WO2017131123A1 - リアクトル、及びリアクトルの製造方法 - Google Patents

リアクトル、及びリアクトルの製造方法 Download PDF

Info

Publication number
WO2017131123A1
WO2017131123A1 PCT/JP2017/002828 JP2017002828W WO2017131123A1 WO 2017131123 A1 WO2017131123 A1 WO 2017131123A1 JP 2017002828 W JP2017002828 W JP 2017002828W WO 2017131123 A1 WO2017131123 A1 WO 2017131123A1
Authority
WO
WIPO (PCT)
Prior art keywords
core piece
interposed
piece
interposition
winding
Prior art date
Application number
PCT/JP2017/002828
Other languages
English (en)
French (fr)
Inventor
平林 辰雄
雅幸 加藤
三崎 貴史
誠二 舌間
伸一郎 山本
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US15/779,692 priority Critical patent/US10665386B2/en
Priority to CN201780006523.9A priority patent/CN108463862B/zh
Publication of WO2017131123A1 publication Critical patent/WO2017131123A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Definitions

  • the present invention relates to a reactor and a method for manufacturing the reactor.
  • This application claims priority based on the Japanese application “Japanese Patent Application No. 2016-016035” dated Jan. 29, 2016, and uses all the contents described in the above Japanese application.
  • Patent Document 1 discloses, as a reactor for an in-vehicle converter, a coil including a pair of winding portions in which a winding is spirally wound, an annular magnetic core disposed inside and outside the winding portion, a winding portion, and a magnetic What is provided with a cylindrical bobbin interposed between the core and a B-shaped frame bobbin is disclosed.
  • the magnetic core includes a plurality of core pieces and a gap plate made of alumina or the like interposed between adjacent core pieces.
  • positioned in a winding part among the said magnetic cores is a laminated body by which the intermediate core piece (equivalent to an inner core piece) and the gap board were laminated
  • the cylindrical bobbin is interposed between the inner peripheral surface of the winding part and the laminate.
  • the frame-shaped bobbin is interposed between an end surface of the winding portion and an end core piece (corresponding to an outer core piece) disposed outside the winding portion, and a pair of penetrations through which the laminate is inserted. With holes.
  • Patent Document 1 discloses that the coil, the magnetic core, and the combination of the cylindrical bobbin and the frame bobbin are covered with a resin to achieve mechanical protection and the like.
  • the reactor of the present disclosure is A coil having a winding part; A magnetic core including a plurality of core pieces arranged inside and outside the winding portion; An interposed member interposed between the coil and the magnetic core; Of the magnetic core, comprising a resin mold part including an outer covering part covering at least a part of the outer core piece disposed outside the winding part,
  • the interposition member is An outer interposed portion interposed between an end surface of the wound portion and an inner end surface of the outer core piece; A hole for exposing a part of the inner end surface of the outer core piece from the resin mold portion is provided on the outer core piece side of the outer interposed portion.
  • a die assembly comprising a coil having a winding part, a magnetic core including a plurality of core pieces arranged inside and outside the winding part, and an interposition member interposed between the coil and the magnetic core And forming a resin mold part that covers at least a part of the outer core piece arranged outside the winding part of the magnetic core,
  • the interposition member includes an outer interposition portion interposed between an end surface of the winding portion and an inner end surface of the outer core piece, and the inner end surface of the outer core piece is disposed on the outer core piece side of the outer interposition portion.
  • Has a hole to expose a part of The resin mold portion is molded in a state where a pin protruding from the inner surface of the mold is inserted into the hole portion and a part of the inner end surface is supported.
  • FIG. It is a schematic perspective view which shows the reactor of Embodiment 1.
  • FIG. It is a disassembled perspective view of the union body with which the reactor of Embodiment 1 is equipped. It is the front view which showed the inner side interposition part among the interposition members with which the reactor of Embodiment 1 was equipped, and looked at the edge part interposition piece from the fitting direction of the inner core piece. It is a front view of an intermediate interposition piece, showing an inner interposition part among interposition members with which a reactor of Embodiment 1 is provided. It is a side view which shows an inner side interposed part among the interposed members with which the reactor of Embodiment 1 is equipped, and shows the state which assembled
  • an assembly of the above-described coil, a plurality of core pieces, and a cylindrical bobbin and a frame bobbin is housed in a mold, and a raw material resin is filled in the mold to cover at least the outer core piece.
  • a raw material resin is filled in the mold to cover at least the outer core piece.
  • the outer core piece receives a pressing force in the filling direction from the raw material resin.
  • the filling pressure is increased, the pressing force is also increased, and the position of the outer core piece with respect to the mold may be shifted. Also, the position of the outer core piece with respect to the mold may be shifted depending on the filling direction.
  • the three of the outer core piece, the inner core piece, and the coil are not arranged at appropriate positions, and the characteristics of the reactor can be deteriorated. Therefore, it is desired that the positional deviation can be suppressed so that a reactor having predetermined characteristics can be manufactured more reliably.
  • a reactor according to an aspect of the present invention is: A coil having a winding part; A magnetic core including a plurality of core pieces arranged inside and outside the winding portion; An interposed member interposed between the coil and the magnetic core; Of the magnetic core, comprising a resin mold part including an outer covering part covering at least a part of the outer core piece disposed outside the winding part, The interposition member is An outer interposed portion interposed between an end surface of the wound portion and an inner end surface of the outer core piece; A hole for exposing a part of the inner end surface of the outer core piece from the resin mold portion is provided on the outer core piece side of the outer interposed portion.
  • the reactor includes an interposition member having a hole, the position of the magnetic core, particularly the outer core piece, with respect to the mold is difficult to shift during the molding of the resin mold portion for the following reason (A).
  • the outer core piece is typically a heavy object mainly composed of a soft magnetic metal such as iron.
  • the outer core piece is misaligned. It is considered difficult to sufficiently suppress this.
  • the outer core piece can be sufficiently supported by the engagement between the outer interposed portion and the pin.
  • the above reactor can appropriately have a predetermined inductance for the following reason (B).
  • the outer interposition part can be positioned at a predetermined position of the mold by the pins of the mold.
  • a coil and a magnetic core can also be positioned on the basis of the outer interposed portion. That is, the position with respect to the coil in the outer core piece, and further the position with respect to the core piece (the inner core piece to be described later) arranged in the winding portion in the outer core piece can be easily positioned. In this positioned state, the resin mold part can be molded while appropriately maintaining the position of the outer core piece as described above. For this reason, it is possible to suppress the variation in inductance caused by the positional deviation.
  • the reactor described above is excellent in manufacturability because it can be easily positioned in the mold. Further, when the outer core piece is supported by the above-described mold pin from the side opposite to the coil approaching direction, the outer interposition part does not interfere (does not interfere), and the above-described reactor easily Because it can be arranged, it is excellent in manufacturability.
  • the magnetic core includes an inner core piece disposed in the winding part, and at least one gap part interposed between the adjacent core pieces,
  • the outer interposed portion has a through hole that penetrates the surface on the winding portion side and the surface on the outer core piece side to expose the end surface of the inner core piece,
  • the interposition member is provided between an inner peripheral surface of the winding portion and an outer peripheral surface of the magnetic core, and includes an inner interposition portion provided with an intervening protrusion that maintains an interval between the adjacent core pieces.
  • the said resin mold part is a form provided with the inner side coating
  • the interval between the adjacent core pieces can be appropriately maintained by the interposing protrusions in the manufacturing process for the following reasons, and the resin gap portion corresponding to the size of the interval can be accurately formed. Therefore, the said form does not require the gap board independent of the core piece, and is excellent in manufacturability because the joining process between the core piece and the gap board can be omitted.
  • the mold raw material filling direction includes the coil approaching direction
  • the outer core piece pressed by the mold raw material narrows the space between the spaces if the outer core piece is not supported by the mold pins described above. There is a risk of moving. Due to the positional deviation of the outer core pieces, there is a possibility that a part of the region that finally becomes the resin gap portion between the core pieces is not properly supported at a predetermined interval.
  • the said form can control that an outer core piece moves to a coil proximity
  • the resin gap portion suppresses the inductance variation due to the variation in the interval between the core pieces, and the predetermined inductance can be maintained over a long period of time, so that the reliability can be improved.
  • the outer covering portion and the inner covering portion are continuous, the outer core piece and the inner core piece are integrated by the resin mold portion.
  • the resin gap portion interposed between the core pieces functions as a bonding material between the core pieces. Therefore, in the above-described embodiment, the core pieces are firmly integrated by the resin mold portion and excellent in mechanical characteristics, and the rigidity as an integrated object is enhanced to suppress vibration and noise.
  • the above-mentioned form is expected to provide protection from the external environment (corrosion protection of the core piece, etc.), improve insulation against the coil and external parts, and improve heat dissipation depending on the material of the coating material, by providing the resin mold part. it can.
  • the notch of the above form can be used for an engaging portion of the outer core piece with the above-described mold pin.
  • the outer core piece itself has an engaging portion with the pin, and the outer core piece and the pin are compared with the case where the pin contacts only a part of the inner end surface of the outer core piece. There are many contact areas. Therefore, the outer core piece is not easily displaced by the pin inserted into the hole (notch), and the position of the outer core piece can be accurately maintained when the resin mold part is molded.
  • the said form can perform positioning of an outer core piece easily and accurately. Therefore, the above form is more excellent in manufacturability.
  • a part of the thickness of the pin can be received by a hole portion (a groove portion described later) of the outer interposed portion, and the remaining portion can be received by a notch of the outer core piece. Therefore, a pin having a sufficiently large cross-sectional area (thick or thick) and high rigidity can be used as the pin. Therefore, the above-mentioned form can firmly support the outer core piece even when the filling pressure of the mold raw material is increased, and the positioning by the pin can be performed with high accuracy. Since the filling pressure of the mold raw material can be increased, the resin mold portion can be accurately molded, and the filling time can be shortened.
  • the end surface of the winding part includes an inner peripheral side region that swells in the axial direction of the winding part from the outer peripheral side region,
  • the said outer side interposed part has a form provided with the recessed part by which the said inner peripheral area
  • the outer interposition part itself is positioned by the above-described mold pin, and the winding part can be positioned by fitting the winding part into the recess of the outer interposition part. Further, the winding portion and the outer interposition portion can be in close contact with each other. Therefore, in the manufacturing process, the winding part is also difficult to be displaced, and the resin mold part can be formed in a state where the coil and the magnetic core are supported at an appropriate position, which is excellent in manufacturability. Therefore, the said form can have a predetermined inductance appropriately. In addition, since the dead space can be reduced by the above-described close contact, the above form is small.
  • a method for manufacturing a reactor according to one aspect of the present invention is as follows: A die assembly comprising a coil having a winding part, a magnetic core including a plurality of core pieces arranged inside and outside the winding part, and an interposition member interposed between the coil and the magnetic core And forming a resin mold part that covers at least a part of the outer core piece arranged outside the winding part of the magnetic core,
  • the interposition member includes an outer interposition portion interposed between an end surface of the winding portion and an inner end surface of the outer core piece, and the inner end surface of the outer core piece is disposed on the outer core piece side of the outer interposition portion.
  • Has a hole to expose a part of The resin mold portion is molded in a state where a pin protruding from the inner surface of the mold is inserted into the hole portion and a part of the inner end surface is supported.
  • the manufacturing method of said reactor can manufacture a reactor with sufficient productivity for the above-mentioned reason (B).
  • a reactor having a predetermined inductance can be manufactured.
  • FIG. 1 A reactor 1 according to the first embodiment will be described with reference to FIGS. 1 to 5.
  • a part of the winding portion 2 a is cut away so that the inside of the coil 2 can be easily understood.
  • FIG. 4 the outer core piece 32 is cut along the (IV)-(IV) cutting line shown in FIG. 1 so that the surface on the outer core piece 32 side of the outer interposition part 52 is easily understood, and the right half is removed. Only the left half is shown.
  • the reactor 1 of Embodiment 1 contains the coil 2 which has the cylindrical winding parts 2a and 2b, and the several core piece arrange
  • a magnetic core 3, an interposed member 5 interposed between the coil 2 and the magnetic core 3, and a resin mold portion 6 that covers at least a part of the outer peripheral surface of the magnetic core 3 are provided.
  • the coil 2 in this example is not covered with the resin mold portion 6 and is exposed.
  • Reactor 1 is typically used by being attached to an installation target (not shown) such as a converter case.
  • FIG. 1 illustrates a case where the installation side when the reactor 1 is installed is the lower side and the opposite side is the upper side.
  • the magnetic core 3 provided in the reactor 1 includes a pair of outer core pieces 32 and 32 disposed outside the winding portions 2a and 2b as core pieces.
  • the magnetic core 3 in this example includes a group of a plurality of inner core pieces 31 (see also FIG. 2) respectively disposed in the winding portions 2a and 2b and at least one gap portion interposed between adjacent core pieces. (Multiple here).
  • the intermediate member 5 provided in the reactor 1 includes outer intermediate portions 52 and 52 interposed between the end surfaces of the winding portions 2a and 2b and the inner end surfaces 32e and 32e (FIG. 5) of the outer core pieces 32 and 32, respectively. .
  • the outer interposition parts 52 and 52 in this example are frame plate shapes provided with through holes 52h and 52h (FIG. 2) penetrating the front and back surfaces, respectively.
  • the interposition member 5 of this example is independent of the outer interposition part 52, and the inner interposition part 51 interposed between the inner peripheral surface of the winding parts 2a and 2b and the outer peripheral surface of the magnetic core 3, respectively. , 51.
  • the inner interposition part 51 of this example has a configuration capable of forming a resin gap part 60 (FIG. 1) described later (details will be described later).
  • the resin mold portion 6 provided in the reactor 1 is continuous with the outer covering portion 62 that covers at least a part of each outer core piece 32, 32, and the outer covering portion 62.
  • An inner covering portion 61 that covers at least a part of the group and a resin gap portion 60 that constitutes the gap portion are provided.
  • resin gap portions 60 are provided between the inner core piece 31 and the outer core piece 32 and between the inner core pieces 31 and 31, respectively.
  • holes 90 and 90 are provided on the outer core pieces 32 side of the outer intervening portions 52 and 52 (hereinafter sometimes referred to as the outer core side). This is one of the characteristics.
  • a notch 329 that forms part of the internal space of the hole 90 is provided in the inner end surface 32e of the outer core piece 32 (FIG. 2).
  • the groove part 59 is provided in the installation surface side of the outer side interposed part 52 (FIG. 2).
  • a hole 90 is formed by both the notch 329 of the outer core piece 32 and the groove 59 of the outer interposition part 52.
  • the hole 90 is formed in the outer core piece 32 by inserting a pin 9 (FIG. 2) as will be described later into a mold (not shown) used for molding the resin mold portion 6 in the manufacturing process of the reactor 1. Is used for positioning of the outer core piece 32 to prevent the positional deviation of the outer core piece 32.
  • each winding part 2a, 2b has a cylindrical shape in which one continuous winding 2w, 2w is spirally wound, and is arranged in parallel (side by side) so that their axes are parallel to each other.
  • the One end of each of the windings 2w and 2w is used as a joining portion by welding or pressure bonding, and the coil 2 forms an electrically connected integral by this joining.
  • one end portion of the winding 2w forming one winding portion 2b is drawn upward so as to be separated from the winding portion 2b, and the winding 2w forming the other winding portion 2a is one of the windings 2w.
  • An example in which both end portions are arranged close to each other by being bent toward the winding portion 2b is shown.
  • the other ends of the windings 2w and 2w are extended from the winding portions 2a and 2b in an appropriate direction, and a terminal member (not shown) is connected thereto.
  • FIG. 2 shows an example in which the other end portion is drawn upward so as to be separated from the winding portions 2a and 2b, the drawing direction can be changed as appropriate.
  • An external device such as a power source for supplying power is connected to the coil 2 via the terminal member.
  • each winding part 2a, 2b in this example is a square shape with rounded corners.
  • the winding 2w in this example is a covered rectangular wire (so-called enameled wire) provided with a flat wire conductor (copper or the like) and an insulating coating (polyamideimide or the like) covering the outer periphery of the conductor.
  • Reference numerals 2a and 2b denote edgewise coils.
  • the magnetic core 3 includes the plurality of inner core pieces 31, the pair of outer core pieces 32 and 32, and the plurality of gap portions (resin gap portions 60).
  • the inner core piece 31 shown in FIGS. 2, 3D, and 3E is a columnar body whose end face shape is a square shape with rounded corners corresponding to the shapes of the winding portions 2a and 2b.
  • the outer core piece 32 shown in FIG. 2 is a columnar body whose installation surface (lower surface) and its opposite surface (upper surface) are dome-shaped.
  • the inner end surface 32e which is a connection surface with the end surface of the inner core piece 31 in the outer core piece 32, is configured by a uniform and flat plane except for a notch 329 provided at a part of a corner with the installation surface.
  • the installation surface of the outer core piece 32 protrudes in a direction closer to the installation object than the installation surface of the inner core piece 31 (see the inner core piece 31 shown in the right half of FIG. 4 and the outer core piece 32 shown by a broken line). .
  • a pair of outer core pieces 32 and 32 are assembled so as to connect a pair of laminated portions in which a plurality of inner core pieces 31 and resin gap portions 60 are alternately arranged, thereby forming an annular magnetic core 3.
  • the magnetic core 3 forms a closed magnetic circuit when the coil 2 is excited.
  • the notch 329 will be described in the section of the outer interposed portion 52 of the interposed member 5.
  • the inner core piece 31 and the outer core piece 32 are mainly made of a soft magnetic material.
  • the soft magnetic material include soft magnetic metals such as iron and iron alloys (Fe—Si alloy, Fe—Ni alloy, etc.).
  • the inner core piece 31 and the outer core piece 32 are formed of a powder made of a soft magnetic material, a powder molded body obtained by compression molding a coating powder having an insulating coating, a molded body of a composite material including soft magnetic powder and a resin, or the like. Can be mentioned. Details of the resin gap portion 60 will be described in the section of the resin mold portion 6.
  • the interposition member 5 will be described mainly with reference to FIGS. Overview
  • the intervening member 5 is typically made of an insulating material and functions as an insulating member between the coil 2 and the magnetic core 3. Further, the interposition member 5 is formed in a predetermined size and shape as will be described later, and functions as a positioning member for the inner core piece 31 and the outer core piece 32 with respect to the winding portions 2a and 2b.
  • the inner interposition parts 51 and 51 of this example perform insulation between the inner peripheral surfaces of the winding parts 2a and 2b and the inner core piece 31, and position the inner core piece 31 with respect to the winding parts 2a and 2b.
  • the outer interposition part 52 performs insulation between the end surfaces of the winding parts 2a and 2b and the outer core piece 32, and positions the outer core piece 32 with respect to the winding parts 2a and 2b. As a result, the interposition member 5 positions the inner core piece 31 and the outer core piece 32.
  • the outer intervening portions 52 and 52 are provided with the hole portions 90, so that the intervening member 5 has outer core pieces 32 and 32 for the mold used for molding, particularly when the resin mold portion 6 is molded. It also functions as a positioning member for the mold that suppresses the positional deviation.
  • the interposition member 5 is provided with a gap formation by including the interposition protrusion 5126 that holds the interval between the adjacent core pieces (here, between the inner core pieces 31 and 31). It also functions as a member.
  • the outer interposition part 52 of this example includes a core housing space for housing the outer core pieces 32 and 32 and the coil 2 sandwiched between the outer core pieces 32 and 32 in the mold when the resin mold part 6 is molded. Is separated from the coil storage space for storing the mold so that the mold raw material is not supplied to the coil storage space.
  • a specific gap described later for example, a gap g in FIG. 3D
  • the specific gap provided around the inner core piece 31 stored in the coil storage space communicates with the core storage space on the outer core piece 32 side.
  • This communication space allows the mold raw material to flow from the outer core piece 32 side to the inner core piece 31 side. That is, the specific gap is used as a resin flow path for the mold raw material when the resin mold portion 6 is formed.
  • the interposition member 5 also functions as a partition member in the mold and a forming member for the resin flow path of the mold raw material.
  • the outer interposition part 52 of this example is a rectangular-shaped frame provided with a pair of through-holes 52h and 52h arranged in parallel at the center as shown in FIG.
  • Each of the through holes 52h and 52h penetrates the surface on the winding portions 2a and 2b side (hereinafter sometimes referred to as the coil side) and the surface on the outer core side. Therefore, the end surfaces of the inner core pieces 31 and 31 located at the end of the group of the inner core pieces 31 are exposed toward the inner end surface 32e of the outer core piece 32 (see also the right half of FIG. 4).
  • the outer interposed portion 52 includes a core hole 52f on the outer core side, with the opening edge of the recess being an opening, and forming a space communicating with the through holes 52h and 52h (see the left outer interposed portion 52 in FIG. 2). ). Since the central part on the outer core side in the outer interposition part 52 is recessed, the thickness of this central part is thinner than the thickness of the peripheral part.
