WO2017126528A1 - Near-infrared absorbing composition, method for manufacturing near-infrared cut filter, near-infrared cut filter, solid-state imaging element, camera module, infrared sensor, and infrared absorbing agent - Google Patents

Near-infrared absorbing composition, method for manufacturing near-infrared cut filter, near-infrared cut filter, solid-state imaging element, camera module, infrared sensor, and infrared absorbing agent Download PDF

Info

Publication number
WO2017126528A1
WO2017126528A1 PCT/JP2017/001481 JP2017001481W WO2017126528A1 WO 2017126528 A1 WO2017126528 A1 WO 2017126528A1 JP 2017001481 W JP2017001481 W JP 2017001481W WO 2017126528 A1 WO2017126528 A1 WO 2017126528A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
compound
mass
infrared
group
Prior art date
Application number
PCT/JP2017/001481
Other languages
French (fr)
Japanese (ja)
Inventor
敬史 川島
晃逸 佐々木
誠一 人見
昂広 大河原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017562834A priority Critical patent/JP6602396B2/en
Publication of WO2017126528A1 publication Critical patent/WO2017126528A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Definitions

  • the present invention relates to a near-infrared absorbing composition, a method for producing a near-infrared cut filter, a near-infrared cut filter, a solid-state imaging device, a camera module, an infrared sensor, and an infrared absorber.
  • Video cameras, digital still cameras, mobile phones with camera functions, etc. use charge coupled devices (CCD), complementary metal oxide semiconductor (CMOS) devices, etc., which are solid-state imaging devices for color images. Since these solid-state imaging devices use silicon photodiodes having sensitivity to near infrared rays in their light receiving portions, it is necessary to perform visibility correction and often use near-infrared cut filters.
  • CCD charge coupled devices
  • CMOS complementary metal oxide semiconductor
  • the near-infrared cut filter may be manufactured using a composition containing an infrared absorber (near-infrared absorbing composition).
  • an infrared absorber near-infrared absorbing composition
  • metal compounds such as copper compounds (Patent Document 1) and zinc oxide-based particles (Patent Document 2) are known.
  • an object of the present invention is to provide a near-infrared absorbing composition capable of producing a film excellent in visible transparency and near-infrared shielding properties. Moreover, it is providing the manufacturing method of a near-infrared cut filter, a near-infrared cut filter, a solid-state image sensor, a camera module, an infrared sensor, and an infrared absorber.
  • the present inventors have found that in a near-infrared absorbing composition using a metal compound as an infrared absorbing compound, a metal component containing a metal atom different from the metal atom contained in the metal compound is added in an amount of 100 parts by mass of metal atoms
  • the inventors have found that the above object can be achieved by adding 0.005 to 1 part by mass of metal atoms contained in the metal component, and the present invention has been completed.
  • the present invention provides the following.
  • a near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared absorbing compound
  • the near-infrared absorbing composition includes a metal component containing a metal atom different from the metal atom contained in the metal compound, and 0.005% of the metal atom contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound.
  • the metal component is at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag.
  • the metal compound includes at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd, and Pt, and the metal component includes Al, Zn, Li,
  • a near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared absorbing compound
  • the near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni
  • a near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound, and a metal compound that is an infrared absorbing compound,
  • the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
  • the near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni
  • a metal component containing at least one metal atom selected from Cu, Pt and Ag, Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag, the near-in
  • the metal compound is a copper compound, and the metal component is selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Pt, and Ag.
  • ⁇ 8> A method for producing a near-infrared cut filter, comprising a step of forming a near-infrared absorbing composition layer using the near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> A near-infrared cut filter using the near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 10> The near-infrared cut filter according to ⁇ 9>, having at least one selected from a dielectric multilayer film and an ultraviolet absorbing film.
  • ⁇ 11> A solid-state imaging device having the near-infrared cut filter according to ⁇ 9> or ⁇ 10>.
  • An infrared absorber comprising 0.005 to 1 part by mass of a metal atom contained in a metal component with respect to 100 parts by mass of a metal atom contained in a metal compound.
  • a metal compound that is an infrared absorbing compound, and a metal component that contains a metal atom different from the metal atom contained in the metal compound The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag; Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of metal atoms contained in the metal compound An infrared absorber wherein the total amount of Ag is 0.005 to 1 part by mass.
  • a metal compound that is an infrared absorbing compound, and a metal component that includes a metal atom different from the metal atom contained in the metal compound The metal compound is a metal compound containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
  • the metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag; Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag, an infrared absorber having a total amount of 0.00
  • a near-infrared absorbing composition capable of producing a film excellent in visible transparency and near-infrared shielding properties.
  • a method for producing a near-infrared cut filter, a near-infrared cut filter, a solid-state imaging device, a camera module, an infrared sensor, and an infrared absorber is also possible.
  • the notation which does not describe substitution and non-substitution includes a group (atomic group) having a substituent as well as a group (atomic group) having no substituent. is there.
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • near-infrared light refers to light (electromagnetic wave) having a wavelength region of 700 to 2500 nm.
  • the total solid content refers to the total mass of components obtained by removing the solvent from all components of the composition.
  • a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by a gel permeation chromatography (GPC) measurement.
  • the first of the infrared absorber of the present invention comprises a metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
  • the metal atom contained in the metal component is contained in an amount of 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom contained in the metal compound.
  • the second of the infrared absorber of the present invention includes a metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
  • the metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag; Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound The total amount of Ag is 0.005 to 1 part by mass.
  • the third of the infrared absorber of the present invention includes a metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound
  • the metal compound is a metal compound containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
  • the metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag; Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag are
  • the infrared absorbent of the present invention By using the infrared absorbent of the present invention, it is possible to provide a near-infrared absorbing composition capable of producing a film excellent in visible transparency and near-infrared shielding. It is assumed that the mechanism for obtaining such an effect is as follows. That is, the infrared absorber of the present invention contains 0.005 parts by mass or more of the above-described metal component in addition to the metal compound that is an infrared absorbing compound, so that it is other than the infrared absorber of the near-infrared absorbing composition. It is presumed that the compatibility and dispersibility with other components (for example, solvents and curable compounds) have improved, and the visible transparency and near-infrared shielding properties of the film have improved.
  • other components for example, solvents and curable compounds
  • the influence on the spectral performance by the metal component for example, coloring by the metal component or It is presumed that a film excellent in visible transparency and near-infrared shielding property can be produced by suppressing the spectral performance fluctuation of the metal compound due to the interaction between the metal component and the metal compound. Furthermore, when the content of the metal component is 1 part by mass or less at the above-described ratio, the heat resistance of the obtained film is excellent. The reason for this is presumed to be that the reduction in heat resistance caused by the metal component and the decomposition of the metal compound by the metal component can be suppressed.
  • the infrared absorbent of the present invention will be described in detail.
  • the first infrared absorber of the present invention includes a metal compound that is an infrared absorbing compound and a metal component containing a metal atom different from the metal atom contained in the metal compound, and 100 parts by mass of the metal atom contained in the metal compound.
  • the metal component contains 0.005 to 1 part by mass of metal atoms.
  • the metal atom contained in the metal component is more preferably contained in an amount of 0.005 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the metal atoms contained in the metal compound.
  • the second infrared absorber of the present invention is a metal atom different from the metal atom contained in the metal compound as a metal component, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Including at least one metal selected from Mn, Fe, Co, Ni, Cu, Pt and Ag, Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound
  • the total amount of Ag is 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
  • the third of the infrared absorbers of the present invention is a metal compound in which the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt.
  • the metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag; Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag are 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, Particularly preferred is 1 to 0.5 parts by mass.
  • the metal atom content in the metal compound and the metal component is a value measured by inductively coupled plasma optical emission spectrometry (ICP-OES).
  • the metal atom includes a typical metal and a transition metal. Specifically, Li, Be, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi Is mentioned.
  • the metal compound described above is a metal-containing compound having infrared absorptivity contained in the infrared absorber in a proportion of an effective amount or more.
  • the metal component may have infrared absorptivity or may not have infrared absorptivity.
  • “containing in an effective amount or more” is a content required to exhibit infrared absorptivity when a film or the like is produced using a composition containing an infrared absorber, for example, infrared absorption. It is preferable to contain in the ratio of 10 mass% or more in the whole quantity of a compound, can also be 30 mass% or more, can also be 45 mass% or more, and can also be 60 mass% or more.
  • the metal compound contains at least one metal atom selected from Ni, Pd, Pt, Au, Ir, Fe, Zn, W, Cu, Mo, In, Mn, Co, Mg, V, Cr, Ti, and Al.
  • Compounds are preferred, compounds containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt are more preferred, and at least selected from Cu, Ni and V
  • a compound containing one type of metal atom is more preferred, and a compound containing Cu is particularly preferred. That is, the metal compound is preferably a copper compound.
  • the copper compound may contain a metal atom other than Cu, but preferably does not contain a metal other than Cu.
  • the metal component includes at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag.
  • it contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu, Ag and Al, and more preferably at least selected from Li, Na, K, Mg, Ca and Fe. More preferably, it contains one metal atom.
  • the metal component may be a single metal or a free metal ion, a metal oxide, a metal nitride, a metal carbonate, a metal salt (inorganic acid salt, organic acid salt, ammonium salt, etc.), metal Compounds such as intermetallic compounds, metal complexes, organometallic compounds, (hetero) polyacids and salts thereof may be used.
  • the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt, and the metal component is Al. It preferably contains at least one metal atom selected from Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag. Specific combinations include the following combinations, and (1) is more preferable.
  • the metal compound infrared absorbing compound
  • the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe It preferably contains at least one metal atom selected from Co, Ni, Pt and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Ag and Al. Is more preferable.
  • the total amount of Li, Na, K, Mg, Ca, Fe, Ag and Al contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Cu atom) contained in the copper compound.
  • the amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
  • the metal compound infrared absorbing compound
  • the metal components are Al, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co It preferably contains at least one metal atom selected from Ni, Cu, Pt and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu and Al. Is more preferable.
  • the total amount of Li, Na, K, Mg, Ca, Fe, Cu and Al contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Zn atom) contained in the zinc compound.
  • the amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
  • the metal compound is a compound containing Ti (titanium compound)
  • the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, V, Mn, Fe, Co
  • it contains at least one metal atom selected from Ni, Cu, Pt and Ag, and more preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe and Al.
  • the total amount of Li, Na, K, Mg, Ca, Fe and Al contained in the metal component is 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom (preferably Ti atom) contained in the titanium compound.
  • the metal compound infrared absorbing compound
  • the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, Mn, Fe, Co
  • it contains at least one metal atom selected from Ni, Cu, Pt and Ag, and more preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe and Al. preferable.
  • the total amount of Li, Na, K, Mg, Ca, Fe and Al contained in the metal component is 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom (preferably V atom) contained in the vanadium compound. It is preferably 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass.
  • the metal compound infrared absorbing compound
  • the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe It preferably contains at least one metal atom selected from Co, Cu, Pt, and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu, and Al.
  • the total amount of Li, Na, K, Mg, Ca, Fe, Cu and Al contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Ni atom) contained in the nickel compound.
  • the amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
  • the metal compound is a compound containing Pd (palladium compound)
  • the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe It preferably contains at least one metal atom selected from Co, Ni, Cu, Pt and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Al and Pt. More preferably.
  • the total amount of Li, Na, K, Mg, Ca, Fe, Al and Pt contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Pd atom) contained in the palladium compound.
  • the amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
  • the metal compound infrared absorbing compound
  • the metal components are Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co
  • it contains at least one metal atom selected from Ni, Cu, Pt and Ag, and more preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe and Cu. preferable.
  • the total amount of Li, Na, K, Mg, Ca, Fe and Cu contained in the metal component is 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom (preferably Al atom) contained in the aluminum compound. It is preferably 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass.
  • the metal compound as the infrared absorbing compound is preferably a compound having a maximum absorption wavelength in the range of 700 to 1200 nm, and more preferably a compound having a maximum absorption wavelength in the range of 700 to 1000 nm.
  • the metal compound is preferably a compound that has absorption in the wavelength region in the infrared region (preferably in the wavelength range of 700 to 1200 mn) and transmits light in the visible region (preferably in the wavelength range of 400 to 650 mn). .
  • the metal compound examples include a copper compound, a pyrrolopyrrole compound, a squarylium compound, a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound, a diimonium compound, a dithiol compound, a transition metal oxide, a quaterrylene compound, and a croconium compound.
  • ITO indium tin oxide
  • antimony tin oxide ATO
  • zinc oxide ZnO
  • Al-doped zinc oxide Al-doped ZnO
  • fluorine-doped tin dioxide F-doped SnO 2
  • niobium-doped titanium dioxide Nb-doped TiO 2
  • cesium tungsten oxide it is also preferable to use an inorganic metal compound.
  • cesium tungsten oxide the description in paragraphs 0025 to 0029 of International Publication No. 2014/142259 can be referred to, and the contents thereof are incorporated in the present specification.
  • a copper compound, a phthalocyanine compound, a naphthalocyanine compound, and a dithiol compound are preferable because a film excellent in both near-infrared shielding and visible transparency can be easily formed.
  • the metal compound is preferably a copper compound because the effects of the present invention can be easily obtained.
  • a copper compound is a copper complex.
  • the metal compound as the infrared absorbing compound is also available as a commercial product.
  • a phthalocyanine compound and naphthalocyanine compound e-color IR-14, 10A, 28, 12, 915, manufactured by Nippon Shokubai Co., Ltd. 910, 906, TX-EX-820, 906, FDN-001 to 008 manufactured by Yamada Chemical Co., Ltd., PROJET 800NP, 830NP, 900NP, 925NP manufactured by Avecia, and the like.
  • Examples of the dithiol compound include ADS845MC, 870MC, 890MC, and 920MC manufactured by American Dye Source, EST-3, 5, and 5Ni manufactured by Sumitomo Seika, and Epolight 3063, 4019, and 4121 manufactured by Eporin. 4129, and MIR-101, 111, 121, 102, and 105 manufactured by Midori Chemical.
  • Examples of the diimonium compound include ADS1065A manufactured by American Dye Source.
  • Examples of commercially available dispersions containing cesium tungsten oxide include YMF-02A, YMS-01A-2, and YMF-10A-1 manufactured by Sumitomo Metal Mining Co., Ltd.
  • the metal compound will be described in detail.
  • the copper compound used as the infrared absorbing compound is preferably a copper complex.
  • a copper complex the complex of copper and the compound (ligand) which has a coordination site
  • part with respect to copper the coordination site
  • the copper complex may have two or more ligands. When having two or more ligands, the respective ligands may be the same or different.
  • the copper complex is exemplified by 4-coordination, 5-coordination, and 6-coordination, and 4-coordination and 5-coordination are more preferable, and 5-coordination is more preferable.
  • Such a copper complex is stable in shape and excellent in complex stability.
  • the copper complex is also preferably a copper complex other than the phthalocyanine copper complex.
  • the phthalocyanine copper complex is a copper complex having a compound having a phthalocyanine skeleton as a ligand.
  • a compound having a phthalocyanine skeleton has a planar structure in which a ⁇ -electron conjugated system spreads throughout the molecule.
  • the phthalocyanine copper complex absorbs light at the ⁇ - ⁇ * transition. In order to absorb light in the infrared region through the ⁇ - ⁇ * transition, the ligand compound must have a long conjugated structure. However, when the conjugated structure of the ligand is lengthened, the visible transparency tends to decrease.
  • the copper complex is preferably a copper complex having a compound having no maximum absorption wavelength in the wavelength region of 400 to 600 nm as a ligand.
  • a copper complex having a ligand having a compound having a maximum absorption wavelength in the wavelength region of 400 to 600 nm has an absorption in the visible region (for example, a wavelength region of 400 to 600 nm), and thus the visible transparency may be insufficient. is there.
  • the compound having the maximum absorption wavelength in the wavelength region of 400 to 600 nm include compounds having a long conjugated structure and large absorption of light at the ⁇ - ⁇ * transition. Specific examples include compounds having a phthalocyanine skeleton.
  • the copper complex can be obtained, for example, by mixing and / or reacting a copper component (copper or a compound containing copper) with a compound (ligand) having a coordination site for copper.
  • a copper component copper or a compound containing copper
  • a compound (ligand) having a coordination site for copper may be a low molecular compound or a polymer. Both can be used together.
  • the copper component is preferably a compound containing divalent copper.
  • a copper component may use only 1 type and may use 2 or more types.
  • copper oxide or copper salt can be used.
  • the copper salt include copper carboxylate (eg, copper acetate, copper ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate (For example, copper methanesulfonate), copper phosphate, phosphate copper, phosphonate copper, phosphonate copper, phosphinate, amide copper, sulfonamido copper, imide copper, acylsulfonimide copper, bissulfonimide Copper, methido copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper fluoride, copper chloride
  • the copper complex is preferably a compound having a maximum absorption wavelength in a wavelength region of 700 to 1200 nm.
  • the maximum absorption wavelength of the copper complex is more preferably in the wavelength region of 720 to 1200 nm, and still more preferably in the wavelength region of 800 to 1100 nm.
  • the maximum absorption wavelength can be measured using, for example, Cary 5000 UV-Vis-NIR (spectrophotometer, manufactured by Agilent Technologies).
  • the molar extinction coefficient at the maximum absorption wavelength in the above-described wavelength region of the copper complex is preferably 120 (L / mol ⁇ cm) or more, more preferably 150 (L / mol ⁇ cm) or more, and 200 (L / mol ⁇ cm).
  • the gram extinction coefficient at 800 nm of the copper complex is preferably 0.11 (L / g ⁇ cm) or more, more preferably 0.15 (L / g ⁇ cm) or more, and 0.24 (L / g ⁇ cm).
  • the molar extinction coefficient and gram extinction coefficient of the copper complex were determined by measuring the absorption spectrum of the solution in which the copper complex was dissolved by preparing a solution having a concentration of 1 g / L by dissolving the copper complex in a solvent. Can be obtained.
  • a measuring apparatus UV-1800 (wavelength region 200 to 1100 nm) manufactured by Shimadzu Corporation, Cary 5000 (wavelength region 200 to 1300 nm) manufactured by Agilent, or the like can be used.
  • the measurement solvent include water, N, N-dimethylformamide, propylene glycol monomethyl ether, 1,2,4-trichlorobenzene, and acetone.
  • a solvent capable of dissolving the copper complex to be measured is selected and used from the measurement solvents described above.
  • a solvent capable of dissolving the copper complex to be measured is selected and used from the measurement solvents described above.
  • the term “dissolved” means a state in which the solubility of the copper complex with respect to 100 g of a solvent at 25 ° C. exceeds 0.01 g.
  • the molar extinction coefficient and gram extinction coefficient of the copper complex are preferably values measured using any one of the above-described measurement solvents, and more preferably values of propylene glycol monomethyl ether. .
  • a copper complex represented by the formula (Cu-1) can be used as the copper compound.
  • This copper complex is a copper compound in which a ligand L is coordinated to copper as a central metal, and copper is usually divalent copper. For example, it can be obtained by mixing and / or reacting with a copper component, a compound to be a ligand L or a salt thereof.
  • Cu (L) n1 ⁇ (X) n2 formula (Cu-1) In the above formula, L represents a ligand coordinated to copper, and X represents a counter ion. n1 represents an integer of 1 to 4. n2 represents an integer of 0 to 4.
  • X represents a counter ion.
  • the copper compound may become a cation complex or an anion complex in addition to a neutral complex having no charge.
  • counter ions are present as necessary to neutralize the charge of the copper compound.
  • the counter ion is a negative counter ion (counter anion)
  • an inorganic anion or an organic anion may be used.
  • Specific examples include hydroxide ions, halide anions (eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.), substituted or unsubstituted alkylcarboxylate ions (acetate ions, trifluoroacetic acid ions).
  • the counter anion is preferably a low nucleophilic anion.
  • the heat resistance of the copper compound tends to be improved.
  • a low nucleophilic anion is an anion formed by dissociating a proton from an acid having a low pKa, generally called a super acid.
  • superacid The definition of superacid differs depending on the literature, but is a general term for acids having a lower pKa than methanesulfonic acid.
  • Org. Chem. The structure described in 2011, 76, 391-395 Equilibrium Acids of Super Acids is known.
  • the pKa of the low nucleophilic anion is, for example, preferably ⁇ 11 or less, and more preferably ⁇ 11 to ⁇ 18.
  • pKa is, for example, J.P. Org. Chem. It can be measured by the method described in 2011, 76, 391-395.
  • the pKa value in the present specification is pKa in 1,2-dichloroethane unless otherwise specified.
  • Low nucleophilic anions include tetrafluoroborate ions, tetraarylborate ions (aryl groups of tetraarylborate ions include aryl groups substituted with halogen atoms or fluoroalkyl groups), hexafluorophosphate ions,
  • An imide ion including an amide ion substituted with an acyl group or a sulfonyl group
  • a methide ion including a metide ion substituted with an acyl group or a sulfonyl group
  • a tetraarylborate ion, an imide ion, or a methide ion is more preferable.
  • the counter ion is a positive counter ion (counter cation), for example, inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, , Tetraalkylphosphonium ions such as tetrabutylphosphonium ion, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions or protons.
  • the counter ion may be a metal complex ion.
  • the counter ion may be a copper complex ion. That is, the copper complex may be a salt of a cationic copper complex and an anionic copper complex.
  • the ligand L is a compound having a coordination site with respect to copper, and is selected from a coordination site that coordinates with copper by an anion, and a coordination atom that coordinates with copper by an unshared electron pair.
  • the compound which has the above is mentioned.
  • the coordination site coordinated by an anion may be dissociated or non-dissociated.
  • the ligand L is preferably a compound (multidentate ligand) having two or more coordination sites for copper.
  • it is preferable that the ligand L is not continuously bonded with a plurality of ⁇ -conjugated systems such as aromatic groups in order to improve visible transparency.
  • Ligand L can also use together the compound (monodentate ligand) which has one coordination site
  • the monodentate ligand include a monodentate ligand coordinated by an anion or an unshared electron pair.
  • ligands coordinated by anions include halide anions, hydroxide anions, alkoxide anions, phenoxide anions, amide anions (including amide anions substituted with acyl groups and sulfonyl groups), and imide anions (acyl groups and sulfonyl groups).
  • Imide anion substituted with anilide anion (including anilide anion substituted with acyl group or sulfonyl group), thiolate anion, bicarbonate anion, carboxylate anion, thiocarboxylate anion, dithiocarboxylate anion, hydrogen sulfate Anion, sulfonate anion, dihydrogen phosphate anion, phosphate diester anion, phosphonate monoester anion, phosphonate hydrogen anion, phosphinate anion, nitrogen-containing heterocyclic anion, nitrate anion, hypochlorite anion On, cyanide anions, cyanate anion, isocyanate anion, thiocyanate anion, isothiocyanate anions, such as azide anions.
  • Monodentate ligands coordinated by lone pairs include water, alcohol, phenol, ether, amine, aniline, amide, imide, imine, nitrile, isonitrile, thiol, thioether, carbonyl compound, thiocarbonyl compound, sulfoxide, Examples include heterocycles, carbonic acid, carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, phosphonic acid, phosphinic acid, nitric acid, and esters thereof.
  • the anion possessed by the ligand is not particularly limited as long as it can coordinate to a copper atom in the copper component, and is preferably an oxygen anion, a nitrogen anion, or a sulfur anion.
  • the coordination site coordinated by an anion is preferably at least one selected from the following monovalent functional group (AN-1) or divalent functional group (AN-2).
  • AN-1 monovalent functional group
  • AN-2 divalent functional group
  • the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
  • X represents N or CR
  • R each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
  • the alkyl group represented by R may be linear, branched or cyclic, but is preferably linear.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group.
  • the alkyl group may have a substituent, and examples of the substituent include a halogen atom, a carboxy group, and a heterocyclic group.
  • the heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic.
  • the number of heteroatoms constituting the heterocycle is preferably 1 to 3, and more preferably 1 or 2.
  • the hetero atom constituting the hetero ring is preferably a nitrogen atom.
  • the alkyl group may further have a substituent.
  • the alkenyl group represented by R may be linear, branched or cyclic, but is preferably linear.
  • the alkenyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the alkenyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • the alkynyl group represented by R may be linear, branched or cyclic, but is preferably linear.
  • the alkynyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the alkynyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • the aryl group represented by R may be monocyclic or polycyclic, but is preferably monocyclic.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • the aryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • R represents.
  • the heteroaryl group may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the heteroaryl group is preferably a nitrogen atom, a sulfur atom or an oxygen atom.
  • the heteroaryl group preferably has 2 to 18 carbon atoms, more preferably 6 to 18 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
  • Examples of coordination sites coordinated by anions also include monoanionic coordination sites.
  • part represents the site
  • an acid group having an acid dissociation constant (pKa) of 12 or less can be mentioned.
  • Specific examples include an acid group containing a phosphorus atom (phosphoric acid diester group, phosphonic acid monoester group, phosphinic acid group, etc.), a sulfo group, a carboxy group, an imido acid group, and the like. preferable.
  • the coordination atom coordinated by the lone pair is preferably an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, more preferably an oxygen atom, a nitrogen atom or a sulfur atom, still more preferably an oxygen atom or a nitrogen atom, and a nitrogen atom. Is particularly preferred.
  • the coordinating atom coordinated by the lone pair is a nitrogen atom
  • the atom adjacent to the nitrogen atom is preferably a carbon atom or a nitrogen atom, and more preferably a carbon atom.
  • the coordination atom coordinated by the lone pair of electrons is contained in the ring, or the following monovalent functional group (UE-1), divalent functional group (UE-2), trivalent functional group It is preferably contained in at least one partial structure selected from the base group (UE-3).
  • the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
  • R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group
  • R 2 represents a hydrogen atom, an alkyl group, an alkenyl group Represents a group, alkynyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group, heteroaryloxy group, alkylthio group, arylthio group, heteroarylthio group, amino group or acyl group.
  • the coordinating atom coordinated by the lone pair may be contained in the ring.
  • the ring that includes a coordination atom that coordinates with an unshared electron pair may be monocyclic or polycyclic, It may be aromatic or non-aromatic.
  • the ring containing a coordination atom coordinated by a lone pair is preferably a 5- to 12-membered ring, and more preferably a 5- to 7-membered ring.
  • the ring containing a coordinating atom coordinated by a lone pair may have a substituent, such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples thereof include an aryl group having 6 to 12 atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, an acyl group having 2 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, and a carboxy group.
  • a substituent such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples thereof include an aryl group having 6 to 12 atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, an acyl group having 2 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, and a carboxy group.
  • the ring may further have a substituent, and from the ring containing the coordination atom coordinated by the lone pair A group containing at least one partial structure selected from the above groups (UE-1) to (UE-3), an alkyl group having 1 to 12 carbon atoms, an acyl group having 2 to 12 carbon atoms, hydroxy Groups.
  • R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group Represents an aryl group or a heteroaryl group
  • R 2 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthio group, an arylthio group Represents a heteroarylthio group, an amino group or an acyl group.
  • the alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group are synonymous with the alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group described in the coordination site coordinated with the above anion.
  • the preferable range is also the same.
  • the alkoxy group preferably has 1 to 12 carbon atoms, and more preferably 3 to 9 carbon atoms.
  • the aryloxy group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the heteroaryloxy group may be monocyclic or polycyclic.
  • the heteroaryl group which comprises heteroaryloxy group is synonymous with the heteroaryl group demonstrated by the coordination site
  • the alkylthio group preferably has 1 to 12 carbon atoms, and more preferably 1 to 9 carbon atoms.
  • the arylthio group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the heteroarylthio group may be monocyclic or polycyclic.
  • the heteroaryl group which comprises a heteroarylthio group is synonymous with the heteroaryl group demonstrated by the coordination site
  • the acyl group preferably has 2 to 12 carbon atoms, and more preferably 2 to 9 carbon atoms.
  • R 1 is preferably a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably an alkyl group.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • the ligand When the ligand has a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair in one molecule, it is coordinated by a coordination site coordinated by an anion and an unshared electron pair.
  • the number of atoms linking the coordinated coordination atoms is preferably 1 to 6, more preferably 1 to 3. With such a configuration, the structure of the copper complex becomes more easily distorted, so that the color value can be further improved, and the molar extinction coefficient can be easily increased while enhancing the visible transparency.
  • the kind of atom that connects the coordination site coordinated by the anion and the coordination atom coordinated by the lone pair may be one or more. A carbon atom or a nitrogen atom is preferable.
  • the ligand When the ligand has two or more coordination atoms coordinated by a lone pair in one molecule, it may have three or more coordination atoms coordinated by a lone pair. It is preferable to have ⁇ 5, more preferably 4.
  • the number of atoms connecting the coordinating atoms coordinated by the lone pair is preferably 1 to 6, more preferably 1 to 3, further preferably 2 to 3, and particularly preferably 3. By setting it as such a structure, since the structure of a copper complex becomes easier to distort, color value can be improved more. 1 type (s) or 2 or more types may be sufficient as the atom which connects the coordination atoms coordinated by a lone pair.
  • the atom connecting the coordinating atoms coordinated by the lone pair is preferably a carbon atom.
  • the ligand is preferably a compound having at least two coordination sites (also referred to as a multidentate ligand).
  • the ligand preferably has at least three coordination sites, more preferably 3 to 5, and particularly preferably 4 to 5.
  • the multidentate ligand acts as a chelate ligand for the copper component. That is, at least two coordination sites of the polydentate ligand are chelate-coordinated with copper, so that the structure of the copper complex is distorted, high transparency in the visible region is obtained, and infrared absorption ability is improved. It can be improved and the color value is also improved.
  • a multidentate ligand is a compound comprising one or more coordination sites coordinated by an anion and one or more coordination atoms coordinated by an unshared electron pair, or coordinated by an unshared electron pair. Examples thereof include compounds having two or more atoms, compounds containing two or more coordination sites coordinated by anions, and the like. These compounds can be used independently or in combination of two or more. Moreover, the compound used as a ligand can use together a multidentate ligand and the compound (monodentate ligand) which has only one coordination site
  • the multidentate ligand is preferably a compound represented by the following general formulas (IV-1) to (IV-14).
  • the compound represented by the following formulas (IV-3), (IV-6), (IV-7), (IV-12) is more preferable because it is more easily coordinated with the metal center and easily forms a stable pentacoordination complex having high heat resistance.
  • the ligand is a compound having 5 coordination sites
  • IV The compound represented by -14) is preferable, and is coordinated more strongly with the metal center and is easy to form a stable 5-coordinate complex having high heat resistance. Therefore, (IV-9) to (IV-10),
  • the compounds represented by (IV-13) and (IV-14) are more preferred, and the compound represented by (IV-13) is particularly preferred.
  • X 1 to X 59 each independently represent a coordination site
  • L 1 to L 25 each independently represent a single bond or a divalent linking group
  • L 26 to L 32 each independently represents a trivalent linking group
  • L 33 to L 34 each independently represents a tetravalent linking group
  • X 1 to X 42 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-1), or the group (UE-1) described above It is preferable to represent at least one.
  • X 43 to X 56 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-2), or the group (UE-2) described above It is preferable to represent at least one.
  • X 57 to X 59 each independently preferably represent at least one selected from the group (UE-3) described above.
  • L 1 to L 25 each independently represents a single bond or a divalent linking group.
  • the divalent linking group an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —O—, —SO 2 —, or a combination thereof is preferable.
  • a group consisting of an alkylene group of 1 to 3 groups, a phenylene group, —SO 2 — or a combination thereof is more preferable.
  • L 26 to L 32 each independently represents a trivalent linking group. Examples of the trivalent linking group include groups obtained by removing one hydrogen atom from the above-described divalent linking group.
  • L 33 to L 34 each independently represents a tetravalent linking group. Examples of the tetravalent linking group include groups obtained by removing two hydrogen atoms from the above-described divalent linking group.
  • the group (AN-1) R in ⁇ (AN-2), and, R 1 in group (UE-1) ⁇ (UE -3) is, R to each other, R 1 or between, and R R 1 may be linked to form a ring.
  • Specific examples of the compound forming the ligand include the following compounds, compounds shown as preferred specific examples of the polydentate ligand described below, and salts of these compounds.
  • Examples of the atoms constituting the salt include metal atoms and tetrabutylammonium.
  • the metal atom an alkali metal atom or an alkaline earth metal atom is more preferable.
  • Examples of the alkali metal atom include sodium and potassium.
  • Examples of alkaline earth metal atoms include calcium and magnesium.
  • the description of paragraphs 0022 to 0042 of JP 2014-41318 A and the description of paragraphs 0021 to 0039 of JP 2015-43063 A can be referred to, and the contents thereof are incorporated in this specification.
  • the following aspects (1) to (5) are preferred examples of the copper complex, (2) to (5) are more preferred, (3) to (5) are more preferred, (4) or (5) is more preferable.
  • (1) Copper complex having one or two compounds having two coordination sites as a ligand (2) Copper complex having a compound having three coordination sites as a ligand (3) 3 Copper complex having as a ligand a compound having one coordination site and a compound having two coordination sites (4) Copper complex having a compound having four coordination sites as a ligand (5) Copper complex having a compound having five coordination sites as a ligand
  • the compound having two coordination sites is a compound having two coordination atoms coordinated by an unshared electron pair, or a coordination site and an unshared electron coordinated by an anion.
  • Compounds having a coordinating atom coordinated in pairs are preferred.
  • the compounds of the ligand may be the same or different.
  • the copper complex may further have a monodentate ligand. The number of monodentate ligands can be 0, or 1 to 3.
  • both a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by an unshared electron pair are preferable, and a compound having two coordination sites is an unshared electron pair.
  • a monodentate ligand coordinated with an anion is more preferable because the coordination power is strong, and a compound having two coordination sites is coordinated with an anion.
  • a monodentate ligand coordinated by a lone pair is more preferable because the entire complex has no charge.
  • the compound having three coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has three coordination atoms coordinated by a lone pair.
  • the compound having is more preferable.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can also be zero. Moreover, it can also be 1 or more, 1 to 3 or more is more preferable, 1 to 2 is more preferable, and 2 is more preferable.
  • monodentate ligand As the type of monodentate ligand, either a monodentate ligand coordinated by an anion or a monodentate ligand coordinated by a lone pair is preferable, and for the reason described above, a monodentate ligand coordinated by an anion is used. More preferred.
  • the compound having three coordination sites is preferably a compound having a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair. More preferred are compounds having two coordination sites that coordinate and one coordination atom coordinated by an lone pair of electrons. Further, it is particularly preferable that the coordination sites coordinated by the two anions are different.
  • the compound having two coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and more preferably a compound having two coordination atoms coordinated by a lone pair.
  • a compound having three coordination sites is a compound having two coordination sites coordinated by an anion and one coordination atom coordinated by a lone pair
  • a combination in which the compound having a coordination site is a compound having two coordination atoms coordinated by an unshared electron pair is particularly preferable.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can be zero, or one or more. 0 is more preferable.
  • the compound having four coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and the number of coordination atoms coordinated by a lone pair is two or more. And a compound having four coordination atoms coordinated by an unshared electron pair is more preferable.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can be 0, 1 or more, or 2 or more. One is preferred.
  • As the kind of monodentate ligand both a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by an unshared electron pair are preferable.
  • the compound having 5 coordination sites is preferably a compound having a coordination atom coordinated by an unshared electron pair, and the number of coordinate atoms coordinated by an unshared electron pair is 2 or more.
  • a compound having 5 coordination atoms coordinated by an unshared electron pair is more preferable.
  • the copper complex may further have a monodentate ligand.
  • the number of monodentate ligands can be zero, or one or more.
  • the number of monodentate ligands is preferably 0.
  • multidentate ligand examples include compounds having two or more coordination sites among the compounds described in the specific examples of the ligand described above, and compounds shown below.
  • a phosphate ester copper complex can also be used as a copper compound.
  • the phosphate ester copper complex has copper as a central metal and a phosphate ester compound as a ligand.
  • the phosphate compound forming the ligand of the phosphate copper complex is preferably a compound represented by the following formula (L-100) or a salt thereof.
  • R 1 represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms, or —OR 1 is Represents a polyoxyalkyl group having 4 to 100 carbon atoms, a (meth) acryloyloxyalkyl group having 4 to 100 carbon atoms, or a (meth) acryloyl polyoxyalkyl group having 4 to 100 carbon atoms, and n is 1 or 2 Represents. When n is 1, R 2 may be the same or different.
  • phosphate ester compound examples include the ligands described above.
  • the descriptions in paragraphs 0022 to 0042 of JP 2014-41318 A can be referred to, and the contents thereof are incorporated in the present specification.
  • a sulfonic acid copper complex can also be used as the copper compound.
  • the sulfonic acid copper complex has copper as a central metal and a sulfonic acid compound as a ligand.
  • the sulfonic acid compound forming the ligand of the sulfonic acid copper complex is preferably a compound represented by the following formula (L-200) or a salt thereof. R 2 —SO 2 —OH Formula (L-200)
  • R 2 represents a monovalent organic group.
  • the monovalent organic group include an alkyl group, an aryl group, and a heteroaryl group.
  • the alkyl group, aryl group and heteroaryl group may have a divalent linking group.
  • As the divalent linking group — (CH 2 ) m — (m is an integer of 1 to 10, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and a cyclic group having 5 to 10 carbon atoms.
  • An alkylene group or a group composed of at least one of these groups and —O—, —COO—, —S—, —NH— and —CO— is preferable.
  • R 2 is preferably an organic group having a formula weight of 300 or less, more preferably an organic group having a formula weight of 50 to 200, and further preferably an organic group having a formula weight of 60 to 100.
  • the molecular weight of the sulfonic acid compound represented by the formula (L-200) is preferably 80 to 750, more preferably 80 to 600, and still more preferably 80 to 450.
  • sulfonic acid compound examples include the ligands described above.
  • description in paragraphs 0021 to 0039 of JP-A-2015-43063 can be referred to, and the contents thereof are incorporated in this specification.
  • a copper-containing polymer having a copper complex site in the polymer side chain can be used as the copper compound. Since the copper-containing polymer has a copper complex site in the polymer side chain, it is considered that a crosslinked structure is formed between the side chains of the polymer starting from copper, and a film having excellent heat resistance is obtained.
  • Examples of the copper complex site include those having copper and a site coordinated to copper (coordination site).
  • part coordinated with respect to copper the site
  • part has a site
  • the details of the coordination site include those described in the low molecular type copper compound described above, and the preferred range is also the same.
  • the copper-containing polymer is a polymer obtained by a reaction between a coordination site-containing polymer (also referred to as polymer (B1)) and a copper component, or a polymer having a reactive site in the polymer side chain (hereinafter also referred to as polymer (B2)). ) And a copper complex having a functional group capable of reacting with the reactive site of the polymer (B2).
  • the weight average molecular weight of the copper-containing polymer is preferably 2000 or more, more preferably 2000 to 2 million, and still more preferably 6000 to 200,000.
  • the phthalocyanine compound used as the infrared absorbing compound is preferably a compound represented by the following formula (PC).
  • X 1 to X 16 each independently represents a hydrogen atom or a substituent, and M 1 represents a metal atom, a metal oxide, or a metal halide.
  • the substituents represented by X 1 to X 16 are a halogen atom, a cyano group, a nitro group, an alkyl group, an aryl group, a heteroaryl group, —OR c1 , —COR c2 , —COOR c3 , —OCOR c4 , —NR c5 R c6 , —NHCOR c7 , —CONR c8 R c9 , —NHCONR c10 R c11 , —NHCOOR c12 , —SR c13 , —SO 2 R c14 , —SO 2 OR c15 , —NHSO 2 R c16 or —SO 2 NR c17 R c18 .
  • R c1 to R c18 each independently represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group.
  • R c3 of —COOR c3 is a hydrogen atom (ie, a carboxy group)
  • the hydrogen atom may be dissociated (ie, a carbonate group) or may be in a salt state.
  • R c15 of —SO 2 OR c15 is a hydrogen atom (ie, a sulfo group)
  • the hydrogen atom may be dissociated (ie, a sulfonate group) or may be in a salt state.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be unsubstituted or may have a substituent.
  • the aryl group preferably has 6 to 25 carbon atoms, more preferably 6 to 15 carbon atoms, and most preferably 6 to 10 carbon atoms.
  • the heteroaryl group is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having 2 to 8 condensations, and still more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the heteroaryl group is preferably a 5-membered ring or a 6-membered ring.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
  • the alkyl group, aryl group, and heteroaryl group may have a substituent or may be unsubstituted. Examples of the substituent include the substituents described above, and examples thereof include a halogen atom.
  • phthalocyanine compound examples include, for example, the following compounds, compounds described in paragraphs 0191 and 0216 of JP2014-0667019A, oxytitanium phthalocyanine described in JP2006-343631A, and JP2013.
  • -001785 compounds octafluoro-octa (benzylamino) oxyvanadium phthalocyanine, octafluoro-octakis (2-phenylethylamino) oxyvanadium phthalocyanine, octafluoro-octa (cyclohexylamino) oxyvanadium phthalocyanine, etc.
  • the naphthalocyanine compound used as the infrared absorbing compound is preferably a compound represented by the following formula (NPC).
  • NPC naphthalocyanine compound
  • X 1 to X 24 each independently represents a hydrogen atom or a substituent
  • M 2 represents a metal atom, a metal oxide, or a metal halide.
  • Examples of the substituent represented by X 1 to X 24 include the groups described in the general formula (PC), and include an alkyl group, a halogen atom, an alkoxy group, a phenoxy group, an alkylthio group, a phenylthio group, an alkylamino group, and an anilino group. Is preferred.
  • the dithiol compound used as the infrared absorbing compound is preferably a compound represented by the following formulas (DT-1) to (DT-3).
  • R 101 to R 112 each independently represents a hydrogen atom or a substituent
  • Y 1 to Y 3 each independently represents a sulfur atom or an oxygen atom
  • M 3 represents a metal atom, a metal oxide or a metal halide.
  • Examples of the substituent represented by R 101 to R 112 include the groups described in the general formula (PC), and an alkyl group is preferable.
  • the metal atom represented by M 3 and the metal atom constituting the metal oxide or metal halide are not particularly limited.
  • Ni, Pd, Pt, Au, Ir, Fe, Zn, W, Cu, Mo examples include In, Mn, Co, Mg, V, Cr, and Ti.
  • Ni, Pd, and Pt are preferable, and Ni is more preferable.
  • M 3 is preferably Ni, Pd, or Pt, and more preferably Ni.
  • dithiol compound examples include, for example, the following compounds, and compounds described in paragraphs 0188 to 00251 of JP-A-2014-516092 and paragraph 0079 of JP-A-2015-057492. Incorporated in the description.
  • the content of the metal compound (infrared absorbing compound) in the infrared absorbent is preferably 1 to 99.995% by mass with respect to the total solid content of the infrared absorbent.
  • the lower limit is preferably 10% by mass or more, and more preferably 30% by mass or more.
  • An upper limit can also be made into 99.9 mass% or less, and can also be made into 99 mass% or less.
  • the content of the copper compound is preferably 50 to 100% by mass with respect to the mass of the metal compound.
  • the lower limit is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the metal compound (infrared absorbing compound) may be substantially only a copper compound.
  • the metal compound infrared absorbing compound
  • the content of the copper compound in the metal compound is preferably 99% by mass or more, more preferably 99.9% by mass or more, and copper More preferably, it is composed only of a compound.
  • the infrared absorber of the present invention may contain an infrared absorbing compound other than the metal compound (hereinafter also referred to as other infrared absorbing compound).
  • infrared absorbing compounds include pyrrolopyrrole compounds, squarylium compounds, cyanine compounds, diimonium compounds, quaterrylene compounds, and croconium compounds.
  • squarylium compound include the following compounds.
  • compounds described in paragraphs 0044 to 0049 of JP2011-208101A can be mentioned, the contents of which are incorporated herein.
  • Examples of the pyrrolopyrrole compound include the following compounds.
  • the content of the other infrared absorbing compounds is preferably 50% by mass or less based on the total solid content of the infrared absorber.
  • the upper limit is preferably 30% by mass or less, and more preferably 10% by mass or less.
  • the lower limit may be 1% by mass or more.
  • the content of the other infrared absorbing compound is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, and more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the metal compound (infrared absorbing compound). Further preferred.
  • the infrared absorber of this invention does not contain other infrared absorption compounds substantially.
  • the content of the other infrared absorbing compound is substantially 0.1% by mass or less, more preferably 0.01% by mass or less, and 0.001%. It is more preferable that the content is not more than mass%, and it is even more preferable that the content is not contained.
  • the infrared absorber of the present invention may contain a solvent.
  • a solvent the solvent demonstrated by the near-infrared absorption composition mentioned later is mentioned.
  • the infrared absorbent of the present invention can be preferably used for an infrared cut filter or the like. Further, it can also be used as a photothermal conversion material in a heat ray shielding filter, an optical filter, a display filter, a write-once optical disc (CD-R) or a flash melt fixing material. It can also be used as an information display material in security ink or invisible barcode ink.
  • the first of the near-infrared absorbing composition of the present invention is a near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared-absorbing compound
  • the near-infrared absorbing composition includes a metal component containing a metal atom different from the metal atom contained in the metal compound, and 0.005% of the metal atom contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound. Including 1 part by mass.
  • the metal atom contained in the metal component is more preferably contained in an amount of 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the metal atoms contained in the metal compound.
  • the second of the near-infrared absorbing composition of the present invention is a near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared-absorbing compound
  • the near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni
  • the total amount of Ag is 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
  • the third of the near-infrared absorbing composition of the present invention is a near-infrared absorbing composition containing at least one selected from a solvent and a curable compound and a metal compound that is an infrared-absorbing compound,
  • the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
  • the near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni
  • the near-infrared absorbing composition of the present invention can produce a film having excellent visible transparency and near-infrared shielding properties. Furthermore, the heat resistance of the obtained film is also improved. It is presumed that the mechanism for obtaining such an effect is due to the reason described above.
  • the near-infrared absorbing composition of the present invention will be described in detail.
  • the near infrared ray absorbing composition of the present invention contains a metal compound that is an infrared ray absorbing compound.
  • the metal compound contains at least one metal atom selected from Ni, Pd, Pt, Au, Ir, Fe, Zn, W, Cu, Mo, In, Mn, Co, Mg, V, Cr, Ti, and Al.
  • Compounds are preferred, compounds containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt are more preferred, and at least selected from Cu, Ni and V
  • a compound containing one type of metal atom is more preferred, and a compound containing Cu is particularly preferred. That is, the metal compound is preferably a copper compound.
  • the copper compound may contain a metal atom other than Cu, but preferably does not contain a metal other than Cu.
  • the metal compound as the infrared absorbing compound is preferably a compound having a maximum absorption wavelength in the range of 700 to 1200 nm, and more preferably a compound having a maximum absorption wavelength in the range of 700 to 1000 nm.
  • the metal compound is preferably a compound having absorption in the wavelength region in the infrared region (preferably in the wavelength range of 700 to 1200 nm) and transmitting light in the visible region (preferably in the wavelength range of 400 to 650 nm). .
  • the metal compound include, for example, copper compounds, pyrrolopyrrole compounds, squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, diimonium compounds, dithiol compounds, transition metal oxide compounds, quaterylene compounds, croconium compounds, and the like. It is done. It is also preferable to use indium tin oxide (ITO).
  • ITO indium tin oxide
  • antimony tin oxide ATO
  • zinc oxide ZnO
  • Al-doped zinc oxide Al-doped ZnO
  • fluorine-doped tin dioxide F-doped SnO 2
  • niobium-doped titanium dioxide Nb-doped TiO 2
  • cesium tungsten oxide it is also preferable to use an inorganic metal compound.
  • cesium tungsten oxide the description in paragraphs 0025 to 0029 of International Publication No. 2014/142259 can be referred to, and the contents thereof are incorporated in the present specification.
  • a copper compound, a phthalocyanine compound, a naphthalocyanine compound, and a dithiol compound are preferable because a film excellent in both near-infrared shielding and visible transparency can be easily formed.
  • the metal compound is particularly preferably a copper compound because the effects of the present invention can be easily obtained.
  • the copper compound is more preferably a copper complex.
  • the details of the metal compound include the compounds described in the above-described infrared absorbing agent, and the preferred range is also the same.
  • the content of the metal compound is preferably 1 to 80% by mass with respect to the total solid content of the near infrared absorbing composition.
  • the lower limit is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the upper limit is preferably 70% by mass or less.
  • the content of the copper compound is preferably 3 to 70% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the upper limit is preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the lower limit is preferably 10% by mass or more, and more preferably 20% by mass or more.
  • the content of the copper compound in the metal compound is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and still more preferably 30 to 100% by mass.
  • the metal compound may be substantially only a copper compound.
  • the content of the copper compound in the metal compound is, for example, preferably 99% by mass or more, more preferably 99.9% by mass or more, and only the copper compound is included. More preferably.
  • the near-infrared absorbing composition of the present invention may contain an infrared absorbing compound (also referred to as other infrared absorbing compound) other than the metal compounds described above.
  • infrared absorbing compounds include pyrrolopyrrole compounds, squarylium compounds, cyanine compounds, diimonium compounds, quaterrylene compounds, and croconium compounds.
  • the content of the other infrared absorption compounds is preferably 15% by mass or less with respect to the total solid content of the near infrared absorption composition.
  • the upper limit is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the lower limit may be 1% by mass or more.
  • the content of the other infrared absorbing compound is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, and more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the metal compound (infrared absorbing compound). Further preferred.
  • the near-infrared absorption composition of this invention does not contain other infrared absorption compounds substantially.
  • the content of the other infrared absorbing compound is substantially 0.1% by mass or less, more preferably 0.01% by mass or less, and 0.001%. It is more preferable that the content is not more than mass%, and it is even more preferable that the content is not contained.
  • the near-infrared absorbing composition of the present invention includes a metal component containing a metal atom different from the metal atom contained in the metal compound described above.
  • the metal component is a component other than the metal compound described above.
  • the near-infrared absorbing composition of the present invention comprises a curable compound, a polymerization initiator, a curing accelerator, a thermal stability imparting agent, a polymerization inhibitor, an ultraviolet absorber, an antioxidant, a solvent, a surfactant, a thickening agent.
  • an agent, a plasticizer, a filler, etc. are included, it is also a component different from these components.
  • the near-infrared absorbing composition of the present invention contains 0.005 to 1 part by mass of metal atoms contained in the metal component, and 0.05 to 0.8 parts by mass with respect to 100 parts by mass of metal atoms contained in the metal compound. More preferred is 0.1 to 0.5 parts by mass. If content of a metal component is the said range, the film
  • the near-infrared absorbing composition of the present invention comprises Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, and 100% by mass of metal atoms contained in the metal compound.
  • the total amount of Fe, Co, Ni, Cu, Pt and Ag is preferably 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, and 0.1 to 0.5 part by mass Is particularly preferred.
  • the near-infrared absorbing composition of the present invention comprises Al contained in a metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in a metal compound.
  • Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag are preferably 0.005 to 1 part by mass, 0.05 to 0.8 parts by mass is more preferable, and 0.1 to 0.5 parts by mass is particularly preferable.
  • the metal component is at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag. And preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu, Ag and Al, and from Li, Na, K, Mg, Ca and Fe More preferably, it contains at least one selected metal atom.
  • the metal component may be a single metal or a free metal ion, a metal oxide, a metal nitride, a metal carbonate, a metal salt (inorganic acid salt, organic acid salt, ammonium salt, etc.), metal Compounds such as intermetallic compounds, metal complexes, organometallic compounds, (hetero) polyacids and salts thereof may be used.
  • the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt, and the metal component is It preferably contains at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag.
  • Specific combinations of the metal compound and the metal component include the combinations (1) to (7) described in the above-described infrared absorber. Of these, the combination (1) (when the metal compound (infrared absorbing compound) is a compound containing Cu (copper compound)) is preferable. According to this aspect, the effects of the present invention described above tend to be obtained more remarkably.
  • the near infrared ray absorbing composition of the present invention may contain a curable compound.
  • the curable compound may be a compound having a crosslinkable group (crosslinkable compound) or a polymer having no crosslinkable group (non-crosslinkable polymer).
  • the crosslinkable group means a group having a site capable of forming a crosslink by reacting with the action of heat, light, or a radical.
  • the curable compound may be a thermosetting compound or a photocurable compound, but is preferably a thermosetting compound from the viewpoint of film strength.
  • the curable compound may be substantially only a crosslinkable compound, may be substantially only a non-crosslinkable polymer, or a crosslinkable compound and a noncrosslinkable polymer may be used in combination.
  • the content of the crosslinkable compound in the curable compound is preferably 99% by mass or more, and 99.9% by mass or more. More preferably, only a crosslinkable compound is more preferable.
  • the curable compound is substantially only the non-crosslinkable polymer
  • the content of the non-crosslinkable polymer in the curable compound is preferably 99% by mass or more, and 99.9 More preferably, it is more preferably at least mass%, and only a crosslinkable compound.
  • crosslinkable compound known compounds that can be crosslinked by radicals, acids, and heat can be used. Examples thereof include compounds having a group having an ethylenically unsaturated bond, compounds having a cyclic ether group, compounds having a methylol group, compounds having an alkoxysilyl group, and the like.
  • the crosslinkable compound may be in the form of a monomer or a polymer.
  • Examples of the polymer type crosslinkable compound include an epoxy resin described later and a resin including a structural unit having a crosslinkable group.
  • Examples of the structural unit having a crosslinkable group include (A2-1) to (A2-4) shown below.
  • R 1 represents a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and particularly preferably 1 carbon atom.
  • R 1 is preferably a hydrogen atom or a methyl group.
  • L 51 represents a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR 10 — (R 10 represents a hydrogen atom or Represents a hydrogen atom, preferably a hydrogen atom), or a group composed of a combination thereof, and a group composed of a combination of at least one of an alkylene group, an arylene group, and an alkylene group and —O— is preferable.
  • the alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkylene group may have a substituent, but is preferably unsubstituted.
  • the alkylene group may be linear, branched or cyclic. Further, the cyclic alkylene group may be monocyclic or polycyclic.
  • the number of carbon atoms of the arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
  • P 1 represents a crosslinkable group.
  • the crosslinkable group include a group having an ethylenically unsaturated bond, a cyclic ether group, a methylol group, and a group represented by -M- (X 2 ) n .
  • M represents an atom selected from Si, Ti, Zr and Al
  • X 2 represents a substituent or a ligand
  • n X 2 Among these, at least one is one selected from a hydroxy group, an alkoxy group, an acyloxy group, a phosphoryloxy group, a sulfonyloxy group, an amino group, an oxime group, and O ⁇ C (R a ) (R b )
  • X 2 may be bonded to each other to form a ring
  • n represents the number of bonds of M with X 2 .
  • the polymer-type crosslinkable compound preferably further has structural units represented by the following formulas (A3-1) to (A3-7).
  • R 5 represents a hydrogen atom or an alkyl group
  • L 4 to L 7 each independently represents a single bond or a divalent linking group
  • R 10 to R 13 each independently represents an alkyl group or an aryl group.
  • R 14 and R 15 each independently represents a hydrogen atom or a substituent.
  • R 5 has the same meaning as R 1 in formulas (A2-1) to (A2-4), and the preferred range is also the same.
  • L 4 to L 7 have the same meaning as L 1 in formulas (A2-1) to (A2-4), and the preferred ranges are also the same.
