WO2017134980A1 - 複合基板および複合基板の製造方法 - Google Patents

複合基板および複合基板の製造方法 Download PDF

Info

Publication number
WO2017134980A1
WO2017134980A1 PCT/JP2017/000272 JP2017000272W WO2017134980A1 WO 2017134980 A1 WO2017134980 A1 WO 2017134980A1 JP 2017000272 W JP2017000272 W JP 2017000272W WO 2017134980 A1 WO2017134980 A1 WO 2017134980A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
substrate
composite substrate
oxide single
layer
Prior art date
Application number
PCT/JP2017/000272
Other languages
English (en)
French (fr)
Inventor
昌次 秋山
雅行 丹野
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020187019561A priority Critical patent/KR20180104610A/ko
Priority to CN201780006333.7A priority patent/CN108702141B/zh
Priority to US16/073,063 priority patent/US11245377B2/en
Priority to EP17747144.8A priority patent/EP3413464B1/en
Publication of WO2017134980A1 publication Critical patent/WO2017134980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding

Definitions

  • the present invention relates to a composite substrate used for a surface acoustic wave (SAW) device or the like and a method for manufacturing the composite substrate.
  • SAW surface acoustic wave
  • Common piezoelectric materials such as lithium tantalate (sometimes abbreviated as Lithium ⁇ Tantalate: LT) and lithium niobate (also abbreviated as Lithium Niobate: LN) are used for surface acoustic wave (SAW) devices. Widely used as a material. These materials have a large electromechanical coupling coefficient and can achieve a wide band, but have a problem that the temperature stability is low and the frequency that can be dealt with shifts due to temperature changes. This is because lithium tantalate and lithium niobate have a very high coefficient of thermal expansion.
  • SAW surface acoustic wave
  • a material with a smaller coefficient of thermal expansion specifically sapphire, is bonded to lithium tantalate or lithium niobate, and a wafer of lithium tantalate or lithium niobate is ground by several ⁇ m.
  • a method for suppressing thermal expansion and improving temperature characteristics by reducing the thickness to tens of ⁇ m has been proposed (for example, see Non-Patent Document 1). Further, bonding with silicon having a smaller thermal expansion coefficient has also been proposed (see, for example, Patent Document 1).
  • Non-Patent Document 2 room temperature bonding
  • the substrate to be bonded is irradiated with an argon (Ar) beam under a high vacuum, the surface is activated, and the substrate is bonded as it is.
  • Ar argon
  • the bonding method at room temperature as described above has a characteristic that high bonding strength can be obtained at room temperature, there are many cases where sufficient bonding strength cannot be obtained even with the composite substrate thus obtained. For this reason, there is a possibility that peeling occurs during the device fabrication. In addition, more complete bondability is required from the viewpoint of long-term reliability.
  • An object of the present invention is to provide a composite substrate and a composite substrate manufacturing method capable of obtaining sufficient bonding strength in bonding of a piezoelectric material layer and a support substrate.
  • the present invention provides a single crystal supporting substrate containing a first element as a main component and an oxidation provided on the single crystal supporting substrate and containing a second element (excluding oxygen) as a main component.
  • the crystalline layer includes a first amorphous region in which the proportion of the first element is higher than the proportion of the second element, and a second amorphous region in which the proportion of the second element is higher than the proportion of the first element;
  • the concentration of Ar contained in the first amorphous region is higher than the concentration of Ar contained in the second amorphous region, and is 3 atomic% or more.
  • the bonding strength between the single crystal supporting substrate and the oxide single crystal layer can be increased by the segregation and concentration of Ar contained in the amorphous layer.
  • the concentration of Ar contained in the second amorphous region may be less than 3 atomic%. Thereby, the joint strength between the single crystal supporting substrate and the oxide single crystal layer can be further improved.
  • the single crystal support substrate may include one selected from the group consisting of a silicon single crystal substrate and a sapphire single crystal substrate.
  • the oxide single crystal layer may include one selected from the group consisting of lithium tantalate and lithium niobate.
  • the thickness of the oxide single crystal layer may be 50 ⁇ m or less. Thereby, it can respond to a thin film piezoelectric device.
  • the oxide single crystal layer is preferably single-polarized. Thereby, a composite substrate can be used conveniently as a surface acoustic wave element.
  • the surface of a single crystal supporting substrate containing a first element as a main component and the surface of an oxide single crystal substrate containing a second element (excluding oxygen) as a main component are made of Ar.
  • the step of activating, the surface of the single crystal support substrate activated by Ar, and the surface of the oxide single crystal substrate activated by Ar are bonded together, and the single crystal support substrate and the oxide single crystal substrate are bonded together.
  • the heat treatment step may include making the concentration of Ar contained in the second amorphous region less than 3 atomic%.
  • the heat treatment step may include heating the amorphous layer to 150 ° C. or higher.
  • Ar contained in the amorphous layer can be segregated and concentrated so that the bonding strength between the single crystal supporting substrate and the oxide single crystal layer can be increased.
  • the single crystal support substrate may include one selected from the group consisting of a silicon single crystal substrate and a sapphire single crystal substrate.
  • the oxide single crystal layer may include one selected from the group consisting of lithium tantalate and lithium niobate.
  • the thickness of the oxide single crystal layer may be 50 ⁇ m or less. Thereby, it can respond to a thin film piezoelectric device.
  • the method for producing a composite substrate of the present invention further includes a step of ion implantation to a predetermined depth of the oxide single crystal layer before the single crystal support substrate and the oxide single crystal layer are bonded together,
  • the step of reducing the thickness of the layer may include peeling a part of the oxide single crystal substrate at a position where ions are implanted. Accordingly, a composite substrate including a thin oxide single crystal layer can be manufactured by peeling off a part of the oxide single crystal layer at a position where ions are implanted.
  • the oxide single crystal substrate may be single-polarized. Moreover, you may make it further provide the process of single-polarizing the said oxide single crystal layer of a composite substrate.
  • the composite substrate manufactured by the method for manufacturing a composite substrate of the present invention can be suitably used as a surface acoustic wave device.
  • FIG. 1 is a schematic cross-sectional view illustrating a composite substrate according to an embodiment. It is a cross-sectional photograph of the composite substrate concerning this embodiment. It is a flowchart which illustrates the manufacturing method of the composite substrate which concerns on this embodiment.
  • (A) And (b) is an optical microscope photograph of the composite substrate in which slight film peeling has occurred by the peel test. It is a cross-sectional TEM photograph of the composite substrate after heat processing.
  • (A) And (b) is a cross-sectional TEM photograph which shows the state of the amorphous layer before and behind heat processing.
  • FIG. 1 is a schematic cross-sectional view illustrating a composite substrate according to this embodiment.
  • FIG. 2 is a cross-sectional photograph of the composite substrate according to this embodiment. The cross-sectional photograph shown in FIG. 2 is a TEM image.
  • the composite substrate 1 according to the present embodiment includes a single crystal support substrate 10 mainly containing a first element, an oxide single crystal layer 20 mainly containing a second element (excluding oxygen), and a single crystal support substrate. 10 and the oxide single crystal layer 20, and includes, for example, an amorphous layer 30.
  • the single crystal support substrate 10 is a substrate that supports the oxide single crystal layer 20 that is a thin film in the composite substrate 1.
  • the thermal expansion coefficient of the single crystal support substrate 10 is smaller than the thermal expansion coefficient of the oxide single crystal layer 20.
  • the single crystal support substrate 10 one selected from the group consisting of a silicon single crystal substrate and a sapphire single crystal substrate is used. In this embodiment, a case where a silicon single crystal substrate is used as the single crystal support substrate 10 is taken as an example.
  • the first element is silicon (Si).
  • the oxide single crystal layer 20 is provided on the single crystal support substrate 10.
  • the oxide single crystal layer 20 is a thin film piezoelectric material film supported by the single crystal support substrate 10.
  • the oxide single crystal layer 20 has a thickness of several ⁇ m to several tens of ⁇ m due to polishing or partial peeling.
  • the oxide single crystal layer 20 is preferably single-polarized.
  • the oxide single crystal layer 20 includes one selected from the group consisting of lithium tantalate and lithium niobate.
  • the case where lithium tantalate is used as the oxide single crystal layer 20 is taken as an example.
  • the second element is tantalum (Ta).
  • the amorphous layer 30 includes a first element, a second element, and Ar.
  • the amorphous layer 30 is formed in the vicinity of the bonding interface when the single crystal supporting substrate 10 and the oxide single crystal layer 20 are bonded.
  • a silicon single crystal substrate is used as the single crystal support substrate 10 and lithium tantalate is used as the oxide single crystal layer 20
  • an amorphous region of Si and Ta is formed in the vicinity of the bonding interface.
  • Ar is included in the region. Note that Ar is Ar when activated by Ar on the bonding surfaces of the single crystal support substrate 10 and the oxide single crystal layer 20 in the method for manufacturing a composite substrate described later.
  • the amorphous layer 30 provided in the vicinity of the bonding interface includes a first amorphous region 31 in which the ratio of the first element (for example, Si) is higher than the ratio of the second element (for example, Ta), A second amorphous region 32 in which the ratio of two elements (for example, Ta) is higher than the ratio of the first element (for example, Si).
  • the boundary between the first amorphous region 31 and the second amorphous region 32 becomes a bonding interface.
  • Table 1 shows the result of EDX (energy dispersive X-ray analysis) analysis of the composition of each point from point 1 to point 5 shown in the cross-sectional TEM image of FIG. There are four target elements, oxygen (O), Si, Ar, and Ta.
