆動装置であって、
前記インバータ制御手段のインバータパラメータが、ポンプの起動時に始動周波数から中間周波数まで瞬時に周波数を上昇する第1段加速と、前記中間周波数からポンプの通常運転である目標周波数までゆっくりと周波数を上昇する第2段加速との2段階で加速するように設定されていることを特徴とする。
In order to achieve the above object, a uniaxial eccentric screw pump driving apparatus according to the present invention is a uniaxial eccentric screw pump driving apparatus including an electric motor controlled by an inverter control means,
The inverter parameter of the inverter control means is a first stage acceleration that instantaneously increases the frequency from the starting frequency to the intermediate frequency when the pump is started, and slowly increases the frequency from the intermediate frequency to the target frequency that is the normal operation of the pump. The second stage acceleration is set so as to accelerate in two stages.

上記の構成を有する本発明に係る一軸偏心ねじポンプの駆動装置によれば、ポンプの起動に際しインバータ制御手段のインバータパラメータが始動周波数から中間周波数まで瞬時に周波数が上昇し、電動モータは定格トルクの略3倍以上の始動トルクを発生し、一軸偏心ねじポンプを起動する。この結果、一軸偏心ねじポンプは起動力不足とならずに確実に起動する。そして、一軸偏心ねじポンプの運転が開始すると、今度は周波数がゆっくりと上昇し、通常の運転の周波数である目標周波数、例えば30Hzまで上昇する。これ以降、一軸偏心ねじポンプは一定速度で回転し被移送物を移送する。なお、この状態で、一軸偏心ねじポンプの回転数を変更する場合は、従来と同様にインバータ制御手段を介してインバータ周波数を上下させれば、容易に変更される。なお、仮に第2加速を含めて全ての加速時間を0に近い時間(瞬時)にした場合には、一般的な電動モータとインバータの選定では電流が過大となってポンプの起動をスムーズに行えなくなるというおそれがある。   According to the drive device for a single-shaft eccentric screw pump according to the present invention having the above-described configuration, when the pump is started, the inverter parameter of the inverter control means instantaneously increases from the starting frequency to the intermediate frequency, and the electric motor has the rated torque. Generates a starting torque that is approximately three times or more, and starts the uniaxial eccentric screw pump. As a result, the single-shaft eccentric screw pump is reliably started without insufficient starting force. Then, when the operation of the uniaxial eccentric screw pump is started, this time, the frequency slowly increases and then increases to a target frequency, for example, 30 Hz, which is a normal operation frequency. Thereafter, the uniaxial eccentric screw pump rotates at a constant speed to transfer the object to be transferred. In this state, when the rotational speed of the single-shaft eccentric screw pump is changed, it can be easily changed by raising and lowering the inverter frequency via the inverter control means as in the prior art. If all the acceleration times including the second acceleration are set to a time close to 0 (instantaneous), the current will be excessive in the selection of a general electric motor and inverter, and the pump can be started smoothly. There is a risk that it will disappear.

請求項4に記載のように、前記始動周波数が0〜3Hzで、中間周波数が6Hz前後であり、前記第1段加速の加速時間が1秒以内にすることができる。   According to a fourth aspect of the present invention, the starting frequency is 0 to 3 Hz, the intermediate frequency is around 6 Hz, and the acceleration time of the first stage acceleration can be made within 1 second.

このように構成すれば、電動モータの直入れと同様の作用効果が発揮され始動トルクが定格トルクのほぼ3倍以上発生するので、始動トルクが必要かつ十分に発揮され、起動トルクが運転トルクに比べて大きい一軸偏心ねじポンプが確実に起動する。   With this configuration, the same effect as direct insertion of the electric motor is exhibited and the starting torque is generated approximately three times or more than the rated torque. Therefore, the starting torque is sufficiently and sufficiently exhibited, and the starting torque becomes the operating torque. The larger single-shaft eccentric screw pump is started reliably.

