WO2017130569A1 - 脈拍測定装置 - Google Patents

脈拍測定装置 Download PDF

Info

Publication number
WO2017130569A1
WO2017130569A1 PCT/JP2016/086009 JP2016086009W WO2017130569A1 WO 2017130569 A1 WO2017130569 A1 WO 2017130569A1 JP 2016086009 W JP2016086009 W JP 2016086009W WO 2017130569 A1 WO2017130569 A1 WO 2017130569A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature detection
human body
unit
heat
Prior art date
Application number
PCT/JP2016/086009
Other languages
English (en)
French (fr)
Inventor
鈴木 雅弘
上田 智章
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Publication of WO2017130569A1 publication Critical patent/WO2017130569A1/ja
Priority to US16/033,115 priority Critical patent/US10980434B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors

Definitions

  • the present invention relates to a pulse measuring device.
  • wearable terminals computers that can be directly worn and carried by users such as watches, rings, and glasses.
  • Wearable terminals are always required to have applied technology that makes the most of the features they wear, since simply wearing them is no different from carrying a small computer.
  • a vital sensing technique of automatically recording a user's health state at the time of wearing is considered, and an example thereof is pulse measurement.
  • pulse measurement is performed by electrocardiography, which detects a heart rate substantially equivalent to a pulse by using a peak of an electrocardiogram waveform measured by attaching an electrode to a living body, for example, P wave or R wave,
  • a photoelectric pulse wave method or the like is widely used that irradiates peripheral blood vessels such as ear lobes and detects the pulse from optical changes in which the reflected light periodically varies depending on blood flow and light absorption characteristics.
  • Non-Patent Document 1 discloses a device that can measure a heart rate by simply embedding a measurement electrode in sports electrocardiography induction and wearing it, and Patent Document 1 wears a device equipped with a sensor that emits infrared light to the auricle. The device which can measure heartbeat by this is disclosed.
  • Non-Patent Document 1 electrocardiogram
  • the device of Non-Patent Document 1 can accurately measure heartbeats because electrodes are attached to the body surface, it has to be tightly attached to the human body, so there is a sense of discomfort such as restraint and pressure.
  • it since it is a clothing, washing is necessary, but the number of washings is limited from the viewpoint of durability, which is difficult to use.
  • Non-Patent Document 1 since the device of Non-Patent Document 1 has a large power consumption of the light emitting element, it is impossible to continuously measure the pulse when used in a small terminal device such as a wearable terminal. In addition, when a tattoo or the like is used, the reflected light may not be captured well because the pigment blocks the light.
  • a wearable pulse measuring device that measures a pulse by detecting a minute temperature change associated with pulsation using a temperature sensor that detects a temperature of a contact surface with a human body has been proposed.
  • Such a pulse measuring device is sufficient if, for example, a temperature sensor is brought into contact with the wrist, ankle, etc. Further, since the power required for temperature detection is extremely small, it is possible to reduce the size and reduce the power consumption. You can measure the pulse.
  • the pulse measuring device has a first temperature detecting means for detecting the temperature of the human body and a second temperature detection having the same characteristics as the first temperature detecting means and detecting the temperature of the human body.
  • FIG. 1 is a diagram for explaining a pulse measuring method by the pulse measuring device 1 according to the present embodiment.
  • the pulse measuring device 1 detects a minute body temperature change in an arbitrary part of the human body (for example, wrist, neck, ankle, etc.), and measures the pulse from the period of the minute body temperature change.
  • the pulse rate of the user wearing the wearable terminal can be measured by providing the pulse measuring device 1 in various wearable terminals such as a wristwatch type terminal or a spectacle type terminal.
  • FIG. 2 is a diagram showing a configuration of the pulse measuring device 1 according to the present embodiment.
  • the pulse measuring device 1 includes a first temperature detection unit 11, a second temperature detection unit 13, and a control unit 16.
  • the first temperature detection unit 11 is, for example, a resistance temperature detector such as a thermistor resistance resistor or a platinum resistance temperature detector whose resistance value changes according to a temperature change, and a lead wire for passing a current through the resistance temperature detector. Including.
  • the 1st temperature detection part 11 detects the temperature of the human body which is contacting.
  • the first temperature detection unit 11 has, for example, a rectangular shape with a side of about 1 mm to 2 mm, and consumes a small amount of current (for example, several milliamperes or less) for measuring the resistance value.
  • FIG. 3 is a diagram illustrating a positional relationship between the first temperature detection unit 11 and the heat dissipation unit 12. As shown in FIG. 3, the first temperature detection unit 11 and the heat dissipation unit 12 are stacked.
  • the heat radiation part 12 is, for example, a metal plate.
  • the heat radiating unit 12 releases the heat accumulated in the first temperature detecting unit 11.
  • a component having high thermal conductivity used in the wearable terminal may be used as the heat radiating unit 12.
  • the first temperature detecting unit 11 Since the first temperature detecting unit 11 is in contact with the heat radiating unit 12, the first temperature detecting unit 11 can release the heat accumulated therein through the heat radiating unit 12. Thereby, the 1st temperature detection part 11 is suppressed from becoming a thermal equilibrium state, and can always detect the temperature change of the human body accompanying a pulsation.
  • the second temperature detection unit 13 has the same characteristics as the first temperature detection unit 11, and, like the first temperature detection unit 11, thermistor resistance thermometer or platinum whose resistance value changes according to the temperature change. It includes a resistance temperature detector such as a resistance temperature detector, and a conductive wire for passing a current through the resistance temperature detector.
  • the second temperature detection unit 13 is disposed in the vicinity of the first temperature detection unit 11. For example, the second temperature detection unit 13 is disposed at a position where the human body can contact the first temperature detection unit 11 at the same time.
  • the 2nd temperature detection part 13 detects the temperature of the human body which is contacting itself.
  • the second temperature detection unit 13 has, for example, a rectangular shape having a side of about 1 mm to 2 mm, and consumes a small amount of current (for example, several milliamperes or less) for measuring the resistance value.
  • the second temperature detection unit 13 is in contact with the heat storage unit 14 and the heat insulation unit 15.
  • 4A and 4B are diagrams showing the positional relationship among the second temperature detection unit 13, the heat storage unit 14, and the heat insulation unit 15.
  • FIG. 4A is a side view of the second temperature detection unit 13, the heat storage unit 14, and the heat insulation unit 15, and
  • FIG. 4B is a schematic cross-sectional view of the second temperature detection unit 13 and the heat storage unit 14 taken along the line AA.
  • the second temperature detection unit 13 and the heat insulation unit 15 are stacked.
  • the heat storage part 14 is arrange
  • the heat storage unit 14 is, for example, resin or glass.