  • the composition analysis shown in Table 1 is a state before the heat treatment (before Ar is segregated) after the single crystal support substrate 10 and the oxide single crystal layer 20 are joined at room temperature.
  • point 1 does not contain Si and point 5 does not contain Ta.
  • the proportion of Ta as the second element is higher than the proportion of Si as the first element.
  • the proportion of Si as the first element is higher than the proportion of Ta as the second element. That is, it can be seen that the Si concentration changes sharply between point 2 and point 3, and this is considered to be the bonding interface.
  • the region of point 3 which is the amorphous layer 30 is a first amorphous region 31 in which the proportion of the first element (Si) is higher than the proportion of the second element (Ta), and the region of point 2 is This is the second amorphous region 32 in which the ratio of the second element (Ta) is higher than the ratio of the first element (Si).
  • amorphous layer 30 is formed by bonding the single crystal supporting substrate 10 and the oxide single crystal layer 20 is that Ar used for surface activation remains in the crystal and is taken in as it is. It seems to be because. As shown in Table 1, it can be seen that immediately after the single crystal supporting substrate 10 and the oxide single crystal layer 20 are bonded, Ar is widely distributed thinly from point 1 to point 5.
  • Ar is segregated by heat treatment after bonding.
  • the inventor of the present application has found that the bonding strength between the single crystal support substrate 10 and the oxide single crystal layer 20 can be increased by the segregation and concentration of Ar contained in the amorphous layer 30.
  • the segregation and concentration of Ar that can increase the bonding strength will be described later.
  • FIG. 3 is a flowchart illustrating a method for manufacturing a composite substrate according to this embodiment.
  • a single crystal support substrate 10 and an oxide single crystal substrate are prepared.
  • the single crystal support substrate 10 one selected from the group consisting of a silicon single crystal substrate and a sapphire single crystal substrate is used.
  • a silicon single crystal substrate for example, a silicon single crystal wafer
  • the oxide single crystal substrate includes one selected from the group consisting of lithium tantalate and lithium niobate.
  • the single crystal oxide layer used here is preferably single-polarized.
  • a case where a lithium tantalate substrate (for example, a lithium tantalate wafer) is used is taken as an example.
  • the surfaces of the silicon single crystal wafer and the lithium tantalate wafer are flattened.
  • the surface roughness of both wafers is set to 1.0 nm or less by RMS.
  • step S102 activation by Ar is performed. That is, the surfaces on which the silicon single crystal wafer and the lithium tantalate wafer are bonded are activated by Ar. For example, the surfaces of both wafers are activated in an Ar atmosphere under high vacuum.
  • step S103 bonding is performed.
  • the surfaces of the silicon single crystal wafer and the lithium tantalate wafer activated by Ar in the previous step S102 are bonded together. Since the surface is activated, bonding at room temperature is possible.
  • an amorphous layer 30 (first amorphous region 31 and second amorphous region 32) is formed in the vicinity of the bonding surface between the silicon single crystal wafer and the lithium tantalate wafer.
  • a process for forming the oxide single crystal layer 20 is performed. That is, a lithium tantalate wafer is ground and polished to a desired thickness (for example, 50 ⁇ m or less) to form a thin oxide single crystal layer (lithium tantalate layer) 20.
  • step S105 heat treatment is performed as shown in step S105.
  • segregation of Ar is performed.
  • the concentration of Ar contained in the first amorphous region 31 is set to be higher than the concentration of Ar contained in the second amorphous region 32 and at least 3 atomic%.
  • the Ar concentration on the silicon single crystal wafer side in the vicinity of the bonding interface is 3 atomic% or more, and it is less than 3 atomic% in other locations, which is the optimum condition for obtaining a stronger bond. found.
  • the bond strength at the interface can be increased by segregating Ar on the Si side, which is relatively easy to contain impurities.
  • it can be performed at a relatively high temperature (for example, about 250 ° C. or more and about 550 ° C. or less) for a short time, and relatively low temperature (for example, 150 ° C.). It is also possible to carry out for a very long time (for example, about 24 hours) at a temperature of about 0 ° C to about 250 ° C.
  • This method is applicable not only to thinning by grinding and polishing, but also to strengthening the bonding strength of thin films obtained by ion implantation delamination. Because this phenomenon is a phenomenon at the bonding interface, the ions implanted for peeling are separated from the bonding interface by several hundreds of nanometers to several ⁇ m, so there is little effect on the phenomenon at the bonding interface. It is.
  • ion implantation is performed to a predetermined depth of the oxide single crystal substrate (lithium tantalate wafer).
  • a part of the lithium tantalate wafer is peeled to form an oxide single crystal layer (lithium tantalate layer) 20.
  • a wafer in which ions are previously implanted into a lithium tantalate or lithium niobate wafer, and a low thermal expansion coefficient (lithium tantalate and niobic acid) such as quartz (glass), Si, and sapphire as a support wafer.
  • a material having a low thermal expansion coefficient (compared to lithium) is prepared.
  • the surface roughness of both wafers is set to 1.0 nm or less by RMS, and one or both wafers are subjected to surface activation treatment. After bonding the two wafers, a part of the donor wafer is peeled off at the position where the ions are implanted, and a thin film of lithium tantalate or lithium niobate is formed.
  • the composite substrate 1 in which the thin film of lithium tantalate or lithium niobate is supported on the support wafer is completed.
  • a mechanical peeling method such as the SiGen method can be cited as a simple method, but is not particularly limited.
  • the composite substrate 1 in which the bonding strength between the single crystal support substrate 10 and the oxide single crystal layer 20 is increased by the segregation and concentration of Ar contained in the amorphous layer 30 can be obtained.
  • the composite substrate manufactured by the manufacturing method can be suitably used as the surface acoustic wave device.
  • the manufacturing method further includes a step of single-polarizing the oxide single crystal substrate, similarly, the composite substrate manufactured by the manufacturing method can be suitably used as the surface acoustic wave device. .
  • a lithium tantalate wafer (hereinafter also referred to as “LT wafer”) having a diameter of 100 mm and a thickness of 0.35 mm and an Si wafer to be a support wafer are prepared.
  • the surface roughness of both wafers is 1.0 nm or less in RMS.
  • These wafers are bonded together after surface activation is performed by irradiating an Ar beam under high vacuum.
  • the LT wafer is thinned to 5 ⁇ m and subjected to heat treatment according to each condition.
  • a peel test is performed on a sample prepared under each heat treatment condition. The peel test is a method in which a polyimide tape is applied and peeled off after being adhered.
  • Table 2 shows the results of the peel test and the results of the EDX inspection using Ar in each layer of the bonded wafer as the target element.
  • FIG. 5 is a cross-sectional TEM photograph of the composite substrate 1 after heat treatment at 500 ° C. for 6 hours as the heat treatment conditions in the first example.
  • FIGS. 6A and 6B are cross-sectional TEM photographs showing the state of the amorphous layer before and after the heat treatment. It can be seen that the Ar concentration in the first amorphous region 31 of the amorphous layer 30 as point 3 is very high by performing the heat treatment at 500 ° C. for 6 hours.
  • the same inspection is performed using a lithium niobate wafer (hereinafter also referred to as “LN wafer”) in place of the LT wafer in the first embodiment.
  • LN wafer lithium niobate wafer
  • the inspection result of the second embodiment is the same as that of the first embodiment.
  • the same inspection is performed using a sapphire wafer instead of the Si wafer in the first embodiment.
  • the inspection result of the third embodiment is the same as that of the first embodiment.
  • the ion implantation delamination method is applied as the thinning of the LT wafer in the first embodiment. That is, hydrogen ions are previously implanted into a predetermined position of the LT wafer, and after being bonded to the Si wafer, mechanical peeling is performed. Thereafter, heat treatment is performed according to each condition, and the same inspection as in the first embodiment is performed. The inspection result of the fourth embodiment is the same as that of the first embodiment.
  • the same inspection is performed using an LN wafer instead of the LT wafer in the fourth embodiment.
  • the inspection result of the fifth embodiment is the same as that of the first embodiment.
  • the ion implantation delamination method is applied to thin the LT wafer as in the fourth embodiment. That is, hydrogen ions were previously implanted into a predetermined position of the LT wafer, and after being bonded to a sapphire wafer as a support substrate, mechanical peeling was performed.
  • the thickness of the thinned LT of the bonded substrate composed of the thinned LT wafer and the sapphire wafer thus obtained was 1 ⁇ m.
  • the EDX inspection result of the bonding interface between the LT wafer and the sapphire wafer was 500 in Table 2 of Example 1.
  • the result was the same as in the case of treatment at 6 ° C. for 6 hours, and a peel test was carried out to obtain a result with no peeling.
  • the bonded substrate composed of the thinned LT wafer and the sapphire wafer is heated to 700 ° C. which is not less than the Curie point temperature of LT, and the temperature of the bonded substrate wafer is further lowered. Between 700 ° C. and 500 ° C. in the process, an electric field of 4000 V / m was applied in the + Z-axis direction, and then the temperature was lowered to room temperature.
  • the EDX inspection result of the bonded substrate bonding interface composed of the thinned LT wafer and the sapphire wafer after the heating and the electric field application treatment is the same as in the case of the treatment at 500 ° C. for 6 hours in Table 2 of Example 1, When the peel test was carried out, no peeling was observed.
  • the bonded substrate made of the thinned LT and the sapphire wafer of the sixth example has a piezoelectricity in the entire surface of the substrate, so that it can be used as a surface acoustic wave device by being polarized singly.
  • the composite substrate 1 and the method for manufacturing the composite substrate 1 according to the present embodiment it is possible to obtain sufficient bonding strength in bonding the piezoelectric material layer and the support substrate.