  • the central portion is interposed between the inner core piece 31 and the outer core piece 32 in a state where the inner core piece 31, the outer core piece 32, and the outer interposed portion 52 are assembled. Accordingly, the distance between the inner core piece 31 and the outer core piece 32 is maintained at a size corresponding to the thickness of the central portion.
  • a gap formed between the inner core piece 31 and the outer core piece 32 by the central portion is used for a resin flow path in the manufacturing process, and finally a part of the resin mold portion 6 is filled. Therefore, the reactor 1 includes a resin gap portion between the inner core piece 31 and the outer core piece 32.
  • the outer interposition part 52 in this example is larger than the outer core piece 32 and surrounds the outer core piece 32 in a state assembled with the outer core piece 32 (see the broken line and the two-dot chain line in FIG. 4). With a peripheral edge. That is, it has a portion protruding from the installation surface of the outer core piece 32 (lower portion in FIG. 4) and a portion protruding from the side surface of the outer core piece (left and right portions in FIG. 4). Further, in the outer interposed portion 52 of this example, the installation surface (lower surface) of the winding portions 2a and 2b and the installation surface (lower surface) of the outer interposed portion 52 are substantially flush with each other when assembled with the coil 2.
  • the side surfaces (left and right surfaces) of the winding portions 2a and 2b and the side surfaces (left and right surfaces) of the outer interposed portion 52 are substantially flush with each other (see also FIG. 5). Therefore, when housed in the mold for molding the resin mold portion 6, the installation surfaces of the winding portions 2a and 2b and the installation surface of the outer interposition portion 52 are supported on the inner surface of the mold. Furthermore, in a state where the outer interposed portion 52 is assembled with the coil 2 and the outer core piece 32, the surface (upper surface) opposite to the installation surface of the outer interposed portion 52 is the winding portions 2 a and 2 b and the outer core piece 32. The size of the outer interposition part 52 is adjusted so as to be higher than the surface (upper surface) opposite to the installation surface. In the assembled state described above, the coil 2 does not protrude from the outer interposed portion 52 except for the ends of the windings 2w and 2w.
  • the thickness of the central part of the outer interposition part 52 can be appropriately selected in consideration of the insulation required between the winding parts 2a, 2b and the magnetic core 3. In this example, as described above, the thickness of the central portion is thinner than the peripheral portion. The peripheral portion is thick enough to form a groove 59 (FIG. 2) described later (FIGS. 2 and 5).
  • a fitting groove for fitting the vicinity of the end face of each winding part 2a, 2b is provided on the coil side of the outer interposition part 52 in this example.
  • Each fitting groove has an annular shape along the end face shape of each of the winding portions 2a and 2b (see the right outer interposed portion 52 in FIG. 2).
  • the coil 2 and the outer interposition part 52 can be positioned by fitting the end surface vicinity of each winding part 2a, 2b in each fitting groove.
  • a through hole 52h that is substantially equal to or slightly larger than the inner peripheral contour of each of the winding portions 2a and 2b is provided at the center of each fitting groove.
  • the outer interposition part 52 of this example is provided with a recess 520 that accommodates corners at the end faces of the winding parts 2a and 2b in the respective fitting grooves (see the right outer interposition part 52 in FIG. 2).
  • the inner peripheral side region of the cylindrical body is more likely to swell in the axial direction of the cylindrical body than the outer peripheral side region.
  • the winding portions 2a and 2b are edgewise coils as in this example, and the end face shape is a square shape with rounded corners, the bending radius of the corners is small, and the above-described bulging is likely to occur at the corners. .
  • the end surfaces of the winding portions 2a and 2b may include an inner peripheral side region that swells in the axial direction from the outer peripheral side region of the winding portions 2a and 2b.
  • the outer interposition part 52 is provided with a recess 520 into which the swollen inner peripheral side region (corner part and its vicinity) is fitted on the coil side surface facing the end faces of the winding parts 2a, 2b. 2a, 2b and the outer interposition part 52 can be closely_contact
  • a drawing groove provided along the drawing direction of the other end of the windings 2w and 2w is also provided in each winding part 2a and 2b.
  • the winding parts 2a and 2b and the outer interposition part 52 are more likely to be in close contact with each other. Since the winding parts 2a, 2b and the outer interposition part 52 are in close contact with each other, both can be accurately positioned. Moreover, even if it is a case where the coil 2 is exposed without being covered with the resin mold portion 6 as in this example, the mold raw material is prevented from leaking to the coil 2 side during the manufacturing process. easy.
  • the size of the imaginary surface formed by the opening edge of the core hole 52f provided on the outer core side of the outer interposed portion 52 in this example is slightly larger than the inner end surface 32e of the outer core piece 32. Therefore, when the outer core piece 32 is fitted into the core hole 52f in the manufacturing process, a gap is provided between the outer peripheral surface of the outer core piece 32 and the inner peripheral surface forming the core hole 52f. In the right half of FIG. 4, this gap is a through-hole 52h among the surface (upper surface) and side surface (right surface) opposite to the installation surface of the outer core piece 32 and the inner peripheral surface that forms the core hole 52f. It is provided between the part which overlaps with the opening edge of.
  • This gap is used for the resin flow path in the manufacturing process, and finally a part of the resin mold part 6 (the part connected to the upper part and the right part of the inner covering part 61 described later in FIG. 4) is arranged. Is done.
  • the winding portions 2a and 2b are shown in the right half of FIG. Does not appear to be covered by the outer intervening portion 52.
  • the end face of the inner core piece 31 and a part of the inner interposition part 51 are exposed from the through hole 52h and can be seen.
  • a part of the surface (upper surface) opposite to the installation surface of the outer core piece 32 is formed on the inner peripheral surface forming the core hole 52f of this example so that the outer core piece 32 can be supported while forming the gap. And a support surface 523 that supports a part of the installation surface (lower surface).
  • the outer core piece 32 fitted in the core hole 52f is positioned at the outer interposition part 52 with a part of a pair of opposing surfaces (upper and lower surfaces) sandwiched between the inner end surface of the convex portion 522 and the support surface 523.
  • gaps are provided between the upper surface of the outer core piece 32 and the opening edge of the core hole 52f, and between the side surface of the outer core piece 32 and the opening edge of the core hole 52f (the two-dot chain line and the core hole in FIG. 4). Compare 52f).
  • the size, shape, and the like of the core hole 52f, the convex portion 522, and the support surface 523 may be selected within a range in which a predetermined gap is provided.
  • a mold (not shown) 2 is provided with a hole 90 into which a pin 9 (FIG. 2) that protrudes from the inner surface is inserted.
  • the hole portion 90 in this example includes a groove portion 59 (see also FIGS. 2 and 4) provided in the outer interposition portion 52, and a notch 329 (see also FIG. 2) provided in the inner end surface 32e of the outer core piece 32. And are provided corresponding to the outer shape, size, and number of the pins 9.
  • the formation surface that forms the hole 90 is configured by a formation surface that forms the groove 59 in the outer interposition portion 52 and a formation surface that forms the notch 329 in the outer core piece 32.
  • the opening of the hole 90 includes an opening on the installation surface side of the notch 329 and an opening on the installation surface side in the groove 59 of the outer interposition portion 52.
  • the internal space of the hole 90 is composed of the internal space of the groove 59 and the internal space of the notch 329.
  • the hole 90 exposes a part of the inner end face 32 e of the outer core piece 32 from the resin mold part 6.
  • the exposed portion of the inner end face 32e from the resin mold portion 6 is a contact portion with the pin 9 when the resin mold portion 6 is molded, and can be said to be a ground indicating that the pin 9 is supported.
  • ⁇ Pin> The shape, size, number, etc. of the pins 9 can be selected as appropriate.
  • a pin 9 having an inclined surface (chamfered portion) on the distal end side in the insertion direction into the hole 90 is illustrated by dropping one corner of the rectangular parallelepiped.
  • a prismatic shape such as a rectangular parallelepiped shape, a triangular prism shape, a hexagonal prism shape, a columnar shape having a curved surface such as a cylindrical shape, an elliptical column shape, and the like can be given.
  • the pin 9 having an inclined surface as in this example is easy to insert into the hole 90 and is excellent in workability.
  • the inclined surface of the pin 9 supports the formation surface of the notch 329 of the outer core piece 32 so that the groove portion 59 of the outer intervening portion 52 can be easily made smaller, and the outer portion resulting from the formation of the groove portion 59 can be reduced.
  • a decrease in strength of the interposition part 52 can be reduced.
  • the number of pins 9 can be one, or three or more. The larger the cross-sectional area of the pin 9 and the greater the number of pins 9, the larger the contact area with the outer core piece 32, and the rigidity of the pin 9 itself can be sufficiently increased to sufficiently support the outer core piece 32.
  • the size, the number, etc. may be selected within a range that does not cause an increase in the size of the outer interposition part 52 and a decrease in insertion workability.
  • Examples of the constituent material of the pin 9 include a material (typically metal) having a strength that can support the outer core piece 32 pressed against the mold raw material.
  • the groove 59 in this example is provided from the installation surface (lower surface) of the outer interposition portion 52 through the core hole 52f to the through hole 52h. Open to.
  • the opening shape on the installation surface side is a rectangular shape (FIG. 5).
  • two groove portions 59 and 59 are provided for one outer interposed portion 52.
  • the notch 329 in this example is provided from the installation surface (lower surface) of the outer core piece 32 to the inner end surface 32e as shown in the right outer core piece 32 in FIG. Open to the 32e side.
  • the opening shape on the installation surface side is a rectangular shape (FIG. 5).
  • the formation surface of the notch 329 in this example includes a contact surface with the inclined surface of the pin 9. Two notches 329 are provided for one outer core piece 32.
  • the groove part 59 is formed such that the opening part on the outer core side of each groove part 59, 59 and the opening part on the inner end face 32e side in each notch 329 overlap. And a notch 329 is provided.
  • the outer core piece 32 of this example has the protrusion part which protruded from the installation surface of the inner core piece 31 as mentioned above,
  • the notch 329 in this protrusion part, the magnetic path by provision of the notch 329 is provided.
  • the impact on is small. Therefore, for example, when a pin 9 having a large cross-sectional area is used, even if the notch 329 formed in the hole 90 is larger in proportion than the groove 59 is formed, if the notch 329 is provided in the protruding portion, It is thought that the influence on the magnetic path is small.
  • the ratio of the notch 329 formed in the hole 90 is increased, the contact area of the outer core piece 32 with the pin 9 can be increased, and the pin 9 can be firmly supported. Further, in this case, since the ratio of the groove portion 59 formed in the hole portion 90 can be reduced, the thickness of the outer interposed portion 52 can be reduced to some extent, and the reactor 1 can be downsized. As in this example, the ratio of the notches 329 in the hole 90 and the ratio of the grooves 59 can be made equal.
  • the formation surface of the hole 90 forms a rectangular parallelepiped space with a corner dropped. Since the surface of the pin 9 and the formation surface of the hole 90 can come into surface contact, the outer core piece 32 is favorably supported by the pin 9 inserted into the hole 90. Also, the outer core piece 32 and the outer interposed portion 52 are brought into contact with the pin 9 by the surface contact between the forming surface of the notch 329 of the outer core piece 32 and the forming surface of the groove 59 of the outer interposed portion 52 and the side surface of the pin 9. The movement of the winding parts 2a and 2b in the parallel direction is also restricted. By such engagement between the pin 9 and the hole portion 90, the outer core piece 32 and the outer interposition portion 52 can be accurately positioned in the mold and can be hardly displaced.
  • the shape of the hole 90 and the shape of the groove 59 and the notch 329 can be changed as appropriate in accordance with the shape of the pin 9.
  • the opening shape on the installation surface side of the groove 59 and the notch 329 may be triangular (in this case, the pin 9 is, for example, a quadrangular prism), or semicircular (in this case, the pin 9 is, for example, a column).
  • the hole depth of the hole 90 can be selected as appropriate. In this example, since the groove portion 59 reaches the opening portion of the through hole 52h, it is preferable that the through hole 52h is not blocked.
  • the through hole 52h is closed by the pin 9 inserted into the hole 90, the mold raw material interposed between the inner end face 32e of the outer core piece 32 and the end face of the inner core piece 31 is reduced, and the bonding strength between the two is increased. This is because it causes a decrease.
  • the inner intervention part 51 of this example includes a plurality of divided pieces arranged at predetermined intervals in the axial direction of the winding parts 2a and 2b as shown in FIG. Specifically, a plurality of intermediate interposed pieces 510 (two in this example) arranged in the middle in the axial direction with respect to a group of each inner core piece 31 (a group consisting of three inner core pieces 31 in this example). And a pair of end interposition pieces 515 and 515 disposed at the respective end portions in the axial direction. Before the resin mold portion 6 is formed, a space (a step space between the outer peripheral surface of the inner core piece 31 and the inner interposed portion 51) corresponding to the size of the gap is provided on the outer periphery of the inner core piece 31.
  • the intermediate interposed piece 510 in this example is cut out so as not to cover the entire circumference of the inner core piece 31 and to expose a part of the inner core piece 31 in the circumferential direction. Therefore, before the resin mold portion 6 is formed, a space corresponding to the notched portion (a step space between the inner core piece 31 and the intermediate interposed piece 510) is provided on the outer periphery of the inner core piece 31 (FIG. 3E). Gap G 514 ).
  • the end interposition piece 515 of this example is an annular body surrounding the entire circumference of the inner core piece 31, a predetermined interval is ensured between the outer peripheral surface of the inner core piece 31. Therefore, before the resin mold portion 6 is formed, a space corresponding to the size of the interval is provided on the outer periphery of the inner core piece 31 (see the gap g in FIG. 3D). These spaces can be used as a resin flow path for the mold raw material when the resin mold portion 6 is formed.
  • Each intermediate interposed piece 510 has the same shape. Further, each end interposed piece 515 has the same shape. Therefore, in the following description, one intermediate interposed piece 510 and one end interposed piece 515 will be described.
  • the intermediate interposition piece 510 in this example is a member in which the band material is bent in a U-shape along the shape of the inner core piece 31 as shown in FIGS. 2, 3B, and 3E. is there.
  • the inner peripheral surface of the intermediate interposition piece 510 is substantially in contact with the inner core piece 31 (FIG. 3E, a slight gap in the assembling operation is allowed). Function as a support surface (see also FIG. 3C).
  • the intermediate interposition piece 510 includes a main body portion 512 that continuously covers a part of the outer peripheral surface of the adjacent inner core pieces 31 and 31, and the main body portion 512 is partially exposed by exposing the outer peripheral surface. And a notch 514 that is divided in the circumferential direction of the outer peripheral surface.
  • the main body portion 512 in this example is a square frame whose end face shape has rounded corners corresponding to the inner core piece 31 whose end face shape is square with rounded corners (FIGS. 3B and 3E). ). In FIG.
  • the intermediate interposed piece 510 in this example has a rotationally symmetric shape that overlaps when rotated 180 ° in the horizontal direction from the state shown in FIG. 3B.
  • the peripheral length of the area covering the outer peripheral surface of the inner core piece 31 in the main body 512 can be selected as appropriate.
  • the shorter the perimeter for example, a form having two corners connected to the lower surface and the lower surface
  • the number of exposed portions from the main body 512 on the outer peripheral surface of the inner core piece 31 increases, and the above-described resin flow path increases.
  • the longer the circumference is, the shorter the circumference of the notch 514 is.
  • the support area by the main body 512 in the inner core piece 31 is increased, and the assembled state of the inner core piece 31 and the intermediate interposed piece 510 is easily stabilized during the manufacturing process.
  • Mold raw material can be introduced between the core pieces. That is, it can be introduced in one direction. For example, when a mold raw material is introduced between the core pieces from two directions, a weld may be formed at a location where the mold raw material introduced from different directions collides. If the mold raw material is introduced in one direction between the core pieces as in this example, the weld is hardly formed, and the performance is not substantially deteriorated by the weld.
  • the peripheral length of the main body 512 may be selected according to the shape of the interposing protrusion 5126 and the like. Even if the peripheral length of the main body 512 is short, for example, as shown in FIG. 3B, by providing the interposition protrusion 5126 in a U shape, only a part in the circumferential direction between the adjacent inner core pieces 31 and 31 is opened. Thus, one-way introduction can be performed.
  • the interposing protrusion 5126 is U-shaped, and in addition to having a notch 514 continuous with the opening, the main body 512 covers the three surfaces of the inner core piece 31 to form the mold raw material. It is easier to regulate the direction of introduction.
  • the thickness of the main body portion 512 can be selected as appropriate in consideration of the insulation required between the winding portions 2a and 2b and the magnetic core 3.
  • the thickness of the main body 512 can be made uniform over the entire length of the main body 512.
  • the thickness of the main-body part 512 can be varied partially like this example. Specifically, as shown in FIGS. 3B and 3E, the corners and the thickness in the vicinity thereof are thicker than the other parts.
  • the outer peripheral surface of the thin portion of the main body 512 is covered with a resin mold portion 6 (inner covering portion 61) as shown by a notch portion of the coil 2 in FIG. 1 and a two-dot chain line (imaginary line) in FIG. 3E.
  • the outer peripheral surface of the thick portion is typically exposed from the resin mold portion 6 (FIG. 1) and is in contact with the inner peripheral surfaces of the winding portions 2a and 2b (FIG. 3E).
  • the proportion of the thin wall portion in the main body portion 512 increases (for example, the thick wall portion is only two corner portions at diagonal positions), the resin flow path can be increased.
  • the main body portion 512 and the resin mold portion 6 The contact area can be increased.
  • the magnetic core 3 includes a plurality of core pieces and the interposed member 5 also includes a plurality of divided pieces, the fixing strength of the magnetic core 3 by the resin mold portion 6 can be increased.
  • the proportion of the thick part in the main body part 512 increases (for example, the entire part covering at least one of the three faces of the inner core piece 31 is made thick), the insulation between the coil 2 and the magnetic core 3 is improved. Enhanced.
  • the length along the axial direction of the winding portions 2a and 2b in the main body portion 512 (hereinafter referred to as width) can be selected as appropriate. As the width of the main body portion 512 is longer, the support area by the main body portion 512 in the inner core piece 31 is increased, and the assembled state is easily stabilized in the manufacturing process as described above. As the width of the main body 512 is shorter, the interval between the adjacent intermediate interposed pieces 510 and 510 and the interval between the adjacent intermediate interposed pieces 510 and the end interposed pieces 515 are increased to increase the above-described resin flow path. As a result, the contact area between the inner core piece 31 and the resin mold part 6 can be increased. Therefore, the fixing strength of the magnetic core 3 by the resin mold part 6 can be increased.
  • the width of the annular main body 517 of the end interposition piece 515 described later matters relating to the width of the main body 512 can be referred to.
  • the width of the main body portion 512 and the width of the annular main body portion 517 described later are set so that the interval between the intermediate interposed pieces 510 and 510 and the interval between the intermediate interposed piece 510 and the end interposed piece 515 have predetermined values. Good.
  • the intermediate intermediate piece 510 includes an intermediate protrusion 5126 that stands in a direction perpendicular to the surface of the main body 512 that faces the outer peripheral surface of the inner core piece 31.
  • the interposition protrusion 5126 is interposed between adjacent inner core pieces 31, 31, and the interval between the inner core pieces 31, 31 is sized according to the thickness of the interposition protrusion 5126. Hold on.
  • the interval between the inner core pieces 31 is used as a magnetic gap. Therefore, the thickness of the interposing protrusion 5126 is set according to a predetermined magnetic gap length.
  • the interposition protrusion 5126 of this example is a U-shaped flat plate provided over the entire length of the U-shape along the circumferential direction of the inner peripheral surface of the main body 512 as shown in FIG. 3B ( (See also FIG. 2).
  • the inner edge surface of this U-shaped flat plate material is continuous with the inner peripheral surface forming the notch 514.
  • the shape and arrangement form of the interposing protrusion 5126 can be changed as appropriate.
  • the shape conforms to the shape of the main body portion 512 and is a single member continuous to the main body portion 512.
  • a plurality of interposing protrusions are arranged around the inner peripheral surface of the main body portion 512.
  • the length of the main body portion 512 along the circumferential direction is provided with a section-like interposing protrusion that is shorter than the peripheral length of the main body portion 512.
  • the interposition protrusion 5126 can be provided with a rod-like material or the like instead of the flat plate material or in addition to the above-described interposition-like interposition protrusion.
  • the interposed protrusion 5126 covers the end surface of the inner core piece 31 in a state where the inner core piece 31 and the intermediate interposed piece 510 are assembled. Accordingly, the larger the area ratio that covers the end face of the inner core piece 31 by the interposition protrusion 5126, the larger the area that supports the end face of the inner core piece 31 by the interposition protrusion 5126, so the interval between the inner core pieces 31, 31 is increased. Easy to hold. In this example, the contact area with the resin gap portion 60 on the end face of the inner core piece 31 increases as the area ratio decreases. Therefore, an improvement in bonding strength between the inner core pieces 31 and 31 by the resin gap portion 60 can be expected.
  • the area ratio of the inner core piece 31 that is not covered by the interposing protrusion 5126 can be, for example, 50% or more, 60% or more, 70% or more, and further 80% or more.
  • the shape of the interposed protrusion 5126, the protruding height of the interposed protrusion 5126 from the inner peripheral surface of the main body 512, and the circumferential direction of the inner peripheral surface of the main body 512 so that the area ratio becomes a predetermined value. It is recommended to select the total circumference, arrangement form, and the like.
  • the number of intermediate interposed pieces 510 arranged in one winding part 2a, 2b can be changed as appropriate, and can be one or three or more.