  • the heat storage unit 14 is in contact with the second temperature detection unit 13 and accumulates the heat released from the second temperature detection unit 13, thereby suppressing the temperature change of the second temperature detection unit 13.
  • the thermal storage part 14 decided to be resin and glass, it is not restricted to this.
  • a resin may be mixed with resin or glass constituting the heat storage unit 14 to disperse heat released from the second temperature detection unit 13 throughout the heat storage unit 14. By doing in this way, the thermal storage part 14 and the 2nd temperature detection part 13 can be rapidly shifted to a thermal equilibrium state. Thereby, it can prevent that the 2nd temperature detection part 13 cannot detect the temperature change of the human body accompanying a pulsation.
  • the heat insulation unit 15 is in contact with the second temperature detection unit 13 and suppresses heat radiation from the second temperature detection unit 13.
  • the pulse measuring device 1 suppresses that heat is released from the second temperature detection unit 13, and the second temperature detection unit 13 changes from a thermal equilibrium state to a state in which heat transfer occurs. Can be suppressed.
  • the pulse measuring device 1 may include only the heat storage unit 14 disposed on the side surface of the second temperature detection unit 13 without including the heat insulating unit 15.
  • the control part 16 is comprised by the electric circuit etc., for example, and measures the pulse of a human body.
  • the control unit 16 includes a specifying unit 161, a pulse measuring unit 162, and an output unit 163.
  • the specifying unit 161 specifies the period of temperature change associated with the pulsation of the human body based on the difference between the human body temperature detected by the first temperature detecting unit 11 and the human body temperature detected by the second temperature detecting unit 13. .
  • the specifying unit 161 specifies the period of temperature change accompanying the pulsation of the human body by performing the following process.
  • the specifying unit 161 measures the temperature of the human body by passing a current through the first temperature detecting unit 11 and measuring a voltage (analog value) applied to the first temperature detecting unit 11. Since the heat radiating unit 12 is in contact with the first temperature detecting unit 11 and the thermal equilibrium state is suppressed, the first temperature detecting unit according to the change in body temperature accompanying the pulsation of the human body in contact with the first temperature detecting unit 11 11 changes in resistance value. Therefore, the specific
  • the specifying unit 161 measures the temperature of the human body by passing a current through the second temperature detection unit 13 and measuring a voltage value (analog value) applied to the second temperature detection unit 13. Since the heat storage unit 14 and the heat insulating unit 15 are in contact with the second temperature detection unit 13 and quickly shift to a thermal equilibrium state, the second temperature detection is performed according to the temperature change accompanying the pulsation of the human body in contact with the second temperature detection unit 13. The resistance value of the part 13 does not change. Therefore, the specific
  • the specifying unit 161 obtains the difference between the voltage applied to the first temperature detection unit 11 and the voltage applied to the second temperature detection unit 13, thereby detecting the temperature detected by the first temperature detection unit 11, 2 A value corresponding to the difference from the temperature detected by the temperature detector 13 is acquired.
  • the voltage applied to the first temperature detection unit 11 corresponds to the body temperature reflecting the temperature change caused by the pulsation and includes noise.
  • the voltage applied to the second temperature detection unit 13 corresponds to a body temperature that does not reflect a temperature change associated with the pulse and includes noise.
  • the specifying unit 161 can extract a value indicating only a temperature change associated with the body temperature pulse from which noise has been removed.
  • the specifying unit 161 converts the acquired difference into a digital value by, for example, sampling the acquired difference at a predetermined sampling frequency.
  • a band higher than the pulse cycle for example, about 100 Hz
  • the specifying unit 161 can function as a low-pass filter during conversion to a digital value, and can remove high-frequency noise included in the acquired difference.
  • the specifying unit 161 may acquire a difference in which a signal having a frequency equal to or higher than a predetermined frequency is attenuated by passing the low-pass filter before converting the acquired difference into a digital value. Then, the specifying unit 161 may convert the difference that has passed through the low-pass filter into a digital value.
  • the specifying unit 161 specifies the period of temperature change accompanying the pulsation of the human body from the difference converted into the digital value. For example, when the first temperature detection unit 11 has a characteristic that the resistance value (voltage value) decreases with an increase in temperature, the specifying unit 161 specifies the timing at which the acquired difference is instantaneously reduced. By doing this, the timing when the body temperature becomes maximum with the pulsation is specified.
  • the identification unit 161 identifies the period of temperature change associated with the pulsation of the human body by identifying the period of the timing.
  • the specifying unit 161 may calculate a moving average of the differences converted into digital values during a predetermined period, and specify the period of temperature change accompanying the pulsation of the human body based on the moving average of the differences. By doing in this way, even if the periodic noise remains in the difference, the pulse measuring device 1 can remove the noise and specify the period of temperature change with high accuracy.
  • the specifying unit 161 approximates the waveform of the difference converted into a digital value in a predetermined period to a parabola, or applies a rectangular wave correlation filter that obtains a cross-correlation between a rectangular pulse composed of positive and negative pulse waves and the difference.
  • the noise may be removed from the difference.
  • the specifying unit 161 removes noise by the above-described method.
  • the present invention is not limited to this, and the noise is removed by using other noise removal methods or combining a plurality of noise removal methods. May be.
  • the pulse measuring unit 162 measures the pulse of the human body from the period of temperature change accompanying the pulsation specified by the specifying unit 161. Specifically, the pulse measuring unit 162 regards the period of temperature change accompanying pulsation specified by the specifying unit 161 as an RR interval, and calculates the pulse rate from the RR interval, thereby calculating the pulse of the human body. Measure.
  • the output unit 163 outputs the pulse rate measured by the pulse measurement unit 162.
  • the output unit 163 outputs the measured pulse rate to, for example, a wearable terminal in which the pulse measurement device 1 is provided.
  • the wearable terminal or the like provided with the pulse measuring device 1 displays the pulse rate on a display unit provided in itself, or prints information including the pulse rate on a printer capable of communication with itself, Information including the pulse rate can be transmitted to an external device that can communicate with itself.