Abstract

圧電材料層と支持基板との貼り合わせにおいて十分な接合強度を得ることができる複合基板および複合基板の製造方法を提供する。本発明は、第1元素を主成分とする単結晶支持基板と、単結晶支持基板の上に設けられ、第2元素(酸素を除く)を主成分とする酸化物単結晶層と、単結晶支持基板と酸化物単結晶層との間に設けられ、第1元素、第2元素およびArを含む非晶質層と、を備えた複合基板であって、非晶質層は、第1元素の割合が第2元素の割合よりも高くなる第1非晶質領域と、第2元素の割合が第1元素の割合よりも高くなる第2非晶質領域と、を有し、第1非晶質領域に含まれるArの濃度は、第2非晶質領域に含まれるArの濃度よりも高く、かつ3原子%以上であることを特徴とする。

Description

複合基板および複合基板の製造方法
 本発明は、表面弾性波(SAW)デバイス等に用いられる複合基板および複合基板の製造方法に関する。
 近年、スマートフォンに代表される移動体通信の市場において、通信量が急激に増大している。これに対応するため、必要なバンド数を増やすとともに、必然的に各種部品の小型化、高性能化が重要になってきている。
 一般的な圧電材料であるタンタル酸リチウム(Lithium Tantalate:LTと略称されることもあり)やニオブ酸リチウム(Lithium Niobate:LNと略称されることもあり)は、表面弾性波(SAW)デバイスの材料として広く用いられている。これらの材料は大きな電気機械結合係数を有し、広帯域化が可能である反面、温度安定性が低く、温度変化によって対応できる周波数がシフトしてしまうという問題点を有する。これはタンタル酸リチウムやニオブ酸リチウムが非常に高い熱膨張係数を有することに起因する。
 この問題を低減するために、タンタル酸リチウムやニオブ酸リチウムに、より小さな熱膨張係数を有する材料、具体的にはサファイアを貼り合せ、タンタル酸リチウムやニオブ酸リチウムのウェーハを研削などで数μm~数十μmに薄化することで、熱膨張を抑え、温度特性を改善する方法が提案されている(例えば、非特許文献1参照)。また、さらに熱膨張係数が小さいシリコンとの貼り合わせも提案されている(例えば、特許文献1参照)。
 しかし、これらの材料は貼り合わせた後に熱処理を掛けて結合強度を上げようとすると両基板の膨張係数の差により基板の反りや剥がれ、割れなどが生じてしまうことが知られている。この問題を回避するために、貼った直後に高い結合強度が得られる常温接合が提案されている(例えば、非特許文献2参照)。この方法では高真空下において貼り合わせる基板にアルゴン(Ar)ビームを照射し、表面を活性化し、そのまま貼るという方法である。
特開2005-347295号公報
電波新聞ハイテクノロジー,2012年11月8日,「スマートフォンのRFフロントエンドに用いられるSAW-Duplexerの温度補償技術」 Applied Physics Letters Vol.74, Number16, pp.2387-2389, 19 APRIL 1999
 しかしながら、上記のような常温による接合方法では、室温で高い接合強度を得られるという特徴はあるものの、このようにして得られた複合基板でも十分な接合強度を得られない場合も多い。このため、デバイス作製の途中などで剥がれを起こしてしまう可能性がある。また、長期信頼性の観点からもより完全な接合性が求められる。
 本発明の目的は、圧電材料層と支持基板との貼り合わせにおいて十分な接合強度を得ることができる複合基板および複合基板の製造方法を提供することである。
 上記課題を解決するために、本発明は、第1元素を主成分とする単結晶支持基板と、単結晶支持基板の上に設けられ、第2元素(酸素を除く)を主成分とする酸化物単結晶層と、単結晶支持基板と酸化物単結晶層との間に設けられ、第1元素、第2元素およびArを含む非晶質層と、を備えた複合基板であって、非晶質層は、第1元素の割合が第2元素の割合よりも高くなる第1非晶質領域と、第2元素の割合が第1元素の割合よりも高くなる第2非晶質領域と、を有し、第1非晶質領域に含まれるArの濃度は、第2非晶質領域に含まれるArの濃度よりも高く、かつ3原子%以上であることを特徴とする。
 このような構成によれば、非晶質層に含まれるArの偏析および濃度によって、単結晶支持基板と酸化物単結晶層との接合強度を高めることができる。
 本発明の複合基板において、第2非晶質領域に含まれるArの濃度は3原子%未満であってもよい。これにより、単結晶支持基板と酸化物単結晶層とのさらなる接合強度の向上を図ることができる。
 本発明の複合基板において、単結晶支持基板は、シリコン単結晶基板およびサファイア単結晶基板よりなる群から選択された1つを含んでいてもよい。また、酸化物単結晶層は、タンタル酸リチウムおよびニオブ酸リチウムよりなる群から選択された1つを含んでいてもよい。また、酸化物単結晶層の厚さは、50μm以下であってもよい。これにより、薄膜の圧電デバイスに対応することができる。また、酸化物単結晶層は、単一分極とするとよい。これにより、複合基板を表面弾性波素子として好適に使用することができる。
 本発明の複合基板の製造方法は、第1元素を主成分として含む単結晶支持基板の表面および第2元素(酸素を除く)を主成分とする酸化物単結晶基板のそれぞれの表面をArにより活性化する工程と、Arにより活性化された単結晶支持基板の表面と、Arにより活性化された酸化物単結晶基板の表面とを貼り合わせ、単結晶支持基板と酸化物単結晶基板との間に第1元素、第2元素およびArを含む非晶質層を形成する工程と、酸化物単結晶基板の厚さを薄くして酸化物単結晶層を形成する工程と、熱処理工程と、を備え、非晶質層は、第1元素の割合が第2元素の割合よりも高くなる第1非晶質領域と、第2元素の割合が第1元素の割合よりも高くなる第2非晶質領域と、を有し、熱処理工程は、第1非晶質領域に含まれるArの濃度を、第2非晶質領域に含まれるArの濃度よりも高く、かつ3原子%以上にすることを含む。
 このような構成によれば、非晶質層に含まれるArの偏析および濃度によって、単結晶支持基板と酸化物単結晶層との接合強度を高めた複合基板を製造することができる。
 本発明の複合基板の製造方法において、熱処理工程は、第2非晶質領域に含まれるArの濃度を3原子%未満にすることを含んでいてもよい。これにより、単結晶支持基板と酸化物単結晶層との接合強度をさらに向上させた複合基板を製造することができる。
 本発明の複合基板の製造方法において、熱処理工程は、非晶質層を150℃以上に加熱することを含んでいてもよい。これにより、非晶質層に含まれるArを、単結晶支持基板と酸化物単結晶層との接合強度を高めることができる偏析および濃度にすることができる。
 本発明の複合基板の製造方法において、単結晶支持基板は、シリコン単結晶基板およびサファイア単結晶基板よりなる群から選択された1つを含んでいてもよい。また、酸化物単結晶層は、タンタル酸リチウムおよびニオブ酸リチウムよりなる群から選択された1つを含んでいてもよい。また、酸化物単結晶層の厚さは、50μm以下であってもよい。これにより、薄膜の圧電デバイスに対応することができる。
 本発明の複合基板の製造方法において、単結晶支持基板と酸化物単結晶層とを貼り合わせる前に、酸化物単結晶層の所定深さにイオン注入を施す工程をさらに備え、酸化物単結晶層の厚さを薄くする工程は、イオン注入された位置で酸化物単結晶基板の一部を剥離することを含んでいてもよい。これにより、イオン注入された位置で酸化物単結晶層の一部を剥離して薄膜の酸化物単結晶層を含む複合基板を製造することができる。
 本発明の複合基板の製造方法において、酸化物単結晶基板は単一分極とするとよい。また、複合基板の前記酸化物単結晶層を単一分極化する工程を更に備えるようにしてもよい。これらの手法により、酸化物単結晶層を単一分極とすることで、本発明の複合基板の製造方法にて製造した複合基板を表面弾性波素子として好適に使用することができる。