  • the alkyl group represented by R 10 may be linear, branched or cyclic, and is preferably cyclic.
  • the alkyl group may have the above-described substituent and may be unsubstituted.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the aryl group represented by R 10 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • R 10 is preferably a cyclic alkyl group or an aryl group.
  • the alkyl group represented by R 11 and R 12 may be linear, branched or cyclic, and is preferably linear or branched.
  • the alkyl group may have the above-described substituent and may be unsubstituted.
  • the alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • the aryl group represented by R 11 and R 12 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • R 11 and R 12 are preferably a linear or branched alkyl group.
  • the alkyl group represented by R 13 may be linear, branched or cyclic, and is preferably linear or branched.
  • the alkyl group may have the above-described substituent and may be unsubstituted.
  • the alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • the aryl group represented by R 13 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • R 13 is preferably a linear or branched alkyl group or an aryl group.
  • R 14 and R 15 examples include the groups described in the general formula (PC). Among these, at least one of R 14 and R 15 preferably represents a cyano group or —COOR a .
  • Ra represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group, preferably a hydrogen atom, an alkyl group or an aryl group.
  • the molecular weight of the monomer type crosslinkable compound is preferably less than 2000, more preferably from 100 to less than 2000, and even more preferably from 200 to less than 2000.
  • the upper limit is preferably 1500 or less, for example.
  • the weight average molecular weight (Mw) of the polymer type crosslinkable compound is preferably 2,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the lower limit is preferably 3,000 or more, and more preferably 5,000 or more.
  • the weight average molecular weight (Mw) is preferably 100 or more, more preferably 200 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the compound having a group having an ethylenically unsaturated bond is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound.
  • description in paragraphs 0033 to 0034 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification.
  • ethyleneoxy-modified pentaerythritol tetraacrylate (commercially available NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available KAYARAD D-330; Nippon Kayaku Co., Ltd.) Dipentaerythritol tetraacrylate (commercially available product: KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta (meth) acrylate (commercially available product: KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), Dipentaerythritol hexa (meth) acrylate (as a commercial product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth) acrylo
  • Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT) and 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA) are also preferable. These oligomer types can also be used. Examples thereof include RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
  • the compound containing a group having an ethylenically unsaturated bond may further have an acid group such as a carboxy group, a sulfonic acid group, or a phosphoric acid group.
  • an acid group such as a carboxy group, a sulfonic acid group, or a phosphoric acid group.
  • the compound having an acid group include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids.
  • a polyfunctional monomer in which an unreacted hydroxy group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to give an acid group is preferred, and particularly preferably, the aliphatic polyhydroxy compound is pentaerythritol and / or Or it is a dipentaerythritol.
  • the acid value of the compound having an acid group is preferably 0.1 to 40 mgKOH / g.
  • the lower limit is preferably 5 mgKOH / g or more.
  • the upper limit is preferably 30 mgKOH / g or less.
  • the compound containing a group having an ethylenically unsaturated bond is also a preferred embodiment having a caprolactone structure.
  • a caprolactone structure description in paragraphs 0042 to 0045 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification.
  • Commercially available products include, for example, SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, DPCA-60, a hexafunctional acrylate having six pentyleneoxy chains, manufactured by Nippon Kayaku Co., Ltd., isobutylene And TPA-330, which is a trifunctional acrylate having three oxy chains.
  • a polymer having a structural unit having a group having an ethylenically unsaturated bond in the side chain can also be used.
  • the structural unit having a group having an ethylenically unsaturated bond in the side chain include the structural units represented by the above-mentioned (A2-1) to (A2-4).
  • the content of the structural unit having a group having an ethylenically unsaturated bond in the side chain is preferably 5 to 100% by mass of the total structural units constituting the polymer.
  • the lower limit is more preferably 10% by mass or more, and still more preferably 15% by mass or more.
  • the upper limit is more preferably 90% by mass or less, still more preferably 80% by mass or less, and particularly preferably 70% by mass or less.
  • the polymer may contain other structural units in addition to the structural unit having a group having an ethylenically unsaturated bond in the side chain.
  • the other structural unit may contain a functional group such as an acid group or may not contain a functional group.
  • the acid group include a carboxy group, a sulfonic acid group, and a phosphoric acid group. Only one type of acid group may be included, or two or more types of acid groups may be included.
  • the proportion of the structural unit having an acid group is preferably 0 to 50% by mass of the total structural units constituting the polymer.
  • the lower limit is more preferably 1% by mass or more, and still more preferably 3% by mass or more.
  • the upper limit is more preferably 35% by mass or less, and still more preferably 30% by mass or less.
  • the polymer preferably further contains the structural units represented by the above-mentioned (A3-1) to (A3-7).
  • polymer examples include (meth) allyl (meth) acrylate / (meth) acrylic acid copolymer.
  • Commercially available products of the above-mentioned polymers include: Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (COOH-containing polyurethane acrylic oligomer. Diamond Shamock Co., Ltd.), Biscoat R-264, and KS resist 106 (all of which are Osaka Organic Chemicals).
  • Cyclomer P series for example, ACA230AA
  • Plaxel CF200 series all manufactured by Daicel
  • Ebecryl 3800 manufactured by Daicel UCB
  • Acryl RD-F8 manufactured by Nippon Shokubai Co., Ltd.
  • a compound having a cyclic ether group can also be used as the crosslinkable compound.
  • the cyclic ether group include an epoxy group and an oxetanyl group, and an epoxy group is preferable.
  • the compound having a cyclic ether group include a polymer having a cyclic ether group in the side chain, and a monomer or oligomer having two or more cyclic ether groups in the molecule.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin, and the like can be given.
  • a monofunctional or polyfunctional glycidyl ether compound is also mentioned, and a polyfunctional aliphatic glycidyl ether compound is preferable.
  • a compound having a cyclic ether group a compound having a glycidyl group such as glycidyl (meth) acrylate or allyl glycidyl ether, or a compound having an alicyclic epoxy group can also be used.
  • the description in paragraph 0045 of JP 2009-265518 A can be referred to, and the contents thereof are incorporated in the present specification.
  • a commercial item can also be used for the compound which has a cyclic ether group.
  • a commercial product of a compound having a cyclic ether group for example, the description in paragraph 0191 of JP2012-155288A can be referred to, and the contents thereof are incorporated in the present specification.
  • the bisphenol A type epoxy resin JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1055 Etc.
  • Examples of the bisphenol F type epoxy resin include JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, manufactured by Mitsubishi Chemical), EPICLON830, EPICLON835 (above, made by DIC), LCE-21, RE-602S (above, Japan) Kayaku Co., Ltd.).
  • Phenol novolac type epoxy resins include JER152, JER154, JER157S70, JER157S65 (Mitsubishi Chemical), EPICLON N-740, EPICLON N-740, EPICLON N-770, EPICLON N-775 (Made by DIC) Etc.
  • Cresol novolac type epoxy resins include EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC), And EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.).
  • ADEKA RESIN EP-4080S, EP-4085S, EP-4088S (above, manufactured by ADEKA), Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 (manufactured by Daicel Corporation), Denacol EX-212L, EX-214L, EX-216L, EX-321L, EX-850L (manufactured by Nagase ChemteX Corporation) and the like.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S manufactured by ADEKA
  • NC-2000, NC-3000, NC-7300, XD-1000, EPPN- 501, EPPN-502 manufactured by ADEKA
  • JER1031S manufactured by Mitsubishi Chemical
  • lipoxy SPCF-9X manufactured by Showa Denko
  • a compound having an alkoxysilyl group can also be used as the crosslinkable compound.
  • a copper compound is used as the infrared absorber
  • the alkoxysilyl group include a monoalkoxysilyl group, a dialkoxysilyl group, and a trialkoxysilyl group, and a dialkoxysilyl group and a trialkoxysilyl group are preferable. According to this aspect, it is easy to produce a near-infrared cut filter excellent in heat resistance.
  • the compound having an alkoxysilyl group may be in the form of either a low molecular compound or a polymer, but a polymer is preferred because it is easy to form a film having better heat resistance.
  • the molecular weight of the low molecular weight compound is preferably 100 to 1,000.
  • the upper limit is preferably 800 or less, and more preferably 700 or less.
  • the molecular weight is a theoretical value obtained from the structural formula.
  • the polymer type compound preferably has a weight average molecular weight of 500 to 300,000.
  • the lower limit is preferably 1000 or more, and more preferably 2000 or more.
  • the upper limit is preferably 250,000 or less, and more preferably 200000 or less.
  • the number of carbon atoms of the alkoxy group in the alkoxysilyl group is preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1 or 2.
  • the number of alkoxysilyl groups is preferably 2 or more, more preferably 2 to 3 in a molecule.
  • the compound having an alkoxysilyl group examples include tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and n-propyltrimethoxy.
  • examples of the polymer type compound include (meth) acrylic resin (preferably (meth) acrylic ester resin, (meth) acrylamide resin), styrene resin, polysiloxane, and the like. It is done. Of these, a (meth) acrylic resin or a styrene resin is preferred for the reason of improving film properties and ease of adjusting the coating solution viscosity.
  • Specific examples of the polymer type compound include, for example, a polymer having at least one of the structural units represented by the formulas (A2-1) to (A2-4) described above.
  • the polymer-type compound may contain other structural units in addition to the structural units represented by the formulas (A2-1) to (A2-4).
  • Examples of the components constituting other structural units include those of the copolymer components disclosed in paragraphs 0068 to 0075 of JP2010-106268A (paragraphs 0112 to 0118 of the corresponding US Patent Application Publication No. 2011/0124824). Description can be taken into account and the contents thereof are incorporated herein. Further, it may have structural units represented by the above-mentioned (A3-1) to (A3-7).
  • Examples of the polymer type compound include the following polymers.
  • the near-infrared absorption composition of this invention can contain the polymer which does not have a crosslinkable group as a sclerosing
  • the polymer having no crosslinkable group preferably has a weight average molecular weight (Mw) of 2,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
  • the lower limit is preferably 3,000 or more, and more preferably 5,000 or more.
  • Polymers having no crosslinkable groups include (meth) acrylic resins, ene / thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene resins, polyarylene ether phosphine oxides. Examples thereof include resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins. One of these resins may be used alone, or two or more thereof may be mixed and used. Further, polymers having the structural units represented by the above (A3-1) to (A3-7) can also be mentioned.
  • (Meth) acrylic resin includes a polymer containing a structural unit derived from (meth) acrylic acid and / or its ester. Specific examples include polymers obtained by polymerizing at least one selected from (meth) acrylic acid, (meth) acrylic acid esters, (meth) acrylamide and (meth) acrylonitrile.
  • polyester resin examples include polyols (for example, ethylene glycol, propylene glycol, glycerin, trimethylolpropane), polybasic acids (for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and aromatic rings thereof.
  • polyols for example, ethylene glycol, propylene glycol, glycerin, trimethylolpropane
  • polybasic acids for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and aromatic rings thereof.
  • Aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as aromatic dicarboxylic acids, adipic acid, sebacic acid, dodecanedicarboxylic acid, etc., in which hydrogen atoms are substituted with methyl groups, ethyl groups, phenyl groups, etc., and fats such as cyclohexanedicarboxylic acid
  • the polymer having no crosslinkable group it is also preferable to use a polymer having the structural units represented by the above (A3-1) to (A3-7).
  • the polymer having no crosslinkable group may have an acid group.
  • the acid group include a carboxy group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxy group. These acid groups may be used alone or in combination of two or more.
  • the resin having an acid group include alkali-soluble resins described in paragraphs 0180 to 0202 of JP-A-2015-043063, the contents of which are incorporated herein.
  • the acid value of the resin having an acid group is preferably 30 to 200 mgKOH / g.
  • the lower limit is preferably 50 mgKOH / g or more, and more preferably 70 mgKOH / g or more.
  • the upper limit is preferably 150 mgKOH / g or less, and more preferably 120 mgKOH / g or less.
  • the acid value of the resin having an acid group is preferably 30 to 200 mgKOH / g.
  • the lower limit is preferably 50 mgKOH / g or more, and more preferably 70 mgKOH / g or more.
  • the upper limit is preferably 150 mgKOH / g or less, and more preferably 120 mgKOH / g or less.
  • the content of the curable compound is preferably 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more with respect to the total solid content of the composition.
  • the upper limit is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less.
  • the content of the non-crosslinkable polymer is preferably 20 to 400 parts by mass, and 100 to 300 parts by mass with respect to 100 parts by mass of the crosslinkable compound. More preferred. Only one type of curable compound may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
  • the near infrared ray absorbing composition of the present invention can contain a solvent.
  • the solvent is not particularly limited and can be appropriately selected depending on the purpose as long as it can uniformly dissolve or disperse each component of the near-infrared absorbing composition.
  • water and an organic solvent can be used, and an organic solvent is preferable.
  • the organic solvent include alcohols (for example, methanol), ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, and dimethylformamide, dimethylacetamide, dimethylsulfoxide, and sulfolane.
  • alcohols for example, methanol
  • ketones for example, ketones
  • esters for example, aromatic hydrocarbons
  • halogenated hydrocarbons and dimethylformamide, dimethylacetamide, dimethylsulfoxide, and sulfolane.
  • Specific examples of alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include those described in paragraph 0136 of JP 2012-194534 A, and the contents thereof are incorporated herein.
  • Specific examples of the esters, ketones, and ethers include those described in paragraph 0497 of JP2012-208494A (paragraph 0609 of the corresponding US Patent Application Publication No. 2012/0235099). It is done.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, cyclohexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, alkyloxy Alkyl acetate (eg, methyl alkyloxyacetate, alkyloxyethyl acetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)), 3-alkyloxypropion Acid alkyl esters (eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • alkyl acetate e
  • Methyl 2-methyloxypropionate eg, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate
  • 2-alkyloxypropionate eg, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate
  • 2-alkyloxy-2-methylpropionic acid Methyl and ethyl 2-alkyloxy-2-methylpropionate (eg, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.)
  • methyl pyruvate ethyl pyruvate
  • pyruvate eg, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.
  • ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Examples thereof include monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate and the like.
  • ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, and 3-heptanone.
  • aromatic hydrocarbons include toluene and xylene.
  • the solvent is at least one selected from 1-methoxy-2-propanol, cyclopentanone, cyclohexanone, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, butyl acetate, ethyl lactate and propylene glycol monomethyl ether. preferable.
  • a solvent may be used individually by 1 type and may be used in combination of 2 or more type.
  • an organic solvent having a low metal content can also be used.
  • the metal content of the organic solvent is preferably 10 ppb or less, for example. If necessary, a ppt level solvent may be used, and such a high-purity solvent is provided by Toyo Gosei Co., Ltd., for example.
  • Examples of methods for removing impurities such as metals from organic solvents include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter.
  • the filter pore diameter in filtration using a filter is preferably 10 nm or less, more preferably 5 nm or less, and still more preferably 3 nm or less.
  • the filter material is preferably a polytetrafluoroethylene, polyethylene, or nylon filter.
  • the organic solvent may contain isomers (compounds having the same number of atoms and different structures). Moreover, only 1 type may be included and the isomer may be included multiple types.
  • the amount of the solvent in the near-infrared absorbing composition is preferably such that the solid content is 10 to 90% by mass.
  • the lower limit is preferably 15% by mass or more, and more preferably 20% by mass or more.
  • the upper limit is preferably 80% by mass or less, and more preferably 70% by mass or less. Only one type of solvent may be used, or two or more types may be used, and in the case of two or more types, the total amount is preferably within the above range.
  • the near-infrared absorbing composition of the present invention may further contain a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the crosslinkable compound by light or heat, or both, but a photopolymerization initiator is preferred. When polymerization is initiated with light, those having photosensitivity to light in the ultraviolet region to the visible region are preferred. In addition, when the polymerization is initiated by heat, a polymerization initiator that decomposes at 150 to 250 ° C. is preferable.
  • a compound having an aromatic group is preferable.
  • the description in paragraphs 0217 to 0228 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
  • the polymerization initiator is preferably an oxime compound, an acetophenone compound or an acylphosphine compound.
  • examples of commercially available acetophenone compounds include IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF).
  • As commercially available acylphosphine compounds IRGACURE-819, DAROCUR-TPO (trade names: all manufactured by BASF) and the like can be used.
  • the content of the polymerization initiator is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 0.1% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less. Only one type of polymerization initiator may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
  • the near-infrared absorbing composition of the present invention may contain a curing accelerator.
  • the curing accelerator include an organometallic catalyst, an acid catalyst, an amine catalyst, and the like, and an organometallic catalyst is preferable.
  • the acid catalyst include hydrochloric acid, nitric acid, trichloroacetic acid, trifluoroacetic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, oxalic acid, and acetic acid.
  • the organometallic catalyst is an oxide, sulfide, halide containing at least one metal atom selected from the group consisting of Na, K, Ca, Mg, Ti, Zr, Al, Zn, Sn, and Bi. At least one selected from the group consisting of carbonates, carboxylates, sulfonates, phosphates, nitrates, sulfates, alkoxides, hydroxides, and optionally substituted acetylacetonate complexes It is preferable that Among them, the metal is at least one selected from the group consisting of halides, carboxylates, nitrates, sulfates, hydroxides, and optionally substituted acetylacetonate complexes.
  • acetylacetonate complexes are more preferred.
  • an acetylacetonate complex of Al is preferable.
  • Specific examples of the organometallic catalyst include, for example, tris (2,4-pentanedionato) aluminum (III).
  • the content of the curing accelerator is preferably 0.01 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the upper limit is preferably 3% by mass or less, and more preferably 1% by mass or less.
  • the lower limit is preferably 0.05% by mass or more.
  • the near-infrared absorbing composition of the present invention can also contain a thermal stability imparting agent.
  • the heat stability imparting agent include oxime compounds.
  • Commercially available oxime compounds include IRGACURE-OXE01, IRGACURE-OXE02, IRGACURE-OXE03, IRGACURE-OXE04 (above, manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831 (manufactured by ADEKA), Adeka Arcles NCI-930 (manufactured by ADEKA) and the like can be used.
  • an oxime compound having a fluorine atom can also be used as the oxime compound.
  • Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A 2013-164471. Compound (C-3). These contents are incorporated herein.
  • an oxime compound having a nitro group can be used as the oxime compound.
  • the oxime compound having a nitro group is also preferably a dimer.
  • oxime compound having a nitro group examples include compounds described in paragraphs 0031 to 0047 of JP2013-114249A, paragraphs 0008 to 0012 and 0070 to 0079 of JP2014-137466A, and patent 4223071.
  • ADEKA ARKLES NCI-831 manufactured by ADEKA
  • an oxime compound having a benzofuran skeleton can also be used as the oxime compound.
  • Specific examples include compounds OE-01 to OE-75 described in International Publication No. WO2015 / 036910.
  • the content of the heat stability imparting agent is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 0.1% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the near-infrared absorbing composition of the present invention may contain a surfactant. Only one type of surfactant may be used, or two or more types may be combined.
  • the content of the surfactant is preferably 0.0001 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more.
  • the upper limit is preferably 2% by mass or less, and more preferably 1% by mass or less.
  • the surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the near-infrared absorbing composition preferably contains at least one of a fluorine-based surfactant and a silicone-based surfactant.
  • the interfacial tension between the coated surface and the coating liquid is reduced, and the wettability to the coated surface is improved. For this reason, the liquid characteristic (especially fluidity
  • the fluorine content of the fluorosurfactant is preferably 3 to 40% by mass.
  • the lower limit is preferably 5% by mass or more, and more preferably 7% by mass or more.
  • the upper limit is preferably 30% by mass or less, and more preferably 25% by mass or less.
  • fluorosurfactant examples include the surfactants described in paragraphs 0060 to 0064 of JP 2014-41318 A (paragraphs 0060 to 0064 of WO 2014/17669) and JP 2011 Examples include surfactants described in paragraphs 0117 to 0132 of JP-A-1252503, the contents of which are incorporated herein.
  • Commercially available fluorosurfactants include, for example, Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, and the like.
  • F-143, F-144, R30, F-437, F-475, F-479, F-482, F-554, F-780 (above DIC), Fluorard FC430, FC431, FC171 (Sumitomo 3M), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC-383, S393, KH-40 (Asahi Glass Co., Ltd.), PolyFox PF-7002 (Omnova Co., Ltd.) and the like.
  • fluorine-based surfactant compounds described in paragraphs 0015 to 0158 of JP-A No. 2015-117327 can also be used.
  • a block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy group or propyleneoxy group) (meth).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as the fluorine-based surfactant used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000.
  • the fluoropolymer which has an ethylenically unsaturated group in a side chain can also be used as a fluorine-type surfactant.
  • a fluorine-type surfactant include compounds described in JP-A 2010-164965, paragraphs 0050 to 0090 and paragraphs 0289 to 0295, such as MegaFac RS-101, RS-102, RS-718K, and RS-72K manufactured by DIC. Etc.
  • the fluorine-based surfactant an acrylic compound having a molecular structure having a functional group containing a fluorine atom, and the fluorine atom is volatilized by cleavage of the functional group containing the fluorine atom when heated.
  • Examples of such a fluorosurfactant include Megafac DS series manufactured by DIC (Chemical Industry Daily, February 22, 2016 and Nikkei Sangyo Shimbun, February 23, 2016), such as Megafac DS-21. These can be used.
  • nonionic surfactant examples include nonionic surfactants described in paragraph 0553 of JP2012-208494A (paragraph 0679 of the corresponding US Patent Application Publication No. 2012/0235099) and the like. The contents of which are incorporated herein.
  • Specific examples of the cationic surfactant include a cationic surfactant described in paragraph 0554 of JP2012-208494A (paragraph 0680 of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein.
  • Specific examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone surfactant examples include the silicone surfactants described in paragraph 0556 of JP2012-208494A (paragraph 0682 of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein.
  • the near-infrared absorbing composition of the present invention may contain a polymerization inhibitor.
  • Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol), Examples include 2,2′-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt, and p-methoxyphenol is preferred.
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the near-infrared absorbing composition of the present invention may contain an ultraviolet absorber.
  • a well-known compound can be used for a ultraviolet absorber.
  • UV503 made by Daito Chemical Co., Inc.
  • the content of the ultraviolet absorber is preferably 0.01 to 10% by mass and more preferably 0.01 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the near-infrared absorbing composition of the present invention may contain an antioxidant.
  • the antioxidant include a phenol compound, a phosphite compound, and a thioether compound.
  • a phenol compound having a molecular weight of 500 or more, a phosphite compound having a molecular weight of 500 or more, or a thioether compound having a molecular weight of 500 or more is more preferable. You may use these in mixture of 2 or more types.
  • the phenol compound any phenol compound known as a phenol-based antioxidant can be used.
  • Preferable phenolic compounds include hindered phenolic compounds.
  • a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxyl group is preferable.
  • a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable.
  • phosphorus antioxidant can also be used suitably for antioxidant.
  • phosphorus-based antioxidant tris [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphine-6 -Yl] oxy] ethyl] amine, tris [2-[(4,6,9,11-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphin-2-yl And at least one compound selected from the group consisting of) oxy] ethyl] amine and ethyl bis (2,4-di-tert-butyl-6-methylphenyl) phosphite.
  • the content of the antioxidant is preferably 0.01 to 20% by mass, and more preferably 0.3 to 15% by mass, based on the total solid content of the near-infrared absorbing composition. Only one type of antioxidant may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
  • Examples of other components that can be used in combination with the near-infrared absorbing composition of the present invention include dispersants, sensitizers, fillers, thermal polymerization inhibitors, plasticizers, and further adhesion promoters to the substrate surface. And other auxiliary agents (for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, chain transfer agents, etc.) Also good. By appropriately containing these components, properties such as stability and film physical properties of the target near-infrared cut filter can be adjusted. These components are described in, for example, paragraph 0183 of JP2012-003225A (corresponding to paragraph 0237 of US Patent Application Publication No. 2013/0034812), paragraphs 0101 to 0104 of JP2008-250074. , 0107 to 0109, and the like, the contents of which are incorporated herein.
  • the near-infrared absorbing composition of the present invention can be prepared by mixing the above components.
  • the components constituting the composition may be combined at once, or may be combined sequentially after each component is dissolved and / or dispersed in a solvent.
  • fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density, ultra high molecular weight)
  • a filter using a material such as polyolefin resin e.g., polypropylene (PP) (high density, ultra high molecular weight)
  • polypropylene (including high density polypropylene) and nylon are preferable.
  • the pore size of the filter is suitably about 0.01 to 7.0 ⁇ m, preferably about 0.01 to 3.0 ⁇ m, more preferably about 0.05 to 0.5 ⁇ m. By setting it as this range, it becomes possible to remove a fine foreign material reliably.
  • a fiber-shaped filter medium examples include polypropylene fiber, nylon fiber, glass fiber, and the like. , TPR005, etc.) and SHPX type series (SHPX003 etc.) filter cartridges can be used.
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (former Nihon Microlith Co., Ltd.), or Kitz Micro Filter Co., Ltd. .
  • As the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is preferably 0.2 to 10.0 ⁇ m, more preferably 0.2 to 7.0 ⁇ m, and still more preferably 0.3 to 6.0 ⁇ m. By setting it as this range, a foreign material can be removed with the component particles contained in the composition remaining.
  • the near-infrared absorbing composition of the present invention can be made liquid, for example, a near-infrared cut filter can be easily produced by applying the near-infrared absorbing composition of the present invention to a substrate and drying it.
  • the viscosity of the near-infrared absorbing composition of the present invention is preferably 1 to 3000 mPa ⁇ s when a near-infrared cut filter is formed by coating.
  • the lower limit is preferably 10 mPa ⁇ s or more, and more preferably 100 mPa ⁇ s or more.
  • the upper limit is preferably 2000 mPa ⁇ s or less, and more preferably 1500 mPa ⁇ s or less.
  • the total solid content of the near-infrared absorbing composition of the present invention varies depending on the coating method, but is preferably 1 to 70% by mass, for example.
  • the lower limit is more preferably 10% by mass or more.
  • the upper limit is more preferably 60% by mass or less.
  • the use of the near-infrared absorption composition of this invention is not specifically limited, It can use preferably for formation of a near-infrared cut filter etc.
  • a near-infrared cut filter for example, for a near-infrared cut filter for a wafer level lens
  • a near-infrared cut filter on the back side (the side opposite to the light-receiving side) of the solid-state image sensor can be used.
  • it can be preferably used as a near-infrared cut filter on the light receiving side of the solid-state imaging device.
  • the near-infrared cut filter which has high heat resistance and can implement
  • the near-infrared cut filter of this invention uses the near-infrared absorption composition of this invention mentioned above.
  • the near-infrared cut filter of the present invention preferably has a light transmittance satisfying at least one of the following conditions (1) to (9), and satisfies all the following conditions (1) to (8): It is more preferable that all the conditions (1) to (9) are satisfied.
  • the light transmittance at a wavelength of 400 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 450 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 500 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 700 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 750 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 800 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 850 nm is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 900 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the near-infrared cut filter preferably has a light transmittance of 85% or more, more preferably 90% or more, and still more preferably 95% or more in the entire wavelength range of 400 to 550 nm.
  • the transmittance is preferably high at a wavelength of 400 to 550 nm.
  • the light transmittance at at least one point in the wavelength range of 700 to 800 nm is preferably 20% or less, and the light transmittance in the entire range of wavelength 700 to 800 nm is more preferably 20% or less.
  • the film thickness of the near infrared cut filter can be appropriately selected according to the purpose.
  • the film thickness is, for example, preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the near-infrared cut filter of the present invention may further have a dielectric multilayer film or an ultraviolet absorbing layer in addition to the film obtained by using the near-infrared absorbing composition of the present invention. Since the near infrared cut filter of the present invention further includes a dielectric multilayer film, a near infrared cut filter having a wide viewing angle and excellent near infrared shielding properties can be easily obtained. Moreover, the near-infrared cut filter of this invention can be set as the near-infrared cut filter excellent in ultraviolet-shielding property by having an ultraviolet absorption layer further.
  • the ultraviolet absorbing layer for example, the absorbing layer described in paragraphs 0040 to 0070 and 0119 to 0145 of International Publication No. WO2015 / 099060 can be referred to, the contents of which are incorporated herein.
  • the material for the dielectric multilayer film for example, ceramic can be used.
  • ceramic In order to form an infrared cut filter utilizing the effect of light interference, it is preferable to use two or more ceramics having different refractive indexes. Specifically, a configuration in which high refractive index material layers and low refractive index material layers are alternately stacked can be suitably used as the dielectric multilayer film.
  • a material having a refractive index of 1.7 or more can be used, and a material having a refractive index range of 1.7 to 2.5 is usually selected.
  • the material include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as a main component, and titanium oxide, tin oxide, and / or cerium oxide. The thing which contained a small amount is mentioned.
  • a material having a refractive index of 1.6 or less can be used, and a material having a refractive index range of 1.2 to 1.6 is usually selected.
  • this material include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium aluminum hexafluoride.
  • a method for forming the dielectric multilayer film is not particularly limited.
  • a high refractive index material layer and a low refractive index material layer are alternately formed by a chemical vapor deposition (CVD) method, a sputtering method, a vacuum deposition method, or the like.
  • CVD chemical vapor deposition
  • a sputtering method a vacuum deposition method, or the like.
  • Forming a dielectric multilayer film laminated on the transparent layer and / or infrared absorbing layer containing copper and bonding the adhesive multilayer film with an adhesive A dielectric multilayer film in which a high refractive index material layer and a low refractive index material layer are alternately laminated on the surface of a transparent layer containing copper and / or an infrared absorption layer by CVD, sputtering, vacuum deposition, or the like.
  • the method of forming can be mentioned.
  • each of the high refractive index material layer and the low refractive index material layer is preferably 0.1 ⁇ to 0.5 ⁇ of the infrared wavelength ⁇ (nm) to be shielded. By setting the thickness within the above range, it is easy to control shielding and transmission of a specific wavelength.
  • the number of laminated layers in the dielectric multilayer film is preferably 2 to 100 layers, more preferably 2 to 60 layers, and further preferably 2 to 40 layers. If the substrate is warped when the dielectric multilayer film is deposited, in order to eliminate this, the dielectric multilayer film is deposited on both sides of the substrate. The surface of the substrate on which the dielectric multilayer film is deposited is exposed to ultraviolet rays. It is possible to take a method such as irradiation with radiation. In addition, when irradiating a radiation, you may irradiate while performing the vapor deposition of a dielectric multilayer, and you may irradiate separately after vapor deposition.
  • the near-infrared cut filter of the present invention can be used in various devices such as a solid-state imaging device such as a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor) device, an infrared sensor, and an image display device.
  • the near-infrared cut filter of the present invention includes a lens having a function of absorbing / cutting near-infrared rays (a camera lens such as a digital camera, a mobile phone or a vehicle-mounted camera, an optical lens such as an f- ⁇ lens, a pickup lens) and the like.
  • Optical filters for semiconductor light-receiving elements for semiconductor light-receiving elements, near-infrared absorbing films and near-infrared absorbing plates for shielding heat rays for energy saving, agricultural coating agents for selective use of sunlight, recording using near-infrared absorbing heat Used in media, electronic equipment and photographic near infrared filters, protective glasses, sunglasses, heat ray shielding filters, optical character reading recording, confidential document copy prevention, electrophotographic photoreceptors, laser welding, and the like. It is also useful as a noise cut filter for CCD cameras and a filter for CMOS image sensors.
  • the near-infrared cut filter of the present invention can be produced using the near-infrared absorbing composition of the present invention.
  • the manufacturing method of the near-infrared cut filter of this invention includes the process of forming a near-infrared absorption composition layer using the near-infrared absorption composition of this invention. Furthermore, it is preferable to include a step of curing the near-infrared absorbing composition layer.
  • the manufacturing method of the near-infrared cut filter of this invention may perform the process of forming a pattern further.
  • a material in which a film made of the near-infrared absorbing composition of the present invention is formed on a support may be used as a near-infrared cut filter, and the aforementioned film is peeled off from the support and peeled off from the support.
  • the aforementioned film (single film) may be used as a near infrared cut filter.
  • a known method can be used as a method for applying the near-infrared absorbing composition.
  • a dropping method drop casting
  • a slit coating method for example, a spray method; a roll coating method; a spin coating method (spin coating); a casting coating method; a slit and spin method; a pre-wet method (for example, JP 2009-145395 A).
  • inkjet for example, on-demand method, piezo method, thermal method
  • ejection printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, metal mask printing method, etc.
  • the dropping method (drop casting) it is preferable to form a dropping region of the near-infrared absorbing composition having a photoresist as a partition on the support so that a uniform film can be obtained with a predetermined film thickness.
  • a desired film thickness can be obtained by adjusting the dropping amount and solid content concentration of the near-infrared absorbing composition and the area of the dropping region.
  • the support may be a transparent substrate such as glass.
  • a solid-state image sensor may be sufficient.
  • substrate provided in the light-receiving side of the solid-state image sensor may be sufficient. Further, it may be a layer such as a flattening layer provided on the light receiving side of the solid-state imaging device.
  • the method for curing the near-infrared absorbing composition layer is not particularly limited and can be appropriately selected depending on the purpose.
  • an exposure process, a heat process, etc. are mentioned suitably.
  • “exposure” is used to include not only light of various wavelengths but also irradiation of radiation such as electron beams and X-rays.
  • the exposure process is preferably performed by irradiation with radiation.
  • the radiation ultraviolet rays such as electron beams, KrF, ArF, g rays, h rays, i rays, and visible light are preferable.
  • Examples of the exposure method include stepper exposure and exposure with a high-pressure mercury lamp.
  • Exposure is preferably 5 ⁇ 3000mJ / cm 2, more preferably 10 ⁇ 2000mJ / cm 2, particularly preferably 50 ⁇ 1000mJ / cm 2.
  • an ultraviolet exposure machine such as an ultrahigh pressure mercury lamp is preferably used.
  • the heating temperature is preferably 120 to 250 ° C., more preferably 160 to 220 ° C.
  • the heating temperature is 120 ° C. or higher, the film strength is improved by the heat treatment, and when the heating temperature is 250 ° C. or lower, the decomposition of the film components can be suppressed.
  • the heating time is preferably 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes.
  • a heating apparatus According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hot plate, an infrared (IR) heater etc. are mentioned.
  • pre-baking may be performed before the curing treatment.
  • the heating temperature is preferably 80 ° C. to 200 ° C., more preferably 90 ° C. to 150 ° C.
  • the heating time is preferably 30 to 240 seconds, more preferably 60 to 180 seconds.
  • post-baking may be performed after the curing treatment.
  • the post-heating is a heat treatment for completing the curing of the film after the curing treatment.
  • the heating temperature is preferably 100 to 240 ° C. From the viewpoint of film curing, 200 to 230 ° C. is more preferable.
  • the heating time is preferably 30 to 1000 seconds, more preferably 60 to 500 seconds.
  • examples of the pattern forming method include a pattern forming method by a photolithography method and a pattern forming method by a dry etching method.
  • the solid-state imaging device of the present invention includes the near-infrared cut filter of the present invention.
  • the camera module of the present invention includes the near-infrared cut filter of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a camera module having a near-infrared cut filter according to an embodiment of the present invention.
  • a camera module 10 illustrated in FIG. 1 includes a solid-state image sensor 11, a planarization layer 12 provided on the main surface side (light-receiving side) of the solid-state image sensor, a near-infrared cut filter 13, and a near-infrared cut filter. And a lens holder 15 having an imaging lens 14 in the internal space.
  • incident light h ⁇ from the outside passes through the imaging lens 14, the near-infrared cut filter 13, and the planarization layer 12 in order, and then reaches the imaging device portion of the solid-state imaging device 11.
  • the solid-state imaging device 11 includes, for example, a photodiode, an interlayer insulating film (not shown), a base layer (not shown), a color filter 17, an overcoat (not shown), and a microlens 18 on the main surface of the substrate 16. Are provided in this order.
  • the color filter 17 (red color filter, green color filter, blue color filter) and the microlens 18 are respectively disposed so as to correspond to the solid-state imaging device 11.
  • the surface of the microlens 18, between the base layer and the color filter 17, or between the color filter 17 and the overcoat may be sufficient.
  • the near-infrared cut filter 13 may be provided at a position within 2 mm (more preferably within 1 mm) from the surface of the microlens. If provided at this position, the process of forming the near-infrared cut filter can be simplified, and unnecessary near-infrared rays to the microlens can be sufficiently cut, so that the near-infrared shielding property can be further improved.
  • the near-infrared cut filter of this invention is excellent in heat resistance, it can use for a solder reflow process.
  • the camera module By manufacturing the camera module through the solder reflow process, it is possible to automatically mount electronic component mounting boards, etc. that need to be soldered, making the productivity significantly higher than when not using the solder reflow process. Can be improved. Furthermore, since it can be performed automatically, the cost can be reduced.
  • the near-infrared cut filter is exposed to a temperature of about 250 to 270 ° C. Therefore, the near-infrared cut filter is also referred to as heat resistance that can withstand the solder reflow process (hereinafter also referred to as “solder reflow resistance”). ).
  • the camera module of the present invention can further have an ultraviolet absorbing layer.
  • the ultraviolet shielding property can be enhanced.
  • the description of paragraphs 0040 to 0070 and 0119 to 0145 of International Publication No. WO2015 / 099060 can be referred to for the ultraviolet absorbing layer, the contents of which are incorporated herein.
  • it can further have an ultraviolet / infrared light reflection film described later.
  • the ultraviolet absorbing layer and the ultraviolet / infrared light reflecting film may be used in combination, or only one of them.
  • 2 to 4 are schematic cross-sectional views showing an example of the vicinity of the near-infrared cut filter in the camera module.
  • the camera module includes a solid-state imaging device 11, a planarization layer 12, an ultraviolet / infrared light reflection film 19, a transparent base material 20, and a near infrared absorption layer (near infrared cut filter) 21. And an antireflection layer 22 in this order.
  • the ultraviolet / infrared light reflection film 19 has an effect of imparting or enhancing the function of a near-infrared cut filter.
  • paragraphs 0033 to 0039 of JP2013-68688A, paragraph 0110 of international publication WO2015 / 099060. ⁇ 0114 can be referred to, the contents of which are incorporated herein.
  • the transparent substrate 20 transmits light having a wavelength in the visible region.
  • the near-infrared absorbing layer 21 can be formed by applying the near-infrared absorbing composition of the present invention described above.
  • the antireflection layer 22 has a function of improving the transmittance by preventing reflection of light incident on the near-infrared cut filter and efficiently using incident light.
  • Japanese Patent Application Laid-Open No. 2013-68688 Paragraph 0040 which is incorporated herein by reference.
  • the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an antireflection layer 22, a planarization layer 12, an antireflection layer 22, and a transparent substrate.
  • the material 20 and the ultraviolet / infrared light reflection film 19 may be provided in this order.
  • the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an ultraviolet / infrared light reflection film 19, a planarization layer 12, and an antireflection layer 22. And you may have the transparent base material 20 and the reflection preventing layer 22 in this order.
  • the image display device of the present invention has the near infrared cut filter of the present invention.
  • the near-infrared cut filter of the present invention can also be used for image display devices such as liquid crystal display devices and organic electroluminescence (organic EL) display devices.
  • image display devices such as liquid crystal display devices and organic electroluminescence (organic EL) display devices.
  • organic EL organic electroluminescence
  • each colored pixel for example, red, green, blue
  • the infrared light contained in the backlight of the display device for example, white light emitting diode (white LED)
  • white LED white light emitting diode
  • It can be used for the purpose of forming an infrared pixel in addition to each colored display pixel.
  • the display device For the definition of the display device and details of each display device, refer to, for example, “Electronic Display Device (Akio Sasaki, Kogyo Kenkyukai, 1990)”, “Display Device (Junaki Ibuki, Sangyo Tosho) , Issued in 1989).
  • the liquid crystal display device is described in, for example, “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, Industrial Research Co., Ltd., published in 1994)”.
  • the liquid crystal display device to which the present invention can be applied is not particularly limited, and can be applied to, for example, various types of liquid crystal display devices described in the “next generation liquid crystal display technology”.
  • the image display device may have a white organic EL element.
  • the white organic EL element preferably has a tandem structure.
  • JP 2003-45676 A supervised by Akiyoshi Mikami, “Frontier of Organic EL Technology Development-High Brightness, High Precision, Long Life, Know-how Collection”, Technical Information Association, 326-328 pages, 2008, etc.
  • the spectrum of white light emitted from the organic EL element preferably has strong emission maximum peaks in the blue region (430 nm to 485 nm), the green region (530 nm to 580 nm) and the yellow region (580 nm to 620 nm). In addition to these emission peaks, those having an emission maximum peak in the red region (650 nm to 700 nm) are more preferable.
  • the infrared sensor of the present invention includes the near infrared cut filter of the present invention.
  • the configuration of the infrared sensor of the present invention is a configuration provided with the near-infrared cut filter of the present invention, and is not particularly limited as long as it functions as an infrared sensor. Examples thereof include the following configurations.
  • a plurality of photodiodes that constitute a light receiving area of a solid-state imaging device (CCD sensor, CMOS sensor, organic CMOS sensor, etc.), a transfer electrode made of polysilicon, and the like.
  • the structure etc. which have a condensing means on may be sufficient.
  • Example 1 ⁇ Method for preparing composition> (Example 1) Preparation of composition 1 Copper complex 1 shown below as an infrared absorbing compound and a metal component containing a metal atom other than copper are mixed, and metal atom (copper atom) contained in copper complex 1 is 100 masses. Infrared absorber 1 containing 0.1 part by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • IRGACURE-OXE02 manufactured by BASF
  • a composition 1 was prepared by filtration through a filter (manufactured by Nippon Pole Co., Ltd.).
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
  • Copper complex 1 the following structure
  • Example 2 Preparation of composition 2 In the same manner as in Example 1, with respect to 100 parts by mass of metal atom (copper atom) contained in copper complex 1, metal atom (metal atom other than copper) contained in the metal component An infrared absorber 2 containing 0.8 part by mass of was prepared.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms other than copper.
  • a composition 2 was prepared in the same manner as in Example 1 except that the infrared absorbent 2 was used instead of the infrared absorbent 1.
  • This composition contained 0.8 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
  • Example 3 Preparation of Composition 3
  • metal atom metal atom (metal atom other than copper) contained in the metal component.
  • An infrared absorber 3 containing 0.01 part by mass of was prepared.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • a composition 3 was prepared in the same manner as in Example 1 except that the infrared absorbent 3 was used instead of the infrared absorbent 1.
  • This composition contained 0.01 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
  • composition 4 100 mass of metal atoms (copper atom) contained in the copper complex 2 like Example 1 except having used the same amount copper complex 2 instead of the copper complex 1
  • Infrared absorber 4 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • a composition 4 was prepared in the same manner as in Example 1 except that the infrared absorbent 4 was used instead of the infrared absorbent 1.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 2.
  • Copper complex 2 the following structure
  • Example 5 Preparation of Composition 5 100 mass of metal atom (copper atom) contained in copper complex 3 in the same manner as in Example 1 except that the same amount of copper complex 3 was used instead of copper complex 1.
  • Infrared absorbent 5 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • a composition 5 was prepared in the same manner as in Example 1 except that the infrared absorbent 5 was used instead of the infrared absorbent 1.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 3.
  • Copper complex 3 the following structure
  • composition 6 100 mass of metal atoms (copper atom) contained in the copper complex 4 like Example 1 except having used the same amount copper complex 4 instead of the copper complex 1
  • Infrared absorber 6 containing 0.1 part by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • a composition 6 was prepared in the same manner as in Example 1 except that the infrared absorbent 6 was used instead of the infrared absorbent 1.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 4.
  • Copper complex 4 A copper complex having the following compound as a ligand.
  • Example 7 Preparation of Composition 7 100 mass of metal atoms (copper atoms) contained in copper complex 5 in the same manner as in Example 1 except that the same amount of copper complex 5 was used instead of copper complex 1.
  • Infrared absorber 7 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • a composition 7 was prepared in the same manner as in Example 1 except that the infrared absorbent 7 was used instead of the infrared absorbent 1.
  • Copper complex 5 A copper complex having the following compound as a ligand.
  • Example 8 Preparation of Composition 8 To an eggplant flask, 7.00 g (35.06 mmol) of copper acetate monohydrate and 140 g of methanol were added and stirred at 20 ° C. for 1 hour to obtain a solution (solution A). . In a separate container, 1.75 g of Prisurf A219B (Daiichi Kogyo Seiyaku Co., Ltd.) and 4.82 g of n-butylphosphonic acid were dissolved in 100 g of methanol to obtain a solution (liquid B). B liquid was dripped over 3 hours with respect to A liquid. The reaction was stirred at 20 ° C. for 10 hours.
  • Prisurf A219B Diichi Kogyo Seiyaku Co., Ltd.
  • composition 8 contains 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper salt of n-butylphosphonate. It was.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms other than copper.
  • Example 9 Preparation of composition 9 Instead of copper complex 1, copper complex 1 and copper complex 7 were combined with copper complex 1 in the same manner as in Example 1 except that a mixture having a mass ratio of 1: 3 was used.
  • An infrared absorber 9 containing 0.1 part by mass of a metal atom (metal atom other than copper) contained in a metal component with respect to 100 parts by mass of a metal atom (copper atom) contained in the copper complex 7 was prepared.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • Example 1 except that infrared absorber 9 was used instead of infrared absorber 1, the amount of resin 1 was changed to 44.95 parts by mass, and 5 parts by mass of KBM-3066 (manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
  • a composition 9 was prepared in the same manner as described above. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
  • Copper complex 7 A copper complex having the following compound as a ligand.
  • Example 10 Preparation of Composition 10
  • a phthalocyanine compound Pc-1 shown below as an infrared absorbing compound was mixed with a metal component containing a metal atom other than vanadium, and a metal atom (vanadium) contained in the phthalocyanine compound Pc-1 was mixed.
  • An infrared absorber 10 containing 0.1 part by mass of metal atoms (metal atoms other than vanadium) contained in the metal component was prepared with respect to 100 parts by mass of atoms.
  • the metal component contained Li, Na, K, Ca, Fe, and Al as metal atoms.
  • the infrared absorber 10 has a blending amount of 0.1 part by weight of the phthalocyanine compound Pc-1, 8.04 parts by weight of the resin 2 shown below, KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) 0.07 part by mass, 0.265 parts by mass of MegaFac RS-72K (manufactured by DIC), 0.38 parts by mass of the following compound as a photopolymerization initiator, and propylene glycol monoethyl ether acetate ( PGMEA) was mixed with 82.51 parts by mass, stirred, and then filtered through a nylon filter (manufactured by Nippon Pole Co., Ltd.) having a pore size of 0.45 ⁇ m to prepare composition 10.
  • KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd.
  • MegaFac RS-72K manufactured by DIC
  • PGMEA propylene glycol monoethyl ether
  • composition contained 0.1 parts by mass of metal atoms (metal atoms other than vanadium) contained in the metal component with respect to 100 parts by mass of metal atoms (vanadium atoms) contained in the phthalocyanine compound Pc-1.
  • Resin 2 the following compound (Mw: 41000, the numerical value attached to the main chain is the molar ratio of each structural unit)
  • Photopolymerization initiator Structure below
  • Example 11 Preparation of Composition 11 A dithiol compound Dt-1 shown below as an infrared absorbing compound was mixed with a metal component containing a metal atom other than nickel, and a metal atom contained in the dithiol compound Dt-1 (nickel An infrared absorber 11 containing 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component was prepared with respect to 100 parts by mass of atoms.
  • the metal component contained Li, Na, K, Ca, Fe, and Cu as metal atoms.
  • the metal atom (metal atom other than nickel) contained in the metal component is added to 100 parts by mass of the metal atom (nickel atom) contained in the dithiol compound Dt-1.
  • Composition 11 containing 0.1 part by mass was prepared.
  • composition 12 As an infrared absorbing compound, 50 parts by mass of the following phthalocyanine compound Pc-1, 50 parts by mass of the following dithiol compound Dt-1, and metal atoms other than vanadium and nickel The total amount of the metal atoms (vanadium) that can be contained in the phthalocyanine compound Pc-1 and the metal atoms (nickel atoms) contained in the dithiol compound Dt-1 is included in the metal component.
  • Infrared absorber 12 containing 0.1 part by mass of metal atoms (metal atoms other than vanadium and nickel) was prepared.
  • the metal component contained Li, Na, K, Ca, Fe, Cu, and Al as metal atoms.
  • the phthalocyanine compound Pc-1 was added to the phthalocyanine compound Pc-1 in the same manner as in the composition 10, except that the infrared absorber 12 was used and the amount of the phthalocyanine compound Pc-1 and the dithiol compound Dt-1 was 0.1 parts by mass.
  • Metal atoms (metal atoms other than vanadium and nickel) contained in the metal component are 0 with respect to a total of 100 parts by mass of the metal atoms (vanadium) that can be contained and the metal atoms (nickel atoms) contained in the dithiol compound Dt-1.
  • a composition 12 containing 1 part by mass was prepared.
  • Example 13 Preparation of Composition 13 As an infrared absorbing compound, 50 parts by mass of the following dithiol compound Dt-1, 50 parts by mass of the following squarylium compound SQ-1, and a metal containing a metal atom other than nickel Components are mixed, and 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component are included with respect to a total of 100 parts by mass of metal atoms (nickel atoms) contained in the dithiol compound Dt-1 Infrared absorber 13 was prepared.
  • the metal component contained Li, Na, K, Ca, Fe, and Cu as metal atoms.
  • the dithiol compound Dt-1 was the same as the composition 10 except that the infrared absorber 13 was used and the amount of the dithiol compound Dt-1 and the squarylium compound SQ-1 was 0.1 parts by mass.
  • the composition 13 which contains 0.1 mass part of metal atoms (metal atoms other than nickel) contained in a metal component with respect to 100 mass parts of metal atoms (nickel atom) contained in the metal was prepared.
  • Example 14 Preparation of Composition 14 As an infrared absorbing compound, 50 parts by mass of the following dithiol compound Dt-1, 50 parts by mass of the following cyanine compound Cy-1, and a metal containing a metal atom other than nickel Components are mixed, and 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component are included with respect to a total of 100 parts by mass of metal atoms (nickel atoms) contained in the dithiol compound Dt-1 An infrared absorber 14 was prepared. The metal component contained Li, Na, K, Ca, Fe, and Cu as metal atoms.
  • the dithiol compound Dt-1 is the same as the composition 10 except that the infrared absorber 14 is used and the amount of the dithiol compound Dt-1 and the cyanine compound Cy-1 is 0.1 parts by mass.
  • the composition 14 which contains 0.1 mass part of metal atoms (metal atom other than nickel) contained in a metal component with respect to 100 mass parts of metal atoms (nickel atom) contained in the metal was prepared.
  • Example 15 Preparation of Composition 15 As an infrared absorbing compound, 50 parts by mass of dithiol compound Dt-1 shown below, 50 parts by mass of pyrrolopyrrole compound Pp-1 shown below, and a metal atom other than nickel are included. 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component with respect to 100 parts by mass in total with the metal atoms (nickel atom) contained in the dithiol compound Dt-1 The infrared absorber 15 to contain was prepared. The metal component contained Li, Na, K, Ca, Ti, Fe, Co, Cu, and Zn as metal atoms.
  • the dithiol compound Dt- is the same as the composition 10, except that the infrared absorber 15 is used and the amount of the dithiol compound Dt-1 and the pyrrolopyrrole compound Pp-1 is 0.1 parts by mass.
  • the composition 15 which contains 0.1 mass part of metal atoms (metal atoms other than nickel) contained in a metal component with respect to 100 mass parts of metal atoms (nickel atom) contained in 1 was prepared.
  • Example 16 Preparation of Composition 16 28.9 parts by mass of phenyltriethoxysilane, 28.9 parts by mass of dimethyldimethoxysilane, and 30.6 parts by mass of 5% by mass acetic acid were mixed at room temperature for 4 hours to obtain a sol. .
  • the composition 16 was prepared by filtration. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 5.
  • Example 17 Preparation of Composition 17
  • Infrared absorber 17 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7 was prepared.
  • the metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
  • a composition 17 was prepared in the same manner as in Example 1 except that the infrared absorbent 17 was used instead of the infrared absorbent 1.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 5.
  • composition 18 10 parts by mass of tetraethoxysilane, 10 parts by mass of methyltriethoxysilane, 45 parts by mass of dimethyldiethoxysilane, 20 parts by mass of 10% by mass aqueous acetic acid solution, and 20 of cyclopentanone
  • a sol was obtained by mixing 4 parts by mass with a mass part for 4 hours.
  • a solution obtained by dissolving 45 parts by mass of infrared absorber 1 and 5 parts by mass of IRGACURE-OXE02 (manufactured by BASF) in 100 parts by mass of cyclopentanone at room temperature for 20 minutes was added to the sol, and the pore size was 0.45 ⁇ m.
  • composition 18 was filtered through a nylon filter (manufactured by Nippon Pole Co., Ltd.) to obtain a composition 18.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
  • composition 19 was prepared in the same manner as in Example 18 except that the infrared absorbent 9 was used instead of the infrared absorbent 1.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
  • composition 20 1.13 parts by mass of infrared absorber 14 was used instead of infrared absorber 1, the amount of methyltriethoxysilane was changed to 20 parts by mass, and the amount of dimethyldiethoxysilane was changed.
  • the composition 20 was prepared in the same manner as in Example 18 except that the solvent was changed to 75 parts by mass and the solvent for dissolving the infrared absorber was changed to 900 parts by mass of PGMEA instead of 100 parts by mass of cyclopentanone.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component with respect to 100 parts by mass of metal atoms (nickel atoms) contained in the dithiol compound Dt-1.
  • Example 21 Preparation of Composition 21
  • Composition 21 was prepared in the same manner as in Example 19 except that KBM-3066 (manufactured by Shin-Etsu Silicone) was used instead of tetraethoxysilane.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
  • Example 22 Preparation of Composition 22 A composition 22 was prepared in the same manner as in Example 19 except that KBE-9659 (manufactured by Shin-Etsu Silicone) was used instead of tetraethoxysilane.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
  • Example 23 Preparation of Composition 23 A composition 23 was prepared in the same manner as in Example 19 except that KBM-7103 (manufactured by Shin-Etsu Silicone) was used instead of methylethoxysilane.
  • This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
  • composition 24 Preparation of composition 24 Example except that tetraethoxysilane was not used, the amount of methyltriethoxysilane was changed to 25 parts by mass, and the amount of dimethyldiethoxysilane was changed to 40 parts by mass.
  • a composition 24 was prepared in the same manner as in 19. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
  • Comparative example 1 Preparation of comparative composition 1 In Example 7, the metal component contained in the metal component with respect to 100 parts by mass of the metal atom (copper atom) contained in the copper complex 5 by adjusting the compounding amount of the metal component. Comparative composition 1 was prepared in the same manner as in Example 7 except that the amount of atoms (metal atoms other than copper) was 1.2 parts by mass.
  • Comparative Example 2 Preparation of Comparative Composition 2
  • the metal component was adjusted with respect to 100 parts by mass of the metal atom (copper atom) contained in the copper salt of n-butylphosphonate by adjusting the compounding amount of the metal component.
  • Comparative composition 2 was prepared in the same manner as in Example 8, except that 1.2 parts by mass of metal atoms (metal atoms other than copper) contained in 1 were included.
  • Comparative Example 3 Preparation of Comparative Composition 3
  • the metal component contained in the metal component was adjusted with respect to 100 parts by mass of the metal atom (copper atom) contained in the copper complex 5 by adjusting the compounding amount of the metal component.
  • Comparative composition 3 was prepared in the same manner as in Example 7 except that 0.003 parts by mass of an atom (metal atom other than copper) was contained.
  • Absorbance ratio change rate [((Absorbance ratio before heat resistance test-Absorbance ratio after heat resistance test) / Absorbance ratio before heat resistance test) ⁇ 100] (%) A: Absorbance ratio change rate ⁇ 2% B: 2% ⁇ absorbance ratio change rate ⁇ 4% C: 4% ⁇ absorbance ratio change rate ⁇ 7% D: 7% ⁇ absorbance ratio change rate
  • the examples had good visible transparency and near-infrared shielding properties. Furthermore, it was excellent in heat resistance. On the other hand, in the comparative example, either visible transparency or near-infrared shielding was inferior.
  • compositions of Examples 1 to 24 are applied on a substrate on which a dielectric multilayer film is formed and a near-infrared cut filter is produced by the same method as described above, the same effect can be obtained.
  • a multilayer deposited film (silica (SiO 2 : film thickness 120 to 190 nm) and a titania (TiO 2 : film thickness 70 to 120 nm) layer that reflects near infrared rays is alternately stacked on one surface of the substrate at a deposition temperature of 150 ° C. (Lamination number 40)) to obtain a dielectric multilayer film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is a near-infrared absorbing composition with which it is possible to manufacture a film having excellent visible transparency and near-infrared ray shielding properties. Also provided are a method for manufacturing a near-infrared cut filter, a near-infrared cut filter, a solid-state imaging element, a camera module, an infrared sensor, and an infrared absorbing agent. A near-infrared absorbing composition including at least one compound selected from among a solvent and a curable compound, and a metal compound that is an infrared absorbing compound, wherein the near-infrared absorbing composition includes a metal component that includes metal atoms differing from the metal atoms included in the metal compound, the metal atoms included in the metal component being included at 0.005-1 mass parts to 100 mass parts of the metal atoms included in the metal compound.