  • the pulse measuring device 1 includes the voltage value corresponding to the temperature of the human body detected by the first temperature detection unit 11 and the second temperature detection unit 13 in which the temperature change is suppressed by the heat storage unit 14. Based on the difference from the voltage value corresponding to the temperature of the human body detected by, the period of temperature change accompanying the pulsation of the human body is specified, and the pulse is measured from the specified period of temperature change.
  • the measuring device 1 can separate a minute change in body temperature and noise and extract a value indicating only a temperature change associated with a body temperature pulse. Therefore, the pulse measuring device 1 can accurately specify the period of temperature change accompanying the pulsation of the human body, and can accurately measure the pulse from the specified period of temperature change.
  • the pulse measuring device 1 according to the second embodiment is different from the first embodiment in that a heat absorbing unit 17 is provided between the first temperature detecting unit 11 and the heat radiating unit 12, and the other points are the same.
  • a different part from 1st Embodiment is demonstrated. The description of the same parts as in the first embodiment will be omitted as appropriate.
  • FIG. 6 is a diagram showing a configuration of the pulse measuring device 1 according to the present embodiment.
  • FIG. 7 is a diagram illustrating a positional relationship among the first temperature detection unit 11, the heat dissipation unit 12, and the heat absorption unit 17 according to the present embodiment.
  • the pulse measurement device 1 further includes a heat absorption unit 17.
  • the control unit 16 further includes an endothermic control unit 164.
  • the heat absorbing portion 17 includes, for example, a Peltier element and has a rectangular shape with one side of about 1 mm to 2 mm.
  • the heat absorbing portion 17 is provided with a heat absorbing surface that absorbs heat and a heat radiating surface that is opposite to the heat absorbing surface and that dissipates heat absorbed by the heat absorbing surface.
  • the first temperature detection unit 11, the heat dissipation unit 12, and the heat absorption unit 17 are stacked.
  • the heat absorption surface of the heat absorption unit 17 is in contact with the first temperature detection unit 11, and the heat dissipation surface is in contact with the heat dissipation unit 12.
  • the heat absorption unit 17 absorbs heat accumulated in the first temperature detection unit 11 and cools the temperature of the first temperature detection unit 11 by controlling the current flowing through the heat absorption control unit 164 described later. To do.
  • the electric current which the heat absorption part 17 consumes for heat absorption is very small.
  • the heat radiating part 12 is brought into contact with the heat absorbing part 17 that is a Peltier element, and the heat radiating part 12 releases the heat absorbed by the heat absorbing part 17 from the first temperature detecting part 11.
  • a cooling fan may be used as the heat absorbing portion 17 instead of the Peltier element.
  • the first temperature detection unit 11 may be in contact with the heat dissipation unit 12 so that the cooling fan releases heat from the heat dissipation unit 12.
  • the pulse measuring device 1 may further include a heat insulating unit that suppresses heat transfer between the human body and the heat absorbing unit 17.
  • a heat insulation part so that the 1st temperature detection part 11 may be enclosed in the direction orthogonal to the lamination direction of the 1st temperature detection part 11 and the heat absorption part 17.
  • FIG. By doing in this way, since the 1st temperature detection part 11 and a heat insulation part exist between a human body and the heat absorption part 17, it can prevent that a human body contacts the heat absorption part 17.
  • FIG. .
  • the endothermic control unit 164 controls the cooling of the first temperature detecting unit 11 by controlling the current flowing through the endothermic unit 17. For example, the endothermic control unit 164 cools the first temperature detecting unit 11 by always flowing a constant current through the endothermic unit 17.
  • the pulse measuring device 1 includes a third temperature detection unit that detects the temperature of the heat absorption surface or the heat dissipation surface of the heat absorption unit 17, and the heat absorption control unit 164 detects the temperature detected by the first temperature detection unit 11. Based on the difference from the temperature detected by the third temperature detection unit, the heat absorption unit 17 is set such that the temperature of the first temperature detection unit 11 is a predetermined temperature (for example, 3 degrees) lower than the body temperature of the human body. You may make it control the electric current sent through.
  • a predetermined temperature for example, 3 degrees
  • the heat absorption control unit 164 may cause the current to flow intermittently through the heat absorption unit 17 in accordance with the pulse period specified by the specification unit 161. By doing in this way, the cooling control of the 1st temperature detection part 11 can be power-saving.
  • the pulse measuring device 1 further includes the heat absorption unit 17 that absorbs the heat of the first temperature detection unit 11.
  • the heat absorption part 17 absorbs the heat
  • the pulse measuring device 1 compulsorily absorbs the heat of the first temperature detecting unit 11 by configuring the heat absorbing unit 17 to include a Peltier element, accompanying the downsizing of the pulse measuring device 1. Even if the heat capacities of the first temperature detecting unit 11 and the pulse measuring device 1 are reduced, the heat accumulated in the first temperature detecting unit 11 is absorbed, and the first temperature detecting unit 11 is in a thermal equilibrium state. Can be prevented. Therefore, the pulse measuring device 1 can be operated in a small size and stably.
  • the pulse measuring device 1 which concerns on 3rd Embodiment is demonstrated.
  • the first temperature detection unit 11 and the second temperature detection unit 13 are rectangular objects each having a side of about 1 mm to 2 mm, and are provided with a connection unit that connects the resistance temperature detector and the conductor with solder or the like.
  • the pulse measuring device 1 according to the third embodiment further includes a contact unit 18 that contacts the human body, and the first temperature detection unit 11 and the second temperature detection unit 13 are connected via the contact unit 18. It differs from the first embodiment in that the temperature of the human body is detected.
  • FIG. 8 is a diagram showing an example of a plan view of the pulse measuring device 1 according to the present embodiment.
  • the pulse measuring device 1 further includes a contact portion 18.
  • the contact portion 18 is, for example, a metal plate having high thermal conductivity, and has a contact region 181 for contact with a human body (for example, a finger of a user who measures a pulse).
  • the first temperature detection unit 11 and the second temperature detection unit 13 are connected to the end of the contact unit 18.
  • the area where the contact portion 18 can contact the human body is larger than the area where the resistance temperature detectors of the first temperature detection unit 11 and the second temperature detection unit 13 can contact the human body.
  • the first temperature detection unit 11 and the second temperature detection unit 13 detect the temperature of the human body based on the heat supplied from the human body via the contact unit 18. .
  • the 1st temperature detection part 11 and the 2nd temperature detection part 13 detect the temperature of a human body accurately through the contact part 18 with a comparatively large contact area and easy to contact a human body. Can do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Pulmonology (AREA)
  • Power Engineering (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

