WO2013181869A1 - 一种液晶显示面板及其制备工艺和显示器 - Google Patents

一种液晶显示面板及其制备工艺和显示器 Download PDF

Info

Publication number
WO2013181869A1
WO2013181869A1 PCT/CN2012/077710 CN2012077710W WO2013181869A1 WO 2013181869 A1 WO2013181869 A1 WO 2013181869A1 CN 2012077710 W CN2012077710 W CN 2012077710W WO 2013181869 A1 WO2013181869 A1 WO 2013181869A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
alignment film
transparent electrode
electrode layer
Prior art date
Application number
PCT/CN2012/077710
Other languages
English (en)
French (fr)
Inventor
马小龙
黄宏基
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/636,652 priority Critical patent/US20130329151A1/en
Publication of WO2013181869A1 publication Critical patent/WO2013181869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy

Definitions

  • the present invention relates to a liquid crystal panel, and more particularly to a liquid crystal display panel and a process for fabricating the same, and a display using the liquid crystal display panel.
  • the liquid crystal display includes a liquid crystal panel having an upper substrate and a lower substrate, and transparent electrodes disposed on opposite sides of the upper and lower substrates, and a layer of liquid crystal molecules disposed between the upper and lower substrates.
  • the liquid crystal display is an electric field generated by a transparent electrode, controls the orientation of the liquid crystal molecules, thereby changing the polarization state of the light, and realizes the purpose of display by the penetration and blocking of the optical path by the polarizing plate.
  • the main technical parameters for evaluating liquid crystal displays are: 1 contrast, 2 brightness, 3 signal response time, and 4 viewing angles.
  • the parameters of contrast, brightness and viewing angle are mainly determined by the liquid crystal panel.
  • the viewing angle has always been the focus and difficulty of liquid crystal panel research. This is because when the backlight passes through the polarizer, liquid crystal and alignment film, the output light has directionality. That is to say, most of the light is emitted vertically from the screen, so when you look at the LCD panel from a certain oblique angle, you can't see the original color, or even see all white or all black.
  • the R&D personnel developed wide-angle technology and developed the following types of liquid crystal panels.
  • the liquid crystal molecules are arranged parallel to the substrate, but will be gradually twisted by 90° around the normal of the substrate. Due to the optical rotation effect, the polarized light after passing through the polarizing plate will have a polarization direction rotated by 90° with the liquid crystal molecules to reach the polarizing plate on the other side.
  • the polarization direction of the time is just parallel to the transmission axis of the polarizing plate, and the light can pass through.
  • the TN mode displays a bright state when it is not powered, which is normally white (Normally White); in the dark state when power is applied, most of the liquid crystal molecules are arranged vertically on the substrate, but due to the anchoring force of the alignment layer, the liquid crystal molecules close to the alignment layer are still arranged in parallel with the substrate, causing optical delay to cause light leakage. Therefore, since the liquid crystal display of the TN mode is dark-transmissive, the contrast is relatively poor.
  • the liquid crystal molecules in the liquid crystal layer are positive liquid crystals, and the transparent electrodes are disposed on the lower substrate.
  • the liquid crystal molecules When the cells are not charged, the liquid crystal molecules are arranged in parallel with the substrate, and without optical delay, a darker dark state can be obtained; when the power is applied, the liquid crystal molecules rotate horizontally to make incidence. Polarized light passes, it is always black (Normally Black).
  • the IPS mode features high contrast and high-speed response, and is often used in applications such as televisions. However, in the preparation process of the IPS mode liquid crystal panel, it is necessary to rub the substrate to perform initial alignment of the liquid crystal molecules. This kind of frictional alignment will bring pollution problems, resulting in a drop in yield, and there will be problems such as static electricity, which will cause damage to the transistor.
  • the VA mode and the IPS mode are always black, but the difference is that the liquid crystal molecules in the liquid crystal layer of the VA mode panel are made of negative liquid crystal, and the transparent electrodes are provided on the upper and lower substrates to form an electric field perpendicular to the substrate.
  • the long axis of the liquid crystal molecules is perpendicular to the substrate to form a dark state; when power is applied, the long axis of the liquid crystal molecules falls parallel to the direction of the substrate.
  • the initial alignment also needs to rub the substrate, which causes pollution, static electricity and other problems.
  • the pretilt angle is also difficult to control.
  • To solve the initial alignment problem of the VA mode there are various derivative modes, such as multi-domain vertical alignment (Multi-domain).
  • VMA Vertical Alignment
  • PVA Positioned Vertical Alignment
  • PSVA Polymer Stabilized Vertical Alignment
  • PSVA mode has gradually become the mainstream with high transmittance, high contrast and fast response.
  • FIG. 1 is a liquid crystal molecule and a reactive liquid crystal reactive monomer (Reactive) of a prior art PSVA mode liquid crystal display panel when not powered.
  • the distribution state of the Mesogen, RM), the prior art PSVA mode liquid crystal display panel includes a first substrate 10', a second substrate 30' and a liquid crystal layer 70', and the liquid crystal layer 70' is sandwiched between Between the first and second substrates 10', 30'.
  • the first substrate 10' has a first alignment film 20' and a first transparent electrode 50'
  • the second substrate 30' has a second alignment film 40' and a second transparent electrode 60'.
  • the first alignment film 20 ′ is disposed on a side surface of the first substrate 10 ′ corresponding to the liquid crystal layer 70 ′, and the first transparent electrode 50 ′ is disposed on the first alignment film 20 ′.
  • the second alignment film 40 ′ is disposed on a side surface of the second substrate 30 ′ corresponding to the liquid crystal layer 70 ′, and the second transparent electrode 60 ′ is disposed on the second alignment film 40 ′.
  • the liquid crystal layer 70' contains liquid crystal molecules 701' and RM 702', the liquid crystal molecule 701' is a negative liquid crystal molecule; and the RM 702' has the same properties as the vertical electric field direction of the liquid crystal molecules 701'. Please continue to refer to FIG.
  • the PSVA mode has no friction alignment process, it can overcome the electrostatic problems and pollution problems caused by friction in the IPS mode.
  • the viscosity of the negative liquid crystal material is larger than that of the positive liquid crystal, the response speed of the PSVA mode is slow.
  • the upper and lower electrodes are required to be divided, the preparation method is complicated compared to the IPS mode.
  • the present invention provides a new display technology that can overcome the pollution and static problems caused by the rubbing alignment in the IPS mode, and has a simple process, so that the obtained liquid crystal panel and the liquid crystal display have high contrast and high response speed.
  • Features such as wide viewing angle.