本実施形態に係る複合基板を例示する模式断面図である。 本実施形態に係る複合基板の断面写真である。 本実施形態に係る複合基板の製造方法を例示するフローチャートである。 (a)および(b)は、ピールテストにより微少な膜剥がれが生じた複合基板の光学顕微鏡写真である。 熱処理を行った後の複合基板の断面TEM写真である。 (a)および(b)は、熱処理前後での非晶質層の状態を示す断面TEM写真である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
〔複合基板の構成〕
 図1は、本実施形態に係る複合基板を例示する模式断面図である。また、図2は、本実施形態に係る複合基板の断面写真である。図2に示す断面写真はTEM像である。
 本実施形態に係る複合基板1は、第1元素を主成分とする単結晶支持基板10と、第2元素(酸素を除く)を主成分とする酸化物単結晶層20と、単結晶支持基板10と酸化物単結晶層20との間に設けられ、例えば非晶質層30とを備える。
 単結晶支持基板10は、複合基板1において薄膜である酸化物単結晶層20を支持する基板である。単結晶支持基板10の熱膨張係数は、酸化物単結晶層20の熱膨張係数よりも小さい。単結晶支持基板10には、シリコン単結晶基板およびサファイア単結晶基板よりなる群から選択された1つが用いられる。本実施形態では、単結晶支持基板10としてシリコン単結晶基板を用いる場合を例とする。シリコン単結晶基板を用いる場合、第1元素はシリコン(Si)である。
 酸化物単結晶層20は、単結晶支持基板10の上に設けられる。酸化物単結晶層20は、単結晶支持基板10によって支持される薄膜状の圧電材料膜である。酸化物単結晶層20は、研磨や一部剥離などによって数μm~数十μmの厚さになっている。酸化物単結晶層20は、単一分極となっているとよい。
 酸化物単結晶層20には、タンタル酸リチウムおよびニオブ酸リチウムよりなる群から選択された1つが含まれる。本実施形態では、酸化物単結晶層20としてタンタル酸リチウムを用いる場合を例とする。タンタル酸リチウムを用いる場合、第2元素はタンタル(Ta)である。
 非晶質層30は、第1元素、第2元素およびArを含む。非晶質層30は、単結晶支持基板10と酸化物単結晶層20との貼り合わせの際に、貼り合わせの界面近傍に形成される。単結晶支持基板10としてシリコン単結晶基板、酸化物単結晶層20としてタンタル酸リチウムを用いた場合、貼り合わせの界面近傍にはSiとTaとの非晶質領域が形成され、この非晶質領域内にArが含まれる。なお、Arは、後述する複合基板の製造方法において、単結晶支持基板10および酸化物単結晶層20のそれぞれ貼り合わせ面にArにより活性化した際のArである。
 貼り合わせの界面近傍に設けられる非晶質層30は、第1元素(例えば、Si)の割合が第2元素(例えば、Ta)の割合よりも高くなる第1非晶質領域31と、第2元素(例えば、Ta)の割合が第1元素(例えば、Si)の割合よりも高くなる第2非晶質領域32と、を有する。第1非晶質領域31と第2非晶質領域32との境界が貼り合わせの界面となる。
 図2の断面TEM像に示すpoint1~point5において、断面TEM像の取得と同時に極微電子線回折を実施した結果から、point2、point3およびpoint4は非晶質化していることが分かった。したがって、point2、point3およびpoint4を含む層の領域は非晶質層30となる。
 表1は、図2の断面TEM像に示すpoint1~point5の各点の組成分析をEDX(エネルギー分散型X線分析)で行った結果である。なお、対象元素は、酸素(O)、Si、Ar、Taの4つである。また、表1に示す組成分析は、単結晶支持基板10と酸化物単結晶層20とを常温接合した後、熱処理前の状態(Arを偏析させる前)である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、point1にはSiは含まれず、point5にはTaは含まれない。また、point2では第2元素であるTaの割合が第1元素であるSiの割合よりも高くなっている。一方、point3では第1元素であるSiの割合が第2元素であるTaの割合よりも高くなっている。つまり、point2とpoint3との間でSiの濃度が急峻に変化していることが分かり、ここが貼り合わせの界面と考えられる。
 また、非晶質層30であるpoint3の領域は、第1元素(Si)の割合が第2元素(Ta)の割合よりも高くなる第1非晶質領域31であり、point2の領域は、第2元素(Ta)の割合が第1元素(Si)の割合よりも高くなる第2非晶質領域32である。
 また、単結晶支持基板10と酸化物単結晶層20との貼り合わせによって非晶質層30が形成される原因は、表面の活性化に用いたArが結晶中内に残存してそのまま取り込まれるためと思われる。表1に示すように、単結晶支持基板10と酸化物単結晶層20とを貼り合わせた直後はpoint1~point5までArが広く薄く分布していることが分かる。
 一方、貼り合わせ後に熱処理を施すことでArは偏析する。本願発明者は、非晶質層30に含まれるArの偏析および濃度によって、単結晶支持基板10と酸化物単結晶層20との接合強度を高めることができることを見出した。接合強度を高めることができるArの偏析および濃度については後述する。
〔複合基板の製造方法〕
 図3は、本実施形態に係る複合基板の製造方法を例示するフローチャートである。
 先ず、ステップS101に示すように、単結晶支持基板10と酸化物単結晶基板とを用意する。単結晶支持基板10には、シリコン単結晶基板およびサファイア単結晶基板よりなる群から選択された1つが用いられる。本実施形態では、単結晶支持基板としてシリコン単結晶基板(例えば、シリコン単結晶ウェーハ)を用いる場合を例とする。また、酸化物単結晶基板には、タンタル酸リチウムおよびニオブ酸リチウムよりなる群から選択された1つが含まれる。ここで用いる酸化物単結晶層は、単一分極となっているとよい。本実施形態では、タンタル酸リチウム基板(例えば、タンタル酸リチウムウェーハ)を用いる場合を例とする。
 シリコン単結晶ウェーハおよびタンタル酸リチウムウェーハのそれぞれの表面は平坦化されていることが望ましい。例えば、両ウェーハの表面粗さをRMSで1.0nm以下にしておく。
 次に、ステップS102に示すように、Arによる活性化を行う。すなわち、シリコン単結晶ウェーハおよびタンタル酸リチウムウェーハのそれぞれの貼り合わせを行う表面をArにより活性化する。例えば、高真空下のAr雰囲気中で両ウェーハの表面を活性化処理する。
 次に、ステップS103に示すように、貼り合わせを行う。先のステップS102でArにより活性化されたシリコン単結晶ウェーハおよびタンタル酸リチウムウェーハの互いの面を貼り合わせる。表面は活性化されているため、常温での接合が可能となる。この貼り合わせによって、シリコン単結晶ウェーハとタンタル酸リチウムウェーハとの貼り合わせ面の近傍には非晶質層30(第1非晶質領域31および第2非晶質領域32)が形成される。
 次に、ステップS104に示すように、酸化物単結晶層20を形成する処理を行う。すなわち、タンタル酸リチウムウェーハを研削および研磨して、所望の厚さ(例えば、50μm以下)にして、薄膜化した酸化物単結晶層(タンタル酸リチウム層)20を形成する。
 次に、ステップS105に示すように、熱処理を行う。この熱処理によって、Arの偏析を行う。具体的には、第1非晶質領域31に含まれるArの濃度を、第2非晶質領域32に含まれるArの濃度よりも高く、かつ3原子%以上にする。このような処理によって、複合基板1が完成する。
 本願発明者は、このような複合基板1およびその製造方法において様々な実験を行った結果、非晶質層30中の不純物となるArを熱処理によって単結晶支持基板10側に偏析させることで、強固な結合強度を得られるという新たな知見を得た。