脈拍測定装置は、人体の温度を検出する第1温度検出手段(11)と、前記第1温度検出手段(11)と同じ特性を有し、前記人体の温度を検出する第2温度検出手段(12)と、前記第2温度検出手段(12)に接触し、前記第2温度検出手段(12)の温度変化を抑制させる蓄熱手段と、前記第1温度検出手段(11)が検出した前記人体の温度と、前記第2温度検出手段(12)が検出した前記人体の温度との差分に基づいて、前記人体の脈動に伴う温度変化の周期を特定する特定手段(161)と、特定された温度変化の周期から脈拍を測定する脈拍測定手段(162)と、を備える。

Description

脈拍測定装置
 本発明は、脈拍測定装置に関する。
 近年、腕時計、指輪、眼鏡等のようにユーザが直接身に着けて持ち歩くことのできるコンピュータ(いわゆるウェアラブル端末)が着目されている。単に身に着けるだけでは小さなコンピュータを持ち歩くのと大差がないため、ウェアラブル端末では、常に身に着けている特徴を生かした応用技術が求められている。このような応用技術として、装着時にユーザの健康状態を自動的に記録するといったバイタルセンシング技術が考えられており、その一例として、脈拍測定が挙げられる。
 一般に、脈拍測定は、電極を生体に装着することによって計測された心電波形のピーク、例えばP波やR波等を用いて脈拍とほぼ等価な心拍数を検出する心電図法や、手首、指、耳たぶ等の末梢血管に光を照射し、その反射光が血流及び吸光特性によって周期的に変動する光学的な変化から脈拍を検出する光電脈波法等が広く用いられている。
 非特許文献1は、スポーツ心電誘導法における測定電極を着衣に埋め込み、着るだけで心拍測定ができる装置を開示し、特許文献1は、赤外線を照射するセンサを備える装置を耳介に装着することで心拍測定ができる装置を開示している。
特開2006-102161号公報
着るだけで生体情報の連続計測を可能とする機能素材"hitoe"の開発及び実用化について、インターネット[URL:https://www.nttdocomo.co.jp/info/news_release/2014/01/30_00.html]、<平成27年6月5日検索>
 非特許文献1(心電図法)の装置は、体表面に電極を装着するため心拍を正確に測定することができるものの、人体に強く密着させる必要があるために拘束感や圧迫感といった不快感が伴う。また、着衣であるので洗濯が必要であるが耐久性の観点から洗濯回数が限られたりするため、使い勝手に難がある。
 また、非特許文献1の装置は、発光素子の消費電力が大きいため、例えばウェアラブル端末のような小型の端末装置に用いた場合に、脈拍を常時測定し続けることが不可能である。また、入れ墨等をしている場合、色素が光を遮ってしまうため、反射光をうまく捉えられない場合もある。
 このような問題点に対して、本発明者らは、人体の体温に、日常生活における緩やかな温度変化だけでなく、脈動に伴って瞬間的に微小な温度変化が生じていることを特定し、人体との接触面の温度を検出する温度センサを用いて、脈動に伴う微小な温度変化を検出することで、脈拍を測定するウェアラブル方式の脈拍測定装置を提案している。このような脈拍測定装置は、例えば、手首や足首等に温度センサを接触させていれば足り、さらに、温度の検出に要する電力は極めてわずかであるため、小型化が可能であるとともに、低電力で脈拍を測定することができる。
 しかしながら、脈動に伴う体温の微小な変化は、温度センサが温度とともに検出するノイズに比べて小さいことから、体温の微小な変化とノイズとを分離する必要がある。
 本発明の一側面によると、脈拍測定装置は、人体の温度を検出する第1温度検出手段と、前記第1温度検出手段と同じ特性を有し、前記人体の温度を検出する第2温度検出手段と、前記第2温度検出手段に接触し、前記第2温度検出手段の温度変化を抑制させる蓄熱手段と、前記第1温度検出手段が検出した前記人体の温度と、前記第2温度検出手段が検出した前記人体の温度との差分に基づいて、前記人体の脈動に伴う温度変化の周期を特定する特定手段と、特定された温度変化の周期から脈拍を測定する脈拍測定手段と、を備える。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
脈拍測定装置による脈拍の測定方法を説明するための図である。 一実施形態による脈拍測定装置の構成を示す図である。 一実施形態による第1温度検出部と放熱部との位置関係を示す図である。 一実施形態による第2温度検出部と、蓄熱部と、断熱部の位置関係を示す図である。 一実施形態による第2温度検出部と、蓄熱部と、断熱部の位置関係を示す図である。 断熱部を備えない例を示す図である。 一実施形態による脈拍測定装置の構成を示す図である。 一実施形態による第1温度検出部と、放熱部と、吸熱部との位置関係を示す図である。 一実施形態による脈拍測定装置の平面図の一例を示す図である。
<第1実施形態>
 初めに、図1を参照して、本実施形態に係る脈拍測定装置1の概要について説明する。図1は、本実施形態に係る脈拍測定装置1による脈拍の測定方法を説明するための図である。図1に示すように、脈拍測定装置1は、人体の任意の部位(例えば、手首、首、足首等)における微小な体温変化を検出し、この微小な体温変化の周期から脈拍を測定する。例えば、腕時計型の端末や眼鏡型の端末等の各種ウェアラブル端末に脈拍測定装置1を設けることにより、ウェアラブル端末を装着しているユーザの脈拍数を測定することができる。
 図2は、本実施形態に係る脈拍測定装置1の構成を示す図である。脈拍測定装置1は、図2に示すように、第1温度検出部11と、第2温度検出部13と、制御部16とを備える。
 第1温度検出部11は、例えば、温度変化に応じて抵抗値が変化するサーミスタ測温抵抗体や白金測温抵抗体等の測温抵抗体と、測温抵抗体に電流を流すための導線とを含む。第1温度検出部11は、接触している人体の温度を検出する。第1温度検出部11は、例えば、一辺が1mmから2mm程度の矩形形状であり、抵抗値の測定のために消費する電流はわずか(例えば、数ミリアンペア以下)である。
 第1温度検出部11は、放熱部12に接触している。図3は、第1温度検出部11と、放熱部12との位置関係を示す図である。図3に示すように、第1温度検出部11と、放熱部12とは、積層配置されている。
 放熱部12は、例えば金属板である。放熱部12は、第1温度検出部11に蓄積されている熱を放出する。なお、脈拍測定装置1がウェアラブル端末に設けられている場合、ウェアラブル端末に用いられている熱伝導率が高い部品を放熱部12として用いてもよい。
 第1温度検出部11は、放熱部12に接触していることから、自身に蓄積されている熱を、放熱部12を介して放出することができる。これにより、第1温度検出部11は、熱平衡状態になることが抑制され、脈動に伴う人体の温度変化を常に検出することができる。
 第2温度検出部13は、第1温度検出部11と同じ特性を有しており、第1温度検出部11と同様に、温度変化に応じて抵抗値が変化するサーミスタ測温抵抗体や白金測温抵抗体等の測温抵抗体と、測温抵抗体に電流を流すための導線とを含む。第2温度検出部13は、第1温度検出部11の近傍に配置されている。例えば、第2温度検出部13は、人体が、第1温度検出部11と同時に接触可能な位置に配置されている。第2温度検出部13は、自身に接触している人体の温度を検出する。第2温度検出部13は、例えば、一辺が1mmから2mm程度の矩形形状であり、抵抗値の測定のために消費する電流はわずか(例えば、数ミリアンペア以下)である。
