WO2017138197A1 - 半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器 - Google Patents

半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器 Download PDF

Info

Publication number
WO2017138197A1
WO2017138197A1 PCT/JP2016/082572 JP2016082572W WO2017138197A1 WO 2017138197 A1 WO2017138197 A1 WO 2017138197A1 JP 2016082572 W JP2016082572 W JP 2016082572W WO 2017138197 A1 WO2017138197 A1 WO 2017138197A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
electrode
conductor
semiconductor
solid
Prior art date
Application number
PCT/JP2016/082572
Other languages
English (en)
French (fr)
Inventor
秀晃 富樫
康輔 中西
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020187018971A priority Critical patent/KR102661038B1/ko
Priority to KR1020247013225A priority patent/KR20240058952A/ko
Priority to US16/074,669 priority patent/US11961865B2/en
Priority to JP2017566510A priority patent/JP6883217B2/ja
Priority to CN201680080729.1A priority patent/CN108604592B/zh
Publication of WO2017138197A1 publication Critical patent/WO2017138197A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14638Structures specially adapted for transferring the charges across the imager perpendicular to the imaging plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14667Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • H01L27/0694Integrated circuits having a three-dimensional layout comprising components formed on opposite sides of a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to a semiconductor device, a method for manufacturing the semiconductor device, a solid-state imaging element, and an electronic apparatus.
  • a through electrode penetrating the semiconductor substrate is used to electrically connect the semiconductor substrate (semiconductor chip) between the front surface and the back surface, between a plurality of semiconductor substrates, and between the semiconductor substrate and the dissimilar material film.
  • TCV technology is used to make the electrical connection.
  • the coupling between the through electrode and the element in the semiconductor substrate and the dark current generated from the damaged layer on the side surface of the through electrode deteriorates the device characteristics.
  • a sufficient separation structure is required between them.
  • this separation structure for example, a capacity reduction using a hole or a low dielectric constant material and a dark current suppression structure using a pinning film are known (see, for example, Patent Document 1).
  • a through electrode provided with a sufficient separation mechanism and dark current suppression mechanism requires a large area, which presses the area of other elements in the semiconductor substrate.
  • amplification characteristics and noise characteristics depend on the transistor size, which causes deterioration of transistor characteristics. Further, the ground capacitance between the through electrode and the semiconductor substrate and the wiring capacitance between the through electrode and the transistor are increased.
  • the present disclosure relates to a semiconductor device capable of minimizing the pressure on the area of another element in a semiconductor substrate due to a through electrode, a method for manufacturing the semiconductor device, a solid-state imaging element, and an electronic apparatus having the solid-state imaging element
  • the purpose is to provide.
  • a semiconductor device of the present disclosure includes: A semiconductor element disposed on the first surface side of the semiconductor substrate; A through electrode provided through the semiconductor substrate in the thickness direction of the semiconductor substrate, and leading the charge obtained by the semiconductor element to the second surface side of the semiconductor substrate; and An amplification transistor that outputs an electrical signal based on the charge guided by the through electrode;
  • the amplification transistor has a through electrode as a gate electrode, and has a source region and a drain region around the through electrode.
  • a method for manufacturing a semiconductor device of the present disclosure for achieving the above object is as follows.
  • a semiconductor device including an amplifying transistor that outputs an electric signal based on an electric charge guided by a through electrode The through electrode is used as the gate electrode of the amplification transistor, and the source region and the drain region of the amplification transistor are formed around the through electrode.
  • a solid-state imaging device of the present disclosure for achieving the above object is A photoelectric conversion element disposed on the first surface side of the semiconductor substrate; A through electrode that is provided through the semiconductor substrate in the thickness direction of the semiconductor substrate and guides the electric charge obtained by photoelectric conversion in the photoelectric conversion element to the second surface side of the semiconductor substrate; and An amplification transistor that outputs an electrical signal based on the charge guided by the through electrode;
  • the amplification transistor has a through electrode as a gate electrode, and has a source region and a drain region around the through electrode.
  • an electronic apparatus according to the present disclosure for achieving the above object includes the solid-state imaging device having the above configuration.
  • the through electrode also serves as the gate electrode of the amplification transistor, it is possible to minimize the pressure on the area of other elements in the semiconductor substrate by the through electrode.
  • the effects described here are not necessarily limited, and any of the effects described in the present specification may be used. Moreover, the effect described in this specification is an illustration to the last, Comprising: It is not limited to this, There may be an additional effect.
  • FIG. 1A is a cross-sectional view showing the solid-state image sensor of Example 1, and FIG. 1B is a cross-sectional view along the line AA in FIG. 1A.
  • FIG. 2 is a circuit diagram illustrating an equivalent circuit of a pixel in the solid-state imaging device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating the solid-state imaging device according to the second embodiment.
  • FIG. 4A is a cross-sectional view illustrating the solid-state imaging device according to the third embodiment, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A.
  • FIG. 5 is a cross-sectional view illustrating the solid-state imaging device according to the fourth embodiment.
  • FIG. 6A is a cross-sectional view of the solid-state image sensor of the first example of the fifth embodiment
  • FIG. 6B is a cross-sectional view of the solid-state image sensor of the second example of the fifth embodiment.
  • 7A, 7B, and 7C are process diagrams (part 1) of the method for manufacturing the solid-state imaging device according to the sixth embodiment.
  • 8A and 8B are process diagrams (part 2) of the method for manufacturing the solid-state imaging device according to the sixth embodiment.
  • FIG. 9A is a plan view of a solid-state imaging device of a reference example
  • FIG. 9B is a side cross-sectional view taken along the line CC of FIG. 9A.
  • FIG. 10A is a plan view of the solid-state image sensor of Example 7, and FIG.
  • FIG. 10B is a side sectional view of the solid-state image sensor of Example 7.
  • FIG. 11A is a plan view of the solid-state imaging device according to the eighth embodiment, and FIG. 11B is a side sectional view of the solid-state imaging device according to the eighth embodiment.
  • 12A is a plan view of the solid-state image sensor of Example 9, and FIG. 12B is a side sectional view of the solid-state image sensor of Example 9.
  • FIG. 13A is a plan view of the solid-state image sensor of the first example of Example 10
  • FIG. 13B is a plan view of the solid-state image sensor of the second example of Example 10.
  • 14A is a side cross-sectional view of the solid-state image sensor of the first example of Example 11, and FIG.
  • FIG. 14B is a side cross-sectional view of the solid-state image sensor of the second example of Example 11.
  • FIG. FIG. 15A is a plan view of the solid-state image sensor of Example 12, and FIG. 15B is a side sectional view of the solid-state image sensor of Example 12.
  • FIG. 16A is a plan view of the solid-state image sensor of Example 13, and FIG. 16B is a side cross-sectional view of the solid-state image sensor of Example 13.
  • 17A is a plan view of the solid-state image sensor of Example 14, and FIG. 17B is a side sectional view of the solid-state image sensor of Example 14.
  • 18A is a plan view of the solid-state image sensor of Example 15, and FIG. 18B is a side cross-sectional view of the solid-state image sensor of Example 15.
  • FIG. 19A is a plan view of the solid-state image sensor of Example 16, and FIG. 19B is a side sectional view of the solid-state image sensor of Example 16.
  • 20A is a plan view of the solid-state image sensor of Example 17, and FIG. 20B is a side sectional view of the solid-state image sensor of Example 17.
  • FIG. 21A is a plan view of the solid-state image sensor of Example 18, and FIG. 21B is a side sectional view of the solid-state image sensor of Example 18.
  • 22A, 22B, and 22C are process diagrams (No. 1) of the method for manufacturing the solid-state imaging device according to Example 19.
  • FIG. 23A and 23B are process diagrams (part 2) of the method of manufacturing the solid-state imaging device according to the nineteenth embodiment.
  • FIG. 24A and 24B are process diagrams (part 3) of the method for manufacturing the solid-state imaging element according to the nineteenth embodiment.
  • 25A and 25B are process diagrams (part 4) of the method for manufacturing the solid-state imaging device according to the nineteenth embodiment.
  • FIG. 26 is a block diagram illustrating a configuration of an imaging apparatus that is an example of the electronic apparatus of the present disclosure.
  • Example 1 solid-state imaging device according to one embodiment of the present disclosure
  • Example 2 Modification of Example 1 4
  • Example 3 Modification of Example 1
  • Example 4 Modification of Example 1 6
  • Example 5 Modification of Examples 1 to 4) 7).
  • Example 6 (Method for Manufacturing Solid-State Imaging Device of Example 1) 8). Reference example (basic configuration when through electrodes and transistors are mounted together) 9. Example 7 (Amplifier Transistor Channel Structure) 10. Example 8 (Electron-conversion vertical two-color spectroscopy backside illuminated solid-state imaging device) 11. Example 9 (Modification of Example 8) 12 Example 10 (modification of Example 9) 13. Example 11 (Modification of Example 8) 14 Example 12 (Solid-state imaging device having high-performance transistor operation and isolation characteristics) 15. Example 13 (Modification of Example 12) 16. Example 14 (modification of Example 7 to Example 12) 17. Example 15 (Modification of Examples 7 to 12) 18. Example 16 (Modification of Examples 1 to 12) 19. Example 17 (Solid-state imaging device functioning as wavelength conversion device) 20. Example 18 (Modification of Example 17) 21. Example 19 (Method for manufacturing solid-state imaging device of Example 7) 22. Electronic device of the present disclosure (example of imaging device)
  • the semiconductor substrate can be configured to use a silicon substrate. Furthermore, not only silicon materials but also various semiconductor materials such as compound materials and organic semiconductor materials can be used as the constituent material of the semiconductor substrate. In addition, any configuration in which a photoelectric conversion element is / is not formed in a semiconductor substrate can be employed.
  • the semiconductor device has two transparent electrodes stacked on the first surface side of the semiconductor substrate. It can be set as the structure which consists of a photoelectric converting film pinched
  • the through-electrode is provided with a conductor penetrating the semiconductor substrate, and the conductor It can be set as the structure which consists of a separation layer which electrically isolates between semiconductor substrates.
  • the constituent material of the conductor not only one kind of metal material but also several kinds of metal materials can be combined.
  • it contains one or more doped silicon materials such as PDAS (Phosphorus Doped Amorphous Silicon) and one or more metal materials (conductive materials) such as aluminum, tungsten, titanium, cobalt, hafnium, and tantalum.
  • the separation layer is configured by an insulating film that covers the side wall of the conductor. Can do. Further, the thickness of the insulating film can be different depending on the position in the depth direction of the semiconductor substrate. Further, the insulating film material can be a multilayer.
  • the source region and the drain region of the amplification transistor are present in the vicinity of the insulating film, and the semiconductor It can be configured by a diffusion layer formed over part or all of the depth direction of the substrate.
  • the semiconductor device of the present disclosure including the above-described preferable configuration, the manufacturing method thereof, the solid-state imaging device, and the electronic device include the planar transistor formed on the plane of the semiconductor substrate.
  • the thickness of the gate oxide film may be different from the thickness of the gate oxide film of the amplification transistor.
  • the constituent material of the gate oxide film of the planar transistor may be different from the constituent material of the gate oxide film of the amplification transistor.
  • the semiconductor device of the present disclosure including the above-described preferred configuration, the manufacturing method thereof, and the solid-state imaging device and the electronic device include a cap electrode made of a conductor provided on the top of the through electrode.
  • the cap electrode can be configured to extend to the vicinity of the source region, drain region, or channel region of the amplification transistor.
  • the conductor includes at least one layer in the length direction, and at least one kind of conductive material. It can be made of a constitutional material.
  • the conductor may be configured by a first conductor that functions as a gate electrode of an amplification transistor and a second conductor that is continuous with the first conductor.
  • the work function for setting the operation range of the amplification transistor as desired for the first conductor It can be set as the structure which has these.
  • the insulating film that separates the first conductor and the semiconductor substrate can be configured to be thinner than the insulating film that separates the second conductor from the semiconductor substrate and made of a high dielectric constant material.
  • the second conductor can be configured to be smaller in diameter than the first conductor and made of a conductive material.
  • the thickness of the insulating film around the first conductor and the second conductivity can be configured differently.
  • the insulating film around the second conductor can be made of a low dielectric constant insulating film.
  • the insulating film around the second conductor is connected to the second conductor. It is preferable to constitute a separation structure for electrically separating the second conductor and the semiconductor substrate together with the intervening holes.
  • the fixed charge amount applied to the insulating film around the first conductor and the fixed charge amount applied to the insulating film around the second conductor can be different from each other.
  • the gate electrode of the amplification transistor has a cross-sectional shape that is circular or rectangular. It can be set as the structure which is a square.
  • pixels (unit pixels) including photoelectric conversion elements which are examples of semiconductor elements are arranged in a two-dimensional matrix in a first direction (row direction) and a second direction (column direction).
  • the solid-state image sensor which consists of can be illustrated.
  • the semiconductor device of the present disclosure is not limited to a solid-state image sensor.
  • the technology of the present disclosure is formed by mounting a through electrode provided so as to penetrate a semiconductor substrate in the thickness direction and an amplification transistor that outputs an electric signal based on a charge guided by the through electrode. Applicable to all semiconductor devices.
  • a semiconductor device using a piezoelectric sensor element as a semiconductor element disposed on the first surface side of the semiconductor substrate can be exemplified.
  • a solid-state imaging device which is an example of the semiconductor device of the present disclosure will be described as an example.
  • the structure is widely adopted. However, this filter structure may cause false colors.
  • a structure in which photoelectric conversion regions that photoelectrically convert light of each wavelength of red, green, and blue are stacked in the vertical direction (optical axis direction) of the same pixel is conventionally used.
  • a structure in which the photoelectric conversion region is installed outside the semiconductor substrate for example, a structure in which the photoelectric conversion element is disposed on the semiconductor substrate and the photoelectric conversion signal is accumulated in the semiconductor substrate is employed (for example, Japanese Patent Application Laid-Open No. 2010-2010). 278086 and JP2011-138927).
  • the through electrode generally has a central portion made of a conductive material, and an insulating film is formed between the central portion made of the conductive material and the semiconductor substrate.
  • the through electrode penetrates the semiconductor substrate and is connected to the modulation transistor and the floating diffusion (floating diffusion layer). For this reason, a capacitance occurs between the through electrode and the semiconductor substrate. When this capacitance is large, the conversion efficiency for converting the electric charge from the photoelectric conversion element into an electric signal is lowered. In order to reduce the capacitance, it is relatively easy to increase the distance between the through electrode and the semiconductor substrate, but in that case, since the ratio of the through electrode in the pixel plane increases, The element area is enlarged.
  • Example 1 Solid-state imaging device according to one aspect of the present disclosure Configuration of source region and drain region of amplification transistor
  • Example 2 Configuration of modification / source region and drain region of amplification transistor
  • Example 3 Example 1 Modification / Penetration Electrode Shape
  • Example 4 Modification of Example 1 / Arrangement of Other Semiconductor Substrate
  • Example 5 Modification of Examples 1 to 4 / Capacitance Reduction of Through Electrode
  • Example 6 Example Reference Example 1 for Manufacturing Method of Solid-State Imaging Device: Basic Configuration when Through Electrode and Transistor are Mixed
  • Example 7 Channel Structure of Amplifying Transistor
  • Example 8 Back-illuminated Solid of Electronic Conversion Type Vertical Two-Color Spectroscopy Image Sensor
  • Example 9 Modification of Example 8 / Wiring Back Side Structure of Through Electrode
  • Example 10 Modification of Example 9 / Wiring Back Side Structure
  • Example 1 relates to a solid-state imaging device according to an aspect of the present disclosure.
  • FIG. 1A shows a cross-sectional view of the solid-state imaging device of Example 1
  • FIG. 1B shows a cross-sectional view along the line AA in FIG. 1A.
  • FIG. 2 shows an equivalent circuit diagram of pixels in the solid-state imaging device of the first embodiment.
  • FIG. 1A shows a cross-sectional structure of one pixel (unit pixel) 10.
  • a photoelectric conversion element 13 is laminated on the first surface side of a semiconductor substrate (semiconductor chip) 11 via an interlayer insulating film 12.
  • the photoelectric conversion element 13 includes, for example, two transparent electrodes 131 and 132 and a photoelectric conversion film 133 sandwiched between the transparent electrodes 131 and 132.
  • a through electrode 14 is provided in the semiconductor substrate 11, and the semiconductor substrate 11 in the thickness direction. It is provided to penetrate through.
  • a wiring layer 16 is provided on the second surface side of the semiconductor substrate 11 via a gate oxide film (insulating film) 15.
  • the wiring layer 16 an element constituting the pixel, for example, the gate electrode 21 G of the reset transistor 21, a gate electrode 22 G of the amplification transistor 22, and a gate electrode 23 G of the select transistor 23 is formed.
  • diffusion layers 31 to 34 are formed in the surface layer portion on the second surface side of the semiconductor substrate 11.
  • the diffusion layer 31 becomes a drain region of the reset transistor 21.
  • the diffusion layer 32 becomes a source region of the reset transistor 21 and also becomes a floating diffusion (floating diffusion layer) FD.
  • the floating diffusion FD is a charge voltage conversion unit (charge detection unit) that converts charges into voltage.
  • the diffusion layer 33 becomes the source region of the amplification transistor 22 and the drain region of the selection transistor 23.
  • the diffusion layer 34 becomes a source region of the selection transistor 23.
  • a reset control line 41 that transmits a reset control signal RST to the gate electrode 21 G of the reset transistor 21 and a selection control line 42 that transmits a selection control signal SEL to the gate electrode 23 G of the selection transistor 23 are wiring layers. 16 is formed. Further, a vertical signal line 43 that transmits a pixel signal output from the amplification transistor 22, a wiring 44 that electrically connects the gate electrode 22 G of the amplification transistor 22 and the floating diffusion FD, and a drain region of the reset transistor 21. A wiring 45 or the like for applying a fixed potential is formed in the wiring layer 16.
  • the reset control signal RST is applied to the gate electrode 21 G of the reset transistor 21 through the reset control line 41.
  • a selection control signal SEL is applied to the gate electrode 23 G of the selection transistor 23 through a selection control line 42.
  • the reset control signal RST and the selection control signal SEL are output from a vertical scanning unit (row scanning unit) (not shown) in units of, for example, pixel rows in a pixel array in which the pixels 10 are arranged in a matrix (two-dimensional matrix).
  • the gate electrode 22 G of the amplification transistor 22 is electrically connected to the photoelectric conversion element 13 via the wiring 46 and is also electrically connected to the floating diffusion FD via the wiring 44.
  • the drain region of the amplification transistor 22 is electrically connected to a power supply line 47 having a power supply potential V DD via a wiring 48.
  • the source region of the selection transistor 23 is connected to the vertical signal line 43.
  • N-type MOSFETs are used as the three transistors of the reset transistor 21, the amplification transistor 22, and the selection transistor 23.
  • the combination of the conductivity types of the three transistors 21 to 23 exemplified here is merely an example, and the combination is not limited to these combinations. That is, a combination using a P-type MOSFET can be used as appropriate.
  • the selection transistor 23 may have a circuit configuration connected between the power supply potential V DD and the drain region of the amplification transistor 22.
