WO2017124595A1 - 显示面板制作方法及液晶显示器 - Google Patents

显示面板制作方法及液晶显示器 Download PDF

Info

Publication number
WO2017124595A1
WO2017124595A1 PCT/CN2016/074213 CN2016074213W WO2017124595A1 WO 2017124595 A1 WO2017124595 A1 WO 2017124595A1 CN 2016074213 W CN2016074213 W CN 2016074213W WO 2017124595 A1 WO2017124595 A1 WO 2017124595A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
electrode
electric field
alignment film
alignment
Prior art date
Application number
PCT/CN2016/074213
Other languages
English (en)
French (fr)
Inventor
郝思坤
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to KR1020187012056A priority Critical patent/KR102043577B1/ko
Priority to GB1805877.6A priority patent/GB2557831B/en
Priority to US15/023,404 priority patent/US9904117B2/en
Priority to JP2018529032A priority patent/JP6541885B2/ja
Priority to RU2018113264A priority patent/RU2680871C1/ru
Publication of WO2017124595A1 publication Critical patent/WO2017124595A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display panel manufacturing method and a liquid crystal display.
  • the display mode of the liquid crystal panel for television mainly adopts VA (Vertical) Alignment) technology and IPS (In Plane Switching) technology.
  • VA technology includes MVA (Multi-domain Vertical) Alignment) Technology and PVA (Patterned Vertical) Alignment) technology.
  • the optical alignment technology mainly uses ultraviolet light to optically align the alignment material with high light sensitivity and good stability, and the liquid crystal panel produced by the same does not need domain boundary, has high opening, high contrast, fast response and the like, and eliminates the traditional mode.
  • the alignment film of the liquid crystal display needs to be aligned to effectively control the alignment of the liquid crystal molecules.
  • the alignment technology mainly includes two types of rubbing type and non-rubbing type.
  • the rubbing alignment is a contact-oriented mechanical friction on the surface of the polymer PI by a flannel roller.
  • the energy supplied from the surface of the rubbing polymer causes the polymer main chain to be aligned due to the extension, thereby controlling the alignment of the liquid crystal.
  • the advantage of this method is that it operates at room temperature, has a short friction time, and is highly mass-produced.
  • the disadvantage is that the PI material has high polarity and high water absorption, and is easily deteriorated during storage or transportation to cause uneven alignment; problems such as dust particles, static electricity residue, and brush marks caused by friction are liable to lower the process yield.
  • the photo-alignment technology belongs to the non-friction type alignment. The principle is that the photo-chemical reaction of the photopolymer monomer material is generated by ultraviolet light to generate anisotropy, and the liquid crystal molecules interact with the surface molecules of the alignment film. In order to achieve the minimum energy stable state, the liquid crystal molecules Arranged along the direction of the most defined force of the light alignment, improving the overall performance of the optical alignment product. Non-friction alignment avoids the problem of mechanical friction to the alignment film.
  • the technical problem to be solved by the present invention is to provide a display panel manufacturing method and a liquid crystal display, which can improve the pretilt angle of liquid crystal molecules in the vertical direction and improve the contrast of the liquid crystal display.
  • a technical solution adopted by the present invention is to provide a display panel manufacturing method, the method comprising: providing a first electrode plate, a second electrode plate, and a first electrode plate and a second electrode disposed opposite to each other An array substrate between the electrode plates; wherein the array substrate comprises at least a first transparent electrode and a first alignment film; and applying a first electric field perpendicular to the array substrate between the first electrode plate and the second electrode plate
  • the first alignment film is subjected to a first optical alignment with a polarization direction parallel to the ultraviolet light of the array substrate; wherein the first electric field is an alternating electric field or a direct current electric field; and the third electrode plate and the color filter substrate are provided oppositely; wherein the color filter substrate At least a second transparent electrode and a second alignment film are disposed, the second alignment film is located between the third electrode plate and the second transparent electrode; and an electric field direction is applied between the third electrode plate and the second transparent electrode perpendicular to the color filter substrate a second electric field, and
  • the first electrode plate and the second electrode plate comprise a plurality of strip electrodes, and each strip electrode of the first electrode plate and the strip electrode of the second electrode plate are formed in one-to-one correspondence to form a plurality of strip electrode groups; Applying a first electric field between the first electrode plate and the second electrode plate, and performing a first photoalignment on the first alignment film, comprising: applying an electric field between each strip electrode group, and performing the first alignment film The third light is aligned.
  • the electric field applied by the adjacent two strip electrode groups is different in magnitude.
  • the two regions on the first alignment film corresponding to the two adjacent strip electrodes have different angles between the illumination direction and the array substrate when the third optical alignment is performed.
  • the third electrode plate and the color filter substrate are disposed oppositely, and the method includes: providing a fourth electrode plate, a fifth electrode plate, and a color filter substrate disposed between the fourth electrode plate and the fifth electrode plate;
  • the color filter substrate includes at least a third alignment film; a second electric field is applied between the third electrode plate and the second transparent electrode, and a second optical alignment is performed on the second alignment film, including: at the fourth electrode plate and the fifth A third electric field is applied between the electrode plates, and a fourth optical alignment is performed on the third alignment film.
  • the fourth electrode plate and the fifth electrode plate comprise a plurality of strip electrodes, and each strip electrode of the fourth electrode plate and the strip electrode of the fifth electrode plate are formed in one-to-one correspondence to form a plurality of strip electrode groups; Applying a third electric field between the fourth electrode plate and the fifth electrode plate, and performing fourth optical alignment on the third alignment film, comprising: applying an electric field between each strip electrode group, and performing a third alignment film The fifth light is aligned.
  • the first electrode plate, the second electrode plate, the third electrode plate, the fourth electrode plate, and the fifth electrode plate each include a transparent substrate and a transparent electrode layer disposed on the transparent substrate.
  • another technical solution adopted by the present invention is to provide a display panel manufacturing method, the method comprising: providing a first electrode plate, a second electrode plate, and a first electrode plate and a first electrode plate An array substrate between the two electrode plates; wherein the array substrate includes at least a first transparent electrode and a first alignment film; applying a first electric field between the first electrode plate and the second electrode plate, and performing a first alignment film on the first alignment film a light alignment; providing a third electrode plate and a color filter substrate disposed oppositely; wherein the color filter substrate comprises at least a second transparent electrode and a second alignment film, and the second alignment film is located between the third electrode plate and the second transparent electrode Applying a second electric field between the third electrode plate and the second transparent electrode, and performing a second optical alignment on the second alignment film; and performing liquid crystal box processing on the array substrate and the color filter substrate to form a display panel.