Description

近赤外線吸収組成物、近赤外線カットフィルタの製造方法、近赤外線カットフィルタ、固体撮像素子、カメラモジュール、赤外線センサおよび赤外線吸収剤Near-infrared absorbing composition, method for producing near-infrared cut filter, near-infrared cut filter, solid-state imaging device, camera module, infrared sensor, and infrared absorber
 本発明は、近赤外線吸収組成物、近赤外線カットフィルタの製造方法、近赤外線カットフィルタ、固体撮像素子、カメラモジュール、赤外線センサおよび赤外線吸収剤に関する。 The present invention relates to a near-infrared absorbing composition, a method for producing a near-infrared cut filter, a near-infrared cut filter, a solid-state imaging device, a camera module, an infrared sensor, and an infrared absorber.
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などにはカラー画像の固体撮像素子である、電荷結合素子(CCD)や、相補型金属酸化膜半導体(CMOS)素子などが用いられている。これら固体撮像素子は、その受光部において近赤外線に感度を有するシリコンフォトダイオードを使用しているために、視感度補正を行うことが必要であり、近赤外線カットフィルタを用いることが多い。 Video cameras, digital still cameras, mobile phones with camera functions, etc. use charge coupled devices (CCD), complementary metal oxide semiconductor (CMOS) devices, etc., which are solid-state imaging devices for color images. Since these solid-state imaging devices use silicon photodiodes having sensitivity to near infrared rays in their light receiving portions, it is necessary to perform visibility correction and often use near-infrared cut filters.
 近赤外線カットフィルタは、赤外線吸収剤を含む組成物(近赤外線吸収組成物)を用いて製造することがある。赤外線吸収剤としては、銅化合物(特許文献1)や、酸化亜鉛系粒子(特許文献2)などの金属化合物が知られている。 The near-infrared cut filter may be manufactured using a composition containing an infrared absorber (near-infrared absorbing composition). As infrared absorbers, metal compounds such as copper compounds (Patent Document 1) and zinc oxide-based particles (Patent Document 2) are known.
特開2015-158662号公報Japanese Patent Application Laid-Open No. 2015-158862 特開平10-338521号公報Japanese Patent Laid-Open No. 10-338521
 近年において、近赤外線カットフィルタの要求特性として、可視透明性および近赤外遮蔽性のさらなる向上が求められている。 In recent years, further improvements in visible transparency and near-infrared shielding properties have been demanded as required characteristics of near-infrared cut filters.
 よって、本発明の目的は、可視透明性および近赤外遮蔽性に優れた膜を製造できる近赤外線吸収組成物を提供することにある。また、近赤外線カットフィルタの製造方法、近赤外線カットフィルタ、固体撮像素子、カメラモジュール、赤外線センサおよび赤外線吸収剤を提供することにある。 Therefore, an object of the present invention is to provide a near-infrared absorbing composition capable of producing a film excellent in visible transparency and near-infrared shielding properties. Moreover, it is providing the manufacturing method of a near-infrared cut filter, a near-infrared cut filter, a solid-state image sensor, a camera module, an infrared sensor, and an infrared absorber.
 本発明者らは、鋭意検討した結果、赤外線吸収化合物として金属化合物を用いた近赤外線吸収組成物において、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分を、金属原子100質量部に対し、金属成分に含まれる金属原子を0.005~1質量部含有させることで、上記の目的を達成できることを見出し、本発明を完成するに至った。本発明は以下を提供する。
<1> 溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
 近赤外線吸収組成物は、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分を含み、金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を0.005~1質量部含む、近赤外線吸収組成物。
<2> 金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含む、<1>に記載の近赤外線吸収組成物。
<3> 金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含み、金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含む、<1>または<2>に記載の近赤外線吸収組成物。
<4> 溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
 近赤外線吸収組成物は、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属原子を含む金属成分を含み、
 金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、近赤外線吸収組成物。
<5> 溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
 金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含み、
 近赤外線吸収組成物は、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属原子を含む金属成分を含み、
 金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、近赤外線吸収組成物。
<6> 金属化合物が、銅化合物であり、金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、PtおよびAgから選ばれる少なくとも1種の金属原子を含む、<1>~<5>のいずれかに記載の近赤外線吸収組成物。
<7> 硬化性化合物が、架橋性基を有する化合物を含む、<1>~<6>のいずれかに記載の近赤外線吸収組成物。
<8> <1>~<7>のいずれかに記載の近赤外線吸収組成物を用いて、近赤外線吸収組成物層を形成する工程を含む、近赤外線カットフィルタの製造方法。
<9> <1>~<7>のいずれかに記載の近赤外線吸収組成物を用いた、近赤外線カットフィルタ。
<10> 誘電体多層膜および紫外線吸収膜から選ばれる少なくとも1種を有する、<9>に記載の近赤外線カットフィルタ。
<11> <9>または<10>に記載の近赤外線カットフィルタを有する固体撮像素子。
<12> <9>または<10>に記載の近赤外線カットフィルタを有するカメラモジュール。
<13> <9>または<10>に記載の近赤外線カットフィルタを有する赤外線センサ。
<14> 赤外線吸収化合物である金属化合物と、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
 金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を0.005~1質量部含む、赤外線吸収剤。
<15> 赤外線吸収化合物である金属化合物と、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
 金属成分が、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
 金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、赤外線吸収剤。
<16> 赤外線吸収化合物である金属化合物と、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
 金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含む金属化合物であり、
 金属成分が、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
 金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、赤外線吸収剤。
As a result of intensive studies, the present inventors have found that in a near-infrared absorbing composition using a metal compound as an infrared absorbing compound, a metal component containing a metal atom different from the metal atom contained in the metal compound is added in an amount of 100 parts by mass of metal atoms On the other hand, the inventors have found that the above object can be achieved by adding 0.005 to 1 part by mass of metal atoms contained in the metal component, and the present invention has been completed. The present invention provides the following.
<1> A near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared absorbing compound,
The near-infrared absorbing composition includes a metal component containing a metal atom different from the metal atom contained in the metal compound, and 0.005% of the metal atom contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound. A near-infrared absorbing composition containing 1 part by mass.
<2> The metal component is at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag. The near-infrared absorption composition as described in <1> containing.
<3> The metal compound includes at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd, and Pt, and the metal component includes Al, Zn, Li, The proximity according to <1> or <2>, comprising at least one metal atom selected from Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag Infrared absorbing composition.
<4> A near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared absorbing compound,
The near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni A metal component containing at least one metal atom selected from Cu, Pt and Ag,
Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound A near-infrared absorbing composition, wherein the total amount of Ag is 0.005 to 1 part by mass.
<5> A near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound, and a metal compound that is an infrared absorbing compound,
The metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
The near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni A metal component containing at least one metal atom selected from Cu, Pt and Ag,
Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag, the near-infrared absorbing composition having a total amount of 0.005 to 1 part by mass.
<6> The metal compound is a copper compound, and the metal component is selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Pt, and Ag. The near-infrared absorbing composition according to any one of <1> to <5>, comprising at least one metal atom.
<7> The near-infrared absorbing composition according to any one of <1> to <6>, wherein the curable compound includes a compound having a crosslinkable group.
<8> A method for producing a near-infrared cut filter, comprising a step of forming a near-infrared absorbing composition layer using the near-infrared absorbing composition according to any one of <1> to <7>.
<9> A near-infrared cut filter using the near-infrared absorbing composition according to any one of <1> to <7>.
<10> The near-infrared cut filter according to <9>, having at least one selected from a dielectric multilayer film and an ultraviolet absorbing film.
<11> A solid-state imaging device having the near-infrared cut filter according to <9> or <10>.
<12> A camera module having the near-infrared cut filter according to <9> or <10>.
<13> An infrared sensor having the near-infrared cut filter according to <9> or <10>.
<14> a metal compound that is an infrared absorbing compound, and a metal component that contains a metal atom different from the metal atom contained in the metal compound,
An infrared absorber comprising 0.005 to 1 part by mass of a metal atom contained in a metal component with respect to 100 parts by mass of a metal atom contained in a metal compound.
<15> a metal compound that is an infrared absorbing compound, and a metal component that contains a metal atom different from the metal atom contained in the metal compound,
The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag;
Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of metal atoms contained in the metal compound An infrared absorber wherein the total amount of Ag is 0.005 to 1 part by mass.
<16> a metal compound that is an infrared absorbing compound, and a metal component that includes a metal atom different from the metal atom contained in the metal compound,
The metal compound is a metal compound containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag;
Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag, an infrared absorber having a total amount of 0.005 to 1 part by mass.
 本発明によれば、可視透明性および近赤外遮蔽性に優れた膜を製造できる近赤外線吸収組成物を提供することが可能になった。また、近赤外線カットフィルタの製造方法、近赤外線カットフィルタ、固体撮像素子、カメラモジュール、赤外線センサおよび赤外線吸収剤を提供することが可能になった。 According to the present invention, it has become possible to provide a near-infrared absorbing composition capable of producing a film excellent in visible transparency and near-infrared shielding properties. In addition, it has become possible to provide a method for producing a near-infrared cut filter, a near-infrared cut filter, a solid-state imaging device, a camera module, an infrared sensor, and an infrared absorber.
本発明の実施形態に係る、近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図であるIt is a schematic sectional drawing which shows the structure of the camera module which has a near-infrared cut off filter based on embodiment of this invention. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module.
 以下において、本発明の内容について詳細に説明する。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートを表し、「(メタ)アリル」は、アリルおよびメタリルを表し、「(メタ)アクリル」は、アクリルおよびメタクリルを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルを表す。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含するものである。
 本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
 本明細書において、近赤外線とは、波長領域が700~2500nmの光(電磁波)をいう。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
 本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定によるポリスチレン換算値として定義される。
Hereinafter, the contents of the present invention will be described in detail. In this specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In the present specification, “(meth) acrylate” represents acrylate and methacrylate, “(meth) allyl” represents allyl and methallyl, “(meth) acryl” represents acryl and methacryl, “(meth) ) "Acryloyl" represents acryloyl and methacryloyl.
In the notation of a group (atomic group) in this specification, the notation which does not describe substitution and non-substitution includes a group (atomic group) having a substituent as well as a group (atomic group) having no substituent. is there.
In the present specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, near-infrared light refers to light (electromagnetic wave) having a wavelength region of 700 to 2500 nm.
In this specification, the total solid content refers to the total mass of components obtained by removing the solvent from all components of the composition.
In this specification, a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by a gel permeation chromatography (GPC) measurement.
<赤外線吸収剤>
 本発明の赤外線吸収剤の第一は、赤外線吸収化合物である金属化合物と、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
 金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を0.005~1質量部含む。
 また、本発明の赤外線吸収剤の第二は、赤外線吸収化合物である金属化合物と、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
 金属成分が、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
 金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である。
 また、本発明の赤外線吸収剤の第三は、赤外線吸収化合物である金属化合物と、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
 金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含む金属化合物であり、
 金属成分が、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
 金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である。
<Infrared absorber>
The first of the infrared absorber of the present invention comprises a metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
The metal atom contained in the metal component is contained in an amount of 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom contained in the metal compound.
In addition, the second of the infrared absorber of the present invention includes a metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag;
Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound The total amount of Ag is 0.005 to 1 part by mass.
Further, the third of the infrared absorber of the present invention includes a metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
The metal compound is a metal compound containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag;
Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag are 0.005 to 1 part by mass.
 本発明の赤外線吸収剤を用いることで、可視透明性および近赤外遮蔽性に優れた膜を製造できる近赤外線吸収組成物を提供することできる。このような効果が得られるメカニズムは次によるものであると推測する。すなわち、本発明の赤外線吸収剤は、赤外線吸収化合物である金属化合物の他に、上述した金属成分を上述した割合で0.005質量部以上含むことにより、近赤外線吸収組成物の赤外線吸収剤以外の他の成分(例えば、溶剤や硬化性化合物など)との相溶性や分散性が向上し、膜の可視透明性および近赤外遮蔽性が向上したと推測する。また、赤外線吸収化合物である金属化合物の他に、上述した金属成分の含有量を上述した割合で1質量部以下とすることにより、金属成分による分光性能への影響(例えば、金属成分による着色や、金属成分と金属化合物との相互作用による金属化合物の分光性能変動など)を抑制でき、可視透明性および近赤外遮蔽性に優れた膜を製造可能になったと推測する。更には、金属成分の含有量が上述した割合で1質量部以下であることにより、得られる膜の耐熱性も優れる。この理由は、金属成分に起因した耐熱性の低下や、金属成分によって金属化合物が分解されることを抑制できるためであると推測する。以下、本発明の赤外線吸収剤について詳細に説明する。 By using the infrared absorbent of the present invention, it is possible to provide a near-infrared absorbing composition capable of producing a film excellent in visible transparency and near-infrared shielding. It is assumed that the mechanism for obtaining such an effect is as follows. That is, the infrared absorber of the present invention contains 0.005 parts by mass or more of the above-described metal component in addition to the metal compound that is an infrared absorbing compound, so that it is other than the infrared absorber of the near-infrared absorbing composition. It is presumed that the compatibility and dispersibility with other components (for example, solvents and curable compounds) have improved, and the visible transparency and near-infrared shielding properties of the film have improved. Further, in addition to the metal compound that is an infrared absorbing compound, by setting the content of the above-described metal component to 1 part by mass or less at the above-described ratio, the influence on the spectral performance by the metal component (for example, coloring by the metal component or It is presumed that a film excellent in visible transparency and near-infrared shielding property can be produced by suppressing the spectral performance fluctuation of the metal compound due to the interaction between the metal component and the metal compound. Furthermore, when the content of the metal component is 1 part by mass or less at the above-described ratio, the heat resistance of the obtained film is excellent. The reason for this is presumed to be that the reduction in heat resistance caused by the metal component and the decomposition of the metal compound by the metal component can be suppressed. Hereinafter, the infrared absorbent of the present invention will be described in detail.
<赤外線吸収剤>
 本発明の赤外線吸収剤の第一は、赤外線吸収化合物である金属化合物と、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を0.005~1質量部含む。金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を、0.005~0.8質量部含むことがさらに好ましく、0.1~0.5質量部が特に好ましい。
<Infrared absorber>
The first infrared absorber of the present invention includes a metal compound that is an infrared absorbing compound and a metal component containing a metal atom different from the metal atom contained in the metal compound, and 100 parts by mass of the metal atom contained in the metal compound. In contrast, the metal component contains 0.005 to 1 part by mass of metal atoms. The metal atom contained in the metal component is more preferably contained in an amount of 0.005 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the metal atoms contained in the metal compound.
 本発明の赤外線吸収剤の第二は、金属成分として金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
 金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部であり、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
The second infrared absorber of the present invention is a metal atom different from the metal atom contained in the metal compound as a metal component, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Including at least one metal selected from Mn, Fe, Co, Ni, Cu, Pt and Ag,
Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound The total amount of Ag is 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
 本発明の赤外線吸収剤の第三は、金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含む金属化合物であり、
 金属成分が、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
 金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部であり、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
The third of the infrared absorbers of the present invention is a metal compound in which the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt. Yes,
The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Including at least one metal selected from Pt and Ag;
Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag are 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, Particularly preferred is 1 to 0.5 parts by mass.
 本発明において、金属化合物および金属成分における金属原子の含有量は、誘導結合プラズマ発光分光分析法(ICP-OES)で測定した値である。また、金属原子とは、典型金属、遷移金属が挙げられる。具体的には、Li、Be、Na、Mg、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Cs、Ba、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Biが挙げられる。 In the present invention, the metal atom content in the metal compound and the metal component is a value measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The metal atom includes a typical metal and a transition metal. Specifically, Li, Be, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi Is mentioned.
 本発明の赤外線吸収剤において、上述の金属化合物は、赤外線吸収剤中において有効量以上の割合で含有する赤外線吸収性を有する金属含有化合物である。金属成分は、赤外線吸収性を有していてもよく、赤外線吸収性を有していなくてもよい。ここで、有効量以上の割合で含有するとは、赤外線吸収剤を含む組成物などを用いて膜などを製造した際に、赤外線吸収性を発現するために要する含有量であり、例えば、赤外線吸収化合物の全量中に、10質量%以上の割合で含有することが好ましく、30質量%以上とすることもでき、45質量%以上とすることもでき、60質量%以上とすることもできる。 In the infrared absorber of the present invention, the metal compound described above is a metal-containing compound having infrared absorptivity contained in the infrared absorber in a proportion of an effective amount or more. The metal component may have infrared absorptivity or may not have infrared absorptivity. Here, “containing in an effective amount or more” is a content required to exhibit infrared absorptivity when a film or the like is produced using a composition containing an infrared absorber, for example, infrared absorption. It is preferable to contain in the ratio of 10 mass% or more in the whole quantity of a compound, can also be 30 mass% or more, can also be 45 mass% or more, and can also be 60 mass% or more.
 金属化合物は、Ni、Pd、Pt、Au、Ir、Fe、Zn、W、Cu、Mo、In、Mn、Co、Mg、V、Cr、TiおよびAlから選ばれる少なくとも1種の金属原子を含む化合物が好ましく、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含む化合物がより好ましく、Cu、NiおよびVから選ばれる少なくとも1種の金属原子を含む化合物がさらに好ましく、Cuを含む化合物が特に好ましい。すなわち、金属化合物は銅化合物が好ましい。銅化合物は、Cu以外の金属原子を含んでいてもよいが、Cu以外の金属を含まないことが好ましい。
 金属成分は、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、Fe、Cu、AgおよびAlから選ばれる少なくとも1種の金属原子を含むことがより好ましく、Li、Na、K、Mg、CaおよびFeから選ばれる少なくとも1種の金属原子を含むことが更に好ましい。金属成分は、金属単体であってもよく、遊離金属イオンであってもよく、金属酸化物、金属窒化物、金属炭酸化物、金属塩(無機酸塩、有機酸塩、アンモニウム塩など)、金属間化合物、金属錯体、有機金属化合物、(ヘテロ)ポリ酸およびその塩などの化合物であってもよい。
The metal compound contains at least one metal atom selected from Ni, Pd, Pt, Au, Ir, Fe, Zn, W, Cu, Mo, In, Mn, Co, Mg, V, Cr, Ti, and Al. Compounds are preferred, compounds containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt are more preferred, and at least selected from Cu, Ni and V A compound containing one type of metal atom is more preferred, and a compound containing Cu is particularly preferred. That is, the metal compound is preferably a copper compound. The copper compound may contain a metal atom other than Cu, but preferably does not contain a metal other than Cu.
The metal component includes at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag. Preferably, it contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu, Ag and Al, and more preferably at least selected from Li, Na, K, Mg, Ca and Fe. More preferably, it contains one metal atom. The metal component may be a single metal or a free metal ion, a metal oxide, a metal nitride, a metal carbonate, a metal salt (inorganic acid salt, organic acid salt, ammonium salt, etc.), metal Compounds such as intermetallic compounds, metal complexes, organometallic compounds, (hetero) polyacids and salts thereof may be used.
 本発明の赤外線吸収剤は、金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含み、金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましい。具体的な組み合わせとしては以下に示す組み合わせが挙げられ、(1)がより好ましい。
 (1) 金属化合物(赤外線吸収化合物)が、Cuを含む化合物(銅化合物)の場合、金属成分は、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、Fe、AgおよびAlから選ばれる少なくとも1種の金属原子を含むことがより好ましい。また、銅化合物に含まれる金属原子(好ましくはCu原子)100質量部に対し、金属成分に含まれるLi、Na、K、Mg、Ca、Fe、AgおよびAlの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
 (2) 金属化合物(赤外線吸収化合物)が、Znを含む化合物(亜鉛化合物)の場合、金属成分は、Al、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、Fe、CuおよびAlから選ばれる少なくとも1種の金属原子を含むことがより好ましい。また、亜鉛化合物に含まれる金属原子(好ましくはZn原子)100質量部に対し、金属成分に含まれるLi、Na、K、Mg、Ca、Fe、CuおよびAlの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
 (3) 金属化合物(赤外線吸収化合物)が、Tiを含む化合物(チタン化合物)の場合、金属成分は、Al、Zn、Li、Na、K、Mg、Ca、Ba、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、FeおよびAlから選ばれる少なくとも1種の金属原子を含むことがより好ましい。また、チタン化合物に含まれる金属原子(好ましくはTi原子)100質量部に対し、金属成分に含まれるLi、Na、K、Mg、Ca、FeおよびAlの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
 (4) 金属化合物(赤外線吸収化合物)が、Vを含む化合物(バナジウム化合物)の場合、金属成分は、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、FeおよびAlから選ばれる少なくとも1種の金属原子を含むことがより好ましい。また、バナジウム化合物に含まれる金属原子(好ましくはV原子)100質量部に対し、金属成分に含まれるLi、Na、K、Mg、Ca、FeおよびAlの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
 (5) 金属化合物(赤外線吸収化合物)が、Niを含む化合物(ニッケル化合物)の場合、金属成分は、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、Fe、CuおよびAlから選ばれる少なくとも1種の金属原子を含むことがより好ましい。また、ニッケル化合物に含まれる金属原子(好ましくはNi原子)100質量部に対し、金属成分に含まれるLi、Na、K、Mg、Ca、Fe、CuおよびAlの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
 (6) 金属化合物(赤外線吸収化合物)が、Pdを含む化合物(パラジウム化合物)の場合、金属成分は、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、Fe、AlおよびPtから選ばれる少なくとも1種の金属原子を含むことがより好ましい。また、パラジウム化合物に含まれる金属原子(好ましくはPd原子)100質量部に対し、金属成分に含まれるLi、Na、K、Mg、Ca、Fe、AlおよびPtの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
 (7) 金属化合物(赤外線吸収化合物)が、Alを含む化合物(アルミニウム化合物)の場合、金属成分は、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、FeおよびCuから選ばれる少なくとも1種の金属原子を含むことがより好ましい。また、アルミニウム化合物に含まれる金属原子(好ましくはAl原子)100質量部に対し、金属成分に含まれるLi、Na、K、Mg、Ca、FeおよびCuの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
In the infrared absorber of the present invention, the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt, and the metal component is Al. It preferably contains at least one metal atom selected from Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag. Specific combinations include the following combinations, and (1) is more preferable.
(1) When the metal compound (infrared absorbing compound) is a compound containing Cu (copper compound), the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe It preferably contains at least one metal atom selected from Co, Ni, Pt and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Ag and Al. Is more preferable. The total amount of Li, Na, K, Mg, Ca, Fe, Ag and Al contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Cu atom) contained in the copper compound. The amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
(2) When the metal compound (infrared absorbing compound) is a compound containing zinc (zinc compound), the metal components are Al, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co It preferably contains at least one metal atom selected from Ni, Cu, Pt and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu and Al. Is more preferable. The total amount of Li, Na, K, Mg, Ca, Fe, Cu and Al contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Zn atom) contained in the zinc compound. The amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
(3) When the metal compound (infrared absorbing compound) is a compound containing Ti (titanium compound), the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, V, Mn, Fe, Co Preferably, it contains at least one metal atom selected from Ni, Cu, Pt and Ag, and more preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe and Al. preferable. The total amount of Li, Na, K, Mg, Ca, Fe and Al contained in the metal component is 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom (preferably Ti atom) contained in the titanium compound. It is preferably 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass.
(4) When the metal compound (infrared absorbing compound) is a compound containing V (vanadium compound), the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, Mn, Fe, Co Preferably, it contains at least one metal atom selected from Ni, Cu, Pt and Ag, and more preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe and Al. preferable. The total amount of Li, Na, K, Mg, Ca, Fe and Al contained in the metal component is 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom (preferably V atom) contained in the vanadium compound. It is preferably 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass.
(5) When the metal compound (infrared absorbing compound) is a compound containing Ni (nickel compound), the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe It preferably contains at least one metal atom selected from Co, Cu, Pt, and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu, and Al. Is more preferable. The total amount of Li, Na, K, Mg, Ca, Fe, Cu and Al contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Ni atom) contained in the nickel compound. The amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
(6) When the metal compound (infrared absorbing compound) is a compound containing Pd (palladium compound), the metal components are Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe It preferably contains at least one metal atom selected from Co, Ni, Cu, Pt and Ag, and contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Al and Pt. More preferably. The total amount of Li, Na, K, Mg, Ca, Fe, Al and Pt contained in the metal component is 0.005 to 1 with respect to 100 parts by mass of the metal atom (preferably Pd atom) contained in the palladium compound. The amount is preferably part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
(7) When the metal compound (infrared absorbing compound) is a compound containing Al (aluminum compound), the metal components are Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co Preferably, it contains at least one metal atom selected from Ni, Cu, Pt and Ag, and more preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe and Cu. preferable. The total amount of Li, Na, K, Mg, Ca, Fe and Cu contained in the metal component is 0.005 to 1 part by mass with respect to 100 parts by mass of the metal atom (preferably Al atom) contained in the aluminum compound. It is preferably 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass.
 本発明において、赤外線吸収化合物としての金属化合物は、極大吸収波長が700~1200nmの範囲にある化合物が好ましく、極大吸収波長が700~1000nmの範囲にある化合物がより好ましい。金属化合物は、赤外領域の波長領域(好ましくは、波長700~1200mnの範囲)に吸収を有し、可視領域(好ましくは、波長400~650mnの範囲)の波長の光を透過する化合物が好ましい。金属化合物の具体例としては、例えば、銅化合物、ピロロピロール化合物、スクアリリウム化合物、シアニン化合物、フタロシアニン化合物、ナフタロシアニン化合物、ジイモニウム化合物、ジチオール化合物、遷移金属酸化物、クアテリレン化合物、クロコニウム化合物等が挙げられる。また、酸化インジウムスズ(tin-doped indium oxide、ITO)を用いることも好ましい。また、酸化アンチモンスズ(ATO)、酸化亜鉛(ZnO)、Alドープ酸化亜鉛(AlドープZnO)、フッ素ドープ二酸化スズ(FドープSnO2)、ニオブドープ二酸化チタン(NbドープTiO2)、セシウム酸化タングステンなどの無機金属化合物を用いることも好ましい。セシウム酸化タングステンは、国際公開2014/142259号公報の段落0025~0029の記載を参酌でき、この内容は本明細書に組み込まれる。
 なかでも、近赤外遮蔽性と可視透明性の両立に優れた膜を形成しやすいという理由から、銅化合物、フタロシアニン化合物、ナフタロシアニン化合物、ジチオール化合物が好ましい。また、本発明の効果が顕著に得られ易いという理由から、金属化合物は銅化合物であることが好ましい。また、銅化合物は、銅錯体であることが好ましい。
In the present invention, the metal compound as the infrared absorbing compound is preferably a compound having a maximum absorption wavelength in the range of 700 to 1200 nm, and more preferably a compound having a maximum absorption wavelength in the range of 700 to 1000 nm. The metal compound is preferably a compound that has absorption in the wavelength region in the infrared region (preferably in the wavelength range of 700 to 1200 mn) and transmits light in the visible region (preferably in the wavelength range of 400 to 650 mn). . Specific examples of the metal compound include a copper compound, a pyrrolopyrrole compound, a squarylium compound, a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound, a diimonium compound, a dithiol compound, a transition metal oxide, a quaterrylene compound, and a croconium compound. . It is also preferable to use indium tin oxide (ITO). In addition, antimony tin oxide (ATO), zinc oxide (ZnO), Al-doped zinc oxide (Al-doped ZnO), fluorine-doped tin dioxide (F-doped SnO 2 ), niobium-doped titanium dioxide (Nb-doped TiO 2 ), cesium tungsten oxide, etc. It is also preferable to use an inorganic metal compound. As for cesium tungsten oxide, the description in paragraphs 0025 to 0029 of International Publication No. 2014/142259 can be referred to, and the contents thereof are incorporated in the present specification.
Among these, a copper compound, a phthalocyanine compound, a naphthalocyanine compound, and a dithiol compound are preferable because a film excellent in both near-infrared shielding and visible transparency can be easily formed. In addition, the metal compound is preferably a copper compound because the effects of the present invention can be easily obtained. Moreover, it is preferable that a copper compound is a copper complex.
 赤外線吸収化合物としての金属化合物は、市販品としても入手可能であり、フタロシアニン化合物およびナフタロシアニン化合物としては日本触媒社製のイーエクスカラーIR-14、同10A、同28、同12、同915、同910、同906、TX-EX-820、同906や、山田化学工業社製のFDN-001~008、Avecia社製のPROJET 800NP、同830NP、同900NP、同925NPなどが挙げられる。ジチオール化合物としてはAmerican Dye Source社製のADS845MC、同870MC、同890MC、同920MCや、住友精化製のEST-3、同5、同5Niや、エポリン社製のEpolight3063、同4019、同4121、同4129や、みどり化学社製のMIR-101、同111、同121、同102、同105などが挙げられる。ジイモニウム化合物としてはAmerican Dye Source社製のADS1065Aなどが挙げられる。また、セシウム酸化タングステンを含有する分散液の市販品として、住友金属鉱山社製のYMF-02A、YMS-01A-2、YMF-10A-1などが挙げられる。
 以下金属化合物について詳細に説明する。
The metal compound as the infrared absorbing compound is also available as a commercial product. As the phthalocyanine compound and naphthalocyanine compound, e-color IR-14, 10A, 28, 12, 915, manufactured by Nippon Shokubai Co., Ltd. 910, 906, TX-EX-820, 906, FDN-001 to 008 manufactured by Yamada Chemical Co., Ltd., PROJET 800NP, 830NP, 900NP, 925NP manufactured by Avecia, and the like. Examples of the dithiol compound include ADS845MC, 870MC, 890MC, and 920MC manufactured by American Dye Source, EST-3, 5, and 5Ni manufactured by Sumitomo Seika, and Epolight 3063, 4019, and 4121 manufactured by Eporin. 4129, and MIR-101, 111, 121, 102, and 105 manufactured by Midori Chemical. Examples of the diimonium compound include ADS1065A manufactured by American Dye Source. Examples of commercially available dispersions containing cesium tungsten oxide include YMF-02A, YMS-01A-2, and YMF-10A-1 manufactured by Sumitomo Metal Mining Co., Ltd.
Hereinafter, the metal compound will be described in detail.
<<金属化合物>>
(銅化合物)
 本発明において、赤外線吸収化合物として用いる銅化合物は、銅錯体が好ましい。銅錯体としては、銅と、銅に対する配位部位を有する化合物(配位子)との錯体が好ましい。銅に対する配位部位としては、アニオンで配位する配位部位、非共有電子対で配位する配位原子が挙げられる。銅錯体は、配位子を2つ以上有していてもよい。配位子を2つ以上有する場合は、それぞれの配位子は同一であってもよく、異なっていてもよい。銅錯体は、4配位、5配位および6配位が例示され、4配位および5配位がより好ましく、5配位がさらに好ましい。また、銅錯体は、銅と配位子によって、5員環および/または6員環が形成されていることが好ましい。このような銅錯体は、形状が安定であり、錯体安定性に優れる。
<< Metal compound >>
(Copper compound)
In the present invention, the copper compound used as the infrared absorbing compound is preferably a copper complex. As a copper complex, the complex of copper and the compound (ligand) which has a coordination site | part with respect to copper is preferable. As a coordination site | part with respect to copper, the coordination site | part coordinated by an anion and the coordination atom coordinated by a lone pair are mentioned. The copper complex may have two or more ligands. When having two or more ligands, the respective ligands may be the same or different. The copper complex is exemplified by 4-coordination, 5-coordination, and 6-coordination, and 4-coordination and 5-coordination are more preferable, and 5-coordination is more preferable. Moreover, it is preferable that the copper complex forms a 5-membered ring and / or a 6-membered ring with copper and a ligand. Such a copper complex is stable in shape and excellent in complex stability.
 銅錯体は、フタロシアニン銅錯体以外の銅錯体であることも好ましい。ここで、フタロシアニン銅錯体とは、フタロシアニン骨格を有する化合物を配位子とする銅錯体である。フタロシアニン骨格を有する化合物は、分子全体にπ電子共役系が広がり、平面構造を取る。フタロシアニン銅錯体は、π-π*遷移で光を吸収する。π-π*遷移で赤外領域の光を吸収するには、配位子をなす化合物が長い共役構造をとる必要がある。しかしながら、配位子の共役構造を長くすると、可視透明性が低下する傾向にある。このため、フタロシアニン銅錯体は、可視透明性が不十分な場合がある。
 また、銅錯体は、400~600nmの波長領域に極大吸収波長を有さない化合物を配位子とする銅錯体であることも好ましい。400~600nmの波長領域に極大吸収波長を有する化合物を配位子とする銅錯体は、可視領域(例えば、400~600nmの波長領域)に吸収を有するため、可視透明性が不十分な場合がある。400~600nmの波長領域に極大吸収波長を有する化合物としては、長い共役構造を有し、π-π*遷移の光の吸収の大きい化合物が挙げられる。具体的には、フタロシアニン骨格を有する化合物が挙げられる。
The copper complex is also preferably a copper complex other than the phthalocyanine copper complex. Here, the phthalocyanine copper complex is a copper complex having a compound having a phthalocyanine skeleton as a ligand. A compound having a phthalocyanine skeleton has a planar structure in which a π-electron conjugated system spreads throughout the molecule. The phthalocyanine copper complex absorbs light at the π-π * transition. In order to absorb light in the infrared region through the π-π * transition, the ligand compound must have a long conjugated structure. However, when the conjugated structure of the ligand is lengthened, the visible transparency tends to decrease. For this reason, the phthalocyanine copper complex may have insufficient visible transparency.
The copper complex is preferably a copper complex having a compound having no maximum absorption wavelength in the wavelength region of 400 to 600 nm as a ligand. A copper complex having a ligand having a compound having a maximum absorption wavelength in the wavelength region of 400 to 600 nm has an absorption in the visible region (for example, a wavelength region of 400 to 600 nm), and thus the visible transparency may be insufficient. is there. Examples of the compound having the maximum absorption wavelength in the wavelength region of 400 to 600 nm include compounds having a long conjugated structure and large absorption of light at the π-π * transition. Specific examples include compounds having a phthalocyanine skeleton.
 銅錯体は、例えば銅成分(銅または銅を含む化合物)に対して、銅に対する配位部位を有する化合物(配位子)を混合および/または反応等させて得ることができる。銅に対する配位部位を有する化合物(配位子)は、低分子化合物であってもよく、ポリマーであってもよい。両者を併用することもできる。 The copper complex can be obtained, for example, by mixing and / or reacting a copper component (copper or a compound containing copper) with a compound (ligand) having a coordination site for copper. The compound (ligand) having a coordination site for copper may be a low molecular compound or a polymer. Both can be used together.
 銅成分は、2価の銅を含む化合物が好ましい。銅成分は、1種のみを用いてもよいし、2種以上を用いてもよい。銅成分としては、例えば、酸化銅や銅塩を用いることができる。銅塩は、例えば、カルボン酸銅(例えば、酢酸銅、エチルアセト酢酸銅、ギ酸銅、安息香酸銅、ステアリン酸銅、ナフテン酸銅、クエン酸銅、2-エチルヘキサン酸銅など)、スルホン酸銅(例えば、メタンスルホン酸銅など)、リン酸銅、リン酸エステル銅、ホスホン酸銅、ホスホン酸エステル銅、ホスフィン酸銅、アミド銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、メチド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、硫酸銅、硝酸銅、過塩素酸銅、フッ化銅、塩化銅、臭化銅が好ましく、カルボン酸銅、スルホン酸銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、フッ化銅、塩化銅、硫酸銅、硝酸銅がより好ましく、カルボン酸銅、アシルスルホンイミド銅、フェノキシ銅、塩化銅、硫酸銅、硝酸銅が更に好ましく、カルボン酸銅、アシルスルホンイミド銅、塩化銅、硫酸銅が特に好ましい。 The copper component is preferably a compound containing divalent copper. A copper component may use only 1 type and may use 2 or more types. As the copper component, for example, copper oxide or copper salt can be used. Examples of the copper salt include copper carboxylate (eg, copper acetate, copper ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate (For example, copper methanesulfonate), copper phosphate, phosphate copper, phosphonate copper, phosphonate copper, phosphinate, amide copper, sulfonamido copper, imide copper, acylsulfonimide copper, bissulfonimide Copper, methido copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper fluoride, copper chloride, copper bromide are preferred, copper carboxylate, copper sulfonate, Sulfonamide copper, imide copper, acylsulfonimide copper, bissulfonimide copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper fluoride, copper chloride, copper sulfate, glass Copper is more preferable, copper carboxylate, acyl sulfonimide copper, phenoxy, copper chloride, copper sulfate, copper nitrate are more preferred, copper carboxylate, acyl sulfonimide, copper chloride, copper sulfate particularly preferred.
 本発明において、銅錯体は、700~1200nmの波長領域に極大吸収波長を有する化合物が好ましい。銅錯体の極大吸収波長は、720~1200nmの波長領域に有することがより好ましく、800~1100nmの波長領域に有することがさらに好ましい。極大吸収波長は、例えば、Cary 5000 UV-Vis-NIR(分光光度計、アジレント・テクノロジー社製)を用いて測定することができる。
 銅錯体の上述した波長領域における極大吸収波長でのモル吸光係数は、120(L/mol・cm)以上が好ましく、150(L/mol・cm)以上がより好ましく、200(L/mol・cm)以上がさらに好ましく、300(L/mol・cm)以上がよりさらに好ましく、400(L/mol・cm)以上が特に好ましい。上限は、特に限定はないが、例えば、30000(L/mol・cm)以下とすることができる。銅錯体の上記モル吸光係数が、100(L/mol・cm)以上であれば、薄膜であっても、赤外線遮蔽性に優れた膜を形成することができる。
 銅錯体の800nmでのグラム吸光係数は、0.11(L/g・cm)以上が好ましく、0.15(L/g・cm)以上がより好ましく、0.24(L/g・cm)以上がさらに好ましい。
 なお、本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、銅錯体を溶媒に溶解させて1g/Lの濃度の溶液を調製し、銅錯体を溶解させた溶液の吸収スペクトルを測定して求めることができる。測定装置としては、島津製作所社製UV-1800(波長領域200~1100nm)、Agilent製Cary 5000(波長領域200~1300nm)などを用いることができる。測定溶媒としては、水、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル、1,2,4-トリクロロベンゼン、アセトンが挙げられる。本発明では、上述した測定溶媒のうち、測定対象の銅錯体を溶解できるものを選択して用いる。なかでも、プロピレングリコールモノメチルエーテルで溶解する銅錯体の場合は、測定溶媒としては、プロピレングリコールモノメチルエーテルを用いることが好ましい。なお、溶解するとは、25℃の溶媒100gに対する、銅錯体の溶解度が0.01gを超える状態を意味する。
 本発明において、銅錯体のモル吸光係数およびグラム吸光係数は、上述した測定溶媒のいずれか1つを用いて測定した値であることが好ましく、プロピレングリコールモノメチルエーテルでの値であることがより好ましい。
In the present invention, the copper complex is preferably a compound having a maximum absorption wavelength in a wavelength region of 700 to 1200 nm. The maximum absorption wavelength of the copper complex is more preferably in the wavelength region of 720 to 1200 nm, and still more preferably in the wavelength region of 800 to 1100 nm. The maximum absorption wavelength can be measured using, for example, Cary 5000 UV-Vis-NIR (spectrophotometer, manufactured by Agilent Technologies).
The molar extinction coefficient at the maximum absorption wavelength in the above-described wavelength region of the copper complex is preferably 120 (L / mol · cm) or more, more preferably 150 (L / mol · cm) or more, and 200 (L / mol · cm). ) Or more, more preferably 300 (L / mol · cm) or more, and particularly preferably 400 (L / mol · cm) or more. Although an upper limit does not have limitation in particular, For example, it can be 30000 (L / mol * cm) or less. When the molar extinction coefficient of the copper complex is 100 (L / mol · cm) or more, a film having excellent infrared shielding properties can be formed even if it is a thin film.
The gram extinction coefficient at 800 nm of the copper complex is preferably 0.11 (L / g · cm) or more, more preferably 0.15 (L / g · cm) or more, and 0.24 (L / g · cm). The above is more preferable.
In the present invention, the molar extinction coefficient and gram extinction coefficient of the copper complex were determined by measuring the absorption spectrum of the solution in which the copper complex was dissolved by preparing a solution having a concentration of 1 g / L by dissolving the copper complex in a solvent. Can be obtained. As a measuring apparatus, UV-1800 (wavelength region 200 to 1100 nm) manufactured by Shimadzu Corporation, Cary 5000 (wavelength region 200 to 1300 nm) manufactured by Agilent, or the like can be used. Examples of the measurement solvent include water, N, N-dimethylformamide, propylene glycol monomethyl ether, 1,2,4-trichlorobenzene, and acetone. In the present invention, a solvent capable of dissolving the copper complex to be measured is selected and used from the measurement solvents described above. In particular, in the case of a copper complex that dissolves with propylene glycol monomethyl ether, it is preferable to use propylene glycol monomethyl ether as the measurement solvent. The term “dissolved” means a state in which the solubility of the copper complex with respect to 100 g of a solvent at 25 ° C. exceeds 0.01 g.
In the present invention, the molar extinction coefficient and gram extinction coefficient of the copper complex are preferably values measured using any one of the above-described measurement solvents, and more preferably values of propylene glycol monomethyl ether. .
[低分子タイプの銅化合物]
 銅化合物としては、例えば、式(Cu-1)で表される銅錯体を用いることができる。この銅錯体は、中心金属の銅に配位子Lが配位した銅化合物であり、銅は、通常2価の銅である。例えば銅成分に対して、配位子Lとなる化合物またはその塩を混合および/または反応等させて得ることができる。
 Cu(L)n1・(X)n2   式(Cu-1)
 上記式中、Lは、銅に配位する配位子を表し、Xは、対イオンを表す。n1は、1~4の整数を表す。n2は、0~4の整数を表す。
[Low molecular copper compound]
As the copper compound, for example, a copper complex represented by the formula (Cu-1) can be used. This copper complex is a copper compound in which a ligand L is coordinated to copper as a central metal, and copper is usually divalent copper. For example, it can be obtained by mixing and / or reacting with a copper component, a compound to be a ligand L or a salt thereof.
Cu (L) n1 · (X) n2 formula (Cu-1)
In the above formula, L represents a ligand coordinated to copper, and X represents a counter ion. n1 represents an integer of 1 to 4. n2 represents an integer of 0 to 4.
 Xは、対イオンを表す。銅化合物は、電荷を持たない中性錯体のほか、カチオン錯体、アニオン錯体になることもある。この場合、銅化合物の電荷を中和するよう、必要に応じて対イオンが存在する。
 対イオンが負の対イオン(対アニオン)の場合、例えば、無機陰イオンでも有機陰イオンでもよい。具体例としては、水酸化物イオン、ハロゲン化物陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換または無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換または無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、硝酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン(B-(C654)、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、アミドイオン(アシル基やスルホニル基で置換されたアミドイオンを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドイオンを含む)が挙げられ、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン(ハロゲン原子やフルオロアルキル基で置換されたアリールを含む)、ヘキサフルオロホスフェートイオン、アミドイオン(アシル基やスルホニル基で置換されたアミドイオンを含む)、イミドイオン(アシル基やスルホニル基で置換されたアミドを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドイオンを含む)が好ましい。
 対アニオンは、低求核アニオンが好ましい。この態様によれば、銅化合物の耐熱性が向上する傾向にある。対アニオンとして低求核アニオンを用いることで、アニオンの求核攻撃による分解が抑制されるため、耐熱性が向上すると推測する。低求核アニオンとは、一般的に超酸(super acid)と呼ばれるpKaの低い酸がプロトンを解離してなるアニオンである。超酸の定義は、文献によっても異なるがメタンスルホン酸よりpKaが低い酸の総称であり、J.Org.Chem.2011,76,391-395  Equilibrium Acidities of Super acidsに記載される構造が知られている。低求核アニオンのpKaは、例えば、-11以下が好ましく、-11~-18がより好ましい。pKaは、例えば、J.Org.Chem.2011,76,391-395に記載の方法により測定することができる。本明細書におけるpKa値は、特に断りがない場合、1,2-ジクロロエタン中でのpKaである。
 低求核アニオンは、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン(テトラアリールホウ酸イオンが有するアリール基は、ハロゲン原子やフルオロアルキル基で置換されたアリール基を含む)、ヘキサフルオロホスフェートイオン、イミドイオン(アシル基やスルホニル基で置換されたアミドイオンを含む)、メチドイオン(アシル基やスルホニル基で置換されたメチドイオンを含む)が好ましく、テトラアリールホウ酸イオン、イミドイオン、メチドイオンがより好ましい。
 対イオンが正の対イオン(対カチオン)の場合、例えば、無機もしくは有機のアンモニウムイオン(例えば、テトラブチルアンモニウムイオンなどのテトラアルキルアンモニウムイオン、トリエチルベンジルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えば、テトラブチルホスホニウムイオンなどのテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン、トリエチルフェニルホスホニウムイオン等)、アルカリ金属イオンまたはプロトンが挙げられる。
 また、対イオンは金属錯体イオンであってもよい。例えば、特に対イオンが銅錯体イオンであってもよい。すなわち、銅錯体としては、カチオン性銅錯体とアニオン性銅錯体の塩であっても良い。
X represents a counter ion. The copper compound may become a cation complex or an anion complex in addition to a neutral complex having no charge. In this case, counter ions are present as necessary to neutralize the charge of the copper compound.
When the counter ion is a negative counter ion (counter anion), for example, an inorganic anion or an organic anion may be used. Specific examples include hydroxide ions, halide anions (eg, fluoride ions, chloride ions, bromide ions, iodide ions, etc.), substituted or unsubstituted alkylcarboxylate ions (acetate ions, trifluoroacetic acid ions). Ions), substituted or unsubstituted arylcarboxylate ions (benzoate ions, etc.), substituted or unsubstituted alkylsulfonate ions (methanesulfonate ions, trifluoromethanesulfonate ions, etc.), substituted or unsubstituted arylsulfones Acid ions (for example, p-toluenesulfonic acid ion, p-chlorobenzenesulfonic acid ion, etc.), aryl disulfonic acid ions (for example, 1,3-benzenedisulfonic acid ion, 1,5-naphthalenedisulfonic acid ion, 2,6-naphthalenedisulfonic acid ion) Acid ions), alkyl sulfates Emissions (e.g., methyl sulfate ion, etc.), sulfate ion, thiocyanate ion, nitrate ion, perchlorate ion, tetrafluoroborate ion, tetraarylborate ion, tetrakis (pentafluorophenyl) borate ion (B - (C 6 F 5 ) 4 ), hexafluorophosphate ion, picrate ion, amide ion (including amide ion substituted with acyl group or sulfonyl group), methide ion (including metide ion substituted with acyl group or sulfonyl group) Halogen anions, substituted or unsubstituted alkylcarboxylate ions, sulfate ions, nitrate ions, tetrafluoroborate ions, tetraarylborate ions (including aryls substituted with halogen atoms or fluoroalkyl groups), Hexafluorophosphate ion, a Preferred are ion (including amide ion substituted with acyl group or sulfonyl group), imide ion (including amide ion substituted with acyl group or sulfonyl group), and metide ion (including metide ion substituted with acyl group or sulfonyl group). .
The counter anion is preferably a low nucleophilic anion. According to this aspect, the heat resistance of the copper compound tends to be improved. By using a low nucleophilic anion as a counter anion, decomposition due to nucleophilic attack of the anion is suppressed, and it is assumed that heat resistance is improved. A low nucleophilic anion is an anion formed by dissociating a proton from an acid having a low pKa, generally called a super acid. The definition of superacid differs depending on the literature, but is a general term for acids having a lower pKa than methanesulfonic acid. Org. Chem. The structure described in 2011, 76, 391-395 Equilibrium Acids of Super Acids is known. The pKa of the low nucleophilic anion is, for example, preferably −11 or less, and more preferably −11 to −18. pKa is, for example, J.P. Org. Chem. It can be measured by the method described in 2011, 76, 391-395. The pKa value in the present specification is pKa in 1,2-dichloroethane unless otherwise specified.
Low nucleophilic anions include tetrafluoroborate ions, tetraarylborate ions (aryl groups of tetraarylborate ions include aryl groups substituted with halogen atoms or fluoroalkyl groups), hexafluorophosphate ions, An imide ion (including an amide ion substituted with an acyl group or a sulfonyl group) or a methide ion (including a metide ion substituted with an acyl group or a sulfonyl group) is preferable, and a tetraarylborate ion, an imide ion, or a methide ion is more preferable.
When the counter ion is a positive counter ion (counter cation), for example, inorganic or organic ammonium ion (for example, tetraalkylammonium ion such as tetrabutylammonium ion, triethylbenzylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, , Tetraalkylphosphonium ions such as tetrabutylphosphonium ion, alkyltriphenylphosphonium ions, triethylphenylphosphonium ions, etc.), alkali metal ions or protons.
The counter ion may be a metal complex ion. For example, in particular, the counter ion may be a copper complex ion. That is, the copper complex may be a salt of a cationic copper complex and an anionic copper complex.