 この際、貼り合わせ界面近傍のシリコン単結晶ウェーハ側のAr濃度が3原子%以上、それ以外の箇所では3原子%未満となることが、より強固な結合を得るための最適条件であることが判明した。
 Arをこのように偏析させることで強固な結合が得られる理由の一つとして、次のようなことが考えられる。すなわち、Arのように結合手を有さない元素は界面に局在すると界面の膜剥がれを引き起こす可能性がある。Arを比較的不純物を含有しやすいSi側に偏析させることで、界面の結合強度を増すことができると考えられる。この時の熱処理温度や時間などは定義することは難しいが、一例として、比較的高温(例えば、250℃以上550℃以下程度)で短時間行うことも可能であり、比較的低温(例えば、150℃以上250℃以下程度)で非常に長い時間(例えば、24時間程度)行うことも可能である。
 この方法は研削・研磨による薄化のみならずイオン注入剥離法により得られる薄膜の結合力強化にも同様に適応が可能である。何故なら、この現象は結合界面の現象であるため、剥離のために打ち込むイオンは貼り合わせ界面とは数百nm~数μm程度離れていることから、接合界面での現象に与える影響は少ないためである。
 ここで、イオン注入剥離法は、両ウェーハを貼り合わせる前に、酸化物単結晶基板(タンタル酸リチウムウェーハ)の所定深さにイオン注入を行っておき、貼り合わせ後、このイオン注入された位置でタンタル酸リチウムウェーハの一部を剥離して酸化物単結晶層(タンタル酸リチウム層)20を形成する方法である。
 具体的には、タンタル酸リチウムもしくはニオブ酸リチウムのウェーハに予めイオンを注入したウェーハ(ドナーウェーハ)と、支持ウェーハとして石英(ガラス)、Si、サファイア等の低熱膨張係数(タンタル酸リチウムおよびニオブ酸リチウムと比較して低熱膨張係数)を有する材料を用意する。この双方のウェーハの表面粗さをRMSで1.0nm以下とし、片方もしくは両方のウェーハに表面活性化処理を施す。この両ウェーハを貼り合わせた後にイオン注入した位置でドナーウェーハの一部を剥離し、タンタル酸リチウムもしくはニオブ酸リチウムの薄膜を形成する。これにより、支持ウェーハにタンタル酸リチウムもしくはニオブ酸リチウムの薄膜が支持された複合基板1が完成する。この際、剥離方法としてSiGen法のような機械剥離法が簡便な方法として挙げられるが、特に限定はされない。
 このような製造方法によって、非晶質層30に含まれるArの偏析および濃度によって、単結晶支持基板10と酸化物単結晶層20との接合強度を高めた複合基板1を得ることができる。なお、上記の製造方法において酸化物単結晶基板として単一分極であるものを用いると、当該製造方法にて製造した複合基板を表面弾性波素子として好適に使用することができる。また、上記製造方法において酸化物単結晶基板を単一分極化する工程を更に備える場合にも、同様に、当該製造方法にて製造した複合基板を表面弾性波素子として好適に使用することができる。
〔第1実施例〕
 第1実施例の条件を以下に示す。直径100mm、厚さ0.35mmのタンタル酸リチウムウェーハ(以下、「LTウェーハ」とも言う。)と支持ウェーハとなるSiウェーハとを用意する。両ウェーハの表面粗さはRMSで1.0nm以下である。これらのウェーハに高真空下においてArビームを照射して、表面活性化を行った後、貼り合わせを行う。貼り合せ後にLTウェーハを5μmまで薄化し、各条件によって熱処理を施す。それぞれの熱処理条件で作成された試料についてピールテストを行う。ピールテストは、ポリイミドのテープを貼り、密着させた後に剥がすという方法である。貼り合わせの結合強度が十分で無い場合、ピールテストを行うと、図4(a)および(b)の光学顕微鏡写真に示したような微少な剥がれが生じる。ピールテストの結果及び貼り合わせウェーハ各層のArを対象元素とするEDX検査の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図5は、第1実施例における熱処理の条件として、500℃、6時間の熱処理を行った後の複合基板1の断面TEM写真である。図6(a)および(b)は、熱処理前後での非晶質層の状態を示す断面TEM写真である。500℃、6時間の熱処理を行うことで、point3である非晶質層30の第1非晶質領域31のArの濃度が非常に高くなっていることが分かる。
 表1に示す結果より、貼り合わせの界面近傍のSi側(point3)のAr濃度が3原子%以上、それ以外の箇所が3原子%未満であることが高い結合力を有するための条件であることが分かる。
〔第2実施例〕
 第2実施例では、上記第1実施例において、LTウェーハの代わりにニオブ酸リチウムウェーハ(以下、「LNウェーハ」とも言う。)を用いて同様な検査を行う。第2実施例の検査結果も第1実施例と同様である。
〔第3実施例〕
 第3実施例では、上記第1実施例において、Siウェーハの代わりにサファイアウェーハを用いて同様な検査を行う。第3実施例の検査結果も第1実施例と同様である。
〔第4実施例〕
 第4実施例では、上記第1実施例において、LTウェーハの薄化としてイオン注入剥離法を適用する。すなわち、予めLTウェーハの所定位置に水素イオンを打ち込み、Siウェーハと貼り合わせ後、機械剥離を行う。その後、各条件によって熱処理を施し、第1実施例と同様な検査を行う。第4実施例の検査結果も第1実施例と同様である。
〔第5実施例〕
 第5実施例では、上記第4実施例において、LTウェーハの代わりにLNウェーハを用いて同様な検査を行う。第5実施例の検査結果も第1実施例と同様である。
〔第6実施例〕
 第6実施例では、上記第4実施例と同様にLTウェーハの薄化としてイオン注入剥離法を適用する。すなわち、予めLTウェーハの所定位置に水素イオンを打ち込み、支持基板としてサファイアウェーハと貼り合わせ後、機械剥離を行った。
 このようにして得られた薄化LTウェーハとサファイアウェーハからなる接合基板の前記薄化LTの厚みは1μmであった。
 次にこのようにして得られた薄化LTウェーハとサファイアウェーハを500℃、6時間の熱処理を施したところ、LTウェーハとサファイアウェーハの接合界面のEDX検査結果は実施例1の表2の500℃、6時間処理の場合と同様であり、ピールテストを実施したところ剥がれは無い結果が得られた。
 次に、前記薄化LTウェーハを単一分極化すべく、前記薄化LTウェーハとサファイアウェーハからなる接合基板をLTのキュリー点温度以上である700℃に加熱し、前記接合基板ウェーハをさらに降温する過程の700℃~500℃の間に、概略+Z軸方向に4000V/mの電界を印可し、その後、温度を室温まで下げる処理を行った。前記加熱と電界印可処理を施した後の前記薄化LTウェーハとサファイアウェーハからなる接合基板接合界面のEDX検査結果は実施例1の表2の500℃、6時間処理の場合と同様であり、ピールテストを実施したところ剥がれは無い結果が得られた。
 次に前記接合基板ウェーハを、中国科学院声楽研究所製ピエゾd33メータ(型式ZJ-3BN)を用いて、前記接合基板ウェーハの主面と裏面に厚み方向の垂直振動を与えて誘起させた電圧波形を観測したところ、ウェーハの全ての場所において圧電応答を示す波形が得られ、d33値は面内一様に5pC/Nであった。
 第6実施例の薄化LTとサファイアウェーハからなる接合基板は、基板面内全て圧電性を有することから、単一に分極され表面弾性波素子として使用可能であることが確認された。
 以上説明したように、本実施形態に係る複合基板1および複合基板1の製造方法によれば、圧電材料層と支持基板との貼り合わせにおいて十分な接合強度を得ることが可能になる。
 なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
1…複合基板
10…単結晶支持基板
20…酸化物単結晶層
30…非晶質層
31…第1非晶質領域
32…第2非晶質領域