  • the intermediate interposed pieces 510 having different shapes and sizes (peripheral length / thickness / width of the main body portion 512, the above-described area ratio of the interposed protrusion 5126, etc.) are provided. Can do. If all the intermediate interposition pieces 510 have the same shape and the same size as in this example, they are easy to handle at the time of assembly and have excellent manufacturability.
  • the end interposing piece 515 in this example has a square shape with strips rounded along the outer peripheral surface of the inner core piece 31 as shown in FIGS. 2, 3A, and 3D.
  • a part of the inner peripheral surface of the end interposition piece 515 here, a corner
  • the other part here, other than the corner part
  • the end interposition piece 515 is an end-side protrusion that maintains an interval between the annular main body 517 that surrounds the outer peripheral surface of the inner core piece 31 in the circumferential direction and the inner peripheral surface of the annular main body 517. 5176.
  • the end interposition piece 515 can include a notch 514 like the intermediate interposition piece 510.
  • the mold raw material is introduced from the outer core piece 32 toward the inner core piece 31 so that only the magnetic core 3 is substantially covered with the resin mold portion 6. Is not covered with the resin mold part 6. Therefore, when filling the mold raw material from the outer core piece 32 through the end face side of the coil 2 toward the inner core piece 31, the end interposition piece 515 is annular so that the mold raw material does not leak to the coil 2 side. To do.
  • the annular body 517 surrounds the entire circumference of the outer circumferential surface of the inner core piece 31, and a substantial gap is provided between the inner circumferential surface of the winding portions 2 a and 2 b and the outer circumferential surface of the annular body 517. However, the thickness is adjusted so that a gap g is provided between the outer peripheral surface of the inner core piece 31 and the inner peripheral surface of the annular main body 517 (FIG. 3D).
  • the outer peripheral surface of the annular main body 517 is configured with a uniform plane (FIGS. 3A and 2), and substantially contacts the inner peripheral surfaces of the winding portions 2a and 2b (FIG. 3D).
  • the thickness is partially different on the inner peripheral side of the annular main body 517, and the four corners and the thickness in the vicinity thereof are thicker than other portions and protrude toward the inner peripheral side (FIG. 2).
  • This thick portion is referred to as an end side protrusion 5176.
  • a step is formed between the end-side protrusion 5176 and the other thin portion having a small thickness (FIGS. 3A and 2). Therefore, as shown in FIG.
  • a gap g is provided between the end-side protrusion 5176 and the thin portion.
  • a total of four gaps g are formed between the four surfaces of the inner core piece 31 and the thin portion.
  • the thickness of the end side protrusion 5176 and the thickness of the thin portion may be appropriately selected so that the gap g (the step) is a predetermined value.
  • the gap g is smaller (the end-side protrusion 5176 is thinner or the thinner part is thicker), the support state of the inner core piece 31 by the end-side protrusion 5176 is more stable.
  • the formation region of the end side protrusion 5176 can be selected as appropriate.
  • the gap g is sufficiently large, and a sufficient resin flow path can be secured.
  • the resin flow path can be increased more.
  • edge part side protrusion 5176 which can support one surface of the inner core piece 31, for example, a contact area with the outer peripheral surface of the inner core piece 31 will increase, and the support state of the inner core piece 31 will be shown. Is more stable.
  • the end interposition piece 515 in this example further covers a part of the inner core piece 31 facing the outer core piece 32 (FIG. 4) and moves the inner core piece 31 toward the outer core piece 32.
  • An end face restricting portion 5178 for restriction is provided.
  • FIG. 2 and FIG. 3A at the four corners of the annular main body 517, odd-shaped plate pieces with rounded corners protrude toward the inside of the annular main body 517 to cover the four corners, respectively.
  • Each of these plate-like pieces constitutes an end face restricting portion 5178.
  • the shape and number of the end face restricting portions 5178, the area ratio of the end face restricting portion 5178 covering the end face of the inner core piece 31, and the like can be selected as appropriate.
  • the larger the area ratio (for example, the plate-like piece that crosses the two corners of the annular main body 517, the more the number of the end surface regulating portions 5178, etc.), the movement of the inner core piece 31 on the outer core piece 32 side. Can be regulated more reliably.
  • the smaller the area ratio the larger the contact area between the end face of the inner core piece 31 and the resin gap portion between the core pieces on the inner end face 32e of the outer core piece 32.
  • An improvement in the bonding strength between the inner core piece 31 and the outer core piece 32 due to the resin gap can be expected.
  • the end face restricting portion 5178 may be reduced to increase the resin gap portion forming region.
  • the area ratio of the inner core piece 31 that is not covered by the end face restricting portion 5178 can be, for example, 50% or more, 60% or more, 70% or more, and further 80% or more.
  • the total area ratio covered by the end face restricting portions 5178 in the inner core piece 31 is large to some extent. It is easy to regulate the movement of the inner core piece 31.
  • the plurality of end surface restricting portions 5178 are provided apart from each other, the space between the end surface restricting portions 5178 can be used as the resin flow path of the resin mold portion 6, and the resin gap portion is sufficiently provided.
  • the inner core piece 31 and the end interposition piece 515 are formed by matching the formation region of the end-side protrusion 5176 in the circumferential direction of the annular main body portion 517 with the formation region of the end surface regulating portion 5178.
  • a gap g is provided in a state in which is assembled (FIG. 3D).
  • the constituent material of the interposition member 5 includes insulating materials such as various resins.
  • insulating materials such as various resins.
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • PA polyamide
  • PBT polybutylene terephthalate
  • ABS acrylonitrile butadiene styrene
  • thermosetting resins such as unsaturated polyester resin, an epoxy resin, a urethane resin, and a silicone resin, are mentioned.
  • the interposition member 5 can be manufactured by a known molding method such as injection molding.
  • the resin mold portion 6 of this example covers a portion of the magnetic core 3 that is not covered by the interposition member 5, and includes a plurality of inner core pieces 31 and outer core pieces 32 as an annular integrated object. Hold.
  • an inner covering portion 61 that covers substantially the entire outer peripheral surface excluding an end face of the inner core piece 31 disposed at the end portion, and an inner end face 32 e of the outer core piece 32.
  • the outer covering portion 62 covering the entire outer peripheral surface excluding the vicinity thereof, the resin gap portion 60 disposed between the adjacent inner core pieces 31, 31, and the resin disposed between the inner core piece 31 and the outer core piece 32.
  • a gap portion (not shown).
  • positioned between the inner core pieces 31 and 31 is a rectangular flat plate shape enclosed by the interposition protrusion 5126 with which the intermediate interposition piece 510 is equipped.
  • Each surface of the flat resin gap portion 60 is in contact with the end surface of each inner core piece 31, 31 and also functions as a bonding material for joining the inner core pieces 31, 31 together.
  • a part of the side surface of the resin gap portion 60 is in contact with the inner edge end surface of the interposition protrusion 5126, and the other portion of the side surface located on the notch portion 514 side is continuous with an intermediate covering portion 610 described later.
  • the reactor 1 includes a number of resin gap portions 60 corresponding to the number of intermediate intermediate pieces 510 (four in this example).
  • the resin gap portion disposed between the inner core piece 31 and the outer core piece 32 is surrounded by the inner surface forming the through holes 52h and 52h in the outer interposition portion 52, and thus has a square flat plate shape with rounded corners.
  • One surface of the flat resin gap portion is in contact with the end surface of the inner core piece 31 (except for the portion covered with the end surface regulating portion 5178), and the other surface is in contact with the inner end surface 32e of the outer core piece 32. 31 and also functions as a bonding material for bonding the outer core pieces 32 to each other.
  • the reactor 1 is provided with the number of the resin gap portions corresponding to the number of the through holes 52h (a total of four in this example).
  • the inner covering portion 61 is mainly a portion of the outer peripheral surface of the inner core piece 31 exposed from the intermediate interposed piece 510 and the end interposed piece 515, that is, between adjacent intermediate interposed pieces 510 and 510.
  • the gap provided between the intermediate interposed piece 510 and the end interposed piece 515 is covered.
  • the inner covering portion 61 of this example further includes an intermediate covering portion 610 that fills the step between the exposed portion from the notch portion 514 of the intermediate interposed piece 510 and the main body portion 512 on the outer peripheral surface of the adjacent inner core pieces 31, 31. (FIG. 1).
  • the inner covering portion 61 has the entire outer peripheral surface of the group of the inner core pieces 31.
  • the inner covering portion 61 is an integrated body that is continuously arranged as a whole by alternately arranging these covering portions.
  • the intermediate covering portion 610 is continuous with the resin gap portion 60 disposed between the adjacent inner core pieces 31 and 31.
  • the inner covering portion 61 also functions as a connecting material that connects the resin gap portions 60 provided between the adjacent inner core pieces 31 and 31.
  • the inner covering portion 61 of this example further has a portion that covers the outer periphery of the above-described thin portion in the main body portion 512 (FIG. 1). This part is continuous with the above-mentioned all-around covering part (FIG. 1). Further, the inner covering portion 61 of this example includes an end covering portion 617 interposed between the outer peripheral surface of the inner core piece 31 and the inner peripheral surface of the annular main body portion 517 of the end interposed piece 515 (see FIG. 3D).
  • end cover portions 617 that cover the upper and lower surfaces and the left and right surfaces of the inner core piece 31 are provided corresponding to the four gaps g provided around the inner core piece 31 in the manufacturing process.
  • the end covering portion 617 is continuous with the intermediate covering portion 610 through the above-described entire periphery covering portion.
  • the outer covering portion 62 mainly covers a portion of the outer peripheral surface of the outer core piece 32 exposed from the outer interposed portion 52.
  • the outer covering portion 62 of this example has an extension portion that covers the outer core side surface of the outer interposition portion 52 so as to close the core hole 52f provided on the outer core side surface of the outer interposition portion 52 (FIG. 1). , FIG. 4 and FIG. 5).
  • the installation surface (lower surface) of the extension is substantially flush with the installation surface (lower surface) of the winding portions 2a and 2b (FIG.
  • the stepped shape is lower than the surface (upper surface) opposite to the installation surface of the outer interposition portion 52, and the extension portion has a lower step (FIG. 1).
  • the side surfaces (left and right surfaces) of the extension portion are substantially flush with the side surfaces (left and right surfaces) of the outer interposed portion 52 and do not protrude from the side surfaces of the outer interposed portion 52 (FIG. 5).
  • the outer covering portion 62 of this example is mounted for fixing the projecting pieces (four in this case) protruding outward from the outer core piece 32 on the installation surface side of the extension portion to the installation target.
  • the structure made into a part is shown.
  • the mounting portion can be omitted.
  • the inner covering portion 61 and the outer covering portion 62 are continuous via the resin gap portion between the inner core piece 31 and the outer core piece 32 described above. That is, the resin mold portion 6 includes the outer covering portion 62, the resin gap portion between the inner core piece 31 and the outer core piece 32, the end portion covering portion 617, between the intermediate interposed pieces 510 and 510, and the intermediate interposed piece 510 and the end interposed portion. A part covering the space between the pieces 515, the intermediate covering part 610, and the resin gap part 60 form an integrated body.
  • the constituent resin of the resin mold part 6 includes, for example, PPS resin, PTFE resin, LCP, nylon 6, nylon 66, nylon 10T, nylon 9T, nylon 6T and other PA resins, and thermoplastic resins such as PBT resin. It is done.
  • the reactor 1 provided with the hole part 90 can be manufactured with the manufacturing method of the reactor of the following Embodiment 1.
  • FIG. Briefly described, an assembly including the coil 2 described above, the magnetic core 3 including the inner core piece 31 and the outer core piece 32 described above, and the interposition member 5 interposed between the coil 2 and the magnetic core 3. 10 is housed in a mold, and the resin mold portion 6 is molded.
  • the intervening member 5 including the above-described hole 90 is used.
  • the pin 9 protruding from the inner surface of the mold is inserted into the hole portion 90, and the resin mold portion 6 is molded in a state where a part of the inner end surface 32e of the outer core piece 32 is supported.
  • the outer interposition part 52 partitions the space in the mold, and the core storage space is used as a mold raw material filling space. From this filling space, the resin mold portion 6 is formed using the resin flow path formed by the magnetic core 3 and the interposition member 5 as described above. Injection molding or the like can be used for molding the resin mold portion 6.
  • the details of the coil 2, the inner core piece 31 and the outer core piece 32, the interposed member 5, and the resin mold part 6 may be referred to the above-mentioned items.
  • the hole part 90 opened to the installation surface side of the assembly 10 is formed by the notch 329 and the groove part 59.
  • the assembly 10 is placed on the mold so that the installation surface of the assembly 10 is supported by the inner bottom surface of the mold, and the pins 9 are projected from the inner bottom surface and inserted into the holes 90.
  • Each pin 9 is in contact with a part of the inner end surfaces 32e, 32e of the outer core pieces 32, 32 exposed from the hole 90, and can support the inner end surfaces 32e, 32e.
  • the end surface restricting portion 5178 of the end interposition piece 515 is used to stop the inner core piece 31, and the end interposition piece 515, the inner core piece 31, the intermediate interposition piece is used. 510, the inner core piece 31, and the end interposition piece 515 can be laminated in this order.
  • the gap between the one surface of the outer core piece 32 and the core hole 52f of the outer interposition part 52 as described above.
  • a gap between the end face of the inner core piece 31 and the inner end face 32e of the outer core piece 32, a gap g between the inner core piece 31 and the end interposed piece 515, a gap between the intermediate interposed piece 510 and the end interposed piece 515 The continuous space of the gap G 514 based on the notch 514 of the intermediate interposed piece 510 and the gap between the intermediate interposed pieces 510 and 510 is used as a resin flow path of the mold raw material.
  • the step space G between the thick part and the thin part of the intermediate interposed piece 510 is also a resin flow path.
  • the annular main body 517 of the end interposition piece 515 is provided so as to overlap the step space G.
  • the three gaps g provided on the three surfaces (the lower surface and the left and right surfaces) of the inner core piece 31 do not communicate with the three step spaces G.
  • the remaining one gap g (upper gap g) provided on one surface (upper surface) of the inner core piece 31 and the gap G 514 communicate with each other.
  • the mold raw material can be introduced from the upper gap g into the gap G 514 of the notch 514 of the intermediate interposed piece 510 through one surface (upper surface) of the inner core piece 31.
  • the introduction of the mold raw material between the adjacent inner core pieces 31, 31 can be restricted in one direction as described above.
  • the filling pressure of the mold raw material may be increased in the following cases.
  • the reactor 1 according to the first embodiment and the method for manufacturing the reactor according to the first embodiment can prevent the outer core piece 32 from being displaced by the pins 9 inserted into the holes 90.
  • the pin 9 has this pressing force.
  • the outer core piece 32 is supported so as to be opposed to each other. Therefore, the outer core piece 32 pressed by the mold raw material presses the inner core piece 31 to prevent the interval between the formation regions from partially changing before the resin gap portion 60 is formed.
  • the pin 9 having a relatively large cross-sectional area can be used as shown in FIG.
  • the outer core piece 32 can be firmly supported. Therefore, the length from one outer core piece 32 to the other outer core piece 32 can be easily maintained at a predetermined size, and the distance between the inner core pieces 31 can be easily maintained. It can be formed with high accuracy. Further, by providing the resin gap portion 60, it is possible to more reliably maintain the interval between the inner core pieces 31 and 31 and suppress the variation in inductance. Therefore, the reactor 1 can maintain a predetermined inductance for a long period of time.
  • the reactor 1 can maintain a predetermined inductance.
  • the manufacturing method of the reactor 1 of Embodiment 1 and the reactor of Embodiment 1 positions the outer core piece 32 and the outer interposition part 52 in a metal mold
  • the reactor 1 of this example is excellent in productivity from the following points. (1) Since the resin gap portion 60 is provided, the step of joining the gap plate, the core piece, and the gap plate can be omitted. (2) The inner interposition part 51 (intermediate interposition piece 510) including the interposition protrusion 5126 and the inner core piece 31 can be easily assembled. (3) The resin mold part 6 and the resin gap part 60 can be formed simultaneously.
  • the reactor 1 of this example is manufactured because the resin flow path can be sufficiently secured around the inner core piece 31 and the flowability of the mold raw material that is the raw material of the resin mold portion 6 is excellent for the following reasons. Excellent in properties.
  • the intermediate interposed piece 510 and the end interposed piece 515 arranged in the winding parts 2a and 2b are arranged apart from each other in the axial direction of the winding parts 2a and 2b.
  • the intermediate interposed piece 510 includes the notch portion 514 and the thin portion, so that the gap G 514 and the step space G can be formed.
  • the end interposed piece 515 includes the end side protrusion 5176, and a gap g can be formed between the end interposed piece 515 and the inner core piece 31.
  • the resin gap part 60 joins the inner core pieces 31, 31 to each other, the inner core pieces 31, and the outer core pieces 32 to each other.
  • region of the inner core piece 31 by the resin mold part 6 is sufficiently large for the reason of said (4). Therefore, the reactor 1 can enhance the mechanical strength as an integral part of the magnetic core 3 by the resin mold portion 6.
  • the provision of the resin mold part 6 is expected to provide effects such as protection from the external environment (especially anticorrosion of the outer core piece 32), suppression of vibration and noise, improvement of insulation, and improvement of heat dissipation depending on the constituent materials. it can.
  • the reactor 1 of this example has the following effects. (1) Since the peripheral portion of the outer interposed portion 52 is thick, the coil 2 and the like can be prevented from being damaged by this pressing force even when the filling pressure of the mold raw material is increased. By increasing the filling pressure, even if the resin flow path is narrow, the filling can be performed in a short time and the productivity is excellent. (2) Since both end portions of the windings 2w and 2w are drawn upward away from the winding portions 2a and 2b, and the outer interposition portion 52 is provided with a fitting groove, a concave portion 520, and a drawing groove, the coil 2 And the outer interposition parts 52, 52 can be in close contact with each other.
  • the winding portions 2a and 2b can be easily held by the outer interposition portions 52 and 52 so as to substantially eliminate the gap between the turns in the winding portions 2a and 2b, and the small reactor 1 can be obtained.
  • the inner end surface 32e of the outer core piece 32 and the end surface of the inner core piece 31 are configured by a uniform and flat plane, and the central portion of the outer interposed portion 52 is between the outer core piece 32 and the inner core piece 31. Is interposed between the outer core piece 32 and the inner core piece 31 so that a resin gap portion having a uniform thickness is provided.
  • the coil 2 and the outer interposition part 52 can be brought into close contact with each other as described above, it is difficult for the mold raw material introduced from the outer core piece 32 side to leak out to the coil 2 side, and only the magnetic core 3 is replaced by the resin mold part 6. It is easy to manufacture the reactor 1 that covers and exposes the coil 2. (5) Since the coil 2 is exposed without being covered with the resin mold portion 6, the coil 2 can be in direct contact with the liquid refrigerant or the convective gas when performing cooling using a liquid refrigerant or cooling with a fan. Excellent heat dissipation.
  • the reactor 1 of Embodiment 1 can be provided with at least one of the following.
  • Sensor (not shown) for measuring the physical quantity of the reactor 1, such as a temperature sensor, a current sensor, a voltage sensor, and a magnetic flux sensor
  • a heat radiating plate (for example, a metal plate) attached to at least a part of the outer peripheral surface of the coil 2 (for example, an installation surface).
  • a bonding layer interposed between the installation surface of the reactor 1 and the object to be installed or the heat radiating plate of (2) for example, an adhesive layer, preferably having excellent insulating properties).
  • the reactor 1 includes an in-vehicle converter (typically a DC-DC converter) mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle, and a converter for an air conditioner. It can utilize suitably for the various converter and the component of a power converter device.
  • the manufacturing method of the reactor of embodiment can be utilized for manufacture of the reactor 1 grade
  • the outer interposition part 52 may be provided with a through hole (not shown) penetrating from the installation surface to the surface on the outer core side. Also in this case, the outer peripheral side pin can be used together.
  • One of the pair of outer intervening portions 52 is not provided with the through holes 52h and 52h, but is flat. In this case, a portion interposed between the inner core piece 31 and the outer core piece 32 in the flat outer interposed portion functions as a magnetic gap.
  • the inner interposition part 51 does not have the interposition protrusion 5126 and does not include the resin gap part 60.
  • it may be provided with a gap plate made of a material having a lower magnetic permeability than the core piece.
  • the material include nonmagnetic materials such as resin and alumina, and composite materials including nonmagnetic materials and magnetic materials.
  • the division direction of the inner interposition part 51 be a division piece (here divided up and down or left and right) that is a direction orthogonal to the axial direction of the winding parts 2a and 2b.
  • the coil 2 including the pair of winding portions 2a and 2b is formed by one continuous winding 2w.
  • the coil 2 includes a connecting portion that connects both the winding portions 2a and 2b. This connecting portion can be sufficiently separated from the turns of the two winding portions 2a and 2b so that the coil 2 and the outer interposition portion 52 can be in close contact with each other as described above (eg, pulled upward in FIG. 1). .
  • the coil 2 has only one winding part, and the magnetic core 3 has a known shape called an EE core, an ER core, an EI core, or the like.
  • the winding 2w is a covered round wire provided with a round wire conductor and an insulating coating.
  • the winding portion of the coil 2 has an end surface with an annular cylindrical shape, and the end surface has an elliptical shape, a racetrack shape, a square shape, or other polygonal shape.
  • the core piece included in the magnetic core 3 includes a U-shaped body having a portion disposed inside the winding portions 2a and 2b and a portion disposed outside the winding portions 2a and 2b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulating Of Coils (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

