WO2017122665A1 - 間欠連結型光ファイバテープ心線および光ケーブル - Google Patents

間欠連結型光ファイバテープ心線および光ケーブル Download PDF

Info

Publication number
WO2017122665A1
WO2017122665A1 PCT/JP2017/000604 JP2017000604W WO2017122665A1 WO 2017122665 A1 WO2017122665 A1 WO 2017122665A1 JP 2017000604 W JP2017000604 W JP 2017000604W WO 2017122665 A1 WO2017122665 A1 WO 2017122665A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
intermittently connected
longitudinal direction
intermittently
fiber ribbon
Prior art date
Application number
PCT/JP2017/000604
Other languages
English (en)
French (fr)
Inventor
佐藤 文昭
健太 土屋
岡田 圭輔
美昭 長尾
鈴木 叙之
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP17738419.5A priority Critical patent/EP3404462B1/en
Priority to AU2017207081A priority patent/AU2017207081B2/en
Priority to CN201780006718.3A priority patent/CN108463758B/zh
Priority to US15/771,797 priority patent/US10488609B2/en
Publication of WO2017122665A1 publication Critical patent/WO2017122665A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • G02B6/4409Optical cables with internal fluted support member for ribbons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking

Definitions

  • the present invention relates to an intermittently connected optical fiber ribbon and an optical cable.
  • Patent Documents 1 and 2 disclose intermittently connected optical fiber ribbons in which non-connected portions (slits) are intermittently formed in the longitudinal direction.
  • the intermittently connected optical fiber ribbon according to one aspect of the present disclosure is covered with a connection resin in a state where a plurality of optical fiber cores are arranged in parallel, and adjacent optical fiber cores are connected to each other.
  • a connecting portion and a non-connecting portion in which adjacent optical fiber lines are not connected are intermittently provided in the longitudinal direction, and the non-connecting portion is provided in the longitudinal direction between at least some of the optical fibers.
  • the connecting portion is recessed,
  • the length of the connecting portion in the longitudinal direction is a
  • the length of the portion where the non-connecting portions between different optical fiber cores overlap in the longitudinal direction is b
  • the length of the non-connecting portion in the longitudinal direction is c
  • the longitudinal direction When the interval between the connecting portions is p, c / a ⁇ 1.5, b ⁇ 50 mm, (c / a) ⁇ p ⁇ 200 mm It is.
  • An optical cable according to an aspect of the present disclosure is an optical cable having a cylindrical tube and a plurality of the intermittently connected optical fiber ribbons, The plurality of intermittently connected optical fiber ribbons are covered with the tube in a bundled state.
  • An optical cable according to another aspect of the present disclosure is an optical cable having a slot rod having a plurality of slot grooves and a plurality of the intermittently connected optical fiber ribbons.
  • the plurality of intermittently connected optical fiber ribbons are respectively housed in the slot grooves.
  • the unconnected portion may be longer than the connected portion, and the proportion of the unconnected portion may be larger.
  • the flexibility as a tape increases as the proportion of the unconnected portion increases, it is possible to suppress the deterioration of the transmission characteristics of the optical fiber.
  • the proportion of the unconnected portion is increased, the optical fiber core wire is likely to be separated. For this reason, when such a tape core is set in a fuser holder for fusion splicing, the optical fiber core is moved and the arrangement of the optical fiber core is switched or the optical fiber core is displaced from the groove of the holder. There is a risk that problems may occur at the time of fusion splicing when riding on the connecting part.
  • an object of the present disclosure is to provide an intermittently connected optical fiber ribbon and an optical cable that can suppress the deterioration of transmission characteristics of an optical fiber and can prevent occurrence of problems during fusion splicing. It is to provide.
  • the present disclosure it is possible to suppress the deterioration of the transmission characteristics of the optical fiber, and it is possible to prevent the occurrence of problems at the time of fusion splicing.
  • the intermittently connected optical fiber ribbon according to the embodiment of the present invention, (1) A plurality of optical fiber core wires are covered with a connecting resin in a state where they are arranged in parallel, and a connection portion where adjacent optical fiber core wires are connected and an adjacent optical fiber wire are connected.
  • the non-connected portion is intermittently provided in the longitudinal direction, and the non-connected portion is not provided in the longitudinal direction between at least some of the optical fibers.
  • the connecting portion is recessed,
  • the length of the connecting portion in the longitudinal direction is a
  • the length of the portion where the non-connecting portions between different optical fiber cores overlap in the longitudinal direction is b
  • the length of the non-connecting portion in the longitudinal direction is c
  • the longitudinal direction When the interval between the connecting portions is p, c / a ⁇ 1.5, b ⁇ 50 mm, (c / a) ⁇ p ⁇ 200 mm It is.
  • the value of (c / a) ⁇ p is 400 mm or more. Thereby, the deterioration of the transmission characteristic of an optical fiber can further be suppressed.
  • An optical cable according to an embodiment of the present invention is (4) An optical cable having a cylindrical tube and a plurality of intermittently connected optical fiber ribbons according to any one of (1) to (3), The plurality of intermittently connected optical fiber ribbons are covered with the tube in a bundled state. Deterioration of the transmission characteristics of the optical cable covered with the cylindrical tube can be suppressed, and the occurrence of problems at the time of fusion splicing can be prevented.