  • the first electric field and the second electric field are an alternating electric field or a direct current electric field, the first electric field direction is perpendicular to the array substrate, and the second electric field direction is perpendicular to the color filter substrate.
  • the illumination used in the first optical alignment is ultraviolet light whose polarization direction is parallel to the array substrate
  • the illumination used in the second optical alignment is ultraviolet light whose polarization direction is parallel to the color filter substrate.
  • the first electrode plate and the second electrode plate comprise a plurality of strip electrodes, and each strip electrode of the first electrode plate and the strip electrode of the second electrode plate are formed in one-to-one correspondence to form a plurality of strip electrode groups; Applying a first electric field between the first electrode plate and the second electrode plate, and performing a first photoalignment on the first alignment film, comprising: applying an electric field between each strip electrode group, and performing the first alignment film The third light is aligned.
  • the electric field applied by the adjacent two strip electrode groups is different in magnitude.
  • the two regions on the first alignment film corresponding to the two adjacent strip electrodes have different angles between the illumination direction and the array substrate when the third optical alignment is performed.
  • the third electrode plate and the color filter substrate are disposed oppositely, and the method includes: providing a fourth electrode plate, a fifth electrode plate, and a color filter substrate disposed between the fourth electrode plate and the fifth electrode plate;
  • the color filter substrate includes at least a third alignment film; a second electric field is applied between the third electrode plate and the second transparent electrode, and a second optical alignment is performed on the second alignment film, including: at the fourth electrode plate and the fifth A third electric field is applied between the electrode plates, and a fourth optical alignment is performed on the third alignment film.
  • the fourth electrode plate and the fifth electrode plate comprise a plurality of strip electrodes, and each strip electrode of the fourth electrode plate and the strip electrode of the fifth electrode plate are formed in one-to-one correspondence to form a plurality of strip electrode groups; Applying a third electric field between the fourth electrode plate and the fifth electrode plate, and performing fourth optical alignment on the third alignment film, comprising: applying an electric field between each strip electrode group, and performing a third alignment film The fifth light is aligned.
  • the first electrode plate, the second electrode plate, the third electrode plate, the fourth electrode plate, and the fifth electrode plate each include a transparent substrate and a transparent electrode layer disposed on the transparent substrate.
  • a liquid crystal display including a backlight and a display panel, which is manufactured by providing a first electrode plate and a second electrode which are oppositely disposed. a plate and an array substrate disposed between the first electrode plate and the second electrode plate; wherein the array substrate includes at least a first transparent electrode and a first alignment film; and applying a first between the first electrode plate and the second electrode plate An electric field, and performing a first photoalignment on the first alignment film; providing a third electrode plate and a color filter substrate disposed oppositely; wherein the color filter substrate comprises at least a second transparent electrode and a second alignment film, and the second alignment film is located at Between the third electrode plate and the second transparent electrode; applying a second electric field between the third electrode plate and the second transparent electrode, and performing a second optical alignment on the second alignment film; and performing liquid crystal on the array substrate and the color filter substrate
  • the cassette is processed to form a display panel. .
  • the present invention increases the electric field in the vertical direction of the alignment film while illuminating in the optical alignment process of the array substrate and the color filter substrate.
  • the illumination in the light alignment enables the alignment film to improve the pretilt angle of the liquid crystal molecules in the horizontal direction;
  • the electric field in the vertical direction enables the alignment film to improve the pretilt angle of the liquid crystal molecules in the vertical direction. In the above manner, the contrast of the liquid crystal display can be improved.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for fabricating a display panel of the present invention
  • FIG. 2 is a schematic view showing the light alignment of the array substrate in the first embodiment of the method for fabricating the display panel of the present invention
  • FIG. 3 is a schematic view showing the light alignment of the color filter substrate in the first embodiment of the method for fabricating the display panel of the present invention
  • FIG. 4 is a schematic structural view of a display panel in a first embodiment of a method for fabricating a display panel of the present invention
  • FIG. 5 is a schematic flow chart of a second embodiment of a method for fabricating a display panel according to the present invention.
  • FIG. 6 is a schematic view showing the light alignment of the array substrate in the second embodiment of the method for fabricating the display panel of the present invention.
  • FIG. 7 is a schematic view showing the light alignment of the color filter substrate in the second embodiment of the method for fabricating the display panel of the present invention.
  • Fig. 8 is a schematic structural view of an embodiment of a liquid crystal display of the present invention.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for fabricating a display panel according to the present invention. The method includes:
  • S11 providing a first electrode plate, a second electrode plate, and an array substrate disposed between the first electrode plate and the second electrode plate; wherein the array substrate comprises at least a first transparent electrode and a first alignment film.
  • FIG. 2 is a schematic diagram showing the optical alignment of the array substrate in the first embodiment of the method for fabricating the display panel of the present invention. The following describes the embodiment:
  • the first electrode plate 21 includes a transparent substrate 211 and a first transparent electrode layer 212
  • the second electrode plate 22 includes a transparent substrate 221 and a second transparent electrode layer 222.
  • the transparent substrate 211 and the transparent substrate 221 are transparent glass substrates or transparent plastic substrates; the first transparent electrode layer 212 and the second transparent electrode layer 222 are transparent metal oxides, such as indium tin oxide (ITO); The first transparent electrode layer 212 and the second transparent electrode layer 222 are formed on the transparent substrate by physical vapor deposition or chemical vapor deposition.
  • ITO indium tin oxide
  • the array substrate 23 includes a transparent substrate 231 , an insulating layer 232 , a first transparent electrode 233 , and a first alignment film 234 covering the first transparent electrode 233 .
  • the transparent substrate 231 and the insulating layer 232 may further include other layers such as a thin film transistor, a flat layer, and a common electrode. Since the embodiment does not involve the manufacturing process of the above part, the figure is not shown.
  • the first transparent electrode 233 is a pixel electrode.
  • the alignment film layer is generally formed by using a PI liquid, and the main component of the PI liquid is a polyimide with a UV photosensitive group and a solvent.
  • PI liquid refers to a kind of LCD used to make
  • the chemical liquid of the alignment film is printed on the conductive glass and baked to form an alignment film, which can provide a pretilt angle to the liquid crystal molecules, so that the rotation direction of the liquid crystal molecules is more uniform.