本発明に係る一軸偏心ねじポンプの駆動方法および駆動装置は、上記の構成からなるので、次のような優れた効果がある。すなわち、従来はインバータ駆動時の電動モータによる始動トルクが定格トルクの100〜150%程度であり、また始動トルク向上のためにセンサレスベクトル制御を採用しても、最大で定格トルクの200%程度の始動トルクしか得られていなかったのに対し、定格トルクの300%以上の始動トルクが得られるようになる。これにより、トルク不足によるポンプ起動の不良などのトラブルが解消し、確実にポンプの起動が行われるようになる。また、電動モータの選定に関して、運転トルクを基準にモータ動力を決定することができるから、従来の起動トルクを基準にモータ動力を決定する場合に比べて低動力のモータとなり、適切な選定となる。さらに、従来に比べて電動モータを小容量化して小型化できるので、装置全体の小型化および軽量化ならびに効率化が図れ、コストダウンも可能になる。   Since the driving method and driving device for the single-shaft eccentric screw pump according to the present invention are configured as described above, the following excellent effects are obtained. That is, conventionally, the starting torque by the electric motor when the inverter is driven is about 100 to 150% of the rated torque, and even if sensorless vector control is adopted to improve the starting torque, the starting torque is about 200% of the rated torque at the maximum. While only the starting torque has been obtained, a starting torque of 300% or more of the rated torque can be obtained. As a result, troubles such as pump start failure due to insufficient torque are solved, and the pump is started reliably. Further, regarding the selection of the electric motor, since the motor power can be determined based on the operating torque, the motor becomes a low-powered motor as compared with the case where the motor power is determined based on the conventional starting torque, which is an appropriate selection. . Further, since the electric motor can be reduced in size and size as compared with the conventional one, the entire apparatus can be reduced in size, weight, efficiency, and cost can be reduced.

以下、この発明に係る一軸偏心ねじポンプの駆動装置と駆動方法について実施の形態を図面に基づいて説明する。   Embodiments of a drive device and a drive method for a uniaxial eccentric screw pump according to the present invention will be described below with reference to the drawings.

図1は一軸偏心ねじポンプと駆動装置の実施例を示す一部を断面で表した側面図である。図2は図1の一軸偏心ねじポンプにおいてポンプ本体とインバータモータとの間にトルク検出器を接続した試験装置を示すブロック図である。   FIG. 1 is a side view, partly in section, showing an embodiment of a uniaxial eccentric screw pump and a driving device. FIG. 2 is a block diagram showing a test apparatus in which a torque detector is connected between the pump body and the inverter motor in the uniaxial eccentric screw pump of FIG.

図1に示すように、一軸偏心ねじポンプ1は横置き型で、略円筒状のポンプケーシング2の一端(図の左側)開口2cにステータ3が連結され、ステータ3の一端に吐出口4aを構成するエンドスタッド4が連結されている。ポンプケーシング2の他端(図の右側)開口2aには駆動軸7があり、この駆動軸7を介して減速機(図示せず)一体型の電動モータ一6mが接続されている。また、電動モーター6mにインバータ6iが接続されている。駆動軸7はカップリングロッド11の一端(図の右側 )に、ユニバーサルジョイント9を介して一体回転可能に接続され、開口2a内の駆動軸先端部分7aの周囲に、軸封装置としてメカニカルシール8が配装されている。メカニカルシール8は詳細な図示は省略するが、スプリングにより軸方向に付勢された可動の摺動環と定位置に固定された摺動環とが接触して一体的に摺動することにより、ポンプケーシング2内の液が外部に漏れ出すのを防止している。カップリングロッド11の、ステータ3側もユニバーサルジョイント10を介してロータ5の一端が接続されている。ポンプケーシング2の長手方向のほぼ中間位置に吸込口(吐出口)2bが形成されている。   As shown in FIG. 1, the uniaxial eccentric screw pump 1 is a horizontal type, and a stator 3 is connected to one end (left side in the figure) opening 2 c of a substantially cylindrical pump casing 2, and a discharge port 4 a is connected to one end of the stator 3. The constituent end studs 4 are connected. The other end (right side in the drawing) of the pump casing 2 has a drive shaft 7, and a reduction gear (not shown) integrated type electric motor 6 m is connected through the drive shaft 7. An inverter 6i is connected to the electric motor 6m. The drive shaft 7 is connected to one end of the coupling rod 11 (right side in the figure) via a universal joint 9 so as to be integrally rotatable, and a mechanical seal 8 as a shaft seal device is provided around the drive shaft tip portion 7a in the opening 2a. Is arranged. Although the detailed illustration of the mechanical seal 8 is omitted, the movable sliding ring biased in the axial direction by the spring and the sliding ring fixed at a fixed position come into contact with each other and slide integrally. The liquid in the pump casing 2 is prevented from leaking outside. One end of the rotor 5 is also connected to the stator 3 side of the coupling rod 11 via the universal joint 10. A suction port (discharge port) 2 b is formed at a substantially intermediate position in the longitudinal direction of the pump casing 2.