  • the plurality of intermittently connected optical fiber ribbons are respectively housed in the slot grooves.
  • the optical cable in which the intermittently connected optical fiber ribbon is housed in the slot groove it is possible to suppress the deterioration of the transmission characteristics and to prevent the occurrence of problems at the time of fusion splicing.
  • FIG. 1A is a plan view showing an example of the configuration of an intermittently connected optical fiber ribbon according to this embodiment.
  • 1B is a cross-sectional view of the position A1 in FIG. 1A.
  • the intermittently connected optical fiber ribbon 1 has a plurality (12 in the example of FIGS. 1A and 1B) of optical fibers 11 to 22 arranged in parallel.
  • the optical fiber core wires 11 to 22 are single-core coated optical fibers.
  • the optical fiber cores 11 to 22 may be coated with different colors so that the optical fiber cores can be distinguished from each other.
  • the surface of the plurality of optical fiber cores 11 to 22 arranged in parallel is coated with a connecting resin 2 for connecting the optical fiber cores to each other, and the optical fiber cores 11 to 22 are tape-shaped. Are aligned in parallel.
  • the connecting resin 2 is, for example, an ultraviolet curable resin, a thermosetting resin, or the like.
  • the connecting resin 2 is preferably a resin having good peelability in order to facilitate the operation of separating the single fibers of the optical fiber core wires 11 to 22.
  • connection resin 4 connects the adjacent optical fiber cores with the connection resin 2, and the non-connected portion 3 does not connect the adjacent optical fiber lines.
  • the connecting portion 4 is recessed.
  • the non-connecting portion 3 is not provided in the longitudinal direction between at least two of the optical fibers.
  • the unconnected portion 3 is provided between each of the optical fiber core wires 11 and 12, 13 and 14, 15 and 16, 17 and 18, 19 and 20, and 21 and 22. Absent.
  • a general intermittently connected optical fiber ribbon has a higher flexibility as the proportion of unconnected portions is larger, and can suppress deterioration in transmission characteristics of the optical fiber.
  • the greater the proportion of the unconnected portion the more easily the optical fiber cores are separated, and the optical fiber core wire is likely to move when being set in the holder of the fusion splicer during fusion splicing. For this reason, the following problems occur, and the fusion-splicing between the optical fiber ribbons cannot be performed normally.
  • 2A, 2B, and 2C will be described with reference to examples of problems that occur when a conventional intermittently connected optical fiber ribbon is set in a holder of a fusion machine during fusion connection.
  • 2A, 2B, and 2C schematically show each event of a malfunction that occurs when the conventional intermittently connected optical fiber ribbon 100 is set in the fuser holder 200 at the time of fusion splicing.
  • single-core optical fiber cores 101 to 104 are arranged in parallel, and between all the optical fiber cores, for ease of explanation. It is assumed that the non-connecting portion 110 is provided intermittently.
  • event example 1 shown in FIG. 2A is an event in which the optical fiber core wire 101 adjacent to the connecting portion 120 rides on the connecting portion 120 when the optical fiber ribbon 100 is set in the holder 200.
  • event example 2 shown in FIG. 2B when the optical fiber ribbon 100 is set in the holder 200, the arrangement of the optical fibers 101 and 102 between adjacent optical fibers intersects in the holder 200.
  • event. 2C is an event in which the optical fiber core wire 101 is detached from the groove of the holder 200.
  • the present inventors can suppress the deterioration of the transmission characteristics of the optical fiber core and prevent a problem at the time of fusion splicing between the optical fiber ribbons.
  • Experiments were conducted on possible structures. Details of the experiment are shown in the examples described later.
  • the intermittently connected optical fiber ribbon 1 shown in FIG. 1 has a specific range of structural factors, the deterioration of the transmission characteristics of the optical fiber is suppressed, and the optical fiber ribbons are fused. It has been found that problems during connection can be prevented.
  • an intermittently connected optical fiber ribbon is focused on the fact that the connecting portion and the non-connecting portion of the optical fiber core wire are continuously provided alternately at the same pitch in the longitudinal direction. The following parameters were considered.
  • the length in the longitudinal direction of the connecting portion is a
  • the length of the portion where the unconnected portions between the different optical fiber cores overlap in the longitudinal direction is b
  • the length in the longitudinal direction of the unconnected portion is c
  • the interval (pitch) p at which the connecting portions in the longitudinal direction are provided, and the ratio (non-connecting portion ratio) of the unconnected portions in the longitudinal direction of the optical fiber core wire are defined as c / a.
  • the intermittently connected optical fiber ribbon 1 has a structure that satisfies the conditions of c / a ⁇ 1.5, b ⁇ 50 mm, and (c / a) ⁇ p ⁇ 200 mm with respect to the above parameters. Shall be. Furthermore, in order to make the fusion splicing more reliable, the intermittently connected optical fiber ribbon 1 has two adjacent ones in the longitudinal direction (in this case, the connecting portion 4) as shown in FIG. 1B. The optical fibers are preferably connected by the connecting resin 2 so that the optical fibers are in contact with each other.