  • the two electrodes of the power source 24 are respectively connected to the first transparent electrode layer 212 and the second transparent electrode layer 222 to form a first electric field between the first transparent electrode layer 212 and the second transparent electrode layer 222.
  • the direction of the electric field is perpendicular to the array substrate 23, and then the first alignment film 234 is subjected to a first photoalignment process by the first illumination.
  • the first electric field is an alternating electric field or a direct current electric field, and the electric field direction is perpendicular to the array substrate 23 .
  • the advantage of applying a DC electric field compared to the AC electric field is that the electric field is stable and does not change with time, which is advantageous for the alignment of the alignment film.
  • the disadvantage is that it is easier to generate electric charges and affect the alignment of the alignment film.
  • the first illumination is ultraviolet polarized light
  • the incident direction is perpendicular to the array substrate 23, and the polarization direction thereof is parallel to the array substrate 23.
  • the pre-tilt angle of the liquid crystal molecules in the horizontal direction is improved by the photo-alignment treatment of the ultraviolet light, and the orientation of the first alignment film is controlled by the electric field in the vertical direction, and the pretilt angle of the liquid crystal molecules in the vertical direction is improved.
  • S13 providing a third electrode plate and a color filter substrate disposed opposite to each other; wherein the color filter substrate comprises at least a second transparent electrode and a second alignment film, and the second alignment film is located between the third electrode plate and the second transparent electrode.
  • FIG. 3 is a schematic diagram showing the light alignment of the color filter substrate in the first embodiment of the method for fabricating the display panel of the present invention. The following describes the embodiment:
  • the third electrode plate 31 includes a transparent substrate 311 and a third transparent electrode layer 312.
  • the transparent substrate 311 is a transparent glass substrate or a transparent plastic substrate;
  • the third transparent electrode layer 312 is a transparent metal oxide such as indium tin oxide (ITO); and the third transparent electrode layer 312 is formed by physical vapor deposition. Or a method of chemical vapor deposition is formed on a transparent substrate.
  • ITO indium tin oxide
  • the color filter substrate 32 includes a transparent substrate 321 and a second transparent electrode 322 disposed on one side of the transparent substrate 321 and a second alignment film 323 disposed on the other side of the transparent substrate 321 .
  • the color filter substrate 32 may further include a color filter.
  • the second transparent electrode 322 is a common electrode.
  • the two poles of the power source 33 are respectively connected to the third transparent electrode layer 312 and the second transparent electrode 322, so that a second electric field is formed between the third transparent electrode layer 312 and the second transparent electrode 322.
  • the second alignment film 323 is subjected to a second photoalignment process perpendicular to the color filter substrate 32 and then by the second illumination.
  • the second electric field is an alternating electric field or a direct current electric field, and the electric field direction is perpendicular to the color filter substrate 32.
  • the second illumination is ultraviolet polarized light, and the incident direction is perpendicular to the color filter substrate 32, and the polarization direction thereof is parallel to the color filter substrate 32.
  • the pre-tilt angle of the liquid crystal molecules in the horizontal direction is improved by the photo-alignment treatment of the ultraviolet light, and the orientation of the second alignment film is controlled by the electric field in the vertical direction, and the pretilt angle of the liquid crystal molecules in the vertical direction is improved.
  • FIG. 4 a schematic structural view of a display panel in a first embodiment of the method for fabricating a display panel of the present invention is further combined with FIG. 2 and FIG.
  • the array substrate 23 and the color filter substrate 32 are subjected to liquid crystal chip processing to form a display panel.
  • the first alignment film 234 on the array substrate 23 and the second alignment film 323 on the color filter substrate 32 can improve the pretilt angle of the liquid crystal molecules in the horizontal direction and the vertical direction.
  • the electric field is increased in the vertical direction of the alignment film while illuminating.
  • the illumination in the light alignment enables the alignment film to improve the pretilt angle of the liquid crystal molecules in the horizontal direction; on the other hand, the electric field in the vertical direction enables the alignment film to improve the pretilt angle of the liquid crystal molecules in the vertical direction. In the above manner, the contrast of the liquid crystal display can be improved.
  • FIG. 5 is a schematic flowchart of a second embodiment of a method for fabricating a display panel according to the present invention. The method includes:
  • S51 providing a first electrode plate, a second electrode plate, and an array substrate disposed between the first electrode plate and the second electrode plate.
  • the array substrate 63 includes at least a first transparent electrode 633 and a first alignment film 634.
  • the first electrode plate 61 includes a transparent substrate 611 and a plurality of strip electrodes 612 disposed thereon
  • the second electrode plate 62 includes a transparent substrate 621 and a plurality of strip electrodes 622 disposed thereon, each of the first electrode plates 61
  • the strip electrodes 612 are formed in one-to-one correspondence with each strip electrode 622 of the second electrode plate 62 to form a plurality of strip electrode groups.
  • S53 providing a fourth electrode plate, a fifth electrode plate, and a color filter substrate disposed between the fourth electrode plate and the fifth electrode plate.
  • the color filter substrate 73 includes at least a third alignment film 733.
  • the fourth electrode plate 71 includes a transparent substrate 711 and a plurality of strip electrodes 712 disposed thereon, and the fifth electrode plate 72 includes a transparent substrate 721 and a plurality of strip electrodes 722 disposed thereon, each of the fourth electrode plates 71
  • the strip electrodes 712 are formed in a one-to-one correspondence with each strip electrode 722 of the fifth electrode plate 72 to form a plurality of strip electrode groups.
  • the electric field applied by the two adjacent strip electrode groups is different in size, and the two regions on the first alignment film corresponding to the adjacent two strip electrodes are in the third light alignment direction, and the illumination direction is The angle between the array substrates is different. That is, the electric fields in the adjacent two regions are different, and the direction of illumination is also different.
  • the electric field applied by each strip electrode group is the same, and the two regions on the first alignment film corresponding to the adjacent two strip electrodes are in the direction of illumination and the array substrate.
  • the angles are different. That is, the electric fields of the two adjacent regions are the same, but the directions of illumination are different.
  • the alignment film can have different pretilt angles in different regions when the liquid crystal molecules are pretilted.
  • the display angle of the liquid crystal display can be made wider.
  • This second embodiment is similar to the first embodiment described above, and the main difference is the shape of the electrode plate and the distribution of the electric field strength, which will not be described herein.
  • the liquid crystal display includes a display panel 81 and a backlight 82.
  • the display panel 81 includes an array substrate 811, a color filter substrate 812, and an array substrate 811 and a color filter substrate 812. A liquid crystal layer 813 between.
  • the display panel 81 is a display panel manufactured by the method of the first embodiment or the second embodiment, and the implementation manner thereof is similar, and details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