  • the reset transistor 21 becomes conductive when the reset control signal RST is applied to the gate electrode 21 G , and the retained charge of the floating diffusion FD is discarded to the wiring 45 having a fixed potential. Reset the floating diffusion FD.
  • the amplification transistor 22 outputs an electric signal having a level corresponding to the potential of the floating diffusion FD.
  • the selection transistor 23 becomes conductive when a selection control signal SEL is applied to its gate electrode 23 G , and the pixel 10 is selected and outputs an electrical signal supplied from the amplification transistor 22 to the vertical signal line 43.
  • the solid-state imaging device of Example 1 is a photoelectric conversion element.
  • Reference numeral 13 denotes a back-illuminated solid-state imaging device laminated on the back surface (first surface) side.
  • the through electrode 14 for guiding the charge obtained by the photoelectric conversion in the photoelectric conversion device 13 to the second surface side of the semiconductor substrate 11 is the gate electrode 22 of the amplification transistor 22. Also serves as G.
  • the through electrode 14 has a structure in which a side wall thereof is covered with an insulating film 141 and a conductor 142 is embedded in the center thereof.
  • the central conductor 142 functions as a vertical gate electrode of the amplification transistor 22 and at the same time, penetrates from the back surface side to the front surface side of the semiconductor substrate 11 for supplying a photoelectric conversion current from the photoelectric conversion element 13. It also functions as an electrode.
  • the insulating film 141 constitutes a separation layer that electrically separates the conductor 142 and the semiconductor substrate 11.
  • FIG. 1B is a cross-sectional view along the line AA in FIG. 1A.
  • the cross-sectional shape of the through electrode 14 is circular.
  • “circular” includes not only a strictly circular shape but also a substantially circular shape, and the presence of various variations caused by design or manufacturing is allowed.
  • the diffusion layer 33 serving as the source region is formed on the front surface side of the semiconductor substrate 11, whereas the diffusion layer 35 serving as the drain region is formed on the back surface side of the semiconductor substrate 11.
  • the through electrode 14 can function as the amplification transistor 22.
  • the amplification transistor 22 is a vertical transistor.
  • a power supply potential V DD is applied from the power supply line 47 to the drain region (diffusion layer 35) of the amplification transistor 22 through the wiring 48.
  • the photoelectric conversion film 133 of the photoelectric conversion element 13 may be made of, for example, an organic photoelectric conversion material containing a rhodamine dye, a melocyanine dye, quinacridone, or the like.
  • the film thickness of the insulating film 141 may be different.
  • the gate oxide film 15 of the planar transistor is made of a constituent material such as a silicon oxide film, TEOS (Tetra Ethyl Ortho Silicate), a silicon nitride film, or a silicon oxynitride film, and may include voids therein.
  • TEOS Tetra Ethyl Ortho Silicate
  • the constituent materials of the gate oxide film (insulating film 141) of the amplification transistor 22 are as follows. That is, silicon oxide, silicon oxynitride, hafnium oxide, aluminum oxide, zirconium oxide, tantalum oxide, titanium oxide, lanthanum oxide, praseodymium oxide, cerium oxide, neodymium oxide, promethium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide , Dysprosium oxide, holmium oxide, thulium oxide, ytterbium oxide, lutetium oxide, yttrium oxide, aluminum nitride film, hafnium oxynitride film, aluminum oxynitride film, and the like.
  • the constituent material of the conductor 142 in the center is, for example, a doped silicon material such as PDAS (Phosphorus Doped Amorphous Silicon), or a metal material such as aluminum, tungsten, titanium, cobalt, hafnium, tantalum ( One or more conductive materials). That is, the constituent material of the conductor 142 may be a combination of not only one type of metal material but also several types of metal materials.
  • PDAS Phosphorus Doped Amorphous Silicon
  • metal material such as aluminum, tungsten, titanium, cobalt, hafnium, tantalum
  • a silicon substrate can be used as the semiconductor substrate 11.
  • the semiconductor substrate 11 is not limited to a silicon material but can be implemented by various semiconductor materials such as a compound material and an organic semiconductor material.
  • a photodiode which is a photoelectric conversion element may be formed in the semiconductor substrate 11 or may not be formed. When the photodiode is not formed, the thickness of the semiconductor substrate 11 can be reduced, so that the capacitance of the through electrode 14 can be reduced. By reducing the capacitance, the conversion efficiency for converting the electric charge from the photoelectric conversion element 13 into an electric signal can be improved.
  • Example 2 is a modification of Example 1.
  • a cross-sectional view of the solid-state imaging device of Example 2 is shown in FIG.
  • the amplification transistor 22 configured using the through electrode 14 has a configuration in which the source region is disposed on the front surface side of the semiconductor substrate 11 and the drain region is disposed on the back surface side of the semiconductor substrate 11.
  • the source region and the drain region of the amplification transistor 22 are not limited to those in the first embodiment, and are present in the vicinity of the insulating film 141 and formed over a part or the entire region of the semiconductor substrate 11 in the depth direction.
  • the diffusion layer 33 and the diffusion layer 35 can be configured.
  • the source region and the drain region of the amplification transistor 22 are both provided on the surface side of the semiconductor substrate 11.
  • the drain region of the amplification transistor 22 is provided on the front surface side of the semiconductor substrate 11, the power source line of the power source potential V DD can be shared with the power source line of the other power source potential V DD in the drain region.
  • the area can be reduced.
  • Example 3 is a modification of Example 1.
  • a cross-sectional view of the solid-state imaging device of Example 3 is shown in FIG. 4A, and a cross-sectional view taken along line BB of FIG. 4A is shown in FIG. 4B.
  • the cross-sectional shape of the through electrode 14 is circular.
  • the cross-sectional shape of the through electrode 14 is a rectangle (actually a round rectangle with rounded corners).
  • a diffusion layer 33 serving as a source region and a diffusion layer 35 serving as a drain region are formed on both sides of the short side of the through electrode 14 from the front surface side to the back surface side of the semiconductor substrate 11.
  • the diffusion layers 33 and 35 are formed from the front surface side to the back surface side of the semiconductor substrate 11.
  • one is provided on the front surface side and the other is provided on the back surface side. It may be.
  • the through electrode 14 has a rectangular cross-sectional shape, and has a structure in which the diffusion layer 33 serving as the source region and the diffusion layer 35 serving as the drain region are formed on both sides of the short side. It is possible to align the crystal plane orientation of the side walls. As a result, the dark current / white point characteristics can be improved, and the degree of freedom in designing the channel length and width can be improved.
  • the cross-sectional shape of the through electrode 14 is not limited to a rectangle, and various shapes such as a perfect circle, an ellipse, and a shape other than a rectangle can be employed. Further, the shape may be different for each depth position in the depth direction (longitudinal direction) of the through electrode 14.
  • Example 4 is a modification of Example 1.
  • a cross-sectional view of the solid-state imaging device of Example 4 is shown in FIG.
  • the photoelectric conversion element 13 is disposed on the first surface side (back surface side) of the semiconductor substrate 11, and the semiconductor substrate 17 is disposed on the second surface side (front surface side).
  • a reset transistor 21 and an amplification transistor 22 using the through electrode 14 as a gate electrode are formed on the back surface side of the semiconductor substrate 11, that is, on the photoelectric conversion element 13 side.
  • a selection transistor 23 is formed on the semiconductor substrate 17 on the front side.
  • the semiconductor substrate 11 and the semiconductor substrate 17 are electrically connected via connection electrodes 44 such as bumps.
  • the selection transistor 23 is formed.
  • the size of the region where the pixel 10 is formed can be reduced by the amount not formed. Thereby, further miniaturization of the pixel 10 becomes possible.
  • Example 5 is a modification of Example 1 to Example 4.
  • a cross-sectional view of the solid-state image sensor of the first example of Example 5 is shown in FIG. 6A, and a cross-sectional view of the solid-state image sensor of the second example of Example 5 is shown in FIG. 6B.
  • the thickness of the conductor 142 is constant in the depth direction of the semiconductor substrate 11, and the insulating film 141 around the conductor 142 is the film.
  • the thickness is formed to change in the depth direction of the semiconductor substrate 11.
  • the cross-sectional shape of the insulating film 141 becomes a tapered shape in which the film thickness is thin on one surface side of the semiconductor substrate 11 and the film thickness is thick on the other surface side.
  • the taper-shaped angle is, for example, in the range of 90 to 70 degrees.
  • the outer diameter (thickness) of the through electrode 14 changes in the depth direction of the semiconductor substrate 11.
  • the outer diameter of the through electrode 14 is constant in the depth direction of the semiconductor substrate 11.
  • the conductor 142 is formed so that its thickness changes in the depth direction of the semiconductor substrate 11 while the outer diameter of the through electrode 14 is constant.
  • the insulating film 141 around the conductor 142 is formed so that its film thickness changes in the depth direction of the semiconductor substrate 11.
  • the insulating film 141 is thin on one surface side of the semiconductor substrate 11 and thick on the other surface side. It becomes a shape. As described above, by changing the thickness of the insulating film 141 around the conductor 142 in the depth direction of the semiconductor substrate 11, that is, depending on the position in the depth direction, the capacitance of the entire through electrode 14 is changed. Therefore, the conversion efficiency for converting the electric charge from the photoelectric conversion element 13 into an electric signal can be improved.
  • Example 6 relates to a method for manufacturing the solid-state imaging device of Example 1.
  • 7 to 8 show process diagrams of the method for manufacturing the solid-state imaging device according to the sixth embodiment.
  • the solid-state imaging devices of Examples 2 to 5 can be manufactured by combining a manufacturing method described below with a manufacturing method of a known semiconductor device.
  • a process after forming a first conductivity type well (not shown), a second conductivity type photodiode, or the like in the semiconductor substrate 11 will be described.
  • various semiconductor materials such as a compound material and an organic semiconductor material can be used in addition to a silicon material.
  • a through hole 51 for the through electrode 14 is formed by dry etching or the like, and a gate oxide film (insulating film) 15 is formed.
  • the through hole 51 can also be used as a mark for increasing the overlay accuracy on the front surface side and the back surface side of the semiconductor substrate 11. Further, it can be formed simultaneously with a vertical transistor for transfer as described in JP-A-2008-66742.
  • the source region (diffusion layer 33) and drain region (diffusion layer 35) of the amplification transistor 22 can be formed before the through hole 51 is formed.
  • the source region (diffusion layer 33) and drain region (diffusion layer 35) in the solid-state imaging device of Example 3 can be formed by oblique ion implantation into the side wall of the through hole 51.
  • the material of the conductor 142 of the through electrode 14 that becomes the gate electrode of the amplification transistor 22, that is, the metal material (conductive material) is embedded in the through hole 51, and at the same time, It is also deposited on the flat part.
  • a support substrate (not shown) or another semiconductor substrate is joined to the surface side of the semiconductor substrate 11 and turned upside down.
  • an insulating film 142 is formed in order to avoid a short circuit between the semiconductor substrate 11 and the through electrode 14.
  • a technique described in JP 2012-175067 A can be used.
  • a film 54 having a negative fixed charge is laminated.
  • two or more types of films having negative fixed charges can be stacked.
  • an interlayer insulating film is deposited, contacts are formed by dry etching, and the photoelectric conversion elements 13 are stacked (see FIG. 1).
  • a protective film such as silicon nitride may be formed on the photoelectric conversion element 13.
  • an optical member such as a flat film is formed to form an on-chip lens.
  • FIG. 9A A plan view of the solid-state imaging device of the reference example is shown in FIG. 9A, and a side sectional view thereof is shown in FIG. 9B.
  • FIG. 9B is a sectional side view taken along the line CC of FIG. 9A.
  • the amplification characteristics and noise characteristics depend on the transistor size. Accompany. Further, the ground capacitance between the through electrode and the semiconductor substrate and the wiring capacitance between the through electrode and the transistor are increased.
  • 9A and 9B show, as transistors constituting the pixel 10, a reset transistor 21 that resets the floating diffusion FD, and an amplification transistor that outputs an electric signal (pixel signal) obtained by charge-voltage conversion in the floating diffusion FD. 22.
  • the through electrode 14 and the amplification transistor 22 are provided apart from each other, thereby ensuring a sufficient separation structure between the through electrode 14 and the amplification transistor 22.
  • the gate electrode 22 G of the amplification transistor 22 and the through electrode 14 are electrically connected by the wiring 61.
  • Example 7 relates to a solid-state imaging device corresponding to the solid-state imaging device of the reference example, that is, a solid-state imaging device when the technology of the present disclosure is used.
  • FIG. 10A shows a plan view of the solid-state imaging device of Example 7, and
  • FIG. 10B shows a side sectional view thereof.
  • the structure of the solid-state image sensor of Example 7 is basically the same as the structure of the solid-state image sensor of Example 1.
  • the diffusion layer 33 serving as a source region (hereinafter sometimes referred to as “source region 33”) is a semiconductor substrate.
  • 11 is disposed on the front surface side of the semiconductor substrate 11, and a diffusion layer 35 serving as a drain region (hereinafter sometimes referred to as “drain region 35”) is disposed on the back surface side of the semiconductor substrate 11.
  • the solid-state imaging device of Example 7 has a configuration in which both the source region 33 and the drain region 35 are arranged on the surface side of the semiconductor substrate 11. That is, in the solid-state imaging device of Example 7, the source region 33, the drain region 35, and the channel region are formed in part of the semiconductor on the side surface of the through electrode 14, and the channel width is set in the depth direction of the semiconductor substrate 11 ( This is a vertical transistor in the vertical direction.
  • the gate electrode 22 G for the amplification transistor 22 and the gate electrode 22 G and the through electrode 14 are electrically connected.
  • the wiring 61 connected to is lost.
  • the source region 33 and the drain region 35 and the wiring 62 and the wiring 63 that are located in the vicinity of the gate electrode 22 G for the amplification transistor 22 are the same as the through electrode 14 and the semiconductor substrate 11. It is arranged on the side surface of the through electrode 14 which has been avoided for separation.
  • the pixel 10 can be designed with a smaller area.
  • the gate electrode 22 G and the wirings 61 to 63 existing in the solid-state imaging device of the reference example are not necessary, the wiring capacity of the amplification transistor 22 can be reduced.
  • the channel width of the amplification transistor 22 is formed in the depth direction of the semiconductor substrate 11 along both side surfaces of the through electrode 14.
  • the channel width of the amplification transistor 22 can be freely extended and designed without the demerit of increasing the area occupied by the layout, so that good transistor characteristics can be obtained.
  • the outer periphery of the through electrode 14 can be used as shown in FIG. 10A.
  • the channel length can be designed to be large in area efficiency as compared with a normal surface (planar) transistor.
  • Example 8 relates to a back-illuminated solid-state imaging device of electronic conversion type longitudinal two-color spectroscopy.
  • a plan view of the solid-state image sensor of Example 8 is shown in FIG. 11A, and a side sectional view thereof is shown in FIG. 11B.
  • the solid-state imaging device of Example 8 has a structure in which a first semiconductor substrate 71 and a second semiconductor substrate 72 are bonded together.
  • the first semiconductor substrate 71 a photoelectric conversion element for photoelectrically converting the light of relatively long wavelength incident from the lower side in the figure, for example, photodiode PD 1 is formed.
  • the first semiconductor substrate 71 further includes a reset transistor 21 that resets the floating diffusion FD, the through electrode 14, an amplification transistor 22 that uses the conductor 142 of the through electrode 14 as a gate electrode, and a wiring 73 associated therewith. ing.
  • the first semiconductor substrate 71 further holds, reads, amplifies charges (electrons) photoelectrically converted by the photodiode PD 1 , A plurality of transistors to be selected are formed.
  • the second semiconductor substrate 72 is bonded to the first semiconductor substrate 71 so as to be positioned in the light incident direction (downward in the figure).
  • the second semiconductor substrate 72 further includes a read transistor 74 that reads out the electric charge photoelectrically converted by the photodiode PD 2 to the floating diffusion FD, and wiring associated therewith.
  • a read transistor 74 that reads out the electric charge photoelectrically converted by the photodiode PD 2 to the floating diffusion FD, and wiring associated therewith.
  • the floating diffusion FD formed on the second semiconductor substrate 72 and the through electrode 14 functioning as the gate electrode of the amplification transistor 22 are located in the vicinity of the amplification transistor 22. They are electrically connected by the formed wiring 73. Thereby, the solid-state image sensor of Example 8 becomes a back-illuminated solid-state image sensor of electronic conversion type longitudinal two-color spectroscopy.
  • the first semiconductor substrate 71 performs amplification or selective driving of the potential according to the potential of the through electrode 14, that is, the amount of light received on the short wavelength side.
  • the lower second semiconductor substrate 72 can be configured with a small number of elements, so that the light receiving area of the photodiode PD 2 can be set wide.
  • the through electrode 14 serves also as the gate electrode of the amplification transistor 22 for the elements necessary for the upper first semiconductor substrate 71, the area efficiency of the pixel 10 is good and the transistor characteristics can be secured well.
  • the case where an N-type channel transistor is formed is illustrated, but a P-type channel transistor is formed depending on the element configuration and design in the first semiconductor substrate 71 and the second semiconductor substrate 72. May be.
  • the source region and drain region for that purpose it is conceivable to use an N-type semiconductor, a P-type semiconductor, or a metal as a constituent material.
  • the first semiconductor substrate 71 and the second semiconductor substrate 72 need not be limited to commonly used silicon materials, and can be implemented by any semiconductor material such as a compound material or an organic semiconductor material.
  • Example 9 is a modification of Example 8.
  • a plan view of the solid-state image sensor of Example 9 is shown in FIG. 12A, and a side sectional view thereof is shown in FIG. 12B.
  • the wiring 73 is connected to the through electrode 14 on the surface of the first semiconductor substrate 71 where the amplification transistor 22 is formed.
  • the wiring 73 is connected from the second semiconductor substrate 72 on the short wavelength side to the through electrode 14. This makes it possible to form the reset transistor 21 on a surface different from the surface on which the amplification transistor 22 is formed on the first semiconductor substrate 71, or on the second semiconductor substrate 72, so that the layout of the elements constituting the pixel 10 is increased. Can be improved.
  • Example 10 is a modification of Example 9.
  • a plan view of the solid-state imaging device of Example 10 is shown in FIG. 13A, and a side sectional view thereof is shown in FIG. 13B.
  • the source region (diffusion layer 32) of the reset transistor 21 and the floating diffusion FD on the second semiconductor substrate 72 side are electrically connected using the wiring 73 of the through electrode 14 and It was.
  • the floating diffusion FD on the second semiconductor substrate 72 side is used as the source region (diffusion layer 32) of the reset transistor 21.
  • Example 11 is a modification of Example 8.
  • a plan view of the solid-state imaging device of Example 11 is shown in FIG. 14A, and a side sectional view thereof is shown in FIG. 14B.
  • the through electrode 14 and the first semiconductor substrate 71 it is not necessary to completely insulate the through electrode 14 and the first semiconductor substrate 71 in the entire region. By electrically connecting the through electrode 14 and the first semiconductor substrate 71 without insulating a part thereof, the potential of the through electrode 14 can be fixed without using the wiring 73 of the through electrode 14. It is.
  • the drain region 35 and the source region 33 of the amplification transistor 22 are not diagonally arranged in the circumferential direction of the through electrode 14, for example, arranged in an arc of the clock 3 o'clock direction and the clock 6 o'clock direction.
  • the through electrode 14 and the floating diffusion FD on the first semiconductor substrate 71 side are electrically connected in a half direction.
  • “clock 3 o'clock direction”, “clock 6 o'clock direction”, and “clock 10 o'clock direction” are strictly the clock 3 o'clock direction, the clock 6 o'clock direction, and the watch 10 o'clock half direction.