Claims (15)

  1.  第1元素を主成分とする単結晶支持基板と、
     前記単結晶支持基板の上に設けられ、第2元素(酸素を除く)を主成分とする酸化物単結晶層と、
     前記単結晶支持基板と前記酸化物単結晶層との間に設けられ、前記第1元素、前記第2元素およびArを含む非晶質層と、を備えた複合基板であって、
     前記非晶質層は、
      前記第1元素の割合が前記第2元素の割合よりも高くなる第1非晶質領域と、
      前記第2元素の割合が前記第1元素の割合よりも高くなる第2非晶質領域と、を有し、
     前記第1非晶質領域に含まれるArの濃度は、前記第2非晶質領域に含まれるArの濃度よりも高く、かつ3原子%以上であることを特徴とする複合基板。
  2.  前記第2非晶質領域に含まれるArの濃度は3原子%未満である、請求項1記載の複合基板。
  3.  前記単結晶支持基板は、シリコン単結晶基板およびサファイア単結晶基板よりなる群から選択された1つを含む、請求項1または2に記載の複合基板。
  4.  前記酸化物単結晶層は、タンタル酸リチウムおよびニオブ酸リチウムよりなる群から選択された1つを含む、請求項1~3のいずれか1つに記載の複合基板。
  5.  前記酸化物単結晶層の厚さは、50μm以下である、請求項1~4のいずれか1つに記載の複合基板。
  6.  前記酸化物単結晶層は、単一分極であることを特徴とする請求項1~5のいずれか1つに記載の複合基板。
  7.  第1元素を主成分として含む単結晶支持基板の表面および第2元素(酸素を除く)を主成分とする酸化物単結晶基板のそれぞれの表面をArにより活性化する工程と、
     前記Arにより活性化された前記単結晶支持基板の表面と、前記Arにより活性化された前記酸化物単結晶基板の表面とを貼り合わせ、前記単結晶支持基板と前記酸化物単結晶基板との間に前記第1元素、前記第2元素およびArを含む非晶質層を形成する工程と、
     前記酸化物単結晶基板の厚さを薄くして酸化物単結晶層を形成する工程と、
     熱処理工程と、
     を備え、
     前記非晶質層は、
      前記第1元素の割合が前記第2元素の割合よりも高くなる第1非晶質領域と、
      前記第2元素の割合が前記第1元素の割合よりも高くなる第2非晶質領域と、を有し、
     前記熱処理工程は、前記第1非晶質領域に含まれるArの濃度を、前記第2非晶質領域に含まれるArの濃度よりも高く、かつ3原子%以上にすることを含む、複合基板の製造方法。
  8.  前記熱処理工程は、前記第2非晶質領域に含まれるArの濃度を3原子%未満にすることを含む、請求項7記載の複合基板の製造方法。
  9.  前記熱処理工程は、前記非晶質層を150℃以上に加熱することを含む、請求項7または8に記載の複合基板の製造方法。
  10.  前記単結晶支持基板は、シリコン単結晶基板およびサファイア単結晶基板よりなる群から選択された1つを含む、請求項7~9のいずれか1つに記載の複合基板の製造方法。
  11.  前記酸化物単結晶基板は、タンタル酸リチウムおよびニオブ酸リチウムよりなる群から選択された1つを含む、請求項7~10のいずれか1つに記載の複合基板の製造方法。
  12.  前記酸化物単結晶層を形成する工程は、前記酸化物単結晶基板の厚さを50μm以下にすることを含む、請求項7~11のいずれか1つに記載の複合基板の製造方法。
  13.  前記単結晶支持基板と前記酸化物単結晶基板とを貼り合わせる前に、前記酸化物単結晶基板の所定深さにイオン注入を施す工程をさらに備え、
     前記酸化物単結晶層を形成する工程は、前記イオン注入された位置で前記酸化物単結晶基板の一部を剥離することを含む、請求項7~12のいずれか1つに記載の複合基板の製造方法。
  14.  前記酸化物単結晶基板は単一分極であることを特徴とする請求項7~13のいずれか1つに記載の複合基板の製造方法。
  15.  前記複合基板の前記酸化物単結晶層を単一分極化する工程を更に備えることを特徴とする請求項7~13のいずれか1つに記載の複合基板の製造方法。
PCT/JP2017/000272 2016-02-02 2017-01-06 複合基板および複合基板の製造方法 WO2017134980A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187019561A KR20180104610A (ko) 2016-02-02 2017-01-06 복합 기판 및 복합 기판의 제조 방법
CN201780006333.7A CN108702141B (zh) 2016-02-02 2017-01-06 复合基板及复合基板的制造方法
US16/073,063 US11245377B2 (en) 2016-02-02 2017-01-06 Composite substrate and method of manufacturing composite substrate
EP17747144.8A EP3413464B1 (en) 2016-02-02 2017-01-06 Composite substrate and method for producing composite substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016017916 2016-02-02
JP2016-017916 2016-02-02
JP2016043992A JP6549054B2 (ja) 2016-02-02 2016-03-08 複合基板および複合基板の製造方法
JP2016-043992 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017134980A1 true WO2017134980A1 (ja) 2017-08-10

Family

ID=59565143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000272 WO2017134980A1 (ja) 2016-02-02 2017-01-06 複合基板および複合基板の製造方法

Country Status (7)