一种显示面板制作方法及液晶显示器,显示面板制作方法包括:提供相对设置的第一电极板(21)、第二电极板(22)以及设置于第一电极板(21)和第二电极板(22)之间的阵列基板(23);其中,阵列基板(23)至少包括第一透明电极(233)和第一配向膜(234);在第一电极板(21)和第二电极板(22)之间施加第一电场,并对第一配向膜(234)进行第一光配向;提供相对设置的第三电极板(31)和彩膜基板(32);其中,彩膜基板(32)至少包括第二透明电极(322)和第二配向膜(323);在第三电极板(31)和第二透明电极(322)之间施加第二电场,并对第二配向膜(323)进行第二光配向;以及将阵列基板(23)和彩膜基板(32)进行液晶对盒处理,以形成显示面板。该方法能够改善液晶分子在垂直方向的预倾角,提高液晶显示器的对比度。

Description

显示面板制作方法及液晶显示器
【技术领域】
本发明涉及显示技术领域,特别是涉及显示面板制作方法及液晶显示器。
【背景技术】
目前,电视用液晶面板(LCD-TV)的显示模式主要采用VA(Vertical Alignment)技术和IPS(In Plane Switching)技术。其中,VA技术包括MVA(Multi-domain Vertical Alignment)技术和PVA(Patterned Vertical Alignment)技术等。这些技术由于突起、缝隙等域分界物的存在而引起开口率低、对比度差、响应速度慢和工艺复杂等问题。
光配向技术主要使用紫外光对光敏感度高、稳定性好的配向材料进行光配向,用其制作的液晶面板不需要域分界物,具有高开口、高对比、快速响应等特性,消除了传统模式所无法克服的缺陷,而日渐成为液晶行业研究的热点。
液晶显示器的配向膜需要进行配向处理才能有效地控制液晶分子的排列,配向技术主要有摩擦(Rubbing)型和非摩擦(Non-Rubbing)型两大类。摩擦配向是在高分子PI表面用绒布滚轮进行接触式的定向机械摩擦,摩擦高分子表面所供的能量使高分子主链因延伸而定向排列,从而控制液晶配向排列。这种方法的优点是在常温下操作,摩擦时间短,量产性高。缺点是PI材料具有高极性、高吸水性,储存或运送时容易变质而造成配向不均匀;摩擦造成的粉尘颗粒、静电残留、刷痕等问题容易降低工艺良率。光配向技术属于非摩擦型配向,其原理是利用紫外光使得光敏聚合物单体材料发生光化学反应产生各向异性,液晶分子与配向膜表面分子相互作用,为了达到能量最小的稳定状态,液晶分子沿着光配向所定义的受力最大的方向排列,提高了光配向产品的整体性能。非摩擦配向可以避免机械摩擦给配向膜带来的不良问题。
【发明内容】
本发明主要解决的技术问题是提供显示面板制作方法及液晶显示器,能够改善液晶分子在垂直方向的预倾角,提高液晶显示器的对比度。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种显示面板制作方法,该方法包括:提供相对设置的第一电极板、第二电极板以及设置于第一电极板和第二电极板之间的阵列基板;其中,阵列基板至少包括第一透明电极和第一配向膜;在第一电极板和第二电极板之间施加电场方向垂直于阵列基板的第一电场,并采用偏振方向平行于阵列基板的紫外光对第一配向膜进行第一光配向;其中,第一电场为交流电场或直流电场;提供相对设置的第三电极板和彩膜基板;其中,彩膜基板至少包括第二透明电极和第二配向膜,第二配向膜位于第三电极板和第二透明电极之间;在第三电极板和第二透明电极之间施加电场方向垂直于彩膜基板的第二电场,并采用偏振方向平行于彩膜基板的紫外光对第二配向膜进行第二光配向;以及将阵列基板和彩膜基板进行液晶对盒处理,以形成显示面板。
其中,第一电极板和第二电极板包括多个条形电极,第一电极板的每个条形电极与第二电极板的每个条形电极一一对应形成多个条形电极组;在第一电极板和第二电极板之间施加第一电场,并对第一配向膜进行第一光配向,包括:在每个条形电极组之间施加电场,并对第一配向膜进行第三光配向。
其中,相邻的两个条形电极组施加的电场大小不同。
其中,相邻的两个条形电极对应的第一配向膜上的两个区域,在进行第三光配向时,光照方向与阵列基板之间的角度不同。
其中,提供相对设置的第三电极板和彩膜基板,包括:提供相对设置的第四电极板、第五电极板以及设置于第四电极板和第五电极板之间的彩膜基板;其中,彩膜基板至少包括第三配向膜;在第三电极板和第二透明电极之间施加第二电场,并对第二配向膜进行第二光配向,包括:在第四电极板和第五电极板之间施加第三电场,并对第三配向膜进行第四光配向。
其中,第四电极板和第五电极板包括多个条形电极,第四电极板的每个条形电极与第五电极板的每个条形电极一一对应形成多个条形电极组;在第四电极板和第五电极板之间施加第三电场,并对第三配向膜进行第四光配向,包括:在每个条形电极组之间施加电场,并对第三配向膜进行第五光配向。
其中,第一电极板、第二电极板、第三电极板、第四电极板以及第五电极板均包括透明基板以及设置于透明基板上的透明电极层。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示面板制作方法,该方法包括:提供相对设置的第一电极板、第二电极板以及设置于第一电极板和第二电极板之间的阵列基板;其中,阵列基板至少包括第一透明电极和第一配向膜;在第一电极板和第二电极板之间施加第一电场,并对第一配向膜进行第一光配向;提供相对设置的第三电极板和彩膜基板;其中,彩膜基板至少包括第二透明电极和第二配向膜,第二配向膜位于第三电极板和第二透明电极之间;在第三电极板和第二透明电极之间施加第二电场,并对第二配向膜进行第二光配向;以及将阵列基板和彩膜基板进行液晶对盒处理,以形成显示面板。
其中,第一电场和第二电场为交流电场或直流电场,第一电场方向垂直于阵列基板,第二电场方向垂直于彩膜基板。
其中,第一光配向中采用的光照为偏振方向平行于阵列基板的紫外光,第二光配向中采用的光照为偏振方向平行于彩膜基板的紫外光。