 配位子Lは、銅に対する配位部位を有する化合物であり、銅に対しアニオンで配位する配位部位、および、銅に対し非共有電子対で配位する配位原子から選ばれる1種以上を有する化合物が挙げられる。アニオンで配位する配位部位は、解離していてもよく、非解離でも良い。配位子Lは、銅に対する配位部位を2個以上有する化合物(多座配位子)が好ましい。また、配位子Lは、可視透明性を向上させるために、芳香族などのπ共役系が連続して複数結合していないことが好ましい。配位子Lは、銅に対する配位部位を1個有する化合物(単座配位子)と、銅に対する配位部位を2個以上有する化合物(多座配位子)とを併用することもできる。単座配位子としては、アニオンまたは非共有電子対で配位する単座配位子が挙げられる。アニオンで配位する配位子としては、ハライドアニオン、ヒドロキシドアニオン、アルコキシドアニオン、フェノキシドアニオン、アミドアニオン(アシル基やスルホニル基で置換されたアミドアニオンを含む)、イミドアニオン(アシル基やスルホニル基で置換されたイミドアニオンを含む)、アニリドアニオン(アシル基やスルホニル基で置換されたアニリドアニオンを含む)、チオラートアニオン、炭酸水素アニオン、カルボン酸アニオン、チオカルボン酸アニオン、ジチオカルボン酸アニオン、硫酸水素アニオン、スルホン酸アニオン、リン酸二水素アニオン、リン酸ジエステルアニオン、ホスホン酸モノエステルアニオン、ホスホン酸水素アニオン、ホスフィン酸アニオン、含窒素へテロ環アニオン、硝酸アニオン、次亜塩素酸アニオン、シアニドアニオン、シアナートアニオン、イソシアナートアニオン、チオシアナートアニオン、イソチオシアナートアニオン、アジドアニオンなどが挙げられる。非共有電子対で配位する単座配位子としては、水、アルコール、フェノール、エーテル、アミン、アニリン、アミド、イミド、イミン、ニトリル、イソニトリル、チオール、チオエーテル、カルボニル化合物、チオカルボニル化合物、スルホキシド、へテロ環、あるいは、炭酸、カルボン酸、硫酸、スルホン酸、リン酸、ホスホン酸、ホスフィン酸、硝酸、または、そのエステルが挙げられる。 The ligand L is a compound having a coordination site with respect to copper, and is selected from a coordination site that coordinates with copper by an anion, and a coordination atom that coordinates with copper by an unshared electron pair. The compound which has the above is mentioned. The coordination site coordinated by an anion may be dissociated or non-dissociated. The ligand L is preferably a compound (multidentate ligand) having two or more coordination sites for copper. In addition, it is preferable that the ligand L is not continuously bonded with a plurality of π-conjugated systems such as aromatic groups in order to improve visible transparency. Ligand L can also use together the compound (monodentate ligand) which has one coordination site | part with respect to copper, and the compound (multidentate ligand) which has 2 or more coordination site | parts with respect to copper. Examples of the monodentate ligand include a monodentate ligand coordinated by an anion or an unshared electron pair. Examples of ligands coordinated by anions include halide anions, hydroxide anions, alkoxide anions, phenoxide anions, amide anions (including amide anions substituted with acyl groups and sulfonyl groups), and imide anions (acyl groups and sulfonyl groups). Imide anion substituted with), anilide anion (including anilide anion substituted with acyl group or sulfonyl group), thiolate anion, bicarbonate anion, carboxylate anion, thiocarboxylate anion, dithiocarboxylate anion, hydrogen sulfate Anion, sulfonate anion, dihydrogen phosphate anion, phosphate diester anion, phosphonate monoester anion, phosphonate hydrogen anion, phosphinate anion, nitrogen-containing heterocyclic anion, nitrate anion, hypochlorite anion On, cyanide anions, cyanate anion, isocyanate anion, thiocyanate anion, isothiocyanate anions, such as azide anions. Monodentate ligands coordinated by lone pairs include water, alcohol, phenol, ether, amine, aniline, amide, imide, imine, nitrile, isonitrile, thiol, thioether, carbonyl compound, thiocarbonyl compound, sulfoxide, Examples include heterocycles, carbonic acid, carboxylic acid, sulfuric acid, sulfonic acid, phosphoric acid, phosphonic acid, phosphinic acid, nitric acid, and esters thereof.
 上記配位子が有するアニオンは、銅成分中の銅原子に配位可能なものであればよく、酸素アニオン、窒素アニオンまたは硫黄アニオンが好ましい。アニオンで配位する配位部位は、以下の1価の官能基群(AN-1)、または、2価の官能基群(AN-2)から選択される少なくとも1種であることが好ましい。なお、以下の構造式における波線は、配位子を構成する原子団との結合位置である。 The anion possessed by the ligand is not particularly limited as long as it can coordinate to a copper atom in the copper component, and is preferably an oxygen anion, a nitrogen anion, or a sulfur anion. The coordination site coordinated by an anion is preferably at least one selected from the following monovalent functional group (AN-1) or divalent functional group (AN-2). In addition, the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
群(AN-1)
Figure JPOXMLDOC01-appb-C000001
Group (AN-1)
Figure JPOXMLDOC01-appb-C000001
群(AN-2)
Figure JPOXMLDOC01-appb-C000002
Group (AN-2)
Figure JPOXMLDOC01-appb-C000002
 上記式中、Xは、NまたはCRを表し、Rは、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表す。
 Rが表すアルキル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。アルキル基の例としては、メチル基が挙げられる。アルキル基は置換基を有していてもよく、置換基としてはハロゲン原子、カルボキシ基、ヘテロ環基が挙げられる。置換基としてのヘテロ環基は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。ヘテロ環を構成するヘテロ原子の数は1~3が好ましく、1または2がより好ましい。ヘテロ環を構成するヘテロ原子は、窒素原子が好ましい。アルキル基が置換基を有している場合、さらに置換基を有していてもよい。
 Rが表すアルケニル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルケニル基の炭素数は、2~10が好ましく、2~6がより好ましい。アルケニル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
 Rが表すアルキニル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキニル基の炭素数は、2~10が好ましく、2~6がより好ましい。アルキニル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
 Rが表すアリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。アリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
Rが表す。
 ヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、硫黄原子、酸素原子が好ましい。ヘテロアリール基の炭素数は2~18が好ましく、6~18がより好ましく、6~12が更に好ましい。ヘテロアリール基は、無置換であってもよく、置換基を有していてもよい。置換基としては、上述したものが挙げられる。
In the above formula, X represents N or CR, and R each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
The alkyl group represented by R may be linear, branched or cyclic, but is preferably linear. The alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group. The alkyl group may have a substituent, and examples of the substituent include a halogen atom, a carboxy group, and a heterocyclic group. The heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic. The number of heteroatoms constituting the heterocycle is preferably 1 to 3, and more preferably 1 or 2. The hetero atom constituting the hetero ring is preferably a nitrogen atom. When the alkyl group has a substituent, it may further have a substituent.
The alkenyl group represented by R may be linear, branched or cyclic, but is preferably linear. The alkenyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. The alkenyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
The alkynyl group represented by R may be linear, branched or cyclic, but is preferably linear. The alkynyl group preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. The alkynyl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
The aryl group represented by R may be monocyclic or polycyclic, but is preferably monocyclic. The aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms. The aryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
R represents.
The heteroaryl group may be monocyclic or polycyclic. The number of heteroatoms constituting the heteroaryl group is preferably 1 to 3. The hetero atom constituting the heteroaryl group is preferably a nitrogen atom, a sulfur atom or an oxygen atom. The heteroaryl group preferably has 2 to 18 carbon atoms, more preferably 6 to 18 carbon atoms, and still more preferably 6 to 12 carbon atoms. The heteroaryl group may be unsubstituted or may have a substituent. Examples of the substituent include those described above.
 アニオンで配位する配位部位の例として、モノアニオン性配位部位も挙げられる。モノアニオン性配位部位は、1つの負電荷を有する官能基を介して銅原子と配位する部位を表す。例えば、酸解離定数(pKa)が12以下の酸基が挙げられる。具体的には、リン原子を含有する酸基(リン酸ジエステル基、ホスホン酸モノエステル基、ホスフィン酸基等)、スルホ基、カルボキシ基、イミド酸基等が挙げられ、スルホ基、カルボキシ基が好ましい。 Examples of coordination sites coordinated by anions also include monoanionic coordination sites. A monoanionic coordination site | part represents the site | part coordinated with a copper atom through the functional group which has one negative charge. For example, an acid group having an acid dissociation constant (pKa) of 12 or less can be mentioned. Specific examples include an acid group containing a phosphorus atom (phosphoric acid diester group, phosphonic acid monoester group, phosphinic acid group, etc.), a sulfo group, a carboxy group, an imido acid group, and the like. preferable.
 非共有電子対で配位する配位原子は、酸素原子、窒素原子、硫黄原子またはリン原子が好ましく、酸素原子、窒素原子または硫黄原子がより好ましく、酸素原子、窒素原子がさらに好ましく、窒素原子が特に好ましい。非共有電子対で配位する配位原子が窒素原子である場合、窒素原子に隣接する原子が炭素原子、または、窒素原子であることが好ましく、炭素原子がより好ましい。 The coordination atom coordinated by the lone pair is preferably an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, more preferably an oxygen atom, a nitrogen atom or a sulfur atom, still more preferably an oxygen atom or a nitrogen atom, and a nitrogen atom. Is particularly preferred. When the coordinating atom coordinated by the lone pair is a nitrogen atom, the atom adjacent to the nitrogen atom is preferably a carbon atom or a nitrogen atom, and more preferably a carbon atom.
 非共有電子対で配位する配位原子は、環に含まれる、または、以下の1価の官能基群(UE-1)、2価の官能基群(UE-2)、3価の官能基群(UE-3)から選択される少なくとも1種の部分構造に含まれることが好ましい。なお、以下の構造式における波線は、配位子を構成する原子団との結合位置である。
群(UE-1)
Figure JPOXMLDOC01-appb-C000003
The coordination atom coordinated by the lone pair of electrons is contained in the ring, or the following monovalent functional group (UE-1), divalent functional group (UE-2), trivalent functional group It is preferably contained in at least one partial structure selected from the base group (UE-3). In addition, the wavy line in the following structural formula is the bonding position with the atomic group constituting the ligand.
Group (UE-1)
Figure JPOXMLDOC01-appb-C000003
群(UE-2)
Figure JPOXMLDOC01-appb-C000004
Group (UE-2)
Figure JPOXMLDOC01-appb-C000004
群(UE-3)
Figure JPOXMLDOC01-appb-C000005
Group (UE-3)
Figure JPOXMLDOC01-appb-C000005
 群(UE-1)~(UE-3)中、R1は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。 In the groups (UE-1) to (UE-3), R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and R 2 represents a hydrogen atom, an alkyl group, an alkenyl group Represents a group, alkynyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group, heteroaryloxy group, alkylthio group, arylthio group, heteroarylthio group, amino group or acyl group.
 非共有電子対で配位する配位原子は、環に含まれていてもよい。非共有電子対で配位する配位原子が環に含まれる場合、非共有電子対で配位する配位原子を含む環は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。非共有電子対で配位する配位原子を含む環は、5~12員環が好ましく、5~7員環がより好ましい。
 非共有電子対で配位する配位原子を含む環は、置換基を有していてもよく、置換基としては炭素数1~10の直鎖状、分岐状または環状のアルキル基、炭素数6~12のアリール基、ハロゲン原子、ケイ素原子、炭素数1~12のアルコキシ基、炭素数2~12のアシル基、炭素数1~12のアルキルチオ基、カルボキシ基等が挙げられる。
 非共有電子対で配位する配位原子を含む環が置換基を有している場合、さらに置換基を有していてもよく、非共有電子対で配位する配位原子を含む環からなる基、上述した群(UE-1)~(UE-3)から選択される少なくとも1種の部分構造を含む基、炭素数1~12のアルキル基、炭素数2~12のアシル基、ヒドロキシ基が挙げられる。
The coordinating atom coordinated by the lone pair may be contained in the ring. In the case where the ring includes a coordination atom that coordinates with an unshared electron pair, the ring that includes a coordination atom that coordinates with an unshared electron pair may be monocyclic or polycyclic, It may be aromatic or non-aromatic. The ring containing a coordination atom coordinated by a lone pair is preferably a 5- to 12-membered ring, and more preferably a 5- to 7-membered ring.
The ring containing a coordinating atom coordinated by a lone pair may have a substituent, such as a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, carbon number Examples thereof include an aryl group having 6 to 12 atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, an acyl group having 2 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, and a carboxy group.
When the ring containing the coordination atom coordinated by the lone pair has a substituent, the ring may further have a substituent, and from the ring containing the coordination atom coordinated by the lone pair A group containing at least one partial structure selected from the above groups (UE-1) to (UE-3), an alkyl group having 1 to 12 carbon atoms, an acyl group having 2 to 12 carbon atoms, hydroxy Groups.
 非共有電子対で配位する配位原子が群(UE-1)~(UE-3)で表される部分構造に含まれる場合、R1は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。
 アルキル基、アルケニル基、アルキニル基、アリール基、およびヘテロアリール基は、上記アニオンで配位する配位部位で説明したアルキル基、アルケニル基、アルキニル基、アリール基、およびヘテロアリール基と同義であり、好ましい範囲も同様である。
 アルコキシ基の炭素数は、1~12が好ましく、3~9がより好ましい。
 アリールオキシ基の炭素数は、6~18が好ましく、6~12がより好ましい。
 ヘテロアリールオキシ基は、単環であっても多環であってもよい。ヘテロアリールオキシ基を構成するヘテロアリール基は、上記アニオンで配位する配位部位で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
 アルキルチオ基の炭素数は、1~12が好ましく、1~9がより好ましい。
 アリールチオ基の炭素数は、6~18が好ましく、6~12がより好ましい。
 ヘテロアリールチオ基は、単環であっても多環であってもよい。ヘテロアリールチオ基を構成するヘテロアリール基は、上記アニオンで配位する配位部位で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
 アシル基の炭素数は、2~12が好ましく、2~9がより好ましい。R1は、水素原子、アルキル基、アルケニル基、アルキニル基が好ましく、水素原子、アルキル基がより好ましく、アルキル基が特に好ましい。アルキル基の炭素数は1~3であることも好ましい。N原子上の置換基、すなわちR1をアルキル基とすることで、可視透明性がより向上する。理由は不明だが、配位子軌道のエネルギーレベルが変わることで、配位子-銅間の電荷移動遷移が長波長シフトするためと推定する。
When the coordination atom coordinated by the lone pair is included in the partial structure represented by the groups (UE-1) to (UE-3), R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group Represents an aryl group or a heteroaryl group, and R 2 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthio group, an arylthio group Represents a heteroarylthio group, an amino group or an acyl group.
The alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group are synonymous with the alkyl group, alkenyl group, alkynyl group, aryl group, and heteroaryl group described in the coordination site coordinated with the above anion. The preferable range is also the same.
The alkoxy group preferably has 1 to 12 carbon atoms, and more preferably 3 to 9 carbon atoms.
The aryloxy group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms.
The heteroaryloxy group may be monocyclic or polycyclic. The heteroaryl group which comprises heteroaryloxy group is synonymous with the heteroaryl group demonstrated by the coordination site | part coordinated with the said anion, and its preferable range is also the same.
The alkylthio group preferably has 1 to 12 carbon atoms, and more preferably 1 to 9 carbon atoms.
The arylthio group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms.
The heteroarylthio group may be monocyclic or polycyclic. The heteroaryl group which comprises a heteroarylthio group is synonymous with the heteroaryl group demonstrated by the coordination site | part coordinated with the said anion, and its preferable range is also the same.
The acyl group preferably has 2 to 12 carbon atoms, and more preferably 2 to 9 carbon atoms. R 1 is preferably a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably an alkyl group. The alkyl group preferably has 1 to 3 carbon atoms. By making the substituent on the N atom, that is, R 1 an alkyl group, visible transparency is further improved. The reason is unknown, but it is presumed that the charge transfer transition between the ligand and copper shifts by a long wavelength by changing the energy level of the ligand orbital.
 配位子が、1分子内に、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する場合、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを連結する原子数は、1~6であることが好ましく、1~3であることがより好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができ、可視透明性を高めつつ、モル吸光係数を大きくし易い。アニオンで配位する配位部位と非共有電子対で配位する配位原子とを連結する原子の種類は、1種または2種以上であってもよい。炭素原子、または、窒素原子が好ましい。 When the ligand has a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair in one molecule, it is coordinated by a coordination site coordinated by an anion and an unshared electron pair. The number of atoms linking the coordinated coordination atoms is preferably 1 to 6, more preferably 1 to 3. With such a configuration, the structure of the copper complex becomes more easily distorted, so that the color value can be further improved, and the molar extinction coefficient can be easily increased while enhancing the visible transparency. The kind of atom that connects the coordination site coordinated by the anion and the coordination atom coordinated by the lone pair may be one or more. A carbon atom or a nitrogen atom is preferable.
 配位子が、1分子内に、非共有電子対で配位する配位原子を2以上有する場合、非共有電子対で配位する配位原子は3つ以上有していてもよく、2~5個有していることが好ましく、4個有していることがより好ましい。非共有電子対で配位する配位原子同士を連結する原子数は、1~6であることが好ましく、1~3であることがより好ましく、2~3が更に好ましく、3が特に好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができる。非共有電子対で配位する配位原子同士を連結する原子は、1種または2種以上であってもよい。非共有電子対で配位する配位原子同士を連結する原子は、炭素原子が好ましい。 When the ligand has two or more coordination atoms coordinated by a lone pair in one molecule, it may have three or more coordination atoms coordinated by a lone pair. It is preferable to have ˜5, more preferably 4. The number of atoms connecting the coordinating atoms coordinated by the lone pair is preferably 1 to 6, more preferably 1 to 3, further preferably 2 to 3, and particularly preferably 3. By setting it as such a structure, since the structure of a copper complex becomes easier to distort, color value can be improved more. 1 type (s) or 2 or more types may be sufficient as the atom which connects the coordination atoms coordinated by a lone pair. The atom connecting the coordinating atoms coordinated by the lone pair is preferably a carbon atom.
 配位子は、少なくとも2個の配位部位を有する化合物(多座配位子ともいう)が好ましい。配位子は、配位部位を少なくとも3個有することがより好ましく、3~5個有することが更に好ましく、4~5個有することが特に好ましい。多座配位子は、銅成分に対し、キレート配位子として働く。すなわち、多座配位子が有する少なくとも2個の配位部位が、銅とキレート配位することにより、銅錯体の構造が歪んで、可視領域の高い透過性が得られ、赤外線の吸光能力を向上でき、色価も向上すると考えられる。 The ligand is preferably a compound having at least two coordination sites (also referred to as a multidentate ligand). The ligand preferably has at least three coordination sites, more preferably 3 to 5, and particularly preferably 4 to 5. The multidentate ligand acts as a chelate ligand for the copper component. That is, at least two coordination sites of the polydentate ligand are chelate-coordinated with copper, so that the structure of the copper complex is distorted, high transparency in the visible region is obtained, and infrared absorption ability is improved. It can be improved and the color value is also improved.
 多座配位子は、アニオンで配位する配位部位を1つ以上と非共有電子対で配位する配位原子を1つ以上とを含む化合物、非共有電子対で配位する配位原子を2つ以上有する化合物、アニオンで配位する配位部位を2つ以上含む化合物等が挙げられる。これらの化合物は、それぞれ独立に、1種または2種以上を組み合わせて用いることができる。また、配位子となる化合物は、多座配位子と、配位部位を1つのみ有する化合物(単座配位子)とを併用することもできる。 A multidentate ligand is a compound comprising one or more coordination sites coordinated by an anion and one or more coordination atoms coordinated by an unshared electron pair, or coordinated by an unshared electron pair. Examples thereof include compounds having two or more atoms, compounds containing two or more coordination sites coordinated by anions, and the like. These compounds can be used independently or in combination of two or more. Moreover, the compound used as a ligand can use together a multidentate ligand and the compound (monodentate ligand) which has only one coordination site | part.
 多座配位子は、下記一般式(IV-1)~(IV-14)で表される化合物であることが好ましい。例えば、配位子が4個の配位部位を有する化合物である場合は、下記式(IV-3)、(IV-6)、(IV-7)、(IV-12)で表される化合物が好ましく、金属中心により強固に配位し、耐熱性の高い安定な5配位錯体を形成しやすいという理由から、(IV-12)で表される化合物がより好ましい。また、例えば、配位子が5個の配位部位を有する化合物である場合は、下記式(IV-4)、(IV-8)~(IV-11)、(IV-13)、(IV-14)で表される化合物が好ましく、金属中心により強固に配位し、耐熱性の高い安定な5配位錯体を形成しやすいという理由から、(IV-9)~(IV-10)、(IV-13)、(IV-14)で表される化合物がより好ましく、(IV-13)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000006
The multidentate ligand is preferably a compound represented by the following general formulas (IV-1) to (IV-14). For example, when the ligand is a compound having four coordination sites, the compound represented by the following formulas (IV-3), (IV-6), (IV-7), (IV-12) The compound represented by (IV-12) is more preferable because it is more easily coordinated with the metal center and easily forms a stable pentacoordination complex having high heat resistance. For example, when the ligand is a compound having 5 coordination sites, the following formulas (IV-4), (IV-8) to (IV-11), (IV-13), (IV The compound represented by -14) is preferable, and is coordinated more strongly with the metal center and is easy to form a stable 5-coordinate complex having high heat resistance. Therefore, (IV-9) to (IV-10), The compounds represented by (IV-13) and (IV-14) are more preferred, and the compound represented by (IV-13) is particularly preferred.
Figure JPOXMLDOC01-appb-C000006
 一般式(IV-1)~(IV-14)中、X1~X59はそれぞれ独立して、配位部位を表し、L1~L25はそれぞれ独立して単結合または2価の連結基を表し、L26~L32はそれぞれ独立して3価の連結基を表し、L33~L34はそれぞれ独立して4価の連結基を表す。
 X1~X42はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基、上述した群(AN-1)、または、群(UE-1)から選択される少なくとも1種を表すことが好ましい。
 X43~X56はそれぞれ独立して、非共有電子対で配位する配位原子を含む環からなる基、上述した群(AN-2)、または、群(UE-2)から選択される少なくとも1種を表すことが好ましい。
 X57~X59はそれぞれ独立して、上述した群(UE-3)から選択される少なくとも1種を表すことが好ましい。
 L1~L25はそれぞれ独立して単結合または2価の連結基を表す。2価の連結基としては、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、-SO-、-O-、-SO2-または、これらの組み合わせからなる基が好ましく、炭素数1~3のアルキレン基、フェニレン基、-SO2-またはこれらの組み合わせからなる基がより好ましい。
 L26~L32はそれぞれ独立して3価の連結基を表す。3価の連結基としては、上述した2価の連結基から水素原子を1つ除いた基が挙げられる。
 L33~L34はそれぞれ独立して4価の連結基を表す。4価の連結基としては、上述した2価の連結基から水素原子を2つ除いた基が挙げられる。
 ここで、群(AN-1)~(AN-2)中のR、および、群(UE-1)~(UE-3)中のR1は、R同士、R1同士、あるいは、RとR1間で連結して環を形成しても良い。
In the general formulas (IV-1) to (IV-14), X 1 to X 59 each independently represent a coordination site, and L 1 to L 25 each independently represent a single bond or a divalent linking group. L 26 to L 32 each independently represents a trivalent linking group, and L 33 to L 34 each independently represents a tetravalent linking group.
X 1 to X 42 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-1), or the group (UE-1) described above It is preferable to represent at least one.
X 43 to X 56 are each independently selected from the group consisting of a ring containing a coordinating atom coordinated by a lone pair, the group (AN-2), or the group (UE-2) described above It is preferable to represent at least one.
X 57 to X 59 each independently preferably represent at least one selected from the group (UE-3) described above.
L 1 to L 25 each independently represents a single bond or a divalent linking group. As the divalent linking group, an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —O—, —SO 2 —, or a combination thereof is preferable. A group consisting of an alkylene group of 1 to 3 groups, a phenylene group, —SO 2 — or a combination thereof is more preferable.
L 26 to L 32 each independently represents a trivalent linking group. Examples of the trivalent linking group include groups obtained by removing one hydrogen atom from the above-described divalent linking group.
L 33 to L 34 each independently represents a tetravalent linking group. Examples of the tetravalent linking group include groups obtained by removing two hydrogen atoms from the above-described divalent linking group.
Here, the group (AN-1) R in ~ (AN-2), and, R 1 in group (UE-1) ~ (UE -3) is, R to each other, R 1 or between, and R R 1 may be linked to form a ring.
 配位子をなす化合物の具体例としては、以下に示す化合物、後述する多座配位子の好ましい具体例として示す化合物、および、これらの化合物の塩が挙げられる。塩を構成する原子としては、金属原子、テトラブチルアンモニウムなどが挙げられる。金属原子としては、アルカリ金属原子またはアルカリ土類金属原子がより好ましい。アルカリ金属原子としては、ナトリウム、カリウム等が挙げられる。アルカリ土類金属原子としては、カルシウム、マグネシウム等が挙げられる。また、特開2014-41318号公報の段落0022~0042の記載、特開2015-43063号公報の段落0021~0039の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Specific examples of the compound forming the ligand include the following compounds, compounds shown as preferred specific examples of the polydentate ligand described below, and salts of these compounds. Examples of the atoms constituting the salt include metal atoms and tetrabutylammonium. As the metal atom, an alkali metal atom or an alkaline earth metal atom is more preferable. Examples of the alkali metal atom include sodium and potassium. Examples of alkaline earth metal atoms include calcium and magnesium. In addition, the description of paragraphs 0022 to 0042 of JP 2014-41318 A and the description of paragraphs 0021 to 0039 of JP 2015-43063 A can be referred to, and the contents thereof are incorporated in this specification.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 銅錯体は、例えば、以下の(1)~(5)の態様が好ましい一例として挙げられ、(2)~(5)がより好ましく、(3)~(5)が更に好ましく、(4)または(5)が一層好ましい。
 (1)2個の配位部位を有する化合物の1つまたは2つを配位子として有する銅錯体
 (2)3個の配位部位を有する化合物を配位子として有する銅錯体
 (3)3個の配位部位を有する化合物と2個の配位部位を有する化合物とを配位子として有する銅錯体
 (4)4個の配位部位を有する化合物を配位子として有する銅錯体
 (5)5個の配位部位を有する化合物を配位子として有する銅錯体
For example, the following aspects (1) to (5) are preferred examples of the copper complex, (2) to (5) are more preferred, (3) to (5) are more preferred, (4) or (5) is more preferable.
(1) Copper complex having one or two compounds having two coordination sites as a ligand (2) Copper complex having a compound having three coordination sites as a ligand (3) 3 Copper complex having as a ligand a compound having one coordination site and a compound having two coordination sites (4) Copper complex having a compound having four coordination sites as a ligand (5) Copper complex having a compound having five coordination sites as a ligand
 上記(1)の態様において、2個の配位部位を有する化合物は、非共有電子対で配位する配位原子を2個有する化合物、または、アニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する化合物が好ましい。また、2個の配位部位を有する化合物の2つを配位子として有する場合、配位子の化合物は、同一であってもよく、異なっていてもよい。
 また、(1)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1~3個とすることもできる。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましく、2個の配位部位を有する化合物が非共有電子対で配位する配位原子を2個有する化合物の場合は配位力が強いという理由からアニオンで配位する単座配位子がより好ましく、2個の配位部位を有する化合物がアニオンで配位する配位部位と非共有電子対で配位する配位原子とを有する化合物の場合には錯体全体が電荷を持たないという理由から非共有電子対で配位する単座配位子がより好ましい。
In the above aspect (1), the compound having two coordination sites is a compound having two coordination atoms coordinated by an unshared electron pair, or a coordination site and an unshared electron coordinated by an anion. Compounds having a coordinating atom coordinated in pairs are preferred. Moreover, when it has two of the compounds having two coordination sites as a ligand, the compounds of the ligand may be the same or different.
In the embodiment (1), the copper complex may further have a monodentate ligand. The number of monodentate ligands can be 0, or 1 to 3. As the type of monodentate ligand, both a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by an unshared electron pair are preferable, and a compound having two coordination sites is an unshared electron pair. In the case of a compound having two coordination atoms coordinated with, a monodentate ligand coordinated with an anion is more preferable because the coordination power is strong, and a compound having two coordination sites is coordinated with an anion. In the case of a compound having a coordination site to be coordinated and a coordinating atom coordinated by a lone pair, a monodentate ligand coordinated by a lone pair is more preferable because the entire complex has no charge.
 上記(2)の態様において、3個の配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を3個有する化合物が更に好ましい。
 また、(2)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもできる。また、1個以上とすることもでき、1~3個以上がより好ましく、1~2個がさらに好ましく、2個が一層好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましく、上述した理由によりアニオンで配位する単座配位子がより好ましい。
In the above aspect (2), the compound having three coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and has three coordination atoms coordinated by a lone pair. The compound having is more preferable.
In the embodiment (2), the copper complex may further have a monodentate ligand. The number of monodentate ligands can also be zero. Moreover, it can also be 1 or more, 1 to 3 or more is more preferable, 1 to 2 is more preferable, and 2 is more preferable. As the type of monodentate ligand, either a monodentate ligand coordinated by an anion or a monodentate ligand coordinated by a lone pair is preferable, and for the reason described above, a monodentate ligand coordinated by an anion is used. More preferred.
 上記(3)の態様において、3個の配位部位を有する化合物は、アニオンで配位する配位部位と、非共有電子対で配位する配位原子とを有する化合物が好ましく、アニオンで配位する配位部位を2つ、および、非共有電子対で配位する配位原子を1個有する化合物が更に好ましい。さらに、この2個のアニオンで配位する配位部位が異なっていることが特に好ましい。また、2個の配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2個有する化合物が更に好ましい。なかでも、3個の配位部位を有する化合物が、アニオンで配位する配位部位を2個、および、非共有電子対で配位する配位原子を1個有する化合物であり、2個の配位部位を有する化合物が、非共有電子対で配位する配位原子を2個有する化合物である組み合わせが、特に好ましい。
 また、(3)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。0個がより好ましい。
In the above aspect (3), the compound having three coordination sites is preferably a compound having a coordination site coordinated by an anion and a coordination atom coordinated by an unshared electron pair. More preferred are compounds having two coordination sites that coordinate and one coordination atom coordinated by an lone pair of electrons. Further, it is particularly preferable that the coordination sites coordinated by the two anions are different. In addition, the compound having two coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and more preferably a compound having two coordination atoms coordinated by a lone pair. Among them, a compound having three coordination sites is a compound having two coordination sites coordinated by an anion and one coordination atom coordinated by a lone pair, A combination in which the compound having a coordination site is a compound having two coordination atoms coordinated by an unshared electron pair is particularly preferable.
In the embodiment (3), the copper complex may further have a monodentate ligand. The number of monodentate ligands can be zero, or one or more. 0 is more preferable.
 上記(4)の態様において、4個の配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2以上有する化合物がより好ましく、非共有電子対で配位する配位原子を4個有する化合物が更に好ましい。
 また、(4)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもでき、2個以上とすることもできる。1個が好ましい。単座配位子の種類としては、アニオンで配位する単座配位子、非共有電子対で配位する単座配位子のいずれも好ましい。
In the above aspect (4), the compound having four coordination sites is preferably a compound having a coordination atom coordinated by a lone pair, and the number of coordination atoms coordinated by a lone pair is two or more. And a compound having four coordination atoms coordinated by an unshared electron pair is more preferable.
In the embodiment (4), the copper complex may further have a monodentate ligand. The number of monodentate ligands can be 0, 1 or more, or 2 or more. One is preferred. As the kind of monodentate ligand, both a monodentate ligand coordinated by an anion and a monodentate ligand coordinated by an unshared electron pair are preferable.
 上記(5)の態様において、5個の配位部位を有する化合物は、非共有電子対で配位する配位原子を有する化合物が好ましく、非共有電子対で配位する配位原子を2以上有する化合物がより好ましく、非共有電子対で配位する配位原子を5個有する化合物が更に好ましい。
 また、(5)の態様において、銅錯体は、単座配位子を更に有することもできる。単座配位子の数は、0個とすることもでき、1個以上とすることもできる。単座配位子の数は0個が好ましい。
In the above aspect (5), the compound having 5 coordination sites is preferably a compound having a coordination atom coordinated by an unshared electron pair, and the number of coordinate atoms coordinated by an unshared electron pair is 2 or more. A compound having 5 coordination atoms coordinated by an unshared electron pair is more preferable.
In the embodiment (5), the copper complex may further have a monodentate ligand. The number of monodentate ligands can be zero, or one or more. The number of monodentate ligands is preferably 0.
 多座配位子は、上述した配位子の具体例で説明した化合物のうち、配位部位を2以上有する化合物や、以下に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012
Examples of the multidentate ligand include compounds having two or more coordination sites among the compounds described in the specific examples of the ligand described above, and compounds shown below.
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012
[リン酸エステル銅錯体]
 本発明において、銅化合物として、リン酸エステル銅錯体を用いることもできる。リン酸エステル銅錯体は、銅を中心金属としリン酸エステル化合物を配位子とするものである。リン酸エステル銅錯体の配位子をなすリン酸エステル化合物は、下記式(L-100)で表される化合物またはその塩が好ましい。
 (HO)n-P(=O)-(OR13-n  式(L-100)
 式中、R1は炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基、または炭素数2~18のアルケニル基を表すか、-OR1が、炭素数4~100のポリオキシアルキル基、炭素数4~100の(メタ)アクリロイルオキシアルキル基、または、炭素数4~100の(メタ)アクリロイルポリオキシアルキル基を表し、nは1または2を表す。nが1のとき、R2はそれぞれ同一でもよいし、異なっていてもよい。
[Phosphate ester copper complex]
In this invention, a phosphate ester copper complex can also be used as a copper compound. The phosphate ester copper complex has copper as a central metal and a phosphate ester compound as a ligand. The phosphate compound forming the ligand of the phosphate copper complex is preferably a compound represented by the following formula (L-100) or a salt thereof.
(HO) n -P (= O)-(OR 1 ) 3-n formula (L-100)
In the formula, R 1 represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms, or —OR 1 is Represents a polyoxyalkyl group having 4 to 100 carbon atoms, a (meth) acryloyloxyalkyl group having 4 to 100 carbon atoms, or a (meth) acryloyl polyoxyalkyl group having 4 to 100 carbon atoms, and n is 1 or 2 Represents. When n is 1, R 2 may be the same or different.
 リン酸エステル化合物の具体例としては、上述した配位子が挙げられる。また、特開2014-41318号公報の段落0022~0042の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Specific examples of the phosphate ester compound include the ligands described above. In addition, the descriptions in paragraphs 0022 to 0042 of JP 2014-41318 A can be referred to, and the contents thereof are incorporated in the present specification.
[スルホン酸銅錯体]
 本発明において、銅化合物として、スルホン酸銅錯体を用いることもできる。スルホン酸銅錯体は、銅を中心金属としスルホン酸化合物を配位子とするものである。スルホン酸銅錯体の配位子をなすスルホン酸化合物は、下記式(L-200)で表される化合物またはその塩が好ましい。
2-SO2-OH     式(L-200)
[Sulphonic acid copper complex]
In the present invention, a sulfonic acid copper complex can also be used as the copper compound. The sulfonic acid copper complex has copper as a central metal and a sulfonic acid compound as a ligand. The sulfonic acid compound forming the ligand of the sulfonic acid copper complex is preferably a compound represented by the following formula (L-200) or a salt thereof.
R 2 —SO 2 —OH Formula (L-200)
 式中、R2は1価の有機基を表す。1価の有機基としては、アルキル基、アリール基、ヘテロアリール基などを挙げることができる。アルキル基、アリール基およびヘテロアリール基は、二価の連結基を有していてもよい。二価の連結基としては、-(CH2m-(mは1~10の整数、好ましくは1~6の整数、より好ましくは1~4の整数)、炭素数5~10の環状のアルキレン基、または、これらの基と、-O-、-COO-、-S-、-NH-および-CO-の少なくとも1つの組み合わせからなる基が好ましい。式(L-200)中、R2は、式量が300以下の有機基であることが好ましく、式量が50~200の有機基がより好ましく、式量60~100の有機基がさらに好ましい。式(L-200)で表されるスルホン酸化合物の分子量は、80~750が好ましく、80~600がより好ましく、80~450がさらに好ましい。 In the formula, R 2 represents a monovalent organic group. Examples of the monovalent organic group include an alkyl group, an aryl group, and a heteroaryl group. The alkyl group, aryl group and heteroaryl group may have a divalent linking group. As the divalent linking group, — (CH 2 ) m — (m is an integer of 1 to 10, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and a cyclic group having 5 to 10 carbon atoms. An alkylene group or a group composed of at least one of these groups and —O—, —COO—, —S—, —NH— and —CO— is preferable. In the formula (L-200), R 2 is preferably an organic group having a formula weight of 300 or less, more preferably an organic group having a formula weight of 50 to 200, and further preferably an organic group having a formula weight of 60 to 100. . The molecular weight of the sulfonic acid compound represented by the formula (L-200) is preferably 80 to 750, more preferably 80 to 600, and still more preferably 80 to 450.
 スルホン酸化合物の具体例としては、上述した配位子が挙げられる。また、特開2015-43063号公報の段落0021~0039の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Specific examples of the sulfonic acid compound include the ligands described above. In addition, the description in paragraphs 0021 to 0039 of JP-A-2015-43063 can be referred to, and the contents thereof are incorporated in this specification.
[ポリマータイプの銅化合物]
 本発明において、銅化合物として、ポリマー側鎖に銅錯体部位を有する銅含有ポリマーを用いることができる。銅含有ポリマーは、ポリマー側鎖に銅錯体部位を有するので、銅を起点として、ポリマーの側鎖間に架橋構造が形成されると考えられ、耐熱性に優れた膜が得られると考えられる。
[Polymer type copper compound]
In the present invention, a copper-containing polymer having a copper complex site in the polymer side chain can be used as the copper compound. Since the copper-containing polymer has a copper complex site in the polymer side chain, it is considered that a crosslinked structure is formed between the side chains of the polymer starting from copper, and a film having excellent heat resistance is obtained.
 銅錯体部位としては、銅と、銅に対して配位する部位(配位部位)とを有するものが挙げられる。銅に対して配位する部位としては、アニオンまたは非共有電子対で配位する部位が挙げられる。また、銅錯体部位は、銅に対して4座配位または5座配位する部位を有することが好ましい。配位部位の詳細については、上述した低分子タイプの銅化合物で説明したものが挙げられ、好ましい範囲も同様である。 Examples of the copper complex site include those having copper and a site coordinated to copper (coordination site). As a site | part coordinated with respect to copper, the site | part coordinated by an anion or an unshared electron pair is mentioned. Moreover, it is preferable that a copper complex site | part has a site | part coordinated to tetradentate or pentadentate with respect to copper. The details of the coordination site include those described in the low molecular type copper compound described above, and the preferred range is also the same.
 銅含有ポリマーは、配位部位を含むポリマー(ポリマー(B1)ともいう)と、銅成分との反応で得られるポリマーや、ポリマー側鎖に反応性部位を有するポリマー(以下ポリマー(B2)ともいう)と、ポリマー(B2)が有する反応性部位と反応可能な官能基を有する銅錯体とを反応させて得られるポリマーが挙げられる。銅含有ポリマーの重量平均分子量は、2000以上が好ましく、2000~200万がより好ましく、6000~200,000がさらに好ましい。 The copper-containing polymer is a polymer obtained by a reaction between a coordination site-containing polymer (also referred to as polymer (B1)) and a copper component, or a polymer having a reactive site in the polymer side chain (hereinafter also referred to as polymer (B2)). ) And a copper complex having a functional group capable of reacting with the reactive site of the polymer (B2). The weight average molecular weight of the copper-containing polymer is preferably 2000 or more, more preferably 2000 to 2 million, and still more preferably 6000 to 200,000.
(フタロシアニン化合物)
 本発明において、赤外線吸収化合物として用いるフタロシアニン化合物は、下記式(PC)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000013
(Phthalocyanine compound)
In the present invention, the phthalocyanine compound used as the infrared absorbing compound is preferably a compound represented by the following formula (PC).
Figure JPOXMLDOC01-appb-C000013
 一般式(PC)において、X1~X16は、各々独立に、水素原子又は置換基を表し、M1は、金属原子、金属酸化物又は金属ハロゲン化物を表す。 In the general formula (PC), X 1 to X 16 each independently represents a hydrogen atom or a substituent, and M 1 represents a metal atom, a metal oxide, or a metal halide.
 M1が表す金属原子、及び、金属酸化物又は金属ハロゲン化物を構成する金属原子としては特に限定されず、例えば、Al、Zn、Mg、V、Cu、Co、Fe、Ni、CuおよびAgが挙げられ、Ti、Vが好ましい。M1は、Ti=O、V=Oが好ましい。 The metal atom represented by M 1 and the metal atom constituting the metal oxide or metal halide are not particularly limited, and examples thereof include Al, Zn, Mg, V, Cu, Co, Fe, Ni, Cu, and Ag. Ti and V are preferable. M 1 is preferably Ti = O and V = O.
 X1~X16が表す置換基は、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アリール基、ヘテロアリール基、-ORc1、-CORc2、-COORc3、-OCORc4、-NRc5c6、-NHCORc7、-CONRc8c9、-NHCONRc10c11、-NHCOORc12、-SRc13、-SO2c14、-SO2ORc15、-NHSO2c16または-SO2NRc17c18が挙げられる。Rc1~Rc18は、それぞれ独立に、水素原子、アルキル基、アリール基またはヘテロアリール基を表す。なお、-COORc3のRc3が水素原子の場合(すなわち、カルボキシ基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、-SO2ORc15のRc15が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。 The substituents represented by X 1 to X 16 are a halogen atom, a cyano group, a nitro group, an alkyl group, an aryl group, a heteroaryl group, —OR c1 , —COR c2 , —COOR c3 , —OCOR c4 , —NR c5 R c6 , —NHCOR c7 , —CONR c8 R c9 , —NHCONR c10 R c11 , —NHCOOR c12 , —SR c13 , —SO 2 R c14 , —SO 2 OR c15 , —NHSO 2 R c16 or —SO 2 NR c17 R c18 . R c1 to R c18 each independently represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group. When R c3 of —COOR c3 is a hydrogen atom (ie, a carboxy group), the hydrogen atom may be dissociated (ie, a carbonate group) or may be in a salt state. When R c15 of —SO 2 OR c15 is a hydrogen atom (ie, a sulfo group), the hydrogen atom may be dissociated (ie, a sulfonate group) or may be in a salt state.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~12がさらに好ましく、1~8が特に好ましい。アルキル基は、直鎖、分岐、環状のいずれでもよい。アルキル基は無置換であってもよく、置換基を有していてもよい。
 アリール基の炭素数は、6~25が好ましく、6~15がさらに好ましく、6~10が最も好ましい。
 ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環がより好ましく、単環または縮合数が2~4の縮合環が更に好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がより好ましく、3~12が更に好ましい。
 アルキル基、アリール基およびヘテロアリール基は、置換基を有していてもよく、無置換であってもよい。置換基としては、上述した置換基が挙げられ、例えば、ハロゲン原子等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. The alkyl group may be linear, branched or cyclic. The alkyl group may be unsubstituted or may have a substituent.
The aryl group preferably has 6 to 25 carbon atoms, more preferably 6 to 15 carbon atoms, and most preferably 6 to 10 carbon atoms.
The heteroaryl group is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring having 2 to 8 condensations, and still more preferably a single ring or a condensed ring having 2 to 4 condensations. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3. The hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom. The heteroaryl group is preferably a 5-membered ring or a 6-membered ring. The heteroaryl group is preferably a 5-membered ring or a 6-membered ring. The number of carbon atoms constituting the ring of the heteroaryl group is preferably 3 to 30, more preferably 3 to 18, and still more preferably 3 to 12.
The alkyl group, aryl group, and heteroaryl group may have a substituent or may be unsubstituted. Examples of the substituent include the substituents described above, and examples thereof include a halogen atom.
 一般式(PC)の詳細については、特開2014-067019号公報の段落0024~0052、特開2013-1785号公報の段落0019~0067の記載を参酌でき、この内容は本明細書に組み込まれる。 Details of the general formula (PC) can be referred to the descriptions in paragraphs 0024 to 0052 of JP 2014-0667019 A and paragraphs 0019 to 0067 of JP 2013-1785 A, the contents of which are incorporated herein. .
 フタロシアニン化合物の具体例としては、例えば、下記化合物や、特開2014-067019号公報の段落0191、0216に記載の化合物や、特開2006-343631号公報に記載のオキシチタニウムフタロシアニンや、特開2013-001785号公報に記載の化合物(オクタフルオロ-オクタ(ベンジルアミノ)オキシバナジウムフタロシアニン、オクタフルオロ-オクタキス(2-フェニルエチルアミノ)オキシバナジウムフタロシアニン、オクタフルオロ-オクタ(シクロヘキシルアミノ)オキシバナジウムフタロシアニンなど)などが挙げられる。
Figure JPOXMLDOC01-appb-C000014
Specific examples of the phthalocyanine compound include, for example, the following compounds, compounds described in paragraphs 0191 and 0216 of JP2014-0667019A, oxytitanium phthalocyanine described in JP2006-343631A, and JP2013. -001785 compounds (octafluoro-octa (benzylamino) oxyvanadium phthalocyanine, octafluoro-octakis (2-phenylethylamino) oxyvanadium phthalocyanine, octafluoro-octa (cyclohexylamino) oxyvanadium phthalocyanine, etc.), etc. Is mentioned.
Figure JPOXMLDOC01-appb-C000014
(ナフタロシアニン化合物)
 本発明において、赤外線吸収化合物として用いるナフタロシアニン化合物は、下記式(NPC)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(NPC)において、X1~X24は、各々独立に、水素原子又は置換基を表し、M2は、金属原子、金属酸化物又は金属ハロゲン化物を表す。
(Naphthalocyanine compound)
In the present invention, the naphthalocyanine compound used as the infrared absorbing compound is preferably a compound represented by the following formula (NPC).
Figure JPOXMLDOC01-appb-C000015
In the general formula (NPC), X 1 to X 24 each independently represents a hydrogen atom or a substituent, and M 2 represents a metal atom, a metal oxide, or a metal halide.
 X1~X24が表す置換基は、上述した一般式(PC)で説明した基が挙げられ、アルキル基、ハロゲン原子、アルコキシ基、フェノキシ基、アルキルチオ基、フェニルチオ基、アルキルアミノ基、アニリノ基が好ましい。M2が表す金属原子、及び、金属酸化物又は金属ハロゲン化物を構成する金属原子としては特に限定されず、例えば、Al、Zn、Mg、V、Cu、Co、Fe、Ni、CuおよびAgが挙げられ、Ti、Vが好ましい。M2は、Ti=O、V=Oが好ましい。
 一般式(NPC)の詳細については、特開2013-218312号公報の段落0058~0060の記載を参酌でき、この内容は本明細書に組み込まれる。
Examples of the substituent represented by X 1 to X 24 include the groups described in the general formula (PC), and include an alkyl group, a halogen atom, an alkoxy group, a phenoxy group, an alkylthio group, a phenylthio group, an alkylamino group, and an anilino group. Is preferred. The metal atom represented by M 2 and the metal atom constituting the metal oxide or metal halide are not particularly limited, and examples thereof include Al, Zn, Mg, V, Cu, Co, Fe, Ni, Cu, and Ag. Ti and V are preferable. M 2 is preferably Ti = O and V = O.
Details of the general formula (NPC) can be referred to the descriptions in paragraphs 0058 to 0060 of JP2013-21831A, the contents of which are incorporated herein.
(ジチオール化合物)
 本発明において、赤外線吸収化合物として用いるジチオール化合物は、下記式(DT-1)~(DT-3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
(Dithiol compound)
In the present invention, the dithiol compound used as the infrared absorbing compound is preferably a compound represented by the following formulas (DT-1) to (DT-3).
Figure JPOXMLDOC01-appb-C000016
 一般式(DT-1)~(DT-3)において、R101~R112は、各々独立に、水素原子又は置換基を表し、Y1~Y3は、各々独立に、硫黄原子又は酸素原子を表し、M3は、金属原子、金属酸化物又は金属ハロゲン化物を表す。 In the general formulas (DT-1) to (DT-3), R 101 to R 112 each independently represents a hydrogen atom or a substituent, and Y 1 to Y 3 each independently represents a sulfur atom or an oxygen atom. M 3 represents a metal atom, a metal oxide or a metal halide.
 R101~R112が表す置換基は、上述した一般式(PC)で説明した基が挙げられ、アルキル基が好ましい。M3が表す金属原子、及び、金属酸化物又は金属ハロゲン化物を構成する金属原子としては特に限定されず、例えば、Ni、Pd、Pt、Au、Ir、Fe、Zn、W、Cu、Mo、In、Mn、Co、Mg、V、Cr、Tiが挙げられ、Ni、Pd、Ptが好ましく、Niがより好ましい。M3としては、Ni、Pd、Ptが好ましく、Niがより好ましい。一般式(DT-1)~(DT-3)の詳細については、特開2008-163197号公報の段落0109、特表2014-516092号公報の段落0015~0088、特開2015-057492号公報の段落0033~0079の記載を参酌でき、この内容は本明細書に組み込まれる。 Examples of the substituent represented by R 101 to R 112 include the groups described in the general formula (PC), and an alkyl group is preferable. The metal atom represented by M 3 and the metal atom constituting the metal oxide or metal halide are not particularly limited. For example, Ni, Pd, Pt, Au, Ir, Fe, Zn, W, Cu, Mo, Examples include In, Mn, Co, Mg, V, Cr, and Ti. Ni, Pd, and Pt are preferable, and Ni is more preferable. M 3 is preferably Ni, Pd, or Pt, and more preferably Ni. For details of the general formulas (DT-1) to (DT-3), refer to paragraph 0109 of JP2008-163197, paragraphs 0015 to 0088 of JP2014-516092A, and JP2015-057492A. The description in paragraphs 0033-0079 can be referred to, the contents of which are incorporated herein.
 ジチオール化合物の具体例としては、例えば、下記化合物や、特表2014-516092号公報の段落0188~00251、特開2015-057492号公報の段落0079に記載された化合物が挙げられ、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000017
Specific examples of the dithiol compound include, for example, the following compounds, and compounds described in paragraphs 0188 to 00251 of JP-A-2014-516092 and paragraph 0079 of JP-A-2015-057492. Incorporated in the description.
Figure JPOXMLDOC01-appb-C000017
 赤外線吸収剤中の金属化合物(赤外線吸収化合物)の含有量は、赤外線吸収剤の全固形分に対して、1~99.995質量%が好ましい。下限は、10質量%以上が好ましく、30質量%以上がより好ましい。上限は、99.9質量%以下とすることもでき、99質量%以下とすることもできる。
 金属化合物(赤外線吸収化合物)として銅化合物を用いる場合、銅化合物の含有量は、金属化合物の質量に対して、50~100質量%が好ましい。下限は、60質量%以上が好ましく、70質量%以上がより好ましい。また、金属化合物(赤外線吸収化合物)は、実質的に銅化合物のみであってもよい。金属化合物(赤外線吸収化合物)が、実質的に銅化合物のみである場合とは、金属化合物中における銅化合物の含有量が例えば99質量%以上が好ましく、99.9質量%以上がより好ましく、銅化合物のみで構成されていることが一層好ましい。
The content of the metal compound (infrared absorbing compound) in the infrared absorbent is preferably 1 to 99.995% by mass with respect to the total solid content of the infrared absorbent. The lower limit is preferably 10% by mass or more, and more preferably 30% by mass or more. An upper limit can also be made into 99.9 mass% or less, and can also be made into 99 mass% or less.
When a copper compound is used as the metal compound (infrared absorbing compound), the content of the copper compound is preferably 50 to 100% by mass with respect to the mass of the metal compound. The lower limit is preferably 60% by mass or more, and more preferably 70% by mass or more. Further, the metal compound (infrared absorbing compound) may be substantially only a copper compound. When the metal compound (infrared absorbing compound) is substantially only a copper compound, the content of the copper compound in the metal compound is preferably 99% by mass or more, more preferably 99.9% by mass or more, and copper More preferably, it is composed only of a compound.
<<金属化合物以外の赤外線吸収化合物>>
 本発明の赤外線吸収剤は、金属化合物以外の赤外線吸収化合物(以下、他の赤外線吸収化合物ともいう)を含んでいてもよい。他の赤外線吸収化合物としては、ピロロピロール化合物、スクアリリウム化合物、シアニン化合物、ジイモニウム化合物、クアテリレン化合物、クロコニウム化合物等が挙げられる。スクアリリウム化合物としては、以下に示す化合物が挙げられる。また、特開2011-208101号公報の段落0044~0049に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。ピロロピロール化合物としては、以下に示す化合物が挙げられる。また、特開2010-222557号公報の段落0049~0062に記載の化合物D-1~D-162が挙げられ、この内容は本明細書に組み込まれる。シアニン化合物としては、以下に示す化合物が挙げられる。また、特開2009-108267公報の段落0044~0045に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000018
<< Infrared absorbing compound other than metal compound >>
The infrared absorber of the present invention may contain an infrared absorbing compound other than the metal compound (hereinafter also referred to as other infrared absorbing compound). Examples of other infrared absorbing compounds include pyrrolopyrrole compounds, squarylium compounds, cyanine compounds, diimonium compounds, quaterrylene compounds, and croconium compounds. Examples of the squarylium compound include the following compounds. Further, compounds described in paragraphs 0044 to 0049 of JP2011-208101A can be mentioned, the contents of which are incorporated herein. Examples of the pyrrolopyrrole compound include the following compounds. Further, compounds D-1 to D-162 described in paragraphs 0049 to 0062 of JP2010-222557A can be mentioned, the contents of which are incorporated herein. Examples of the cyanine compound include the following compounds. Further, compounds described in paragraphs 0044 to 0045 of JP-A-2009-108267 can be mentioned, the contents of which are incorporated herein.
Figure JPOXMLDOC01-appb-C000018
 他の赤外線吸収化合物を含む場合、他の赤外線吸収化合物の含有量は、赤外線吸収剤の全固形分に対して、50質量%以下が好ましい。上限は、30質量%以下が好ましく、10質量%以下がより好ましい。下限は、1質量%以上とすることもできる。
 また、他の赤外線吸収化合物の含有量は、金属化合物(赤外線吸収化合物)の100質量部に対して、1~100質量部が好ましく、1~50質量部がより好ましく、1~30質量部がさらに好ましい。
 また、本発明の赤外線吸収剤は、他の赤外線吸収化合物を実質的に含まないことも好ましい。なお、他の赤外線吸収化合物を実質的に含まないとは、他の赤外線吸収化合物の含有量が0.1質量%以下であることが好ましく、0.01質量%以下がより好ましく、0.001質量%以下がさらに好ましく、含有しないことが一層好ましい。
When other infrared absorbing compounds are included, the content of the other infrared absorbing compounds is preferably 50% by mass or less based on the total solid content of the infrared absorber. The upper limit is preferably 30% by mass or less, and more preferably 10% by mass or less. The lower limit may be 1% by mass or more.
The content of the other infrared absorbing compound is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, and more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the metal compound (infrared absorbing compound). Further preferred.
Moreover, it is preferable that the infrared absorber of this invention does not contain other infrared absorption compounds substantially. In addition, it is preferable that the content of the other infrared absorbing compound is substantially 0.1% by mass or less, more preferably 0.01% by mass or less, and 0.001%. It is more preferable that the content is not more than mass%, and it is even more preferable that the content is not contained.
<<他の成分>>
 本発明の赤外線吸収剤は、溶剤を含んでいてもよい。溶剤としては、後述する近赤外線吸収組成物で説明した溶剤が挙げられる。
<< other ingredients >>
The infrared absorber of the present invention may contain a solvent. As a solvent, the solvent demonstrated by the near-infrared absorption composition mentioned later is mentioned.
<<用途>>
 本発明の赤外線吸収剤は、赤外線カットフィルタなどに好ましく用いることができる。また、熱線遮蔽フィルタや光学フィルタ、ディスプレイフィルタ、追記型光ディスク(CD-R)やフラッシュ溶融定着材料における光熱変換材料としても用いることができる。また、セキュリティインクや、不可視バーコードインクにおける情報表示材料として用いることもできる。
<< Usage >>
The infrared absorbent of the present invention can be preferably used for an infrared cut filter or the like. Further, it can also be used as a photothermal conversion material in a heat ray shielding filter, an optical filter, a display filter, a write-once optical disc (CD-R) or a flash melt fixing material. It can also be used as an information display material in security ink or invisible barcode ink.
<近赤外線吸収組成物>
 次に本発明の近赤外線吸収組成物について説明する。
 本発明の近赤外線吸収組成物の第一は、溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
 近赤外線吸収組成物は、金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分を含み、金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を0.005~1質量部含む。金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を、0.05~0.8質量部含むことがより好ましく、0.1~0.5質量部が特に好ましい。