  • a first object of the present invention is to provide a process for preparing a liquid crystal display panel, which combines the advantages of the IPS mode and the PSVA mode to overcome the pollution and static problems caused by the rubbing alignment in the IPS mode, and the process is simple.
  • the resulting liquid crystal panel and liquid crystal display have high contrast, high response speed and wide viewing angle.
  • a second object of the present invention is to provide a liquid crystal display panel
  • a third object of the present invention is to provide a liquid crystal display
  • the initial axes of the RM and positive liquid crystal molecules are initially perpendicular to the substrate.
  • the electrode is designed as a coplanar electrode, and after the coplanar electrode forms a transverse electric field, the RM and the positive liquid crystal molecules are subjected to the action of the alignment film on the surface of the substrate corresponding to the liquid crystal composition to generate a pretilt angle, and the liquid crystal combination is irradiated by UV.
  • the RM that maintains the pretilt angle is solidified on the surface to complete the alignment process.
  • a preparation process of a liquid crystal display panel includes the following steps:
  • the coplanar transparent electrode layer Forming a coplanar transparent electrode layer on the second alignment film of the second substrate, the coplanar transparent electrode layer comprising at least two transparent electrodes, wherein the transparent electrodes have slits therebetween;
  • liquid crystal composition comprises a positive liquid crystal molecule and a liquid crystal active monomer.
  • the first alignment film and the second alignment film are vertical alignment films.
  • the coplanar transparent electrode layer is made of indium tin oxide.
  • the first substrate is a color filter substrate
  • the second substrate is a thin film transistor (Thin Film) Transistor, TFT) array substrate.
  • a process for preparing a liquid crystal display panel including the following steps:
  • first substrate and a second substrate Providing a first substrate and a second substrate, forming a first alignment film on the first substrate, and forming a second alignment film on the second substrate, wherein the first substrate is color filtered a substrate, the second substrate is a thin film transistor array substrate, and the first alignment film and the second alignment film are vertical alignment films;
  • the coplanar transparent electrode layer made of indium tin oxide on the second alignment film of the second substrate, the coplanar transparent electrode layer comprising at least two transparent electrodes, the transparent electrodes having a narrow Seam
  • liquid crystal composition between the first substrate and the second substrate to form a liquid crystal layer contacting the first alignment film, the coplanar transparent electrode layer, and the second of the slits An alignment film; wherein the liquid crystal composition comprises a positive liquid crystal molecule and a liquid crystal active monomer;
  • a liquid crystal display panel is formed after attaching a polarizer to the other side surface of the first and second substrates corresponding to the liquid crystal layer.
  • a second object of the present invention is to provide a liquid crystal display panel comprising:
  • the coplanar transparent electrode layer disposed on the second alignment film of the second substrate, the coplanar transparent electrode layer comprising at least two transparent electrodes, wherein the transparent electrodes have slits therebetween;
  • liquid crystal layer sandwiched between a first alignment film side of the first substrate and a coplanar transparent electrode layer side of the second substrate, the liquid crystal layer being composed of a positive liquid crystal molecule and a liquid crystal active monomer Liquid crystal composition;
  • a plurality of liquid crystal compositions having a pretilt angle are arranged on the side surface of the first alignment film and the coplanar transparent electrode layer corresponding to the liquid crystal layer, respectively.
  • the first alignment film and the second alignment film are vertical alignment films.
  • the coplanar transparent electrode layer is made of indium tin oxide.
  • the first substrate is a color filter substrate
  • the second substrate is a TFT array substrate
  • a liquid crystal display panel including:
  • a coplanar transparent electrode layer made of indium tin oxide, disposed on the second alignment film of the second substrate, the coplanar transparent electrode layer comprising at least two transparent electrodes, the transparent electrodes having a narrow Seam;
  • liquid crystal layer sandwiched between a first alignment film side of the first substrate and a coplanar transparent electrode layer side of the second substrate, the liquid crystal layer being composed of a positive liquid crystal molecule and a liquid crystal active monomer Liquid crystal composition;
  • liquid crystal composition having a plurality of pretilt angles arranged on a side surface of the first alignment film and the coplanar transparent electrode layer corresponding to the liquid crystal layer;
  • the first substrate is a color filter substrate
  • the second substrate is a thin film transistor array substrate
  • the first alignment film and the second alignment film are vertical alignment films.
  • a third object of the present invention is to provide a liquid crystal display comprising any of the above liquid crystal panels.
  • liquid crystal molecules depend on their dielectric anisotropy (Dielectric Anisotropy) values are classified into positive liquid crystal molecules, neutral liquid crystal molecules, and negative liquid crystal molecules.
  • the positive liquid crystal molecules described in the present invention generally refer to liquid crystal molecules having a positive dielectric anisotropy. When a voltage greater than a certain voltage is applied, the long axis of the positive liquid crystal molecules is aligned parallel to the direction of the electric field.
  • the invention combines the advantages of the IPS mode and the PSVA mode, and can overcome the pollution and static electricity problems caused by the friction alignment in the IPS mode; and only needs to configure the transparent electrode on a substrate, compared with the double-layer transparent electrode of the PSVA mode. The preparation process is saved.
  • the liquid crystal panel and the liquid crystal display of the invention have the characteristics of high contrast, high response speed and wide viewing angle.
  • 1 is a distribution state of liquid crystal molecules and RM of a prior art PSVA mode liquid crystal display panel when not powered;
  • FIG. 3 is a view showing a distribution state of positive liquid crystal molecules and RM of a liquid crystal display panel in an unaligned state according to an embodiment of the present invention
  • FIG. 4 is a view showing a distribution state of positive liquid crystal molecules and RM during alignment of a liquid crystal display panel in an embodiment of the present invention.
  • 20' is a first alignment film of the PSVA mode liquid crystal display panel
  • 30' is a second substrate of the PSVA mode liquid crystal display panel
  • 40' is a second alignment film of the PSVA mode liquid crystal display panel
  • 50' is a first transparent electrode of the PSVA mode liquid crystal display panel
  • 60' is a second transparent electrode of the PSVA mode liquid crystal display panel