  • FIG. 3 is a diagram showing an example of a slotless optical cable using the intermittently connected optical fiber ribbon 1 of the present embodiment.
  • FIG. 4 is a diagram illustrating an example of a tape slot type optical cable using the intermittently connected optical fiber ribbon 1 of the present embodiment.
  • the optical cable shown in FIG. 3 is a slotless optical cable 30 having a cylindrical tube 32 and a plurality of intermittently connected optical fiber ribbons 1.
  • the plurality of intermittently connected optical fiber ribbons 1 are bundled with an intervening 31 such as an aramid fiber. If water resistance is required, a water absorbing yarn may be inserted.
  • a resin to be a tube 32 is extruded and formed around it, and the outer member 34 is covered with the tension member 33.
  • resin used as the said tube 32 hard materials, such as PBT and HDPE, are used, for example.
  • Reference numeral 35 denotes a tear string.
  • the optical cable shown in FIG. 4 is a slot rod 44 having a plurality of slot grooves 41 and a tape slot optical cable 40 having an intermittently connected optical fiber ribbon 1.
  • the optical cable 40 has a structure in which the slot grooves 41 are radially provided in a slot rod 44 having a tension member 42 in the center.
  • the plurality of intermittently connected optical fiber ribbons 1 are housed in a stacked state in the plurality of slot grooves 41, respectively.
  • a jacket 43 is formed around the slot rod 44.
  • Example 1 (the length in the longitudinal direction of the connecting portion), b (the length of the portion where the non-connecting portions between the different optical fiber cores overlap in the longitudinal direction), c (the length in the longitudinal direction of the non-connecting portion)
  • Intermittently connected optical fiber ribbons (tape Nos. 1 to 24) with different parameters were made as prototypes. Then, the transmission characteristics due to the transmission loss measured by using these intermittently connected optical fiber ribbons in a 432 slotless optical cable 30 and the failure at the time of fusion splicing between the optical fiber ribbons are investigated. did. The results are shown in Table 1 below.
  • the transmission loss of 1 to 24 has a minimum value of 0.19 dB / km, and the transmission loss has a low level of 0.19 dB / km to 0.21 dB / km near this minimum value, and this 0.21 dB / km. It was found that there are high levels of 0.80 dB / km to 1.20 dB / km that greatly exceed km. Here, it is assumed that the transmission characteristic is acceptable for the low level. A product with a transmission loss of 0.21 dB / km or less and no defect at the time of fusion splicing was regarded as an acceptable product.
  • Tape No. in Table 1 Among the 1 to 24, the above-mentioned acceptable products are No. 7, 8, 10 to 12, 14 to 19, and 21 to 23. All the tapes (tape Nos. 1 to 4) in which the unconnected portion ratio c / a is 1 have the transmission loss at the above-mentioned high level. When the tape has a c / a of 1.5 or more, the above-mentioned low level exists. Further, when paying attention to (c / a) ⁇ p, the transmission loss of the tapes of less than 200 mm (tape Nos. 9 and 13) is at the above-described high level.
  • the failure at the time of fusion splicing is considered to be related to the parameter b (the length of the portion where the unconnected portions between different optical fiber cores overlap in the longitudinal direction).
  • b the length of the portion where the unconnected portions between different optical fiber cores overlap in the longitudinal direction.
  • tape No. with b 60 mm.
  • Tape No. 9 and b are 67 mm.
  • No. 13 caused a problem during fusion splicing.
  • all the tapes with b 50 mm or less did not cause any problems during fusion splicing.
  • the acceptable tape satisfies the conditions of c / a ⁇ 1.5, b ⁇ 50 mm, and (c / a) ⁇ p ⁇ 200 mm.
  • the intermittently connected optical fiber ribbon 1 according to the present embodiment satisfies the above-described conditions for an acceptable product.
  • those satisfying the condition of (c / a) ⁇ p ⁇ 400 mm have a transmission loss of 0.20 dB / km or less, and can further suppress the deterioration of the transmission characteristics of the optical fiber. .
  • the optical fiber core As described above, according to the intermittently connected optical fiber ribbon 1 according to the present embodiment described in detail, by setting c / a ⁇ 1.5 and (c / a) ⁇ p ⁇ 200 mm, the optical fiber core The deterioration of the transmission characteristics of the wires 11 to 22 can be suppressed, and by setting b ⁇ 50 mm, it is possible to prevent a problem from occurring when the intermittently connected optical fiber ribbon 1 is fused. .
  • the intermittently connected optical fiber ribbon 1 preferably has a value of (c / a) ⁇ p of 400 mm or more, and further suppresses the deterioration of the transmission characteristics of the optical fibers 11 to 22. it can.
  • the intermittently connected optical fiber ribbon 1 is formed by connecting two optical fibers adjacent to each other in the longitudinal direction so that the optical fibers are in contact with each other in order to ensure fusion-bonding. 2 are preferably connected.
  • the intermittently connected optical fiber ribbons 1 are bundled and covered with the cylindrical tube 32, so that deterioration of the transmission characteristics of the optical cable 30 can be suppressed. Further, when the intermittently connected optical fiber ribbon 1 is taken out and fusion-bonded, the occurrence of problems can be prevented.
  • the intermittently connected optical fiber ribbon 1 is accommodated in the slot groove 41, it is possible to suppress the deterioration of the transmission characteristics of the optical cable 40. Further, when the intermittently connected optical fiber ribbon 1 is taken out and fusion-bonded, the occurrence of problems can be prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