<Near-infrared absorbing composition>
Next, the near infrared ray absorbing composition of the present invention will be described.
The first of the near-infrared absorbing composition of the present invention is a near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared-absorbing compound,
The near-infrared absorbing composition includes a metal component containing a metal atom different from the metal atom contained in the metal compound, and 0.005% of the metal atom contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound. Including 1 part by mass. The metal atom contained in the metal component is more preferably contained in an amount of 0.05 to 0.8 parts by mass, particularly preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the metal atoms contained in the metal compound.
 また、本発明の近赤外線吸収組成物の第二は、溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
 近赤外線吸収組成物は、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属原子を含む金属成分を含み、
 金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部であり、0.05~0.8質量部がより好ましく、0.1~0.5質量部が特に好ましい。
The second of the near-infrared absorbing composition of the present invention is a near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared-absorbing compound,
The near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni A metal component containing at least one metal atom selected from Cu, Pt and Ag,
Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Al contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound The total amount of Ag is 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, and particularly preferably 0.1 to 0.5 part by mass.
 また、本発明の近赤外線吸収組成物の第三は、溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
 金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含み、
 近赤外線吸収組成物は、金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属原子を含む金属成分を含み、
 金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部であり、0.05~0.8質量部がより好ましく、0.1~0.5質量部が特に好ましい。
The third of the near-infrared absorbing composition of the present invention is a near-infrared absorbing composition containing at least one selected from a solvent and a curable compound and a metal compound that is an infrared-absorbing compound,
The metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
The near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and includes Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni A metal component containing at least one metal atom selected from Cu, Pt and Ag,
Al, Zn, Li, Na, K, Mg contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in the metal compound , Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag are 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, Particularly preferred is 1 to 0.5 parts by mass.
 本発明の近赤外線吸収組成物は、可視透明性および近赤外遮蔽性に優れた膜を製造できる。更には、得られる膜の耐熱性も向上する。このような効果が得られるメカニズムは上述した理由によるものであると推測する。以下、本発明の近赤外線吸収組成物について詳細に説明する。 The near-infrared absorbing composition of the present invention can produce a film having excellent visible transparency and near-infrared shielding properties. Furthermore, the heat resistance of the obtained film is also improved. It is presumed that the mechanism for obtaining such an effect is due to the reason described above. Hereinafter, the near-infrared absorbing composition of the present invention will be described in detail.
 <<金属化合物(赤外線吸収化合物)>>
 本発明の近赤外線吸収組成物は、赤外線吸収化合物である金属化合物を含有する。金属化合物は、Ni、Pd、Pt、Au、Ir、Fe、Zn、W、Cu、Mo、In、Mn、Co、Mg、V、Cr、TiおよびAlから選ばれる少なくとも1種の金属原子を含む化合物が好ましく、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含む化合物がより好ましく、Cu、NiおよびVから選ばれる少なくとも1種の金属原子を含む化合物がさらに好ましく、Cuを含む化合物が特に好ましい。すなわち、金属化合物は銅化合物が好ましい。銅化合物は、Cu以外の金属原子を含んでいてもよいが、Cu以外の金属を含まないことが好ましい。
<< Metal compound (infrared absorbing compound) >>
The near infrared ray absorbing composition of the present invention contains a metal compound that is an infrared ray absorbing compound. The metal compound contains at least one metal atom selected from Ni, Pd, Pt, Au, Ir, Fe, Zn, W, Cu, Mo, In, Mn, Co, Mg, V, Cr, Ti, and Al. Compounds are preferred, compounds containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt are more preferred, and at least selected from Cu, Ni and V A compound containing one type of metal atom is more preferred, and a compound containing Cu is particularly preferred. That is, the metal compound is preferably a copper compound. The copper compound may contain a metal atom other than Cu, but preferably does not contain a metal other than Cu.
 赤外線吸収化合物としての金属化合物は、極大吸収波長が700~1200nmの範囲にある化合物が好ましく、極大吸収波長が700~1000nmの範囲にある化合物がより好ましい。金属化合物は、赤外領域の波長領域(好ましくは、波長700~1200nmの範囲)に吸収を有し、可視領域(好ましくは、波長400~650nmの範囲)の波長の光を透過する化合物が好ましい。金属化合物の具体例としては、例えば、銅化合物、ピロロピロール化合物、スクアリリウム化合物、シアニン化合物、フタロシアニン化合物、ナフタロシアニン化合物、ジイモニウム化合物、ジチオール化合物、遷移金属酸化物化合物、クアテリレン化合物、クロコニウム化合物等が挙げられる。また、酸化インジウムスズ(tin-doped indium oxide、ITO)を用いることも好ましい。また、酸化アンチモンスズ(ATO)、酸化亜鉛(ZnO)、Alドープ酸化亜鉛(AlドープZnO)、フッ素ドープ二酸化スズ(FドープSnO2)、ニオブドープ二酸化チタン(NbドープTiO2)、セシウム酸化タングステンなどの無機金属化合物を用いることも好ましい。セシウム酸化タングステンは、国際公開2014/142259号公報の段落0025~0029の記載を参酌でき、この内容は本明細書に組み込まれる。
 なかでも、近赤外遮蔽性と可視透明性の両立に優れた膜を形成しやすいという理由から、銅化合物、フタロシアニン化合物、ナフタロシアニン化合物、ジチオール化合物が好ましい。また、本発明の効果が顕著に得られ易いという理由から、金属化合物は銅化合物であることが特に好ましい。また、銅化合物は、銅錯体がより好ましい。
The metal compound as the infrared absorbing compound is preferably a compound having a maximum absorption wavelength in the range of 700 to 1200 nm, and more preferably a compound having a maximum absorption wavelength in the range of 700 to 1000 nm. The metal compound is preferably a compound having absorption in the wavelength region in the infrared region (preferably in the wavelength range of 700 to 1200 nm) and transmitting light in the visible region (preferably in the wavelength range of 400 to 650 nm). . Specific examples of the metal compound include, for example, copper compounds, pyrrolopyrrole compounds, squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, diimonium compounds, dithiol compounds, transition metal oxide compounds, quaterylene compounds, croconium compounds, and the like. It is done. It is also preferable to use indium tin oxide (ITO). In addition, antimony tin oxide (ATO), zinc oxide (ZnO), Al-doped zinc oxide (Al-doped ZnO), fluorine-doped tin dioxide (F-doped SnO 2 ), niobium-doped titanium dioxide (Nb-doped TiO 2 ), cesium tungsten oxide, etc. It is also preferable to use an inorganic metal compound. As for cesium tungsten oxide, the description in paragraphs 0025 to 0029 of International Publication No. 2014/142259 can be referred to, and the contents thereof are incorporated in the present specification.
Among these, a copper compound, a phthalocyanine compound, a naphthalocyanine compound, and a dithiol compound are preferable because a film excellent in both near-infrared shielding and visible transparency can be easily formed. In addition, the metal compound is particularly preferably a copper compound because the effects of the present invention can be easily obtained. The copper compound is more preferably a copper complex.
 金属化合物(赤外線吸収化合物)の詳細については、上述した赤外線吸収剤で説明した化合物が挙げられ、好ましい範囲も同様である。 The details of the metal compound (infrared absorbing compound) include the compounds described in the above-described infrared absorbing agent, and the preferred range is also the same.
 金属化合物(赤外線吸収化合物)の含有量は、近赤外線吸収組成物の全固形分に対して、1~80質量%が好ましい。下限は、5質量%以上が好ましく、10質量%以上がより好ましい。上限は、70質量%以下が好ましい。
 金属化合物として銅化合物を用いる場合、銅化合物の含有量は、近赤外線吸収組成物の全固形分に対して、3~70質量%が好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましい。下限は、10質量%以上が好ましく、20質量%以上がより好ましい。
 また、金属化合物中における銅化合物の含有量は、1~100質量%が好ましく、10~100質量%がより好ましく、30~100質量%が更に好ましい。また金属化合物は、実質的に銅化合物のみであってもよい。金属化合物が、実質的に銅化合物のみである場合とは、金属化合物中における銅化合物の含有量が例えば99質量%以上が好ましく、99.9質量%以上がより好ましく、銅化合物のみで構成されていることが一層好ましい。
The content of the metal compound (infrared absorbing compound) is preferably 1 to 80% by mass with respect to the total solid content of the near infrared absorbing composition. The lower limit is preferably 5% by mass or more, and more preferably 10% by mass or more. The upper limit is preferably 70% by mass or less.
When a copper compound is used as the metal compound, the content of the copper compound is preferably 3 to 70% by mass with respect to the total solid content of the near-infrared absorbing composition. The upper limit is preferably 60% by mass or less, and more preferably 50% by mass or less. The lower limit is preferably 10% by mass or more, and more preferably 20% by mass or more.
Further, the content of the copper compound in the metal compound is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, and still more preferably 30 to 100% by mass. Further, the metal compound may be substantially only a copper compound. When the metal compound is substantially only a copper compound, the content of the copper compound in the metal compound is, for example, preferably 99% by mass or more, more preferably 99.9% by mass or more, and only the copper compound is included. More preferably.
<<他の赤外線吸収化合物>>
 本発明の近赤外線吸収組成物は、上述した金属化合物以外の赤外線吸収化合物(他の赤外線吸収化合物ともいう)を含んでいてもよい。他の赤外線吸収化合物としては、ピロロピロール化合物、スクアリリウム化合物、シアニン化合物、ジイモニウム化合物、クアテリレン化合物、クロコニウム化合物等が挙げられる。
 他の赤外線吸収化合物を含む場合、他の赤外線吸収化合物の含有量は、近赤外線吸収組成物の全固形分に対して、15質量%以下が好ましい。上限は、10質量%以下が好ましく、5質量%以下がより好ましい。下限は、1質量%以上とすることもできる。
 また、他の赤外線吸収化合物の含有量は、金属化合物(赤外線吸収化合物)の100質量部に対して、1~100質量部が好ましく、1~50質量部がより好ましく、1~30質量部がさらに好ましい。
 また、本発明の近赤外線吸収組成物は、他の赤外線吸収化合物を実質的に含まないことも好ましい。なお、他の赤外線吸収化合物を実質的に含まないとは、他の赤外線吸収化合物の含有量が0.1質量%以下であることが好ましく、0.01質量%以下がより好ましく、0.001質量%以下がさらに好ましく、含有しないことが一層好ましい。
<< other infrared absorbing compounds >>
The near-infrared absorbing composition of the present invention may contain an infrared absorbing compound (also referred to as other infrared absorbing compound) other than the metal compounds described above. Examples of other infrared absorbing compounds include pyrrolopyrrole compounds, squarylium compounds, cyanine compounds, diimonium compounds, quaterrylene compounds, and croconium compounds.
When other infrared absorption compounds are included, the content of the other infrared absorption compounds is preferably 15% by mass or less with respect to the total solid content of the near infrared absorption composition. The upper limit is preferably 10% by mass or less, and more preferably 5% by mass or less. The lower limit may be 1% by mass or more.
The content of the other infrared absorbing compound is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, and more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the metal compound (infrared absorbing compound). Further preferred.
Moreover, it is also preferable that the near-infrared absorption composition of this invention does not contain other infrared absorption compounds substantially. In addition, it is preferable that the content of the other infrared absorbing compound is substantially 0.1% by mass or less, more preferably 0.01% by mass or less, and 0.001%. It is more preferable that the content is not more than mass%, and it is even more preferable that the content is not contained.
<<金属成分>>
 本発明の近赤外線吸収組成物は、上述した金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分を含む。本発明において、金属成分は、上述した金属化合物以外の成分である。また、本発明の近赤外線吸収組成物が、硬化性化合物、重合開始剤、硬化促進剤、熱安定性付与剤、重合禁止剤、紫外線吸収剤、酸化防止剤、溶剤、界面活性剤、増粘剤、可塑剤、充填剤などを含む場合は、これらの成分とは異なる成分でもある。
<< Metal component >>
The near-infrared absorbing composition of the present invention includes a metal component containing a metal atom different from the metal atom contained in the metal compound described above. In the present invention, the metal component is a component other than the metal compound described above. Further, the near-infrared absorbing composition of the present invention comprises a curable compound, a polymerization initiator, a curing accelerator, a thermal stability imparting agent, a polymerization inhibitor, an ultraviolet absorber, an antioxidant, a solvent, a surfactant, a thickening agent. When an agent, a plasticizer, a filler, etc. are included, it is also a component different from these components.
 本発明の近赤外線吸収組成物は、金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれる金属原子を0.005~1質量部含み、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。金属成分の含有量が上記範囲であれば、可視透明性および近赤外遮蔽性に優れた膜を製造できる。
 本発明の近赤外線吸収組成物は、金属化合物に含まれる金属原子100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
 本発明の近赤外線吸収組成物は、金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部であることが好ましく、0.05~0.8質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。
The near-infrared absorbing composition of the present invention contains 0.005 to 1 part by mass of metal atoms contained in the metal component, and 0.05 to 0.8 parts by mass with respect to 100 parts by mass of metal atoms contained in the metal compound. More preferred is 0.1 to 0.5 parts by mass. If content of a metal component is the said range, the film | membrane excellent in visible transparency and near-infrared shielding can be manufactured.
The near-infrared absorbing composition of the present invention comprises Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, and 100% by mass of metal atoms contained in the metal compound. The total amount of Fe, Co, Ni, Cu, Pt and Ag is preferably 0.005 to 1 part by mass, more preferably 0.05 to 0.8 part by mass, and 0.1 to 0.5 part by mass Is particularly preferred.
The near-infrared absorbing composition of the present invention comprises Al contained in a metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt contained in a metal compound. , Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag are preferably 0.005 to 1 part by mass, 0.05 to 0.8 parts by mass is more preferable, and 0.1 to 0.5 parts by mass is particularly preferable.
 本発明において、金属成分は、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、Ca、Fe、Cu、AgおよびAlから選ばれる少なくとも1種の金属原子を含むことが好ましく、Li、Na、K、Mg、CaおよびFeから選ばれる少なくとも1種の金属原子を含むことがより好ましい。金属成分は、金属単体であってもよく、遊離金属イオンであってもよく、金属酸化物、金属窒化物、金属炭酸化物、金属塩(無機酸塩、有機酸塩、アンモニウム塩など)、金属間化合物、金属錯体、有機金属化合物、(ヘテロ)ポリ酸およびその塩などの化合物であってもよい。 In the present invention, the metal component is at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag. And preferably contains at least one metal atom selected from Li, Na, K, Mg, Ca, Fe, Cu, Ag and Al, and from Li, Na, K, Mg, Ca and Fe More preferably, it contains at least one selected metal atom. The metal component may be a single metal or a free metal ion, a metal oxide, a metal nitride, a metal carbonate, a metal salt (inorganic acid salt, organic acid salt, ammonium salt, etc.), metal Compounds such as intermetallic compounds, metal complexes, organometallic compounds, (hetero) polyacids and salts thereof may be used.
 本発明の近赤外線吸収組成物は、金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含み、金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含むことが好ましい。金属化合物と金属成分の具体的な組み合わせとしては、上述した赤外線吸収剤で説明した(1)~(7)の組み合わせが挙げられる。なかでも、(1)の組み合わせ(金属化合物(赤外線吸収化合物)が、Cuを含む化合物(銅化合物)の場合)が好ましい。この態様によれば、上述した本発明の効果がより顕著に得られる傾向にある。 In the near-infrared absorbing composition of the present invention, the metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt, and the metal component is It preferably contains at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag. Specific combinations of the metal compound and the metal component include the combinations (1) to (7) described in the above-described infrared absorber. Of these, the combination (1) (when the metal compound (infrared absorbing compound) is a compound containing Cu (copper compound)) is preferable. According to this aspect, the effects of the present invention described above tend to be obtained more remarkably.
<<硬化性化合物>>
 本発明の近赤外線吸収組成物は、硬化性化合物を含んでいてもよい。硬化性化合物は、架橋性基を有する化合物(架橋性化合物)であってもよいし、架橋性基を有さないポリマー(非架橋性ポリマー)であってもよい。架橋性基は、熱、光、またはラジカルの作用により反応して架橋結合を形成しうる部位を有する基を意味する。また、硬化性化合物は、熱硬化性化合物であってもよいし、光硬化性化合物であってもよいが、膜強度の観点から熱硬化性化合物が好ましい。
<< Curable compound >>
The near infrared ray absorbing composition of the present invention may contain a curable compound. The curable compound may be a compound having a crosslinkable group (crosslinkable compound) or a polymer having no crosslinkable group (non-crosslinkable polymer). The crosslinkable group means a group having a site capable of forming a crosslink by reacting with the action of heat, light, or a radical. The curable compound may be a thermosetting compound or a photocurable compound, but is preferably a thermosetting compound from the viewpoint of film strength.
 また、硬化性化合物は、実質的に架橋性化合物のみであってもよく、実質的に非架橋性ポリマーのみであってもよく、架橋性化合物と非架橋性ポリマーとを併用してもよい。硬化性化合物が、実質的に架橋性化合物のみである場合とは、例えば、硬化性化合物中における架橋性化合物の含有量が、99質量%以上であることが好ましく、99.9質量%以上がさらに好ましく、架橋性化合物のみであることが一層好ましい。また、硬化性化合物が、実質的に非架橋性ポリマーのみである場合とは、例えば、硬化性化合物中における非架橋性ポリマーの含有量が、99質量%以上であることが好ましく、99.9質量%以上がさらに好ましく、架橋性化合物のみであることが一層好ましい。 Further, the curable compound may be substantially only a crosslinkable compound, may be substantially only a non-crosslinkable polymer, or a crosslinkable compound and a noncrosslinkable polymer may be used in combination. When the curable compound is substantially only a crosslinkable compound, for example, the content of the crosslinkable compound in the curable compound is preferably 99% by mass or more, and 99.9% by mass or more. More preferably, only a crosslinkable compound is more preferable. Further, the case where the curable compound is substantially only the non-crosslinkable polymer is, for example, that the content of the non-crosslinkable polymer in the curable compound is preferably 99% by mass or more, and 99.9 More preferably, it is more preferably at least mass%, and only a crosslinkable compound.
<<<架橋性化合物>>>
 架橋性化合物としては、ラジカル、酸、熱により架橋可能な公知の化合物を用いることができる。例えば、エチレン性不飽和結合を有する基を有する化合物、環状エーテル基を有する化合物、メチロール基を有する化合物、アルコキシシリル基を有する化合物等が挙げられる。架橋性化合物は、モノマー、ポリマーのいずれの形態であってもよい。
<<< crosslinkable compound >>>
As the crosslinkable compound, known compounds that can be crosslinked by radicals, acids, and heat can be used. Examples thereof include compounds having a group having an ethylenically unsaturated bond, compounds having a cyclic ether group, compounds having a methylol group, compounds having an alkoxysilyl group, and the like. The crosslinkable compound may be in the form of a monomer or a polymer.
 ポリマータイプの架橋性化合物は、例えば、後述するエポキシ樹脂や、架橋性基を有する構成単位を含む樹脂などが挙げられる。架橋性基を有する構成単位としては、下記(A2-1)~(A2-4)などが挙げられる。
Figure JPOXMLDOC01-appb-C000019
Examples of the polymer type crosslinkable compound include an epoxy resin described later and a resin including a structural unit having a crosslinkable group. Examples of the structural unit having a crosslinkable group include (A2-1) to (A2-4) shown below.
Figure JPOXMLDOC01-appb-C000019
 R1は、水素原子またはアルキル基を表す。アルキル基の炭素数は、1~5が好ましく、1~3がさらに好ましく、1が特に好ましい。R1は、水素原子またはメチル基が好ましい。 R 1 represents a hydrogen atom or an alkyl group. The alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and particularly preferably 1 carbon atom. R 1 is preferably a hydrogen atom or a methyl group.
 L51は、単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NR10-(R10は水素原子あるいはアルキル基を表し、水素原子が好ましい)、または、これらの組み合わせからなる基が挙げられ、アルキレン基、アリーレン基およびアルキレン基の少なくとも1つと-O-との組み合わせからなる基が好ましい。アルキレン基の炭素数は、1~30が好ましく、1~15がより好ましく、1~10がさらに好ましい。アルキレン基は、置換基を有していてもよいが、無置換が好ましい。アルキレン基は、直鎖、分岐、環状のいずれであってもよい。また、環状のアルキレン基は、単環、多環のいずれであってもよい。アリーレン基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましい。 L 51 represents a single bond or a divalent linking group. Examples of the divalent linking group include an alkylene group, an arylene group, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR 10 — (R 10 represents a hydrogen atom or Represents a hydrogen atom, preferably a hydrogen atom), or a group composed of a combination thereof, and a group composed of a combination of at least one of an alkylene group, an arylene group, and an alkylene group and —O— is preferable. The alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms. The alkylene group may have a substituent, but is preferably unsubstituted. The alkylene group may be linear, branched or cyclic. Further, the cyclic alkylene group may be monocyclic or polycyclic. The number of carbon atoms of the arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
 P1は、架橋性基を表す。架橋性基としては、エチレン性不飽和結合を有する基、環状エーテル基、メチロール基、-M-(X2nで表される基などが挙げられる。-M-(X2nで表される基において、Mは、Si、Ti、ZrおよびAlから選択される原子を表し、X2は置換基または配位子を表し、n個のX2のうち、少なくとも1つが、ヒドロキシ基、アルコキシ基、アシルオキシ基、ホスホリルオキシ基、スルホニルオキシ基、アミノ基、オキシム基およびO=C(Ra)(Rb)から選択される1種であり、X2同士は、それぞれ結合して環を形成していてもよく、nは、MのX2との結合手の数を表す。 P 1 represents a crosslinkable group. Examples of the crosslinkable group include a group having an ethylenically unsaturated bond, a cyclic ether group, a methylol group, and a group represented by -M- (X 2 ) n . In the group represented by -M- (X 2 ) n , M represents an atom selected from Si, Ti, Zr and Al, X 2 represents a substituent or a ligand, and n X 2 Among these, at least one is one selected from a hydroxy group, an alkoxy group, an acyloxy group, a phosphoryloxy group, a sulfonyloxy group, an amino group, an oxime group, and O═C (R a ) (R b ), X 2 may be bonded to each other to form a ring, and n represents the number of bonds of M with X 2 .
 ポリマータイプの架橋性化合物は、更に、下記式(A3-1)~(A3-7)で表される構成単位を有することも好ましい。
Figure JPOXMLDOC01-appb-C000020
 式中、R5は水素原子またはアルキル基を表し、L4~L7はそれぞれ独立に、単結合または2価の連結基を表し、R10~R13はそれぞれ独立にアルキル基またはアリール基を表す。R14およびR15は、それぞれ独立に、水素原子または置換基を表す。
The polymer-type crosslinkable compound preferably further has structural units represented by the following formulas (A3-1) to (A3-7).
Figure JPOXMLDOC01-appb-C000020
In the formula, R 5 represents a hydrogen atom or an alkyl group, L 4 to L 7 each independently represents a single bond or a divalent linking group, and R 10 to R 13 each independently represents an alkyl group or an aryl group. To express. R 14 and R 15 each independently represents a hydrogen atom or a substituent.
 R5は、式(A2-1)~(A2-4)のR1と同義であり、好ましい範囲も同様である。
 L4~L7は、式(A2-1)~(A2-4)のL1と同義であり、好ましい範囲も同様である。
R 5 has the same meaning as R 1 in formulas (A2-1) to (A2-4), and the preferred range is also the same.
L 4 to L 7 have the same meaning as L 1 in formulas (A2-1) to (A2-4), and the preferred ranges are also the same.
 R10が表すアルキル基は、直鎖状、分岐状または環状のいずれでもよく、環状が好ましい。アルキル基は上述した置換基を有していてもよく、無置換であってもよい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましい。R10が表すアリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。R10は、環状のアルキル基またはアリール基が好ましい。 The alkyl group represented by R 10 may be linear, branched or cyclic, and is preferably cyclic. The alkyl group may have the above-described substituent and may be unsubstituted. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms. The aryl group represented by R 10 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms. R 10 is preferably a cyclic alkyl group or an aryl group.
 R11、R12が表すアルキル基は、直鎖状、分岐状または環状のいずれでも良く、直鎖状または分岐状が好ましい。アルキル基は上述した置換基を有していてもよく、無置換であってもよい。アルキル基の炭素数は1~12が好ましく、1~6がより好ましく、1~4が更に好ましい。R11,R12が表すアリール基の炭素数は6~18が好ましく、6~12がより好ましく、6が更に好ましい。R11、R12は、直鎖状または分岐状のアルキル基が好ましい。 The alkyl group represented by R 11 and R 12 may be linear, branched or cyclic, and is preferably linear or branched. The alkyl group may have the above-described substituent and may be unsubstituted. The alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. The aryl group represented by R 11 and R 12 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms. R 11 and R 12 are preferably a linear or branched alkyl group.
 R13が表すアルキル基は、直鎖状、分岐状または環状のいずれでも良く、直鎖状または分岐状が好ましい。アルキル基は上述した置換基を有していてもよく、無置換であってもよい。アルキル基の炭素数は1~12が好ましく、1~6がより好ましく、1~4が更に好ましい。R13が表すアリール基の炭素数は6~18が好ましく、6~12がより好ましく、6が更に好ましい。R13は、直鎖状または分岐状のアルキル基、または、アリール基が好ましい。 The alkyl group represented by R 13 may be linear, branched or cyclic, and is preferably linear or branched. The alkyl group may have the above-described substituent and may be unsubstituted. The alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. The aryl group represented by R 13 preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms. R 13 is preferably a linear or branched alkyl group or an aryl group.
 R14およびR15が表す置換基は、上述した一般式(PC)で説明した基が挙げられる。なかでも、R14およびR15の少なくとも一方は、シアノ基または、-COORaを表すことが好ましい。Raは、水素原子、アルキル基、アリール基またはヘテロアリール基を表し、水素原子、アルキル基またはアリール基が好ましい。 Examples of the substituent represented by R 14 and R 15 include the groups described in the general formula (PC). Among these, at least one of R 14 and R 15 preferably represents a cyano group or —COOR a . Ra represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group, preferably a hydrogen atom, an alkyl group or an aryl group.
 モノマータイプの架橋性化合物の分子量は、2000未満が好ましく、100以上2000未満がより好ましく、200以上2000未満がさらに好ましい。上限は、例えば1500以下が好ましい。ポリマータイプの架橋性化合物の重量平均分子量(Mw)は、2,000~2,000,000が好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。下限は、3,000以上が好ましく、5,000以上がより好ましい。また、環状エーテル基を有する化合物の場合、重量平均分子量(Mw)は、100以上が好ましく、200~2,000,000がより好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。 The molecular weight of the monomer type crosslinkable compound is preferably less than 2000, more preferably from 100 to less than 2000, and even more preferably from 200 to less than 2000. The upper limit is preferably 1500 or less, for example. The weight average molecular weight (Mw) of the polymer type crosslinkable compound is preferably 2,000 to 2,000,000. The upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less. The lower limit is preferably 3,000 or more, and more preferably 5,000 or more. In the case of a compound having a cyclic ether group, the weight average molecular weight (Mw) is preferably 100 or more, more preferably 200 to 2,000,000. The upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less.
(エチレン性不飽和結合を有する基を有する化合物)
 エチレン性不飽和結合を有する基を有する化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。エチレン性不飽和結合を有する基を含む化合物の例としては、特開2013-253224号公報の段落0033~0034の記載を参酌することができ、この内容は本明細書に組み込まれる。具体例としては、エチレンオキシ変性ペンタエリスリトールテトラアクリレート(市販品としてはNKエステルATM-35E;新中村化学工業社製)、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA ;日本化薬社製、A-DPH-12E;新中村化学工業社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造が好ましい。またこれらのオリゴマータイプも使用できる。また、特開2013-253224号公報の段落0034~0038の重合性化合物の記載を参酌することができ、この内容は本明細書に組み込まれる。また、特開2012-208494号公報の段落0477(対応する米国特許出願公開第2012/0235099号明細書の段落0585)に記載の重合性モノマー等が挙げられ、これらの内容は本明細書に組み込まれる。また、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亞合成社製)が好ましい。ペンタエリスリトールテトラアクリレート(新中村化学工業社製、A-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬社製、KAYARAD HDDA)も好ましい。これらのオリゴマータイプも使用できる。例えば、RP-1040(日本化薬社製)などが挙げられる。
(Compound having a group having an ethylenically unsaturated bond)
The compound having a group having an ethylenically unsaturated bond is preferably a 3 to 15 functional (meth) acrylate compound, more preferably a 3 to 6 functional (meth) acrylate compound. As examples of the compound containing a group having an ethylenically unsaturated bond, description in paragraphs 0033 to 0034 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification. Specific examples include ethyleneoxy-modified pentaerythritol tetraacrylate (commercially available NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available KAYARAD D-330; Nippon Kayaku Co., Ltd.) Dipentaerythritol tetraacrylate (commercially available product: KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta (meth) acrylate (commercially available product: KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), Dipentaerythritol hexa (meth) acrylate (as a commercial product, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth) acryloyl groups are ethylene glycol, propylene glycol Structure which is attached via a group. These oligomer types can also be used. In addition, the description of the polymerizable compound in paragraphs 0034 to 0038 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification. Examples thereof include polymerizable monomers described in paragraph 0477 of JP2012-208494A (paragraph 0585 of the corresponding US Patent Application Publication No. 2012/0235099), the contents of which are incorporated herein. It is. Diglycerin EO (ethylene oxide) modified (meth) acrylate (commercially available product is M-460; manufactured by Toagosei Co., Ltd.) is preferable. Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT) and 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA) are also preferable. These oligomer types can also be used. Examples thereof include RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
 エチレン性不飽和結合を有する基を含む化合物は、さらに、カルボキシ基、スルホン酸基、リン酸基等の酸基を有していてもよい。酸基を有する化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが挙げられる。脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に、非芳香族カルボン酸無水物を反応させて酸基を持たせた多官能モノマーが好ましく、特に好ましくは、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM-305、M-510、M-520などが挙げられる。酸基を有する化合物の酸価は、0.1~40mgKOH/gが好ましい。下限は、5mgKOH/g以上が好ましい。上限は、30mgKOH/g以下が好ましい。 The compound containing a group having an ethylenically unsaturated bond may further have an acid group such as a carboxy group, a sulfonic acid group, or a phosphoric acid group. Examples of the compound having an acid group include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids. A polyfunctional monomer in which an unreacted hydroxy group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to give an acid group is preferred, and particularly preferably, the aliphatic polyhydroxy compound is pentaerythritol and / or Or it is a dipentaerythritol. Commercially available products include, for example, Aronix series M-305, M-510, and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd. The acid value of the compound having an acid group is preferably 0.1 to 40 mgKOH / g. The lower limit is preferably 5 mgKOH / g or more. The upper limit is preferably 30 mgKOH / g or less.
 エチレン性不飽和結合を有する基を含む化合物は、カプロラクトン構造を有する化合物も好ましい態様である。カプロラクトン構造を有する化合物としては、特開2013-253224号公報の段落0042~0045の記載を参酌することができ、この内容は本明細書に組み込まれる。市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、日本化薬社製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。 The compound containing a group having an ethylenically unsaturated bond is also a preferred embodiment having a caprolactone structure. As the compound having a caprolactone structure, description in paragraphs 0042 to 0045 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification. Commercially available products include, for example, SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, DPCA-60, a hexafunctional acrylate having six pentyleneoxy chains, manufactured by Nippon Kayaku Co., Ltd., isobutylene And TPA-330, which is a trifunctional acrylate having three oxy chains.
 本発明において、エチレン性不飽和結合を有する基を有する化合物として、エチレン性不飽和結合を有する基を側鎖に有する構成単位を有するポリマーを用いることもできる。エチレン性不飽和結合を有する基を側鎖に有する構成単位としては、上述した(A2-1)~(A2-4)で表される構成単位が挙げられる。側鎖にエチレン性不飽和結合を有する基を有する構成単位の含有量は、上記ポリマーを構成する全構成単位の5~100質量%であることが好ましい。下限は、10質量%以上がより好ましく、15質量%以上が更に好ましい。上限は、90質量%以下がより好ましく、80質量%以下が更に好ましく、70質量%以下が特に好ましい。 In the present invention, as the compound having a group having an ethylenically unsaturated bond, a polymer having a structural unit having a group having an ethylenically unsaturated bond in the side chain can also be used. Examples of the structural unit having a group having an ethylenically unsaturated bond in the side chain include the structural units represented by the above-mentioned (A2-1) to (A2-4). The content of the structural unit having a group having an ethylenically unsaturated bond in the side chain is preferably 5 to 100% by mass of the total structural units constituting the polymer. The lower limit is more preferably 10% by mass or more, and still more preferably 15% by mass or more. The upper limit is more preferably 90% by mass or less, still more preferably 80% by mass or less, and particularly preferably 70% by mass or less.
 上記ポリマーは、側鎖にエチレン性不飽和結合を有する基を有する構成単位の他に、他の構成単位を含んでいてもよい。他の構成単位は、酸基等の官能基を含んでいてもよく、官能基を含んでいなくてもよい。酸基としては、カルボキシ基、スルホン酸基、リン酸基が例示される。酸基は1種類のみ含まれていても良いし、2種類以上含まれていても良い。酸基を有する構成単位の割合は、上記ポリマーを構成する全構成単位の0~50質量%であることが好ましい。下限は、1質量%以上がより好ましく、3質量%以上が更に好ましい。上限は、35質量%以下がより好ましく、30質量%以下が更に好ましい。上記ポリマーは、上述した(A3-1)~(A3-7)で表される構成単位をさらに含むことも好ましい。 The polymer may contain other structural units in addition to the structural unit having a group having an ethylenically unsaturated bond in the side chain. The other structural unit may contain a functional group such as an acid group or may not contain a functional group. Examples of the acid group include a carboxy group, a sulfonic acid group, and a phosphoric acid group. Only one type of acid group may be included, or two or more types of acid groups may be included. The proportion of the structural unit having an acid group is preferably 0 to 50% by mass of the total structural units constituting the polymer. The lower limit is more preferably 1% by mass or more, and still more preferably 3% by mass or more. The upper limit is more preferably 35% by mass or less, and still more preferably 30% by mass or less. The polymer preferably further contains the structural units represented by the above-mentioned (A3-1) to (A3-7).
 上記ポリマーの具体例としては、例えば、(メタ)アリル(メタ)アクリレート/(メタ)アクリル酸共重合体などが挙げられる。上記ポリマーの市販品としては、ダイヤナールNRシリーズ(三菱レイヨン社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれもダイセル社製)、Ebecryl3800(ダイセルユーシービー社製)、アクリキュアーRD-F8(日本触媒社製)などが挙げられる。また、下記ポリマーも挙げられる。
Figure JPOXMLDOC01-appb-C000021
Specific examples of the polymer include (meth) allyl (meth) acrylate / (meth) acrylic acid copolymer. Commercially available products of the above-mentioned polymers include: Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (COOH-containing polyurethane acrylic oligomer. Diamond Shamock Co., Ltd.), Biscoat R-264, and KS resist 106 (all of which are Osaka Organic Chemicals). Chemical Industry Co., Ltd.), Cyclomer P series (for example, ACA230AA), Plaxel CF200 series (all manufactured by Daicel), Ebecryl 3800 (manufactured by Daicel UCB), Acryl RD-F8 (manufactured by Nippon Shokubai Co., Ltd.), etc. It is done. Moreover, the following polymer is also mentioned.
Figure JPOXMLDOC01-appb-C000021
(環状エーテル基を有する化合物)
 本発明では、架橋性化合物として、環状エーテル基を有する化合物を用いることもできる。環状エーテル基としては、エポキシ基、オキセタニル基が挙げられ、エポキシ基が好ましい。環状エーテル基を有する化合物は、側鎖に環状エーテル基を有するポリマー、分子内に2個以上の環状エーテル基を有するモノマーまたはオリゴマーなどが挙げられる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。また単官能または多官能グリシジルエーテル化合物も挙げられ、多官能脂肪族グリシジルエーテル化合物が好ましい。環状エーテル基を有する化合物は、グリシジル(メタ)アクリレートやアリルグリシジルエーテル等のグリシジル基を有する化合物や、脂環式エポキシ基を有する化合物を用いることもできる。例えば特開2009-265518号公報の段落0045等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
(Compound having a cyclic ether group)
In the present invention, a compound having a cyclic ether group can also be used as the crosslinkable compound. Examples of the cyclic ether group include an epoxy group and an oxetanyl group, and an epoxy group is preferable. Examples of the compound having a cyclic ether group include a polymer having a cyclic ether group in the side chain, and a monomer or oligomer having two or more cyclic ether groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin, and the like can be given. Moreover, a monofunctional or polyfunctional glycidyl ether compound is also mentioned, and a polyfunctional aliphatic glycidyl ether compound is preferable. As the compound having a cyclic ether group, a compound having a glycidyl group such as glycidyl (meth) acrylate or allyl glycidyl ether, or a compound having an alicyclic epoxy group can also be used. For example, the description in paragraph 0045 of JP 2009-265518 A can be referred to, and the contents thereof are incorporated in the present specification.
 環状エーテル基を有する化合物は、市販品を用いることもできる。環状エーテル基を有する化合物の市販品としては、例えば、特開2012-155288号公報の段落0191等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 ビスフェノールA型エポキシ樹脂としては、JER827、JER828、JER834、JER1001、JER1002、JER1003、JER1055、JER1007、JER1009、JER1010(以上、三菱化学社製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC社製)等が挙げられる。
 ビスフェノールF型エポキシ樹脂としては、JER806、JER807、JER4004、JER4005、JER4007、JER4010(以上、三菱化学社製)、EPICLON830、EPICLON835(以上、DIC社製)、LCE-21、RE-602S(以上、日本化薬社製)等が挙げられる。
 フェノールノボラック型エポキシ樹脂としては、JER152、JER154、JER157S70、JER157S65(以上、三菱化学社製)、EPICLON N-740、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC社製)等が挙げられる。
 クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC社製)、EOCN-1020(日本化薬社製)等が挙げられる。
 脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、ADEKA社製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、ダイセル社製)、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス社製)等が挙げられる。
 その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、ADEKA社製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、ADEKA社製)、JER1031S(三菱化学社製)、リポキシSPCF-9X(昭和電工社製)等が挙げられる。
A commercial item can also be used for the compound which has a cyclic ether group. As a commercial product of a compound having a cyclic ether group, for example, the description in paragraph 0191 of JP2012-155288A can be referred to, and the contents thereof are incorporated in the present specification.
As the bisphenol A type epoxy resin, JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON860, EPICLON1050, EPICLON1051, EPICLON1055 Etc.
Examples of the bisphenol F type epoxy resin include JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, manufactured by Mitsubishi Chemical), EPICLON830, EPICLON835 (above, made by DIC), LCE-21, RE-602S (above, Japan) Kayaku Co., Ltd.).
Phenol novolac type epoxy resins include JER152, JER154, JER157S70, JER157S65 (Mitsubishi Chemical), EPICLON N-740, EPICLON N-740, EPICLON N-770, EPICLON N-775 (Made by DIC) Etc.
Cresol novolac type epoxy resins include EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC), And EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.).
As the aliphatic epoxy resin, ADEKA RESIN EP-4080S, EP-4085S, EP-4088S (above, manufactured by ADEKA), Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 (manufactured by Daicel Corporation), Denacol EX-212L, EX-214L, EX-216L, EX-321L, EX-850L (manufactured by Nagase ChemteX Corporation) and the like.
In addition, ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (manufactured by ADEKA), NC-2000, NC-3000, NC-7300, XD-1000, EPPN- 501, EPPN-502 (manufactured by ADEKA), JER1031S (manufactured by Mitsubishi Chemical), and lipoxy SPCF-9X (manufactured by Showa Denko).
(アルコキシシリル基を有する化合物)
 本発明では、架橋性化合物として、アルコキシシリル基を有する化合物を用いることもできる。特に、赤外線吸収剤として銅化合物を用いる場合、架橋性化合物としてアルコキシシリル基を有する化合物を用いることが好ましい。アルコキシシリル基は、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基が挙げられ、ジアルコキシシリル基、トリアルコキシシリル基が好ましい。この態様によれば、耐熱性に優れた近赤外線カットフィルタを製造しやすい。
(Compound having alkoxysilyl group)
In the present invention, a compound having an alkoxysilyl group can also be used as the crosslinkable compound. In particular, when a copper compound is used as the infrared absorber, it is preferable to use a compound having an alkoxysilyl group as the crosslinkable compound. Examples of the alkoxysilyl group include a monoalkoxysilyl group, a dialkoxysilyl group, and a trialkoxysilyl group, and a dialkoxysilyl group and a trialkoxysilyl group are preferable. According to this aspect, it is easy to produce a near-infrared cut filter excellent in heat resistance.
 アルコキシシリル基を有する化合物は、低分子化合物、ポリマーのいずれの形態であってもよいが、より耐熱性に優れた膜を形成しやすいという理由からポリマーが好ましい。アルコキシシリル基を有する化合物のうち、低分子化合物の分子量は、100~1000であることが好ましい。上限は、800以下が好ましく、700以下がより好ましい。なお、分子量は、構造式から求めた理論値である。アルコキシシリル基を有する化合物のうち、ポリマータイプの化合物の重量平均分子量は、500~300000であることが好ましい。下限は、1000以上が好ましく、2000以上がより好ましい。上限は、250000以下が好ましく、200000以下がより好ましい。 The compound having an alkoxysilyl group may be in the form of either a low molecular compound or a polymer, but a polymer is preferred because it is easy to form a film having better heat resistance. Of the compounds having an alkoxysilyl group, the molecular weight of the low molecular weight compound is preferably 100 to 1,000. The upper limit is preferably 800 or less, and more preferably 700 or less. The molecular weight is a theoretical value obtained from the structural formula. Of the compounds having an alkoxysilyl group, the polymer type compound preferably has a weight average molecular weight of 500 to 300,000. The lower limit is preferably 1000 or more, and more preferably 2000 or more. The upper limit is preferably 250,000 or less, and more preferably 200000 or less.
 アルコキシシリル基におけるアルコキシ基の炭素数は、1~5が好ましく、1~3がより好ましく、1または2が特に好ましい。アルコキシシリル基は、一分子中に2個以上有することが好ましく、2~3個有することがさらに好ましい。 The number of carbon atoms of the alkoxy group in the alkoxysilyl group is preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1 or 2. The number of alkoxysilyl groups is preferably 2 or more, more preferably 2 to 3 in a molecule.
 アルコキシシリル基を有する化合物の具体例としては、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。また、上記以外にアルコキシオリゴマーを用いることができる。また、下記化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000022
Specific examples of the compound having an alkoxysilyl group include tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and n-propyltrimethoxy. Silane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis (trimethoxysilyl) hexane, trifluoropropyltrimethoxysilane, hexamethyl Disilazane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimeth Sisilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyl Dimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl) Ru-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, tris- (trimethoxysilylpropyl) Examples include isocyanurate, 3-ureidopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, and 3-isocyanatopropyltriethoxysilane. In addition to the above, alkoxy oligomers can be used. Also, the following compounds can be used.
Figure JPOXMLDOC01-appb-C000022
 市販品としては、信越シリコーン社製のKBM-13、KBM-22、KBM-103、KBE-13、KBE-22、KBE-103、KBM-3033、KBE-3033、KBM-3063、KBM-3066、KBM-3086、KBE-3063、KBE-3083、KBM-3103、KBM-3066、KBM-7103、SZ-31、KPN-3504、KBM-1003、KBE-1003、KBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBM-903、KBE-903、KBE-9103、KBM-573、KBM-575、KBM-9659、KBE-585、KBM-802、KBM-803、KBE-846、KBE-9007、X-40-1053、X-41-1059A、X-41-1056、X-41-1805、X-41-1818、X-41-1810、X-40-2651、X-40-2655A、KR-513、KC-89S、KR-500、X-40-9225、X-40-9246、X-40-9250、KR-401N、X-40-9227、X-40-9247、KR-510、KR-9218、KR-213、X-40-2308、X-40-9238などが挙げられる。
 また、アルコキシシリル基を有する化合物は、アルコキシシリル基を側鎖に有するポリマーを用いることもできる。
Commercially available products include Shin-Etsu Silicone's KBM-13, KBM-22, KBM-103, KBE-13, KBE-22, KBE-103, KBM-3033, KBE-3033, KBM-3063, KBM-3066, KBM-3086, KBE-3063, KBE-3083, KBM-3103, KBM-3066, KBM-7103, SZ-31, KPN-3504, KBM-1003, KBE-1003, KBM-303, KBM-402, KBM- 403, KBE-402, KBE-403, KBM-1403, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-602, KBM-603, KBM-903, KBE-903, KBE-9103, KBM-573, KBM-575, K M-9659, KBE-585, KBM-802, KBM-803, KBE-846, KBE-9007, X-40-1053, X-41-1059A, X-41-1056, X-41-1805, X- 41-1818, X-41-1810, X-40-2651, X-40-2655A, KR-513, KC-89S, KR-500, X-40-9225, X-40-9246, X-40- 9250, KR-401N, X-40-9227, X-40-9247, KR-510, KR-9218, KR-213, X-40-2308, X-40-9238, and the like.
Moreover, the compound which has an alkoxy silyl group in a side chain can also be used for the compound which has an alkoxy silyl group.
 アルコキシシリル基を有する化合物のうち、ポリマータイプの化合物としては、例えば、(メタ)アクリル樹脂(好ましくは、(メタ)アクリル酸エステル樹脂、(メタ)アクリルアミド樹脂)、スチレン樹脂、ポリシロキサンなどが挙げられる。なかでも、皮膜性の向上や、塗布液粘度調整の容易性という理由から(メタ)アクリル樹脂またはスチレン樹脂が好ましい。
 ポリマータイプの化合物の具体例としては、例えば、上述した式(A2-1)~(A2-4)で表される構成単位の少なくとも1種を有するポリマーなどが挙げられる。
Among the compounds having an alkoxysilyl group, examples of the polymer type compound include (meth) acrylic resin (preferably (meth) acrylic ester resin, (meth) acrylamide resin), styrene resin, polysiloxane, and the like. It is done. Of these, a (meth) acrylic resin or a styrene resin is preferred for the reason of improving film properties and ease of adjusting the coating solution viscosity.
Specific examples of the polymer type compound include, for example, a polymer having at least one of the structural units represented by the formulas (A2-1) to (A2-4) described above.
 上記ポリマータイプの化合物は、上述した式(A2-1)~(A2-4)で表される構成単位の他に、他の構成単位を含有していてもよい。他の構成単位を構成する成分としては、特開2010-106268号公報の段落0068~0075(対応する米国特許出願公開第2011/0124824号明細書の段落0112~0118)に開示の共重合成分の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、上述した(A3-1)~(A3-7)で表される構成単位を有することもできる。ポリマータイプの化合物としては、例えば、以下に示すポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000023
The polymer-type compound may contain other structural units in addition to the structural units represented by the formulas (A2-1) to (A2-4). Examples of the components constituting other structural units include those of the copolymer components disclosed in paragraphs 0068 to 0075 of JP2010-106268A (paragraphs 0112 to 0118 of the corresponding US Patent Application Publication No. 2011/0124824). Description can be taken into account and the contents thereof are incorporated herein. Further, it may have structural units represented by the above-mentioned (A3-1) to (A3-7). Examples of the polymer type compound include the following polymers.
Figure JPOXMLDOC01-appb-C000023
<<<架橋性基を有さないポリマー>>>
 本発明の近赤外線吸収組成物は、硬化性化合物として、架橋性基を有さないポリマーを含むことができる。架橋性基を有さないポリマーの重量平均分子量(Mw)は、2,000~2,000,000が好ましい。上限は、1,000,000以下が好ましく、500,000以下がより好ましい。下限は、3,000以上が好ましく、5,000以上がより好ましい。
<<< Polymer having no crosslinkable group >>>
The near-infrared absorption composition of this invention can contain the polymer which does not have a crosslinkable group as a sclerosing | hardenable compound. The polymer having no crosslinkable group preferably has a weight average molecular weight (Mw) of 2,000 to 2,000,000. The upper limit is preferably 1,000,000 or less, and more preferably 500,000 or less. The lower limit is preferably 3,000 or more, and more preferably 5,000 or more.
 架橋性基を有さないポリマーとしては、(メタ)アクリル樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂が挙げられる。これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。また、上述した(A3-1)~(A3-7)で表される構成単位を有するポリマーも挙げられる。 Polymers having no crosslinkable groups include (meth) acrylic resins, ene / thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene resins, polyarylene ether phosphine oxides. Examples thereof include resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins. One of these resins may be used alone, or two or more thereof may be mixed and used. Further, polymers having the structural units represented by the above (A3-1) to (A3-7) can also be mentioned.
 (メタ)アクリル樹脂としては、(メタ)アクリル酸および/またはそのエステルに由来する構成単位を含む重合体が挙げられる。具体的には、(メタ)アクリル酸、(メタ)アクリル酸エステル類、(メタ)アクリルアミドおよび(メタ)アクリロニトリルから選ばれる少なくとも1種を重合して得られる重合体が挙げられる。 (Meth) acrylic resin includes a polymer containing a structural unit derived from (meth) acrylic acid and / or its ester. Specific examples include polymers obtained by polymerizing at least one selected from (meth) acrylic acid, (meth) acrylic acid esters, (meth) acrylamide and (meth) acrylonitrile.
 ポリエステル樹脂としては、ポリオール(例えば、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン)と、多塩基酸(例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びこれらの芳香環の水素原子がメチル基、エチル基、フェニル基等で置換された芳香族ジカルボン酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸、及びシクロヘキサンジカルボン酸などの脂環式ジカルボン酸など)との反応により得られるポリマーや、カプロラクトンモノマー等の環状エステル化合物の開環重合により得られるポリマー(例えばポリカプロラクトン)が挙げられる。 Examples of the polyester resin include polyols (for example, ethylene glycol, propylene glycol, glycerin, trimethylolpropane), polybasic acids (for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and aromatic rings thereof. Aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as aromatic dicarboxylic acids, adipic acid, sebacic acid, dodecanedicarboxylic acid, etc., in which hydrogen atoms are substituted with methyl groups, ethyl groups, phenyl groups, etc., and fats such as cyclohexanedicarboxylic acid A polymer obtained by reaction with a cyclic dicarboxylic acid and the like, and a polymer obtained by ring-opening polymerization of a cyclic ester compound such as a caprolactone monomer (for example, polycaprolactone).
 架橋性基を有さないポリマーは、上述した(A3-1)~(A3-7)で表される構成単位を有するポリマーを用いることも好ましい。架橋性基を有さないポリマーは、酸基を有していてもよい。酸基としては、例えば、カルボキシ基、リン酸基、スルホン酸基、フェノール性ヒドロキシ基などが挙げられる。これら酸基は、1種のみであってもよいし、2種以上であってもよい。酸基を有する樹脂としては、特開2015-043063号公報の段落0180~0202に記載のアルカリ可溶性樹脂が挙げられ、この内容は本明細書に組み込まれる。酸基を有する樹脂の酸価は、30~200mgKOH/gが好ましい。下限は、50mgKOH/g以上が好ましく、70mgKOH/g以上がより好ましい。上限は、150mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましい。酸基を有する樹脂の酸価は、30~200mgKOH/gが好ましい。下限は、50mgKOH/g以上が好ましく、70mgKOH/g以上がより好ましい。上限は、150mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましい。 As the polymer having no crosslinkable group, it is also preferable to use a polymer having the structural units represented by the above (A3-1) to (A3-7). The polymer having no crosslinkable group may have an acid group. Examples of the acid group include a carboxy group, a phosphoric acid group, a sulfonic acid group, and a phenolic hydroxy group. These acid groups may be used alone or in combination of two or more. Examples of the resin having an acid group include alkali-soluble resins described in paragraphs 0180 to 0202 of JP-A-2015-043063, the contents of which are incorporated herein. The acid value of the resin having an acid group is preferably 30 to 200 mgKOH / g. The lower limit is preferably 50 mgKOH / g or more, and more preferably 70 mgKOH / g or more. The upper limit is preferably 150 mgKOH / g or less, and more preferably 120 mgKOH / g or less. The acid value of the resin having an acid group is preferably 30 to 200 mgKOH / g. The lower limit is preferably 50 mgKOH / g or more, and more preferably 70 mgKOH / g or more. The upper limit is preferably 150 mgKOH / g or less, and more preferably 120 mgKOH / g or less.
 硬化性化合物の含有量は、組成物の全固形分に対して、1質量%以上が好ましく、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。上限は、90質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下がさらに好ましい。
 また、架橋性化合物と非架橋性ポリマーとを併用する場合、非架橋性ポリマーの含有量は、架橋性化合物の100質量部に対して、20~400質量部が好ましく、100~300質量部がより好ましい。
 硬化性化合物は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
The content of the curable compound is preferably 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more with respect to the total solid content of the composition. The upper limit is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less.