其中,第一电极板和第二电极板包括多个条形电极,第一电极板的每个条形电极与第二电极板的每个条形电极一一对应形成多个条形电极组;在第一电极板和第二电极板之间施加第一电场,并对第一配向膜进行第一光配向,包括:在每个条形电极组之间施加电场,并对第一配向膜进行第三光配向。
其中,相邻的两个条形电极组施加的电场大小不同。
其中,相邻的两个条形电极对应的第一配向膜上的两个区域,在进行第三光配向时,光照方向与阵列基板之间的角度不同。
其中,提供相对设置的第三电极板和彩膜基板,包括:提供相对设置的第四电极板、第五电极板以及设置于第四电极板和第五电极板之间的彩膜基板;其中,彩膜基板至少包括第三配向膜;在第三电极板和第二透明电极之间施加第二电场,并对第二配向膜进行第二光配向,包括:在第四电极板和第五电极板之间施加第三电场,并对第三配向膜进行第四光配向。
其中,第四电极板和第五电极板包括多个条形电极,第四电极板的每个条形电极与第五电极板的每个条形电极一一对应形成多个条形电极组;在第四电极板和第五电极板之间施加第三电场,并对第三配向膜进行第四光配向,包括:在每个条形电极组之间施加电场,并对第三配向膜进行第五光配向。
其中,第一电极板、第二电极板、第三电极板、第四电极板以及第五电极板均包括透明基板以及设置于透明基板上的透明电极层。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示器,包括背光和显示面板,该显示面板是采用以下方法制造的:提供相对设置的第一电极板、第二电极板以及设置于第一电极板和第二电极板之间的阵列基板;其中,阵列基板至少包括第一透明电极和第一配向膜;在第一电极板和第二电极板之间施加第一电场,并对第一配向膜进行第一光配向;提供相对设置的第三电极板和彩膜基板;其中,彩膜基板至少包括第二透明电极和第二配向膜,第二配向膜位于第三电极板和第二透明电极之间;在第三电极板和第二透明电极之间施加第二电场,并对第二配向膜进行第二光配向;以及将阵列基板和彩膜基板进行液晶对盒处理,以形成显示面板。。
本发明的有益效果是:区别于现有技术的情况,本发明通过在阵列基板和彩膜基板的光配向制程中,在光照的同时,在配向膜的垂直方向上增加电场。一方面,光配向中的光照能够使配向膜改善液晶分子在水平方向的预倾角;另一方面垂直方向的电场能够使配向膜改善液晶分子在垂直方向的预倾角。通过上述方式,能够提高液晶显示器的对比度。
【附图说明】
图1是本发明显示面板的制作方法第一实施方式的流程示意图;
图2是本发明显示面板的制作方法第一实施方式中阵列基板的光配向示意图;
图3是本发明显示面板的制作方法第一实施方式中彩膜基板的光配向示意图;
图4是本发明显示面板的制作方法第一实施方式中显示面板的结构示意图;
图5是本发明显示面板的制作方法第二实施方式的流程示意图;
图6是本发明显示面板的制作方法第二实施方式中阵列基板的光配向示意图;
图7是本发明显示面板的制作方法第二实施方式中彩膜基板的光配向示意图;
图8是本发明液晶显示器一实施方式的结构示意图。
【具体实施方式】
参阅图1,本发明显示面板的制作方法第一实施方式的流程示意图,该方法包括:
S11:提供相对设置的第一电极板、第二电极板以及设置于第一电极板和第二电极板之间的阵列基板;其中,阵列基板至少包括第一透明电极和第一配向膜。
S12:在第一电极板和第二电极板之间施加第一电场,并对第一配向膜进行第一光配向。
请参阅图2,图2是本发明显示面板的制作方法第一实施方式中阵列基板的光配向示意图,下面对本实施方式进行说明:
其中,第一电极板21包括透明基板211和第一透明电极层212,第二电极板22包括透明基板221和第二透明电极层222。
可选的,透明基板211和透明基板221为透明的玻璃基板或透明的塑料基板;第一透明电极层212和第二透明电极层222为透明的金属氧化物,例如氧化铟锡(ITO);第一透明电极层212和第二透明电极层222是通过物理气相沉积或者化学气相沉积的方法形成于透明基板上的。
其中,阵列基板23包括透明基板231、绝缘层232、第一透明电极233以及覆盖第一透明电极233的第一配向膜234。
可选的,透明基板231和绝缘层232之间还可以包括薄膜晶体管、平坦层、公共电极等其他层,由于本实施方式不涉及以上部分的制作工艺,故图未示。
可选的,第一透明电极233为像素电极。
可选的,该配向膜层一般是采用PI液形成的,PI液的主要成份是带紫外线光敏基团的聚酰亚胺和溶剂。PI液指的是一种用来制作LCD 配向膜的化学液体,印刷在导电玻璃上经过烘烤后成为配向膜,可以给液晶分子提供一个预倾角,使得液晶分子的旋转方向一致性更好。
在制作过程中,将电源24的两极分别连接至第一透明电极层212和第二透明电极层222,以使第一透明电极层212和第二透明电极层222之间形成第一电场,该电场方向垂直于阵列基板23,然后通过第一光照对第一配向膜234进行第一光配向处理。
可选的,该第一电场为交流电场或者直流电场,电场方向垂直于阵列基板23。其中,施加直流电场相比于交流电场的好处是电场稳定,不随时间变化,有利于配向膜进行配向,缺点是较容易产生电荷,影响配向膜进行配向。
可选的,该第一光照为紫外偏振光,其入射方向垂直于阵列基板23,其偏振方向平行于阵列基板23。
通过上述方式,通过紫外光的光配向处理,改善了液晶分子在水平方向上的预倾角,而在垂直方向使用电场控制第一配向膜的取向,改善了液晶分子在垂直方向的预倾角。
S13:提供相对设置的第三电极板和彩膜基板;其中,彩膜基板至少包括第二透明电极和第二配向膜,第二配向膜位于第三电极板和第二透明电极之间。
S14:在第三电极板和第二透明电极之间施加第二电场,并对第二配向膜进行第二光配向。
请参阅图3,图3是本发明显示面板的制作方法第一实施方式中彩膜基板的光配向示意图,下面对本实施方式进行说明:
其中,第三电极板31包括透明基板311和第三透明电极层312。
可选的,透明基板311为透明的玻璃基板或透明的塑料基板;第三透明电极层312为透明的金属氧化物,例如氧化铟锡(ITO);第三透明电极层312是通过物理气相沉积或者化学气相沉积的方法形成于透明基板上的。