巻回部を有するコイルと、前記巻回部内外に配置される複数のコア片を含む磁性コアと、前記コイルと前記磁性コアとの間に介在される介在部材と、前記磁性コアのうち、前記巻回部外に配置される外コア片の少なくとも一部を覆う外側被覆部を含む樹脂モールド部とを備え、前記介在部材は、前記巻回部の端面と前記外コア片の内端面との間に介在される外側介在部を備え、前記外側介在部の前記外コア片側に、前記外コア片の内端面の一部を前記樹脂モールド部から露出させる穴部を有するリアクトル。

Description

リアクトル、及びリアクトルの製造方法
 本発明は、リアクトル、及びリアクトルの製造方法に関する。
 本出願は、2016年01月29日付けの日本国出願「特願2016-016035」に基づく優先権を主張し、上記日本国出願に記載された全ての記載内容を援用するものである。
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。特許文献1は、車載コンバータ用のリアクトルとして、巻線を螺旋状に巻回した一対の巻回部を備えるコイルと、巻回部内外に配置される環状の磁性コアと、巻回部と磁性コアとの間に介在される筒状ボビン及びB型の枠状ボビンとを備えるものを開示する。
 上記磁性コアは、複数のコア片と、隣り合うコア片間に介在されるアルミナ等から構成されるギャップ板とを備える。上記磁性コアのうち、巻回部内に配置される部分は、中間コア片(内コア片に相当)とギャップ板とが交互に積層され、接着剤で固定された積層物である。上記筒状ボビンは、巻回部の内周面と上記積層物との間に介在される。上記枠状ボビンは、巻回部の端面と、巻回部外に配置される端部コア片(外コア片に相当)との間に介在され、上記積層物がそれぞれ挿通される一対の貫通孔を備える。貫通孔から露出される中間コア片の端面と端部コア片の内端面とを接着剤で接合する。特許文献1は、上記コイルと、上記磁性コアと、これら筒状ボビン及び枠状ボビンとの組合体を樹脂で覆って、機械的保護などを図ることを開示する。
特開2012-248904号公報
 本開示のリアクトルは、
 巻回部を有するコイルと、
 前記巻回部内外に配置される複数のコア片を含む磁性コアと、
 前記コイルと前記磁性コアとの間に介在される介在部材と、
 前記磁性コアのうち、前記巻回部外に配置される外コア片の少なくとも一部を覆う外側被覆部を含む樹脂モールド部とを備え、
 前記介在部材は、
  前記巻回部の端面と前記外コア片の内端面との間に介在される外側介在部を備え、
 前記外側介在部の前記外コア片側に、前記外コア片の内端面の一部を前記樹脂モールド部から露出させる穴部を有する。
 本開示のリアクトルの製造方法は、
 巻回部を有するコイルと、前記巻回部内外に配置される複数のコア片を含む磁性コアと、前記コイルと前記磁性コアとの間に介在される介在部材とを備える組合体を金型に収納し、前記磁性コアのうち、前記巻回部外に配置される外コア片の少なくとも一部を覆う樹脂モールド部を成形する工程を備え、
 前記介在部材は、前記巻回部の端面と前記外コア片の内端面との間に介在される外側介在部を備え、この外側介在部の前記外コア片側に、前記外コア片の内端面の一部を露出させる穴部を有し、
 前記穴部に前記金型の内面から突出するピンを挿入して前記内端面の一部を支持した状態で前記樹脂モールド部を成形する。
実施形態1のリアクトルを示す概略斜視図である。 実施形態1のリアクトルに備える組合体の分解斜視図である。 実施形態1のリアクトルに備える介在部材のうち、内側介在部を示し、端部介在片を内コア片の嵌め込み方向からみた正面図である。 実施形態1のリアクトルに備える介在部材のうち、内側介在部を示し、中間介在片の正面図である。 実施形態1のリアクトルに備える介在部材のうち、内側介在部を示し、隣り合う内コア片に端部介在片及び中間介在片を組み付けた状態を示す側面図である。 実施形態1のリアクトルに備える介在部材のうち、内側介在部を示し、図3Aの端部介在片に内コア片を配置した状態を示す正面図である。 実施形態1のリアクトルに備える介在部材のうち、内側介在部を示し、図3Bの中間介在片に内コア片を配置した状態を示す正面図である。 実施形態1のリアクトルを外コア片側からコイルの軸方向にみた正面図であり、外コア片は左半分のみを示す。 実施形態1のリアクトルを示す下面図である。
[本開示が解決しようとする課題]
 複数のコア片を含む磁性コアの少なくとも一部を樹脂で覆ったリアクトルを製造する際に、樹脂の成形に用いる金型に対して磁性コアの位置がずれ難いことが望まれる。
 例えば、上述のコイルと、複数のコア片と、筒状ボビン及び枠状ボビンとの組合体を金型に収納して、金型内に原料の樹脂を充填し、少なくとも外コア片を被覆する場合を考える。金型内に外コア片を収納して、原料の樹脂を充填すると、外コア片は、原料の樹脂から充填方向の押圧力を受ける。充填圧力を大きくする場合には、上記押圧力も大きくなり、金型に対する外コア片の位置がずれる恐れがある。また、充填方向によっても、金型に対する外コア片の位置がずれる恐れがある。この位置ずれに起因して、外コア片と内コア片とコイルとの三者が適切な位置に配置されず、リアクトルの特性の低下を招き得る。従って、所定の特性をより確実に有するリアクトルが製造できるように、上記位置ずれを抑制できることが望まれる。
 そこで、樹脂モールド部の成形時に金型に対する磁性コアの位置がずれ難いリアクトル、及びリアクトルの製造方法を提供することを目的の一つとする。
[本開示の効果]
 上記のリアクトル及び上記のリアクトルの製造方法は、樹脂モールド部の成形時に金型に対する磁性コアの位置がずれ難い。
[本願発明の実施形態の説明]
 最初に、本願発明の実施態様を列記して説明する。
(1)本願発明の一態様に係るリアクトルは、
 巻回部を有するコイルと、
 前記巻回部内外に配置される複数のコア片を含む磁性コアと、
 前記コイルと前記磁性コアとの間に介在される介在部材と、
 前記磁性コアのうち、前記巻回部外に配置される外コア片の少なくとも一部を覆う外側被覆部を含む樹脂モールド部とを備え、
 前記介在部材は、
  前記巻回部の端面と前記外コア片の内端面との間に介在される外側介在部を備え、
 前記外側介在部の前記外コア片側に、前記外コア片の内端面の一部を前記樹脂モールド部から露出させる穴部を有する。
 上記のリアクトルは、穴部を有する介在部材を備えるため、以下の理由(A)により、樹脂モールド部の成形時に金型に対する磁性コア、特に外コア片の位置がずれ難い。
(A)樹脂モールド部の成形時に、穴部を、金型の内面から突出するピンを差し込むためのピン穴に利用できるからである。詳しくは、上記ピンを穴部に挿入すると、穴部から露出する外コア片の内端面の一部に上記ピンが直接接触する。そのため、樹脂モールド部の原料(以下、モールド原料と呼ぶことがある)の充填方向が外コア片をコイルに近付ける方向(以下、コイル近接方向と呼ぶことがある)を含む場合でも、上記ピンは、コイル近接方向とは対向する側に配置されて外コア片を支持できる。モールド原料の充填圧力を大きくした場合でも、上記ピンは、上述のように外コア片を支持できる。このように外コア片がコイル側に向かって動くことを穴部に挿入されたピンによって規制できる。また、外コア片は代表的には鉄などの軟磁性金属を主成分とする重量物であり、特許文献1に記載されるような薄い樹脂製の枠状ボビンでは、外コア片の位置ずれを十分に抑制することは難しいと考えられる。しかし、上記のリアクトルでは、外側介在部と上記ピンとの係合によって外コア片を十分に支持できる。
 また、上記のリアクトルは、以下の理由(B)により、所定のインダクタンスを適切に有することができる。
(B)上記の金型のピンによって、外側介在部を金型の所定の位置に位置決めできる。この外側介在部を基準として、コイル及び磁性コアも位置決めできる。即ち、外コア片におけるコイルに対する位置、更には外コア片における巻回部内に配置されるコア片(後述の内コア片)に対する位置を容易に位置決めできる。この位置決めされた状態で、上述のように外コア片の位置を適切に維持しつつ、樹脂モールド部を成形できる。そのため、位置ずれに起因するインダクタンスの変動を抑制できるからである。
 更に、上記のリアクトルは、金型内での位置決めを容易に行えることから、製造性にも優れる。また、上記のリアクトルは、コイル近接方向とは対向する側から上述の金型のピンによって外コア片を支持するにあたり、外側介在部が干渉せず(邪魔にならず)、上記ピンを容易に配置できることからも製造性に優れる。
(2)上記のリアクトルの一例として、
 前記磁性コアは、前記巻回部内に配置される内コア片と、隣り合う前記コア片間に介在される少なくとも一つのギャップ部とを含み、
 前記外側介在部は、前記巻回部側の面と前記外コア片側の面とに貫通して、前記内コア片の端面を露出させる貫通孔を有し、
 前記介在部材は、前記巻回部の内周面と前記磁性コアの外周面との間に介在され、前記隣り合うコア片間の間隔を保持する介在突部が設けられた内側介在部を備え、
 前記樹脂モールド部は、前記外側被覆部に連続し、前記内コア片の少なくとも一部を覆う内側被覆部と、前記ギャップ部を構成する樹脂ギャップ部とを備える形態が挙げられる。
 上記形態は、以下の理由により、製造過程で介在突部によって隣り合うコア片間の間隔を適切に保持でき、この間隔の大きさに応じた樹脂ギャップ部を精度よく形成できる。そのため、上記形態は、コア片とは独立したギャップ板が不要であり、コア片とギャップ板との接合工程を省略できることからも、製造性に優れる。
 製造過程において樹脂ギャップ部の形成前、隣り合うコア片間には、介在突部が存在する領域と、介在突部が存在せず、樹脂ギャップ部を形成するためにモールド原料が充填される空間とを有する。仮に、モールド原料の充填方向がコイル近接方向を含む場合、上述の金型のピンによる外コア片の支持を行わないと、モールド原料に押圧された外コア片が上記空間の間隔を狭めるように動く恐れがある。この外コア片の位置ずれによって、コア片間における最終的に樹脂ギャップ部となる領域の一部が、所定の間隔に適切に支持されない恐れがある。モールド原料の充填圧力を大きくする場合には、外コア片への押圧力が大きくなって、上記領域が更に狭められ易い。コア片間の間隔が部分的に異なることで、最終的に樹脂ギャップ部の厚さも不均一となる。この結果、磁気ギャップ長が変動して、インダクタンスの変動を招き得る。これに対し、上記形態は、上述のように穴部に上記ピンを挿入することで、外コア片がコイル近接方向に動くことを規制できる。そのため、介在突部に支持されたコア片間の間隔が適切に支持された状態で、樹脂ギャップ部を形成できるからである。
 また、上記形態は、樹脂ギャップ部によって、コア片間の間隔の変動によるインダクタンスの変動を抑制して、長期に亘り、所定のインダクタンスを維持できて、信頼性を高められる。
 更に、上記形態では、外側被覆部と内側被覆部とが連続するため、外コア片と内コア片とが樹脂モールド部によって一体化される。コア片間に介在する樹脂ギャップ部はコア片同士の接合材として機能する。従って、上記形態は、樹脂モールド部によってコア片同士が強固に一体化されて機械的特性に優れる上に、一体物としての剛性が高められて振動や騒音などを抑制できる。その他、上記形態は、樹脂モールド部を備えることで、外部環境からの保護(コア片の防食など)、コイルや外部部品に対する絶縁性の向上、被覆材の材質によっては放熱性の向上などを期待できる。
(3)上記のリアクトルの一例として、
 前記外コア片の内端面に、前記穴部の内部空間の一部を形成する切欠が設けられている形態が挙げられる。
 上記形態の切欠は、外コア片における上述の金型のピンとの係合部に利用できる。上記形態は、外コア片自体が上記ピンとの係合部を有しており、上記ピンが外コア片の内端面の一部のみに接触する場合と比較して、外コア片と上記ピンとの接触面積が多い。そのため、外コア片は穴部(切欠)に差し込まれた上記ピンによって更に位置ずれし難く、樹脂モールド部の成形時に外コア片の位置を精度よく維持できる。また、上記形態は、外コア片の位置決めを容易に、かつ精度よく行える。従って、上記形態は、製造性により優れる。更に、上記ピンの厚みの一部を外側介在部の穴部(後述の溝部)で受けられ、残部を外コア片の切欠で受けられる。そのため、上記ピンとして、外側介在部の厚さに対して十分に断面積が大きく(厚く又は太く)、剛性の高いものを利用できる。従って、上記形態は、モールド原料の充填圧力を大きくした場合でも、外コア片を強固に支持でき、上記ピンによる位置決めを高精度に行える。モールド原料の充填圧力を大きくできることで、樹脂モールド部を精度よく成形できたり、充填時間を短縮したりできる。
(4)上記のリアクトルの一例として、
 前記巻回部の端面は、その外周側領域よりも前記巻回部の軸方向に膨らんだ内周側領域を備え、
 前記外側介在部は、前記巻回部の端面との対向面に、前記内周側領域が嵌め込まれる凹部を備える形態が挙げられる。
 上述のように外側介在部自体が上述の金型のピンによって位置決めされ、この外側介在部の凹部に巻回部が嵌め込まれることで巻回部も位置決めできる。また、巻回部と外側介在部とが密着できる。そのため、製造過程で、巻回部も位置ずれし難く、コイルと磁性コアとが適切な位置に支持された状態で樹脂モールド部を形成でき、製造性に優れる。従って、上記形態は、所定のインダクタンスを適切に有することができる。また、上述の密着によってデッドスペースを低減できるため、上記形態は、小型である。
(5)本願発明の一態様に係るリアクトルの製造方法は、
 巻回部を有するコイルと、前記巻回部内外に配置される複数のコア片を含む磁性コアと、前記コイルと前記磁性コアとの間に介在される介在部材とを備える組合体を金型に収納し、前記磁性コアのうち、前記巻回部外に配置される外コア片の少なくとも一部を覆う樹脂モールド部を成形する工程を備え、
 前記介在部材は、前記巻回部の端面と前記外コア片の内端面との間に介在される外側介在部を備え、この外側介在部の前記外コア片側に、前記外コア片の内端面の一部を露出させる穴部を有し、
 前記穴部に前記金型の内面から突出するピンを挿入して前記内端面の一部を支持した状態で前記樹脂モールド部を成形する。
 上記のリアクトルの製造方法は、樹脂モールド部の成形時、外コア片の内端面の一部を穴部に差し込まれた上記金型のピンによって支持する。そのため、上述の理由(A)により、金型に対する磁性コア、特に外コア片の位置がずれ難い。また、上記のリアクトルの製造方法は、上述の理由(B)によって、リアクトルを生産性よく製造できる。特に、所定のインダクタンスを適切に有するリアクトルを製造できる。
[本願発明の実施形態の詳細]
 以下、図面を参照して、本発明の実施形態を具体的に説明する。図中の同一符号は同一名称物を示す。
[実施形態1]
 図1~図5を参照して、実施形態1のリアクトル1を説明する。図1では、コイル2の内部が分かり易いように、巻回部2aの一部を切り欠いて示す。図4では、外側介在部52の外コア片32側の面が分かり易いように、外コア片32を図1に示す(IV)-(IV)切断線で切断して右半分を除去し、左半分のみを示す。
(リアクトル)
・全体構成
 実施形態1のリアクトル1は、図1に示すように、筒状の巻回部2a,2bを有するコイル2と、巻回部2a,2b内外に配置される複数のコア片を含む磁性コア3と、コイル2と磁性コア3との間に介在される介在部材5と、磁性コア3の外周面の少なくとも一部を覆う樹脂モールド部6とを備える。この例のコイル2は、樹脂モールド部6に覆われず、露出される。リアクトル1は、代表的には、コンバータケースなどの設置対象(図示せず)に取り付けられて使用される。図1では、リアクトル1を設置したときの設置側が下側、その対向側が上側である場合を例示する。
 リアクトル1に備える磁性コア3は、コア片として、巻回部2a,2b外に配置される一対の外コア片32,32を備える。この例の磁性コア3は、巻回部2a,2b内にそれぞれ配置される複数の内コア片31の群(図2も参照)と、隣り合うコア片間に介在される少なくとも一つのギャップ部(ここでは複数)を含む。
 リアクトル1に備える介在部材5は、巻回部2a,2bの端面と、各外コア片32,32の内端面32e,32e(図5)間にそれぞれ介在される外側介在部52,52を備える。この例の外側介在部52,52はそれぞれ、表裏面に貫通する貫通孔52h,52h(図2)が設けられた枠板状である。また、この例の介在部材5は、外側介在部52とは独立しており、巻回部2a,2bの内周面と磁性コア3の外周面との間にそれぞれ介在される内側介在部51,51を備える。この例の内側介在部51は、後述の樹脂ギャップ部60(図1)を形成可能な構成を備える(詳細は後述)。
 リアクトル1に備える樹脂モールド部6は、図1に示すように、各外コア片32,32の少なくとも一部を覆う外側被覆部62と、外側被覆部62に連続し、各内コア片31の群の少なくとも一部を覆う内側被覆部61と、上記のギャップ部を構成する樹脂ギャップ部60とを備える。この例では、内コア片31,外コア片32間、及び内コア片31,31間にそれぞれ、樹脂ギャップ部60を備える。