When the crosslinkable compound and the non-crosslinkable polymer are used in combination, the content of the non-crosslinkable polymer is preferably 20 to 400 parts by mass, and 100 to 300 parts by mass with respect to 100 parts by mass of the crosslinkable compound. More preferred.
Only one type of curable compound may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
<<溶剤>>
 本発明の近赤外線吸収組成物は、溶剤を含有することができる。溶剤は、特に制限はなく、近赤外線吸収組成物の各成分を均一に溶解或いは分散しうるものであれば、目的に応じて適宜選択することができる。例えば、水、有機溶剤を用いることができ、有機溶剤が好ましい。
<< Solvent >>
The near infrared ray absorbing composition of the present invention can contain a solvent. The solvent is not particularly limited and can be appropriately selected depending on the purpose as long as it can uniformly dissolve or disperse each component of the near-infrared absorbing composition. For example, water and an organic solvent can be used, and an organic solvent is preferable.
 有機溶剤としては、例えば、アルコール類(例えばメタノール)、ケトン類、エステル類、芳香族炭化水素類、ハロゲン化炭化水素類、およびジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が好適に挙げられる。アルコール類、芳香族炭化水素類、ハロゲン化炭化水素類の具体例としては、特開2012-194534号公報の段落0136等に記載のものが挙げられ、この内容は本明細書に組み込まれる。また、エステル類、ケトン類、エーテル類の具体例としては、特開2012-208494号公報の段落0497(対応する米国特許出願公開第2012/0235099号明細書の段落0609)に記載のものが挙げられる。
 また、エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸シクロヘキシル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン等が挙げられる。
 芳香族炭化水素類として、例えば、トルエン、キシレン等が挙げられる。
 溶剤は、1-メトキシ-2-プロパノール、シクロペンタノン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、N-メチル-2-ピロリドン、酢酸ブチル、乳酸エチルおよびプロピレングリコールモノメチルエーテルから選択される少なくとも1種以上が好ましい。
 溶剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Preferable examples of the organic solvent include alcohols (for example, methanol), ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, and dimethylformamide, dimethylacetamide, dimethylsulfoxide, and sulfolane. . Specific examples of alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include those described in paragraph 0136 of JP 2012-194534 A, and the contents thereof are incorporated herein. Specific examples of the esters, ketones, and ethers include those described in paragraph 0497 of JP2012-208494A (paragraph 0609 of the corresponding US Patent Application Publication No. 2012/0235099). It is done.
Examples of esters include ethyl acetate, n-butyl acetate, isobutyl acetate, cyclohexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, alkyloxy Alkyl acetate (eg, methyl alkyloxyacetate, alkyloxyethyl acetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)), 3-alkyloxypropion Acid alkyl esters (eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (eg, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionate)) Methyl 2-methyloxypropionate, etc.) (eg methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate) (For example, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)), 2-alkyloxy-2-methylpropionic acid Methyl and ethyl 2-alkyloxy-2-methylpropionate (eg, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.), methyl pyruvate, ethyl pyruvate, pyruvate Propyl, aceto Methyl, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, and the like.
Examples of ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Examples thereof include monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate and the like.
Examples of ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, and 3-heptanone.
Examples of aromatic hydrocarbons include toluene and xylene.
The solvent is at least one selected from 1-methoxy-2-propanol, cyclopentanone, cyclohexanone, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, butyl acetate, ethyl lactate and propylene glycol monomethyl ether. preferable.
A solvent may be used individually by 1 type and may be used in combination of 2 or more type.
 本発明において、金属含有量の少ない有機溶剤を用いることもできる。有機溶剤の金属含有量は、例えば10ppb以下であることが好ましい。必要に応じてpptレベルの溶剤を用いてもよく、そのような高純度溶剤は例えば東洋合成社が提供している。 In the present invention, an organic solvent having a low metal content can also be used. The metal content of the organic solvent is preferably 10 ppb or less, for example. If necessary, a ppt level solvent may be used, and such a high-purity solvent is provided by Toyo Gosei Co., Ltd., for example.
 有機溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いた濾過を挙げることができる。フィルタを用いたろ過におけるフィルタ孔径としては、ポアサイズ10nm以下が好ましく、5nm以下がより好ましく、3nm以下が更に好ましい。フィルタの材質としては、ポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のフィルタが好ましい。 Examples of methods for removing impurities such as metals from organic solvents include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter. The filter pore diameter in filtration using a filter is preferably 10 nm or less, more preferably 5 nm or less, and still more preferably 3 nm or less. The filter material is preferably a polytetrafluoroethylene, polyethylene, or nylon filter.
 有機溶剤は、異性体(同じ原子数で異なる構造の化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。 The organic solvent may contain isomers (compounds having the same number of atoms and different structures). Moreover, only 1 type may be included and the isomer may be included multiple types.
 近赤外線吸収組成物中における溶剤の量は、固形分が10~90質量%となる量が好ましい。下限は、15質量%以上が好ましく、20質量%以上がより好ましい。上限は、80質量%以下が好ましく、70質量%以下がより好ましい。溶剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。 The amount of the solvent in the near-infrared absorbing composition is preferably such that the solid content is 10 to 90% by mass. The lower limit is preferably 15% by mass or more, and more preferably 20% by mass or more. The upper limit is preferably 80% by mass or less, and more preferably 70% by mass or less. Only one type of solvent may be used, or two or more types may be used, and in the case of two or more types, the total amount is preferably within the above range.
<<重合開始剤>>
 本発明の近赤外線吸収組成物は、更に、重合開始剤を含んでもよい。重合開始剤としては、光、熱のいずれか或いはその双方により架橋性化合物の重合を開始する能力を有する限り、特に制限はないが、光重合開始剤が好ましい。光で重合を開始させる場合、紫外線領域から可視領域の光線に対して感光性を有するものが好ましい。また、熱で重合を開始させる場合には、150~250℃で分解する重合開始剤が好ましい。
<< Polymerization initiator >>
The near-infrared absorbing composition of the present invention may further contain a polymerization initiator. The polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the crosslinkable compound by light or heat, or both, but a photopolymerization initiator is preferred. When polymerization is initiated with light, those having photosensitivity to light in the ultraviolet region to the visible region are preferred. In addition, when the polymerization is initiated by heat, a polymerization initiator that decomposes at 150 to 250 ° C. is preferable.
 重合開始剤としては、芳香族基を有する化合物が好ましい。例えば、アシルホスフィン化合物、アセトフェノン化合物、α-アミノケトン化合物、ベンゾフェノン化合物、ベンゾインエーテル化合物、ケタール化合物、チオキサントン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、トリハロメチル化合物、アゾ化合物、有機過酸化物、ジアゾニウム化合物、ヨードニウム化合物、スルホニウム化合物、アジニウム化合物、メタロセン化合物等のオニウム塩化合物、有機硼素塩化合物、ジスルホン化合物、チオール化合物などが挙げられる。
 重合開始剤は、特開2013-253224号公報の段落0217~0228の記載を参酌することができ、この内容は本明細書に組み込まれる。
As the polymerization initiator, a compound having an aromatic group is preferable. For example, acylphosphine compounds, acetophenone compounds, α-aminoketone compounds, benzophenone compounds, benzoin ether compounds, ketal compounds, thioxanthone compounds, oxime compounds, hexaarylbiimidazole compounds, trihalomethyl compounds, azo compounds, organic peroxides, diazonium compounds Onium salt compounds such as iodonium compounds, sulfonium compounds, azinium compounds, metallocene compounds, organic boron salt compounds, disulfone compounds, thiol compounds, and the like.
As for the polymerization initiator, the description in paragraphs 0217 to 0228 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
 重合開始剤は、オキシム化合物、アセトフェノン化合物またはアシルホスフィン化合物が好ましい。アセトフェノン化合物の市販品としては、IRGACURE-907、IRGACURE-369、IRGACURE-379(商品名:いずれもBASF社製)等を用いることができる。アシルホスフィン化合物の市販品としては、IRGACURE-819、DAROCUR-TPO(商品名:いずれもBASF社製)等を用いることができる。
 重合開始剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上が好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。重合開始剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。
The polymerization initiator is preferably an oxime compound, an acetophenone compound or an acylphosphine compound. Examples of commercially available acetophenone compounds include IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF). As commercially available acylphosphine compounds, IRGACURE-819, DAROCUR-TPO (trade names: all manufactured by BASF) and the like can be used.
The content of the polymerization initiator is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 0.1% by mass or more. The upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less. Only one type of polymerization initiator may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
<<硬化促進剤>>
 本発明の近赤外線吸収組成物は、硬化促進剤を含んでもよい。硬化促進剤としては、有機金属系触媒、酸系触媒、アミン系触媒などが挙げられ、有機金属系触媒が好ましい。
 酸系触媒としては、塩酸、硝酸、トリクロロ酢酸、トリフルオロ酢酸、硫酸、リン酸、メタンスルホン酸、p-トルエンスルホン酸、シュウ酸、酢酸などが挙げられる。
 有機金属系触媒は、Na、K、Ca、Mg、Ti、Zr、Al、Zn、Sn、及びBiからなる群より選択される少なくとも1つの金属原子を含む、酸化物、硫化物、ハロゲン化物、炭酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、硝酸塩、硫酸塩、アルコキシド、水酸化物、及び置換基を有していてもよいアセチルアセトナート錯体からなる群より選択される少なくとも1種であることが好ましい。なかでも、上記金属の、ハロゲン化物、カルボン酸塩、硝酸塩、硫酸塩、水酸化物、及び置換基を有していてもよいアセチルアセトナート錯体からなる群より選択される少なくとも1種であることが好ましく、アセチルアセトナート錯体が更に好ましい。特に、Alのアセチルアセトナート錯体が好ましい。有機金属系触媒の具体例としては、例えば、トリス(2,4-ペンタンジオナト)アルミニウム(III)などが挙げられる。
<< Curing accelerator >>
The near-infrared absorbing composition of the present invention may contain a curing accelerator. Examples of the curing accelerator include an organometallic catalyst, an acid catalyst, an amine catalyst, and the like, and an organometallic catalyst is preferable.
Examples of the acid catalyst include hydrochloric acid, nitric acid, trichloroacetic acid, trifluoroacetic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, oxalic acid, and acetic acid.
The organometallic catalyst is an oxide, sulfide, halide containing at least one metal atom selected from the group consisting of Na, K, Ca, Mg, Ti, Zr, Al, Zn, Sn, and Bi. At least one selected from the group consisting of carbonates, carboxylates, sulfonates, phosphates, nitrates, sulfates, alkoxides, hydroxides, and optionally substituted acetylacetonate complexes It is preferable that Among them, the metal is at least one selected from the group consisting of halides, carboxylates, nitrates, sulfates, hydroxides, and optionally substituted acetylacetonate complexes. Are preferred, and acetylacetonate complexes are more preferred. In particular, an acetylacetonate complex of Al is preferable. Specific examples of the organometallic catalyst include, for example, tris (2,4-pentanedionato) aluminum (III).
 本発明の近赤外線吸収組成物が、硬化促進剤を含有する場合、硬化促進剤の含有量は、近赤外線吸収組成物の全固形分に対して0.01~5質量%が好ましい。上限は、3質量%以下が好ましく、1質量%以下が更に好ましい。下限は、0.05質量%以上が好ましい。 When the near-infrared absorbing composition of the present invention contains a curing accelerator, the content of the curing accelerator is preferably 0.01 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition. The upper limit is preferably 3% by mass or less, and more preferably 1% by mass or less. The lower limit is preferably 0.05% by mass or more.
<<熱安定性付与剤>>
 本発明の近赤外線吸収組成物は、熱安定性付与剤を含有することもできる。熱安定性付与剤としてはオキシム化合物が挙げられる。
 オキシム化合物の市販品としては、IRGACURE-OXE01、IRGACURE-OXE02、IRGACURE-OXE03、IRGACURE-OXE04(以上、BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831(ADEKA社製)、アデカアークルズNCI-930(ADEKA社製)等を用いることができる。
 本発明においては、オキシム化合物として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。これらの内容は本明細書に組み込まれる。
 本発明においては、オキシム化合物として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落0031~0047、特開2014-137466号公報の段落0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落0007~0025に記載されている化合物、アデカアークルズNCI-831(ADEKA社製)が挙げられる。
 本発明においては、オキシム化合物として、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開WO2015/036910号公報に記載されている化合物OE-01~OE-75が挙げられる。
 熱安定性付与剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上が好ましい。上限は、20質量%以下が好ましく、10質量%以下がより好ましい。
<< Thermal stability imparting agent >>
The near-infrared absorbing composition of the present invention can also contain a thermal stability imparting agent. Examples of the heat stability imparting agent include oxime compounds.
Commercially available oxime compounds include IRGACURE-OXE01, IRGACURE-OXE02, IRGACURE-OXE03, IRGACURE-OXE04 (above, manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831 (manufactured by ADEKA), Adeka Arcles NCI-930 (manufactured by ADEKA) and the like can be used.
In the present invention, an oxime compound having a fluorine atom can also be used as the oxime compound. Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A 2013-164471. Compound (C-3). These contents are incorporated herein.
In the present invention, an oxime compound having a nitro group can be used as the oxime compound. The oxime compound having a nitro group is also preferably a dimer. Specific examples of the oxime compound having a nitro group include compounds described in paragraphs 0031 to 0047 of JP2013-114249A, paragraphs 0008 to 0012 and 0070 to 0079 of JP2014-137466A, and patent 4223071. And ADEKA ARKLES NCI-831 (manufactured by ADEKA), which are described in paragraphs 0007 to 0025 of the publication.
In the present invention, an oxime compound having a benzofuran skeleton can also be used as the oxime compound. Specific examples include compounds OE-01 to OE-75 described in International Publication No. WO2015 / 036910.
The content of the heat stability imparting agent is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 0.1% by mass or more. The upper limit is preferably 20% by mass or less, and more preferably 10% by mass or less.
<<界面活性剤>>
 本発明の近赤外線吸収組成物は、界面活性剤を含んでもよい。界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。界面活性剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.0001~5質量%が好ましい。下限は、0.005質量%以上が好ましく、0.01質量%以上がより好ましい。上限は、2質量%以下が好ましく、1質量%以下がより好ましい。
<< Surfactant >>
The near-infrared absorbing composition of the present invention may contain a surfactant. Only one type of surfactant may be used, or two or more types may be combined. The content of the surfactant is preferably 0.0001 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more. The upper limit is preferably 2% by mass or less, and more preferably 1% by mass or less.
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。近赤外線吸収組成物は、フッ素系界面活性剤およびシリコーン系界面活性剤の少なくとも一方を含有することが好ましい。被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善される。このため、組成物の液特性(特に、流動性)が向上し、塗布厚の均一性や省液性がより改善する。その結果、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成を行える。 As the surfactant, various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used. The near-infrared absorbing composition preferably contains at least one of a fluorine-based surfactant and a silicone-based surfactant. The interfacial tension between the coated surface and the coating liquid is reduced, and the wettability to the coated surface is improved. For this reason, the liquid characteristic (especially fluidity | liquidity) of a composition improves, and the uniformity of coating thickness and liquid-saving property improve more. As a result, even when a thin film of about several μm is formed with a small amount of liquid, it is possible to form a film with a uniform thickness with small thickness unevenness.
 フッ素系界面活性剤のフッ素含有率は、3~40質量%が好ましい。下限は、5質量%以上が好ましく、7質量%以上が更に好ましい。上限は、30質量%以下が好ましく、25質量%以下が更に好ましい。フッ素含有率が上述した範囲内である場合は、塗布膜の厚さの均一性や省液性の点で効果的であり、溶解性も良好である。
 フッ素系界面活性剤として具体的には、特開2014-41318号公報の段落0060~0064(対応する国際公開WO2014/17669号公報の段落0060~0064)等に記載の界面活性剤、特開2011-132503号公報の段落0117~0132に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF-171、同F-172、同F-173、同F-176、同F-177、同F-141、同F-142、同F-143、同F-144、同R30、同F-437、同F-475、同F-479、同F-482、同F-554、同F-780(以上、DIC社製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム社製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子社製)、PolyFox PF-7002(オムノバ社製)等が挙げられる。フッ素系界面活性剤は、特開2015-117327号公報の段落0015~0158に記載の化合物を用いることもできる。フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、例えば特開2011-89090号公報に記載された化合物が挙げられる。
 フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができ、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000024
 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。
 また、エチレン性不飽和基を側鎖に有する含フッ素重合体をフッ素系界面活性剤として用いることもできる。具体例としては、特開2010-164965号公報の段落0050~0090および段落0289~0295に記載された化合物、例えばDIC社製のメガファックRS-101、RS-102、RS-718K、RS-72K等が挙げられる。
 また、フッ素系界面活性剤としては、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC社製のメガファックDSシリーズ(化学工業日報、2016年2月22日および日経産業新聞、2016年2月23日)、例えばメガファックDS-21が挙げられ、これらを用いることができる。
The fluorine content of the fluorosurfactant is preferably 3 to 40% by mass. The lower limit is preferably 5% by mass or more, and more preferably 7% by mass or more. The upper limit is preferably 30% by mass or less, and more preferably 25% by mass or less. When the fluorine content is within the above-described range, it is effective in terms of uniformity of coating film thickness and liquid-saving properties, and good solubility.
Specific examples of the fluorosurfactant include the surfactants described in paragraphs 0060 to 0064 of JP 2014-41318 A (paragraphs 0060 to 0064 of WO 2014/17669) and JP 2011 Examples include surfactants described in paragraphs 0117 to 0132 of JP-A-1252503, the contents of which are incorporated herein. Commercially available fluorosurfactants include, for example, Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, and the like. F-143, F-144, R30, F-437, F-475, F-479, F-482, F-554, F-780 (above DIC), Fluorard FC430, FC431, FC171 (Sumitomo 3M), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC-383, S393, KH-40 (Asahi Glass Co., Ltd.), PolyFox PF-7002 (Omnova Co., Ltd.) and the like. As the fluorine-based surfactant, compounds described in paragraphs 0015 to 0158 of JP-A No. 2015-117327 can also be used. A block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090.
The fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy group or propyleneoxy group) (meth). A fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as the fluorine-based surfactant used in the present invention.
Figure JPOXMLDOC01-appb-C000024
The weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000.
Moreover, the fluoropolymer which has an ethylenically unsaturated group in a side chain can also be used as a fluorine-type surfactant. Specific examples thereof include compounds described in JP-A 2010-164965, paragraphs 0050 to 0090 and paragraphs 0289 to 0295, such as MegaFac RS-101, RS-102, RS-718K, and RS-72K manufactured by DIC. Etc.
In addition, as the fluorine-based surfactant, an acrylic compound having a molecular structure having a functional group containing a fluorine atom, and the fluorine atom is volatilized by cleavage of the functional group containing the fluorine atom when heated. Can also be suitably used. Examples of such a fluorosurfactant include Megafac DS series manufactured by DIC (Chemical Industry Daily, February 22, 2016 and Nikkei Sangyo Shimbun, February 23, 2016), such as Megafac DS-21. These can be used.
 ノニオン系界面活性剤として具体的には、特開2012-208494号公報の段落0553(対応する米国特許出願公開第2012/0235099号明細書の段落0679)等に記載のノニオン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
 カチオン系界面活性剤として具体的には、特開2012-208494号公報の段落0554(対応する米国特許出願公開第2012/0235099号明細書の段落0680)に記載のカチオン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商社製)等が挙げられる。
 シリコーン系界面活性剤としては、例えば、特開2012-208494号公報の段落0556(対応する米国特許出願公開第2012/0235099号明細書の段落0682)等に記載のシリコーン系界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。
Specific examples of the nonionic surfactant include nonionic surfactants described in paragraph 0553 of JP2012-208494A (paragraph 0679 of the corresponding US Patent Application Publication No. 2012/0235099) and the like. The contents of which are incorporated herein.
Specific examples of the cationic surfactant include a cationic surfactant described in paragraph 0554 of JP2012-208494A (paragraph 0680 of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein.
Specific examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
Examples of the silicone surfactant include the silicone surfactants described in paragraph 0556 of JP2012-208494A (paragraph 0682 of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein.
<<重合禁止剤>>
 本発明の近赤外線吸収組成物は、重合禁止剤を含有してもよい。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられ、p-メトキシフェノールが好ましい。重合禁止剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.01~5質量%が好ましい。
<< Polymerization inhibitor >>
The near-infrared absorbing composition of the present invention may contain a polymerization inhibitor. Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol), Examples include 2,2′-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt, and p-methoxyphenol is preferred. The content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition.
<<紫外線吸収剤>>
 本発明の近赤外線吸収組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤は、公知の化合物を用いることができる。市販品としては、例えば、UV503(大東化学社製)などが挙げられる。紫外線吸収剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.01~10質量%であることが好ましく、0.01~5質量%であることがより好ましい。
<< UV absorber >>
The near-infrared absorbing composition of the present invention may contain an ultraviolet absorber. A well-known compound can be used for a ultraviolet absorber. As a commercial item, UV503 (made by Daito Chemical Co., Inc.) etc. are mentioned, for example. The content of the ultraviolet absorber is preferably 0.01 to 10% by mass and more preferably 0.01 to 5% by mass with respect to the total solid content of the near-infrared absorbing composition.
<<酸化防止剤>>
 本発明の近赤外線吸収組成物は、酸化防止剤を含有してもよい。酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。分子量500以上のフェノール化合物、分子量500以上の亜リン酸エステル化合物又は分子量500以上のチオエーテル化合物がより好ましい。これらは2種以上を混合して使用してもよい。フェノール化合物としては、フェノール系酸化防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。特に、フェノール性水酸基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましく、メチル基、エチル基、プロピオニル基、イソプロピオニル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、t-ペンチル基、ヘキシル基、オクチル基、イソオクチル基、2-エチルへキシル基がより好ましい。また、同一分子内にフェノール基と亜リン酸エステル基を有する化合物(酸化防止剤)も好ましい。
<< Antioxidant >>
The near-infrared absorbing composition of the present invention may contain an antioxidant. Examples of the antioxidant include a phenol compound, a phosphite compound, and a thioether compound. A phenol compound having a molecular weight of 500 or more, a phosphite compound having a molecular weight of 500 or more, or a thioether compound having a molecular weight of 500 or more is more preferable. You may use these in mixture of 2 or more types. As the phenol compound, any phenol compound known as a phenol-based antioxidant can be used. Preferable phenolic compounds include hindered phenolic compounds. In particular, a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxyl group is preferable. As the above-mentioned substituent, a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable. A methyl group, an ethyl group, a propionyl group, an isopropionyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group. Group, t-pentyl group, hexyl group, octyl group, isooctyl group and 2-ethylhexyl group are more preferable. A compound (antioxidant) having a phenol group and a phosphite group in the same molecule is also preferred.
 また、酸化防止剤は、リン系酸化防止剤も好適に使用することができる。リン系酸化防止剤としてはトリス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル]オキシ]エチル]アミン、トリス[2-[(4,6,9,11-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-2-イル)オキシ]エチル]アミン、および亜リン酸エチルビス(2,4-ジ-tert-ブチル-6-メチルフェニル)からなる群から選ばれる少なくとも1種の化合物が挙げられる。 Moreover, phosphorus antioxidant can also be used suitably for antioxidant. As the phosphorus-based antioxidant, tris [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphine-6 -Yl] oxy] ethyl] amine, tris [2-[(4,6,9,11-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphin-2-yl And at least one compound selected from the group consisting of) oxy] ethyl] amine and ethyl bis (2,4-di-tert-butyl-6-methylphenyl) phosphite.
 これらは、市販品として容易に入手可能であり、アデカスタブAO-20、アデカスタブAO-30、アデカスタブ AO-40、アデカスタブAO-50、アデカスタブAO-50F、アデカスタブ AO-60、アデカスタブAO-60G、アデカスタブAO-80、アデカスタブAO-330(ADEKA社製)などが挙げられる。 These are readily available as commercial products, and are ADK STAB AO-20, ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-50F, ADK STAB AO-60, ADK STAB AO-60G and ADK STAB AO. -80, ADK STAB AO-330 (manufactured by ADEKA) and the like.
 酸化防止剤の含有量は、近赤外線吸収組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.3~15質量%であることがより好ましい。酸化防止剤は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。 The content of the antioxidant is preferably 0.01 to 20% by mass, and more preferably 0.3 to 15% by mass, based on the total solid content of the near-infrared absorbing composition. Only one type of antioxidant may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
<<その他の成分>>
 本発明の近赤外線吸収組成物で併用可能なその他の成分としては、例えば、分散剤、増感剤、フィラー、熱重合禁止剤、可塑剤などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、目的とする近赤外線カットフィルタの安定性、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落0183(対応する米国特許出願公開第2013/0034812号明細書の段落0237)の記載、特開2008-250074号公報の段落0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<< Other ingredients >>
Examples of other components that can be used in combination with the near-infrared absorbing composition of the present invention include dispersants, sensitizers, fillers, thermal polymerization inhibitors, plasticizers, and further adhesion promoters to the substrate surface. And other auxiliary agents (for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, chain transfer agents, etc.) Also good. By appropriately containing these components, properties such as stability and film physical properties of the target near-infrared cut filter can be adjusted. These components are described in, for example, paragraph 0183 of JP2012-003225A (corresponding to paragraph 0237 of US Patent Application Publication No. 2013/0034812), paragraphs 0101 to 0104 of JP2008-250074. , 0107 to 0109, and the like, the contents of which are incorporated herein.
<近赤外線吸収組成物の調製、用途>
 本発明の近赤外線吸収組成物は、上記各成分を混合して調製できる。
 組成物の調製に際しては、組成物を構成する各成分を一括配合してもよいし、各成分を溶剤に溶解および/または分散した後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けない。
 本発明においては、異物の除去や欠陥の低減などの目的で、フィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。
 フィルタの孔径は、0.01~7.0μm程度が適しており、好ましくは0.01~3.0μm程度、さらに好ましくは0.05~0.5μm程度である。この範囲とすることにより、微細な異物を確実に除去することが可能となる。また、ファイバ状のろ材を用いることも好ましく、ろ材としては例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられ、具体的にはロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)のフィルタカートリッジを用いることができる。
<Preparation and use of near-infrared absorbing composition>
The near-infrared absorbing composition of the present invention can be prepared by mixing the above components.
In preparing the composition, the components constituting the composition may be combined at once, or may be combined sequentially after each component is dissolved and / or dispersed in a solvent. In addition, there are no particular restrictions on the charging order and working conditions when blending.
In the present invention, it is preferable to filter with a filter for the purpose of removing foreign substances or reducing defects. Any filter can be used without particular limitation as long as it has been conventionally used for filtration. For example, fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density, ultra high molecular weight) And a filter using a material such as polyolefin resin). Among these materials, polypropylene (including high density polypropylene) and nylon are preferable.
The pore size of the filter is suitably about 0.01 to 7.0 μm, preferably about 0.01 to 3.0 μm, more preferably about 0.05 to 0.5 μm. By setting it as this range, it becomes possible to remove a fine foreign material reliably. Further, it is also preferable to use a fiber-shaped filter medium, and examples of the filter medium include polypropylene fiber, nylon fiber, glass fiber, and the like. , TPR005, etc.) and SHPX type series (SHPX003 etc.) filter cartridges can be used.
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。
 また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2~10.0μmが好ましく、0.2~7.0μmがより好ましく、0.3~6.0μmが更に好ましい。この範囲とすることにより、組成物に含有されている成分粒子を残存させたまま、異物を除去することができる。
When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more.
Moreover, you may combine the 1st filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (former Nihon Microlith Co., Ltd.), or Kitz Micro Filter Co., Ltd. .
As the second filter, a filter formed of the same material as the first filter described above can be used. The pore size of the second filter is preferably 0.2 to 10.0 μm, more preferably 0.2 to 7.0 μm, and still more preferably 0.3 to 6.0 μm. By setting it as this range, a foreign material can be removed with the component particles contained in the composition remaining.
 本発明の近赤外線吸収組成物は、液状とすることができるため、例えば、本発明の近赤外線吸収組成物を基材などに適用し、乾燥させることにより近赤外線カットフィルタを容易に製造できる。
 本発明の近赤外線吸収組成物の粘度は、塗布により近赤外線カットフィルタを形成する場合は、1~3000mPa・sであることが好ましい。下限は、10mPa・s以上が好ましく、100mPa・s以上が更に好ましい。上限は、2000mPa・s以下が好ましく、1500mPa・s以下が更に好ましい。
 本発明の近赤外線吸収組成物の全固形分は、塗布方法により変更されるが、例えば、1~70質量%であることが好ましい。下限は10質量%以上がより好ましい。上限は60質量%以下がより好ましい。
Since the near-infrared absorbing composition of the present invention can be made liquid, for example, a near-infrared cut filter can be easily produced by applying the near-infrared absorbing composition of the present invention to a substrate and drying it.
The viscosity of the near-infrared absorbing composition of the present invention is preferably 1 to 3000 mPa · s when a near-infrared cut filter is formed by coating. The lower limit is preferably 10 mPa · s or more, and more preferably 100 mPa · s or more. The upper limit is preferably 2000 mPa · s or less, and more preferably 1500 mPa · s or less.
The total solid content of the near-infrared absorbing composition of the present invention varies depending on the coating method, but is preferably 1 to 70% by mass, for example. The lower limit is more preferably 10% by mass or more. The upper limit is more preferably 60% by mass or less.
 本発明の近赤外線吸収組成物の用途は、特に限定されないが、近赤外線カットフィルタ等の形成に好ましく用いることができる。例えば、固体撮像素子の受光側における近赤外線カットフィルタ(例えば、ウエハーレベルレンズに対する近赤外線カットフィルタ用など)、固体撮像素子の裏面側(受光側とは反対側)における近赤外線カットフィルタなどに好ましく用いることができる。特に、固体撮像素子の受光側における近赤外線カットフィルタとして好ましく用いることができる。
 また、本発明の近赤外線吸収組成物によれば、耐熱性が高く、可視領域では高い透過率を維持しつつ、高い近赤外遮蔽性を実現できる近赤外線カットフィルタが得られる。さらには、近赤外線カットフィルタの膜厚を薄くでき、カメラモジュール、画像表示装置、赤外線センサなどの低背化に寄与できる。
Although the use of the near-infrared absorption composition of this invention is not specifically limited, It can use preferably for formation of a near-infrared cut filter etc. For example, it is preferable for a near-infrared cut filter (for example, for a near-infrared cut filter for a wafer level lens) on the light-receiving side of a solid-state image sensor, a near-infrared cut filter on the back side (the side opposite to the light-receiving side) of the solid-state image sensor Can be used. In particular, it can be preferably used as a near-infrared cut filter on the light receiving side of the solid-state imaging device.
Moreover, according to the near-infrared absorption composition of this invention, the near-infrared cut filter which has high heat resistance and can implement | achieve high near-infrared shielding property, maintaining a high transmittance | permeability in a visible region is obtained. Furthermore, the film thickness of the near-infrared cut filter can be reduced, which can contribute to a reduction in the height of camera modules, image display devices, infrared sensors, and the like.
<近赤外線カットフィルタ>
 次に、本発明の近赤外線カットフィルタについて説明する。
 本発明の近赤外線カットフィルタは、上述した本発明の近赤外線吸収組成物を用いてなるものである。
 本発明の近赤外線カットフィルタは、光透過率が以下の(1)~(9)のうちの少なくとも1つの条件を満たすことが好ましく、以下の(1)~(8)のすべての条件を満たすことがより好ましく、(1)~(9)のすべての条件を満たすことがさらに好ましい。
(1)波長400nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(2)波長450nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(3)波長500nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(4)波長550nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(5)波長700nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(6)波長750nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(7)波長800nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(8)波長850nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(9)波長900nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
<Near-infrared cut filter>
Next, the near infrared cut filter of the present invention will be described.
The near-infrared cut filter of this invention uses the near-infrared absorption composition of this invention mentioned above.
The near-infrared cut filter of the present invention preferably has a light transmittance satisfying at least one of the following conditions (1) to (9), and satisfies all the following conditions (1) to (8): It is more preferable that all the conditions (1) to (9) are satisfied.
(1) The light transmittance at a wavelength of 400 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(2) The light transmittance at a wavelength of 450 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(3) The light transmittance at a wavelength of 500 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(4) The light transmittance at a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(5) The light transmittance at a wavelength of 700 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(6) The light transmittance at a wavelength of 750 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(7) The light transmittance at a wavelength of 800 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(8) The light transmittance at a wavelength of 850 nm is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 5% or less.
(9) The light transmittance at a wavelength of 900 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
 近赤外線カットフィルタは、波長400~550nmの全ての範囲での光透過率が85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましい。可視領域での透過率は高いほど好ましく、波長400~550nmで高透過率となることが好ましい。また、波長700~800nmの範囲の少なくとも1点での光透過率が20%以下であることが好ましく、波長700~800nmの全ての範囲での光透過率が20%以下であることがさらに好ましい。
 近赤外線カットフィルタの膜厚は、目的に応じて適宜選択することができる。例えば、500μm以下が好ましく、300μm以下がより好ましく、250μm以下がさらに好ましく、200μm以下が特に好ましい。膜厚の下限は、例えば、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上がより好ましい。
The near-infrared cut filter preferably has a light transmittance of 85% or more, more preferably 90% or more, and still more preferably 95% or more in the entire wavelength range of 400 to 550 nm. The higher the transmittance in the visible region, the better. The transmittance is preferably high at a wavelength of 400 to 550 nm. Further, the light transmittance at at least one point in the wavelength range of 700 to 800 nm is preferably 20% or less, and the light transmittance in the entire range of wavelength 700 to 800 nm is more preferably 20% or less. .
The film thickness of the near infrared cut filter can be appropriately selected according to the purpose. For example, 500 μm or less is preferable, 300 μm or less is more preferable, 250 μm or less is further preferable, and 200 μm or less is particularly preferable. The lower limit of the film thickness is, for example, preferably 0.1 μm or more, more preferably 0.2 μm or more, and more preferably 0.5 μm or more.
 本発明の近赤外線カットフィルタは、本発明の近赤外線吸収組成物を用いて得られた膜の他に、更に、誘電体多層膜や、紫外線吸収層を有していてもよい。本発明の近赤外線カットフィルタが、更に誘電体多層膜を有することで、視野角が広く、近赤外遮蔽性に優れた近赤外線カットフィルタが得られ易い。また、本発明の近赤外線カットフィルタが、更に、紫外線吸収層を有することで、紫外線遮蔽性に優れた近赤外線カットフィルタとすることができる。紫外線吸収層としては、例えば、国際公開WO2015/099060号公報の段落0040~0070、0119~0145に記載の吸収層を参酌でき、この内容は本明細書に組み込まれる。 The near-infrared cut filter of the present invention may further have a dielectric multilayer film or an ultraviolet absorbing layer in addition to the film obtained by using the near-infrared absorbing composition of the present invention. Since the near infrared cut filter of the present invention further includes a dielectric multilayer film, a near infrared cut filter having a wide viewing angle and excellent near infrared shielding properties can be easily obtained. Moreover, the near-infrared cut filter of this invention can be set as the near-infrared cut filter excellent in ultraviolet-shielding property by having an ultraviolet absorption layer further. As the ultraviolet absorbing layer, for example, the absorbing layer described in paragraphs 0040 to 0070 and 0119 to 0145 of International Publication No. WO2015 / 099060 can be referred to, the contents of which are incorporated herein.
 誘電体多層膜の材料としては、例えばセラミックを用いることができる。光の干渉の効果を利用した赤外線カットフィルタを形成するためには、屈折率の異なるセラミックを2種以上用いることが好ましい。誘電体多層膜としては具体的には、高屈折率材料層と低屈折率材料層とを交互に積層した構成を好適に用いることができる。 As the material for the dielectric multilayer film, for example, ceramic can be used. In order to form an infrared cut filter utilizing the effect of light interference, it is preferable to use two or more ceramics having different refractive indexes. Specifically, a configuration in which high refractive index material layers and low refractive index material layers are alternately stacked can be suitably used as the dielectric multilayer film.
 高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率の範囲が通常は1.7~2.5の材料が選択される。この材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウムを主成分とし酸化チタン、酸化錫および/または酸化セリウムなどを少量含有させたものが挙げられる。 As a material constituting the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index range of 1.7 to 2.5 is usually selected. Examples of the material include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as a main component, and titanium oxide, tin oxide, and / or cerium oxide. The thing which contained a small amount is mentioned.
 低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率の範囲が通常は1.2~1.6の材料が選択される。この材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。 As the material constituting the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index range of 1.2 to 1.6 is usually selected. Examples of this material include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium aluminum hexafluoride.
 誘電体多層膜を形成する方法としては、特に制限はないが、例えば、CVD(chemical vapor deposition)法、スパッタ法、真空蒸着法などにより、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成し、これを、銅を含有する透明層および/または赤外線吸収層と接着剤で貼り合わせる方法、
銅を含有する透明層および/または赤外線吸収層の表面に、CVD法、スパッタ法、真空蒸着法などにより、高屈折率材料層と低屈折率材料層とを交互に積層して誘電体多層膜を形成する方法を挙げることができる。
A method for forming the dielectric multilayer film is not particularly limited. For example, a high refractive index material layer and a low refractive index material layer are alternately formed by a chemical vapor deposition (CVD) method, a sputtering method, a vacuum deposition method, or the like. Forming a dielectric multilayer film laminated on the transparent layer and / or infrared absorbing layer containing copper and bonding the adhesive multilayer film with an adhesive,
A dielectric multilayer film in which a high refractive index material layer and a low refractive index material layer are alternately laminated on the surface of a transparent layer containing copper and / or an infrared absorption layer by CVD, sputtering, vacuum deposition, or the like. The method of forming can be mentioned.
 高屈折率材料層および低屈折率材料層の各層の厚みは、遮蔽しようとする赤外線波長λ(nm)の0.1λ~0.5λの厚みであることが好ましい。厚みを上記範囲とすることにより、特定波長の遮蔽や透過をコントロールしやすい。 The thickness of each of the high refractive index material layer and the low refractive index material layer is preferably 0.1λ to 0.5λ of the infrared wavelength λ (nm) to be shielded. By setting the thickness within the above range, it is easy to control shielding and transmission of a specific wavelength.
 また、誘電体多層膜における積層数は、2~100層が好ましく、2~60層がより好ましく、2~40層が更に好ましい。誘電体多層膜を蒸着した際に基板に反りが生じてしまう場合には、これを解消するために、基板両面へ誘電体多層膜を蒸着する、基板の誘電体多層膜を蒸着した面に紫外線等の放射線を照射する等の方法をとる事ができる。なお、放射線を照射する場合、誘電体多層膜の蒸着を行いながら照射してもよいし、蒸着後別途照射してもよい。 Further, the number of laminated layers in the dielectric multilayer film is preferably 2 to 100 layers, more preferably 2 to 60 layers, and further preferably 2 to 40 layers. If the substrate is warped when the dielectric multilayer film is deposited, in order to eliminate this, the dielectric multilayer film is deposited on both sides of the substrate. The surface of the substrate on which the dielectric multilayer film is deposited is exposed to ultraviolet rays. It is possible to take a method such as irradiation with radiation. In addition, when irradiating a radiation, you may irradiate while performing the vapor deposition of a dielectric multilayer, and you may irradiate separately after vapor deposition.
 誘電体多層膜としては、特開2014-41318号公報の段落0255~0259、特開2011-100084号公報の段落0097~0108の記載を参酌でき、この内容は本明細書に組み込まれる。 As the dielectric multilayer film, the descriptions in paragraphs 0255 to 0259 of JP 2014-41318 A and paragraphs 0097 to 0108 of JP 2011-100084 A can be referred to, and the contents thereof are incorporated in the present specification.
 本発明の近赤外線カットフィルタは、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)素子などの固体撮像素子や、赤外線センサ、画像表示装置などの各種装置に用いることができる。また、本発明の近赤外線カットフィルタは、近赤外線を吸収・カットする機能を有するレンズ(デジタルカメラや携帯電話や車載カメラ等のカメラ用レンズ、f-θレンズ、ピックアップレンズ等の光学レンズ)および半導体受光素子用の光学フィルタ、省エネルギー用に熱線を遮蔽する近赤外線吸収フィルムや近赤外線吸収板、太陽光の選択的な利用を目的とする農業用コーティング剤、近赤外線の吸収熱を利用する記録媒体、電子機器用や写真用近赤外線フィルタ、保護めがね、サングラス、熱線遮蔽フィルタ、光学文字読み取り記録、機密文書複写防止用、電子写真感光体、レーザー溶着などに用いられる。またCCDカメラ用ノイズカットフィルター、CMOSイメージセンサ用フィルタとしても有用である。 The near-infrared cut filter of the present invention can be used in various devices such as a solid-state imaging device such as a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor) device, an infrared sensor, and an image display device. The near-infrared cut filter of the present invention includes a lens having a function of absorbing / cutting near-infrared rays (a camera lens such as a digital camera, a mobile phone or a vehicle-mounted camera, an optical lens such as an f-θ lens, a pickup lens) and the like. Optical filters for semiconductor light-receiving elements, near-infrared absorbing films and near-infrared absorbing plates for shielding heat rays for energy saving, agricultural coating agents for selective use of sunlight, recording using near-infrared absorbing heat Used in media, electronic equipment and photographic near infrared filters, protective glasses, sunglasses, heat ray shielding filters, optical character reading recording, confidential document copy prevention, electrophotographic photoreceptors, laser welding, and the like. It is also useful as a noise cut filter for CCD cameras and a filter for CMOS image sensors.
<近赤外線カットフィルタの製造方法>
 本発明の近赤外線カットフィルタは、本発明の近赤外線吸収組成物を用いて製造できる。
 また、本発明の近赤外線カットフィルタの製造方法は、本発明の近赤外線吸収組成物を用いて、近赤外線吸収組成物層を形成する工程を含む。更に、近赤外線吸収組成物層を硬化する工程を含むことが好ましい。本発明の近赤外線カットフィルタの製造方法は、更にパターンを形成する工程を行ってもよい。
 また、支持体上に、本発明の近赤外線吸収組成物からなる膜を形成した材料を、近赤外線カットフィルタとして用いてもよく、支持体から前述の膜を剥離して、支持体から剥離した前述の膜(単独膜)を近赤外線カットフィルタとして用いてもよい。
<Method for manufacturing near-infrared cut filter>
The near-infrared cut filter of the present invention can be produced using the near-infrared absorbing composition of the present invention.
Moreover, the manufacturing method of the near-infrared cut filter of this invention includes the process of forming a near-infrared absorption composition layer using the near-infrared absorption composition of this invention. Furthermore, it is preferable to include a step of curing the near-infrared absorbing composition layer. The manufacturing method of the near-infrared cut filter of this invention may perform the process of forming a pattern further.
Further, a material in which a film made of the near-infrared absorbing composition of the present invention is formed on a support may be used as a near-infrared cut filter, and the aforementioned film is peeled off from the support and peeled off from the support. The aforementioned film (single film) may be used as a near infrared cut filter.
 近赤外線吸収組成物層を形成する工程において、近赤外線吸収組成物の適用方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009-145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷法などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットによる適用方法としては、近赤外線吸収組成物を吐出可能であれば特に限定されず、例えば「広がる・使えるインクジェット-特許に見る無限の可能性-、2005年2月発行、住べテクノリサーチ」に示された特許公報に記載の方法(特に115ページ~133ページ)や、特開2003-262716公報、特開2003-185831、特開2003-261827公報、特開2012-126830公報、特開2006-169325公報などにおいて、吐出する組成物を本発明の近赤外線吸収組成物に置き換える方法が挙げられる。 In the step of forming the near-infrared absorbing composition layer, a known method can be used as a method for applying the near-infrared absorbing composition. For example, a dropping method (drop casting); a slit coating method; a spray method; a roll coating method; a spin coating method (spin coating); a casting coating method; a slit and spin method; a pre-wet method (for example, JP 2009-145395 A). Methods described in the publication); inkjet (for example, on-demand method, piezo method, thermal method), ejection printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, metal mask printing method, etc. Various printing methods; transfer methods using a mold or the like; nanoimprint methods and the like. The application method by inkjet is not particularly limited as long as the near-infrared absorbing composition can be ejected. For example, “Expandable and usable inkjet-unlimited possibilities seen in patents, published in February 2005, Sumibe Techno Research” Disclosed in JP-A-2003-262716, JP-A-2003-185831, JP-A-2003-261830, JP-A-2012-126830, and JP-A-2006. -169325 discloses a method of replacing the composition to be discharged with the near-infrared absorbing composition of the present invention.
 滴下法(ドロップキャスト)の場合、所定の膜厚で、均一な膜が得られるように、支持体上にフォトレジストを隔壁とする近赤外線吸収組成物の滴下領域を形成することが好ましい。近赤外線吸収組成物の滴下量および固形分濃度、滴下領域の面積を調整することで、所望の膜厚が得られる。乾燥後の膜の厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。 In the case of the dropping method (drop casting), it is preferable to form a dropping region of the near-infrared absorbing composition having a photoresist as a partition on the support so that a uniform film can be obtained with a predetermined film thickness. A desired film thickness can be obtained by adjusting the dropping amount and solid content concentration of the near-infrared absorbing composition and the area of the dropping region. There is no restriction | limiting in particular as thickness of the film | membrane after drying, According to the objective, it can select suitably.
 支持体は、ガラスなどの透明基板であってもよい。また、固体撮像素子であってもよい。また、固体撮像素子の受光側に設けられた別の基板であってもよい。また、固体撮像素子の受光側に設けられた平坦化層等の層であっても良い。 The support may be a transparent substrate such as glass. Moreover, a solid-state image sensor may be sufficient. Moreover, another board | substrate provided in the light-receiving side of the solid-state image sensor may be sufficient. Further, it may be a layer such as a flattening layer provided on the light receiving side of the solid-state imaging device.
 近赤外線吸収組成物層を硬化する工程において、近赤外線吸収組成物層の硬化方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、露光処理、加熱処理などが好適に挙げられる。ここで、本発明において「露光」とは、各種波長の光のみならず、電子線、X線などの放射線照射をも包含する意味で用いられる。
 露光処理は、放射線の照射により行うことが好ましい。放射線としては、電子線、KrF、ArF、g線、h線、i線等の紫外線や可視光が好ましい。露光方式としては、ステッパー露光や、高圧水銀灯による露光などが挙げられる。露光量は5~3000mJ/cm2が好ましく、10~2000mJ/cm2がより好ましく、50~1000mJ/cm2が特に好ましい。露光装置としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、超高圧水銀灯などの紫外線露光機が好適に挙げられる。
 加熱処理は、加熱温度が、120~250℃であることが好ましく、160℃~220℃がより好ましい。加熱温度が120℃以上であれば、加熱処理によって膜強度が向上し、250℃以下であれば、膜成分の分解を抑制できる。加熱時間は、3分~180分が好ましく、5分~120分がより好ましい。加熱装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、赤外線(IR)ヒーターなどが挙げられる。
In the step of curing the near-infrared absorbing composition layer, the method for curing the near-infrared absorbing composition layer is not particularly limited and can be appropriately selected depending on the purpose. For example, an exposure process, a heat process, etc. are mentioned suitably. Here, in the present invention, “exposure” is used to include not only light of various wavelengths but also irradiation of radiation such as electron beams and X-rays.
The exposure process is preferably performed by irradiation with radiation. As the radiation, ultraviolet rays such as electron beams, KrF, ArF, g rays, h rays, i rays, and visible light are preferable. Examples of the exposure method include stepper exposure and exposure with a high-pressure mercury lamp. Exposure is preferably 5 ~ 3000mJ / cm 2, more preferably 10 ~ 2000mJ / cm 2, particularly preferably 50 ~ 1000mJ / cm 2. There is no restriction | limiting in particular as an exposure apparatus, According to the objective, it can select suitably. For example, an ultraviolet exposure machine such as an ultrahigh pressure mercury lamp is preferably used.
In the heat treatment, the heating temperature is preferably 120 to 250 ° C., more preferably 160 to 220 ° C. When the heating temperature is 120 ° C. or higher, the film strength is improved by the heat treatment, and when the heating temperature is 250 ° C. or lower, the decomposition of the film components can be suppressed. The heating time is preferably 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes. There is no restriction | limiting in particular as a heating apparatus, According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hot plate, an infrared (IR) heater etc. are mentioned.
 近赤外線吸収組成物層を硬化する工程において、硬化処理を行う前に、プリベーク(前加熱)を行ってもよい。加熱温度は、80℃~200℃が好ましく、90℃~150℃がより好ましい。加熱時間は、30~240秒が好ましく、60~180秒がより好ましい。 In the step of curing the near-infrared absorbing composition layer, pre-baking (preheating) may be performed before the curing treatment. The heating temperature is preferably 80 ° C. to 200 ° C., more preferably 90 ° C. to 150 ° C. The heating time is preferably 30 to 240 seconds, more preferably 60 to 180 seconds.
 近赤外線吸収組成物層を硬化する工程において、硬化処理を行った後に、さらに、ポストベーク(後加熱)を行ってもよい。後加熱は、硬化処理後の膜の硬化を完全なものとするための加熱処理である。加熱温度は、100~240℃が好ましい。膜硬化の観点から、200~230℃がより好ましい。加熱時間は、30~1000秒が好ましく、60~500秒がより好ましい。 In the step of curing the near-infrared absorbing composition layer, post-baking (post-heating) may be performed after the curing treatment. The post-heating is a heat treatment for completing the curing of the film after the curing treatment. The heating temperature is preferably 100 to 240 ° C. From the viewpoint of film curing, 200 to 230 ° C. is more preferable. The heating time is preferably 30 to 1000 seconds, more preferably 60 to 500 seconds.