  • 70' is a liquid crystal layer of a PSVA mode liquid crystal display panel; 701' is a negative liquid crystal molecule of a PSVA mode liquid crystal display panel; 702' is a reactive liquid crystal active monomer (RM) of a PSVA mode liquid crystal display panel;
  • RM reactive liquid crystal active monomer
  • 10 is a first substrate; 20 is a first alignment film;
  • 50 is a coplanar transparent electrode layer; 501 is a transparent electrode; 502 is a slit between transparent electrodes;
  • 60 is a liquid crystal layer; 601 is a positive liquid crystal molecule; 602 is a liquid crystal active monomer;
  • 70 is a first polarizer; 80 is a second polarizer.
  • FIG. 3 is a cross-sectional view of a liquid crystal display panel of the present embodiment in an unaligned manner.
  • the liquid crystal display panel includes a first substrate 10, a second substrate 30, and a first substrate.
  • the first substrate 10 is disposed opposite to the second substrate 30.
  • the first alignment film 20 is disposed on a side surface of the first substrate 10 corresponding to the liquid crystal layer 60
  • the second alignment film 40 is disposed on a side surface of the second substrate 30 corresponding to the liquid crystal layer 60.
  • the first and second alignment films 30 and 40 are vertical alignment films.
  • the coplanar transparent electrode layer 50 is made of indium tin oxide and is disposed on the second alignment film 40 of the second substrate 30.
  • the coplanar transparent electrode layer 50 includes at least two coplanar surfaces placed in parallel.
  • the transparent electrode 501 has a slit 502 between the transparent electrodes 501.
  • the coplanar transparent electrode layer 50 includes two transparent electrodes 501 placed in parallel with each other. One of the transparent electrodes 501 (left side in the drawing) is used as a positive electrode, and the other transparent electrode 501 (right side in the drawing) is used as a negative electrode.
  • the liquid crystal layer 60 is interposed between the first alignment film 20 side of the first substrate 10 and the coplanar transparent electrode layer 50 side of the second substrate 30, and includes a positive liquid crystal molecule 601 and a liquid crystal active sheet.
  • the liquid crystal composition of the body 602 is constructed.
  • the first polarizer 70 is located on the other side surface of the first substrate 10 corresponding to the liquid crystal layer 60, and the second polarizer 80 is located at the corresponding liquid crystal layer 60 of the second substrate 30. On the other side of the surface.
  • the present invention since the present invention employs a positive liquid crystal molecule 601, a liquid crystal reactive monomer 602, and a vertical alignment film, the length of the positive liquid crystal molecules 401 and the liquid crystal active monomer 402 in the initial state (non-energized state) is obtained.
  • the axes are perpendicular to the first and second substrates 10, 30 to form a dark state.
  • the embodiment further provides a process flow for preparing the liquid crystal display panel, which includes the following steps:
  • a first substrate 10 and a second substrate 30 are provided, and the first substrate 10 is a color filter (Color) a filter, a CF substrate, the second substrate 30 is a TFT array substrate, and the first and second substrates 10 and 30 are prepared by a conventional method in the art, and are not described in detail herein;
  • the first substrate 10 is a color filter (Color) a filter
  • a CF substrate the second substrate 30 is a TFT array substrate
  • the first and second substrates 10 and 30 are prepared by a conventional method in the art, and are not described in detail herein;
  • a first alignment film 20 is formed on the first substrate 10, and a second alignment film 40 is formed on the second substrate 30.
  • the first alignment film 20 and the second alignment film 40 are vertical alignment films.
  • the method of the first alignment film 20 and the second alignment film 40 adopts a conventional method in the art, and will not be described in detail herein;
  • the coplanar transparent electrode layer 50 Forming a coplanar transparent electrode layer 50 on the second alignment film 40 of the second substrate 30, the coplanar transparent electrode layer 50 comprising at least two transparent electrodes 501 placed in parallel with each other, between the transparent electrodes 501 There is a slit 502. As shown in FIG. 3, in the present embodiment, the coplanar transparent electrode layer 50 includes two transparent electrodes 501 placed in parallel with each other, wherein a transparent electrode 501 (left side in the figure) is used as a positive electrode.
  • Another transparent electrode 501 (right side in the figure) is used as a negative electrode; the transparent electrode 501 is indium tin oxide (Indium) Tin Oxide, ITO) electrode, the method of forming the transparent electrode 501 adopts a conventional method in the art, and will not be described in detail herein;
  • ITO indium tin oxide
  • a liquid crystal composition composed of a positive liquid crystal molecule 601 and a liquid crystal active monomer 602 is filled between the first substrate 10 and the second substrate 30 to form a liquid crystal layer 60, and the liquid crystal layer 60 contacts the first An alignment film 30, the coplanar transparent electrode layer 50, and a surface of the second alignment film 40 exposed in the slit 502;
  • FIG. 4 there is shown an alignment process in this embodiment. Applying voltages of different polarities to the adjacent transparent electrodes 501 of the second substrate 30 (the left transparent electrode 501 is a positive electrode and the right transparent electrode 501 is a negative electrode), and the first and second substrates 10 are formed. 30 parallel electric fields such that the positive liquid crystal molecules 601 and the long axis of the liquid crystal reactive monomer 602 are aligned along the electric field direction; and the positive liquid crystal molecules 601 and the liquid crystal reactive monomer 602 near the surfaces of the alignment films 20 and 40 are in the vertical alignment film.
  • a pretilt angle is generated along the direction of the electric field; and after the ultraviolet light is irradiated, the liquid crystal reactive monomer 602 is respectively cured on the surface of the first alignment film 20 and the coplanar transparent electrode layer 50 corresponding to the liquid crystal layer 60.
  • the pretilt angle of the liquid crystal reactive monomer 602 is cured.
  • the invention combines the advantages of the IPS mode and the PSVA mode, and uses the positive liquid crystal molecules and the liquid crystal active monomer, the vertical alignment film and the coplanar transparent electrode layer to complete the alignment process under the condition of energization and ultraviolet illumination, thereby overcoming the IPS mode. Pollution and static problems caused by frictional alignment.
  • the coplanar transparent electrode layer is used, it is only necessary to dispose the transparent electrode on one substrate, which saves the preparation process compared to the double-layer transparent electrode in the PSVA mode.
  • the liquid crystal panel and the liquid crystal display of the present invention are also characterized by high contrast, high response speed, and wide viewing angle.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板,包括:一第一基板(10)、一第二基板(30)、一共面透明电极层(50)和一液晶层(60)。所述第一基板(10)、第二基板(30)分别具有一第一配向膜(20)及一第二配向膜(40)。所述共面透明电极层(50)设于第二配向膜(40)上。所述液晶层(60)是夹设于第一基板(10)的第一配向膜(20)侧和第二基板(30)的共面透明电极层(50)侧之间,其中液晶层(60)包含正性液晶分子(601)和液晶活性单体(602)。该液晶显示面板可以克服IPS模式中摩擦配向所带来的污染及静电问题,相较于PSVA模式,只需在一基板上配置透明电极层,除了节约了制备工序,还具有高对比度、高响应速度和宽可视角度等特点。还提供了该液晶显示面板的制备工艺和包括该液晶显示面板的显示器。