 実施形態1のリアクトル1は、外側介在部52,52の外コア片32側(以下、外コア側と呼ぶことがある)にいずれも、穴部90,90(図5)が設けられていることを特徴の一つとする。この例では、外コア片32の内端面32eに穴部90の内部空間の一部を形成する切欠329が設けられている(図2)。かつ、外側介在部52の設置面側に溝部59が設けられている(図2)。外コア片32の切欠329と外側介在部52の溝部59との双方で穴部90を形成する。穴部90は、リアクトル1の製造過程で、樹脂モールド部6の成形に用いる金型(図示せず)に対して、後述のようにピン9(図2)が差し込まれることで外コア片32の位置決めに利用されて、外コア片32の位置ずれを防止する。
 以下、リアクトル1の主要部材であるコイル2、磁性コア3の概要、特徴点の一つである介在部材5の詳細及び樹脂モールド部6の詳細を順に説明する。
・コイル
 この例のコイル2は、図2に示すように独立した巻回部2a,2bが接合によって一体化されている。詳しくは、各巻回部2a,2bは、1本の連続する巻線2w,2wがそれぞれ螺旋状に巻回された筒状であり、互いの軸が平行するように並列(横並び)に配置される。各巻線2w,2wの一端部同士を溶接や圧着などによる接合箇所とし、この接合によって、コイル2は電気的に接続された一体物をなす。図2では、一方の巻回部2bを形成する巻線2wの一端部が巻回部2bから離れるように上方に向かって引き出され、他方の巻回部2aを形成する巻線2wが一方の巻回部2bに向かって折り曲げられることで両一端部が近接配置された例を示す。巻線2w,2wの他端部は、巻回部2a,2bから適宜な方向に引き延ばされて、図示しない端子部材が接続される。図2では、他端部が、巻回部2a,2bから離れるように上方に引き出された例を示すが、引出方向は適宜変更できる。上記端子部材を介して、コイル2に電力供給を行う電源などの外部装置が接続される。
 この例の各巻回部2a,2bの端面形状は、角部を丸めた正方形状である。また、この例の巻線2wは、平角線の導体(銅など)と、この導体の外周を覆う絶縁被覆(ポリアミドイミドなど)とを備える被覆平角線(いわゆるエナメル線)であり、巻回部2a,2bはエッジワイズコイルである。
(磁性コア)
 磁性コア3は、上述のように複数の内コア片31と、一対の外コア片32,32と、複数のギャップ部(樹脂ギャップ部60)とを備える。図2,図3D,図3Eに示す内コア片31は、巻回部2a,2bの形状に対応して、端面形状が角部を丸めた正方形状である柱状体である。図2に示す外コア片32は、設置面(下面)及びその対向面(上面)がドーム状である柱状体である。外コア片32における内コア片31の端面との接続面となる内端面32eは、設置面との角部の一部に設けられた切欠329を除いて、一様で平坦な平面で構成される。外コア片32の設置面は、内コア片31の設置面よりも設置対象に近づく方向に突出している(図4の右半分に示す内コア片31と、破線で示す外コア片32参照)。複数の内コア片31と樹脂ギャップ部60とが交互に配置された一対の積層部分を繋ぐように一対の外コア片32,32が組み付けられて、環状の磁性コア3を形成する。磁性コア3は、コイル2を励磁したときに閉磁路を形成する。切欠329は、介在部材5の外側介在部52の項で説明する。
 内コア片31,外コア片32は、主として軟磁性材料から構成される。軟磁性材料は、例えば、鉄や鉄合金(Fe-Si合金、Fe-Ni合金など)といった軟磁性金属などが挙げられる。内コア片31,外コア片32は、軟磁性材料からなる粉末や、絶縁被覆を備える被覆粉末などを圧縮成形した圧粉成形体、軟磁性粉末と樹脂とを含む複合材料の成形体などが挙げられる。樹脂ギャップ部60の詳細は、樹脂モールド部6の項で説明する。
(介在部材)
 主に図2~図5を参照して介在部材5を説明する。
・概要
 介在部材5は、代表的には絶縁材料によって構成されて、コイル2と磁性コア3間の絶縁部材として機能する。また、介在部材5は、後述するように所定の大きさ、形状に形成されて、巻回部2a,2bに対する内コア片31,外コア片32の位置決め部材として機能する。この例の内側介在部51,51は、巻回部2a,2bの内周面と内コア片31との間の絶縁、巻回部2a,2bに対する内コア片31の位置決めを行う。外側介在部52は、巻回部2a,2bの端面と外コア片32との間の絶縁、巻回部2a,2bに対する外コア片32の位置決めを行う。結果として、介在部材5は、内コア片31と外コア片32との位置決めを行う。
 実施形態1のリアクトル1では、外側介在部52,52が穴部90を備えることで、介在部材5は、樹脂モールド部6の成形時、特に、成形に用いる金型に対する外コア片32,32の位置ずれを抑制する金型への位置決め部材としても機能する。この例のリアクトル1では、内側介在部51,51が隣り合うコア片間(ここでは内コア片31,31間)の間隔を保持する介在突部5126を備えることで、介在部材5はギャップ形成部材としても機能する。
 更に、この例の外側介在部52は、樹脂モールド部6の成形時、金型内において、外コア片32,32を収納するコア収納空間と、これら外コア片32,32に挟まれるコイル2を収納するコイル収納空間とを仕切り、コイル収納空間にモールド原料が供給されないようにする。外コア片32,内コア片31と介在部材5とが組み付けられた状態では、これらの間に、後述の特定の隙間(例えば図3Dの隙間gなど)を形成する。コイル収納空間に収納される内コア片31の周囲に設けられる上記特定の隙間は、外コア片32側のコア収納空間に連通する。この連通空間によって、外コア片32側から内コア片31側へのモールド原料の流入を可能とする。即ち、上記特定の隙間を樹脂モールド部6の形成時にモールド原料の樹脂流路として利用する。従って、介在部材5は、金型内の仕切り部材、及びモールド原料の樹脂流路の形成部材としても機能する。
 以下、外側介在部52,内側介在部51を順に説明する。穴部90の使用方法については、実施形態のリアクトルの製造方法の項で説明する。
・外側介在部
 この例の外側介在部52は、図2に示すように、その中央部に、並列される一対の貫通孔52h,52hを備える矩形状の枠体である。各貫通孔52h,52hは、巻回部2a,2b側(以下、コイル側と呼ぶことがある)の面と外コア側の面とに貫通する。そのため、各内コア片31の群の端部に位置する内コア片31,31の端面は、外コア片32の内端面32eに向かって露出される(図4の右半分も参照)。この例では、外側介在部52における外コア片32の内端面32eに対向配置される外コア側をみれば、外コア片32の内端面32e及びその近傍を嵌め込めるように凹んでいる。この凹みの底部に二つの貫通孔52h,52hが開口する。外側介在部52は、この外コア側に、上記凹みの開口縁を開口部とし、貫通孔52h,52hに連通する空間を形成するコア孔52fを備える(図2において左側の外側介在部52参照)。外側介在部52における外コア側の中央部が凹んでいることで、この中央部の厚さが周縁部の厚さよりも薄い。この中央部は、内コア片31,外コア片32と外側介在部52とが組み付けられた状態では内コア片31と外コア片32との間に介在する。従って、内コア片31と外コア片32との間の間隔は、上記中央部の厚さに応じた大きさに保持される。上記中央部によって内コア片31と外コア片32との間に形成される隙間は、製造過程では樹脂流路に利用され、最終的には樹脂モールド部6の一部が充填される。従って、リアクトル1は、内コア片31と外コア片32との間にも樹脂ギャップ部を備える。
・・大きさ
 この例の外側介在部52は、外コア片32(図4の破線及び二点鎖線参照)と組み付けられた状態において、外コア片32よりも大きく、外コア片32を囲むように周縁部を備える。つまり、外コア片32の設置面よりも出っ張る部分(図4では下側の部分)、外コア片の側面よりも出っ張る部分(図4では左右の部分)を有する。また、この例の外側介在部52は、コイル2と組み付けられた状態において、巻回部2a,2bの設置面(下面)と外側介在部52の設置面(下面)とが実質的に面一になり、巻回部2a,2bの側面(左右の面)と外側介在部52の側面(左右の面)とが実質的に面一なる大きさとしている(図5も参照)。そのため、樹脂モールド部6の成形用の金型に収納すると、巻回部2a,2bの設置面と外側介在部52の設置面とは金型の内面に支持される。更に、外側介在部52とコイル2及び外コア片32とが組み付けられた状態において、外側介在部52の設置面とは反対側の面(上面)が巻回部2a,2b及び外コア片32における設置面とは反対側の面(上面)よりも高い位置となるように、外側介在部52の大きさを調整している。上述の組み付け状態では、巻線2w,2wの端部を除き、コイル2が外側介在部52から出っ張らない。
 外側介在部52の中央部の厚さは、巻回部2a,2bと磁性コア3との間に求められる絶縁性などを考慮して、適宜選択できる。この例では上述のように中央部の厚さは周縁部よりも薄い。周縁部の厚さは後述の溝部59(図2)が形成可能な程度に厚い(図2,図5)。
・・コイル側
 この例の外側介在部52のコイル側には、各巻回部2a,2bの端面近傍を嵌め込む嵌合溝を備える。各嵌合溝は、各巻回部2a,2bの端面形状に沿った環状である(図2において右側の外側介在部52参照)。各嵌合溝に各巻回部2a,2bの端面近傍が嵌め込まれることで、コイル2と外側介在部52とを位置決めできる。各嵌合溝の中央部には、各巻回部2a,2bの内周輪郭に実質的に等しい又は内周輪郭よりも若干大きい貫通孔52hが設けられている。
 更に、この例の外側介在部52は、各嵌合溝に各巻回部2a,2bの端面における角部を収納する凹部520を備える(図2において右側の外側介在部52参照)。ここで、巻線2wを巻回して筒状にすると、この筒体の内周側領域は外周側領域よりも筒体の軸方向に膨らみ易い。この例のように巻回部2a,2bがエッジワイズコイルであり、端面形状が角部を丸めた正方形状などであれば、角部の曲げ半径が小さく、角部に上述の膨らみが生じ易い。従って、各巻回部2a,2bの端面は、各巻回部2a,2bの外周側領域よりもその軸方向に膨らんだ内周側領域を含むことがある。外側介在部52は、巻回部2a,2bの端面に対向するコイル側の面に、この膨らんだ内周側領域(角部及びその近傍)が嵌め込まれる凹部520を備えることで、巻回部2a,2bと外側介在部52とを密着できる。その他、この例の外側介在部52のコイル側には、各巻回部2a,2bにおいて、巻線2w,2wの他端部の引出方向に沿って設けられた引出溝も備える。そのため、巻回部2a,2bと外側介在部52とが更に密着し易い。巻回部2a,2bと外側介在部52とが密着することで、両者を精度よく位置決めできる。また、密着することで、この例のようにコイル2が樹脂モールド部6で覆われずに露出される場合であっても、製造過程で、モールド原料がコイル2側に漏出することを防止し易い。
・・外コア側
 この例の外側介在部52の外コア側に設けられたコア孔52fの開口縁がつくる仮想面の大きさは、外コア片32の内端面32eよりも若干大きい。そのため、製造過程でコア孔52fに外コア片32を嵌め込むと、外コア片32の外周面とコア孔52fを形成する内周面との間に隙間が設けられる。この隙間は、図4の右半分でいうと、外コア片32の設置面とは反対側の面(上面)及び側面(右面)と、コア孔52fをつくる内周面のうち、貫通孔52hの開口縁に重複する部分との間に設けられる。この隙間は、製造過程では樹脂流路に利用され、最終的に樹脂モールド部6の一部(図4では後述の内側被覆部61のうち、上側の部分及び右側の部分に連なる部分)が配置される。また、コイル2と介在部材5とが組み付けられ、外コア片32が無い状態で外側介在部52の外コア側の面からみると、図4の右半分に示すように巻回部2a,2bは外側介在部52に覆われてみえない。内コア片31の端面及び内側介在部51の一部(後述の端部介在片515の端面規制部5178)は貫通孔52hから露出されており、みえる。このような構成によって、外コア側から上記隙間を経て巻回部2a,2b内にモールド原料を導入でき、外側介在部52によって巻回部2a,2bの外周に漏れ出ることを防止できる。
 上記隙間を形成しつつ、外コア片32を支持できるように、この例のコア孔52fをつくる内周面には、外コア片32の設置面とは反対側の面(上面)の一部を支持する凸部522と、設置面(下面)の一部を支持する支持面523とを備える。コア孔52fに嵌め込まれた外コア片32は、凸部522の内端面と支持面523とで一対の対向面(上下の面)の一部を挟まれて、外側介在部52に位置決めされる。また、外コア片32の上面とコア孔52fの開口縁との間、外コア片32の側面とコア孔52fの開口縁との間に隙間が設けられる(図4の二点鎖線とコア孔52fとを比較参照)。所定の隙間が設けられる範囲で、コア孔52f、凸部522、支持面523の大きさ、形状などを選択するとよい。
・・・穴部
 そして、実施形態1のリアクトル1では、図5に示すように外側介在部52における設置面側(下側)に、樹脂モールド部6の形成時、金型(図示せず)の内面から突出されるピン9(図2)が挿入される穴部90を備える。この例の穴部90は、外側介在部52に設けられた溝部59(図2,図4も参照)と、外コア片32の内端面32eに設けられた切欠329(図2も参照)とで形成される止まり穴であり、ピン9の外形、大きさ、個数に対応して設けられている。穴部90をつくる形成面は、外側介在部52における溝部59をつくる形成面及び外コア片32における切欠329をつくる形成面で構成される。穴部90の開口部は、切欠329の設置面側の開口部と、外側介在部52の溝部59における設置面側の開口部とで構成される。穴部90の内部空間は、溝部59の内部空間と切欠329の内部空間とで構成される。穴部90は、外コア片32の内端面32eの一部を樹脂モールド部6から露出させる。内端面32eにおける樹脂モールド部6からの露出箇所は、樹脂モールド部6の成形時、ピン9との接触箇所であり、ピン9によって支持されていたことを示す根拠といえる。
<ピン>
 ピン9の形状、大きさ、個数などは適宜選択できる。図2では、直方体の一つの角部を角落としして、穴部90への挿入方向先端側に、傾斜面(面取り部)を備えるピン9を例示する。その他、直方体状、三角柱状、六角柱状などの角柱状、円柱状、楕円柱状などの曲面を有する柱状などが挙げられる。本例のように傾斜面を備えるピン9は、穴部90に挿入し易く、作業性に優れる。また、ピン9の傾斜面によって、外コア片32の切欠329の形成面を押えて支持する構成とすることで、外側介在部52の溝部59を小さくし易く、溝部59の形成に起因する外側介在部52の強度の低下を低減できる。この例では一つの外コア片32及び外側介在部52に対して二つのピン9を配置する場合を示すが、ピン9の個数は一つ、又は三つ以上とすることができる。ピン9の断面積が大きいほど、ピン9が多いほど、外コア片32との接触面積が大きくなる上に、ピン9自体の剛性を十分に高められて外コア片32を十分に支持できる。外側介在部52の大型化、挿入作業性の低下などを招かない範囲で、大きさ、個数などを選択するとよい。ピン9の構成材料は、モールド原料に押圧される外コア片32を支持可能な程度の強度を有する材料(代表的には金属)が挙げられる。
<溝部>
 この例の溝部59は、図2に示すように、外側介在部52の設置面(下面)からコア孔52fを経て貫通孔52hに至るように設けられており、設置面側と外コア側とに開口する。直方体状であるピン9の形状に対応して、設置面側の開口形状は矩形状である(図5)。この例では、一つの外側介在部52に対して二つの溝部59,59を備える。
<切欠>
 この例の切欠329は、図2の右側の外コア片32に示すように、外コア片32の設置面(下面)から内端面32eに至るように設けられており、設置面側と内端面32e側とに開口する。直方体状であるピン9の形状に対応して、設置面側の開口形状は矩形状である(図5)。この例の切欠329の形成面は、ピン9の傾斜面との当接面を含む。一つの外コア片32に対して二つの切欠329を備える。外コア片32と外側介在部52とが組み付けられた状態で、各溝部59,59の外コア側の開口部と、各切欠329における内端面32e側の開口部とが重なるように、溝部59及び切欠329が設けられている。
 なお、この例の外コア片32は、上述のように内コア片31の設置面よりも突出した突出部分を有し、この突出部分に切欠329を備えることで、切欠329の具備による磁路への影響は小さい。そのため、例えば、ピン9として断面積が大きいものを利用する場合、穴部90における切欠329が形成する割合を溝部59が形成する割合よりも大きくても、上記突出部分に切欠329を設ければ、磁路への影響が小さいと考えられる。また、穴部90における切欠329が形成する割合を大きくすれば、外コア片32におけるピン9との接触面積を大きくでき、ピン9によって強固に支持できる。更に、この場合、穴部90における溝部59が形成する割合を小さくできるため、外側介在部52の厚さをある程度薄くでき、リアクトル1の小型化を図れる。この例のように穴部90における切欠329が形成する割合と、溝部59が形成する割合とを等しくすることもできる。
<穴部>
 本例では、傾斜面を有する直方体状のピン9に対応して、穴部90の形成面は、角落としされた直方体状の空間を形成する。このピン9の表面と穴部90の形成面とが面接触できるため、外コア片32は穴部90に挿入されたピン9に良好に支持される。また、外コア片32の切欠329の形成面及び外側介在部52の溝部59の形成面とピン9の側面とが面接触することで、外コア片32及び外側介在部52は、ピン9によって、巻回部2a,2bの並列方向の移動も規制される。このようなピン9と穴部90との係合によって、金型内に外コア片32及び外側介在部52を精度よく位置決めでき、かつ位置ずれし難くできる。