其中,彩膜基板32包括透明基板321以及设置于透明基板321一侧的第二透明电极322和设置于透明基板321另一侧的第二配向膜323。
可选的,彩膜基板32还可以包括彩色滤光片。
可选的,第二透明电极322为公共电极。
在制作过程中,将电源33的两极分别连接至第三透明电极层312和第二透明电极322,以使第三透明电极层312和第二透明电极322之间形成第二电场,该电场方向垂直于彩膜基板32,然后通过第二光照对第二配向膜323进行第二光配向处理。
可选的,该第二电场为交流电场或者直流电场,电场方向垂直于彩膜基板32。
可选的,该第二光照为紫外偏振光,其入射方向垂直于彩膜基板32,其偏振方向平行于彩膜基板32。
通过上述方式,通过紫外光的光配向处理,改善了液晶分子在水平方向上的预倾角,而在垂直方向使用电场控制第二配向膜的取向,改善了液晶分子在垂直方向的预倾角。
S15:将阵列基板和彩膜基板进行液晶对盒处理,以形成显示面板。
参阅图4,本发明显示面板的制作方法第一实施方式中显示面板的结构示意图,再同时结合图2和图3。
将阵列基板23和彩膜基板32进行液晶对盒处理,以形成显示面板。其中,阵列基板23上的第一配向膜234和彩膜基板32上的第二配向膜323就能改善液晶分子在水平方向和垂直方向的预倾角。
区别于现有技术,本实施方式通过在阵列基板和彩膜基板的光配向制程中,在光照的同时,在配向膜的垂直方向上增加电场。一方面,光配向中的光照能够使配向膜改善液晶分子在水平方向的预倾角;另一方面垂直方向的电场能够使配向膜改善液晶分子在垂直方向的预倾角。通过上述方式,能够提高液晶显示器的对比度。
参阅图5,本发明显示面板的制作方法第二实施方式的流程示意图,该方法包括:
S51:提供相对设置的第一电极板、第二电极板以及设置于第一电极板和第二电极板之间的阵列基板。
参阅图6,阵列基板63至少包括第一透明电极633和第一配向膜634。
第一电极板61包括透明基板611和设置在上面的多个条形电极612,第二电极板62包括透明基板621和设置在上面的多个条形电极622,第一电极板61的每个条形电极612与第二电极板62的每个条形电极622一一对应形成多个条形电极组。
S52:在每个条形电极组之间施加电场,并对第一配向膜进行第三光配向。
S53:提供相对设置的第四电极板、第五电极板以及设置于第四电极板和第五电极板之间的彩膜基板。
彩膜基板73至少包括第三配向膜733。
第四电极板71包括透明基板711和设置在上面的多个条形电极712,第五电极板72包括透明基板721和设置在上面的多个条形电极722,第四电极板71的每个条形电极712与第五电极板72的每个条形电极722一一对应形成多个条形电极组。
S54:在每个条形电极组之间施加电场,并对第三配向膜进行第五光配向。
S55:将阵列基板和彩膜基板进行液晶对盒处理,以形成显示面板。
可选的,相邻的两个条形电极组施加的电场大小不同,相邻的两个条形电极对应的第一配向膜上的两个区域,在进行第三光配向时,光照方向与阵列基板之间的角度不同。即相邻两个区域的电场不同,光照的方向也不同。
可选的,每个条形电极组施加的电场大小相同,相邻的两个条形电极对应的第一配向膜上的两个区域,在进行第三光配向时,光照方向与阵列基板之间的角度不同。即相邻两个区域的电场相同,但光照的方向不同。
通过上述方式,通过天性电极施加不同的电场,或者通过对配向膜不同区域照射不同角度的光照,能够使配向膜在改善液晶分子预倾角时,不同区域的液晶分子拥有不同的预倾角,在显示时,能够使液晶显示屏的显示角度更广。
该第二实施方式与上述第一实施方式类似,主要区别在于电极板的形状以及电场强度的分布,这里不再赘述。
参阅图8,本发明液晶显示器一实施方式的结构示意图,该液晶显示器包括显示面板81和背光82,显示面板81包括阵列基板811、彩膜基板812以及设置于阵列基板811和彩膜基板812之间的液晶层813。
其中,显示面板81是采用如上第一实施方式或第二方式的方法制造的显示面板,其实施方式类似,这里不再赘述。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种显示面板制作方法,其中,包括:
    提供相对设置的第一电极板、第二电极板以及设置于所述第一电极板和所述第二电极板之间的阵列基板;其中,所述阵列基板至少包括第一透明电极和第一配向膜;
    在所述第一电极板和所述第二电极板之间施加电场方向垂直于所述阵列基板的第一电场,并采用偏振方向平行于所述阵列基板的紫外光对所述第一配向膜进行第一光配向;其中,所述第一电场为交流电场或直流电场;
    提供相对设置的第三电极板和彩膜基板;其中,所述彩膜基板至少包括第二透明电极和第二配向膜,所述第二配向膜位于所述第三电极板和所述第二透明电极之间;
    在所述第三电极板和所述第二透明电极之间施加电场方向垂直于所述彩膜基板的第二电场,并采用偏振方向平行于所述彩膜基板的紫外光对所述第二配向膜进行第二光配向;以及
    将所述阵列基板和所述彩膜基板进行液晶对盒处理,以形成显示面板。
  2. 根据权利要求1所述的方法,其中,所述第一电极板和所述第二电极板包括多个条形电极,所述第一电极板的每个条形电极与所述第二电极板的每个条形电极一一对应形成多个条形电极组;
    所述在所述第一电极板和所述第二电极板之间施加第一电场,并对所述第一配向膜进行第一光配向,包括:
    在每个所述条形电极组之间施加电场,并对所述第一配向膜进行第三光配向。
  3. 根据权利要求2所述的方法,其中,相邻的两个所述条形电极组施加的电场大小不同。
  4. 根据权利要求2所述的方法,其中,相邻的两个所述条形电极对应的所述第一配向膜上的两个区域,在进行所述第三光配向时,光照方向与所述阵列基板之间的角度不同。
  5. 根据权利要求1所述的方法,其中,所述提供相对设置的第三电极板和彩膜基板,包括:
    提供相对设置的第四电极板、第五电极板以及设置于所述第四电极板和所述第五电极板之间的所述彩膜基板;其中,所述彩膜基板至少包括第三配向膜;
    所述在所述第三电极板和所述第二透明电极之间施加第二电场,并对所述第二配向膜进行第二光配向,包括:
    在所述第四电极板和所述第五电极板之间施加第三电场,并对所述第三配向膜进行第四光配向。
  6. 根据权利要求5所述的方法,其中,所述第四电极板和所述第五电极板包括多个条形电极,所述第四电极板的每个条形电极与所述第五电极板的每个条形电极一一对应形成多个条形电极组;
    所述在所述第四电极板和所述第五电极板之间施加第三电场,并对所述第三配向膜进行第四光配向,包括:
    在每个所述条形电极组之间施加电场,并对所述第三配向膜进行第五光配向。
  7. 根据权利要求5所述的方法,其中,所述第一电极板、第二电极板、第三电极板、第四电极板以及第五电极板均包括透明基板以及设置于所述透明基板上的透明电极层。
  8. 一种显示面板制作方法,其中,包括:
    提供相对设置的第一电极板、第二电极板以及设置于所述第一电极板和所述第二电极板之间的阵列基板;其中,所述阵列基板至少包括第一透明电极和第一配向膜;
    在所述第一电极板和所述第二电极板之间施加第一电场,并对所述第一配向膜进行第一光配向;
    提供相对设置的第三电极板和彩膜基板;其中,所述彩膜基板至少包括第二透明电极和第二配向膜,所述第二配向膜位于所述第三电极板和所述第二透明电极之间;
    在所述第三电极板和所述第二透明电极之间施加第二电场,并对所述第二配向膜进行第二光配向;以及
    将所述阵列基板和所述彩膜基板进行液晶对盒处理,以形成显示面板。
  9. 根据权利要求8所述的方法,其中,所述第一电场和所述第二电场为交流电场或直流电场,所述第一电场方向垂直于所述阵列基板,所述第二电场方向垂直于所述彩膜基板。
  10. 根据权利要求8所述的方法,其中,所述第一光配向中采用的光照为偏振方向平行于所述阵列基板的紫外光,所述第二光配向中采用的光照为偏振方向平行于所述彩膜基板的紫外光。
  11. 根据权利要求8所述的方法,其中,所述第一电极板和所述第二电极板包括多个条形电极,所述第一电极板的每个条形电极与所述第二电极板的每个条形电极一一对应形成多个条形电极组;
    所述在所述第一电极板和所述第二电极板之间施加第一电场,并对所述第一配向膜进行第一光配向,包括:
    在每个所述条形电极组之间施加电场,并对所述第一配向膜进行第三光配向。
  12. 根据权利要求11所述的方法,其中,相邻的两个所述条形电极组施加的电场大小不同。
  13. 根据权利要求11所述的方法,其中,相邻的两个所述条形电极对应的所述第一配向膜上的两个区域,在进行所述第三光配向时,光照方向与所述阵列基板之间的角度不同。
  14. 根据权利要求8所述的方法,其中,所述提供相对设置的第三电极板和彩膜基板,包括:
    提供相对设置的第四电极板、第五电极板以及设置于所述第四电极板和所述第五电极板之间的所述彩膜基板;其中,所述彩膜基板至少包括第三配向膜;
    所述在所述第三电极板和所述第二透明电极之间施加第二电场,并对所述第二配向膜进行第二光配向,包括:
    在所述第四电极板和所述第五电极板之间施加第三电场,并对所述第三配向膜进行第四光配向。
  15. 根据权利要求14所述的方法,其中,所述第四电极板和所述第五电极板包括多个条形电极,所述第四电极板的每个条形电极与所述第五电极板的每个条形电极一一对应形成多个条形电极组;
    所述在所述第四电极板和所述第五电极板之间施加第三电场,并对所述第三配向膜进行第四光配向,包括:
    在每个所述条形电极组之间施加电场,并对所述第三配向膜进行第五光配向。
  16. 根据权利要求14所述的方法,其中,所述第一电极板、第二电极板、第三电极板、第四电极板以及第五电极板均包括透明基板以及设置于所述透明基板上的透明电极层。
  17. 一种液晶显示器,包括背光和显示面板,其中,所述显示面板是采用以下方法制造的:
    提供相对设置的第一电极板、第二电极板以及设置于所述第一电极板和所述第二电极板之间的阵列基板;其中,所述阵列基板至少包括第一透明电极和第一配向膜;
    在所述第一电极板和所述第二电极板之间施加第一电场,并对所述第一配向膜进行第一光配向;
    提供相对设置的第三电极板和彩膜基板;其中,所述彩膜基板至少包括第二透明电极和第二配向膜,所述第二配向膜位于所述第三电极板和所述第二透明电极之间;
    在所述第三电极板和所述第二透明电极之间施加第二电场,并对所述第二配向膜进行第二光配向;以及
    将所述阵列基板和所述彩膜基板进行液晶对盒处理,以形成显示面板。
PCT/CN2016/074213 2016-01-21 2016-02-22 显示面板制作方法及液晶显示器 WO2017124595A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187012056A KR102043577B1 (ko) 2016-01-21 2016-02-22 디스플레이 패널의 제조 방법 및 액정 디스플레이
GB1805877.6A GB2557831B (en) 2016-01-21 2016-02-22 Display panel manufacturing method and liquid crystal display device
US15/023,404 US9904117B2 (en) 2016-01-21 2016-02-22 Display panel manufacturing method and liquid crystal display device
JP2018529032A JP6541885B2 (ja) 2016-01-21 2016-02-22 表示パネルの作製方法及び液晶表示装置
RU2018113264A RU2680871C1 (ru) 2016-01-21 2016-02-22 Способ изготовления дисплейной панели и жидкокристаллическое дисплейное устройство