Description

一种液晶显示面板及其制备工艺和显示器 技术领域
本发明涉及一种液晶面板,特别是涉及一种液晶显示面板及其制备工艺,以及应用该液晶显示面板的显示器。
背景技术
液晶显示器包含液晶面板和背光模组,所述液晶面板具有上基板和下基板,在所述上下基板的相对内侧分别配置有透明电极,所述上下基板之间配置有一层液晶分子。液晶显示器是通过透明电极产生的电场,对液晶分子的取向进行控制,从而改变光的偏振状态,并藉由偏光板实现光路的穿透与阻挡,实现显示的目的。
评价液晶显示器的主要技术参数有:①对比度、②亮度、③信号响应时间、④可视角度。其中,对比度、亮度和可视角度的参数主要是取决于液晶面板。可视角度一直是液晶面板研究的重点和难点,这是由于当背光源通过偏极片、液晶和配向膜之后,输出的光线便具有了方向性。也就是说,大多数光都是从屏幕中垂直射出来的,所以从某一个斜角观看液晶面板时,便不能看到原本的颜色,甚至只能看到全白或全黑。为了解决这个问题,因此研发人员开发了广角技术,并研发了以下几种模式的液晶面板。
(1)扭曲向列模式(Twisted Nematic,TN)
初始时液晶分子平行于基板排列,但会围绕基板法线逐渐扭曲90°,由于旋光效应,经过偏光板后的偏振光,偏振方向会随着液晶分子旋转90°,达到另一侧的偏光板时光的偏振方向刚好与偏光板的穿透轴平行,光可以穿过。因此,TN模式在不加电时显示亮态,为常白(Normally white);而加电时为暗态,大部分液晶分子垂直基板排列,但由于配向层的锚定力,靠近配向层的液晶分子仍然平行基板排列,产生光学延迟造成漏光。因此,由于TN模式的液晶显示器是暗态透光,相对来说对比度比较差。
(2)平面切换模式(In-Plane –Switching,IPS)
液晶层中的液晶分子是正性液晶,透明电极配置于下基板,不加电时,液晶分子平行基板排列,且无光学延迟,可以得到比较黑的暗态;加电时液晶分子水平旋转使入射偏振光通过,是常黑(Normally black)。IPS模式具有对比度高,高速响应的特点,常用于电视机等应用。但是,IPS模式的液晶面板制备过程中,需要对基板进行摩擦,来对液晶分子进行初始配向。而这种摩擦配向会带来污染性问题,造成良率的下降,还会有静电等问题,对晶体管造成击伤。
(3)液晶垂直取向模式(Vertical Alignment,VA)
VA模式与IPS模式同样是常黑,但不同的是,VA模式面板的液晶层中的液晶分子用负性液晶,透明电极分设于上下基板,形成垂直于基板的电场。未加电时,液晶分子的长轴垂直于基板,而形成暗态;加电时,液晶分子的长轴向平行于基板的方向倒下。其初始配向同样需要对基板进行摩擦,从而产生污染性、静电等问题,预倾角也难以控制,为解决VA模式的初始配向问题,又有各种衍生模式,如多域垂直对齐(Multi-domain Vertical Alignment,MVA)、图像垂直对齐(Patterned Vertical Alignment,PVA)和聚合物稳定垂直对齐(Polymer Stabilized Vertical Alignment,PSVA)模式。其中PSVA模式以高穿透率、高对比度和快速响应等特点,渐渐成为主流。
请参见图1,其是现有技术PSVA模式液晶显示面板在未加电时的液晶分子和反应型液晶活性单体(Reactive Mesogen,RM)的分布状态,所述现有技术PSVA模式液晶显示面板包括一第一基板10'、一第二基板30'和一液晶层70',所述液晶层70'夹设于所述第一、第二基板10'、30'之间。所述第一基板10'具有第一配向膜20'和第一透明电极50',而所述第二基板30'具有第二配向膜40'和第二透明电极60'。所述第一配向膜20'设于所述第一基板10'对应所述液晶层70'的一侧表面上,且第一透明电极50'设于所述第一配向膜20'上。所述第二配向膜40'设于所述第二基板30'对应所述液晶层70'的一侧表面上,且第二透明电极60'设于所述第二配向膜40'上。所述液晶层70'包含液晶分子701'和RM 702',所述液晶分子701'为负性液晶分子;而所述RM 702'具有与所述液晶分子701'一样的垂直电场方向排列的性质。请继续参见图2,其是图1在加电并进行紫外线(UV)光照固化后的液晶分子701'和RM702'的分布状态,在配向过程中,在第一透明电极50'和第二透明电极60'上施加电压,形成垂直于基板的电场,使靠近第一、第二配向膜20'、40'表面的液晶分子701'与RM 702'产生预倾角,但由于配向层的锚定作用,液晶分子701'与RM 702'只会沿电场方向稍微倾斜一个角度,而不会完全躺平。然后用UV照射液晶层70',使RM 702'的预倾角固定,完成配向过程。
虽然PSVA模式无摩擦配向工序,能够克服IPS模式中由于摩擦带来的静电问题及污染问题等。但,由于负性液晶材料的粘度大于正性液晶,因此导致PSVA模式的响应速度较慢。并且,由于需要分设上下两层电极,相比IPS模式,制备方法复杂。
因此,本发明提供一种新的显示技术,其可以克服IPS模式中摩擦配向所带来的污染及静电问题,又工序简单,使所制得的液晶面板和液晶显示器具有高对比度、高响应速度和宽可视角度等特点。
技术问题
本发明的第一个目的是提供一种液晶显示面板的制备工艺,结合IPS模式与PSVA模式的优点,既可以克服IPS模式中摩擦配向所带来的污染及静电问题,又工序简单,使所制得的液晶面板和液晶显示器具有高对比度、高响应速度和宽可视角度等特点。