 パターンを形成する工程において、パターンの形成方法としては、フォトリソグラフィ法によるパターン形成方法や、ドライエッチング法によるパターン形成方法が挙げられる。 In the step of forming a pattern, examples of the pattern forming method include a pattern forming method by a photolithography method and a pattern forming method by a dry etching method.
<固体撮像素子、カメラモジュール>
 本発明の固体撮像素子は、本発明の近赤外線カットフィルタを含む。また、本発明のカメラモジュールは、本発明の近赤外線カットフィルタを含む。
<Solid-state imaging device, camera module>
The solid-state imaging device of the present invention includes the near-infrared cut filter of the present invention. The camera module of the present invention includes the near-infrared cut filter of the present invention.
 図1は、本発明の実施形態に係る近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である。
 図1に示すカメラモジュール10は、固体撮像素子11と、固体撮像素子の主面側(受光側)に設けられた平坦化層12と、近赤外線カットフィルタ13と、近赤外線カットフィルタの上方に配置され内部空間に撮像レンズ14を有するレンズホルダー15と、を備える。カメラモジュール10は、外部からの入射光hνが、撮像レンズ14、近赤外線カットフィルタ13、平坦化層12を順次透過した後、固体撮像素子11の撮像素子部に到達するようになっている。
FIG. 1 is a schematic cross-sectional view showing the configuration of a camera module having a near-infrared cut filter according to an embodiment of the present invention.
A camera module 10 illustrated in FIG. 1 includes a solid-state image sensor 11, a planarization layer 12 provided on the main surface side (light-receiving side) of the solid-state image sensor, a near-infrared cut filter 13, and a near-infrared cut filter. And a lens holder 15 having an imaging lens 14 in the internal space. In the camera module 10, incident light hν from the outside passes through the imaging lens 14, the near-infrared cut filter 13, and the planarization layer 12 in order, and then reaches the imaging device portion of the solid-state imaging device 11.
 固体撮像素子11は、例えば、基板16の主面に、フォトダイオード、層間絶縁膜(図示せず)、ベース層(図示せず)、カラーフィルタ17、オーバーコート(図示せず)、マイクロレンズ18をこの順に備えている。カラーフィルタ17(赤色のカラーフィルタ、緑色のカラーフィルタ、青色のカラーフィルタ)やマイクロレンズ18は、固体撮像素子11に対応するように、それぞれ配置されている。なお、平坦化層12の表面に近赤外線カットフィルタ13が設けられる代わりに、マイクロレンズ18の表面、ベース層とカラーフィルタ17との間、または、カラーフィルタ17とオーバーコートとの間に、近赤外線カットフィルタ13が設けられる形態であってもよい。例えば、近赤外線カットフィルタ13は、マイクロレンズ表面から2mm以内(より好ましくは1mm以内)の位置に設けられていてもよい。この位置に設けると、近赤外線カットフィルタを形成する工程が簡略化でき、マイクロレンズへの不要な近赤外線を十分にカットすることができるので、近赤外遮蔽性をより高めることができる。 The solid-state imaging device 11 includes, for example, a photodiode, an interlayer insulating film (not shown), a base layer (not shown), a color filter 17, an overcoat (not shown), and a microlens 18 on the main surface of the substrate 16. Are provided in this order. The color filter 17 (red color filter, green color filter, blue color filter) and the microlens 18 are respectively disposed so as to correspond to the solid-state imaging device 11. Instead of providing the near-infrared cut filter 13 on the surface of the planarizing layer 12, the surface of the microlens 18, between the base layer and the color filter 17, or between the color filter 17 and the overcoat The form in which the infrared cut filter 13 is provided may be sufficient. For example, the near-infrared cut filter 13 may be provided at a position within 2 mm (more preferably within 1 mm) from the surface of the microlens. If provided at this position, the process of forming the near-infrared cut filter can be simplified, and unnecessary near-infrared rays to the microlens can be sufficiently cut, so that the near-infrared shielding property can be further improved.
 本発明の近赤外線カットフィルタは、耐熱性に優れるため、半田リフロー工程に供することができる。半田リフロー工程によりカメラモジュールを製造することによって、半田付けを行うことが必要な電子部品実装基板等の自動実装化が可能となり、半田リフロー工程を用いない場合と比較して、生産性を格段に向上することができる。更に、自動で行うことができるため、低コスト化を図ることもできる。半田リフロー工程に供される場合、250~270℃程度の温度にさらされることとなるため、近赤外線カットフィルタは、半田リフロー工程に耐え得る耐熱性(以下、「耐半田リフロー性」ともいう。)を有することが好ましい。
 本発明のカメラモジュールは、更に、紫外線吸収層を有することもできる。この態様によれば、紫外線遮蔽性を高めることができる。紫外線吸収層は、例えば、国際公開WO2015/099060号公報の段落0040~0070、0119~0145の記載を参酌でき、この内容は本明細書に組み込まれることする。また、後述する紫外・赤外光反射膜を更に有することもできる。紫外線吸収層と紫外・赤外光反射膜は、両者を併用してもよく、いずれか一方のみであってもよい。
Since the near-infrared cut filter of this invention is excellent in heat resistance, it can use for a solder reflow process. By manufacturing the camera module through the solder reflow process, it is possible to automatically mount electronic component mounting boards, etc. that need to be soldered, making the productivity significantly higher than when not using the solder reflow process. Can be improved. Furthermore, since it can be performed automatically, the cost can be reduced. When subjected to the solder reflow process, the near-infrared cut filter is exposed to a temperature of about 250 to 270 ° C. Therefore, the near-infrared cut filter is also referred to as heat resistance that can withstand the solder reflow process (hereinafter also referred to as “solder reflow resistance”). ).
The camera module of the present invention can further have an ultraviolet absorbing layer. According to this aspect, the ultraviolet shielding property can be enhanced. For example, the description of paragraphs 0040 to 0070 and 0119 to 0145 of International Publication No. WO2015 / 099060 can be referred to for the ultraviolet absorbing layer, the contents of which are incorporated herein. Further, it can further have an ultraviolet / infrared light reflection film described later. The ultraviolet absorbing layer and the ultraviolet / infrared light reflecting film may be used in combination, or only one of them.
 図2~4は、カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。 2 to 4 are schematic cross-sectional views showing an example of the vicinity of the near-infrared cut filter in the camera module.
 図2に示すように、カメラモジュールは、固体撮像素子11と、平坦化層12と、紫外・赤外光反射膜19と、透明基材20と、近赤外線吸収層(近赤外線カットフィルタ)21と、反射防止層22とをこの順に有していてもよい。紫外・赤外光反射膜19は、近赤外線カットフィルタの機能を付与または高める効果を有し、例えば、特開2013-68688号公報の段落0033~0039、国際公開WO2015/099060号公報の段落0110~0114を参酌することができ、この内容は本明細書に組み込まれる。透明基材20は、可視領域の波長の光を透過するものであり、例えば、特開2013-68688号公報の段落0026~0032を参酌することができ、この内容は本明細書に組み込まれる。近赤外線吸収層21は、上述した本発明の近赤外線吸収組成物を塗布することにより形成することができる。反射防止層22は、近赤外線カットフィルタに入射する光の反射を防止することにより透過率を向上させ、効率よく入射光を利用する機能を有するものであり、例えば、特開2013-68688号公報の段落0040を参酌することができ、この内容は本明細書に組み込まれる。 As shown in FIG. 2, the camera module includes a solid-state imaging device 11, a planarization layer 12, an ultraviolet / infrared light reflection film 19, a transparent base material 20, and a near infrared absorption layer (near infrared cut filter) 21. And an antireflection layer 22 in this order. The ultraviolet / infrared light reflection film 19 has an effect of imparting or enhancing the function of a near-infrared cut filter. For example, paragraphs 0033 to 0039 of JP2013-68688A, paragraph 0110 of international publication WO2015 / 099060. ˜0114 can be referred to, the contents of which are incorporated herein. The transparent substrate 20 transmits light having a wavelength in the visible region. For example, paragraphs 0026 to 0032 of JP2013-68688A can be referred to, and the contents thereof are incorporated in the present specification. The near-infrared absorbing layer 21 can be formed by applying the near-infrared absorbing composition of the present invention described above. The antireflection layer 22 has a function of improving the transmittance by preventing reflection of light incident on the near-infrared cut filter and efficiently using incident light. For example, Japanese Patent Application Laid-Open No. 2013-68688 Paragraph 0040, which is incorporated herein by reference.
 図3に示すように、カメラモジュールは、固体撮像素子11と、近赤外線吸収層(近赤外線カットフィルタ)21と、反射防止層22と、平坦化層12と、反射防止層22と、透明基材20と、紫外・赤外光反射膜19とをこの順に有していてもよい。 As shown in FIG. 3, the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an antireflection layer 22, a planarization layer 12, an antireflection layer 22, and a transparent substrate. The material 20 and the ultraviolet / infrared light reflection film 19 may be provided in this order.
 図4に示すように、カメラモジュールは、固体撮像素子11と、近赤外線吸収層(近赤外線カットフィルタ)21と、紫外・赤外光反射膜19と、平坦化層12と、反射防止層22と、透明基材20と、反射防止層22とをこの順に有していてもよい。 As shown in FIG. 4, the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an ultraviolet / infrared light reflection film 19, a planarization layer 12, and an antireflection layer 22. And you may have the transparent base material 20 and the reflection preventing layer 22 in this order.
<画像表示装置>
 本発明の画像表示装置は、本発明の近赤外線カットフィルタを有する。本発明の近赤外線カットフィルタは、液晶表示装置や有機エレクトロルミネッセンス(有機EL)表示装置などの画像表示装置に用いることもできる。例えば、各着色画素(例えば赤色、緑色、青色)とともに用いることにより、表示装置のバックライト(例えば白色発光ダイオード(白色LED))に含まれる赤外光を遮蔽し、周辺機器の誤作動を防止する目的や、各着色表示画素に加えて赤外の画素を形成する目的で用いることが可能である。
<Image display device>
The image display device of the present invention has the near infrared cut filter of the present invention. The near-infrared cut filter of the present invention can also be used for image display devices such as liquid crystal display devices and organic electroluminescence (organic EL) display devices. For example, by using together with each colored pixel (for example, red, green, blue), the infrared light contained in the backlight of the display device (for example, white light emitting diode (white LED)) is shielded, and malfunction of peripheral devices is prevented. It can be used for the purpose of forming an infrared pixel in addition to each colored display pixel.
 表示装置の定義や各表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木昭夫著、(株)工業調査会、1990年発行)」、「ディスプレイデバイス(伊吹順章著、産業図書(株)、平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田龍男編集、(株)工業調査会、1994年発行)」に記載されている。本発明が適用できる液晶表示装置に特に制限はなく、例えば、上記の「次世代液晶ディスプレイ技術」に記載されている色々な方式の液晶表示装置に適用できる。 For the definition of the display device and details of each display device, refer to, for example, “Electronic Display Device (Akio Sasaki, Kogyo Kenkyukai, 1990)”, “Display Device (Junaki Ibuki, Sangyo Tosho) , Issued in 1989). The liquid crystal display device is described in, for example, “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, Industrial Research Co., Ltd., published in 1994)”. The liquid crystal display device to which the present invention can be applied is not particularly limited, and can be applied to, for example, various types of liquid crystal display devices described in the “next generation liquid crystal display technology”.
 画像表示装置は、白色有機EL素子を有するものであってもよい。白色有機EL素子としては、タンデム構造であることが好ましい。有機EL素子のタンデム構造については、特開2003-45676号公報、三上明義監修、「有機EL技術開発の最前線-高輝度・高精度・長寿命化・ノウハウ集-」、技術情報協会、326-328ページ、2008年などに記載されている。有機EL素子が発光する白色光のスペクトルは、青色領域(430nm-485nm)、緑色領域(530nm-580nm)及び黄色領域(580nm-620nm)に強い発光極大ピークを有するものが好ましい。これらの発光ピークに加え更に赤色領域(650nm-700nm)に発光極大ピークを有するものがより好ましい。 The image display device may have a white organic EL element. The white organic EL element preferably has a tandem structure. Regarding the tandem structure of organic EL elements, JP 2003-45676 A, supervised by Akiyoshi Mikami, “Frontier of Organic EL Technology Development-High Brightness, High Precision, Long Life, Know-how Collection”, Technical Information Association, 326-328 pages, 2008, etc. The spectrum of white light emitted from the organic EL element preferably has strong emission maximum peaks in the blue region (430 nm to 485 nm), the green region (530 nm to 580 nm) and the yellow region (580 nm to 620 nm). In addition to these emission peaks, those having an emission maximum peak in the red region (650 nm to 700 nm) are more preferable.
<赤外線センサ>
 本発明の赤外線センサは、本発明の近赤外線カットフィルタを含む。本発明の赤外線センサの構成としては、本発明の近赤外線カットフィルタを備えた構成であり、赤外線センサとして機能する構成であれば特に限定はないが、例えば、以下のような構成が挙げられる。
<Infrared sensor>
The infrared sensor of the present invention includes the near infrared cut filter of the present invention. The configuration of the infrared sensor of the present invention is a configuration provided with the near-infrared cut filter of the present invention, and is not particularly limited as long as it functions as an infrared sensor. Examples thereof include the following configurations.
 基板上に、固体撮像素子(CCDセンサ、CMOSセンサ、有機CMOSセンサ等)の受光エリアを構成する複数のフォトダイオード及びポリシリコン等からなる転送電極を有し、フォトダイオード及び転送電極上にフォトダイオードの受光部のみ開口したタングステン等からなる遮光膜を有し、遮光膜上に遮光膜全面及びフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜を有し、デバイス保護膜上に、本発明の硬化膜を有する構成である。更に、デバイス保護膜上であって本発明の近赤外線カットフィルタの下(基板に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、本発明の近赤外線カットフィルタ上に集光手段を有する構成等であってもよい。 On the substrate, there are a plurality of photodiodes that constitute a light receiving area of a solid-state imaging device (CCD sensor, CMOS sensor, organic CMOS sensor, etc.), a transfer electrode made of polysilicon, and the like. A light-shielding film made of tungsten or the like that is open only in the light-receiving part, and a device protective film made of silicon nitride or the like formed on the light-shielding film so as to cover the entire surface of the light-shielding film and the photodiode light-receiving part. It is the structure which has the cured film of this invention on the top. Furthermore, the structure which has a condensing means (for example, a micro lens etc. The same hereafter) on the device protective film and under the near-infrared cut filter of this invention (the side close | similar to a board | substrate) The structure etc. which have a condensing means on may be sufficient.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は、質量基準である。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
<重量平均分子量(Mw)>
 重量平均分子量(Mw)は、以下の方法で、ゲルパーミエーションクロマトグラフィ(GPC)にて測定した。
カラムの種類:TSKgel Super AWM―H(東ソー社製、6.0mm(内径)×15.0cm)
展開溶媒:10mmol/L リチウムブロミドNMP(N-メチルピロリジノン)溶液
カラム温度:40℃
流量(サンプル注入量):10μL
装置名:HLC-8220(東ソー社製)
検量線ベース樹脂:ポリスチレン樹脂
<Weight average molecular weight (Mw)>
The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC) by the following method.
Column type: TSKgel Super AWM-H (manufactured by Tosoh Corporation, 6.0 mm (inner diameter) × 15.0 cm)
Developing solvent: 10 mmol / L Lithium bromide NMP (N-methylpyrrolidinone) solution Column temperature: 40 ° C.
Flow rate (sample injection volume): 10 μL
Device name: HLC-8220 (manufactured by Tosoh Corporation)
Calibration curve base resin: Polystyrene resin
<金属原子の含有量の測定方法>
 誘導結合プラズマ発光分光分析法(ICP-OES)により、測定サンプル中の金属原子の含有量を測定した。
 前処理:1%メチルエチルケトン/N-メチルピロリジノン(=99/1(質量比))溶液を調整
 装置名:Optima7300DV(パーキンエルマー社製)
<Measuring method of metal atom content>
The content of metal atoms in the measurement sample was measured by inductively coupled plasma optical emission spectrometry (ICP-OES).
Pretreatment: 1% methyl ethyl ketone / N-methylpyrrolidinone (= 99/1 (mass ratio)) solution was prepared. Device name: Optima 7300 DV (manufactured by Perkin Elmer)
<組成物の調製方法>
(実施例1)組成物1の調製
 赤外線吸収化合物として以下に示す銅錯体1と、銅以外の金属原子を含む金属成分とを混合し、銅錯体1に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含む赤外線吸収剤1を調製した。なお、金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 次に、赤外線吸収剤1を銅錯体1の配合量が45質量部となる配合量と、以下に示す樹脂1を49.95質量部と、IRGACURE-OXE02(BASF社製)を5質量部と、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業社製)を0.05質量部と、シクロヘキサノンを100質量部とを混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール社製)でろ過して組成物1を調製した。この組成物は、銅錯体1に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
 銅錯体1:下記構造
Figure JPOXMLDOC01-appb-C000025
 樹脂1:下記構造(Mw=1.5万、主鎖に付記した数値は、各構成単位のモル比である)
Figure JPOXMLDOC01-appb-C000026
<Method for preparing composition>
(Example 1) Preparation of composition 1 Copper complex 1 shown below as an infrared absorbing compound and a metal component containing a metal atom other than copper are mixed, and metal atom (copper atom) contained in copper complex 1 is 100 masses. Infrared absorber 1 containing 0.1 part by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
Next, a blending amount of the infrared absorber 1 in which the blending amount of the copper complex 1 is 45 parts by mass, 49.95 parts by mass of the resin 1 shown below, and 5 parts by mass of IRGACURE-OXE02 (manufactured by BASF) After mixing 0.05 parts by weight of tris (2,4-pentanedionato) aluminum (III) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 parts by weight of cyclohexanone, nylon having a pore size of 0.45 μm was stirred. A composition 1 was prepared by filtration through a filter (manufactured by Nippon Pole Co., Ltd.). This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
Copper complex 1: the following structure
Figure JPOXMLDOC01-appb-C000025
Resin 1: The following structure (Mw = 15,000, the numerical value attached to the main chain is the molar ratio of each structural unit)
Figure JPOXMLDOC01-appb-C000026
(実施例2)組成物2の調製
 実施例1と同様にして、銅錯体1に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.8質量部含む赤外線吸収剤2を調製した。金属成分は、銅以外の金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤2を用いた以外は、実施例1と同様にして組成物2を調製した。この組成物は、銅錯体1に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.8質量部含んでいた。
(Example 2) Preparation of composition 2 In the same manner as in Example 1, with respect to 100 parts by mass of metal atom (copper atom) contained in copper complex 1, metal atom (metal atom other than copper) contained in the metal component An infrared absorber 2 containing 0.8 part by mass of was prepared. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms other than copper.
A composition 2 was prepared in the same manner as in Example 1 except that the infrared absorbent 2 was used instead of the infrared absorbent 1. This composition contained 0.8 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
(実施例3)組成物3の調製
 実施例1と同様にして、銅錯体1に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.01質量部含む赤外線吸収剤3を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤3を用いた以外は、実施例1と同様にして組成物3を調製した。この組成物は、銅錯体1に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.01質量部含んでいた。
(Example 3) Preparation of Composition 3 In the same manner as in Example 1, with respect to 100 parts by mass of metal atom (copper atom) contained in copper complex 1, metal atom (metal atom other than copper) contained in the metal component. An infrared absorber 3 containing 0.01 part by mass of was prepared. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
A composition 3 was prepared in the same manner as in Example 1 except that the infrared absorbent 3 was used instead of the infrared absorbent 1. This composition contained 0.01 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
(実施例4)組成物4の調製
 銅錯体1の代わりに、同量の銅錯体2を用いた以外は実施例1と同様にして、銅錯体2に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含有する赤外線吸収剤4を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤4を用いた以外は、実施例1と同様にして組成物4を調製した。この組成物は、銅錯体2に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。また、
 銅錯体2:下記構造
Figure JPOXMLDOC01-appb-C000027
(Example 4) Preparation of composition 4 100 mass of metal atoms (copper atom) contained in the copper complex 2 like Example 1 except having used the same amount copper complex 2 instead of the copper complex 1 Infrared absorber 4 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
A composition 4 was prepared in the same manner as in Example 1 except that the infrared absorbent 4 was used instead of the infrared absorbent 1. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 2. Also,
Copper complex 2: the following structure
Figure JPOXMLDOC01-appb-C000027
(実施例5)組成物5の調製
 銅錯体1の代わりに、同量の銅錯体3を用いた以外は実施例1と同様にして、銅錯体3に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含有する赤外線吸収剤5を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤5を用いた以外は、実施例1と同様にして組成物5を調製した。この組成物は、銅錯体3に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
 銅錯体3:下記構造
Figure JPOXMLDOC01-appb-C000028
Example 5 Preparation of Composition 5 100 mass of metal atom (copper atom) contained in copper complex 3 in the same manner as in Example 1 except that the same amount of copper complex 3 was used instead of copper complex 1. Infrared absorbent 5 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
A composition 5 was prepared in the same manner as in Example 1 except that the infrared absorbent 5 was used instead of the infrared absorbent 1. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 3.
Copper complex 3: the following structure
Figure JPOXMLDOC01-appb-C000028
(実施例6)組成物6の調製
 銅錯体1の代わりに、同量の銅錯体4を用いた以外は実施例1と同様にして、銅錯体4に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含有する赤外線吸収剤6を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤6を用いた以外は、実施例1と同様にして組成物6を調製した。この組成物は、銅錯体4に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
 銅錯体4:下記化合物を配位子として有する銅錯体。
Figure JPOXMLDOC01-appb-C000029
(Example 6) Preparation of composition 6 100 mass of metal atoms (copper atom) contained in the copper complex 4 like Example 1 except having used the same amount copper complex 4 instead of the copper complex 1 Infrared absorber 6 containing 0.1 part by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
A composition 6 was prepared in the same manner as in Example 1 except that the infrared absorbent 6 was used instead of the infrared absorbent 1. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 4.
Copper complex 4: A copper complex having the following compound as a ligand.
Figure JPOXMLDOC01-appb-C000029
(実施例7)組成物7の調製
 銅錯体1の代わりに、同量の銅錯体5を用いた以外は実施例1と同様にして、銅錯体5に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含有する赤外線吸収剤7を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤7を用いた以外は、実施例1と同様にして組成物7を調製した。この組成物は、銅錯体5に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
 銅錯体5:下記化合物を配位子として有する銅錯体。
Figure JPOXMLDOC01-appb-C000030
Example 7 Preparation of Composition 7 100 mass of metal atoms (copper atoms) contained in copper complex 5 in the same manner as in Example 1 except that the same amount of copper complex 5 was used instead of copper complex 1. Infrared absorber 7 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component was prepared with respect to parts. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
A composition 7 was prepared in the same manner as in Example 1 except that the infrared absorbent 7 was used instead of the infrared absorbent 1. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 5.
Copper complex 5: A copper complex having the following compound as a ligand.
Figure JPOXMLDOC01-appb-C000030
(実施例8)組成物8の調製
 ナスフラスコに、酢酸銅一水和物7.00g(35.06mmol)、メタノール140gを加え、20℃で1時間撹拌し、溶液(A液)を得た。別の容器に、プライサーフA219B(第一工業製薬社製)1.75g、n-ブチルホスホン酸4.82gをメタノール100gに溶解し、溶液(B液)を得た。B液を、A液に対して3時間かけて滴下した。この反応液を20℃で10時間撹拌した。その後、エバポレーター(水浴60℃)で反応液から溶媒を留去した。溶媒が留去されたのちに残る固形分にトルエン100gを加え、恒量になり、酢酸臭がしなくなるまでエバポレーターで留去し、銅錯体6を得た(収量8.75g(収率100%)の青緑色固体)。これにトルエン211gを加え、超音波照射を6時間行い、n-ブチルホスホン酸銅塩トルエン分散液(1)を得た。
 次に、フラスコに、トリエチレングリコールビス(2-エチルヘキサノエート)1.90g、トルエン250ml、ポリビニルブチラール(PVB)5.00gを加えた。これに、meso‐エリスリトール4.8mgをメタノール1mlに溶かした溶液を加えた。これに上記n-ブチルホスホン酸銅塩トルエン分散液(1)3.65g(銅塩を0.583mmol含む)と、銅以外の金属原子を含む金属成分とを添加し、20℃で10時間撹拌後、1.5時間超音波照射し、PVBを均一に溶解させて組成物8を得た。組成物8は、n-ブチルホスホン酸銅塩に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含有していた。金属成分は、銅以外の金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
(Example 8) Preparation of Composition 8 To an eggplant flask, 7.00 g (35.06 mmol) of copper acetate monohydrate and 140 g of methanol were added and stirred at 20 ° C. for 1 hour to obtain a solution (solution A). . In a separate container, 1.75 g of Prisurf A219B (Daiichi Kogyo Seiyaku Co., Ltd.) and 4.82 g of n-butylphosphonic acid were dissolved in 100 g of methanol to obtain a solution (liquid B). B liquid was dripped over 3 hours with respect to A liquid. The reaction was stirred at 20 ° C. for 10 hours. Thereafter, the solvent was distilled off from the reaction solution with an evaporator (water bath 60 ° C.). 100 g of toluene was added to the solid content remaining after the solvent was distilled off, and the mixture was made constant and distilled off with an evaporator until no acetic acid odor was generated. Thus, copper complex 6 was obtained (yield 8.75 g (yield 100%)). Blue-green solid). To this was added 211 g of toluene, and ultrasonic irradiation was performed for 6 hours to obtain an n-butylphosphonic acid copper salt toluene dispersion (1).
Next, 1.90 g of triethylene glycol bis (2-ethylhexanoate), 250 ml of toluene, and 5.00 g of polyvinyl butyral (PVB) were added to the flask. A solution prepared by dissolving 4.8 mg of meso-erythritol in 1 ml of methanol was added thereto. To this, 3.65 g of the above n-butylphosphonic acid copper salt toluene dispersion (1) (containing 0.583 mmol of copper salt) and a metal component containing metal atoms other than copper are added and stirred at 20 ° C. for 10 hours. Thereafter, ultrasonic irradiation was performed for 1.5 hours, and PVB was uniformly dissolved to obtain a composition 8. Composition 8 contains 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper salt of n-butylphosphonate. It was. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms other than copper.
(実施例9)組成物9の調製
 銅錯体1の代わりに、銅錯体1と銅錯体7を1:3の質量比の混合物を用いた以外は実施例1と同様にして、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含有する赤外線吸収剤9を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤9を用い、樹脂1の量を44.95質量部に変更し,KBM-3066(信越化学工業製)を5質量部用いた以外は、実施例1と同様にして組成物9を調製した。この組成物は、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
 銅錯体7:下記化合物を配位子として有する銅錯体。
Figure JPOXMLDOC01-appb-C000031
(Example 9) Preparation of composition 9 Instead of copper complex 1, copper complex 1 and copper complex 7 were combined with copper complex 1 in the same manner as in Example 1 except that a mixture having a mass ratio of 1: 3 was used. An infrared absorber 9 containing 0.1 part by mass of a metal atom (metal atom other than copper) contained in a metal component with respect to 100 parts by mass of a metal atom (copper atom) contained in the copper complex 7 was prepared. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
Example 1 except that infrared absorber 9 was used instead of infrared absorber 1, the amount of resin 1 was changed to 44.95 parts by mass, and 5 parts by mass of KBM-3066 (manufactured by Shin-Etsu Chemical Co., Ltd.) was used. A composition 9 was prepared in the same manner as described above. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
Copper complex 7: A copper complex having the following compound as a ligand.
Figure JPOXMLDOC01-appb-C000031
(実施例10)組成物10の調製
 赤外線吸収化合物として以下に示すフタロシアニン化合物Pc-1と、バナジウム以外の金属原子を含む金属成分とを混合し、フタロシアニン化合物Pc-1に含まれる金属原子(バナジウム原子)100質量部に対し、金属成分に含まれる金属原子(バナジウム以外の金属原子)を0.1質量部含む赤外線吸収剤10を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Alを含んでいた。
 次に、赤外線吸収剤10をフタロシアニン化合物Pc-1の配合量が0.1質量部となる配合量と、以下に示す樹脂2を8.04質量部と、KAYARAD DPHA(日本化薬社製)を0.07質量部と、メガファックRS-72K(DIC社製)を0.265質量部と、光重合開始剤として下記化合物を0.38質量部と、溶剤としてプロピレングリコールモノエチルエーテルアセテート(PGMEA)を82.51質量部とを混合し、撹拌した後、孔径0.45μmのナイロン製フィルタ(日本ポール社製)でろ過して組成物10を調製した。この組成物は、フタロシアニン化合物Pc-1に含まれる金属原子(バナジウム原子)100質量部に対し、金属成分に含まれる金属原子(バナジウム以外の金属原子)を0.1質量部含んでいた。
 樹脂2:下記化合物(Mw:41000、主鎖に付記した数値は、各構成単位のモル比である)
Figure JPOXMLDOC01-appb-C000032
 光重合開始剤:下記構造
Figure JPOXMLDOC01-appb-C000033
(Example 10) Preparation of Composition 10 A phthalocyanine compound Pc-1 shown below as an infrared absorbing compound was mixed with a metal component containing a metal atom other than vanadium, and a metal atom (vanadium) contained in the phthalocyanine compound Pc-1 was mixed. An infrared absorber 10 containing 0.1 part by mass of metal atoms (metal atoms other than vanadium) contained in the metal component was prepared with respect to 100 parts by mass of atoms. The metal component contained Li, Na, K, Ca, Fe, and Al as metal atoms.
Next, the infrared absorber 10 has a blending amount of 0.1 part by weight of the phthalocyanine compound Pc-1, 8.04 parts by weight of the resin 2 shown below, KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) 0.07 part by mass, 0.265 parts by mass of MegaFac RS-72K (manufactured by DIC), 0.38 parts by mass of the following compound as a photopolymerization initiator, and propylene glycol monoethyl ether acetate ( PGMEA) was mixed with 82.51 parts by mass, stirred, and then filtered through a nylon filter (manufactured by Nippon Pole Co., Ltd.) having a pore size of 0.45 μm to prepare composition 10. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than vanadium) contained in the metal component with respect to 100 parts by mass of metal atoms (vanadium atoms) contained in the phthalocyanine compound Pc-1.
Resin 2: the following compound (Mw: 41000, the numerical value attached to the main chain is the molar ratio of each structural unit)
Figure JPOXMLDOC01-appb-C000032
Photopolymerization initiator: Structure below
Figure JPOXMLDOC01-appb-C000033
(実施例11)組成物11の調製
 赤外線吸収化合物として以下に示すジチオール化合物Dt-1と、ニッケル以外の金属原子を含む金属成分とを混合し、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含む赤外線吸収剤11を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Cuを含んでいた。
 赤外線吸収剤11を用い、組成物9と同様にして、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含有する組成物11を調製した。
Example 11 Preparation of Composition 11 A dithiol compound Dt-1 shown below as an infrared absorbing compound was mixed with a metal component containing a metal atom other than nickel, and a metal atom contained in the dithiol compound Dt-1 (nickel An infrared absorber 11 containing 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component was prepared with respect to 100 parts by mass of atoms. The metal component contained Li, Na, K, Ca, Fe, and Cu as metal atoms.
In the same manner as in the composition 9, using the infrared absorber 11, the metal atom (metal atom other than nickel) contained in the metal component is added to 100 parts by mass of the metal atom (nickel atom) contained in the dithiol compound Dt-1. Composition 11 containing 0.1 part by mass was prepared.
(実施例12)組成物12の調製
 赤外線吸収化合物として以下に示すフタロシアニン化合物Pc-1を50質量部と、以下に示すジチオール化合物Dt-1を50質量部と、バナジウムおよびニッケル以外の金属原子を含む金属成分とを混合し、フタロシアニン化合物Pc-1に含まれ得る金属原子(バナジウム)とジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)との合計100質量部に対し、金属成分に含まれる金属原子(バナジウムおよびニッケル以外の金属原子)を0.1質量部含有する赤外線吸収剤12を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Cu、Alを含んでいた。
 赤外線吸収剤12を用い、フタロシアニン化合物Pc-1とジチオール化合物Dt-1との合計が0.1質量部となる配合量とした以外は、組成物10と同様にして、フタロシアニン化合物Pc-1に含まれ得る金属原子(バナジウム)とジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)との合計100質量部に対し、金属成分に含まれる金属原子(バナジウムおよびニッケル以外の金属原子)を0.1質量部含有する組成物12を調製した。
(Example 12) Preparation of composition 12 As an infrared absorbing compound, 50 parts by mass of the following phthalocyanine compound Pc-1, 50 parts by mass of the following dithiol compound Dt-1, and metal atoms other than vanadium and nickel The total amount of the metal atoms (vanadium) that can be contained in the phthalocyanine compound Pc-1 and the metal atoms (nickel atoms) contained in the dithiol compound Dt-1 is included in the metal component. Infrared absorber 12 containing 0.1 part by mass of metal atoms (metal atoms other than vanadium and nickel) was prepared. The metal component contained Li, Na, K, Ca, Fe, Cu, and Al as metal atoms.
The phthalocyanine compound Pc-1 was added to the phthalocyanine compound Pc-1 in the same manner as in the composition 10, except that the infrared absorber 12 was used and the amount of the phthalocyanine compound Pc-1 and the dithiol compound Dt-1 was 0.1 parts by mass. Metal atoms (metal atoms other than vanadium and nickel) contained in the metal component are 0 with respect to a total of 100 parts by mass of the metal atoms (vanadium) that can be contained and the metal atoms (nickel atoms) contained in the dithiol compound Dt-1. A composition 12 containing 1 part by mass was prepared.
(実施例13)組成物13の調製
 赤外線吸収化合物として以下に示すジチオール化合物Dt-1を50質量部と、以下に示すスクアリリウム化合物SQ-1を50質量部と、ニッケル以外の金属原子を含む金属成分とを混合し、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)との合計100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含有する赤外線吸収剤13を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Cuを含んでいた。
 赤外線吸収剤13を用い、ジチオール化合物Dt-1と、スクアリリウム化合物SQ-1との合計が0.1質量部となる配合量とした以外は、組成物10と同様にして、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含有する組成物13を調製した。
(Example 13) Preparation of Composition 13 As an infrared absorbing compound, 50 parts by mass of the following dithiol compound Dt-1, 50 parts by mass of the following squarylium compound SQ-1, and a metal containing a metal atom other than nickel Components are mixed, and 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component are included with respect to a total of 100 parts by mass of metal atoms (nickel atoms) contained in the dithiol compound Dt-1 Infrared absorber 13 was prepared. The metal component contained Li, Na, K, Ca, Fe, and Cu as metal atoms.
The dithiol compound Dt-1 was the same as the composition 10 except that the infrared absorber 13 was used and the amount of the dithiol compound Dt-1 and the squarylium compound SQ-1 was 0.1 parts by mass. The composition 13 which contains 0.1 mass part of metal atoms (metal atoms other than nickel) contained in a metal component with respect to 100 mass parts of metal atoms (nickel atom) contained in the metal was prepared.
(実施例14)組成物14の調製
 赤外線吸収化合物として以下に示すジチオール化合物Dt-1を50質量部と、以下に示すシアニン化合物Cy-1を50質量部と、ニッケル以外の金属原子を含む金属成分とを混合し、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)との合計100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含有する赤外線吸収剤14を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Cuを含んでいた。
 赤外線吸収剤14を用い、ジチオール化合物Dt-1と、シアニン化合物Cy-1との合計が0.1質量部となる配合量とした以外は、組成物10と同様にして、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含有する組成物14を調製した。
(Example 14) Preparation of Composition 14 As an infrared absorbing compound, 50 parts by mass of the following dithiol compound Dt-1, 50 parts by mass of the following cyanine compound Cy-1, and a metal containing a metal atom other than nickel Components are mixed, and 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component are included with respect to a total of 100 parts by mass of metal atoms (nickel atoms) contained in the dithiol compound Dt-1 An infrared absorber 14 was prepared. The metal component contained Li, Na, K, Ca, Fe, and Cu as metal atoms.
The dithiol compound Dt-1 is the same as the composition 10 except that the infrared absorber 14 is used and the amount of the dithiol compound Dt-1 and the cyanine compound Cy-1 is 0.1 parts by mass. The composition 14 which contains 0.1 mass part of metal atoms (metal atom other than nickel) contained in a metal component with respect to 100 mass parts of metal atoms (nickel atom) contained in the metal was prepared.
(実施例15)組成物15の調製
 赤外線吸収化合物として以下に示すジチオール化合物Dt-1を50質量部と、以下に示すピロロピロール化合物Pp-1を50質量部と、ニッケル以外の金属原子を含む金属成分とを混合し、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)との合計100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含有する赤外線吸収剤15を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Ti、Fe、Co、Cu、Znを含んでいた。
 赤外線吸収剤15を用い、ジチオール化合物Dt-1と、ピロロピロール化合物Pp-1との合計が0.1質量部となる配合量とした以外は、組成物10と同様にして、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含有する組成物15を調製した。
Example 15 Preparation of Composition 15 As an infrared absorbing compound, 50 parts by mass of dithiol compound Dt-1 shown below, 50 parts by mass of pyrrolopyrrole compound Pp-1 shown below, and a metal atom other than nickel are included. 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component with respect to 100 parts by mass in total with the metal atoms (nickel atom) contained in the dithiol compound Dt-1 The infrared absorber 15 to contain was prepared. The metal component contained Li, Na, K, Ca, Ti, Fe, Co, Cu, and Zn as metal atoms.
The dithiol compound Dt- is the same as the composition 10, except that the infrared absorber 15 is used and the amount of the dithiol compound Dt-1 and the pyrrolopyrrole compound Pp-1 is 0.1 parts by mass. The composition 15 which contains 0.1 mass part of metal atoms (metal atoms other than nickel) contained in a metal component with respect to 100 mass parts of metal atoms (nickel atom) contained in 1 was prepared.
(実施例16)組成物16の調製
 フェニルトリエトキシシラン28.9質量部、ジメチルジメトキシシラン28.9質量部、5質量%酢酸30.6質量部を室温にて4時間混合しゾルを得た。シクロペンタノン85.5質量部に、赤外線吸収剤7の26.0質量部を室温にて20分溶解させた溶液を、前述のゾルに添加し、孔径0.45μmのナイロン製フィルタ(日本ポール社製)でろ過して組成物16を調製した。この組成物は、銅錯体5に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
Example 16 Preparation of Composition 16 28.9 parts by mass of phenyltriethoxysilane, 28.9 parts by mass of dimethyldimethoxysilane, and 30.6 parts by mass of 5% by mass acetic acid were mixed at room temperature for 4 hours to obtain a sol. . A solution prepared by dissolving 26.0 parts by mass of infrared absorber 7 in 85.5 parts by mass of cyclopentanone at room temperature for 20 minutes was added to the sol described above, and a nylon filter having a pore diameter of 0.45 μm (Nippon Pole) The composition 16 was prepared by filtration. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 5.
(実施例17)組成物17の調製
 銅錯体1のかわりに、銅錯体5とシアニン化合物Cy-1を97.5:2.5の質量比の混合物を用いた以外は実施例1と同様にして、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含有する赤外線吸収剤17を調製した。金属成分は、金属原子として、Li、Na、K、Ca、Fe、Agを含んでいた。
 赤外線吸収剤1の代わりに、赤外線吸収剤17を用いた以外は、実施例1と同様にして組成物17を調製した。この組成物は、銅錯体5に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
Example 17 Preparation of Composition 17 In the same manner as in Example 1 except that instead of copper complex 1, a mixture of copper complex 5 and cyanine compound Cy-1 at a mass ratio of 97.5: 2.5 was used. Infrared absorber 17 containing 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7 Was prepared. The metal component contained Li, Na, K, Ca, Fe, and Ag as metal atoms.
A composition 17 was prepared in the same manner as in Example 1 except that the infrared absorbent 17 was used instead of the infrared absorbent 1. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 5.
 フタロシアニン化合物Pc-1、ジチオール化合物Dt-1、スクアリリウム化合物SQ-1、シアニン化合物Cy-1、ピロロピロール化合物PP-1:下記構造
Figure JPOXMLDOC01-appb-C000034
Phthalocyanine compound Pc-1, dithiol compound Dt-1, squarylium compound SQ-1, cyanine compound Cy-1, pyrrolopyrrole compound PP-1:
Figure JPOXMLDOC01-appb-C000034
(実施例18)組成物18の調整
 テトラエトキシシラン10質量部と、メチルトリエトキシシラン10質量部と、ジメチルジエトキシシラン45質量部と、10質量%酢酸水溶液20質量部と、シクロペンタノン20質量部とを室温にて4時間混合しゾルを得た。シクロペンタノン100質量部に赤外線吸収剤1の45質量部およびIRGACURE-OXE02(BASF社製)の5質量部を室温にて20分溶解させた溶液を前述のゾルに添加し、孔径0.45μmのナイロン製フィルタ(日本ポール社製)でろ過して組成物18を得た。この組成物は、銅錯体1に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
(Example 18) Preparation of composition 18 10 parts by mass of tetraethoxysilane, 10 parts by mass of methyltriethoxysilane, 45 parts by mass of dimethyldiethoxysilane, 20 parts by mass of 10% by mass aqueous acetic acid solution, and 20 of cyclopentanone A sol was obtained by mixing 4 parts by mass with a mass part for 4 hours. A solution obtained by dissolving 45 parts by mass of infrared absorber 1 and 5 parts by mass of IRGACURE-OXE02 (manufactured by BASF) in 100 parts by mass of cyclopentanone at room temperature for 20 minutes was added to the sol, and the pore size was 0.45 μm. Was filtered through a nylon filter (manufactured by Nippon Pole Co., Ltd.) to obtain a composition 18. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in the copper complex 1.
(実施例19)組成物19の調製
 赤外線吸収剤1の代わりに、赤外線吸収剤9を用いた以外は、実施例18と同様にして組成物19を調製した。この組成物は、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
(Example 19) Preparation of composition 19 A composition 19 was prepared in the same manner as in Example 18 except that the infrared absorbent 9 was used instead of the infrared absorbent 1. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
(実施例20)組成物20の調製
 赤外線吸収剤1の代わりに赤外線吸収剤14を1.13質量部用い、メチルトリエトキシシランの量を20質量部に変更し、ジメチルジエトキシシランの量を75質量部に変更し、赤外線吸収剤を溶解させる溶剤として、シクロペンタノン100質量部の代わりにPGMEA900質量部に変更した以外は、実施例18と同様にして組成物20を調製した。この組成物は、ジチオール化合物Dt-1に含まれる金属原子(ニッケル原子)100質量部に対し、金属成分に含まれる金属原子(ニッケル以外の金属原子)を0.1質量部含んでいた。
(Example 20) Preparation of composition 20 1.13 parts by mass of infrared absorber 14 was used instead of infrared absorber 1, the amount of methyltriethoxysilane was changed to 20 parts by mass, and the amount of dimethyldiethoxysilane was changed. The composition 20 was prepared in the same manner as in Example 18 except that the solvent was changed to 75 parts by mass and the solvent for dissolving the infrared absorber was changed to 900 parts by mass of PGMEA instead of 100 parts by mass of cyclopentanone. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than nickel) contained in the metal component with respect to 100 parts by mass of metal atoms (nickel atoms) contained in the dithiol compound Dt-1.
(実施例21)組成物21の調製
 テトラエトキシシランの代わりに、KBM-3066(信越シリコーン社製)を用いた以外は実施例19と同様にして組成物21を調製した。この組成物は、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
Example 21 Preparation of Composition 21 Composition 21 was prepared in the same manner as in Example 19 except that KBM-3066 (manufactured by Shin-Etsu Silicone) was used instead of tetraethoxysilane. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
(実施例22)組成物22の調製
 テトラエトキシシランの代わりに、KBE-9659(信越シリコーン社製)を用いた以外は実施例19と同様にして組成物22を調製した。この組成物は、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
Example 22 Preparation of Composition 22 A composition 22 was prepared in the same manner as in Example 19 except that KBE-9659 (manufactured by Shin-Etsu Silicone) was used instead of tetraethoxysilane. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
(実施例23)組成物23の調製
 メチルエトキシシランの代わりに、KBM-7103(信越シリコーン社製)を用いた以外は実施例19と同様にして組成物23を調製した。この組成物は、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
Example 23 Preparation of Composition 23 A composition 23 was prepared in the same manner as in Example 19 except that KBM-7103 (manufactured by Shin-Etsu Silicone) was used instead of methylethoxysilane. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
(実施例24)組成物24の調製
 テトラエトキシシランを使用せず、メチルトリエトキシシランの量を25質量部に変更し、ジメチルジエトキシシランの量を40質量部に変更した以外は、実施例19と同様にして組成物24を調製した。この組成物は、銅錯体1と銅錯体7に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.1質量部含んでいた。
(Example 24) Preparation of composition 24 Example except that tetraethoxysilane was not used, the amount of methyltriethoxysilane was changed to 25 parts by mass, and the amount of dimethyldiethoxysilane was changed to 40 parts by mass. A composition 24 was prepared in the same manner as in 19. This composition contained 0.1 parts by mass of metal atoms (metal atoms other than copper) contained in the metal component with respect to 100 parts by mass of metal atoms (copper atoms) contained in copper complex 1 and copper complex 7. .
(比較例1)比較組成物1の調製
 実施例7において、金属成分の配合量を調整して、銅錯体5に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を1.2質量部とした以外は、実施例7と同様にして比較組成物1を調製した。
(Comparative example 1) Preparation of comparative composition 1 In Example 7, the metal component contained in the metal component with respect to 100 parts by mass of the metal atom (copper atom) contained in the copper complex 5 by adjusting the compounding amount of the metal component. Comparative composition 1 was prepared in the same manner as in Example 7 except that the amount of atoms (metal atoms other than copper) was 1.2 parts by mass.
(比較例2)比較組成物2の調製
 実施例8において、金属成分の配合量を調整して、n-ブチルホスホン酸銅塩に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を1.2質量部含とした以外は、実施例8と同様にして比較組成物2を調製した。
(Comparative Example 2) Preparation of Comparative Composition 2 In Example 8, the metal component was adjusted with respect to 100 parts by mass of the metal atom (copper atom) contained in the copper salt of n-butylphosphonate by adjusting the compounding amount of the metal component. Comparative composition 2 was prepared in the same manner as in Example 8, except that 1.2 parts by mass of metal atoms (metal atoms other than copper) contained in 1 were included.
(比較例3)比較組成物3の調製
 実施例7において、金属成分の配合量を調整して、銅錯体5に含まれる金属原子(銅原子)100質量部に対し、金属成分に含まれる金属原子(銅以外の金属原子)を0.003質量部含とした以外は、実施例7と同様にして比較組成物3を調製した。
(Comparative Example 3) Preparation of Comparative Composition 3 In Example 7, the metal component contained in the metal component was adjusted with respect to 100 parts by mass of the metal atom (copper atom) contained in the copper complex 5 by adjusting the compounding amount of the metal component. Comparative composition 3 was prepared in the same manner as in Example 7 except that 0.003 parts by mass of an atom (metal atom other than copper) was contained.
<近赤外線カットフィルタの製造方法>
(製造例1)実施例1~9、16~19、21~24、比較例1~3の組成物を使用した近赤外線カットフィルタの製造方法
 各組成物を、ガラスウェハ上に乾燥後の膜厚が100μmになるようにスピンコーターを用いて塗布し、160℃のホットプレートを用いて1.5時間加熱処理を行って、近赤外線カットフィルタを製造した。
<Method for manufacturing near-infrared cut filter>
(Production Example 1) Manufacturing method of near-infrared cut filter using the compositions of Examples 1 to 9, 16 to 19, 21 to 24, and Comparative Examples 1 to 3 Films after drying each composition on a glass wafer A near-infrared cut filter was manufactured by applying a spin coater to a thickness of 100 μm and performing a heat treatment for 1.5 hours using a 160 ° C. hot plate.
(製造例2)実施例10~15、20の組成物を使用した近赤外線カットフィルタの製造方法
 各組成物を、スピンコーターを用いて塗布して塗膜を形成し、100℃、120秒間の前加熱(プリベーク)を行った後、i線ステッパーを用い、1000mJ/cm2で全面露光を行った。次いで、220℃、300秒間の後加熱(ポストベーク)を行い、膜厚0.8μmの近赤外線カットフィルタを製造した。
(Production Example 2) Manufacturing method of near-infrared cut filter using the compositions of Examples 10 to 15 and 20 Each composition was applied using a spin coater to form a coating film, and the coating was performed at 100 ° C for 120 seconds. After preheating (pre-baking), the entire surface was exposed at 1000 mJ / cm 2 using an i-line stepper. Subsequently, post heating (post-baking) was performed at 220 ° C. for 300 seconds to produce a near-infrared cut filter having a film thickness of 0.8 μm.
<可視透明性の評価>
 上記のようにして得た近赤外線カットフィルタについての波長450nmの光の透過率を分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定した。可視透明性を以下の基準で評価した。
 A:85%≦波長450nmの光の透過率
 B:65%≦波長450nmの光の透過率<85%
 C:45%≦波長450nmの光の透過率<65%
 D:波長450nmの光の透過率<45%
<Evaluation of visible transparency>
The transmittance of light having a wavelength of 450 nm for the near-infrared cut filter obtained as described above was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation). Visible transparency was evaluated according to the following criteria.
A: 85% ≦ transmittance of light with a wavelength of 450 nm B: 65% ≦ transmittance of light with a wavelength of 450 nm <85%
C: 45% ≦ transmittance of light with a wavelength of 450 nm <65%
D: Transmittance of light having a wavelength of 450 nm <45%
<近赤外遮蔽性の評価>
 上記のようにして得た近赤外線カットフィルタについての波長800nmの光の透過率を分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定した。近赤外遮蔽性を以下の基準で評価した。
 A:波長800nmの光の透過率≦5%
 B:5%<波長800nmの光の透過率≦15%
 C:15%<波長800nmの光の透過率≦25%
 D:25%<波長800nmの光の透過率
<Evaluation of near-infrared shielding>
The transmittance of light having a wavelength of 800 nm for the near infrared cut filter obtained as described above was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation). Near-infrared shielding was evaluated according to the following criteria.
A: Transmittance of light having a wavelength of 800 nm ≦ 5%
B: 5% <transmittance of light with a wavelength of 800 nm ≦ 15%
C: 15% <transmittance of light having a wavelength of 800 nm ≦ 25%
D: 25% <transmittance of light having a wavelength of 800 nm
<耐熱性評価>
 上記のようにして得た近赤外線カットフィルタを200℃で30分間加熱して耐熱性試験を行った。耐熱性試験前と耐熱性試験後のそれぞれにおいて、近赤外線カットフィルタの波長700~1400nmにおける最大吸光度(Absλmax)と、波長400~700nmにおける最小吸光度(Absλmin)とを、分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定し、「Absλmax/Absλmin」で表される吸光度比を求めた。下記式で表される吸光度比変化率を用いて、以下の基準で耐熱性を評価した。
 吸光度比変化率(%)=
 [((耐熱性試験前における吸光度比-耐熱性試験後における吸光度比)/耐熱性試験前における吸光度比)×100](%)
 A:吸光度比変化率≦2%
 B:2%<吸光度比変化率≦4%
 C:4%<吸光度比変化率≦7%
 D:7%<吸光度比変化率
<Heat resistance evaluation>
The near-infrared cut filter obtained as described above was heated at 200 ° C. for 30 minutes to conduct a heat resistance test. Before and after the heat resistance test, the maximum absorbance (Absλmax) at a wavelength of 700 to 1400 nm and the minimum absorbance (Absλmin) at a wavelength of 400 to 700 nm of the near-infrared cut filter were measured with a spectrophotometer U-4100 ( The absorbance ratio represented by “Absλmax / Absλmin” was determined using Hitachi High-Technologies Corporation. The heat resistance was evaluated according to the following criteria using the absorbance ratio change rate represented by the following formula.
Absorbance ratio change rate (%) =
[((Absorbance ratio before heat resistance test-Absorbance ratio after heat resistance test) / Absorbance ratio before heat resistance test) × 100] (%)
A: Absorbance ratio change rate ≦ 2%
B: 2% <absorbance ratio change rate ≦ 4%
C: 4% <absorbance ratio change rate ≦ 7%
D: 7% <absorbance ratio change rate
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 上記結果より、実施例は、可視透明性および近赤外遮蔽性が良好であった。更には耐熱性にも優れていた。
 一方、比較例は、可視透明性および近赤外遮蔽性のいずれかが劣るものであった。
From the above results, the examples had good visible transparency and near-infrared shielding properties. Furthermore, it was excellent in heat resistance.
On the other hand, in the comparative example, either visible transparency or near-infrared shielding was inferior.
 紫外線吸収層上に、実施例1~24の組成物を、塗布し上記と同様の方法で近赤外線カットフィルタを製造した場合であっても、同様の効果が得られる。 The same effect can be obtained even when the compositions of Examples 1 to 24 are applied on the ultraviolet absorbing layer and a near infrared cut filter is produced by the same method as described above.
 誘電体多層膜を形成した基板の上に、実施例1~24の組成物を、塗布し上記と同様の方法で近赤外線カットフィルタを製造した場合であっても、同様の効果が得られる。 Even when the compositions of Examples 1 to 24 are applied on a substrate on which a dielectric multilayer film is formed and a near-infrared cut filter is produced by the same method as described above, the same effect can be obtained.
(誘電体多層膜の製造)
 基板の一面に、蒸着温度150℃で、近赤外線を反射する多層蒸着膜(シリカ(SiO2:膜厚120~190nm)層とチタニア(TiO2:膜厚70~120nm)層とを交互に積層(積層数40))して誘電体多層膜を得た。
(Manufacture of dielectric multilayer film)
A multilayer deposited film (silica (SiO 2 : film thickness 120 to 190 nm) and a titania (TiO 2 : film thickness 70 to 120 nm) layer that reflects near infrared rays is alternately stacked on one surface of the substrate at a deposition temperature of 150 ° C. (Lamination number 40)) to obtain a dielectric multilayer film.
 実施例1~24の組成物を、支持体から剥離して単独膜として用いた場合であっても、同様の効果が得られる。 The same effect can be obtained even when the compositions of Examples 1 to 24 are peeled from the support and used as a single film.
10 カメラモジュール、11 固体撮像素子、12 平坦化層、13 近赤外線カットフィルタ、14 撮像レンズ、15 レンズホルダー、16 シリコン基板、17 カラーフィルタ、18 マイクロレンズ、19 紫外・赤外光反射膜、20 透明基材、21 近赤外線吸収層、22 反射防止層 10 camera module, 11 solid-state imaging device, 12 flattening layer, 13 near infrared cut filter, 14 imaging lens, 15 lens holder, 16 silicon substrate, 17 color filter, 18 microlens, 19 ultraviolet / infrared light reflecting film, 20 Transparent substrate, 21 near infrared absorption layer, 22 antireflection layer