 穴部90の形状、溝部59及び切欠329の形状はピン9の形状に対応して、適宜変更できる。例えば、溝部59及び切欠329の設置面側の開口形状が三角形状(この場合のピン9は例えば四角柱状)、半円状(この場合のピン9は例えば円柱状)などが挙げられる。
 穴部90の穴深さは適宜選択できる。この例では、溝部59が貫通孔52hの開口部に至るため、貫通孔52hを塞がない範囲とすることが好ましい。穴部90に挿入したピン9によって貫通孔52hが塞がれると、外コア片32の内端面32eと内コア片31の端面との間に介在されるモールド原料が減り、両者の接合強度の低下を招くからである。
・内側介在部
 この例の内側介在部51は、図2に示すように巻回部2a,2bの軸方向に所定の間隔をあけて配置される複数の分割片を含む。詳しくは、各内コア片31の群(この例では三つの内コア片31からなる群)に対して、上記軸方向の中間に配置される複数の中間介在片510(この例では二つ)と、上記軸方向の各端部に配置される一対の端部介在片515,515とを含む。樹脂モールド部6の形成前において、内コア片31の外周には、上記間隔の大きさに応じた空間(内コア片31の外周面と内側介在部51との間の段差空間)が設けられる(図2の内コア片31の群と内側介在部51との組物参照、図3C参照)。また、この例の中間介在片510は、内コア片31の全周を覆わず、内コア片31の周方向の一部を露出するように切り欠かれている。そのため、樹脂モールド部6の形成前において、内コア片31の外周には、この切欠部分の応じた空間(内コア片31と中間介在片510との間の段差空間)が設けられる(図3Eの隙間G514参照)。更に、この例の端部介在片515は、内コア片31の全周を囲む環状体であるものの、内コア片31の外周面との間に所定の間隔を確保する。そのため、樹脂モールド部6の形成前において、内コア片31の外周には、この間隔の大きさに応じた空間が設けられる(図3Dの隙間g参照)。これらの空間を樹脂モールド部6の形成時にモールド原料の樹脂流路として利用できる。
 各中間介在片510は同一形状である。また、各端部介在片515は同一形状である。従って、以下の説明では、一つの中間介在片510,一つの端部介在片515を説明する。
・・中間介在片
 この例の中間介在片510は、図2,図3B,図3Eに示すように内コア片31の形状に沿って、帯材がU字状に折り曲げられたような部材である。内コア片31と中間介在片510とが組み付けられた状態では、中間介在片510の内周面は、内コア片31に実質的に接して(図3E、組み付け作業上の僅かな隙間は許容する)、支持面として機能する(図3Cも参照)。
 詳しくは、中間介在片510は、隣り合う内コア片31,31の外周面の一部を連続して覆う本体部512と、上記外周面を部分的に露出させることで、本体部512を上記外周面の周方向に分断する切欠部514とを備える。この例の本体部512は、端面形状が角部を丸めた正方形状である内コア片31に対応して、端面形状が角部を丸めた正方形状の枠体である(図3B,図3E)。図3Eでは、本体部512として、内コア片31の三面(左右の面、下面)及び丸められた四つの角部を覆い、内コア片31の一面(上面)を覆わずに露出する例を示す。なお、この例の中間介在片510は、図3Bに示す状態から水平方向に180°回転した場合に重なる回転対称な形状である。
 本体部512における内コア片31の外周面を覆う領域の周長は、適宜選択できる。この周長が短いほど(例えば、下面と下面に繋がる二つの角部を備える形態とするなど)、切欠部514の周長が長くなる。その結果、内コア片31の外周面における本体部512からの露出箇所が多くなり、上述の樹脂流路が多くなる。上記周長が長いほど、切欠部514の周長が短くなる。その結果、内コア片31における本体部512による支持領域が多くなり、製造過程で内コア片31と中間介在片510との組み付け状態が安定し易い。この例のように内コア片31の一面(上面)のみを露出させると、樹脂モールド部6の形成時、切欠部514から露出される一面側の開口部からのみ、介在突部5126に支持されるコア片間にモールド原料を導入できる。即ち、一方向に導入できる。例えば二方向から上記コア片間にモールド原料を導入すると、異なる方向から導入されたモールド原料が衝突する場所でウェルドが形成される可能性がある。本例のように上記コア片間に一方向にモールド原料が導入される構成とすれば、上記ウェルドが形成され難く、ウェルドによる性能の低下が実質的に生じない。
 モールド原料を一方向に導入するには、介在突部5126の形状などに応じて本体部512の周長を選択するとよい。本体部512の周長が短くても、例えば、図3Bに示すように介在突部5126をU字状に設けることで、隣り合う内コア片31,31間の周方向の一部のみが開口して、一方向の導入を行える。この例のように介在突部5126をU字状とし、その開口部に連続するように切欠部514を備えることに加えて、本体部512によって内コア片31の三面を覆うことでモールド原料の導入方向をより規制し易い。
 本体部512の厚さは、巻回部2a,2bと磁性コア3との間に求められる絶縁性などを考慮して、適宜選択できる。例えば、本体部512の全長に亘って、本体部512の厚さを均一的にすることができる。又は、この例のように本体部512の厚さを部分的に異ならせることができる。詳しくは、図3B,図3Eに示すように角部及びその近傍の厚さは、その他の部分よりも厚い。本体部512に、厚肉部と厚さが薄い薄肉部とを備えることで、両者の段差空間Gを樹脂モールド部6の樹脂流路に利用できる。本体部512の薄肉部の外周面は、図1のコイル2の切欠部分,図3Eの二点鎖線(仮想線)に示すように樹脂モールド部6(内側被覆部61)で覆われる。厚肉部の外周面は、代表的には樹脂モールド部6から露出されて(図1)、巻回部2a,2bの内周面に接する(図3E)。本体部512における薄肉部の割合が多いほど(例えば、厚肉部を対角位置の二つの角部のみにするなど)、樹脂流路を増大できる結果、本体部512と樹脂モールド部6との接触面積を増大できる。そのため、磁性コア3が複数のコア片を含み、介在部材5も複数の分割片を含むものの、樹脂モールド部6による磁性コア3の固定強度を高められる。本体部512における厚肉部の割合が多いほど(例えば、内コア片31の三面のうちの少なくとも一面を覆う部分全体を厚肉部にするなど)、コイル2と磁性コア3との絶縁性を高められる。
 本体部512における巻回部2a,2bの軸方向に沿った長さ(以下、幅と呼ぶ)は、適宜選択できる。本体部512の幅が長いほど、内コア片31における本体部512による支持領域が多くなり、上述のように製造過程で組み付け状態が安定し易い。本体部512の幅が短いほど、隣り合う中間介在片510,510間の間隔、隣り合う中間介在片510,端部介在片515との間の間隔を大きくして、上述の樹脂流路を増大できる結果、内コア片31と樹脂モールド部6との接触面積を増大できる。そのため、樹脂モールド部6による磁性コア3の固定強度を高められる。後述する端部介在片515の環状本体部517の幅については、本体部512の幅に関する事項を参照できる。上述の中間介在片510,510の間隔、中間介在片510,端部介在片515間の間隔が所定の値となるように、本体部512の幅、後述の環状本体部517の幅を設定するとよい。
・・・介在突部
 中間介在片510は、本体部512における内コア片31の外周面との対向面から直交方向に立設する介在突部5126を備える。介在突部5126は、図3Cに示すように、隣り合う内コア片31,31間に介在されて、内コア片31,31間の間隔を、介在突部5126の厚さに応じた大きさに保持する。内コア片31,31間の間隔は、磁気ギャップとして利用する。従って、介在突部5126の厚さは、所定の磁気ギャップ長に応じて設定する。
 この例の介在突部5126は、図3Bに示すように、本体部512の内周面の周方向に沿って、U字状の全長に亘って設けられたU字状の平板材である(図2も参照)。このU字状の平板材の内縁面は、切欠部514を形成する内周面に連続する。介在突部5126の形状、配置形態は、適宜変更できる。この例では、上述のように本体部512の形状に沿った形状であり、本体部512に連続する一つの部材であるが、例えば、複数の介在突部が本体部512の内周面の周方向に離間して配置される形態、本体部512の内周面の周方向の一部にのみ配置される一つの介在突部を備える形態などとすることができる。いずれの形態も本体部512の周方向に沿った長さが本体部512の周長よりも短い切片状の介在突部を備えることになる。又は、介在突部5126は、平板材に代えて、又は上記切片状の介在突部に加えて、棒状材などを備えることができる。
 介在突部5126は、内コア片31と中間介在片510とが組み付けられた状態において、内コア片31の端面を覆う。従って、介在突部5126によって内コア片31の端面を覆う面積割合が大きいほど、介在突部5126による内コア片31の端面を支持する面積が大きくなるため、内コア片31,31間の間隔を保持し易い。上記面積割合が小さいほど、この例では内コア片31の端面における樹脂ギャップ部60との接触面積が多くなる。そのため、樹脂ギャップ部60による内コア片31,31同士の接合強度の向上などが期待できる。接合強度の向上を期待する場合には、介在突部5126を小さくして、樹脂ギャップ部60の形成領域を増大するとよい。内コア片31における介在突部5126によって覆われない面積割合は、例えば、50%以上、60%以上、70%以上、更に80%以上とすることができる。上記面積割合が所定の値となるように、介在突部5126の形状、介在突部5126における本体部512の内周面からの突出高さ、本体部512の内周面の周方向に沿った合計周長、配置形態などを選択するとよい。
 一つの巻回部2a,2b内に配置される中間介在片510の個数は適宜変更でき、一つ又は三つ以上とすることができる。複数の中間介在片510を備える場合には、形状や大きさ(本体部512の周長・厚さ・幅、介在突部5126における上述の面積割合など)などが異なる中間介在片510を備えることができる。この例のように全ての中間介在片510が同一形状、同一の大きさであれば、組み付け時に扱い易く、製造性に優れる。
・・端部介在片
 この例の端部介在片515は、図2,図3A,図3Dに示すように内コア片31の外周面に沿って、帯材が角部を丸めた正方形状に巻回されたような環状の部材である。内コア片31と端部介在片515とが組み付けられた状態では、端部介在片515の内周面の一部(ここでは角部)は内コア片31に接して内コア片31を支持し、他部(ここでは角部以外)は内コア片31に接触せず、内コア片31との間に隙間gを形成する。詳しくは、端部介在片515は、内コア片31の外周面をその周方向に囲む環状本体部517と、環状本体部517の内周面との間の間隔を保持する端部側突部5176とを備える。
 ここで、端部介在片515は、中間介在片510のように切欠部514を備えることができる。しかし、この例では、樹脂モールド部6の形成時、外コア片32から内コア片31に向かってモールド原料を導入して、実質的に磁性コア3のみを樹脂モールド部6で覆い、コイル2を樹脂モールド部6で覆わない。そのため、外コア片32からコイル2の端面側を経て内コア片31に向かってモールド原料を充填する際に、モールド原料がコイル2側に漏れ出ないように、端部介在片515を環状とする。また、環状本体部517は、内コア片31の外周面の全周を囲むと共に、巻回部2a,2bの内周面と環状本体部517の外周面との間に実質的に隙間が設けられず、内コア片31の外周面と環状本体部517の内周面との間に隙間gが設けられる厚さに調整されている(図3D)。
 環状本体部517の外周面は、一様な平面で構成されて(図3A,図2)、巻回部2a,2bの内周面に実質的に接する(図3D)。環状本体部517の内周側では厚さが部分的に異なり、四つの角部及びその近傍の厚さが他の箇所よりも厚く、内周側に向かって突出している(図2)。この厚肉部を端部側突部5176とする。端部側突部5176と、その他の厚さが薄い薄肉部との間には段差ができる(図3A,図2)。そのため、図3Dに示すように、内コア片31と環状本体部517とが組み付けられた状態では、端部側突部5176と薄肉部との間に隙間gが設けられる。この例では、内コア片31の四面と薄肉部との間に合計四か所の隙間gが形成される。
 端部側突部5176の厚さ及び薄肉部の厚さは、上記隙間g(上記段差)が所定の値となるように適宜選択するとよい。隙間gが大きいほど(端部側突部5176の厚さが厚い、又は薄肉部の厚さが薄い)、モールド原料を導入し易く、モールド原料の流通性に優れる。隙間gが小さいほど(端部側突部5176の厚さが薄い、又は薄肉部の厚さが厚い)、端部側突部5176による内コア片31の支持状態が安定し易い。
 端部側突部5176の形成領域は適宜選択できる。この例のように矩形枠状の環状本体部517において、四つ角及びその近傍に端部側突部5176を備えると、上記隙間gが十分に大きく、樹脂流路を十分に確保できる。例えば、環状本体部517における対角位置の二つの角部及びその近傍にのみ端部側突部5176を備える形態とすれば、樹脂流路をより増大できる。又は、例えば、内コア片31の一面を支持可能な端部側突部5176を備える形態とすれば、内コア片31の外周面との接触面積が増大して、内コア片31の支持状態がより安定し易い。
 この例の端部介在片515は、更に、内コア片31における外コア片32との対向面の一部を覆うと共に(図4)、内コア片31の外コア片32側への移動を規制する端面規制部5178を備える。図2,図3Aでは、環状本体部517の四つの角部において、角部を丸めた異形の板状片が環状本体部517の内側に向かって突出して、上記四つの角部をそれぞれ覆う。これら各板状片が端面規制部5178をなす。端面規制部5178の形状、個数、端面規制部5178によって内コア片31の端面を覆う面積割合などは適宜選択できる。上記面積割合が大きいほど(例えば、環状本体部517の二つの角部を渡る板状片とする、端面規制部5178の個数を多くするなど)、内コア片31における外コア片32側の移動をより確実に規制できる。上記面積割合が小さいほど、この例では内コア片31の端面及び外コア片32の内端面32eにおける両コア片間の樹脂ギャップ部との接触面積が多くなる。この樹脂ギャップ部による内コア片31,外コア片32同士の接合強度の向上などが期待できる。接合強度の向上を期待する場合には、端面規制部5178を小さくして、樹脂ギャップ部の形成領域を増大するとよい。内コア片31における端面規制部5178によって覆われない面積割合は、例えば、50%以上、60%以上、70%以上、更に80%以上とすることができる。この例のように正方形状の内コア片31に対して四隅を押えるように四つの端面規制部5178を備えると、内コア片31における端面規制部5178に覆われる合計面積割合がある程度大きく、上述の内コア片31の移動を規制し易い。かつ、複数の端面規制部5178を離間して備えるため、端面規制部5178間を樹脂モールド部6の樹脂流路に利用できて、上記樹脂ギャップ部も十分に設けられる。この例では、環状本体部517の周方向における端部側突部5176の形成領域と、端面規制部5178の形成領域とを一致させていることで、内コア片31と端部介在片515とが組み付けられた状態で隙間gを設けられる(図3D)。
・構成材料
 介在部材5の構成材料は、各種の樹脂といった絶縁材料が挙げられる。例えば、ポリフェニレンスルフィド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6、ナイロン66といったポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂などの熱可塑性樹脂が挙げられる。又は、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などの熱硬化性樹脂が挙げられる。介在部材5は、射出成形などの公知の成形方法によって製造できる。
(樹脂モールド部)
 この例の樹脂モールド部6は、図1に示すように磁性コア3において、主として介在部材5に覆われない箇所を覆って、複数の内コア片31及び外コア片32を環状の一体物として保持する。この例では、各内コア片31の群において、その端部に配置される内コア片31の端面を除く実質的に外周面全体を覆う内側被覆部61と、外コア片32の内端面32e及びその近傍を除く外周面全体を覆う外側被覆部62と、隣り合う内コア片31,31間に配置される樹脂ギャップ部60と、内コア片31,外コア片32間に配置される樹脂ギャップ部(図示せず)とを備える。
・樹脂ギャップ部
 内コア片31,31間に配置される樹脂ギャップ部60は、中間介在片510に備える介在突部5126に囲まれる長方形の平板状である。この平板状の樹脂ギャップ部60の各面は、各内コア片31,31の端面に接し、内コア片31,31同士を接合する接合材としても機能する。樹脂ギャップ部60の側面の一部は、介在突部5126の内縁端面に接し、切欠部514側に位置する側面の他部は、後述の中間被覆部610に連続する。リアクトル1は、中間介在片510の個数に応じた個数の樹脂ギャップ部60を備える(この例では合計四つ)。