Country Link
US (1) US11245377B2 (ja)
EP (1) EP3413464B1 (ja)
JP (2) JP6549054B2 (ja)
KR (1) KR20180104610A (ja)
CN (1) CN108702141B (ja)
TW (1) TWI721091B (ja)
WO (1) WO2017134980A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039475A1 (ja) * 2017-08-25 2019-02-28 日本碍子株式会社 接合体および弾性波素子
WO2019039474A1 (ja) * 2017-08-25 2019-02-28 日本碍子株式会社 接合体および弾性波素子
WO2019159555A1 (ja) * 2018-02-13 2019-08-22 日本碍子株式会社 圧電性材料基板と支持基板との接合体
JPWO2018096797A1 (ja) * 2016-11-25 2019-10-17 日本碍子株式会社 接合体
JP6621574B1 (ja) * 2018-06-22 2019-12-18 日本碍子株式会社 接合体および弾性波素子
WO2019244471A1 (ja) * 2018-06-22 2019-12-26 日本碍子株式会社 接合体および弾性波素子
WO2019244461A1 (ja) * 2018-06-22 2019-12-26 日本碍子株式会社 接合体および弾性波素子
WO2020027075A1 (ja) * 2018-08-01 2020-02-06 京セラ株式会社 複合基板、圧電素子および複合基板の製造方法
WO2020079958A1 (ja) * 2018-10-17 2020-04-23 日本碍子株式会社 接合体および弾性波素子
WO2020079959A1 (ja) * 2018-10-17 2020-04-23 日本碍子株式会社 接合体および弾性波素子
JPWO2019220713A1 (ja) * 2018-05-17 2020-05-28 日本碍子株式会社 圧電性単結晶基板と支持基板との接合体
CN111919385A (zh) * 2018-03-29 2020-11-10 日本碍子株式会社 接合体和弹性波元件
WO2022025235A1 (ja) * 2020-07-30 2022-02-03 京セラ株式会社 弾性波素子、ラダー型フィルタ、分波器および通信装置
US11984870B2 (en) 2018-10-17 2024-05-14 Ngk Insulators, Ltd. Bonded body and acoustic wave element

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549054B2 (ja) * 2016-02-02 2019-07-24 信越化学工業株式会社 複合基板および複合基板の製造方法
KR20200040807A (ko) * 2017-10-13 2020-04-20 지난 징젱 일렉트로닉스 씨오., 엘티디. 나노급 단결정 필름
US11595019B2 (en) 2018-04-20 2023-02-28 Taiyo Yuden Co., Ltd. Acoustic wave resonator, filter, and multiplexer
JP7061005B2 (ja) * 2018-04-20 2022-04-27 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ
JP7152711B2 (ja) * 2018-06-20 2022-10-13 日本電産マシンツール株式会社 接合基板の製造方法及び接合基板
EP3731259B1 (en) * 2018-06-21 2024-05-08 Jinan Jingzheng Electronics Co., Ltd. Composite monocrystalline film
CN108565211A (zh) * 2018-06-21 2018-09-21 济南晶正电子科技有限公司 复合单晶薄膜
US11450799B2 (en) 2018-08-07 2022-09-20 Jinan Jingzheng Electronics Co., Ltd. Micron-scale monocrystal film
JP7458700B2 (ja) * 2018-09-07 2024-04-01 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ
JP7420922B2 (ja) 2020-03-31 2024-01-23 京セラ株式会社 接合基板
WO2021215466A1 (ja) * 2020-04-21 2021-10-28 京セラ株式会社 接合基板
TW202144826A (zh) * 2020-05-20 2021-12-01 日商日本碍子股份有限公司 電光元件用複合基板
WO2022168498A1 (ja) * 2021-02-05 2022-08-11 日本碍子株式会社 複合基板、弾性表面波素子および複合基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252550A (ja) * 2004-03-03 2005-09-15 Fujitsu Media Device Kk 接合基板、弾性表面波素子および弾性表面波デバイス
JP2005328499A (ja) * 2004-05-14 2005-11-24 Iljin Diamond Co Ltd 表面弾性波素子用タンタル酸リチウム基板の製造方法とその基板
JP2012213244A (ja) * 2007-12-25 2012-11-01 Murata Mfg Co Ltd 複合圧電基板の製造方法
JP3187231U (ja) * 2013-09-05 2013-11-14 日本碍子株式会社 複合基板
WO2014077213A1 (ja) * 2012-11-14 2014-05-22 日本碍子株式会社 複合基板