複数の光ファイバ心線が並列に配置された状態で連結樹脂に覆われており、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ線間が連結されていない非連結部とが長手方向に間欠的に設けられ、少なくとも一部の光ファイバ心線二心間には長手方向に非連結部が設けられていない間欠連結型光ファイバテープ心線であって、前記連結部は窪んでおり、連結部の長手方向の長さをa、異なる光ファイバ心線間の非連結部が長手方向で重なる部分の長さをb、非連結部の長手方向の長さをc、長手方向の連結部の間隔をpとした場合、c/a≧1.5、b≦50mm、(c/a)×p≧200mmである。

Description

間欠連結型光ファイバテープ心線および光ケーブル
 本発明は、間欠連結型光ファイバテープ心線および光ケーブルに関する。
 本出願は、2016年1月13日出願の日本出願特願2016-4683号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1、2には、長手方向に間欠的に非連結部(スリット)を形成した間欠連結型光ファイバテープ心線が開示されている。
日本国特開2007-279226号公報 日本国特開2010-8923号公報
 本開示の一態様に係る間欠連結型光ファイバテープ心線は、複数の光ファイバ心線が並列に配置された状態で連結樹脂に覆われており、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ線間が連結されていない非連結部とが長手方向に間欠的に設けられ、少なくとも一部の光ファイバ心線の二心間には長手方向に前記非連結部が設けられていない間欠連結型光ファイバテープ心線であって、
 前記連結部は窪んでおり、
 前記連結部の長手方向の長さをa、異なる光ファイバ心線間の前記非連結部が長手方向で重なる部分の長さをb、前記非連結部の長手方向の長さをc、長手方向の前記連結部の間隔をpとした場合、
 c/a≧1.5、b≦50mm、(c/a)×p≧200mm
 である。
 本開示の一態様に係る光ケーブルは、円筒型のチューブと、複数の上記間欠連結型光ファイバテープ心線と、を有する光ケーブルであって、
 前記複数の間欠連結型光ファイバテープ心線は、束ねられた状態で前記チューブに覆われている。
 また、本開示の他の一態様に係る光ケーブルは、複数のスロット溝を有するスロットロッドと、複数の上記間欠連結型光ファイバテープ心線と、を有する光ケーブルであって、
 前記複数の間欠連結型光ファイバテープ心線は、前記スロット溝にそれぞれ収納されている。
本実施形態に係る間欠連結型光ファイバテープ心線の構成の一例を示す平面図である。 本実施形態に係る間欠連結型光ファイバテープ心線の構成の一例を示す断面図である。 一般的な間欠連結型の光ファイバテープ心線を融着接続時に融着機のホルダにセットする際の不具合の事象例1の説明図である。 一般的な間欠連結型の光ファイバテープ心線を融着接続時に融着機のホルダにセットする際の不具合の事象例2の説明図である。 一般的な間欠連結型の光ファイバテープ心線を融着接続時に融着機のホルダにセットする際の不具合の事象例3の説明図である。 本実施形態の間欠連結型光ファイバテープ心線を使用したスロットレス型の光ケーブルの一例を示す図である。 本実施形態の間欠連結型光ファイバテープ心線を使用したテープスロット型の光ケーブルの一例を示す図である。
[本開示が解決しようとする課題]
 例えば、上記特許文献1、2に記載された間欠連結型光ファイバテープ心線において、非連結部の方が連結部より長く、非連結部の割合が大きくなっている場合がある。このように、非連結部の割合を大きくするほどテープとしての柔軟性が上がるため、光ファイバの伝送特性の悪化を抑えることができる。ところが、非連結部の割合が大きくなると、光ファイバ心線がばらばらになりやすくなる。このため、このようなテープ心線を融着接続するために融着機のホルダにセットする際、光ファイバ心線が動いて、光ファイバ心線の配列が入れ替わったり、ホルダの溝からはずれたり、連結部に乗り上げたりして、融着接続時の不具合が発生するおそれがある。
 そこで、本開示の目的は、光ファイバの伝送特性の悪化を抑制することができ、かつ、融着接続時の不具合の発生を防止することができる、間欠連結型光ファイバテープ心線および光ケーブルを提供することにある。
[本開示の効果]
 本開示によれば、光ファイバの伝送特性の悪化を抑制することができ、かつ、融着接続時の不具合の発生を防止することができる。
[本発明の実施形態の説明]