 内コア片31,外コア片32間に配置される樹脂ギャップ部は、外側介在部52における各貫通孔52h,52hをつくる内面に囲まれるため、角部を丸めた正方形の平板状である。この平板状の樹脂ギャップ部の一面は内コア片31の端面(端面規制部5178に覆われた箇所を除く)に接し、他面は外コア片32の内端面32eに接して、内コア片31,外コア片32同士を接合する接合材としても機能する。リアクトル1は、この樹脂ギャップ部を、貫通孔52hの個数に応じた個数備える(この例では合計四つ)。
・内側被覆部
 内側被覆部61は、主として、内コア片31の外周面のうち、中間介在片510,端部介在片515から露出された部分、即ち、隣り合う中間介在片510,510間に設けられる隙間、中間介在片510,端部介在片515間に設けられる隙間を覆う。この例の内側被覆部61は、更に、隣り合う内コア片31,31の外周面における中間介在片510の切欠部514からの露出箇所と本体部512との段差を埋める中間被覆部610を含む(図1)。従って、各巻回部2a,2b内に配置される内コア片31の群を巻回部2a,2bの軸方向にみれば、内側被覆部61は、内コア片31の群の外周面全周(上下の面及び左右の面)を連続して覆う全周被覆部分と、内コア片31の群の外周面の一部(ここでは上面)のみを覆う一部被覆部分(中間被覆部610)とを含む。内側被覆部61は、これら被覆部分が交互に配置されて、全体として連続した一体物となっている。この中間被覆部610は、隣り合う内コア片31,31間に配置される樹脂ギャップ部60に連続する。その結果、内側被覆部61は、隣り合う内コア片31,31間に設けられる樹脂ギャップ部60を連結する連結材としても機能する。
 この例の内側被覆部61は、更に、本体部512における上述の薄肉部の外周を覆う部分を有する(図1)。この部分は、上述の全周被覆部分に連続する(図1)。また、この例の内側被覆部61は、内コア片31の外周面と、端部介在片515の環状本体部517の内周面間に介在される端部被覆部617を備える(図3Dの二点鎖線(仮想線)参照)。この例では、製造過程で内コア片31の周囲に設けられる四つの隙間gに対応して、内コア片31の上下の面、左右の面を覆う四つの端部被覆部617を備える。この端部被覆部617は、上述の全周被覆部分を介して中間被覆部610に連続する。
・外側被覆部
 外側被覆部62は、主として外コア片32の外周面のうち、外側介在部52から露出された部分を覆う。この例の外側被覆部62は、外側介在部52の外コア側の面に設けられたコア孔52fを塞ぐように、外側介在部52の外コア側の面も覆う延長部を有する(図1,図4,図5)。延長部の設置面(下面)は、巻回部2a,2bの設置面(下面)と実質的に面一であり(図5)、延長部の設置面とは反対側の面(上面)は、外側介在部52の設置面とは反対側の面(上面)よりも低く、延長部が低段となる段差形状である(図1)。延長部の側面(左右の面)は外側介在部52の側面(左右の面)に実質的に面一であり、外側介在部52の側面から出っ張らない(図5)。また、この例の外側被覆部62は、延長部の設置面側において、外コア片32の外方に突出した突片(ここでは4つ)を、リアクトル1を設置対象に固定するための取付部とする構成を示す。取付部を省略することもできる。
 内側被覆部61と外側被覆部62とは、上述の内コア片31,外コア片32間の樹脂ギャップ部を介して連続する。即ち、樹脂モールド部6は、外側被覆部62、内コア片31,外コア片32間の樹脂ギャップ部、端部被覆部617、中間介在片510,510間及び中間介在片510,端部介在片515間を覆う部分、中間被覆部610、樹脂ギャップ部60が連続した一体物を形成する。
・構成材料
 樹脂モールド部6の構成樹脂は、例えば、PPS樹脂、PTFE樹脂、LCP、ナイロン6、ナイロン66、ナイロン10T、ナイロン9T、ナイロン6TなどのPA樹脂、PBT樹脂などの熱可塑性樹脂が挙げられる。
(リアクトルの製造方法)
 穴部90を備えるリアクトル1は、以下の実施形態1のリアクトルの製造方法によって製造できる。概略を述べると、上述のコイル2と、上述の内コア片31,外コア片32を含む磁性コア3と、コイル2と磁性コア3との間に介在される介在部材5とを備える組合体10を金型に収納し、樹脂モールド部6を成形する。特に、実施形態のリアクトルの製造方法では、介在部材5として、上述の穴部90を備えるものを利用する。そして、穴部90に金型の内面から突出するピン9を挿入して、外コア片32の内端面32eの一部を支持した状態で樹脂モールド部6を成形する。
 この例では、上述のように金型に組合体10を収納すると、外側介在部52が金型内の空間を仕切り、コア収納空間をモールド原料の充填空間とする。この充填空間から、上述のように磁性コア3と介在部材5とで形成する樹脂流路を利用して、樹脂モールド部6を成形する。樹脂モールド部6の成形には、射出成形などが利用できる。
 コイル2、内コア片31及び外コア片32、介在部材5、樹脂モールド部6の詳細は、上述の各項を参照するとよい。
 樹脂モールド部6の形成前、外コア片32と外側介在部52とが組み付けられた状態では、組合体10の設置面側に開口する穴部90が切欠329と溝部59とによって形成される。この組合体10の設置面が金型の内底面に支持されるように組合体10を金型に配置し、この内底面からピン9を突出させて穴部90に挿入する。各ピン9は、穴部90から露出される外コア片32,32の内端面32e,32eの一部に接触して、内端面32e,32eを支持できる。この支持によって、一対の外コア片32,32同士が近付く方向に外コア片32,32が移動することを規制できる。特に、モールド原料の充填方向がコイル近接方向を含む場合や、更には充填圧力を大きくする場合でも、外コア片32,32の移動を規制できる。
 その他、この例では、組合体10の組立に際し、端部介在片515の端面規制部5178を内コア片31の当て止めに利用して、端部介在片515、内コア片31、中間介在片510、内コア片31、端部介在片515を順に積層することができる。
 また、この例では、コイル2と、磁性コア3と、介在部材5とが組み付けられた状態では、上述のように外コア片32の一面と外側介在部52のコア孔52fとの間の隙間、内コア片31の端面と外コア片32の内端面32eとの間の隙間、内コア片31と端部介在片515間の隙間g、中間介在片510,端部介在片515間の隙間、中間介在片510の切欠部514に基づく隙間G514、中間介在片510,510間の隙間という連続する空間をモールド原料の樹脂流路とする。中間介在片510の厚肉部と薄肉部との段差空間Gも樹脂流路とする。
 この例において内コア片31に端部介在片515と中間介在片510とが配置された状態では、端部介在片515の環状本体部517が段差空間Gに重複するように設けられる。その結果、四つの隙間gのうち、内コア片31の三面(下面及び左右の面)に対して設けられる三つの隙間gと三つの段差空間Gとが連通しない。内コア片31の一面(上面)に対して設けられる残り一つの隙間g(上側の隙間g)と隙間G514とが連通する。従って、この上側の隙間gから、内コア片31の一面(上面)を経て、中間介在片510の切欠部514の隙間G514にモールド原料を導入できる。その結果、上述のように隣り合う内コア片31,31間へのモールド原料の導入を一方向に規制できる。
(効果)
 実施形態1のリアクトル1及び実施形態1のリアクトルの製造方法は、樹脂モールド部6の成形時、金型の内面から突出するピン9を穴部90に挿入して、このピン9によって、外コア片32の内端面32eの一部を直接支持できる。そのため、金型に対する外コア片32の位置がずれ難い。
 特に、以下の場合にモールド原料の充填圧力を大きくすることがある。
(1)外側介在部52によって、金型内の空間を仕切るため、コア収納空間が比較的狭い場合
(2)内コア片31及び外コア片32と介在部材5とでつくる狭い隙間(隙間gなど)にモールド原料をより短時間で充填する場合
(3)樹脂ギャップ部60の形成のために、隣り合うコア片間の空間にもモールド原料を充填する場合
 これらの場合でも、実施形態1のリアクトル1及び実施形態1のリアクトルの製造方法は、穴部90に差し込まれたピン9によって、外コア片32の位置ずれを防止できる。特に、金型に充填されたモールド原料が、外コア片32,32同士が近付く方向(コイル近接方向)に各外コア片32,32を押圧する場合であっても、ピン9がこの押圧力に対向するように外コア片32を支持する。そのため、モールド原料に押圧された外コア片32が内コア片31を押圧するなどして、樹脂ギャップ部60の形成前に、この形成領域の間隔が部分的に変動することを防止できる。この例では、外コア片32の切欠329と、外側介在部52の溝部59との双方で穴部90を形成するため、図2に示すように断面積が比較的大きいピン9を利用できることからも、外コア片32を強固に支持できる。そのため、一方の外コア片32から他方の外コア片32までの長さを所定の大きさに維持し易く、ひいては各内コア片31間の間隔も維持し易いことで、樹脂ギャップ部60を精度よく形成できる。また、この樹脂ギャップ部60の具備によって、内コア片31,31同士の間隔をより確実に維持して、インダクタンスの変動を抑制できる。従って、リアクトル1は、長期に亘り、所定のインダクタンスを維持できる。特に、この例のように、中間介在片510を特定の形状とすることで、製造過程で、内コア片31,31間へのモールド原料の導入方向を規制できる。その結果、樹脂ギャップ部60を適切に形成できることからも、リアクトル1は、所定のインダクタンスを維持できる。
 また、実施形態1のリアクトル1及び実施形態1のリアクトルの製造方法は、穴部90にピン9を挿入することで金型内での外コア片32及び外側介在部52の位置決め、ひいてはコイル2の位置決め、内コア片31の位置決めを容易に行える。従って、製造性にも優れる。この例のリアクトル1は、以下の点からも製造性に優れる。
(1)樹脂ギャップ部60を備えるためギャップ板及びコア片とギャップ板との接合工程を省略できる。
(2)介在突部5126を備える内側介在部51(中間介在片510)と、内コア片31との組み付けを容易に行える。
(3)樹脂モールド部6の形成と樹脂ギャップ部60との形成を同時に行える。
 更に、この例のリアクトル1は、以下の理由により、内コア片31の周囲に樹脂流路を十分に確保でき、樹脂モールド部6の原料であるモールド原料の流通性に優れることからも、製造性に優れる。
(4)巻回部2a,2b内に配置される中間介在片510,端部介在片515が巻回部2a,2bの軸方向に離間して配置される。
(5)中間介在片510が切欠部514や薄肉部を備えて、隙間G514や段差空間Gを形成できる。
(6)端部介在片515が端部側突部5176を備えて、内コア片31との間に隙間gを形成できる。
 樹脂モールド部6のうち、樹脂ギャップ部60は、内コア片31,31同士、内コア片31,外コア片32同士を接合する。また、この例では、上記(4)の理由によって、樹脂モールド部6による内コア片31の被覆領域が十分に大きい。そのため、リアクトル1は、樹脂モールド部6によって、磁性コア3の一体物としての機械的強度を高められる。更に、樹脂モールド部6の具備によって、外部環境からの保護(特に外コア片32の防食など)、振動・騒音の抑制、絶縁性の向上、構成材料によっては放熱性の向上などの効果が期待できる。
 その他、この例のリアクトル1は、以下の効果を奏する。
(1)外側介在部52の周縁部の厚さが厚いことで、モールド原料の充填圧力を高めても、コイル2などがこの押圧力によって損傷することを防止できる。充填圧力を高めることで、樹脂流路が狭い場合でも、短時間で充填できて製造性に優れる。
(2)巻線2w,2wの両端部を巻回部2a,2bから離れて上方に引き出していること、外側介在部52に嵌合溝や凹部520、引出溝を備えることなどから、コイル2と外側介在部52,52とを密着できる。このような外側介在部52,52によって巻回部2a,2bにおけるターン間の隙間を実質的に無くすように巻回部2a,2bを保持し易く、小型なリアクトル1とすることができる。
(3)外コア片32の内端面32eと内コア片31の端面とが一様で平坦な平面で構成され、外コア片32と内コア片31との間に外側介在部52の中央部が介在されることで、外コア片32と内コア片31との間にも一様な厚さの樹脂ギャップ部を備えられる。
(4)上述のようにコイル2と外側介在部52とを密着させられるため、外コア片32側から導入したモールド原料がコイル2側に漏出し難く、磁性コア3のみを樹脂モールド部6で覆って、コイル2を露出させたリアクトル1を製造し易い。
(5)コイル2が樹脂モールド部6に覆われず露出されるため、液体冷媒を用いた冷却やファンを用いた冷却などを行う場合に液体冷媒や対流するガスにコイル2が直接接触できて、放熱性に優れる。
 その他、実施形態1のリアクトル1は、以下の少なくとも一つを備えることができる。
(1)温度センサ、電流センサ、電圧センサ、磁束センサなどのリアクトル1の物理量を測定するセンサ(図示せず)
(2)コイル2の外周面の少なくとも一部(例えば設置面)に取り付けられる放熱板(例えば金属板など)
(3)リアクトル1の設置面と設置対象又は(2)の放熱板との間に介在される接合層(例えば接着剤層。絶縁性に優れるものが好ましい。)
[用途]
 実施形態1のリアクトル1は、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC-DCコンバータ)や、空調機のコンバータなどの種々のコンバータ、並びに電力変換装置の構成部品に好適に利用することができる。実施形態のリアクトルの製造方法は、リアクトル1などの製造に利用できる。
[変形例]
 上述の実施形態1に対して、以下の少なくとも一つの変更が可能である。
(1)外コア片32の切欠329を省略し、穴部90の形成面を溝部59と外コア片32の平坦な内端面32eの一部とで構成する。
 この場合、外コア片32の外周面を支持する外周側ピンを併用すると、外コア片32の位置ずれをより抑制し易い。例えば、外コア片32の左右の側面を支持する場合、左右の側面を挟むように、巻回部2a,2bの並列方向に外周側ピンを突出させることが挙げられる。
(2)外コア片32の切欠329を省略し、穴部90の内周面を外側介在部52のみで構成し、穴部90の底面を外コア片32の平坦な内端面32eの一部で構成する。
 この場合、外側介在部52には、設置面から外コア側の面に貫通する貫通孔(図示せず)を設けることが挙げられる。この場合も、上記外周側ピンを併用できる。
(3)一対の外側介在部52のうち、一方を、貫通孔52h,52hを有しておらず、平板状のものとする。
 この場合、平板状の外側介在部における内コア片31と外コア片32との間に介在する部分は、磁気ギャップとして機能する。
(4)内側介在部51が介在突部5126を有しておらず、樹脂ギャップ部60を備えていないものとする。
 この場合、コア片よりも透磁率が低い材料から構成されるギャップ板を備えることが挙げられる。上記材料は、樹脂やアルミナなどの非磁性材、非磁性材と磁性材とを含む複合材などが挙げられる。
(5)内側介在部51の分割方向が、巻回部2a,2bの軸方向に直交する方向である分割片(ここでは上下に分割される又は左右に分割されるもの)とする。
(6)一対の巻回部2a,2bを備えるコイル2として、1本の連続する巻線2wで形成されたものとする。
 この場合、コイル2は、両巻回部2a,2bを連結する連結部を備える。この連結部は、上述のようにコイル2と外側介在部52とが密着し易いように、両巻回部2a,2bのターンから十分に離すことができる(例、図1において上方に引き上げる)。
(7)コイル2は巻回部を一つのみ備え、磁性コア3はEEコアやERコア、EIコアなどと呼ばれる公知の形状とする。
(8)巻線2wとして、丸線の導体と絶縁被覆とを備える被覆丸線などとする。
(9)コイル2の巻回部を端面形状が円環状の円筒体、その他、端面形状が楕円状やレーストラック状、正方形状やその他の多角形状などとする。
(10)磁性コア3に備えるコア片として、巻回部2a,2b内に配置される部分と、巻回部2a,2b外に配置される部分とを有するU字状体を含むものとする。
 本願発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 リアクトル  10 組合体
 2 コイル 2a,2b 巻回部 2w 巻線
 3 磁性コア 31 内コア片 32 外コア片 32e 内端面
  329 切欠
 5 介在部材 51 内側介在部 52 外側介在部 59 溝部
  510 中間介在片 512 本体部 5126 介在突部
  514 切欠部
  515 端部介在片 517 環状本体部 5176 端部側突部
  5178 端面規制部
  52h 貫通孔 52f コア孔
  520 凹部 522 凸部 523 支持面
 6 樹脂モールド部 60 樹脂ギャップ部 61 内側被覆部
  62 外側被覆部 610 中間被覆部 617 端部被覆部
 9 ピン
 90 穴部
 g,G514 隙間 G 段差空間