  • Floating diffusion FD becomes a source region of the reset transistor 21 form a MOS transistor with a drain region having a fixed potential (diffusion layer 31) and the gate electrode 21 G.
  • the potential of the through electrode 14 is reset to the fixed potential of the drain region 35 by setting the reset transistor 21 in a conductive state. In this way, even if the wiring 73 of the through electrode 14 is not used, the through electrode 14 and the first semiconductor substrate 71 are electrically connected without electrically insulating a part thereof, whereby the potential of the through electrode 14 is increased. Can be fixed.
  • Example 12 relates to a solid-state imaging device having high-performance transistor operation and separation characteristics.
  • a plan view of the solid-state image sensor of Example 12 is shown in FIG. 15A, and a side sectional view thereof is shown in FIG. 15B.
  • FIG. 15A A plan view of the solid-state image sensor of Example 12 is shown in FIG. 15A, and a side sectional view thereof is shown in FIG. 15B.
  • FIG. 15B A plan view of the solid-state image sensor of Example 12 is shown in FIG. 15A, and a side sectional view thereof is shown in FIG. 15B.
  • N-type channel transistor is formed will be described as an example. However, it is not limited to the formation of an N-type channel transistor.
  • the central conductor 142 is composed of at least one layer in the length direction, and is composed of at least one type of conductive material.
  • the conductor 142 includes a first conductor 142A and a second conductor 142B continuous thereto.
  • the first conductor 142A functions as a gate electrode of the amplification transistor 22, and has a work function for setting the drive range of the amplification transistor 22 as desired.
  • the second conductor 142B is made of a conductive material having a smaller diameter and a higher work function than the first conductor 142A.
  • the upper insulating film 141A around the first conductor 142A and the lower insulating film 141B around the second conductor 142B have different film thicknesses. ing. Specifically, the upper insulating film 141A is thinner than the lower insulating film 141B and is made of a high dielectric constant material (high dielectric constant film).
  • the lower insulating film 141B is made of a low dielectric constant insulating film around most of the lower side of the second conductor 142B, and the void 75 is interposed between the second conductor 142B and the second conductor 142B.
  • the second conductor 142B and the semiconductor substrate 11 are electrically separated from each other. That is, since the second conductor 142B has a smaller diameter than the first conductor 142A, the vacant area is used for separation. As a result, good amplification characteristics can be obtained as the transistor operation of the amplification transistor 22, and the coupling between the semiconductor substrate 11 and the through electrode 14 can be suppressed in a small area, so that the capacitance of the through electrode 14 can be reduced.
  • the fixed charge amount applied to the upper insulating film 141A around the first conductor 142A is different from the fixed charge amount applied to the lower insulating film 141B around the second conductor 142B. It can be configured. Moreover, the effect which suppresses a dark current can be heightened by doping the semiconductor substrate 11 side with a P-type impurity as needed.
  • a region 76 is an accumulation doping region doped with a P-type impurity.
  • a stable and good amplification operation can be performed within the driving range of the changing potential.
  • This function and effect are the gate electrode (first conductor 142A) of the amplification transistor 22, the upper insulating film 141A made of a high dielectric constant thin film, and the channel shape / concentration, which have a work function for operating in the driving range. This is realized by controlling the transistor capacitance and suppressing the transistor capacitance fluctuation.
  • the amplification transistor 22 it is possible to suppress coupling with elements in the semiconductor substrate 11, suppress the capacitance of the through electrode 14, or suppress dark current generation. These are sufficient separation between the side surface of the through electrode 14 and the semiconductor substrate 11 (film thickness, low dielectric constant), sufficient accumulation of accumulation in the side semiconductor region, conductor of work function, application of fixed charge. Etc.
  • the semiconductor material is not particularly limited, but a semiconductor including at least Si, Ge, Ga, In, and Zn as a representative example can be exemplified.
  • Examples of other constituent elements include Al, P, S, Cl, Cu, As, Se, Cd, Sn, and Sb.
  • the lower insulating film 141B made of a low dielectric constant insulating film imparting a fixed charge is not particularly limited, but the following materials can be exemplified. Hafnium oxide, aluminum oxide, zirconium oxide, tantalum oxide, titanium oxide, lanthanum oxide, praseodymium oxide, cerium oxide, neodymium oxide, promethium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, thulium oxide Ytterbium oxide, lutetium oxide, yttrium oxide, aluminum nitride film, hafnium oxynitride film, aluminum oxynitride.
  • the isolation structure that electrically isolates the side surface of the through electrode 14 and the semiconductor substrate 11 is not particularly limited, but in addition to the holes 75, a porous material, TEOS, a silicon oxide film, a silicon nitride film Further, it can be realized by the above-described low dielectric constant insulating film that imparts a fixed charge.
  • the material of the conductor 142 of the through electrode 14 is not particularly limited, and examples thereof include BDAS silicon, PDAS silicon, and materials including at least Cu, Al, Ni, W, Co, Mo, Ti, and Ts. be able to.
  • Example 13 is a modification of Example 12.
  • a plan view of the solid-state image sensor of the first example of Example 13 is shown in FIG. 16A, and a plan view of the solid-state image sensor of the second example of Example 12 is shown in FIG. 16B.
  • the shape of the through electrode 14 may be an ellipse as shown in FIG. 16A in addition to a perfect circle, or an arbitrary shape such as a polygon including a quadrangle as shown in FIG. 16B. Further, in the depth direction of the semiconductor substrate 11, the shape may be the same in all regions, or the shape may be different for each depth position.
  • a polygonal shape as the shape of the through electrode 14 used as the gate electrode of the amplification transistor 22 and designing the channel length in the plane orientation direction with high carrier mobility, the transistor characteristics can be further improved.
  • Example 14 is a modification of Example 7 to Example 12.
  • a side sectional view of the solid-state imaging device of the first example of Example 14 is shown in FIG. 17A, and a side sectional view of the solid-state imaging device of the second example of Example 14 is shown in FIG. 17B.
  • both the source region 33 and the drain region 35 of the amplification transistor 22 are arranged near the surface of the semiconductor substrate 11.
  • the source region 33, the drain region, and the drain region extend over the entire region in the depth direction of the semiconductor substrate 11.
  • the region 35 and the channel region are formed (corresponding to Example 3).
  • the source region 33, the drain region 35, and the channel region are formed at different depth positions in the depth direction of the semiconductor substrate 11.
  • Example 15 is a modification of Example 7 to Example 12.
  • a plan view of the solid-state image sensor of Example 15 is shown in FIG. 18A, and a side sectional view of the solid-state image sensor of Example 15 is shown in FIG. 18B.
  • the source region 33 and the drain region 35 of the amplifying transistor 22 are arranged diagonally in the circumferential direction of the through electrode 14, that is, through The electrode 14 is disposed so as to face each other.
  • the source region 33 and the drain region 35 are arranged off-diagonally in the circumferential direction of the through electrode 14.
  • the positional relationship between the source region 33 and the drain region 35 in the circumferential direction of the through electrode 14 can be arbitrarily set from the viewpoint of controlling the channel length of the amplification transistor 22.
  • Example 16 is a modification of Example 1 to Example 12.
  • a plan view of the solid-state image sensor of Example 16 is shown in FIG. 19A, and a side sectional view of the solid-state image sensor of Example 16 is shown in FIG. 19B.
  • the through electrode 14 is used as the gate electrode, and a side channel in the circumferential direction between the source region 33 and the drain region 35 is used as the channel. It was.
  • the cap electrode 81 made of a conductor provided on the top of the through electrode 14 is extended to the source region 33, the drain region 35, or the vicinity of the channel region. ing.
  • the amplification transistor 22 becomes a surface channel type transistor including the cap electrode 81, the source region 33, and the drain region 35.
  • Example 17 relates to a solid-state imaging element that functions as a wavelength conversion element.
  • a plan view of the solid-state image sensor of Example 17 is shown in FIG. 20A, and a side sectional view of the solid-state image sensor of Example 17 is shown in FIG. 20B.
  • Example 8 the through electrode 14 was connected to the floating diffusion FD on the second semiconductor substrate 72 side different from the first semiconductor substrate 71 on which the through electrode 14 was formed.
  • the connection destination of the through electrode 14 does not need to be another second semiconductor substrate 72, but is a wiring, a conductor, or a heterogeneous semiconductor disposed on the side of the first semiconductor substrate 71 opposite to the amplification transistor 22. May be.
  • the through electrode 14 is connected to the photoelectric conversion element 82 disposed on the opposite side of the semiconductor substrate 11 corresponding to the first semiconductor substrate 71 from the amplification transistor 22.
  • the photoelectric conversion element 82 includes, for example, two transparent electrodes 821 and 822 and a photoelectric conversion film 823 sandwiched between the transparent electrodes 821 and 822. In the photoelectric conversion element 82, photoelectric conversion corresponding to the absorption wavelength of the photoelectric conversion film 823 is performed.
  • a light emitting element 83 is formed on the semiconductor substrate 11. The light emitting element 83 has an input terminal connected to the output terminal of the amplification transistor 22 and is driven to emit light by the amplification transistor 22.
  • the potential of the through electrode 14 varies with the accumulation of carriers generated by photoelectric conversion in the photoelectric conversion device 82.
  • the output terminal voltage of the amplification transistor 22 on the surface side of the semiconductor substrate 11 changes due to the potential fluctuation of the through electrode 14.
  • the light emitting element 83 is driven to emit light by the output terminal voltage of the amplification transistor 22.
  • the light emitting element 83 light emission of another wavelength with a light amount corresponding to the light absorption amount of the photoelectric conversion film 823 is realized.
  • the photoelectric conversion element 82 receives incident light, converts the light into light having a different wavelength according to the amount of light absorbed by the photoelectric conversion film 823, and emits light. As a function.
  • Example 18 is a modification of Example 17.
  • a plan view of the solid-state image sensor of Example 18 is shown in FIG. 21A, and a side sectional view of the solid-state image sensor of Example 18 is shown in FIG. 21B.
  • Example 18 instead of the light-emitting element 83 of Example 14, the photodiode PD 1 was formed in that region on the semiconductor substrate 11, and the reset transistor 21 was further formed with the through electrode 14 interposed therebetween. Yes. That is, the configuration of the semiconductor substrate 11 of Example 18 is the same as the configuration of the first semiconductor substrate 71 of Example 8. Therefore, Example 18 is also a modification of Example 8.
  • the solid-state imaging device of Example 18 has a structure in which the through electrode 14 is connected to the photoelectric conversion element 82 in the semiconductor substrate 11 on which the photodiode PD 1 is formed. According to the solid-state image sensor of Example 18 having this structure, it is possible to realize a solid-state image sensor that performs spectroscopy in the vertical direction.
  • Example 19 relates to a method for manufacturing the solid-state imaging device of Example 7.
  • Process diagrams of a method of manufacturing a solid-state imaging device according to Example 19 are shown in FIGS.
  • the solid-state imaging devices of Examples 8 to 18 can be manufactured by combining a manufacturing method described below with a manufacturing method of a known semiconductor device.
  • the semiconductor substrate 11 is etched to form a trench 91 that becomes a transistor portion of the through electrode 14.
  • an insulating film 141 is formed as an isolation layer in the trench 91, and a conductive material is embedded to form a conductor 142.
  • a cap electrode 81 is formed on the top of the conductor 142.
  • the channel portion is covered with a mask 93 and an implant is performed to form the source region 33 and the drain region 35 of the amplification transistor 22.
  • the source region 33 and the drain region 35 may be formed by implanting before wiring, or obliquely inclined to the side surfaces of the trench 91 so as to enter only the side surfaces of the source region 33 and the drain region 35 after the trench 91 is formed. It may be formed with a directional implant. Alternatively, only two side surfaces of the trench 91 may be selectively deposited, or a high concentration doping material left by selective etching may be doped by solid phase diffusion by annealing.
  • the channel can also be formed by the same method as the formation of the source region 33 and the drain region 35 except that the target concentration is different.
  • contacts and wirings 94 are formed on the conductor 142, and an interlayer insulating film 95 or the like is applied.
  • an adhesive material surface is attached to the support substrate 96, and the semiconductor substrate 11 is uniformly etched from the opposite direction of the transistor formation surface to reduce the substrate film thickness as much as necessary.
  • the corresponding portion of the semiconductor substrate 11 is selectively etched so that the conductor 142 is exposed, and then, in the step of FIG. 24B, the separation layer 97 is formed on the selectively etched portion. Embed.
  • etching is selectively performed so that the conductor 142 is exposed again from the separation layer 97 embedded in the previous process, and then electrical connection is performed in the process of FIG. 25B.
  • a conductor 98 is embedded.
  • an insulating film, an adhesive material, an electrode material, and the like are deposited in accordance with a device to be created, and electrical connection to a desired element is performed.
  • the processes other than the main processing and manufacturing process of the through electrode 14 are omitted, but if necessary, doping of the well, doping for increasing accumulation, or impurity activation before, during and after the trench formation. Then, an annealing process for defect recovery, an oxide film forming process, and the like can be performed.
  • the configuration preferable for the transistor forming portion and the preferable configuration other than the transistor portion as shown in Example 7 can be easily made, and high device characteristics can be obtained.
  • the technology of the present disclosure has been described by taking a solid-state imaging device as an example of a semiconductor device. Then, by applying the technique of the present disclosure to the solid-state imaging device, the through electrode 14 also serves as the gate electrode of the amplification transistor 22, thereby reducing the proportion of the through electrode 14 in the pixel plane. The effect
  • the solid-state imaging devices of the first to fifth embodiments and the seventh to nineteenth embodiments described above are imaging devices such as digital still cameras and video cameras, portable terminal devices having an imaging function such as a mobile phone, and image reading. It can be used as an imaging unit (image capturing unit) in electronic devices such as a copying machine that uses a solid-state imaging device for the unit.
  • the above-described module form mounted on an electronic device, that is, a camera module is used as an imaging device.
  • FIG. 26 is a block diagram illustrating a configuration of an imaging apparatus that is an example of the electronic apparatus of the present disclosure.
  • the imaging apparatus 100 includes an optical system 101 including a lens group, an imaging unit 102, a DSP circuit 103 which is a camera signal processing unit, a frame memory 104, a display device 105, and a recording device 106. , An operation system 107, a power supply system 108, and the like.
  • the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, the operation system 107, and the power supply system 108 are connected to each other via a bus line 109.
  • the optical system 101 takes in incident light (image light) from a subject and forms an image on the imaging surface of the imaging unit 102.
  • the imaging unit 102 converts the amount of incident light imaged on the imaging surface by the optical system 101 into an electrical signal for each pixel and outputs the electrical signal as a pixel signal.
  • the DSP circuit 103 performs general camera signal processing, such as white balance processing, demosaic processing, and gamma correction processing.
  • the frame memory 104 is used for storing data as appropriate during the signal processing in the DSP circuit 103.
  • the display device 105 includes a panel type display device such as a liquid crystal display device or an organic EL (electroluminescence) display device, and displays a moving image or a still image captured by the imaging unit 102.
  • the recording device 106 records the moving image or still image captured by the imaging unit 102 on a recording medium such as a portable semiconductor memory, an optical disk, or an HDD (Hard Disk Disk Drive).
  • the operation system 107 issues operation commands for various functions of the imaging apparatus 100 under the operation of the user.
  • the power supply system 108 appropriately supplies various power supplies serving as operation power for the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, and the operation system 107 to these supply targets.
  • the solid-state imaging device according to the first to fifth embodiments or the seventh to nineteenth embodiments described above can be used as the imaging unit 102.
  • this indication can also take the following structures.
  • the amplification transistor has a through electrode as a gate electrode, and has a source region and a drain region around the through electrode.
  • Semiconductor device [2]
  • the through electrode comprises a conductor provided through the semiconductor substrate, and a separation layer for electrically separating the conductor and the semiconductor substrate.
  • the separation layer is composed of an insulating film covering the side wall of the conductor.
  • the thickness of the insulating film varies depending on the position in the depth direction of the semiconductor substrate.
  • the source region and the drain region of the amplification transistor are present in the vicinity of the insulating film, and are formed of a diffusion layer formed over a part or the entire region in the depth direction of the semiconductor substrate.
  • a planar transistor formed on the plane of the semiconductor substrate is provided, The thickness of the gate oxide film of the planar transistor is different from the thickness of the gate oxide film of the amplification transistor.
  • a planar transistor formed on the plane of the semiconductor substrate is provided, The material constituting the gate oxide film of the planar transistor is different from the material constituting the gate oxide film of the amplification transistor.
  • a cap electrode made of a conductor is provided on the top of the through electrode, The cap electrode is provided extending to the vicinity of the source region, drain region, or channel region of the amplification transistor of the amplification transistor.
  • the semiconductor device according to [1] above. [9]
  • the conductor is composed of at least one layer in the length direction and is composed of at least one kind of conductive material.
  • the conductor includes a first conductor that functions as a gate electrode of the amplification transistor, and a second conductor that is continuous with the first conductor.
  • the first conductor has a work function for setting an operation range of the amplification transistor as desired.
  • the insulating film that separates the first conductor from the semiconductor substrate is thinner than the insulating film that separates the second conductor from the semiconductor substrate and is made of a high dielectric constant material.
  • the second conductor is smaller in diameter than the first conductor and is made of a conductive material.
  • the thickness of the insulating film around the first conductor is different from the insulating film around the second conductor.
  • the insulating film around the second conductor is made of a low dielectric constant insulating film.
  • the insulating film around the second conductor constitutes a separation structure that electrically separates the second conductor and the semiconductor substrate together with the voids interposed between the second conductor and the second conductor. ing, The semiconductor device according to [15] above. [17]
  • the fixed charge amount applied to the insulating film around the first conductor is different from the fixed charge amount applied to the insulating film around the second conductor.
  • the semiconductor device according to [16] above. [18] A semiconductor element disposed on the first surface side of the semiconductor substrate, A through electrode provided through the semiconductor substrate in the thickness direction of the semiconductor substrate, and leading the charge obtained by the semiconductor element to the second surface side of the semiconductor substrate; and In manufacturing a semiconductor device including an amplifying transistor that outputs an electric signal based on an electric charge guided by a through electrode, The through electrode is used as the gate electrode of the amplification transistor, and the source region and the drain region of the amplification transistor are formed around the through electrode. A method for manufacturing a semiconductor device.
  • the amplification transistor has a through electrode as a gate electrode, and has a source region and a drain region around the through electrode.
  • the amplification transistor has a through electrode as a gate electrode, and has a source region and a drain region around the through electrode.
  • An electronic device including a solid-state image sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本開示の半導体装置は、半導体基板の第1面側に配置された半導体素子、半導体基板を半導体基板の厚さ方向に貫通して設けられ、半導体素子で得られた電荷を半導体基板の第2面側に導く貫通電極、及び、貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する。