ステータ3は軟質の合成樹脂もしくはゴム(本例はゴム)からなり、ロータ5の2倍のピッチからなる横断面長円形の雌ねじ孔3aが螺旋状に形成され、この雌ねじ孔3a内に横断面円形の雄ねじ形ロータ5が回転可能にかつ長軸方向に往復移動可能に嵌挿されている。なお、ステータ3の周囲には金属製の円筒状カバー3bが一体に被装されている。   The stator 3 is made of a soft synthetic resin or rubber (in this example, rubber), and an oval female screw hole 3a having a pitch twice as large as that of the rotor 5 is formed in a spiral shape. A cross section is formed in the female screw hole 3a. A circular externally threaded rotor 5 is inserted so as to be rotatable and reciprocally movable in the long axis direction. A metal cylindrical cover 3 b is integrally mounted around the stator 3.

以上のようにして本発明の実施例に係る一軸偏心ねじポンプ1が構成されるが、この一軸偏心ねじポンプ1の構造は公知で、駆動装置6に本発明の特徴部分がある。すなわち、電動モータ6mには3相かご形誘導モータが使用される。モータ回転速度(r.p.m.)は120×電源周波数[Hz] ×(1−s)/極数で、sは滑りで、定格運転時では通常s=0.03〜0.05である。また、本発明にあっては、電動モータ6mの回転速度(回転数)を制御するインバータ6iに内蔵の制御手段6cは、インバータパラメータが運転開始と同時に、始動周波数0.5Hzから中間周波数6.0Hzまで0.1秒で上昇して加速する第1加速工程と、中間周波数6.0Hzから目標周波数30Hzまで5.0秒かけてゆっくりと上昇して加速する第2加速工程との2段階で加速するように設定されている。   As described above, the uniaxial eccentric screw pump 1 according to the embodiment of the present invention is configured. The structure of the uniaxial eccentric screw pump 1 is known, and the drive device 6 has a characteristic portion of the present invention. That is, a three-phase squirrel-cage induction motor is used for the electric motor 6m. The motor rotation speed (r.p.m.) is 120 × power frequency [Hz] × (1−s) / number of poles, s is slipping, and is normally s = 0.03 to 0.05 during rated operation. In the present invention, the control means 6c built in the inverter 6i for controlling the rotational speed (the number of revolutions) of the electric motor 6m is the same as that of the start frequency 0.5 Hz to the intermediate frequency 6. There are two stages: a first acceleration process that accelerates by increasing to 0 Hz in 0.1 seconds, and a second acceleration process that accelerates by slowly increasing from 5.0 Hz to the target frequency of 30 Hz over 5.0 seconds. It is set to accelerate.

試験装置20では、図2に示すようにポンプ本体1’(一軸偏心ねじポンプ1から駆動装置6を除く部分)と電動モータ6mとの間に、トルク検出器21を介設してトルク表示計22をトルク検出器21に接続し、トルクを表示するようにしている。また、トルク表示計22に信号変換器23を介してパソコン24を接続し、パソコン24にインストールした計測プログラムを用いることにより電圧を基準に一軸偏心ねじポンプ1のトルク(N・mと回転速度(m-1)を瞬時に求めることができる。 In the test apparatus 20, as shown in FIG. 2, a torque detector 21 is interposed between the pump body 1 ′ (the part excluding the drive device 6 from the uniaxial eccentric screw pump 1) and the electric motor 6m, and a torque indicator. 22 is connected to the torque detector 21 to display the torque. In addition, a personal computer 24 is connected to the torque indicator 22 via the signal converter 23, and the torque (N · m and rotational speed (N · m and rotational speed) of the uniaxial eccentric screw pump 1 based on the voltage is used by using a measurement program installed in the personal computer 24. m -1 ) can be obtained instantaneously.