本发明的第二个目的是提供一种液晶显示面板
术本发明的第三个目的是提供一种液晶显示器
技术解决方案
用含有RM和正性液晶的液晶组合物搭配VA模式中的垂直配向层,初始时RM和正性液晶分子的长轴均垂直于基板。电极设计为共面电极,所述共面电极形成横向电场后,会使RM和正性液晶分子在基板对应液晶组合物的一侧表面上受配向膜的作用而产生预倾角,通过UV照射液晶组合物,使维持预倾角的RM固化在所述表面,完成配向过程。
为实现上述目的,本发明公开以下技术方案:一种液晶显示面板的制备工艺,工艺流程包括以下步骤:
提供一第一基板和一第二基板,在所述第一基板上形成一第一配向膜,在所述第二基板上形成一第二配向膜;
在所述第二基板的第二配向膜上形成一共面透明电极层,所述共面透明电极层包含至少两个透明电极,所述透明电极之间具有狭缝;
将液晶组合物填充入所述第一基板与第二基板之间,所述液晶组合物接触所述第一配向膜、所述共面透明电极层和所述狭缝中第二配向膜;
在相邻的所述透明电极上分别施加不同极性的电压,形成与基板平行的电场,同时进行紫外线照射,完成液晶配向;以及
分别在所述第一、第二基板对应所述液晶组合物的另一侧表面上贴附偏光片后,形成液晶显示面板;
其中所述液晶组合物包含正性液晶分子和液晶活性单体。
在本发明一实施例中,所述第一配向膜和第二配向膜为垂直配向膜。
在本发明一实施例中,所述共面透明电极层由铟锡氧化物制成。
在本发明一实施例中,所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管(Thin Film Transistor,TFT)阵列基板。
在本发明一较佳实施例中,提供一种液晶显示面板的制备工艺,包括以下步骤:
提供一第一基板和一第二基板,在所述第一基板上形成一第一配向膜,在所述第二基板上形成一第二配向膜,其中,所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管阵列基板,所述第一配向膜和第二配向膜为垂直配向膜;
在所述第二基板的第二配向膜上形成一由铟锡氧化物制成的共面透明电极层,所述共面透明电极层包含至少两个透明电极,所述透明电极之间具有狭缝;
将液晶组合物填充入所述第一基板与第二基板之间以构成一液晶层,所述液晶层接触所述第一配向膜、所述共面透明电极层和所述狭缝中第二配向膜;其中所述液晶组合物包含正性液晶分子和液晶活性单体;
在相邻的所述透明电极上分别施加不同极性的电压,形成与基板平行的电场,使得液晶组合物的分子长轴沿着电场方向排列并形成预倾角;同时进行紫外线照射,完成液晶配向;以及
分别在所述第一、第二基板对应所述液晶层的另一侧表面上贴附偏光片后,形成液晶显示面板。
本发明的第二个目的是提供一种液晶显示面板,包括:
一第一基板,具有一第一配向膜;
一第二基板,具有一第二配向膜;
一共面透明电极层,设于所述第二基板的第二配向膜上,所述共面透明电极层包含至少两个透明电极,所述透明电极之间具有狭缝;以及
一液晶层,夹设于所述第一基板的第一配向膜侧和所述第二基板的共面透明电极层侧之间,所述液晶层由包含正性液晶分子和液晶活性单体的液晶组合物构成;
在所述第一配向膜和共面透明电极层对应液晶层的一侧表面上分别具有多個排列预倾角的液晶组合物。
在本发明一实施例中,所述第一配向膜和第二配向膜为垂直配向膜。
在本发明一实施例中,所述共面透明电极层由铟锡氧化物制成。
在本发明一实施例中,所述第一基板为彩色滤光片基板,所述第二基板为TFT阵列基板。
在本发明一较佳实施例中,提供一种液晶显示面板,包括:
一第一基板,具有一第一配向膜;
一第二基板,具有一第二配向膜;
一共面透明电极层,由铟锡氧化物制成,设于所述第二基板的第二配向膜上,所述共面透明电极层包含至少两个透明电极,所述透明电极之间具有狭缝;以及
一液晶层,夹设于所述第一基板的第一配向膜侧和所述第二基板的共面透明电极层侧之间,所述液晶层由包含正性液晶分子和液晶活性单体的液晶组合物构成;
在所述第一配向膜和共面透明电极层对应液晶层的一侧表面上分别具有多個排列预倾角的液晶组合物;
其中所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管阵列基板;所述第一配向膜和第二配向膜为垂直配向膜。
本发明的第三个目的是提供一种液晶显示器,包括上述任意一种液晶面板。
需要说明的是,液晶分子依其介电各向异性(Dielectric anisotropy)数值分为正性液晶分子、中性液晶分子和负性液晶分子。本发明中所述的正性液晶分子泛指介电各向异性为正值的液晶分子,当外加大于某一程度的电压时,正性液晶分子长轴会与电场方向平行排列。
有益效果
本发明结合了IPS模式与PSVA模式的优点,既可以克服IPS模式中摩擦配向所带来的污染及静电问题;又只需在一基板上配置透明电极,相比PSVA模式的双层透明电极,节约了制备工序。本发明的液晶面板和液晶显示器具有高对比度、高响应速度和宽可视角度等特点。
附图说明
图1是现有技术PSVA模式液晶显示面板在未加电时的液晶分子和RM的分布状态;
图2是现有技术PSVA模式液晶显示面板在加电并进行UV固化后的液晶分子和RM的分布状态;
图3是本发明一实施例中的液晶显示面板在未配向时的正性液晶分子和RM的分布状态;
图4是本发明一实施例中的液晶显示面板在配向过程中的正性液晶分子和RM的分布状态。
图中的标记所示如下:
10'为PSVA模式液晶显示面板的第一基板;
20'为PSVA模式液晶显示面板的第一配向膜;
30'为PSVA模式液晶显示面板的第二基板;
40'为PSVA模式液晶显示面板的第二配向膜;
50'为PSVA模式液晶显示面板的第一透明电极;
60'为PSVA模式液晶显示面板的第二透明电极;
70'为PSVA模式液晶显示面板的液晶层;701'为PSVA模式液晶显示面板的负性液晶分子;702'为PSVA模式液晶显示面板的反应型液晶活性单体(RM);
10为第一基板;20为第一配向膜;
30为第二基板;40为第二配向膜;
50 为共面透明电极层;501为透明电极;502为透明电极间的狭缝;
60为液晶层;601为正性液晶分子;602为液晶活性单体;
70为第一偏光片;80为第二偏光片。
本发明的最佳实施方式
以下结合实施例对本发明做详细的说明,实施例旨在解释而非限定本发明的技术方案。
请参见附图3,附图3所示的是本实施例的一种液晶显示面板的在未配向时的剖视图,所述液晶显示面板包括一第一基板10、一第二基板30、一第一配向膜20、一第二配向膜40、一共面透明电极层50、一液晶层60、一第一偏光片70和一第二偏光片80。其中所述第一基板10与所述第二基板30相对设置。所述第一配向膜20设置于所述第一基板10对应液晶层60的一侧表面上,而所述第二配向膜40设置于所述第二基板30对应液晶层60的一侧表面上,所述第一、第二配向膜30、40均为垂直配向膜。所述共面透明电极层50是由铟锡氧化物制成,设于所述第二基板30的第二配向膜40上,所述共面透明电极层50包含至少两个共面平行放置的透明电极501,所述透明电极501之间具有狭缝502,如附图3所示的,在本实施例中所述共面透明电极层50包含两个共面平行放置的所述透明电极501,其中一透明电极501(图中左侧)用作正极、另一透明电极501(图中右侧)用作负极。所述液晶层60夹设于所述第一基板10的第一配向膜20侧和所述第二基板30的共面透明电极层50侧之间,由包含正性液晶分子601和液晶活性单体602的液晶组合物构成。所述第一偏光片70位于所述第一基板10的对应所述液晶层60的另一侧表面上,而所述第二偏光片80位于所述第二基板30的对应所述液晶层60的另一侧表面上。
请继续参见附图3,由于本发明采用了正性液晶分子601、液晶活性单体602以及垂直配向膜,使得初始状态(不通电状态)下正性液晶分子401和液晶活性单体402的长轴均垂直于所述第一、第二基板10、30,从而形成暗态。
本实施例还提供上述液晶显示面板的制备工艺流程,包括以下步骤:
提供一第一基板10和一第二基板30,所述第一基板10为彩色滤光片(Color Filter,CF)基板,所述第二基板30为TFT阵列基板,上述第一、第二基板10、30的制备方法采用本领域常规方法,此处不再详述;
在所述第一基板10上形成第一配向膜20,在所述第二基板30上形成第二配向膜40,所述第一配向膜20和第二配向膜40均为垂直配向膜,形成所述第一配向膜20和第二配向膜40的方法采用本领域常规方法,此处不再详述;
在所述第二基板30的第二配向膜40上形成一共面透明电极层50,所述共面透明电极层50包含至少两个共面平行放置的透明电极501,所述透明电极501之间具有狭缝502。如附图3所示的,在本实施例中所述共面透明电极层50包含两个共面平行放置的所述透明电极501,其中一透明电极501(图中左侧)用作正极、另一透明电极501(图中右侧)用作负极;所述透明电极501为铟锡氧化物(Indium Tin Oxide,ITO)电极,形成所述透明电极501的方法采用本领域常规方法,此处不再详述;
将由正性液晶分子601和液晶活性单体602所构成的液晶组合物填充入所述第一基板10与第二基板30之间,构成一液晶层60,而所述液晶层60接触所述第一配向膜30、所述共面透明电极层50和所述狭缝502中所裸露的第二配向膜40的表面;
在相邻的所述透明电极501上分别施加不同极性的电压,形成与第一、第二基板10、30平行的电场,同时进行紫外线照射,完成液晶配向;以及
分别在所述第一基板10、第二基板30对应所述液晶层60的另一侧表面上贴附第一偏光片70和第二偏光片80后,形成液晶显示面板。
请参见附图4,附图4所示的是本实施例中的配向过程。在所述第二基板30的相邻透明电极501上施加不同极性的电压(图中左侧透明电极501为正极,右侧透明电极501为负极),形成与第一、第二基板10、30平行的电场,使得正性液晶分子601与液晶活性单体602的长轴沿着电场方向排列;而靠近配向膜20和40表面的正性液晶分子601和液晶活性单体602在垂直配向膜的锚定作用下,沿电场方向产生预倾角;再经由紫外线光照后,使液晶活性单体602分别固化在所述第一配向膜20和共面透明电极层50对应液晶层60的一侧表面上,使液晶活性单体602的预倾角固化。
本发明结合了IPS模式与PSVA模式的优点,利用正性液晶分子和液晶活性单体、垂直配向膜和共面透明电极层,在通电并紫外线光照的条件下完成配向过程,克服了IPS模式中摩擦配向所带来的污染及静电问题。另外,因为采用共面透明电极层,因此只需在一基板上配置透明电极即可,相比于PSVA模式的双层透明电极,节约了制备工序。除此之外,本发明的液晶面板和液晶显示器还具有高对比度、高响应速度和宽可视角度等特点。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (10)