 最初に本発明の実施形態を列記して説明する。
 本発明の実施形態に係る間欠連結型光ファイバテープ心線は、
 (1) 複数の光ファイバ心線が並列に配置された状態で連結樹脂に覆われており、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ線間が連結されていない非連結部とが長手方向に間欠的に設けられ、少なくとも一部の光ファイバ心線の二心間には長手方向に前記非連結部が設けられていない間欠連結型光ファイバテープ心線であって、
 前記連結部は窪んでおり、
 前記連結部の長手方向の長さをa、異なる光ファイバ心線間の前記非連結部が長手方向で重なる部分の長さをb、前記非連結部の長手方向の長さをc、長手方向の前記連結部の間隔をpとした場合、
 c/a≧1.5、b≦50mm、(c/a)×p≧200mm
 である。
 上記のように、c/a≧1.5、かつ、(c/a)×p≧200mmとすることにより、光ファイバの伝送特性の悪化を抑制することができ、かつ、b≦50mmとすることにより、融着接続時の不具合の発生を防止することができる。
 また、連結部が窪んでいることにより単心分離しやすくすることができる。
 (2) (1)の間欠連結型光ファイバテープ心線において、前記(c/a)×pの値が400mm以上である。これにより、光ファイバの伝送特性の悪化をさらに抑制することができる。
 (3) (1)または(2)の間欠連結型光ファイバテープ心線において、隣接する二本の光ファイバが長手方向の一部で接する。
 隣接する二本の光ファイバが接していることにより、隣接する光ファイバの間隔を一定にできるため、融着接続をより確実にすることができる。また、隣接する光ファイバ心線同士の一部が接するように配置することにより、光ファイバテープ心線の断面積を小さくすることができ、光ケーブルの多心化を図ることができる。
 本発明の実施形態に係る光ケーブルは、
 (4) 円筒型のチューブと、上記(1)から(3)のいずれか一の複数の間欠連結型光ファイバテープ心線と、を有する光ケーブルであって、
 前記複数の間欠連結型光ファイバテープ心線は、束ねられた状態で前記チューブに覆われている。
 円筒型のチューブで覆われた光ケーブルの伝送特性の悪化を抑制することができ、かつ、融着接続時の不具合の発生を防止することができる。
 (5) 複数のスロット溝を有するスロットロッドと、上記(1)から(3)のいずれか一の複数の間欠連結型光ファイバテープ心線と、を有する光ケーブルであって、
 前記複数の間欠連結型光ファイバテープ心線は、前記スロット溝にそれぞれ収納されている。
 間欠連結型光ファイバテープ心線がスロット溝に収納された光ケーブルにおいて、伝送特性の悪化を抑制することができ、かつ、融着接続時の不具合の発生を防止することができる。
[本発明の実施形態の詳細]
 本発明の実施形態に係る間欠連結型光ファイバテープ心線および光ケーブルの具体例を、以下に図面を参照しつつ説明する。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1Aは、本実施形態に係る間欠連結型光ファイバテープ心線の構成の一例を示す平面図である。図1Bは、図1AにおけるA1の位置の断面図である。
 図1A,図1Bに示すように、間欠連結型光ファイバテープ心線1は、複数(図1A,図1Bの例では、12本)の光ファイバ心線11~22が並列に配置されている。この光ファイバ心線11~22は、単心の被覆光ファイバである。なお、光ファイバ心線11~22は、光ファイバ心線同士を識別できるように、それぞれ異なる色に被覆が着色されていてもよい。
 そして、並列に配置された複数の光ファイバ心線11~22の表面には、光ファイバ心線同士を連結させるための連結樹脂2が塗布されており、光ファイバ心線11~22がテープ状に並列に整列されている。連結樹脂2は、例えば、紫外線硬化型樹脂、熱硬化型樹脂等である。なお、連結樹脂2は、光ファイバ心線11~22の単心分離の作業を容易にするため、剥離性の良い樹脂とすることが好ましい。
 間欠連結型光ファイバテープ心線1においては、上記連結樹脂2によって、隣接する光ファイバ心線間が連結された連結部4と、隣接する光ファイバ線間が連結されていない非連結部3とが長手方向に間欠的に設けられており、連結部4は窪んでいる。そして、少なくとも一部の光ファイバ心線の二心間には長手方向に非連結部3が設けられていないようになっている。例えば、図1の例においては、光ファイバ心線11と12、13と14、15と16、17と18、19と20、21と22、の各線間には非連結部3が設けられていない。