Claims (5)

  1.  巻回部を有するコイルと、
     前記巻回部内外に配置される複数のコア片を含む磁性コアと、
     前記コイルと前記磁性コアとの間に介在される介在部材と、
     前記磁性コアのうち、前記巻回部外に配置される外コア片の少なくとも一部を覆う外側被覆部を含む樹脂モールド部とを備え、
     前記介在部材は、
      前記巻回部の端面と前記外コア片の内端面との間に介在される外側介在部を備え、
     前記外側介在部の前記外コア片側に、前記外コア片の内端面の一部を前記樹脂モールド部から露出させる穴部を有するリアクトル。
  2.  前記磁性コアは、前記巻回部内に配置される内コア片と、隣り合う前記コア片間に介在される少なくとも一つのギャップ部とを含み、
     前記外側介在部は、前記巻回部側の面と前記外コア片側の面とに貫通して、前記内コア片の端面を露出させる貫通孔を有し、
     前記介在部材は、前記巻回部の内周面と前記磁性コアの外周面との間に介在され、前記隣り合うコア片間の間隔を保持する介在突部が設けられた内側介在部を備え、
     前記樹脂モールド部は、前記外側被覆部に連続し、前記内コア片の少なくとも一部を覆う内側被覆部と、前記ギャップ部を構成する樹脂ギャップ部とを備える請求項1に記載のリアクトル。
  3.  前記外コア片の内端面に、前記穴部の内部空間の一部を形成する切欠が設けられている請求項1又は請求項2に記載のリアクトル。
  4.  前記巻回部の端面は、その外周側領域よりも前記巻回部の軸方向に膨らんだ内周側領域を備え、
     前記外側介在部は、前記巻回部の端面との対向面に、前記内周側領域が嵌め込まれる凹部を備える請求項1から請求項3のいずれか1項に記載のリアクトル。
  5.  巻回部を有するコイルと、前記巻回部内外に配置される複数のコア片を含む磁性コアと、前記コイルと前記磁性コアとの間に介在される介在部材とを備える組合体を金型に収納し、前記磁性コアのうち、前記巻回部外に配置される外コア片の少なくとも一部を覆う樹脂モールド部を成形する工程を備え、
     前記介在部材は、前記巻回部の端面と前記外コア片の内端面との間に介在される外側介在部を備え、この外側介在部の前記外コア片側に、前記外コア片の内端面の一部を露出させる穴部を有し、
     前記穴部に前記金型の内面から突出するピンを挿入して前記内端面の一部を支持した状態で前記樹脂モールド部を成形するリアクトルの製造方法。
PCT/JP2017/002828 2016-01-29 2017-01-26 リアクトル、及びリアクトルの製造方法 WO2017131123A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/779,692 US10665386B2 (en) 2016-01-29 2017-01-26 Reactor and reactor manufacturing method
CN201780006523.9A CN108463862B (zh) 2016-01-29 2017-01-26 电抗器及电抗器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016035A JP6547646B2 (ja) 2016-01-29 2016-01-29 リアクトル、及びリアクトルの製造方法
JP2016-016035 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131123A1 true WO2017131123A1 (ja) 2017-08-03

Family

ID=59398506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002828 WO2017131123A1 (ja) 2016-01-29 2017-01-26 リアクトル、及びリアクトルの製造方法

Country Status (4)

Country Link
US (1) US10665386B2 (ja)
JP (1) JP6547646B2 (ja)
CN (1) CN108463862B (ja)
WO (1) WO2017131123A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638590B2 (ja) * 2016-07-21 2020-01-29 トヨタ自動車株式会社 リアクトルの製造方法
JP6877695B2 (ja) 2017-11-21 2021-05-26 株式会社オートネットワーク技術研究所 リアクトル
JP6808177B2 (ja) 2017-11-21 2021-01-06 株式会社オートネットワーク技術研究所 リアクトル
JP6809439B2 (ja) 2017-11-21 2021-01-06 株式会社オートネットワーク技術研究所 リアクトル
JP6809440B2 (ja) 2017-11-21 2021-01-06 株式会社オートネットワーク技術研究所 リアクトル
JP6851577B2 (ja) 2018-03-02 2021-03-31 株式会社オートネットワーク技術研究所 リアクトル
JP7110863B2 (ja) * 2018-03-05 2022-08-02 株式会社オートネットワーク技術研究所 リアクトル
JP7015453B2 (ja) 2018-08-09 2022-02-03 株式会社オートネットワーク技術研究所 リアクトル
JP7022342B2 (ja) 2018-10-18 2022-02-18 株式会社オートネットワーク技術研究所 リアクトル
JP7061291B2 (ja) 2018-10-29 2022-04-28 株式会社オートネットワーク技術研究所 リアクトル
US12009130B2 (en) * 2018-11-29 2024-06-11 Autonetworks Technologies, Ltd. Reactor
EP3992996A1 (en) * 2020-10-28 2022-05-04 ETA Green Power Ltd. An inductor coil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123680A (ja) * 2012-12-21 2014-07-03 Toyota Motor Corp リアクトル及びその製造方法
JP2014143332A (ja) * 2013-01-25 2014-08-07 Sumitomo Electric Ind Ltd リアクトル、コンバータ、及び電力変換装置
JP2015005579A (ja) * 2013-06-19 2015-01-08 株式会社タムラ製作所 リアクトル及びリアクトルの製造方法
JP2015103627A (ja) * 2013-11-22 2015-06-04 株式会社タムラ製作所 リアクトル
JP2015122484A (ja) * 2013-11-22 2015-07-02 株式会社タムラ製作所 コイルとその製造方法、及びリアクトル
JP2015188019A (ja) * 2014-03-26 2015-10-29 住友電装株式会社 ギャップ部材、磁性コア及びリアクトル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329141B2 (ja) * 1995-06-21 2002-09-30 松下電器産業株式会社 モールドトランスの製造方法
JP5534551B2 (ja) * 2009-05-07 2014-07-02 住友電気工業株式会社 リアクトル
JP5428996B2 (ja) * 2010-03-29 2014-02-26 株式会社豊田自動織機 リアクトル
US9581234B2 (en) * 2012-11-09 2017-02-28 Ford Global Technologies, Llc Liquid cooled power inductor
US9343223B2 (en) 2013-03-29 2016-05-17 Tamura Corporation Reactor
JP6368480B2 (ja) * 2013-11-12 2018-08-01 株式会社タムラ製作所 リアクトル
US9514878B2 (en) * 2013-11-22 2016-12-06 Tamura Corporation Coil and manufacturing method for same, and reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123680A (ja) * 2012-12-21 2014-07-03 Toyota Motor Corp リアクトル及びその製造方法
JP2014143332A (ja) * 2013-01-25 2014-08-07 Sumitomo Electric Ind Ltd リアクトル、コンバータ、及び電力変換装置
JP2015005579A (ja) * 2013-06-19 2015-01-08 株式会社タムラ製作所 リアクトル及びリアクトルの製造方法
JP2015103627A (ja) * 2013-11-22 2015-06-04 株式会社タムラ製作所 リアクトル
JP2015122484A (ja) * 2013-11-22 2015-07-02 株式会社タムラ製作所 コイルとその製造方法、及びリアクトル
JP2015188019A (ja) * 2014-03-26 2015-10-29 住友電装株式会社 ギャップ部材、磁性コア及びリアクトル

Also Published As

Publication number Publication date
JP6547646B2 (ja) 2019-07-24
JP2017135334A (ja) 2017-08-03
US20190259532A1 (en) 2019-08-22
CN108463862B (zh) 2020-05-26
CN108463862A (zh) 2018-08-28
US10665386B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2017131123A1 (ja) リアクトル、及びリアクトルの製造方法
US10535460B2 (en) Reactor
JP6443832B2 (ja) リアクトル
WO2016143730A1 (ja) リアクトル
JP2016066686A (ja) リアクトル
WO2016143729A1 (ja) リアクトル
JP2016092199A (ja) リアクトル
WO2015178208A1 (ja) リアクトル
JP6635305B2 (ja) リアクトル、およびリアクトルの製造方法
JP2016100540A (ja) チョークコイル
US11923121B2 (en) Reactor
CN109416977B (zh) 电抗器
WO2019230458A1 (ja) リアクトル
JP7433412B2 (ja) リアクトルおよびその組立方法
CN111344822A (zh) 电抗器
US12009130B2 (en) Reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744353

Country of ref document: EP

Kind code of ref document: A1