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823780B8 (en) * 1991-09-12 2002-09-04 Matsushita Electric Industrial Co., Ltd. Electro-acoustic hybrid integrated circuit and manufacturing method thereof
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
JP2004328712A (ja) 2003-01-16 2004-11-18 Sumitomo Metal Mining Co Ltd タンタル酸リチウム基板およびその製造方法
JP3938147B2 (ja) 2003-04-08 2007-06-27 住友金属鉱山株式会社 タンタル酸リチウム基板およびその製造方法
JP3774782B2 (ja) * 2003-05-14 2006-05-17 富士通メディアデバイス株式会社 弾性表面波素子の製造方法
JP2005317822A (ja) 2004-04-30 2005-11-10 Shin Etsu Chem Co Ltd 単一分極化されたタンタル酸リチウムの製造方法
JP4723207B2 (ja) 2004-05-31 2011-07-13 信越化学工業株式会社 複合圧電基板
JP2009221037A (ja) * 2008-03-14 2009-10-01 Seiko Epson Corp 圧電体、圧電素子、および圧電アクチュエータ
FR2951336B1 (fr) * 2009-10-09 2017-02-10 Commissariat A L'energie Atomique Dispositif a ondes acoustiques comprenant un filtre a ondes de surface et un filtre a ondes de volume et procede de fabrication
CN103999366B (zh) * 2012-11-14 2016-07-06 日本碍子株式会社 复合基板及其制法
DE112014001537B4 (de) * 2013-03-21 2018-06-28 Ngk Insulators, Ltd. Verbundsubstrate für Akustikwellenelemente und Akustikwellenelemente
SG11201508969QA (en) 2013-05-01 2015-12-30 Shinetsu Chemical Co Method for producing hybrid substrate, and hybrid substrate
JP5926401B2 (ja) * 2013-05-31 2016-05-25 京セラ株式会社 複合基板およびその製造方法
JP6182661B2 (ja) * 2014-02-18 2017-08-16 日本碍子株式会社 半導体用複合基板のハンドル基板および半導体用複合基板
JP6549054B2 (ja) * 2016-02-02 2019-07-24 信越化学工業株式会社 複合基板および複合基板の製造方法
FR3053532B1 (fr) * 2016-06-30 2018-11-16 Soitec Structure hybride pour dispositif a ondes acoustiques de surface
US11595019B2 (en) * 2018-04-20 2023-02-28 Taiyo Yuden Co., Ltd. Acoustic wave resonator, filter, and multiplexer
US10938372B2 (en) * 2018-05-17 2021-03-02 Taiyo Yuden Co., Ltd. Acoustic wave resonator, acoustic wave device, and filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252550A (ja) * 2004-03-03 2005-09-15 Fujitsu Media Device Kk 接合基板、弾性表面波素子および弾性表面波デバイス
JP2005328499A (ja) * 2004-05-14 2005-11-24 Iljin Diamond Co Ltd 表面弾性波素子用タンタル酸リチウム基板の製造方法とその基板
JP2012213244A (ja) * 2007-12-25 2012-11-01 Murata Mfg Co Ltd 複合圧電基板の製造方法
WO2014077213A1 (ja) * 2012-11-14 2014-05-22 日本碍子株式会社 複合基板
JP3187231U (ja) * 2013-09-05 2013-11-14 日本碍子株式会社 複合基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413464A4 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018096797A1 (ja) * 2016-11-25 2019-10-17 日本碍子株式会社 接合体
TWI699015B (zh) * 2017-08-25 2020-07-11 日商日本碍子股份有限公司 接合體及彈性波元件
US10931256B2 (en) 2017-08-25 2021-02-23 Ngk Insulators, Ltd. Joined body and elastic wave element
WO2019039475A1 (ja) * 2017-08-25 2019-02-28 日本碍子株式会社 接合体および弾性波素子
JP2019140697A (ja) * 2017-08-25 2019-08-22 日本碍子株式会社 接合体および弾性波素子
WO2019039474A1 (ja) * 2017-08-25 2019-02-28 日本碍子株式会社 接合体および弾性波素子
JPWO2019039474A1 (ja) * 2017-08-25 2019-11-07 日本碍子株式会社 接合体および弾性波素子
US11637541B2 (en) 2017-08-25 2023-04-25 Ngk Insulators, Ltd. Joined body and elastic wave element
TWI692463B (zh) * 2017-08-25 2020-05-01 日商日本碍子股份有限公司 接合體及彈性波元件
JP6507326B1 (ja) * 2017-08-25 2019-04-24 日本碍子株式会社 接合体および弾性波素子
KR20200096987A (ko) 2018-02-13 2020-08-14 엔지케이 인슐레이터 엘티디 압전성 재료 기판과 지지 기판의 접합체
JP2020102856A (ja) * 2018-02-13 2020-07-02 日本碍子株式会社 圧電性材料基板と支持基板との接合体
DE112018006860B4 (de) 2018-02-13 2022-06-30 Ngk Insulators, Ltd. Verbundener Körper aus einem Substrat aus einem piezoelektrischen Material und einem Trägersubstrat
JPWO2019159555A1 (ja) * 2018-02-13 2020-02-27 日本碍子株式会社 圧電性材料基板と支持基板との接合体
US10998878B2 (en) 2018-02-13 2021-05-04 Ngk Insulators, Ltd. Joined body of piezoelectric material substrate and support substrate
CN111684717B (zh) * 2018-02-13 2021-08-27 日本碍子株式会社 压电性材料基板与支撑基板的接合体
WO2019159555A1 (ja) * 2018-02-13 2019-08-22 日本碍子株式会社 圧電性材料基板と支持基板との接合体
JP7210497B2 (ja) 2018-02-13 2023-01-23 日本碍子株式会社 圧電性材料基板と支持基板との接合体
CN111684717A (zh) * 2018-02-13 2020-09-18 日本碍子株式会社 压电性材料基板与支撑基板的接合体
CN111919385A (zh) * 2018-03-29 2020-11-10 日本碍子株式会社 接合体和弹性波元件
JPWO2019220713A1 (ja) * 2018-05-17 2020-05-28 日本碍子株式会社 圧電性単結晶基板と支持基板との接合体
US11107973B2 (en) 2018-05-17 2021-08-31 Ngk Insulators, Ltd. Joined body of piezoelectric single-crystal substrate and support substrate
KR20200142591A (ko) 2018-05-17 2020-12-22 엔지케이 인슐레이터 엘티디 압전성 단결정 기판과 지지 기판의 접합체
DE112019001985B4 (de) 2018-05-17 2022-05-05 Ngk Insulators, Ltd. Verbundener Körper aus einem piezoelektrischen Einkristallsubstrat und einem Trägersubstrat
CN112243568A (zh) * 2018-06-22 2021-01-19 日本碍子株式会社 接合体及弹性波元件
US11133788B2 (en) 2018-06-22 2021-09-28 Ngk Insulators, Ltd. Bonded body and elastic wave element
KR20210005738A (ko) 2018-06-22 2021-01-14 엔지케이 인슐레이터 엘티디 접합체 및 탄성파 소자
WO2019244461A1 (ja) * 2018-06-22 2019-12-26 日本碍子株式会社 接合体および弾性波素子
DE112019002430B4 (de) 2018-06-22 2022-07-28 Ngk Insulators, Ltd. Verbundener Körper und Akustikwellenelement
JP6621574B1 (ja) * 2018-06-22 2019-12-18 日本碍子株式会社 接合体および弾性波素子
JP6644208B1 (ja) * 2018-06-22 2020-02-12 日本碍子株式会社 接合体および弾性波素子
WO2019244471A1 (ja) * 2018-06-22 2019-12-26 日本碍子株式会社 接合体および弾性波素子
CN112243568B (zh) * 2018-06-22 2021-12-28 日本碍子株式会社 接合体及弹性波元件
CN112272920A (zh) * 2018-06-22 2021-01-26 日本碍子株式会社 接合体及弹性波元件
US11139427B2 (en) 2018-06-22 2021-10-05 Ngk Insulators, Ltd. Bonded body and elastic wave element
JP7085000B2 (ja) 2018-08-01 2022-06-15 京セラ株式会社 複合基板、圧電素子および複合基板の製造方法
JPWO2020027075A1 (ja) * 2018-08-01 2021-09-09 京セラ株式会社 複合基板、圧電素子および複合基板の製造方法
CN112534089B (zh) * 2018-08-01 2023-04-28 京瓷株式会社 复合基板、声表面波元件及声表面波元件用的复合基板的制造方法
WO2020027075A1 (ja) * 2018-08-01 2020-02-06 京セラ株式会社 複合基板、圧電素子および複合基板の製造方法
CN112534089A (zh) * 2018-08-01 2021-03-19 京瓷株式会社 复合基板、压电元件以及复合基板的制造方法
JP7133031B2 (ja) 2018-10-17 2022-09-07 日本碍子株式会社 接合体および弾性波素子
JP7069338B2 (ja) 2018-10-17 2022-05-17 日本碍子株式会社 接合体および弾性波素子
JPWO2020079959A1 (ja) * 2018-10-17 2021-09-24 日本碍子株式会社 接合体および弾性波素子
JPWO2020079958A1 (ja) * 2018-10-17 2021-09-02 日本碍子株式会社 接合体および弾性波素子
WO2020079958A1 (ja) * 2018-10-17 2020-04-23 日本碍子株式会社 接合体および弾性波素子
WO2020079959A1 (ja) * 2018-10-17 2020-04-23 日本碍子株式会社 接合体および弾性波素子
US11888462B2 (en) 2018-10-17 2024-01-30 Ngk Insulators, Ltd. Bonded body and acoustic wave element
US11984870B2 (en) 2018-10-17 2024-05-14 Ngk Insulators, Ltd. Bonded body and acoustic wave element
WO2022025235A1 (ja) * 2020-07-30 2022-02-03 京セラ株式会社 弾性波素子、ラダー型フィルタ、分波器および通信装置

Also Published As

Publication number Publication date
CN108702141B (zh) 2022-06-03
TWI721091B (zh) 2021-03-11
CN108702141A (zh) 2018-10-23
JP2017139720A (ja) 2017-08-10
EP3413464A4 (en) 2019-09-18
JP6549054B2 (ja) 2019-07-24
JP2019169983A (ja) 2019-10-03
US20190036505A1 (en) 2019-01-31
EP3413464B1 (en) 2021-11-17
EP3413464A1 (en) 2018-12-12
US11245377B2 (en) 2022-02-08
TW201733175A (zh) 2017-09-16
KR20180104610A (ko) 2018-09-21

Similar Documents

Publication Publication Date Title
WO2017134980A1 (ja) 複合基板および複合基板の製造方法
CN108493334B (zh) 一种薄膜异质结构的制备方法
US11195987B2 (en) Method for producing composite wafer having oxide single-crystal film
TWI684200B (zh) 具備氧化物單結晶薄膜之複合晶圓之製造方法
US10971674B2 (en) Method for producing composite wafer having oxide single-crystal film
WO2017212812A1 (ja) 貼り合わせsoiウェーハの製造方法
TWI430339B (zh) 用於製備一多層結晶結構之方法
JP2013516767A5 (ja)
JP6773274B2 (ja) ドナー基板から圧電層を剥離するための電界の使用
KR20150112968A (ko) Soi 웨이퍼의 제조방법 및 soi 웨이퍼
CN111837216B (zh) 用于制备基于碱金属的铁电材料薄层的方法
JP2012519372A (ja) ドナー基板の引張り応力状態を低減させることを目的としたヘテロ構造を製造する方法
JP2009231506A (ja) 貼り合わせ基板の製造方法
JP2016508291A5 (ja)
JP5531642B2 (ja) 貼り合わせウェーハの製造方法
JP2009295667A (ja) 貼り合わせウェーハの製造方法
JP7271458B2 (ja) 複合基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187019561

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747144

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747144

Country of ref document: EP

Effective date: 20180903