 第2温度検出部13は、蓄熱部14と、断熱部15とに接触している。図4A及びBは、第2温度検出部13と、蓄熱部14と、断熱部15の位置関係を示す図である。図4Aは、第2温度検出部13、蓄熱部14及び断熱部15の側面図であり、図4Bは、第2温度検出部13及び蓄熱部14のA-A線概略断面図である。
 図4Aに示すように、第2温度検出部13と、断熱部15とが積層配置されていることが確認できる。また、蓄熱部14は、図4A及び図4Bに示すように、第2温度検出部13と断熱部15との積層方向と直交する方向に、第2温度検出部13を囲むように配置されている。
 蓄熱部14は、例えば、樹脂やガラスである。蓄熱部14は、第2温度検出部13に接触し、第2温度検出部13から放出された熱を蓄積することにより、第2温度検出部13の温度変化を抑制させる。なお、蓄熱部14は、樹脂やガラスであることとしたが、これに限らない。例えば、蓄熱部14を構成する樹脂やガラスに金属を混合して、第2温度検出部13から放出された熱を蓄熱部14の全体に分散させるようにしてもよい。このようにすることで、蓄熱部14及び第2温度検出部13を速やかに熱平衡状態に移行させることができる。これにより、第2温度検出部13が、脈動に伴う人体の温度変化を検出できないようにすることができる。
 断熱部15は、第2温度検出部13に接触しており、第2温度検出部13からの放熱を抑制する。このようにすることで、脈拍測定装置1は、第2温度検出部13から熱が放出されることを抑制し、第2温度検出部13が熱平衡状態から、熱移動が起こる状態に変化することを抑制することができる。なお、脈拍測定装置1は、図5に示すように、断熱部15を備えず、第2温度検出部13の側面に配置される蓄熱部14のみを備えるようにしてもよい。
 制御部16は、例えば、電気回路等によって構成されており、人体の脈拍の測定を行う。制御部16は、特定部161と、脈拍測定部162と、出力部163とを備える。特定部161は、第1温度検出部11が検出した人体の温度と、第2温度検出部13が検出した人体の温度との差分に基づいて、人体の脈動に伴う温度変化の周期を特定する。特定部161は、以下に示す処理を行うことにより、人体の脈動に伴う温度変化の周期を特定する。
 まず、特定部161は、第1温度検出部11に電流を流し、第1温度検出部11にかかる電圧(アナログ値)を測定することにより、人体の温度を測定する。第1温度検出部11には、放熱部12が接触しており、熱平衡状態になることが抑制されることから、接触している人体の脈動に伴う体温の変化に応じて第1温度検出部11の抵抗値が変化する。したがって、特定部161は、第1温度検出部11にかかる電圧を測定することにより、脈動に伴う温度変化が反映された人体の体温を測定することができる。
 また、特定部161は、第2温度検出部13に電流を流し、第2温度検出部13にかかる電圧値(アナログ値)を測定することにより、人体の温度を測定する。第2温度検出部13には、蓄熱部14及び断熱部15が接触しており、速やかに熱平衡状態に移行することから、接触している人体の脈動に伴う温度変化に応じて第2温度検出部13の抵抗値が変化しない。よって、特定部161は、第2温度検出部13にかかる電圧を測定することにより、脈動に伴う温度変化が反映されていない人体の体温を測定することができる。
 続いて、特定部161は、第1温度検出部11にかかる電圧と、第2温度検出部13にかかる電圧との差分を取得することにより、第1温度検出部11が検出した温度と、第2温度検出部13が検出した温度との差分に対応した値を取得する。第1温度検出部11にかかる電圧は、脈動に伴う温度変化が反映された体温に対応しているとともに、ノイズが含まれている。また、第2温度検出部13にかかる電圧は、脈拍に伴う温度変化が反映されていない体温に対応しているとともに、ノイズが含まれている。第2温度検出部13を第1温度検出部11の近傍に配置することにより、それぞれの電圧に含まれるノイズは、同様の傾向を示すことから、第1温度検出部11にかかる電圧と、第2温度検出部13にかかる電圧との差分を取得することにより、特定部161は、ノイズが除去された、体温脈拍に伴う温度変化のみを示す値を抽出することができる。
 特定部161は、例えば、取得した差分を所定のサンプリング周波数でサンプリングすることにより、取得した差分をデジタル値に変換する。ここで、脈波から得られる脈拍周期が数Hzであるが、脈波数算出に必要なピークを検出する為には脈拍周期よりも高め(例えば、100Hz程度)の帯域が必要となるため、サンプリング周波数を高めの周波数(例えば、800Hz)とすることで、特定部161は、デジタル値への変換時にローパスフィルタとして機能し、取得した差分に含まれている高周波ノイズを除去することができる。
 なお、特定部161は、取得した差分をデジタル値に変換する前に、ローパスフィルタに通して、所定の周波数以上の周波数の信号が減衰された差分を取得してもよい。そして、特定部161は、ローパスフィルタを通した差分をデジタル値に変換してもよい。
 続いて、特定部161は、デジタル値に変換された差分から、人体の脈動に伴う温度変化の周期を特定する。例えば、第1温度検出部11が、温度の上昇に対して抵抗値(電圧値)が低下する特性を有している場合、特定部161は、取得した差分が瞬時的に低くなるタイミングを特定することにより、脈動に伴って体温が最大になったタイミングを特定する。特定部161は、当該タイミングの周期を特定することにより、人体の脈動に伴う温度変化の周期を特定する。
 なお、特定部161は、所定期間にデジタル値に変換された差分の移動平均を算出し、差分の移動平均に基づいて、人体の脈動に伴う温度変化の周期を特定してもよい。このようにすることで、脈拍測定装置1は、差分に周期性のノイズが残存している場合であっても、当該ノイズを除去して、精度良く温度変化の周期を特定することができる。なお、特定部161は、所定期間にデジタル値に変換された差分の波形を放物線に近似したり、正負のパルス波からなる矩形パルスと差分との相互相関をとる矩形波相関フィルタにかけたりすることで差分からノイズを除去してもよい。また、特定部161は、上述した方法でノイズを除去することとしたが、これに限らず、他のノイズ除去方法を用いたり、複数のノイズ除去方法を組み合わせたりすることにより、ノイズを除去してもよい。
 脈拍測定部162は、特定部161が特定した脈動に伴う温度変化の周期から人体の脈拍を測定する。具体的には、脈拍測定部162は、特定部161が特定した、脈動に伴う温度変化の周期をR-R間隔として捉え、当該R-R間隔から脈拍数を算出することにより、人体の脈拍を測定する。
 出力部163は、脈拍測定部162が測定した脈拍数を出力する。出力部163は、例えば、脈拍測定装置1が設けられているウェアラブル端末等に、測定された脈拍数を出力する。これにより、脈拍測定装置1が設けられているウェアラブル端末等は、自身に設けられている表示部に脈拍数を表示させたり、自身が通信可能なプリンタに脈拍数を含む情報を印刷させたり、自身が通信可能な外部機器に脈拍数を含む情報を送信したりすることができる。