Description

半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器
 本開示は、半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器に関する。
 近年、固体撮像素子等の半導体装置のトレンドとして、平面方向の微細化・集積化に加え、3次元方向の積層による、機能付加、デバイス特性の向上が注目されている。3次元方向の積層には、半導体基板(半導体チップ)の表面-裏面間、複数の半導体基板間、また、半導体基板-異種材料膜を電気的に接続するために、半導体基板を貫通する貫通電極で電気的に接続を行うTCV技術が用いられる。
 TCV技術を用いた半導体装置では、貫通電極と半導体基板内の素子とのカップリングや、貫通電極の側面のダメージ層から発生する暗電流がデバイス特性を劣化させるため、貫通電極と半導体基板との間には十分な分離構造が必要である。この分離構造として、例えば、空孔や低誘電率材料を用いた低容量化、ピニング膜を用いた暗電流抑制構造が知られている(例えば、特許文献1参照参照)。
特開2015-38931号公報
 しかしながら、特許文献1に記載の従来技術では、十分な分離機構、暗電流抑制機構を備え付けた貫通電極は大きな面積が必要となり、半導体基板内の他素子の面積を圧迫することになる。特に、貫通電極とトランジスタとを混載した半導体装置では、増幅特性、ノイズ特性がトランジスタサイズに依存しているため、トランジスタ特性の劣化を伴う。また、貫通電極-半導体基板間の対地容量、貫通電極-トランジスタ間の配線容量が大きくなる。
 本開示は、貫通電極による半導体基板内の他素子の面積への圧迫を最小限に抑えることが可能な半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び当該固体撮像素子を有する電子機器を提供することを目的とする。
 上記の目的を達成するための本開示の半導体装置は、
 半導体基板の第1面側に配置された半導体素子、
 半導体基板を半導体基板の厚さ方向に貫通して設けられ、半導体素子で得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
 貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
 増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する。
 また、上記の目的を達成するための本開示の半導体装置の製造方法は、
 半導体基板の第1面側に配置された半導体素子、
 半導体基板を半導体基板の厚さ方向に貫通して設けられ、半導体素子で得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
 貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備える半導体装置の製造に当たって、
 貫通電極を増幅トランジスタのゲート電極とし、貫通電極の周りに増幅トランジスタのソース領域及びドレイン領域を形成する。
 また、上記の目的を達成するための本開示の固体撮像素子は、
 半導体基板の第1面側に配置された光電変換素子、
 半導体基板を半導体基板の厚さ方向に貫通して設けられ、光電変換素子での光電変換によって得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
 貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
 増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する。また、上記の目的を達成するための本開示の電子機器は、上記の構成の固体撮像素子を備える。
 本開示によれば、貫通電極が増幅トランジスタのゲート電極を兼ねているため、貫通電極による半導体基板内の他素子の面積への圧迫を最小限に抑えることが可能になる。尚、ここに記載された効果に必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。また、本明細書に記載された効果はあくまで例示であって、これに限定されるものではなく、また付加的な効果があってもよい。
図1Aは、実施例1の固体撮像素子を示す断面図であり、図1Bは、図1AのA-A線に沿った断面図である。 図2は、実施例1の固体撮像素子における画素の等価回路を示す回路図である。 図3は、実施例2の固体撮像素子を示す断面図である。 図4Aは、実施例3の固体撮像素子を示す断面図であり、図4Bは、図4AのB-B線に沿った断面図である。 図5は、実施例4の固体撮像素子を示す断面図である。 図6Aは、実施例5の第1例の固体撮像素子の断面図であり、図6Bは、実施例5の第2例の固体撮像素子の断面図である。 図7A、図7B及び図7Cは、実施例6に係る固体撮像素子の製造方法の工程図(その1)である。 図8A及び図8Bは、実施例6に係る固体撮像素子の製造方法の工程図(その2)である。 図9Aは、参考例の固体撮像素子の平面図であり、図9Bは、図9AのC-C線に沿った側断面図である。 図10Aは、実施例7の固体撮像素子の平面図であり、図10Bは、実施例7の固体撮像素子の側断面図である。 図11Aは、実施例8の固体撮像素子の平面図であり、図11Bは、実施例8の固体撮像素子の側断面図である。 図12Aは、実施例9の固体撮像素子の平面図であり、図12Bは、実施例9の固体撮像素子の側断面図である。 図13Aは、実施例10の第1例の固体撮像素子の平面図であり、図13Bは、実施例10の第2例の固体撮像素子の平面図である。 図14Aは、実施例11の第1例の固体撮像素子の側断面図であり、図14Bは、実施例11の第2例の固体撮像素子の側断面図である。 図15Aは、実施例12の固体撮像素子の平面図であり、図15Bは、実施例12の固体撮像素子の側断面図である。 図16Aは、実施例13の固体撮像素子の平面図であり、図16Bは、実施例13の固体撮像素子の側断面図である。 図17Aは、実施例14の固体撮像素子の平面図であり、図17Bは、実施例14の固体撮像素子の側断面図である。 図18Aは、実施例15の固体撮像素子の平面図であり、図18Bは、実施例15の固体撮像素子の側断面図である。 図19Aは、実施例16の固体撮像素子の平面図であり、図19Bは、実施例16の固体撮像素子の側断面図である。 図20Aは、実施例17の固体撮像素子の平面図であり、図20Bは、実施例17の固体撮像素子の側断面図である。 図21Aは、実施例18の固体撮像素子の平面図であり、図21Bは、実施例18の固体撮像素子の側断面図である。 図22A、図22B及び図22Cは、実施例19に係る固体撮像素子の製造方法の工程図(その1)である。 図23A及び図23Bは、実施例19に係る固体撮像素子の製造方法の工程図(その2)である。 図24A及び図24Bは、実施例19に係る固体撮像素子の製造方法の工程図(その3)である。 図25A及び図25Bは、実施例19に係る固体撮像素子の製造方法の工程図(その4)である。 図26は、本開示の電子機器の一例である撮像装置の構成を示すブロック図である。
 以下、本開示の実施例について図面を用いて詳細に説明する。本開示の技術は実施例に限定されるものではなく、実施例における種々の数値や材料などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器、全般に関する説明
2.実施例1(本開示の一態様に係る固体撮像素子)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の変形)
5.実施例4(実施例1の変形)
6.実施例5(実施例1~実施例4の変形)
7.実施例6(実施例1の固体撮像素子の製造方法)
8.参考例(貫通電極とトランジスタとを混載した場合の基本構成)
9.実施例7(増幅トランジスタのチャネル構造)
10.実施例8(電子変換型の縦方向2色分光の裏面照射型固体撮像素子)
11.実施例9(実施例8の変形)
12.実施例10(実施例9の変形)
13.実施例11(実施例8の変形)
14.実施例12(高性能なトランジスタ動作及び分離特性を有する固体撮像素子)
15.実施例13(実施例12の変形)
16.実施例14(実施例7~実施例12の変形)
17.実施例15(実施例7~実施例12の変形)
18.実施例16(実施例1~実施例12の変形)
19.実施例17(波長変換素子として機能する固体撮像素子)
20.実施例18(実施例17の変形)
21.実施例19(実施例7の固体撮像素子の製造方法)
22.本開示の電子機器(撮像装置の例)
<本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器、全般に関する説明>
 本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、半導体基板について、シリコン基板を用いる構成とすることができる。更に、シリコン材料に限らず、化合物材料や有機半導体材料などの様々な半導体材料を半導体基板の構成材料として用いることができる。また、半導体基板内に、光電変換素子を形成する/形成しない、いずれの構成とすることができる。
 上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、半導体素子については、半導体基板の第1面側に積層された、2つの透明電極によって挟まれた光電変換膜から成る構成とすることができる。あるいは又、半導体基板の第1面側に配置された、別の半導体基板に形成された半導体素子から成る構成とすることができる。
 上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、貫通電極について、半導体基板を貫通して設けられた導電体、及び、導電体と半導体基板との間を電気的に分離する分離層から成る構成とすることができる。導電体の構成材料については、1種類の金属材料だけではなく、数種類の金属材料を組み合わせることができる。例えば、PDAS(Phosphorus Doped Amorphous Silicon)等のドープされたシリコン材料や、アルミニウム、タングステン、チタン、コバルト、ハフニウム、タンタル等の金属材料(導電性材料)を1つ以上含む。
 更に、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、分離層について、導電体の側壁を被覆する絶縁膜から成る構成とすることができる。また、絶縁膜の膜厚について、半導体基板の深さ方向の位置に応じて異なる構成とすることができる。また、絶縁膜材料を多層とすることもできる。
 更に、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、増幅トランジスタのソース領域及びドレイン領域について、絶縁膜の近傍に存在し、半導体基板の深さ方向の一部又は全領域に亘って形成された拡散層から成る構成とすることができる。
 また、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、半導体基板の平面上に形成された平面トランジスタを備えており、平面トランジスタのゲート酸化膜の膜厚と、増幅トランジスタのゲート酸化膜の膜厚とが異なる構成とすることができる。あるいは又、平面トランジスタのゲート酸化膜の構成材料と、増幅トランジスタのゲート酸化膜の構成材料とが異なる構成とすることができる。
 また、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、貫通電極の頂部に設けられた、導電体から成るキャップ電極を備えており、キャップ電極について、増幅トランジスタのソース領域、ドレイン領域、もしくはチャネル領域の近傍まで延伸して設けられた構成とすることができる。
 また、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、導電体について、長さ方向において少なくとも1層から成り、少なくとも1種類の導電体性材料から成る構成とすることができる。例えば、導電体について、増幅トランジスタのゲート電極として機能する第1の導電体、及び、第1の導電体に連続する第2の導電体から成る構成とすることができる。
 更に、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、第1の導電体について、増幅トランジスタの動作範囲を所望に設定する仕事関数を有する構成とすることができる。また、第1の導電体と半導体基板とを分離する絶縁膜について、第2の導電体と半導体基板とを分離する絶縁膜よりも薄膜でかつ高誘電率材料から成る構成とすることができる。また、第2の導電体について、第1の導電体よりも小径でかつ導電性材料から成る構成とすることができる。
 更に、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、第1の導電体の周りの絶縁膜の膜厚と、第2の導電体の周りの絶縁膜とが異なる構成とすることができる。また、第2の導電体の周りの絶縁膜について、低誘電率絶縁膜から成る構成とすることができる。
 更に、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、第2の導電体の周りの絶縁膜は、第2の導電体との間に介在する空孔と共に、第2の導電体と半導体基板とを電気的に分離する分離構造を構成していることが好ましい。また、第1の導電体の周りの絶縁膜に付与されている固定電荷量と、第2の導電体の周りの絶縁膜に付与されている固定電荷量とを異なる構成とすることができる。
 また、上述した好ましい構成を含む本開示の半導体装置及びその製造方法、並びに、固体撮像素子及び電子機器にあっては、増幅トランジスタのゲート電極について、その断面形状が円形、あるいは、長方形を含む多角形である構成とすることができる。
 本開示の半導体装置として、半導体素子の一例である光電変換素子を含む画素(単位画素)が、第1の方向(行方向)及び第2の方向(列方向)に2次元マトリクス状に配列されて成る固体撮像素子を例示することができる。但し、本開示の半導体装置としては、固体撮像素子に限られるものではない。具体的には、本開示の技術は、半導体基板をその厚さ方向に貫通して設けられる貫通電極と、貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタとを混載して成る半導体装置全般に適用可能である。一例として、半導体基板の第1面側に配置される半導体素子として圧電センサ素子を用いる半導体装置を例示することができる。
 本明細書においては、本開示の半導体装置の一例である固体撮像素子を例に挙げて説明することとする。固体撮像素子では、光電変換素子を含む画素が2次元マトリクス状に配列された画素配列に対して、R(赤色)、G(緑色)、B(青色)の各色フィルタを平面状に並べたフィルタ構造が広く採用されている。しかし、このフィルタ構造では、偽色が発生する場合がある。
 この偽色の問題を解決するために、従来、同一の画素の縦方向(光軸方向)に、赤色、緑色、青色のそれぞれの波長の光を光電変換する光電変換領域を積層する構造が採られている(例えば、特開2006-120921号公報参照)。また、光電変換領域を半導体基板外に設置する構造、例えば、光電変換素子を半導体基板の上部に配置し、光電変換信号を半導体基板に蓄積する構造が採られている(例えば、特開2010-278086号公報、特開2011-138927号公報参照)。
 上記のような構造を裏面照射型固体撮像素子に適用する場合は、光電変換膜からの電荷を半導体基板に接続するコンタクト部を裏面の半導体表面側に形成する必要がある。裏面側の半導体基板表面は、高温プロセスが適用できないため一般に界面準位が多く、更に、高濃度不純物領域が拡散して空乏層領域が大きくなってしまうため、暗電流が比較的多くなってしまう。そのため、従来は、裏面照射型固体撮像素子において、半導体基板に画素毎の貫通電極を設置し、これを介して光電変換素子からの電荷を、半導体基板の表面側に転送するようにしている(例えば、特開2011-29337号公報参照)。
 ところで、一般的に、貫通電極は、その中心部が導電性材料から構成され、導電性材料から成る中心部と半導体基板との間には絶縁膜が形成される。貫通電極は、半導体基板を貫通し、変調トランジスタとフローティングディフュージョン(浮遊拡散層)に接続される。このため、貫通電極と半導体基板との間には静電容量が生じる。この静電容量が大きいと、光電変換素子からの電荷を電気信号に変換する変換効率が低下してしまう。静電容量を低減させるためには、貫通電極と半導体基板との間の距離を拡大することが比較的容易な対応であるが、その場合、貫通電極が画素平面で占める割合が大きくなるため、素子面積が拡大してしまう。
 以下、実施例に基づき、本開示の半導体装置の一例である固体撮像素子及びその駆動方法について説明する。各実施例は、以下の構成を有する。
実施例1 :本開示の一態様に係る固体撮像素子
      増幅トランジスタのソース領域、ドレイン領域の構成
実施例2 :実施例1の変形/増幅トランジスタのソース領域、ドレイン領域の構成