ここで、図3は試験装置20にて上記実施例の一軸偏心ねじポンプ1の起動から通常運転に至る過程において、モータ6mの回転速度(縦軸上段)とトルク(縦軸下段)とを経過時間(横軸)に沿って表したグラフである。同図に示すように、回転速度の最初に山状に突出した箇所が一軸偏心ねじポンプ1の起動時点で、この時点におけるトルク(いわゆる起動トルク)をパソコン24で求めたところ、18.24N・mであり、定格トルク5.98N・mの305%であった。この試験結果から確認できるように、本発明の駆動装置6によれば、定格トルクのほぼ3倍以上の始動トルクを汎用性インバータモータにて得られるから、モータ6mの容量(動力)を従来に比べて低減でき、電動モータが小型化および軽量化された一軸偏心ねじポンプ1になる。   Here, FIG. 3 shows the progress of the rotational speed (vertical axis on the vertical axis) and torque (vertical axis on the vertical axis) of the motor 6m in the process from the start of the uniaxial eccentric screw pump 1 of the above embodiment to the normal operation in the test apparatus 20. It is the graph represented along time (horizontal axis). As shown in the figure, the portion protruding in the shape of a mountain at the beginning of the rotational speed is the starting point of the uniaxial eccentric screw pump 1, and when the torque at this point (so-called starting torque) is obtained by the personal computer 24, 18.24 N · m, which was 305% of the rated torque of 5.98 N · m. As can be confirmed from the test results, according to the driving device 6 of the present invention, a starting torque that is almost three times or more than the rated torque can be obtained by the general-purpose inverter motor, so that the capacity (power) of the motor 6m is conventionally increased. As a result, the electric motor can be reduced in size and weight, and the uniaxial eccentric screw pump 1 can be obtained.

なお、上記制御手段6cにおけるインバータパラメータは一例であり、例えば、始動周波数は0〜3Hzの範囲で、中間周波数は6Hz前後の範囲で、目標周波数は20〜60Hzの範囲で、始動周波数から中間周波数までの上昇時間は0〜1秒以内で、また中間周波数から目標周波数までの上昇時間は5〜10秒程度の範囲でそれぞれ適宜決定できる。   The inverter parameter in the control means 6c is an example. For example, the start frequency is in the range of 0 to 3 Hz, the intermediate frequency is in the range of around 6 Hz, the target frequency is in the range of 20 to 60 Hz, and the start frequency is changed to the intermediate frequency. The rise time up to the target frequency can be appropriately determined within a range of about 5 to 10 seconds.

以上に本発明の実施例に係る駆動装置6を備えた一軸偏心ねじポンプ1について説明したが、一軸偏心ねじポンプの構造については限定するものではなく、例えばカップリングロッド11およびユニバーサルジョイント10に代えてフレキシブルロッドを用いることができ、また横置き型に代えて縦置き型に適用することもできる。   Although the uniaxial eccentric screw pump 1 including the driving device 6 according to the embodiment of the present invention has been described above, the structure of the uniaxial eccentric screw pump is not limited. For example, the uniaxial eccentric screw pump is replaced with the coupling rod 11 and the universal joint 10. A flexible rod can be used, and it can be applied to a vertical type instead of a horizontal type.

本発明の駆動装置を備えた一軸偏心ねじポンプの実施例を示す一部を断面で表した側面図である。It is the side view which represented in part the section which shows the example of the uniaxial eccentric screw pump provided with the drive device of the present invention. 図1の一軸偏心ねじポンプにおいてポンプ本体とインバータモータとの間にトルク検出器を接続した試験装置を示すブロック図である。It is a block diagram which shows the test apparatus which connected the torque detector between the pump main body and the inverter motor in the uniaxial eccentric screw pump of FIG. 試験装置20にて上記実施例(図1参照)の一軸偏心ねじポンプ1の起動から通常運転に至る過程において、一軸偏心ねじポンプ1の回転速度(縦軸上段)とトルク(縦軸下段)とを経過時間(横軸)に沿って表したグラフである。In the process from the start of the uniaxial eccentric screw pump 1 in the above embodiment (see FIG. 1) to the normal operation in the test apparatus 20, the rotational speed (upper ordinate) and torque (lower ordinate) of the uniaxial eccentric screw pump 1 Is a graph showing the elapsed time along the elapsed time (horizontal axis). 図4(a)〜(c)は特許出願人が製造している各ポンプ型式A〜Mの13機種の一軸偏心ねじポンプについて、始動トルク率を変更して起運比(起動トルク/運転トルク)を求め、比較したデータを示す表で、図4(a)は始動トルク率100%(定格トルクの100%)、同図(b)は始動トルク率150%(定格トルクの150%)、同図(c)は始動トルク率300%(定格トルクの300%)である。4 (a) to 4 (c) show the motive ratio (starting torque / running torque) by changing the starting torque rate for 13 types of single-shaft eccentric screw pumps of each pump type A to M manufactured by the patent applicant. FIG. 4 (a) shows a starting torque ratio of 100% (100% of rated torque), FIG. 4 (b) shows a starting torque ratio of 150% (150% of rated torque), FIG. 3C shows a starting torque rate of 300% (300% of rated torque). 一軸偏心ねじポンプのトルク特性を示すグラフで、縦軸はトルク、横軸は回転速度である。It is a graph which shows the torque characteristic of a uniaxial eccentric screw pump, a vertical axis | shaft is a torque and a horizontal axis is a rotational speed.