 以上のように本実施形態に係る脈拍測定装置1は、第1温度検出部11が検出した人体の温度に対応する電圧値と、蓄熱部14により温度変化が抑制された第2温度検出部13が検出した人体の温度に対応する電圧値との差分に基づいて、人体の脈動に伴う温度変化の周期を特定し、特定された温度変化の周期から脈拍を測定する。
 第1温度検出部11が検出した温度に対応する電圧値と、第2温度検出部13が検出した温度に対応する電圧値とのそれぞれには、同様のノイズが含まれていることから、脈拍測定装置1は、差分を取得することにより、体温の微小な変化とノイズとを分離して、体温脈拍に伴う温度変化のみを示す値を抽出することができる。したがって、脈拍測定装置1は、精度良く人体の脈動に伴う温度変化の周期を特定し、特定された温度変化の周期から、精度良く脈拍を測定することができる。
<第2実施形態>
 続いて、第2実施形態に係る脈拍測定装置1について説明する。第2実施形態に係る脈拍測定装置1は、第1温度検出部11と、放熱部12との間に吸熱部17を備える点で第1実施形態と異なり、その他の点では同じである。以下、第1実施形態と異なる部分について説明を行う。第1実施形態と同じ部分については適宜説明を省略する。
 図6は、本実施形態に係る脈拍測定装置1の構成を示す図である。図7は、本実施形態に係る第1温度検出部11と、放熱部12と、吸熱部17との位置関係を示す図である。図6に示すように、脈拍測定装置1は、吸熱部17をさらに備える。また、制御部16は、吸熱制御部164をさらに備える。
 吸熱部17は、例えば、ペルチェ素子を含んでおり、一辺が1mmから2mm程度の矩形形状である。吸熱部17には、熱を吸収する吸熱面と、吸熱面の反対側の面であって、吸熱面が吸収した熱を放熱する放熱面とが設けられている。
 図7に示すように、第1温度検出部11と、放熱部12と、吸熱部17とは積層配置されている。吸熱部17の吸熱面は第1温度検出部11に接触しており、放熱面は放熱部12に接触している。吸熱部17は、後述する吸熱制御部164によって自身に流れる電流が制御されることにより、第1温度検出部11に蓄積されている熱を吸収して、第1温度検出部11の温度を冷却する。なお、吸熱部17が吸熱のために消費する電流はわずかである。
 なお、本実施形態では、ペルチェ素子である吸熱部17に放熱部12を接触させて、放熱部12により、吸熱部17が第1温度検出部11から吸収した熱を放出することとしたが、これに限らない。例えば、吸熱部17として、ペルチェ素子の代わりに冷却ファンを用いることとしてもよい。この場合、第1温度検出部11を放熱部12と接触させておき、冷却ファンが、放熱部12から熱を放出させるようにしてもよい。
 また、脈拍測定装置1は、人体と吸熱部17との間の熱の移動を抑制する断熱部をさらに備えてもよい。例えば、第1温度検出部11と吸熱部17との積層方向と直交する方向に、第1温度検出部11を囲むように断熱部を配置してもよい。このようにすることで、人体と吸熱部17との間には、第1温度検出部11及び断熱部が存在することとなるので、人体が吸熱部17に接触することを防止することができる。
 吸熱制御部164は、吸熱部17に流れる電流を制御することにより、第1温度検出部11の冷却制御を行う。例えば、吸熱制御部164は、常に一定の電流を吸熱部17に流すことにより、第1温度検出部11を冷却する。
 なお、脈拍測定装置1は、吸熱部17の吸熱面又は放熱面の温度を検出する第3温度検出部を備えるようにして、吸熱制御部164が、第1温度検出部11が検出した温度と、第3温度検出部が検出した温度との差分に基づいて、第1温度検出部11の温度が、人体の体温よりも所定温度(例えば、3度)低い温度となるように、吸熱部17に流す電流を制御するようにしてもよい。
 また、吸熱制御部164は、特定部161が特定した脈拍の周期に応じて、間欠的に吸熱部17に電流を流すようにしてもよい。このようにすることで、第1温度検出部11の冷却制御を省電力化することができる。
 以上のように本実施形態に係る脈拍測定装置1は、第1温度検出部11の熱を吸収する吸熱部17をさらに備える。このようにすることで、吸熱部17が、第1温度検出部11に蓄積された熱を吸収して第1温度検出部11が冷却されるので、放熱部12のみを備える場合よりも、第1温度検出部11が熱平衡状態になることをさらに抑制し、脈動に伴う人体の温度変化を精度良く検出することができる。
 また、脈拍測定装置1は、吸熱部17を、ペルチェ素子を含む構成とすることにより、第1温度検出部11の熱を強制的に吸収するので、脈拍測定装置1を小型化することに伴い、第1温度検出部11及び脈拍測定装置1の熱容量が小さくなったとしても、当該第1温度検出部11に蓄積された熱を吸収し、第1温度検出部11が熱平衡状態になることを防ぐことができる。よって、脈拍測定装置1を、小型かつ安定して動作させることができる。
<第3実施形態>
 続いて、第3実施形態に係る脈拍測定装置1について説明する。例えば、第1温度検出部11及び第2温度検出部13にユーザの指を載置して、当該ユーザの脈拍を測定するケースを考える。第1温度検出部11及び第2温度検出部13は、一辺が1mmから2mm程度の矩形形状の物体であり、測温抵抗体と導線とをはんだ等によって接続する接続部が設けられている。したがって、ユーザの指を第1温度検出部11及び第2温度検出部13に載置した場合に、接続部に指が接触してしまい、第1温度検出部11及び第2温度検出部13のそれぞれの測温抵抗体に指が十分に接触せず、第1温度検出部11及び第2温度検出部13が正確に体温を検出できないという問題が生じる。これに対して、第3実施形態に係る脈拍測定装置1は、人体に接触する接触部18をさらに備え、第1温度検出部11及び第2温度検出部13が、当該接触部18を介して人体の温度を検出する点で第1実施形態と異なる。
 図8は、本実施形態に係る脈拍測定装置1の平面図の一例を示す図である。図8に示すように、脈拍測定装置1は、接触部18をさらに備える。接触部18は、例えば、熱伝導率が高い金属板等であり、人体(例えば、脈拍を測定するユーザの指)が接触するための接触領域181を有している。また、接触部18の端部には、第1温度検出部11及び第2温度検出部13が接続されている。接触部18が人体に接触可能な面積は、第1温度検出部11及び第2温度検出部13の測温抵抗体が人体に接触可能な面積よりも大きい。
 第1温度検出部11及び第2温度検出部13は、接触部18に人体が接触している場合、当該接触部18を介して、人体から供給される熱に基づいて人体の温度を検出する。このようにすることで、第1温度検出部11及び第2温度検出部13は、接触面積が相対的に大きく人体に接触しやすい接触部18を介して、人体の温度を精度良く検出することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。特に、装置の分散・統合の具体的な実施形態は以上に図示するものに限られず、その全部又は一部について、種々の付加等に応じて、又は、機能負荷に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 本願は、2016年1月28日提出の日本国特許出願特願2016-014096を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (8)