  1. 一种液晶显示面板的制备工艺,所述制备工艺流程包括以下步骤:
    提供一第一基板和一第二基板,在所述第一基板上形成一第一配向膜,在所述第二基板上形成一第二配向膜;
    在所述第二基板的第二配向膜上形成一共面透明电极层,所述共面透明电极层包含至少两个透明电极,所述透明电极之间具有狭缝;
    将液晶组合物填充入所述第一基板与第二基板之间以构成一液晶层,所述液晶层接触所述第一配向膜、所述共面透明电极层和所述狭缝中第二配向膜;其中所述液晶组合物包含正性液晶分子和液晶活性单体;
    在相邻的所述透明电极上分别施加不同极性的电压,形成与基板平行的电场,使得液晶组合物的分子长轴沿着电场方向排列并形成预倾角;同时进行紫外线照射,完成液晶配向;以及
    分别在所述第一、第二基板对应所述液晶层的另一侧表面上贴附偏光片后,形成液晶显示面板。
  2. 根据权利要求1所述的制备工艺,其中,所述第一配向膜和第二配向膜为垂直配向膜。
  3. 根据权利要求1或2所述的制备工艺,其中,所述共面透明电极层由铟锡氧化物制成。
  4. 根据权利要求1或2所述的制备工艺,其中,所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管阵列基板。
  5. 一种液晶显示面板的制备工艺,所述制备工艺流程包括以下步骤:
    提供一第一基板和一第二基板,在所述第一基板上形成一第一配向膜,在所述第二基板上形成一第二配向膜,其中,所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管阵列基板,所述第一配向膜和第二配向膜为垂直配向膜;
    在所述第二基板的第二配向膜上形成一由铟锡氧化物制成的共面透明电极层,所述共面透明电极层包含至少两个透明电极,所述透明电极之间具有狭缝;
    将液晶组合物填充入所述第一基板与第二基板之间以构成一液晶层,所述液晶层接触所述第一配向膜、所述共面透明电极层和所述狭缝中第二配向膜;其中所述液晶组合物包含正性液晶分子和液晶活性单体;
    在相邻的所述透明电极上分别施加不同极性的电压,形成与基板平行的电场,使得液晶组合物的分子长轴沿着电场方向排列并形成预倾角;同时进行紫外线照射,完成液晶配向;以及
    分别在所述第一、第二基板对应所述液晶层的另一侧表面上贴附偏光片后,形成液晶显示面板。
  6. 一种液晶显示面板,所述液晶显示面板包括:
    一第一基板,具有一第一配向膜;
    一第二基板,具有一第二配向膜;
    一共面透明电极层,设于所述第二基板的第二配向膜上,所述共面透明电极层包含至少两个透明电极,所述透明电极之间具有狭缝;以及
    一液晶层,夹设于所述第一基板的第一配向膜侧和所述第二基板的共面透明电极层侧之间,所述液晶层由包含正性液晶分子和液晶活性单体的液晶组合物构成;
    在所述第一配向膜和共面透明电极层对应液晶层的一侧表面上分别具有多個排列预倾角的液晶组合物。
  7. 根据权利要求6所述的液晶显示面板,其中,所述第一配向膜和第二配向膜为垂直配向膜。
  8. 根据权利要求6或7所述的液晶显示面板,其中,所述共面透明电极层由铟锡氧化物制成。
  9. 根据权利要求6或7所述的液晶显示面板,其中,所述第一基板为彩色滤光片基板,所述第二基板为薄膜晶体管阵列基板。
  10. 权利要求6~8中任一所述液晶面板在液晶显示器中的应用。
PCT/CN2012/077710 2012-06-06 2012-06-28 一种液晶显示面板及其制备工艺和显示器 WO2013181869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/636,652 US20130329151A1 (en) 2012-06-06 2012-06-28 Liquid crystal panel, manufacturing process and display device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210184639.0 2012-06-06
CN2012101846390A CN102722052A (zh) 2012-06-06 2012-06-06 一种液晶显示面板及其制备工艺和显示器