実施例3 :実施例1の変形/貫通電極の形状
実施例4 :実施例1の変形/他の半導体基板の配置
実施例5 :実施例1~実施例4の変形/貫通電極の容量の低減
実施例6 :実施例1の固体撮像素子の製造方法
参考例  :貫通電極とトランジスタとを混載した場合の基本構成
実施例7 :増幅トランジスタのチャネル構造
実施例8 :電子変換型の縦方向2色分光の裏面照射型固体撮像素子
実施例9 :実施例8の変形/貫通電極の配線裏面側構造
実施例10:実施例9の変形/貫通電極の配線裏面側構造
実施例11:実施例8の変形/貫通電極の配線不要構造
実施例12:高性能なトランジスタ動作及び分離特性を有する固体撮像素子
実施例13:実施例12の変形/貫通電極の形状
実施例14:実施例7~実施例12の変形/ソース領域及びドレイン領域の配置
実施例15:実施例7~実施例12の変形/ソース領域及びドレイン領域の配置
実施例16:実施例1~実施例12の変形/側面チャネルと表面チャネル型トランジスタ      との組み合わせ
実施例17:波長変換素子として機能する固体撮像素子
実施例18:実施例17の変形/貫通電極を挟んでリセットトランジスタを形成する例
実施例19:実施例7の固体撮像素子の製造方法
 実施例1は、本開示の一態様に係る固体撮像素子に関する。実施例1の固体撮像素子の断面図を図1Aに示し、図1AのA-A線に沿った断面図を図1Bに示す。また、実施例1の固体撮像素子における画素の等価回路図を図2に示す。図1Aには、1つの画素(単位画素)10の断面構造を示している。
 図1Aにおいて、半導体基板(半導体チップ)11の第1面側には、層間絶縁膜12を介して光電変換素子13が積層されている。光電変換素子13は、例えば、2つの透明電極131,132と、これらの透明電極131,132によって挟まれた光電変換膜133とから構成されている。この光電変換素子13での光電変換によって得られた電荷を半導体基板11の第2面側に導く(転送する)ために、半導体基板11には貫通電極14が、半導体基板11をその厚さ方向に貫通して設けられている。
 半導体基板11の第2面側には、ゲート酸化膜(絶縁膜)15を介して配線層16が設けられている。配線層16には、画素を構成する素子、例えば、リセットトランジスタ21のゲート電極21G、増幅トランジスタ22のゲート電極22G、及び、選択トランジスタ23のゲート電極23Gが形成されている。リセットトランジスタ21、増幅トランジスタ22、及び、選択トランジスタ23に対応して、半導体基板11の第2面側の表層部には、拡散層31~34が形成されている。
 拡散層31は、リセットトランジスタ21のドレイン領域となる。拡散層32は、リセットトランジスタ21のソース領域となるとともに、フローティングディフュージョン(浮遊拡散層)FDとなる。フローティングディフュージョンFDは、電荷を電圧に変換する電荷電圧変換部(電荷検出部)である。拡散層33は、増幅トランジスタ22のソース領域となるとともに、選択トランジスタ23のドレイン領域となる。拡散層34は、選択トランジスタ23のソース領域となる。
 配線層16には更に、各種の配線が形成されている。具体的には、リセットトランジスタ21のゲート電極21Gにリセット制御信号RSTを伝送するリセット制御線41や、選択トランジスタ23のゲート電極23Gに選択制御信号SELを伝送する選択制御線42が配線層16に形成されている。更に、増幅トランジスタ22から出力される画素信号を伝送する垂直信号線43、増幅トランジスタ22のゲート電極22GとフローティングディフュージョンFDとを電気的に接続する配線44、及び、リセットトランジスタ21のドレイン領域に固定電位を印加する配線45等が配線層16に形成されている。
 すなわち、図2の回路図に示すように、リセットトランジスタ21のゲート電極21Gには、リセット制御線41を通してリセット制御信号RSTが印加される。選択トランジスタ23のゲート電極23Gには、選択制御線42を通して選択制御信号SELが印加される。リセット制御信号RST及び選択制御信号SELは、図示しない垂直走査部(行走査部)から、画素10が行列状(2次元マトリクス状)に配置されて成る画素配列の例えば画素行を単位として出力される。
 増幅トランジスタ22のゲート電極22Gは、配線46を介して光電変換素子13に電気的に接続されるとともに、配線44を介してフローティングディフュージョンFDに電気的に接続されている。増幅トランジスタ22のドレイン領域は、電源電位VDDの電源線47に配線48を介して電気的に接続されている。選択トランジスタ23のソース領域は、垂直信号線43に接続されている。
 図2の回路例では、リセットトランジスタ21、増幅トランジスタ22、及び、選択トランジスタ23の3つのトランジスタとして、例えばN型MOSFETを用いている。但し、ここで例示した3つのトランジスタ21~23の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。すなわち、適宜、P型MOSFETを用いる組み合わせとすることも可能である。また、選択トランジスタ23については、電源電位VDDと増幅トランジスタ22のドレイン領域との間に接続した回路構成をとることも可能である。
 上記の回路構成の画素10において、リセットトランジスタ21は、そのゲート電極21Gにリセット制御信号RSTが印加されることによって導通状態となり、フローティングディフュージョンFDの保持電荷を固定電位の配線45に捨てることによってフローティングディフュージョンFDをリセットする。増幅トランジスタ22は、フローティングディフュージョンFDの電位に応じたレベルの電気信号を出力する。選択トランジスタ23は、そのゲート電極23Gに選択制御信号SELが印加されることによって導通状態となり、画素10を選択状態として増幅トランジスタ22から与えられる電気信号を垂直信号線43に出力する。
 ここで、半導体基板11の第2面、即ち、画素の構成素子や各種の配線を含む配線層16が形成された基板面を表面とするとき、実施例1の固体撮像素子は、光電変換素子13が裏面(第1面)側に積層された裏面照射型固体撮像素子となる。
 上記の構成の裏面照射型固体撮像素子において、光電変換素子13での光電変換によって得られた電荷を半導体基板11の第2面側に導くための貫通電極14は、増幅トランジスタ22のゲート電極22Gを兼ねている。具体的には、貫通電極14は、その側壁が絶縁膜141で被覆され、その中心部に導電体142が埋め込まれた構造となっている。そして、中心部の導電体142は、増幅トランジスタ22の縦型のゲート電極として機能すると同時に、半導体基板11の裏面側から表面側に、光電変換素子13からの光電変換電流を供給するための貫通電極としても機能する。絶縁膜141は、導電体142と半導体基板11とを電気的に分離する分離層を構成している。
 貫通電極14の断面図を図1Bに示す。図1Bは、図1AのA-A線に沿った断面図である。図1Bに示すように、本例では、貫通電極14の断面形状は円形となっている。ここで、「円形」とは、厳密に円形である場合の他、実質的に円形である場合も含み、設計上あるいは製造上生ずる種々のばらつきの存在は許容される。
 増幅トランジスタ22において、ソース領域となる拡散層33が半導体基板11の表面側に形成されているのに対して、ドレイン領域となる拡散層35は、半導体基板11の裏面側に形成されている。このように、半導体基板11の表面側と裏面側にソース領域とドレイン領域を形成することで、貫通電極14は増幅トランジスタ22として機能することが可能となる。この例の場合、増幅トランジスタ22は、縦型トランジスタということになる。増幅トランジスタ22のドレイン領域(拡散層35)には、電源線47から配線48を通して電源電位VDDが印加されている。
 上述した画素10の画素構造において、光電変換素子13の光電変換膜133は、例えば、ローダーミン系色素、メラシアニン系色素、キナクリドン等を含む有機光電変換材料などで構成されていてもよい。また、半導体基板11の平面上に形成された平面トランジスタ(リセットトランジスタ21及び選択トランジスタ23)のゲート酸化膜15と、縦型トランジスタである増幅トランジスタ22のゲート酸化膜、即ち、貫通電極14の側壁の絶縁膜141の膜厚は、異なっていてもよい。
 ゲート酸化膜の構成材料についても同様である、即ち、平面トランジスタのゲート酸化膜15と増幅トランジスタ22のゲート酸化膜とが異なっていてもよい。平面トランジスタのゲート酸化膜15は、例えば、シリコン酸化膜、TEOS(Tetra Ethyl Ortho Silicate)、シリコン窒化膜、シリコン酸窒化膜等の構成材料から成り、中に空隙を含んでいてもよい。
 増幅トランジスタ22のゲート酸化膜(絶縁膜141)の構成材料については次の通りである。すなわち、酸化ケイ素、酸窒化ケイ素、酸化ハフニウム、酸化アルミニウム、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化ランタン、酸化プラセオジム、酸化セリウム、酸化ネオジム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、酸化イットリウム、窒化アルミニウム膜、酸窒化ハフニウム膜、酸窒化アルミニウム膜等を1つ以上含む。
 貫通電極14において、中心部の導電体142の構成材料は、例えば、PDAS(Phosphorus Doped Amorphous Silicon)等のドープされたシリコン材料や、アルミニウム、タングステン、チタン、コバルト、ハフニウム、タンタル等の金属材料(導電性材料)を1つ以上含む。すなわち、導電体142の構成材料は、1種類の金属材料だけではなく、数種類の金属材料を組み合わせてもよい。
 半導体基板11としては、シリコン基板を用いることができる。但し、半導体基板11は、シリコン材料に限らず、化合物材料や有機半導体材料などの様々な半導体材料でも実施可能である。また、半導体基板11内に、光電変換素子であるフォトダイオードを形成してもよいし、形成しなくてもよい。フォトダイオードを形成しない場合は、半導体基板11の厚さを薄くすることができるため、貫通電極14の容量を低減することが可能になる。この容量の低減により、光電変換素子13からの電荷を電気信号に変換する変換効率を向上できる。
 実施例2は、実施例1の変形である。実施例2の固体撮像素子の断面図を図3に示す。実施例1では、貫通電極14を用いて構成される増幅トランジスタ22に関して、ソース領域を半導体基板11の表面側に配置し、ドレイン領域を半導体基板11の裏面側に配置した構成となっている。しかし、増幅トランジスタ22のソース領域、ドレイン領域については、実施例1に限られるものではなく、絶縁膜141の近傍に存在し、半導体基板11の深さ方向の一部又は全領域に亘って形成された拡散層33及び拡散層35から成る構成とすることができる。
 実施例2では、増幅トランジスタ22のソース領域及びドレイン領域を共に半導体基板11の表面側に設けた構成をとっている。このように、増幅トランジスタ22のドレイン領域を半導体基板11の表面側に設けることで、当該ドレイン領域に電源電位VDDの電源線を、他の電源電位VDDの電源線と共通配線化できるため、半導体基板11の裏面側に設ける場合に比べて、面積の縮小化を図ることができる。
 実施例3は、実施例1の変形である。実施例3の固体撮像素子の断面図を図4Aに示し、図4AのB-B線に沿った断面図を図4Bに示す。実施例1では、貫通電極14の断面形状が円形となっている。これに対し、実施例3では、貫通電極14の断面形状が、長方形(実際には、角が丸い丸長方形)となっている。
 また、増幅トランジスタ22において、ソース領域となる拡散層33と、ドレイン領域となる拡散層35とが、貫通電極14の短辺側の両側に、半導体基板11の表面側から裏面側に亘って形成されている。尚、ここでは、拡散層33,35を半導体基板11の表面側から裏面側に亘って形成するとしたが、実施例1の場合のように、一方を表面側に、他方を裏面側に設けるようにしてもよい。
 このように、貫通電極14の断面形状を長方形とし、その短辺側の両側にソース領域となる拡散層33と、ドレイン領域となる拡散層35とを形成した構造とすることで、貫通電極14の側壁の結晶面方位を揃えることが可能となる。これにより、暗電流・白点特性が向上したり、チャネル長・幅の設計の自由度を向上させること可能となる。
 尚、貫通電極14の断面形状としては、長方形に限られるものではなく、真円、楕円、長方形以外の形状など種々の形状を採用可能である。また、貫通電極14の深さ方向(長手方向)においてその深さ位置毎に形状が異なっていてもよい。
 実施例4は、実施例1の変形である。実施例4の固体撮像素子の断面図を図5に示す。実施例4では、半導体基板11の第1面側(裏面側)に光電変換素子13が配置され、第2面側(表面側)に半導体基板17が配置された構成となっている。そして、リセットトランジスタ21と、貫通電極14をゲート電極として用いた増幅トランジスタ22とが、半導体基板11の裏面側、即ち、光電変換素子13側に形成されている。また、表面側の半導体基板17には、選択トランジスタ23が形成されている。半導体基板11と半導体基板17とは、バンプ等の接続電極44を介して電気的に接続される。
 このように、メインの半導体基板11とは異なる半導体基板17を用い、当該半導体基板17に画素10を構成する素子(本例では、選択トランジスタ23)を形成するようにすることで、選択トランジスタ23を形成しない分だけ、画素10を形成する領域のサイズを小さくできる。これにより、画素10の更なる微細化が可能になる。
 実施例5は、実施例1~実施例4の変形である。実施例5の第1例の固体撮像素子の断面図を図6Aに示し、実施例5の第2例の固体撮像素子の断面図を図6Bに示す。
 実施例5の第1例では、貫通電極14において、導電体142をその太さが半導体基板11の深さ方向で一定となるように、また、導電体142の周りの絶縁膜141をその膜厚が半導体基板11の深さ方向で変化するように形成している。これにより、絶縁膜141の断面形状が、半導体基板11の一方の面側で膜厚が薄く、他方の面側で膜厚が厚いテーパ形状となる。テーパ形状の角度は、例えば、90度から70度の範囲とする。第1例の貫通電極14の場合、貫通電極14の外径(太さ)が、半導体基板11の深さ方向において変化する形状となる。
 一方、実施例5の第2例の貫通電極14の場合、貫通電極14の外径が、半導体基板11の深さ方向において一定となっている。そして、貫通電極14の外径が一定の下で、導電体142をその太さが半導体基板11の深さ方向で変化するように形成している。これにより、導電体142の周りの絶縁膜141は、その膜厚が半導体基板11の深さ方向で変化するように形成されることになる。
 このように、第1例、第2例のいずれの貫通電極14の場合にも、絶縁膜141は、半導体基板11の一方の面側で膜厚が薄く、他方の面側で膜厚が厚い形状となる。このように、導電体142の周りの絶縁膜141の膜厚を、半導体基板11の深さ方向で変化させる、即ち、深さ方向の位置に応じて異ならせることで、貫通電極14全体の容量を低減できるため、光電変換素子13からの電荷を電気信号に変換する変換効率を向上できる。
 実施例6は、実施例1の固体撮像素子の製造方法に関する。実施例6に係る固体撮像素子の製造方法の工程図を図7~図8に示す。また、実施例2~実施例5の固体撮像素子についても、以下に説明する製造方法に、公知の半導体装置の製造方法を組み合わせることにより製造することができる。
 以下では、半導体基板11内に、共に図示しない第1導電型のウェルや、第2導電型のフォトダイオードなどを形成した後の工程について説明する。半導体基板11の材料としては、シリコン材料の他、化合物材料や有機半導体材料などの様々な半導体材料を用いることができる。
 図7Aの工程では、貫通電極14用の貫通孔51をドライエッチング等により形成し、ゲート酸化膜(絶縁膜)15を形成する。貫通孔51は、半導体基板11の表面側と裏面側の重ね合わせ精度を高めるためのマークとして使用することも可能である。また、特開2008-66742号公報に記載されているような、転送用の縦型トランジスタと同時に形成することも可能である。増幅トランジスタ22のソース領域(拡散層33)、ドレイン領域(拡散層35)については、貫通孔51を形成する前に形成しておくことができる。実施例3の固体撮像素子におけるソース領域(拡散層33)、ドレイン領域(拡散層35)については、貫通孔51の側壁への斜めイオン注入によって形成することが可能である。
 次に、図7Bの工程では、増幅トランジスタ22のゲート電極となる、貫通電極14の導電体142の材料、即ち、金属材料(導電性材料)を貫通孔51に埋め込むと同時に、半導体基板11の平面部にも堆積させる。
 次に、図7Cの工程では、ドライエッチングにより、リセットトランジスタ21のゲート電極21G、増幅トランジスタ22のゲート電極22G、及び、選択トランジスタ23のゲート電極23Gを加工形成する。その後、サイドウォール形成、ソース領域やドレイン領域となる拡散層31、拡散層32、拡散層34等を形成し、アニール処理を行う。そして、層間絶縁膜53を堆積し、配線層16を形成する。