  1.  人体の温度を検出する第1温度検出手段と、
     前記第1温度検出手段と同じ特性を有し、前記人体の温度を検出する第2温度検出手段と、
     前記第2温度検出手段に接触し、前記第2温度検出手段の温度変化を抑制させる蓄熱手段と、
     前記第1温度検出手段が検出した前記人体の温度と、前記第2温度検出手段が検出した前記人体の温度との差分に基づいて、前記人体の脈動に伴う温度変化の周期を特定する特定手段と、
     特定された温度変化の周期から脈拍を測定する脈拍測定手段と、
     を備える脈拍測定装置。
  2.  前記第2温度検出手段からの放熱を抑制する断熱手段をさらに備える、
     請求項1に記載の脈拍測定装置。
  3.  前記第2温度検出手段と前記断熱手段は積層配置され、
     前記蓄熱手段は、前記第2温度検出手段と前記断熱手段との積層方向と直交する方向に前記第2温度検出手段を囲むように配置される、
     請求項2に記載の脈拍測定装置。
  4.  人体に接触するとともに、前記第1温度検出手段及び前記第2温度検出手段に接続される接触手段をさらに備え、
     前記第1温度検出手段及び前記第2温度検出手段は、前記接触手段を介して前記人体から供給される熱に基づいて前記人体の温度を検出する、
     請求項1から3のいずれか1項に記載の脈拍測定装置。
  5.  前記第1温度検出手段の熱を吸収する吸熱手段をさらに備える、
     請求項1から4のいずれか1項に記載の脈拍測定装置。
  6.  前記吸熱手段は、ペルチェ素子を含む、
     請求項5に記載の脈拍測定装置。
  7.  前記特定手段は、前記差分の移動平均に基づいて前記温度変化の周期を特定する、
     請求項1から6のいずれか1項に記載の脈拍測定装置。
  8.  前記特定手段は、所定の周波数以上の周波数の信号を減衰させるローパスフィルタを通して得られた前記差分に基づいて前記温度変化の周期を特定する、
     請求項1から7のいずれか1項に記載の脈拍測定装置。
PCT/JP2016/086009 2016-01-28 2016-12-05 脈拍測定装置 WO2017130569A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/033,115 US10980434B2 (en) 2016-01-28 2018-07-11 Pulsebeat measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-014096 2016-01-28
JP2016014096A JP6509751B2 (ja) 2016-01-28 2016-01-28 脈拍測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/033,115 Continuation US10980434B2 (en) 2016-01-28 2018-07-11 Pulsebeat measurement apparatus