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610041414.8 2016-01-21
CN201610041414.8A CN105446019B (zh) 2016-01-21 2016-01-21 一种显示面板制作方法及液晶显示器

Publications (1)

Publication Number Publication Date
WO2017124595A1 true WO2017124595A1 (zh) 2017-07-27

Family

ID=55556387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074213 WO2017124595A1 (zh) 2016-01-21 2016-02-22 显示面板制作方法及液晶显示器

Country Status (7)

Country Link
US (1) US9904117B2 (zh)
JP (1) JP6541885B2 (zh)
KR (1) KR102043577B1 (zh)
CN (1) CN105446019B (zh)
GB (1) GB2557831B (zh)
RU (1) RU2680871C1 (zh)
WO (1) WO2017124595A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195764A (zh) * 2017-06-27 2017-09-22 常州瑞丰特科技有限公司 匀光装置及其制备方法
CN107703682B (zh) * 2017-09-22 2019-11-15 深圳市华星光电半导体显示技术有限公司 液晶配向方法和液晶配向***
CN110275353A (zh) * 2019-06-24 2019-09-24 深圳市华星光电半导体显示技术有限公司 显示面板母板及其配向装置
CN114488622A (zh) * 2021-12-24 2022-05-13 长沙惠科光电有限公司 液晶显示面板及液晶配向方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
US8163199B2 (en) * 2008-06-30 2012-04-24 Chimei Innoloux Corporation Alignment treatment method of substrate for liquid crystal display device and manufacturing method thereof
CN104238194A (zh) * 2014-09-15 2014-12-24 上海天马微电子有限公司 一种显示面板及其制造方法
CN105116621A (zh) * 2015-09-01 2015-12-02 深圳市华星光电技术有限公司 液晶面板的制造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309264A (en) * 1992-04-30 1994-05-03 International Business Machines Corporation Liquid crystal displays having multi-domain cells
KR19980026045A (ko) * 1996-10-07 1998-07-15 손욱 액정의 배향처리 방법
KR101093253B1 (ko) 2004-09-02 2011-12-14 엘지디스플레이 주식회사 횡전계 방식 액정 표시 장치 및 그 제조 방법
KR100949500B1 (ko) * 2005-02-07 2010-03-24 엘지디스플레이 주식회사 액정표시소자용 배향막 형성방법 및 형성장치
JP2008191569A (ja) * 2007-02-07 2008-08-21 Nano Loa Inc 液晶デバイス
JP2009258332A (ja) * 2008-04-16 2009-11-05 Seiko Epson Corp 液晶表示装置、電子機器
JP2010032860A (ja) * 2008-07-30 2010-02-12 Sony Corp 配向膜及びその製造方法、配向基板及びその製造方法、並びに液晶表示素子
KR101560201B1 (ko) * 2008-08-27 2015-10-15 삼성디스플레이 주식회사 액정표시패널 및 이의 제조 방법
JP5716883B2 (ja) * 2009-06-09 2015-05-13 Jsr株式会社 液晶表示素子の製造方法
JP5319772B2 (ja) * 2009-07-03 2013-10-16 シャープ株式会社 液晶表示装置および光源制御方法
EP2525251A4 (en) * 2010-01-14 2013-10-30 Sharp Kk LIQUID CRYSTAL DISPLAY DEVICE
CN101818763B (zh) 2010-04-07 2011-12-21 宁波惠联自动化设备有限公司 轴承套圈的合套装置
RU2456649C1 (ru) * 2010-11-29 2012-07-20 Закрытое Акционерное Общество "Мегавижн" Активные жидкокристаллические стереоочки
CN102402069A (zh) * 2011-11-11 2012-04-04 深圳市华星光电技术有限公司 液晶显示面板的配向膜制作方法
US9256106B2 (en) * 2012-02-07 2016-02-09 Samsung Display Co., Ltd. Liquid crystal display
JP6061265B2 (ja) * 2012-10-15 2017-01-18 Nltテクノロジー株式会社 横電界方式液晶表示装置及び液晶表示装置の製造方法
CN103305235B (zh) * 2013-06-25 2015-11-25 深圳市华星光电技术有限公司 一种液晶面板及其配向膜、配向膜的制作方法
JP2015011328A (ja) * 2013-07-02 2015-01-19 株式会社東芝 液晶光学装置及び画像表示装置
CN104062812B (zh) 2014-06-30 2017-06-13 上海天马微电子有限公司 光分解型配向膜的制备工艺及液晶显示面板和装置
KR20160044691A (ko) * 2014-10-15 2016-04-26 삼성디스플레이 주식회사 액정 표시 장치
CN104375328A (zh) * 2014-11-28 2015-02-25 深圳市华星光电技术有限公司 显示面板及其制作方法
KR102587647B1 (ko) * 2016-05-04 2023-10-11 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163199B2 (en) * 2008-06-30 2012-04-24 Chimei Innoloux Corporation Alignment treatment method of substrate for liquid crystal display device and manufacturing method thereof
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN104238194A (zh) * 2014-09-15 2014-12-24 上海天马微电子有限公司 一种显示面板及其制造方法
CN105116621A (zh) * 2015-09-01 2015-12-02 深圳市华星光电技术有限公司 液晶面板的制造方法

Also Published As

Publication number Publication date
KR102043577B1 (ko) 2019-11-11
US9904117B2 (en) 2018-02-27
RU2680871C1 (ru) 2019-02-28
GB2557831A (en) 2018-06-27
GB2557831B (en) 2021-10-20
US20170322460A1 (en) 2017-11-09
GB201805877D0 (en) 2018-05-23
KR20180059530A (ko) 2018-06-04
JP6541885B2 (ja) 2019-07-10
JP2018537717A (ja) 2018-12-20
CN105446019B (zh) 2019-08-02
CN105446019A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN104238194B (zh) 一种显示面板及其制造方法
WO2017124595A1 (zh) 显示面板制作方法及液晶显示器
WO2013174029A1 (zh) 液晶面板及其液晶配向方法
WO2013029259A1 (zh) 液晶显示面板及其应用的显示装置
WO2016015273A1 (zh) 液晶显示面板及其制造方法、阵列基板
WO2013174020A1 (zh) 液晶显示面板及其应用的显示装置
WO2017152448A1 (zh) 一种像素电极结构及液晶显示面板
WO2013174019A1 (zh) 液晶显示面板及其应用的显示装置
WO2017015993A1 (zh) 液晶显示器及其液晶面板
WO2018021837A1 (ko) 투과도 가변 필름, 그 제조 방법 및 용도
WO2013174023A1 (zh) 液晶显示面板及其应用的显示装置
WO2016026166A1 (zh) 一种偏振光调制装置及其制作方法
WO2013174011A1 (zh) 液晶显示面板及其应用的显示装置
WO2013181869A1 (zh) 一种液晶显示面板及其制备工艺和显示器
WO2013174022A1 (zh) 液晶显示面板及其应用的显示装置
WO2013185375A1 (zh) 液晶显示装置、液晶显示面板的制造方法及制造设备
WO2013127101A1 (zh) 光学自补偿弯曲型液晶显示面板及其制造方法
WO2016095266A1 (zh) 一种透反式液晶显示器及其制造方法
KR102073957B1 (ko) 액정표시패널 및 그 제조방법
WO2013174012A1 (zh) 液晶显示面板及其应用的显示装置
WO2013166741A1 (zh) 液晶显示装置及其制造方法
WO2018120345A1 (zh) 光配向设备
WO2017121015A1 (zh) 液晶显示面板构造及其制作方法
WO2013181855A1 (zh) Psva型液晶显示面板、液晶显示面板及液晶显示装置
WO2017156807A1 (zh) 一种ffs型液晶显示面板及液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15023404

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201805877

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160222

WWE Wipo information: entry into national phase

Ref document number: 2018113264

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20187012056

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018529032

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885868

Country of ref document: EP

Kind code of ref document: A1