 次に、図8Aの工程では、半導体基体11の表面側に、図示しない支持基板、又は、他の半導体基体等を接合して上下反転する。次いで、半導体基板11を薄肉化処理し、貫通電極14を露出させた後は、半導体基体11と貫通電極14とのショートを回避するために、絶縁膜142を形成する。絶縁膜142の形成には、例えば、特開2012-175067号公報に記載の技術を用いることができる。
 次に、図8Bの工程では、負の固定電荷を有する膜54を積層する。ここでは、2種類以上の負の固定電荷を有する膜を積層することも可能である。その後、層間絶縁膜を堆積し、ドライエッチングによってコンタクトを形成し、光電変換素子13を積層させる(図1参照)。光電変換素子13の上部には、窒化ケイ素等の保護膜を形成してもよい。その後、平坦膜等の光学部材を形成し、オンチップレンズを形成する。
<参考例>
 ここで、本開示の技術を用いずに、貫通電極14と、画素10を構成するトランジスタとを混載した場合の基本構成について参考例として説明する。参考例の固体撮像素子の平面図を図9Aに示し、その側断面図を図9Bに示す。図9Bは、図9AのC-C線に沿った側断面図である。
 貫通電極14によって電気的接続を行うTCV技術において、貫通電極14と、画素10を構成するトランジスタとを混載した場合、増幅特性、ノイズ特性がトランジスタサイズに依存しているため、トランジスタ特性の劣化を伴う。また、貫通電極-半導体基板間の対地容量、貫通電極-トランジスタ間の配線容量が大きくなる。
 図9A及び図9Bには、画素10を構成するトランジスタとして、フローティングディフュージョンFDをリセットするリセットトランジスタ21と、フローティングディフュージョンFDで電荷-電圧変換によって得られた電気信号(画素信号)を出力する増幅トランジスタ22とを例示している。
 参考例の固体撮像素子では、貫通電極14と増幅トランジスタ22とを離間して設けることで、貫通電極14と増幅トランジスタ22と間に十分な分離構造を確保している。そして、増幅トランジスタ22のゲート電極22Gと貫通電極14とを配線61によって電気的に接続するようにしている。
 実施例7は、参考例の固体撮像素子に対応する固体撮像素子、即ち、本開示の技術を用いた場合の固体撮像素子に関する。実施例7の固体撮像素子の平面図を図10Aに示し、その側断面図を図10Bに示す。
 実施例7の固体撮像素子の構造は、基本的に、実施例1の固体撮像素子の構造と同じである。但し、実施例1の固体撮像素子では、貫通電極14を用いて構成される増幅トランジスタ22に関して、ソース領域となる拡散層33(以下、「ソース領域33」と記述する場合がある)を半導体基板11の表面側に配置し、ドレイン領域となる拡散層35(以下、「ドレイン領域35」と記述する場合がある)を半導体基板11の裏面側に配置した構成となっている。
 これに対し、実施例7の固体撮像素子は、ソース領域33及びドレイン領域35を共に、半導体基板11の表面側に配置した構成となっている。すなわち、実施例7の固体撮像素子は、貫通電極14の側面の半導体の一部にソース領域33、ドレイン領域35、及び、チャネル領域を形成して、チャネル幅を半導体基板11の深さ方向(縦方向)にとる縦型トランジスタとなっている。
 ここでは、理解を容易にするために、最も簡易的な基板表面側近傍にソース領域33、ドレイン領域35、及び、チャネル領域を形成した単種類の分離、導電体142の構成を例示しているが、これらの位置関係や構成についてはこの限りではない。
 図9A、図9Bと図10A、図10Bとの対比から明らかなように、実施例7では、増幅トランジスタ22のためのゲート電極22G、及び、ゲート電極22Gと貫通電極14とを電気的に接続する配線61がなくなっている。その代わりに、増幅トランジスタ22のためのゲート電極22Gの近傍に位置していたソース領域33及びドレイン領域35とそれに伴う配線62及び配線63が、参考例では、貫通電極14と半導体基板11との分離のために忌避されていた貫通電極14の側面に配置されている。
 これにより、不要となった素子や本来使用されていなかった面積を利用することが可能となり、画素10のより小面積での設計が可能となる。また、参考例の固体撮像素子で存在したゲート電極22Gや配線61~63が不要となることで、増幅トランジスタ22の配線容量を低減できる。更に、増幅トランジスタ22のチャネル幅は、貫通電極14の両側面に沿って半導体基板11の深さ方向に形成されている。これにより、レイアウト専有面積が増大するというデメリットなく、増幅トランジスタ22のチャネル幅を自由に延伸設計できるため、良好なトランジスタ特性を得ることができる。更に、増幅トランジスタ22のチャネル長については、図10Aに示すように、貫通電極14の外周を利用できる。これにより、通常の表面(平面)トランジスタと比べて、面積効率よくチャネル長を大きく設計することが可能である。
 実施例8は、電子変換型の縦方向2色分光の裏面照射型固体撮像素子に関する。実施例8の固体撮像素子の平面図を図11Aに示し、その側断面図を図11Bに示す。
 実施例8の固体撮像素子は、第1の半導体基板71と第2の半導体基板72とが貼り合わされた構造となっている。第1の半導体基板71には、図の下方向から入射した比較的長波長の光を光電変換する光電変換素子、例えば、フォトダイオードPD1が形成されている。第1の半導体基板71には更に、フローティングディフュージョンFDをリセットするリセットトランジスタ21、貫通電極14、及び、貫通電極14の導電体142をゲート電極として用いる増幅トランジスタ22と、それに伴う配線73が形成されている。図面の簡略化のために、図示を省略するが、第1の半導体基板71には更に、フォトダイオードPD1で光電変換された電荷(電子)を、保持したり、読み出したり、増幅したり、選択したりする複数のトランジスタが形成されている。
 第2の半導体基板72は、第1の半導体基板71に対しその光入射方向(図の下方向)に位置するように貼り合わされている。第2の半導体基板72には、第1の半導体基板71とは別工程で、光電変換素子、例えば、フォトダイオードPD2が形成されている。第2の半導体基板72には更に、フォトダイオードPD2で光電変換された電荷をフローティングディフュージョンFDに読み出す読出しトランジスタ74とそれに伴う配線が形成されている。図面の簡略化のために、図示を省略するが、第2の半導体基板72には更に、オンチップレンズや所望の波長特性を得るフィルタなどが形成される。
 上述した構成の実施例8の固体撮像素子において、第2の半導体基板72に形成されたフローティングディフュージョンFDと、増幅トランジスタ22のゲート電極として機能する貫通電極14とは、増幅トランジスタ22の近傍領域に形成された配線73によって電気的に接続されている。これにより、実施例8の固体撮像素子は、電子変換型の縦方向2色分光の裏面照射型固体撮像素子となる。
 この電子変換型の縦方向2色分光の裏面照射型固体撮像素子において、比較的短波長の光は、下側の第2の半導体基板72に形成されたフォトダイオードPD2で光電変換される。フォトダイオードPD2で光電変換された電荷は、読出しトランジスタ74によってフローティングディフュージョンFDに読み出され、ここに保持される。そして、フローティングディフュージョンFDに保持された、入射光量に応じた電荷によって貫通電極14の電位が変化することで、光電変換による電荷に応じた電気信号(画素信号)を第1の半導体基板71に読み出すことができる。
 上記の構成の実施例8の固体撮像素子では、貫通電極14の電位、即ち、短波長側の受光量に応じた電位の増幅又は選択駆動が第1の半導体基板71で行われる。これにより、下側の第2の半導体基板72については、少ない素子数で構成できるため、フォトダイオードPD2の受光面積を広く設定することができる。更に、上側の第1の半導体基板71に必要な素子について、貫通電極14を増幅トランジスタ22のゲート電極と兼ねているため、画素10の面積効率がよく、トランジスタ特性も良好に確保可能である。
 尚、ここでは、一例として、N型チャネルトランジスタを形成する場合を例示したが、第1の半導体基板71内及び第2の半導体基板72内の素子構成や設計によって、P型チャネルトランジスタを形成してもよい。そのためのソース領域、ドレイン領域としては、N型半導体、P型半導体、金属を構成材料として用いることが考えられる。また、第1の半導体基板71及び第2の半導体基板72については、一般的に用いられるシリコン材料に限る必要はなく、化合物材料、有機半導体材料などあらゆる半導体材料で実施可能である。
 実施例9は、実施例8の変形である。実施例9の固体撮像素子の平面図を図12Aに示し、その側断面図を図12Bに示す。
 実施例8では、第1の半導体基板71における増幅トランジスタ22の形成面側で貫通電極14に配線73を接続する構成となっていた。これに対し、実施例9では、短波長側の第2の半導体基板72から貫通電極14に配線73を接続する構成となっている。これにより、第1の半導体基板71における増幅トランジスタ22の形成面とは違う面や、第2の半導体基板72にリセットトランジスタ21を形成することが可能になるため、画素10を構成する素子のレイアウトの自由度を向上できる。
 実施例10は、実施例9の変形である。実施例10の固体撮像素子の平面図を図13Aに示し、その側断面図を図13Bに示す。
 実施例9では、リセットトランジスタ21のソース領域(拡散層32)と、第2の半導体基板72側のフローティングディフュージョンFDとの間を、貫通電極14の配線73を用いて電気的に接続する構成となっていた。これに対し、実施例10では、第2の半導体基板72側のフローティングディフュージョンFDを、リセットトランジスタ21のソース領域(拡散層32)として用いる構成となっている。これにより、貫通電極14の配線73やコンタクトをなくすことができるため、画素10を構成する素子のレイアウトの自由度をより向上できる。
 実施例11は、実施例8の変形である。実施例11の固体撮像素子の平面図を図14Aに示し、その側断面図を図14Bに示す。
 貫通電極14と第1の半導体基板71との間は全領域で完全に絶縁する必要ない。一部を絶縁させずに、貫通電極14と第1の半導体基板71とを電気的に接続することで、貫通電極14の配線73を用いることなく、貫通電極14の電位を固定することが可能である。
 実施例11では、増幅トランジスタ22のドレイン領域35とソース領域33を、貫通電極14の周方向において対角ではなく、例えば、時計3時方向、時計6時方向の円弧に配置し、時計10時半方向で貫通電極14と第1の半導体基板71側のフローティングディフュージョンFDとを電気的に接続した構成となっている。ここで、「時計3時方向」、「時計6時方向」、及び、「時計10時半方向」とは、厳密に時計3時方向、時計6時方向、及び、時計10時半方向である場合の他、実質的に時計6時方向、及び、時計10時半方向である場合も含み、設計上あるいは製造上生ずる種々のばらつきの存在は許容される。フローティングディフュージョンFDは、リセットトランジスタ21のソース領域となり、固定電位を持つドレイン領域(拡散層31)及びゲート電極21Gと共にMOSトランジスタを形成している。
 上記の構成の実施例11の固体撮像素子において、リセットトランジスタ21を導通状態にすることで、貫通電極14の電位がドレイン領域35の固定電位にリセットされる。このように、貫通電極14の配線73を用いなくても、一部を絶縁させずに、貫通電極14と第1の半導体基板71とを電気的に接続することで、貫通電極14の電位を固定することができる。
 実施例12は、高性能なトランジスタ動作及び分離特性を有する固体撮像素子に関する。実施例12の固体撮像素子の平面図を図15Aに示し、その側断面図を図15Bに示す。ここでは、N型チャネルトランジスタを形成する場合を例に挙げて説明する。但し、N型チャネルトランジスタの形成に限られるものではない。
 貫通電極14において、その中心の導電体142は、長さ方向において少なくとも1層から成り、少なくとも1種類の導電性材料から構成されている。具体的には、例えば、導電体142は、第1の導電体142Aと、これに連続する第2の導電体142Bとによって構成されている。第1の導電体142Aは、増幅トランジスタ22のゲート電極として機能し、増幅トランジスタ22の駆動範囲を所望に設定する仕事関数を有する。第2の導電体142Bは、第1の導電体142Aよりも小径でかつ高い仕事関数の導電性材料で形成されている。
 導電体142と半導体基板11とを分離する絶縁膜141において、第1の導電体142Aの周りの上部絶縁膜141Aと、第2の導電体142Bの周りの下部絶縁膜141Bとは膜厚が異なっている。具体的には、上部絶縁膜141Aは、下部絶縁膜141Bよりも薄膜でかつ高誘電率材料(高誘電率膜)によって構成されている。
 また、第2の導電体142Bの下側の大部分の周りにおいて、下部絶縁膜141Bは、低誘電率絶縁膜から成り、第2の導電体142Bとの間に空孔75が介在することによって、第2の導電体142Bと半導体基板11とを電気的に分離する分離構造を構成している。すなわち、第2の導電体142Bが第1の導電体142Aよりも小径であることで、空いた面積を分離のために用いている。これにより、増幅トランジスタ22のトランジスタ動作として良好な増幅特性が得られるとともに、小面積で半導体基板11と貫通電極14とのカップリングを抑制できるため、貫通電極14の低容量化が可能となる。
 低誘電率絶縁膜から成る下部絶縁膜141Bには、ダメージ層側面からの偽信号発生を抑制するために、固定電荷を付与してアキュミュレーションを強化することが好ましい。あるいは又、第1の導電体142Aの周りの上部絶縁膜141Aに付与されている固定電荷量と、第2の導電体142Bの周りの下部絶縁膜141Bに付与されている固定電荷量とを異なる構成とすることができる。また、半導体基板11側には、必要に応じて、P型不純物をドープすることで、暗電流を抑制する効果を高めることができる。図12Bにおいて、領域76がP型不純物をドープしたアキュミュレーションドーピング領域である。
 以上により、次のような作用、効果を得ることができる。
1.増幅トランジスタ22において、変動する電位の駆動範囲内で安定・良好な増幅動作を行うことができる。この作用、効果は、駆動範囲での動作を行う仕事関数を持つ、増幅トランジスタ22のゲート電極(第1の導電体142A)、高誘電率薄膜から成る上部絶縁膜141A、及び、チャネル形状・濃度の制御、トランジスタ容量変動の抑制によって実現される。
2.増幅トランジスタ22以外において、半導体基板11内の素子とのカップリングを抑制したり、貫通電極14の容量を抑制したり、あるいは、暗電流発生を抑制したりすることができる。これらは、貫通電極14の側面と半導体基板11との間の十分な分離(膜厚、低誘電率)、側面半導体領域の十分なアキュミュレーションのドーピング、仕事関数の導電体、固定電荷の付与などによって実現される。
 ここで、半導体材料としては、特に限定するものではないが、少なくとも、Si、GeやGa、In、Znを構成に含む半導体を代表として例示することができる。他の構成元素として、Al、P、S、Cl、Cu、As、Se、Cd、Sn、Sbなどを例示することができる。
 固定電荷を付与する低誘電率絶縁膜から成る下部絶縁膜141Bとしては、特に限定するものではないが、次の材料を例示することができる。酸化ハフニウム、酸化アルミニウム、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化ランタン、酸化プラセオジム、酸化セリウム、酸化ネオジム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、酸化イットリウム、窒化アルミニウム膜、酸窒化ハフニウム膜、酸窒化アルミニウム。
 貫通電極14の側面と半導体基板11との間を電気的に分離する分離構造としては、特に限定するものではないが、空孔75の他、ポーラス材料、TEOS、酸化シリコン膜、シリコンナイトライド膜、また上記の固定電荷を付与する低誘電率絶縁膜などによって実現することができる。
 貫通電極14の導電体142の材料としては、特に限定するものではないが、BDASシリコン、PDASシリコン、少なくとも、Cu、Al、Ni、W、Co、Mo、Ti、Tsを含む材料などを例示することができる。
 実施例13は、実施例12の変形である。実施例13の第1例の固体撮像素子の平面図を図16Aに示し、実施例12の第2例の固体撮像素子の平面図を図16Bに示す。
 貫通電極14の形状については、真円の他、図16Aに示すような楕円であってもよいし、図16Bに示すような四角形を含む多角形など任意の形状を採用可能である。また、半導体基板11の深さ方向において、全領域で形状が同じであってもよいし、深さ位置毎に形状が異なっていてもよい。増幅トランジスタ22のゲート電極として用いられる貫通電極14の形状として多角形形状を用い、チャネル長をキャリア移動度の高い面方位方向に設計することで、更なるトランジスタ特性の向上を図ることができる。
 実施例14は、実施例7~実施例12の変形である。実施例14の第1例の固体撮像素子の側断面図を図17Aに示し、実施例14の第2例の固体撮像素子の側断面図を図17Bに示す。