Publications (1)

Publication Number Publication Date
WO2013181869A1 true WO2013181869A1 (zh) 2013-12-12

Family

ID=46947860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077710 WO2013181869A1 (zh) 2012-06-06 2012-06-28 一种液晶显示面板及其制备工艺和显示器

Country Status (3)

Country Link
US (1) US20130329151A1 (zh)
CN (1) CN102722052A (zh)
WO (1) WO2013181869A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809853A (zh) * 2012-08-10 2012-12-05 深圳市华星光电技术有限公司 液晶显示面板及其制作方法
TWI486691B (zh) * 2013-03-15 2015-06-01 Ye Xin Technology Consulting Co Ltd 液晶光配向方法
CN104865771B (zh) * 2015-06-18 2019-03-15 京东方科技集团股份有限公司 显示装置、液晶透镜及其制作方法
CN105093701B (zh) * 2015-09-18 2019-03-15 京东方科技集团股份有限公司 液晶取向层的制作方法、液晶取向层和显示装置
CN105204231B (zh) * 2015-10-13 2019-02-22 深圳市华星光电技术有限公司 液晶面板及其制造方法
CN110068960A (zh) * 2019-04-04 2019-07-30 深圳市华星光电技术有限公司 聚集物稳定垂直配向液晶显示面板的制造方法
CN110308594A (zh) * 2019-07-18 2019-10-08 新辉开科技(深圳)有限公司 一种液晶显示器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128486A1 (en) * 2009-11-27 2011-06-02 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Liquid crystal display and manufacturing method thereof
CN102282506A (zh) * 2009-05-27 2011-12-14 夏普株式会社 液晶显示装置
CN102279486A (zh) * 2010-06-08 2011-12-14 统炀企业有限公司 液晶配向层的形成方法
TW201219932A (en) * 2010-07-27 2012-05-16 Merck Patent Gmbh Liquid crystal display and method for preparation thereof
CN102472932A (zh) * 2009-07-31 2012-05-23 夏普株式会社 液晶面板和液晶显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120042169A (ko) * 2010-10-22 2012-05-03 삼성모바일디스플레이주식회사 액정 표시 장치 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282506A (zh) * 2009-05-27 2011-12-14 夏普株式会社 液晶显示装置
CN102472932A (zh) * 2009-07-31 2012-05-23 夏普株式会社 液晶面板和液晶显示装置
US20110128486A1 (en) * 2009-11-27 2011-06-02 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Liquid crystal display and manufacturing method thereof
CN102279486A (zh) * 2010-06-08 2011-12-14 统炀企业有限公司 液晶配向层的形成方法
TW201219932A (en) * 2010-07-27 2012-05-16 Merck Patent Gmbh Liquid crystal display and method for preparation thereof

Also Published As

Publication number Publication date
US20130329151A1 (en) 2013-12-12
CN102722052A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2013181869A1 (zh) 一种液晶显示面板及其制备工艺和显示器
US9122109B2 (en) Blue phase liquid crystal display device and manufacturing method thereof
WO2013174040A1 (zh) 液晶显示面板及其应用的显示装置
US8339556B2 (en) Electro-optical device and display device with interdigital electrode portions on at least first and second substrates which are non-overlapping in a direction normal to the substrates
WO2017179940A1 (ko) 투과도 가변 필름
WO2014008699A1 (zh) 液晶显示面板及其应用的显示装置
ITUD980090A1 (it) Metodo di produzione di due domini all'interno di uno strato di cristallo liquido, un dispositivo di visualizzazione a
KR100631752B1 (ko) 광학 필름
WO2014067197A1 (zh) 液晶显示面板及其应用的显示装置
WO2013174020A1 (zh) 液晶显示面板及其应用的显示装置
JP5236529B2 (ja) 電気光学素子および表示装置
WO2013174022A1 (zh) 液晶显示面板及其应用的显示装置
WO2013174029A1 (zh) 液晶面板及其液晶配向方法
WO2014110839A1 (zh) 液晶显示器
KR20150010042A (ko) 액정 표시 장치
WO2005031447A1 (ja) 液晶表示素子
KR101102026B1 (ko) 액정표시장치와 그 제조방법
WO2013029241A1 (zh) 液晶显示面板及其应用的显示装置
WO2013174012A1 (zh) 液晶显示面板及其应用的显示装置
WO2012011443A1 (ja) 液晶パネルおよび液晶表示装置
WO2013174042A1 (zh) 液晶显示面板的制作方法
KR101027876B1 (ko) 면내 스위칭 모드의 액정표시장치와 그 제조방법
CN106125406B (zh) 一种窄视角显示的垂直取向液晶显示器
KR100646982B1 (ko) 액정 표시 장치의 배향막 형성 방법
WO2013185383A1 (zh) 一种平面切换模式液晶显示面板及其制备工艺和显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13636652

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878314

Country of ref document: EP

Kind code of ref document: A1