Claims (16)

  1.  溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
     前記近赤外線吸収組成物は、前記金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分を含み、前記金属化合物に含まれる金属原子100質量部に対し、前記金属成分に含まれる金属原子を0.005~1質量部含む、近赤外線吸収組成物。
    A near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared absorbing compound,
    The near-infrared absorbing composition includes a metal component containing a metal atom different from the metal atom contained in the metal compound, and the metal atom contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound. A near-infrared absorbing composition containing 0.005 to 1 part by mass of
  2.  金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含む、請求項1に記載の近赤外線吸収組成物。 The metal component includes at least one metal atom selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag. Item 2. The near-infrared absorbing composition according to Item 1.
  3.  前記金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含み、前記金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも1種の金属原子を含む、請求項1または2に記載の近赤外線吸収組成物。 The metal compound includes at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd, and Pt, and the metal component includes Al, Zn, Li, Na The near-infrared absorbing composition according to claim 1, comprising at least one metal atom selected from K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag. object.
  4.  溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
     前記近赤外線吸収組成物は、前記金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属原子を含む金属成分を含み、
     前記金属化合物に含まれる金属原子100質量部に対し、前記金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、近赤外線吸収組成物。
    A near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared absorbing compound,
    The near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co A metal component containing at least one metal atom selected from Ni, Cu, Pt and Ag,
    Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound. A near-infrared absorbing composition, wherein the total amount of Pt and Ag is 0.005 to 1 part by mass.
  5.  溶剤および硬化性化合物から選ばれる少なくとも1種と、赤外線吸収化合物である金属化合物とを含む近赤外線吸収組成物であって、
     前記金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含み、
     前記近赤外線吸収組成物は、前記金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属原子を含む金属成分を含み、
     前記金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、前記金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、近赤外線吸収組成物。
    A near-infrared absorbing composition comprising at least one selected from a solvent and a curable compound and a metal compound that is an infrared absorbing compound,
    The metal compound contains at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
    The near-infrared absorbing composition is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co A metal component containing at least one metal atom selected from Ni, Cu, Pt and Ag,
    Al, Zn, Li, Na, K contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd, and Pt contained in the metal compound. , Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt, and Ag, the near-infrared absorbing composition having a total amount of 0.005 to 1 part by mass.
  6.  前記金属化合物が、銅化合物であり、前記金属成分が、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、PtおよびAgから選ばれる少なくとも1種の金属原子を含む、請求項1~5のいずれか1項に記載の近赤外線吸収組成物。 The metal compound is a copper compound, and the metal component is at least selected from Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Pt and Ag. The near-infrared absorbing composition according to any one of claims 1 to 5, comprising one kind of metal atom.
  7.  前記硬化性化合物が、架橋性基を有する化合物を含む、請求項1~6のいずれか1項に記載の近赤外線吸収組成物。 The near-infrared absorbing composition according to any one of claims 1 to 6, wherein the curable compound contains a compound having a crosslinkable group.
  8.  請求項1~7のいずれか1項に記載の近赤外線吸収組成物を用いて、近赤外線吸収組成物層を形成する工程を含む、近赤外線カットフィルタの製造方法。 A method for producing a near-infrared cut filter, comprising a step of forming a near-infrared absorbing composition layer using the near-infrared absorbing composition according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の近赤外線吸収組成物を用いた、近赤外線カットフィルタ。 A near-infrared cut filter using the near-infrared absorbing composition according to any one of claims 1 to 7.
  10.  誘電体多層膜および紫外線吸収膜から選ばれる少なくとも1種を有する、請求項9に記載の近赤外線カットフィルタ。 The near-infrared cut filter according to claim 9, comprising at least one selected from a dielectric multilayer film and an ultraviolet absorption film.
  11.  請求項9または10に記載の近赤外線カットフィルタを有する固体撮像素子。 A solid-state imaging device having the near-infrared cut filter according to claim 9 or 10.
  12.  請求項9または10に記載の近赤外線カットフィルタを有するカメラモジュール。 A camera module having the near infrared cut filter according to claim 9 or 10.
  13.  請求項9または10に記載の近赤外線カットフィルタを有する赤外線センサ。 An infrared sensor having the near-infrared cut filter according to claim 9 or 10.
  14.  赤外線吸収化合物である金属化合物と、前記金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
     前記金属化合物に含まれる金属原子100質量部に対し、前記金属成分に含まれる金属原子を0.005~1質量部含む、赤外線吸収剤。
    A metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
    An infrared absorber comprising 0.005 to 1 part by mass of a metal atom contained in the metal component with respect to 100 parts by mass of a metal atom contained in the metal compound.
  15.  赤外線吸収化合物である金属化合物と、前記金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
     前記金属成分が、前記金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
     前記金属化合物に含まれる金属原子100質量部に対し、前記金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、赤外線吸収剤。
    A metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
    The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Including at least one metal selected from Cu, Pt and Ag,
    Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, contained in the metal component with respect to 100 parts by mass of the metal atom contained in the metal compound. An infrared absorber wherein the total amount of Pt and Ag is 0.005 to 1 part by mass.
  16.  赤外線吸収化合物である金属化合物と、前記金属化合物に含まれる金属原子とは異なる金属原子を含む金属成分とを含み、
     前記金属化合物が、Al、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtから選ばれる少なくとも1種の金属原子を含む金属化合物であり、
     前記金属成分が、前記金属化合物に含まれる金属原子とは異なる金属原子であって、Al、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgから選ばれる少なくとも一種の金属を含み、
     前記金属化合物に含まれるAl、Ti、V、Mo、Fe、Co、Ni、Cu、Zn、PdおよびPtの合計100質量部に対し、前記金属成分に含まれるAl、Zn、Li、Na、K、Mg、Ca、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、PtおよびAgの合計量が0.005~1質量部である、赤外線吸収剤。
    A metal compound that is an infrared absorbing compound, and a metal component containing a metal atom different from the metal atom contained in the metal compound,
    The metal compound is a metal compound containing at least one metal atom selected from Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd and Pt;
    The metal component is a metal atom different from the metal atom contained in the metal compound, and Al, Zn, Li, Na, K, Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Including at least one metal selected from Cu, Pt and Ag,
    Al, Zn, Li, Na, K contained in the metal component with respect to a total of 100 parts by mass of Al, Ti, V, Mo, Fe, Co, Ni, Cu, Zn, Pd, and Pt contained in the metal compound. , Mg, Ca, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Pt and Ag, an infrared absorber having a total amount of 0.005 to 1 part by mass.
PCT/JP2017/001481 2016-01-20 2017-01-18 Near-infrared absorbing composition, method for manufacturing near-infrared cut filter, near-infrared cut filter, solid-state imaging element, camera module, infrared sensor, and infrared absorbing agent WO2017126528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562834A JP6602396B2 (en) 2016-01-20 2017-01-18 Near-infrared absorbing composition, method for producing near-infrared cut filter, near-infrared cut filter, solid-state imaging device, camera module, infrared sensor, and infrared absorber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016008716 2016-01-20
JP2016-008716 2016-01-20
JP2016178670 2016-09-13
JP2016-178670 2016-09-13

Publications (1)

Publication Number Publication Date
WO2017126528A1 true WO2017126528A1 (en) 2017-07-27

Family

ID=59361725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001481 WO2017126528A1 (en) 2016-01-20 2017-01-18 Near-infrared absorbing composition, method for manufacturing near-infrared cut filter, near-infrared cut filter, solid-state imaging element, camera module, infrared sensor, and infrared absorbing agent

Country Status (3)

Country Link
JP (1) JP6602396B2 (en)
TW (1) TW201731684A (en)
WO (1) WO2017126528A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026848A1 (en) * 2017-07-31 2019-02-07 Jsr株式会社 Photoelectric conversion device
WO2019093076A1 (en) * 2017-11-07 2019-05-16 日本板硝子株式会社 Light absorbing composition and optical filter
WO2020071461A1 (en) * 2018-10-05 2020-04-09 日本板硝子株式会社 Optical filter and light-absorbing composition
JPWO2020213726A1 (en) * 2019-04-18 2020-10-22
JP2021056382A (en) * 2019-09-30 2021-04-08 三菱ケミカル株式会社 Colored resin composition, color filter, and image display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795503B (en) * 2017-12-28 2023-03-11 日商日東電工股份有限公司 Semiconductor Back Adhesive Film
JP6987966B2 (en) * 2018-03-16 2022-01-05 富士フイルム株式会社 Structure, composition for near-infrared cut filter, dry film, manufacturing method of structure, optical sensor and image display device
KR102429987B1 (en) * 2020-01-06 2022-08-05 엘아이지넥스원 주식회사 Micro lens array and Image sensor module including the same and Manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197170A (en) * 2013-02-14 2014-10-16 富士フイルム株式会社 Infrared absorbing composition or infrared absorbing composition kit, infrared cut filter produced using the same and manufacturing method therefor, and camera module and manufacturing method therefor
JP2015028621A (en) * 2013-07-03 2015-02-12 富士フイルム株式会社 Infrared light-shielding composition, infrared light-shielding layer, infrared cut filter, and camera module
JP2015043061A (en) * 2013-02-19 2015-03-05 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut filter and method for producing the same, and camera module and method for producing the same
JP2015210478A (en) * 2014-04-30 2015-11-24 富士フイルム株式会社 Near-infrared cut filter and production method thereof, camera module and production method thereof, buffer layer forming composition, and laminate and production method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3825530B2 (en) * 1997-06-06 2006-09-27 株式会社日本触媒 Infrared impermeable zinc oxide-based particles and method for producing the same
JP6242782B2 (en) * 2014-01-21 2017-12-06 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut filter and manufacturing method thereof, and camera module and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197170A (en) * 2013-02-14 2014-10-16 富士フイルム株式会社 Infrared absorbing composition or infrared absorbing composition kit, infrared cut filter produced using the same and manufacturing method therefor, and camera module and manufacturing method therefor
JP2015043061A (en) * 2013-02-19 2015-03-05 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut filter and method for producing the same, and camera module and method for producing the same
JP2015028621A (en) * 2013-07-03 2015-02-12 富士フイルム株式会社 Infrared light-shielding composition, infrared light-shielding layer, infrared cut filter, and camera module
JP2015210478A (en) * 2014-04-30 2015-11-24 富士フイルム株式会社 Near-infrared cut filter and production method thereof, camera module and production method thereof, buffer layer forming composition, and laminate and production method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019026848A1 (en) * 2017-07-31 2020-08-13 Jsr株式会社 Photoelectric conversion device
KR102562643B1 (en) * 2017-07-31 2023-08-03 제이에스알 가부시끼가이샤 photoelectric converter
WO2019026848A1 (en) * 2017-07-31 2019-02-07 Jsr株式会社 Photoelectric conversion device
KR20200037219A (en) * 2017-07-31 2020-04-08 제이에스알 가부시끼가이샤 Photoelectric conversion device
CN110945665B (en) * 2017-07-31 2023-09-05 Jsr株式会社 photoelectric conversion device
CN110945665A (en) * 2017-07-31 2020-03-31 Jsr株式会社 Photoelectric conversion device
JP6543778B1 (en) * 2017-11-07 2019-07-10 日本板硝子株式会社 Light absorbing composition and optical filter
JP2019159343A (en) * 2017-11-07 2019-09-19 日本板硝子株式会社 Light absorbent composition and optical filter
WO2019093076A1 (en) * 2017-11-07 2019-05-16 日本板硝子株式会社 Light absorbing composition and optical filter
WO2020071461A1 (en) * 2018-10-05 2020-04-09 日本板硝子株式会社 Optical filter and light-absorbing composition
JP2020129150A (en) * 2018-10-05 2020-08-27 日本板硝子株式会社 Optical filter and light absorbing composition
JP6709885B1 (en) * 2018-10-05 2020-06-17 日本板硝子株式会社 Optical filter
JPWO2020213726A1 (en) * 2019-04-18 2020-10-22
WO2020213726A1 (en) * 2019-04-18 2020-10-22 日本板硝子株式会社 Light-absorbing composition and optical filter
CN113677687A (en) * 2019-04-18 2021-11-19 日本板硝子株式会社 Light absorbing composition and optical filter
JP2021056382A (en) * 2019-09-30 2021-04-08 三菱ケミカル株式会社 Colored resin composition, color filter, and image display device

Also Published As

Publication number Publication date
JPWO2017126528A1 (en) 2018-11-29
TW201731684A (en) 2017-09-16
JP6602396B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6602396B2 (en) Near-infrared absorbing composition, method for producing near-infrared cut filter, near-infrared cut filter, solid-state imaging device, camera module, infrared sensor, and infrared absorber
JP6595610B2 (en) Near-infrared cut filter, manufacturing method of near-infrared cut filter, and solid-state imaging device
JP6806706B2 (en) Near-infrared absorption composition, near-infrared cut filter, manufacturing method of near-infrared cut filter, solid-state image sensor, camera module and image display device
CN108957953B (en) Curable composition, cured film, near-infrared cut filter, camera module, and methods for producing these
TW201803962A (en) Composition, film, near-infrared cutoff filter, laminate, pattern formation method, solid-state image sensor, image display device, infrared sensor and color filter
JP6650040B2 (en) Near-infrared cut filter, solid-state imaging device, camera module, and image display device
JP6329638B2 (en) Near-infrared absorbing composition, near-infrared cut filter, solid-state image sensor, camera module
JP6709029B2 (en) Composition, method for producing composition, film, near-infrared cut filter, solid-state imaging device, camera module, and image display device
WO2015111530A1 (en) Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module
JP6611278B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module, and image display device
WO2017126527A1 (en) Near-infrared ray adsorbing composition, method of producing near-infrared ray cut filter, near-infrared ray cut filter, solid image sensor, camera module and infrared ray sensor
JP6563014B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, apparatus, method for producing copper-containing polymer, and copper-containing polymer
JP6793808B2 (en) Near-infrared cut filter, solid-state image sensor, camera module and image display device
JP6602387B2 (en) Near-infrared absorbing composition, film, near-infrared cut filter, and solid-state imaging device
JP6717955B2 (en) Near infrared cut filter, solid-state image sensor, camera module and image display device
JP2017036457A (en) Curable composition, cured film, near-infrared ray cut filter, camera module and method of producing camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741405

Country of ref document: EP

Kind code of ref document: A1