 増幅トランジスタ22のソース領域33及びドレイン領域35の配置について、実施例7~実施例9では、ソース領域33及びドレイン領域35を共に、半導体基板11の表面近くに配置した構成となっている。これに対し、実施例11では、増幅トランジスタ22のチャネル幅やチャネル長の制御の観点から、図17Aに示すように、半導体基板11の深さ方向の全領域に亘って、ソース領域33、ドレイン領域35、及び、チャネル領域を形成する構成となっている(実施例3に相当)。あるいは又、実施例11では、図17Bに示すように、半導体基板11の深さ方向において、異なる深さ位置にソース領域33、ドレイン領域35、及び、チャネル領域を形成する構成となっている。
 実施例15は、実施例7~実施例12の変形である。実施例15の固体撮像素子の平面図を図18Aに示し、実施例15の固体撮像素子の側断面図を図18Bに示す。
 増幅トランジスタ22のソース領域33及びドレイン領域35の配置について、実施例7~実施例9では、ソース領域33とドレイン領域35とを、貫通電極14の周方向において対角に配置した、即ち、貫通電極14を挟んで対向させて配置した構成となっている。これに対し、実施例12では、図18A及び図18Bに示すように、ソース領域33とドレイン領域35とを、貫通電極14の周方向において非対角に配置する構成となっている。貫通電極14の周方向における、ソース領域33とドレイン領域35との位置関係については、増幅トランジスタ22のチャネル長の制御の観点から、任意に設定することができる。
 実施例16は、実施例1~実施例12の変形である。実施例16の固体撮像素子の平面図を図19Aに示し、実施例16の固体撮像素子の側断面図を図19Bに示す。
 実施例1~実施例12の増幅トランジスタ22では、そのゲート電極として貫通電極14を用いるとともに、そのチャネルとしてソース領域33とドレイン領域35との間の周方向における側面チャネルを用いたトランジスタ構造となっていた。これに対し、実施例13では、貫通電極14の頂部に設けられた、導電体から成るキャップ電極81を、ソース領域33、ドレイン領域35、もしくはチャネル領域の近傍まで延伸して設けた構成となっている。
 キャップ電極81が延伸されたことで、増幅トランジスタ22は、キャップ電極81、ソース領域33、及び、ドレイン領域35から成る表面チャネル型トランジスタとなる。加えて、ソース領域33とドレイン領域35との間の周方向における側面チャネルを用いて、半導体基板11の深さ方向へチャネル長を形成することも可能となる。
 実施例17は、波長変換素子として機能する固体撮像素子に関する。実施例17の固体撮像素子の平面図を図20Aに示し、実施例17の固体撮像素子の側断面図を図20Bに示す。
 実施例8では、貫通電極14が、当該貫通電極14が形成された第1の半導体基板71とは別の第2の半導体基板72側のフローティングディフュージョンFDに接続された構成となっていた。しかし、貫通電極14の接続先は、別の第2の半導体基板72である必要はなく、第1の半導体基板71の増幅トランジスタ22と反対側に配置された配線、導電体、異種半導体であってもよい。
 実施例17では、貫通電極14の接続先が、第1の半導体基板71に相当する半導体基板11の増幅トランジスタ22と反対側に配置された光電変換素子82である構成となっている。光電変換素子82は、例えば、2つの透明電極821,822と、これらの透明電極821,822によって挟まれた光電変換膜823とから構成されている。光電変換素子82では、光電変換膜823の吸収波長に対応した光電変換が行われる。尚、半導体基板11には、発光素子83が形成されている。発光素子83は、その入力端子が増幅トランジスタ22の出力端子に接続されており、当該増幅トランジスタ22によって発光駆動される。
 実施例17の固体撮像素子では、光電変換素子82での光電変換によって発生したキャリアの蓄積に伴い、貫通電極14の電位が変動する。貫通電極14の電位変動により、半導体基板11の表面側の増幅トランジスタ22の出力端子電圧が変化する。これにより、発光素子83は、増幅トランジスタ22の出力端子電圧によって発光駆動される。その結果、発光素子83において、光電変換膜823の吸収光量に応じた光量の別波長の光の発光が実現される。
 上述したように、実施例17の固体撮像素子は、光電変換素子82で入射光を受光し、光電変換膜823の吸収光量に応じた光量の別波長の光に変換して発光する波長変換素子としての機能を持っている。
 実施例18は、実施例17の変形である。実施例18の固体撮像素子の平面図を図21Aに示し、実施例18の固体撮像素子の側断面図を図21Bに示す。
 実施例18では、半導体基板11において、実施例14の発光素子83に代えて、その領域にフォトダイオードPD1を形成し、更に、貫通電極14を挟んでリセットトランジスタ21を形成した構成となっている。すなわち、実施例18の半導体基板11の構成は、実施例8の第1の半導体基板71の構成と同じである。従って、実施例18は、実施例8の変形でもある。
 このように、実施例18の固体撮像素子は、フォトダイオードPD1が形成された半導体基板11において、貫通電極14の接続先が光電変換素子82である構造となっている。この構造の実施例18の固体撮像素子によれば、縦方向に分光する固体撮像素子を実現できる。
 実施例19は、実施例7の固体撮像素子の製造方法に関する。実施例19に係る固体撮像素子の製造方法の工程図を図22~図25に示す。また、実施例8~実施例18の固体撮像素子についても、以下に説明する製造方法に、公知の半導体装置の製造方法を組み合わせることにより製造することができる。
 まず、図22Aの工程では、半導体基板11にエッチングすることにより、貫通電極14のトランジスタ部となるトレンチ91を形成する。次に、図22Bの工程では、トレンチ91に絶縁膜141を分離層として形成し、導電性材料を埋め込んで導電体142を形成する。また、導電体142の頂部に、キャップ電極81を形成する。
 次に、図22Cの工程では、チャネル部をマスク93で覆ってインプラントを行って増幅トランジスタ22のソース領域33及びドレイン領域35を形成する。但し、ソース領域33及びドレイン領域35に関しては、配線前にインプラントで形成してもよいし、トレンチ91の形成後にソース領域33及びドレイン領域35の側面のみに入るように、トレンチ91の側面に斜め方向のインプラントで形成してもよい。また、トレンチ91の2側面のみ選択的に堆積、又は、選択エッチングで残した高濃度ドーピング材料をアニールによって固相拡散でドーピングすることで形成してもよい。チャネルの形成も狙い濃度が異なるのみで、ソース領域33及びドレイン領域35の形成と同様の手法で形成できる。
 次に、図23Aの工程では、導電体142にコンタクト、配線94を形成し、層間絶縁膜95等の塗付を行う。次に、図23Bの工程では、支持基板96に対して接着材料面を付着させ、トランジスタ形成面の反対方向から半導体基板11を一様にエッチングして基板膜厚を必要十分なだけ薄くする。次に、図24Aの工程では、導電体142が露出するように半導体基板11の対応する部分を選択的にエッチングし、しかる後、図24Bの工程では、選択的にエッチングした部分に分離層97を埋め込む。
 次に、図25Aの工程では、前の工程で埋め込んだ分離層97から導電体142が再び露出するように選択的にエッチングを行い、しかる後、図25Bの工程では、電気的な接続を行うために導電体98を埋め込む。以降の工程については図示を省略するが、作成したいデバイスに合わせて、絶縁膜、接着材料、電極材料などを堆積させ、所望の素子へと電気的な接続を行うことになる。
 ここでは、貫通電極14の主要加工製造工程以外については省略をしたが、必要に応じて、トレンチ形成前や形成時、形成後に、ウェルのドーピング、アキュミュレーションを強めるドーピング、あるいは、不純物活性化、欠陥回復のアニール工程、酸化膜形成工程などを行うことが可能である。
 本製造方法によれば、トランジスタ形成部と裏面側からの電圧を伝える部分の形成が分かれていることで、実施例7に示したような、トランジスタ形成部に好ましい構成、トランジスタ部以外に好ましい構成を作り分けることが容易に可能となり、高いデバイス特性を得ることができる。
 以上では、半導体装置の一例として、固体撮像素子を例に挙げて本開示の技術について説明した。そして、固体撮像素子に対して本開示の技術を適用することで、貫通電極14が増幅トランジスタ22のゲート電極を兼ねることで、貫通電極14が画素平面で占める割合を縮小することが可能になる、という作用、効果を得ることができる。また、固体撮像素子以外の半導体装置においても、貫通電極14が増幅トランジスタ22のゲート電極を兼ねることで、貫通電極14による半導体基板11内の、増幅トランジスタ22等の他素子の面積への圧迫を最小限に抑えることが可能になる、という作用、効果を得ることができる。
<本開示の電子機器>
 上述した実施例1~実施例5、実施例7~実施例19の固体撮像素子は、デジタルスチルカメラやビデオカメラ等の撮像装置や、携帯電話機などの撮像機能を有する携帯端末装置や、画像読取部に固体撮像素子を用いる複写機などの電子機器全般において、その撮像部(画像取込部)として用いることができる。尚、電子機器に搭載される上記モジュール状の形態、即ち、カメラモジュールを撮像装置とする場合もある。
[撮像装置]
 図26は、本開示の電子機器の一例である撮像装置の構成を示すブロック図である。図26に示すように、本例に係る撮像装置100は、レンズ群等を含む光学系101、撮像部102、カメラ信号処理部であるDSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108等を有している。そして、DSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108がバスライン109を介して相互に接続された構成となっている。
 光学系101は、被写体からの入射光(像光)を取り込んで撮像部102の撮像面上に結像する。撮像部102は、光学系101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。DSP回路103は、一般的なカメラ信号処理、例えば、ホワイトバランス処理、デモザイク処理、ガンマ補正処理などを行う。
 フレームメモリ104は、DSP回路103での信号処理の過程で適宜データの格納に用いられる。表示装置105は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置から成り、撮像部102で撮像された動画または静止画を表示する。記録装置106は、撮像部102で撮像された動画または静止画を、可搬型の半導体メモリや、光ディスク、HDD(Hard Disk Drive)等の記録媒体に記録する。
 操作系107は、ユーザによる操作の下に、本撮像装置100が持つ様々な機能について操作指令を発する。電源系108は、DSP回路103、フレームメモリ104、表示装置105、記録装置106、及び、操作系107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 上記の構成の撮像装置100において、撮像部102として、先述した実施例1~実施例5、あるいは、実施例7~実施例19の固体撮像素子を用いることができる。
 尚、本開示は、以下のような構成をとることもできる。
[1]半導体基板の第1面側に配置された半導体素子、
 半導体基板を半導体基板の厚さ方向に貫通して設けられ、半導体素子で得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
 貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
 増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する、
 半導体装置。
[2]貫通電極は、半導体基板を貫通して設けられた導電体、及び、導電体と半導体基板との間を電気的に分離する分離層から成る、
 上記[1]に記載の半導体装置。
[3]分離層は、導電体の側壁を被覆する絶縁膜によって構成されている、
 上記[2]に記載の半導体装置。
[4]絶縁膜の膜厚は、半導体基板の深さ方向の位置に応じて異なる、
 上記[2]又は[3]に記載の半導体装置。
[5]増幅トランジスタのソース領域及びドレイン領域は、絶縁膜の近傍に存在し、半導体基板の深さ方向の一部又は全領域に亘って形成された拡散層から成る、
 上記[1]~[4]のいずれかに記載の半導体装置。
[6]半導体基板の平面上に形成された平面トランジスタを備えており、
 平面トランジスタのゲート酸化膜の膜厚と、増幅トランジスタのゲート酸化膜の膜厚とが異なる、
 上記[1]に記載の半導体装置。
[7]半導体基板の平面上に形成された平面トランジスタを備えており、
 平面トランジスタのゲート酸化膜の構成材料と、増幅トランジスタのゲート酸化膜の構成材料とが異なる、
 上記[1]に記載の半導体装置。
[8]貫通電極の頂部に設けられた、導電体から成るキャップ電極を備えており、
 キャップ電極は、増幅トランジスタの増幅トランジスタのソース領域、ドレイン領域、もしくはチャネル領域の近傍まで延伸して設けられている、
 上記[1]に記載の半導体装置。
[9]導電体は、長さ方向において少なくとも1層から成り、少なくとも1種類の導電体性材料から構成されている、
 上記[1]に記載の半導体装置。
[10]導電体は、増幅トランジスタのゲート電極として機能する第1の導電体、及び、第1の導電体に連続する第2の導電体から成る、
 上記[9]に記載の半導体装置。
[11]第1の導電体は、増幅トランジスタの動作範囲を所望に設定する仕事関数を有する、
 上記[10]に記載の半導体装置。
[12]第1の導電体と半導体基板とを分離する絶縁膜は、第2の導電体と半導体基板とを分離する絶縁膜よりも薄膜でかつ高誘電率材料から成る、
 上記[11]に記載の半導体装置。
[13]第2の導電体は、第1の導電体よりも小径でかつ導電性材料から成る、
 上記[10]~[12]のいずれかに記載の半導体装置。
[14]第1の導電体の周りの絶縁膜の膜厚と、第2の導電体の周りの絶縁膜とが異なる、
 上記[10]~[12]のいずれかに記載の半導体装置。
[15]第2の導電体の周りの絶縁膜は、低誘電率絶縁膜から成る、
 上記[14]に記載の半導体装置。
[16]第2の導電体の周りの絶縁膜は、第2の導電体との間に介在する空孔と共に、第2の導電体と半導体基板とを電気的に分離する分離構造を構成している、
 上記[15]に記載の半導体装置。
[17]第1の導電体の周りの絶縁膜に付与されている固定電荷量と、第2の導電体の周りの絶縁膜に付与されている固定電荷量とを異なる、
 上記[16]に記載の半導体装置。
[18]半導体基板の第1面側に配置された半導体素子、
 半導体基板を半導体基板の厚さ方向に貫通して設けられ、半導体素子で得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
 貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備える半導体装置の製造に当たって、
 貫通電極を増幅トランジスタのゲート電極とし、貫通電極の周りに増幅トランジスタのソース領域及びドレイン領域を形成する、
 半導体装置の製造方法。
[19]半導体基板の第1面側に配置された光電変換素子、
 半導体基板を半導体基板の厚さ方向に貫通して設けられ、光電変換素子での光電変換によって得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
 貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
 増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する、
 固体撮像素子。
[20]半導体基板の第1面側に配置された光電変換素子、
 半導体基板を半導体基板の厚さ方向に貫通して設けられ、光電変換素子での光電変換によって得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
 貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
 増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する、
 固体撮像素子を備える電子機器。
 10・・・画素(単位画素)、11,17・・・半導体基板、12・・・層間絶縁膜、13,82・・・光電変換素子、14・・・貫通電極、15・・・ゲート酸化膜(絶縁膜)、16・・・配線層、21・・・リセットトランジスタ、22・・・増幅トランジスタ、23・・・選択トランジスタ、31~35・・・拡散層、41・・・リセット制御線、42・・・選択制御線、43・・・垂直信号線、71・・・第1の半導体基板、72・・・第2の半導体基板、74・・・読出しトランジスタ、81・・・キャップ電極、83・・・発光素子、131,132,821,822・・・透明電極、133,823・・・光電変換膜、141・・・絶縁膜(ゲート酸化膜)、142・・・導電体