 一般的な間欠連結型の光ファイバテープ心線は、非連結部の割合が大きいほど柔軟性がよく、光ファイバの伝送特性の悪化を抑えることができる。ところが、非連結部の割合が大きいほど、光ファイバ心線がばらばらになりやすく、融着接続時に融着機のホルダにセットする際に光ファイバ心線が動きやすい。このため、以下に述べるような不具合が発生して、光ファイバテープ心線同士の融着接続が正常にできなくなる。
 従来の間欠連結型の光ファイバテープ心線を融着接続時に融着機のホルダにセットする際の不具合の事象例を図2A,図2B,図2Cに示して説明する。図2A,図2B,図2Cでは、従来の間欠連結型の光ファイバテープ心線100を、融着接続時に融着機のホルダ200にセットする際に発生する不具合の各事象を模式的に示している。なお、説明を分かりやすくするため、図2A,図2B,図2Cにおける光ファイバテープ心線100は、単心の光ファイバ心線101~104が並列に配置され、全ての光ファイバ心線間に、間欠的に非連結部110が設けられているものとしている。
 例えば、図2Aに示す事象例1は、ホルダ200に光ファイバテープ心線100をセットする際に、連結部120に隣接する光ファイバ心線101がこの連結部120に乗り上げてしまう事象である。
 また、図2Bに示す事象例2は、ホルダ200に光ファイバテープ心線100をセットする際に、隣接する光ファイバ心線同士の光ファイバ心線101と102の配列がホルダ200内で交差する事象である。
 また、図2Cに示す事象例3は、ホルダ200の溝から光ファイバ心線101がはずれてしまう事象である。
 以上のような不具合の事象が発生すると、光ファイバテープ心線同士の融着接続が正常にできない。
 本発明者らは、間欠連結型の光ファイバテープ心線において、光ファイバ心線の伝送特性の悪化を抑制し、かつ、光ファイバテープ心線同士の融着接続時の不具合を防止することができる構造について実験を行って考察した。その実験の詳細は後述の実施例に示す。その結果、図1に示す間欠連結型光ファイバテープ心線1において、特定範囲の構造因子を持つ場合に、光ファイバの伝送特性の悪化を抑制し、かつ、光ファイバテープ心線同士の融着接続時の不具合を防止することができることを見出した。
 一般的に、間欠連結型の光ファイバテープ心線は、光ファイバ心線の連結部と非連結部が長手方向に交互に同じピッチで連続して設けられていることに着目し、上記構造因子について、以下のパラメータに関して考察した。
 上記パラメータとしては、連結部の長手方向の長さをa、異なる光ファイバ心線間の非連結部が長手方向で重なる部分の長さをb、非連結部の長手方向の長さをc、長手方向の連結部が設けられた間隔(ピッチ)p、光ファイバ心線の長手方向の非連結部の比率(非連結部比率)をc/aとする。
 本実施形態に係る間欠連結型光ファイバテープ心線1は、上記パラメータに関し、c/a≧1.5、かつ、b≦50mm、かつ、(c/a)×p≧200mmの条件を満たす構造のものとする。さらに、融着接続をより確実にするために、間欠連結型光ファイバテープ心線1は、図1Bに示すように、長手方向の一部(この場合、連結部4)で隣接する二本の光ファイバが、光ファイバ同士が接するようにして、連結樹脂2で連結されていることが好ましい。
 次に、図3,図4を参照して、本実施形態に係る光ケーブルを説明する。図3は、本実施形態の間欠連結型光ファイバテープ心線1を使用したスロットレス型の光ケーブルの一例を示す図である。図4は、本実施形態の間欠連結型光ファイバテープ心線1を使用したテープスロット型の光ケーブルの一例を示す図である。
 図3に示す光ケーブルは、円筒型のチューブ32と、複数の間欠連結型光ファイバテープ心線1と、を有するスロットレス型の光ケーブル30である。複数の間欠連結型光ファイバテープ心線1は、アラミド繊維などの介在31で束ねられている。なお、防水性を要求される場合は吸水ヤーンを挿入しても良い。そして、間欠連結型光ファイバテープ心線1を撚り合わせながらその周囲にチューブ32となる樹脂を押し出し成形し、テンションメンバ33と共に外被34を被せた構造となっている。上記チューブ32となる樹脂としては、例えば、PBT,HDPE等の硬質材を用いる。なお、35は引き裂き紐である。
 図4に示す光ケーブルは、複数のスロット溝41を有するスロットロッド44と、間欠連結型光ファイバテープ心線1を有するテープスロット型の光ケーブル40である。光ケーブル40は、中央にテンションメンバ42を有するスロットロッド44に、放射状に上記スロット溝41が設けられた構造となっている。複数の間欠連結型光ファイバテープ心線1は、複数のスロット溝41にそれぞれ積層された状態で収納されている。スロットロッド44の周囲には、外被43が形成されている。