符号の説明Explanation of symbols

1 一軸偏心ねじポンプ
1’ポンプ本体
2 ポンプケーシング
2a・2c開口
2b吸込口
3 ステータ
4 エンドスタッド
5 ロータ
6 駆動装置
6m電動モータ
6iインバータ
6cインバータ制御手段
7 駆動軸
7a駆動軸7の先端部分
8 軸封装置(メカニカルシール)
9・10 ユニバーサルジョイント
11 カップリングロッド
20 試験装置
21 トルク検出器
22 トルク表示計
23 信号変換器
24 パソコン
DESCRIPTION OF SYMBOLS 1 Uniaxial eccentric screw pump 1 'Pump main body 2 Pump casing 2a, 2c opening 2b Suction port 3 Stator 4 End stud 5 Rotor 6 Drive device 6m Electric motor 6i inverter 6c Inverter control means 7 Drive shaft 7a Tip part of drive shaft 7 8 shafts Sealing device (mechanical seal)
9.10 Universal joint 11 Coupling rod 20 Test device 21 Torque detector 22 Torque indicator 23 Signal converter 24 Personal computer

Claims (4)

インバータ制御の電動モータを備えた一軸偏心ねじポンプの駆動方法であって、
前記ポンプの起動時に始動周波数から中間周波数まで瞬時に周波数を上げる第1段加速と、
前記中間周波数からポンプの通常運転である目標周波数までゆっくりと周波数を上げる第2段加速とにより加速することを特徴とする一軸偏心ねじポンプの駆動方法。
A method for driving a single-shaft eccentric screw pump equipped with an inverter-controlled electric motor,
A first stage acceleration that instantaneously increases the frequency from the starting frequency to the intermediate frequency when the pump is activated;
A driving method of a single-shaft eccentric screw pump, characterized by accelerating by a second-stage acceleration that slowly increases the frequency from the intermediate frequency to a target frequency that is normal operation of the pump.
前記始動周波数が0〜3Hzで、中間周波数が6Hz前後であり、前記第1段加速の加速時間が1秒以内である請求項1に記載の一軸偏心ねじポンプの駆動方法。   The method for driving a uniaxial eccentric screw pump according to claim 1, wherein the starting frequency is 0 to 3 Hz, the intermediate frequency is around 6 Hz, and the acceleration time of the first stage acceleration is within 1 second. インバータ制御手段で制御される電動モータを備えた一軸偏心ねじポンプの駆動装置であって、
前記インバータ制御手段は、ポンプの起動時に始動周波数から中間周波数まで瞬時に周波数を上昇する第1段加速と、前記中間周波数からポンプの通常運転である目標周波数までゆっくりと周波数を上昇する第2段加速との2段階で加速が制御されるように、インバータパラメータが設定されていることを特徴とする一軸偏心ねじポンプの駆動装置。
A drive device for a uniaxial eccentric screw pump including an electric motor controlled by an inverter control means,
The inverter control means includes a first stage acceleration that instantaneously increases the frequency from a starting frequency to an intermediate frequency when the pump is started, and a second stage that slowly increases the frequency from the intermediate frequency to a target frequency that is a normal operation of the pump. An inverter parameter is set so that acceleration is controlled in two stages of acceleration, and a drive device for a uniaxial eccentric screw pump, characterized in that:
前記始動周波数が0〜3Hzで、中間周波数が6Hz前後であり、前記第1段加速の加速時間が1秒以内である請求項3に記載の一軸偏心ねじポンプの駆動装置。   The drive device for a single-shaft eccentric screw pump according to claim 3, wherein the starting frequency is 0 to 3 Hz, the intermediate frequency is around 6 Hz, and the acceleration time of the first stage acceleration is within 1 second.
JP2006222461A 2006-08-17 2006-08-17 Drive method and device of uniaxial eccentric screw pump Pending JP2008045497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222461A JP2008045497A (en) 2006-08-17 2006-08-17 Drive method and device of uniaxial eccentric screw pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222461A JP2008045497A (en) 2006-08-17 2006-08-17 Drive method and device of uniaxial eccentric screw pump