Publications (1)

Publication Number Publication Date
WO2017130569A1 true WO2017130569A1 (ja) 2017-08-03

Family

ID=59397589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086009 WO2017130569A1 (ja) 2016-01-28 2016-12-05 脈拍測定装置

Country Status (3)

Country Link
US (1) US10980434B2 (ja)
JP (1) JP6509751B2 (ja)
WO (1) WO2017130569A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6612658B2 (ja) * 2016-03-09 2019-11-27 株式会社デンソー 生体情報計測装置
CN116997290A (zh) * 2021-03-19 2023-11-03 西铁城时计株式会社 血压信息推断装置、血压信息推断方法以及血压信息推断程序

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000422A (ja) * 1999-06-24 2001-01-09 Fuji Xerox Co Ltd 生体識別装置
JP2005519666A (ja) * 2002-03-08 2005-07-07 ウェルチ・アリン・インコーポレーテッド 複合耳鏡
JP3819877B2 (ja) * 2003-07-03 2006-09-13 株式会社東芝 脈波計測モジュール
WO2007138699A1 (ja) * 2006-05-31 2007-12-06 Sakano, Kazuhito 体温測定方法及び体温測定器
JP2010264095A (ja) * 2009-05-15 2010-11-25 Nissan Motor Co Ltd 心拍数測定装置および心拍数測定方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745907U (ja) 1980-08-28 1982-03-13
US5018872A (en) 1988-11-01 1991-05-28 Diatek, Inc. Probe assembly for infrared thermometer
JPH08266491A (ja) 1995-03-30 1996-10-15 Terumo Corp 心拍検出装置
US6712762B1 (en) 1997-02-28 2004-03-30 Ors Diagnostic, Llc Personal computer card for collection of real-time biological data
US6889152B2 (en) 1997-12-24 2005-05-03 Edward S. More Method and apparatus for economical drift compensation in high resolution measurements
US6625570B2 (en) 2000-06-20 2003-09-23 Joseph J. Pierro, Jr. Synchronous detection and remote monitoring and regulating of cell potential for cathodic protection
US6631287B2 (en) 2001-04-03 2003-10-07 Welch Allyn, Inc. Infrared thermometer
US6909271B2 (en) * 2001-12-05 2005-06-21 Kenneth C. Sloneker Devices, systems, and methods for measuring differential temperature
EP2009676B8 (en) 2002-05-08 2012-11-21 Phoseon Technology, Inc. A semiconductor materials inspection system
JP4418341B2 (ja) 2004-10-06 2010-02-17 日本電信電話株式会社 血圧測定装置
US20070295713A1 (en) * 2006-06-15 2007-12-27 John Carlton-Foss System and method for measuring core body temperature
JP5376768B2 (ja) 2007-03-30 2013-12-25 シチズンホールディングス株式会社 脈波測定装置
JP2009279076A (ja) 2008-05-20 2009-12-03 Masahiro Yoshizawa 監視システム
US8152590B2 (en) 2008-09-05 2012-04-10 Brundage Trenton J Acoustic sensor for beehive monitoring
JP5648283B2 (ja) 2009-12-24 2015-01-07 セイコーエプソン株式会社 電子体温計及び体温測定方法
WO2014157138A1 (ja) 2013-03-28 2014-10-02 シチズンホールディングス株式会社 内部温度測定方法及び接触式内部温度計
US9500535B1 (en) 2013-06-27 2016-11-22 Amazon Technologies, Inc. Determining temperature using multiple sensors
WO2015048541A1 (en) 2013-09-26 2015-04-02 I1 Sensortech, Inc. Personal impact monitoring system
US20150126896A1 (en) 2013-11-06 2015-05-07 Raed H. AlHazme Human body thermal measurement device, a method for measuring human body temperature, and a non-transitory computer readable storage medium
JP5854078B2 (ja) 2014-04-16 2016-02-09 セイコーエプソン株式会社 温度測定装置
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
WO2016111261A1 (ja) 2015-01-05 2016-07-14 ニプロ株式会社 血流計及び測定装置
US10117643B2 (en) 2015-04-25 2018-11-06 Theresa Anne Gevaert Created cavity temperature sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000422A (ja) * 1999-06-24 2001-01-09 Fuji Xerox Co Ltd 生体識別装置
JP2005519666A (ja) * 2002-03-08 2005-07-07 ウェルチ・アリン・インコーポレーテッド 複合耳鏡
JP3819877B2 (ja) * 2003-07-03 2006-09-13 株式会社東芝 脈波計測モジュール
WO2007138699A1 (ja) * 2006-05-31 2007-12-06 Sakano, Kazuhito 体温測定方法及び体温測定器
JP2010264095A (ja) * 2009-05-15 2010-11-25 Nissan Motor Co Ltd 心拍数測定装置および心拍数測定方法

Also Published As

Publication number Publication date
JP2017131413A (ja) 2017-08-03
US10980434B2 (en) 2021-04-20
US20180317791A1 (en) 2018-11-08
JP6509751B2 (ja) 2019-05-08

Similar Documents

Publication Publication Date Title
US10918290B2 (en) Multi-channel vitals device
US20180235483A1 (en) Integrated biosensor
EP2931121B1 (en) Device for measuring a physiological parameter of a user
US20180028072A1 (en) Wearable thermometer patch capable of measuring human skin temperature at high duty cycle
US20140275845A1 (en) Finger-mounted physiology sensor
KR101804374B1 (ko) 적외선 귀체온계 및 이를 이용한 체온 측정 방법
KR20170040322A (ko) 피부 저항 및 커패시턴스 측정들 사이의 단일 전극의 공유
EP3960068B1 (en) Ring-shaped biometric signal sensing device
US20180028071A1 (en) Wearable patch for measuring temperature and electrical signals
CN213874717U (zh) 一种温度检测装置、生物特征检测组件及可穿戴设备
WO2017130569A1 (ja) 脈拍測定装置
US10952626B2 (en) Pulsebeat measurement apparatus
JP6636743B2 (ja) 脈拍測定装置及び脈拍測定方法
US20180116531A1 (en) Pulsebeat measurement apparatus, wearable device and pulsebeat measurement method
US10398375B2 (en) Wearable device and physiological information monitoring system and method
JP2020052039A (ja) 感知アセンブリ
CN213785752U (zh) 智能表带及电子设备
CN213043825U (zh) 穿戴式电子设备及无线耳机
CN217338550U (zh) 一种可穿戴设备
JP6636735B2 (ja) 脈拍測定装置、ウェアラブル端末及び脈拍測定方法
US12015449B2 (en) Sensing apparatus and system
WO2022016540A1 (zh) 一种温度检测装置、生物特征检测组件及可穿戴设备
CN109429562B (zh) 生物特征检测装置及电子终端
CN215811315U (zh) 一种蓝牙双***测温手环
CN210784332U (zh) 一种可穿戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888153

Country of ref document: EP

Kind code of ref document: A1