(実施例)
 前述のa(連結部の長手方向の長さ)、b(異なる光ファイバ心線間の非連結部が長手方向で重なる部分の長さ)、c(非連結部の長手方向の長さ)の各パラメータを変えた間欠連結型光ファイバテープ心線(テープNo.1~24)を試作した。そして、これらの間欠連結型光ファイバテープ心線を432心のスロットレス型の光ケーブル30に使用して測定した伝送損失による伝送特性と、光ファイバテープ心線同士の融着接続時の不具合を調査した。
 その結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の表1に示すテープNo.1~24の伝送損失は、最低値が0.19dB/kmであり、伝送損失がこの最低値近辺の0.19dB/km~0.21dB/kmの低レベルのものと、この0.21dB/kmを大きく超える0.80dB/km~1.20dB/kmの高レベルのものとがあることがわかった。ここでは、上記低レベルとなるものを伝送特性が合格であるとした。
 そして、伝送損失が0.21dB/km以下であり、かつ、融着接続時の不具合が無いものを合格品とした。
 表1におけるテープNo.1~24のうち、上記合格品となるのは、No.7,8,10~12,14~19,21~23である。
 非連結部比率c/aが1の場合のテープ(テープNo.1~4)は全て、伝送損失が上記の高レベルである。そして、c/aが1.5以上のテープになると上記の低レベルのものが存在する。また、(c/a)×pに着目すると、200mm未満のテープ(テープNo.9,13)は、伝送損失が上記の高レベルである。
 一方、融着接続時の不具合は、パラメータのb(異なる光ファイバ心線間の非連結部が長手方向で重なる部分の長さ)に関係すると考えられる。そして、bが60mmであるテープNo.9とbが67mmであるテープNo.13で融着接続時の不具合が発生した。これに対し、b=50mm以下のテープでは、全て融着接続時の不具合は発生しなかった。
 したがって、合格品のテープは、c/a≧1.5、かつ、b≦50mm、かつ、(c/a)×p≧200mmの条件を満たしているものである。以上の考察から、本実施形態に係る間欠連結型光ファイバテープ心線1は、合格品となる上記の条件を満たすものとすることにした。上記合格品の中でも、(c/a)×p≧400mmの条件を満たしているものは、伝送損失が0.20dB/km以下であり、光ファイバの伝送特性の悪化をさらに抑制することができる。
 以上、詳述した本実施形態に係る間欠連結型光ファイバテープ心線1によれば、c/a≧1.5、かつ、(c/a)×p≧200mmとすることにより、光ファイバ心線11~22の伝送特性の悪化を抑制することができ、かつ、b≦50mmとすることにより、間欠連結型光ファイバテープ心線1を融着接続する際に不具合が発生することを防止できる。
 間欠連結型光ファイバテープ心線1は、上記(c/a)×pの値を400mm以上のものとすることが好ましく、光ファイバ心線11~22の伝送特性の悪化をさらに抑制することができる。
 さらに、間欠連結型光ファイバテープ心線1は、融着接続をより確実にするために、長手方向の一部で隣接する二本の光ファイバが、光ファイバ同士が接するようにして、連結樹脂2で連結されていることが好ましい。
 本実施形態に係る光ケーブル30は、間欠連結型光ファイバテープ心線1が束ねられ、円筒型のチューブ32で覆われているので、光ケーブル30の伝送特性の悪化を抑制することができる。また、間欠連結型光ファイバテープ心線1をとり出して融着接続する場合に不具合の発生を防止することができる。
 また、本実施形態に係る光ケーブル40は、間欠連結型光ファイバテープ心線1がスロット溝41に収納されているので、光ケーブル40の伝送特性の悪化を抑制することができる。また、間欠連結型光ファイバテープ心線1をとり出して融着接続する場合に不具合の発生を防止することができる。
 1 間欠連結型光ファイバテープ心線
 2 連結樹脂
 3 非連結部
 4 連結部
 11~22 光ファイバ心線
 30、40 光ケーブル
 31 介在
 32 チューブ
 33、42 テンションメンバ
 34、43 外被
 35 引き裂き紐
 41 スロット溝
 44 スロットロッド
 100 従来の間欠連結型の光ファイバテープ心線
 101~104 光ファイバ心線
 110 非連結部
 120 連結部