Publications (1)

Publication Number Publication Date
JP2008045497A true JP2008045497A (en) 2008-02-28

Family

ID=39179474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222461A Pending JP2008045497A (en) 2006-08-17 2006-08-17 Drive method and device of uniaxial eccentric screw pump

Country Status (1)

Country Link
JP (1) JP2008045497A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216972A (en) * 2008-03-11 2009-09-24 Ricoh Co Ltd Single shaft eccentric screw suction pump, powder toner transfer device, and image forming apparatus
JP2013011187A (en) * 2011-06-28 2013-01-17 Furukawa Industrial Machinery Systems Co Ltd Uniaxial eccentric screw pump
JP2015220905A (en) * 2014-05-20 2015-12-07 株式会社荏原製作所 Pump including electric motor and control method of the same
CN105545732A (en) * 2014-10-23 2016-05-04 台达电子工业股份有限公司 Screw pump operation control method and control system
JP2017144650A (en) * 2016-02-18 2017-08-24 三菱重工印刷紙工機械株式会社 Scorer and corrugated board sheet manufacturing apparatus
JP2021067243A (en) * 2019-10-25 2021-04-30 株式会社ヒラノテクシード Metering pump drive device and coating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216972A (en) * 2008-03-11 2009-09-24 Ricoh Co Ltd Single shaft eccentric screw suction pump, powder toner transfer device, and image forming apparatus
JP2013011187A (en) * 2011-06-28 2013-01-17 Furukawa Industrial Machinery Systems Co Ltd Uniaxial eccentric screw pump
JP2015220905A (en) * 2014-05-20 2015-12-07 株式会社荏原製作所 Pump including electric motor and control method of the same
CN105545732A (en) * 2014-10-23 2016-05-04 台达电子工业股份有限公司 Screw pump operation control method and control system
JP2017144650A (en) * 2016-02-18 2017-08-24 三菱重工印刷紙工機械株式会社 Scorer and corrugated board sheet manufacturing apparatus
WO2017141875A1 (en) * 2016-02-18 2017-08-24 三菱重工印刷紙工機械株式会社 Scorer and corrugated cardboard sheet manufacturing device
JP2021067243A (en) * 2019-10-25 2021-04-30 株式会社ヒラノテクシード Metering pump drive device and coating device
JP7342315B2 (en) 2019-10-25 2023-09-12 株式会社ヒラノテクシード Coating equipment

Similar Documents

Publication Publication Date Title
JP2008045497A (en) Drive method and device of uniaxial eccentric screw pump
KR100202121B1 (en) Control apparatus of compressor for refrigeration cycle
EP2873865B1 (en) Motor-driven compressor
JP6858199B2 (en) Electric pump device
CN103711697A (en) Dry vacuum pump apparatus and control apparatus for the same
KR102207772B1 (en) Cylindrical Symmetrical Volume Machine
EP2282402A1 (en) Electric pump device
JP2952839B2 (en) Startup control device for compressor
JP2009138693A (en) Hermetic compressor
JP2004353672A (en) Vacuum pump device
EP2149708A2 (en) Scroll compressor with bypass ports driven by a line fed permanent magnet sychronous type motor.
JP2007327697A (en) Refrigerating device
CN102639941A (en) Method for controlling electric compressor
JP2007162572A (en) Electric compressor
KR102253094B1 (en) Compressure system
JP2005207368A (en) Air supply device
JP5396034B2 (en) Control device for compressor and control device for electric motor
EP3575604B1 (en) Scroll compressor
KR100638048B1 (en) Method for controlling torque drive of motor
JP2016226184A (en) Compressor motor control device and electrically-driven compressor
JP5243088B2 (en) Electric compressor
JP2007295673A (en) Motor controller
US10385852B2 (en) Method for soft expulsion of a fluid from a compressor at start-up
JP2024061097A (en) Scroll type electric compressor
JP2014206049A (en) Compressor and compressor control method