Claims (20)

  1.  半導体基板の第1面側に配置された半導体素子、
     半導体基板を半導体基板の厚さ方向に貫通して設けられ、半導体素子で得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
     貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
     増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する、
     半導体装置。
  2.  貫通電極は、半導体基板を貫通して設けられた導電体、及び、導電体と半導体基板との間を電気的に分離する分離層から成る、
     請求項1に記載の半導体装置。
  3.  分離層は、導電体の側壁を被覆する絶縁膜によって構成されている、
     請求項2に記載の半導体装置。
  4.  絶縁膜の膜厚は、半導体基板の深さ方向の位置に応じて異なる、
     請求項2に記載の半導体装置。
  5.  増幅トランジスタのソース領域及びドレイン領域は、絶縁膜の近傍に存在し、半導体基板の深さ方向の一部又は全領域に亘って形成された拡散層から成る、
     請求項1に記載の半導体装置。
  6.  半導体基板の平面上に形成された平面トランジスタを備えており、
     平面トランジスタのゲート酸化膜の膜厚と、増幅トランジスタのゲート酸化膜の膜厚とが異なる、
     請求項1に記載の半導体装置。
  7.  半導体基板の平面上に形成された平面トランジスタを備えており、
     平面トランジスタのゲート酸化膜の構成材料と、増幅トランジスタのゲート酸化膜の構成材料とが異なる、
     請求項1に記載の半導体装置。
  8.  貫通電極の頂部に設けられた、導電体から成るキャップ電極を備えており、
     キャップ電極は、増幅トランジスタのソース領域、ドレイン領域、もしくはチャネル領域の近傍まで延伸して設けられている、
     請求項1に記載の半導体装置。
  9.  導電体は、長さ方向において少なくとも1層から成り、少なくとも1種類の導電体性材料から構成されている、
     請求項1に記載の半導体装置。
  10.  導電体は、増幅トランジスタのゲート電極として機能する第1の導電体、及び、第1の導電体に連続する第2の導電体から成る、
     請求項9に記載の半導体装置。
  11.  第1の導電体は、増幅トランジスタの動作範囲を所望に設定する仕事関数を有する、
     請求項10に記載の半導体装置。
  12.  第1の導電体と半導体基板とを分離する絶縁膜は、第2の導電体と半導体基板とを分離する絶縁膜よりも薄膜でかつ高誘電率材料から成る、
     請求項11に記載の半導体装置。
  13.  第2の導電体は、第1の導電体よりも小径でかつ導電性材料から成る、
     請求項10に記載の半導体装置。
  14.  第1の導電体の周りの絶縁膜の膜厚と、第2の導電体の周りの絶縁膜とが異なる、
     請求項10に記載の固体撮像素子。
  15.  第2の導電体の周りの絶縁膜は、低誘電率絶縁膜から成る、
     請求項14に記載の半導体装置。
  16.  第2の導電体の周りの絶縁膜は、第2の導電体との間に介在する空孔と共に、第2の導電体と半導体基板とを電気的に分離する分離構造を構成している、
     請求項15に記載の半導体装置。
  17.  第1の導電体の周りの絶縁膜に付与されている固定電荷量と、第2の導電体の周りの絶縁膜に付与されている固定電荷量とを異なる、
     請求項16に記載の半導体装置。
  18.  半導体基板の第1面側に配置された半導体素子、
     半導体基板を半導体基板の厚さ方向に貫通して設けられ、半導体素子で得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
     貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備える半導体装置の製造に当たって、
     貫通電極を増幅トランジスタのゲート電極とし、貫通電極の周りに増幅トランジスタのソース領域及びドレイン領域を形成する、
     半導体装置の製造方法。
  19.  半導体基板の第1面側に配置された光電変換素子、
     半導体基板を半導体基板の厚さ方向に貫通して設けられ、光電変換素子での光電変換によって得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
     貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
     増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する、
     固体撮像素子。
  20.  半導体基板の第1面側に配置された光電変換素子、
     半導体基板を半導体基板の厚さ方向に貫通して設けられ、光電変換素子での光電変換によって得られた電荷を半導体基板の第2面側に導く貫通電極、及び、
     貫通電極によって導かれた電荷に基づく電気信号を出力する増幅トランジスタを備えており、
     増幅トランジスタは、貫通電極をゲート電極とし、貫通電極の周りにソース領域及びドレイン領域を有する、
     固体撮像素子を備える電子機器。
PCT/JP2016/082572 2016-02-09 2016-11-02 半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器 WO2017138197A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187018971A KR102661038B1 (ko) 2016-02-09 2016-11-02 반도체 장치 및 반도체 장치의 제조 방법 및 고체 촬상 소자 및 전자 기기
KR1020247013225A KR20240058952A (ko) 2016-02-09 2016-11-02 반도체 장치 및 반도체 장치의 제조 방법 및 고체 촬상 소자 및 전자 기기
US16/074,669 US11961865B2 (en) 2016-02-09 2016-11-02 Semiconductor device, method of manufacturing a semiconductor device, solid-state imaging device, and electronic apparatus
JP2017566510A JP6883217B2 (ja) 2016-02-09 2016-11-02 半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器
CN201680080729.1A CN108604592B (zh) 2016-02-09 2016-11-02 半导体装置、半导体装置的制造方法、固态成像装置以及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-022717 2016-02-09
JP2016022717 2016-02-09

Publications (1)

Publication Number Publication Date
WO2017138197A1 true WO2017138197A1 (ja) 2017-08-17

Family

ID=59563757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082572 WO2017138197A1 (ja) 2016-02-09 2016-11-02 半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器

Country Status (5)

Country Link
US (1) US11961865B2 (ja)
JP (1) JP6883217B2 (ja)
KR (2) KR20240058952A (ja)
CN (1) CN108604592B (ja)
WO (1) WO2017138197A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050195A1 (ja) * 2018-09-04 2020-03-12 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および電子装置
WO2020262559A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP2021019181A (ja) * 2019-07-19 2021-02-15 力晶積成電子製造股▲ふん▼有限公司Powerchip Semiconductor Manufacturing Corporation 回路構造
WO2021084819A1 (ja) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2021225139A1 (ja) * 2020-05-08 2021-11-11 ソニーグループ株式会社 表示装置および電子機器
EP3920224A4 (en) * 2019-01-28 2022-03-30 Sony Group Corporation SOLID STATE IMAGING ELEMENT, ELECTRONIC APPARATUS AND METHOD OF MAKING SOLID STATE IMAGING ELEMENT
WO2022123934A1 (ja) * 2020-12-10 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2022124086A1 (ja) * 2020-12-08 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び電子機器
WO2023105929A1 (ja) * 2021-12-10 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542614B1 (ko) * 2017-10-30 2023-06-15 삼성전자주식회사 이미지 센서
US11843020B2 (en) * 2017-10-30 2023-12-12 Samsung Electronics Co., Ltd. Image sensor
KR102651130B1 (ko) * 2018-12-06 2024-03-26 삼성전자주식회사 거리 측정을 위한 이미지 센서
TW202044335A (zh) * 2019-03-15 2020-12-01 日商索尼半導體解決方案公司 攝像元件及半導體元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258316A (ja) * 2007-04-03 2008-10-23 Sharp Corp 固体撮像装置およびその製造方法、電子情報機器
US20130264467A1 (en) * 2012-04-09 2013-10-10 Omnivision Technologies, Inc. Double-sided image sensor
JP2016009777A (ja) * 2014-06-25 2016-01-18 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554870A (en) * 1994-02-04 1996-09-10 Motorola, Inc. Integrated circuit having both vertical and horizontal devices and process for making the same
DE19807776A1 (de) * 1998-02-24 1999-09-02 Siemens Ag Halbleitervorrichtung und entsprechendes Herstellungsverfahren
JP4719597B2 (ja) * 2006-03-16 2011-07-06 富士フイルム株式会社 光電変換素子及び固体撮像素子
KR101327793B1 (ko) * 2007-10-08 2013-11-11 삼성전자주식회사 티오펜 유도체를 이용한 시모스 이미지 센서
JP5487798B2 (ja) 2009-08-20 2014-05-07 ソニー株式会社 固体撮像装置、電子機器および固体撮像装置の製造方法
US8823090B2 (en) * 2011-02-17 2014-09-02 International Business Machines Corporation Field-effect transistor and method of creating same
US8492903B2 (en) * 2011-06-29 2013-07-23 International Business Machines Corporation Through silicon via direct FET signal gating
CN104981906B (zh) 2013-03-14 2018-01-19 索尼半导体解决方案公司 固态图像传感器、其制造方法和电子设备
JP6079502B2 (ja) 2013-08-19 2017-02-15 ソニー株式会社 固体撮像素子および電子機器
US9418915B2 (en) * 2014-01-16 2016-08-16 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
JP6171997B2 (ja) 2014-03-14 2017-08-02 ソニー株式会社 固体撮像素子およびその駆動方法、並びに電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258316A (ja) * 2007-04-03 2008-10-23 Sharp Corp 固体撮像装置およびその製造方法、電子情報機器
US20130264467A1 (en) * 2012-04-09 2013-10-10 Omnivision Technologies, Inc. Double-sided image sensor
JP2016009777A (ja) * 2014-06-25 2016-01-18 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050195A1 (ja) * 2018-09-04 2020-03-12 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および電子装置
US11855108B2 (en) 2018-09-04 2023-12-26 Sony Semiconductor Solutions Corporation Solid-state imaging element and electronic device
EP3920224A4 (en) * 2019-01-28 2022-03-30 Sony Group Corporation SOLID STATE IMAGING ELEMENT, ELECTRONIC APPARATUS AND METHOD OF MAKING SOLID STATE IMAGING ELEMENT
WO2020262559A1 (ja) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP2021019181A (ja) * 2019-07-19 2021-02-15 力晶積成電子製造股▲ふん▼有限公司Powerchip Semiconductor Manufacturing Corporation 回路構造
JP7210430B2 (ja) 2019-07-19 2023-01-23 力晶積成電子製造股▲フン▼有限公司 回路構造
WO2021084819A1 (ja) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2021225139A1 (ja) * 2020-05-08 2021-11-11 ソニーグループ株式会社 表示装置および電子機器
WO2022124086A1 (ja) * 2020-12-08 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び電子機器
WO2022123934A1 (ja) * 2020-12-10 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2023105929A1 (ja) * 2021-12-10 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Also Published As

Publication number Publication date
JP6883217B2 (ja) 2021-06-09
KR20240058952A (ko) 2024-05-03
US20190057997A1 (en) 2019-02-21
KR20180112766A (ko) 2018-10-12
JPWO2017138197A1 (ja) 2018-11-29
KR102661038B1 (ko) 2024-04-26
US11961865B2 (en) 2024-04-16
CN108604592B (zh) 2022-12-16
CN108604592A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017138197A1 (ja) 半導体装置及び半導体装置の製造方法、並びに、固体撮像素子及び電子機器
US11177310B2 (en) Solid-state image pickup device
US10714519B2 (en) Solid-state imaging device, method of manufacturing a solid-state imaging device, and electronic apparatus
US9006807B2 (en) Solid-state image sensing device and camera
TWI407558B (zh) 半導體裝置及其製造方法
TWI512958B (zh) 固態影像裝置,其製造方法及電子裝置
US8514308B2 (en) Semiconductor device and method of manufacturing the same, and electronic apparatus
TWI406406B (zh) 固態攝像裝置及其之製造方法
TWI497702B (zh) Solid state camera device
US20230411426A1 (en) Semiconductor device
JP2013182941A (ja) 固体撮像装置およびその製造方法
US20220302192A1 (en) Imaging device and electronic device
JP2014053431A (ja) 固体撮像装置の製造方法
US20240079432A1 (en) Photodetector and electronic apparatus
JP2024063426A (ja) 光検出装置及び電子機器
CN118202466A (zh) 光检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566510

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018971

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889898

Country of ref document: EP

Kind code of ref document: A1