Claims (5)

  1.  複数の光ファイバ心線が並列に配置された状態で連結樹脂に覆われており、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ線間が連結されていない非連結部とが長手方向に間欠的に設けられ、少なくとも一部の光ファイバ心線の二心間には長手方向に前記非連結部が設けられていない間欠連結型光ファイバテープ心線であって、
     前記連結部は窪んでおり、
     前記連結部の長手方向の長さをa、異なる光ファイバ心線間の前記非連結部が長手方向で重なる部分の長さをb、前記非連結部の長手方向の長さをc、長手方向の前記連結部の間隔をpとした場合、
     c/a≧1.5、b≦50mm、(c/a)×p≧200mm
     である、間欠連結型光ファイバテープ心線。
  2.  前記(c/a)×pの値が400mm以上である、請求項1に記載の間欠連結型光ファイバテープ心線。
  3.  隣接する二本の光ファイバが長手方向の一部で接する、請求項1または請求項2に記載の間欠連結型光ファイバテープ心線。
  4.  円筒型のチューブと、請求項1から請求項3のいずれか一項に記載の複数の間欠連結型光ファイバテープ心線と、を有する光ケーブルであって、
     前記複数の間欠連結型光ファイバテープ心線は、束ねられた状態で前記チューブに覆われている、光ケーブル。
  5.  複数のスロット溝を有するスロットロッドと、請求項1から請求項3のいずれか一項に記載の複数の間欠連結型光ファイバテープ心線と、を有する光ケーブルであって、
     前記複数の間欠連結型光ファイバテープ心線は、前記スロット溝にそれぞれ収納されている、光ケーブル。
PCT/JP2017/000604 2016-01-13 2017-01-11 間欠連結型光ファイバテープ心線および光ケーブル WO2017122665A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17738419.5A EP3404462B1 (en) 2016-01-13 2017-01-11 Intermittently joined optical fiber ribbon and optical cable
AU2017207081A AU2017207081B2 (en) 2016-01-13 2017-01-11 Intermittently joined optical fiber ribbon and optical cable
CN201780006718.3A CN108463758B (zh) 2016-01-13 2017-01-11 间断性连结型光纤带芯线及光缆
US15/771,797 US10488609B2 (en) 2016-01-13 2017-01-11 Intermittent-connection-type optical fiber ribbon and optical cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-004683 2016-01-13
JP2016004683A JP6657976B2 (ja) 2016-01-13 2016-01-13 間欠連結型光ファイバテープ心線および光ケーブル

Publications (1)

Publication Number Publication Date
WO2017122665A1 true WO2017122665A1 (ja) 2017-07-20

Family

ID=59311773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000604 WO2017122665A1 (ja) 2016-01-13 2017-01-11 間欠連結型光ファイバテープ心線および光ケーブル

Country Status (7)

Country Link
US (1) US10488609B2 (ja)
EP (1) EP3404462B1 (ja)
JP (1) JP6657976B2 (ja)
CN (1) CN108463758B (ja)
AU (1) AU2017207081B2 (ja)
TW (1) TWI711849B (ja)
WO (1) WO2017122665A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127828A1 (ja) * 2021-12-27 2023-07-06 昭和電線ケーブルシステム株式会社 光ファイバテープ心線およびスロットレス型光ケーブル
WO2023162680A1 (ja) * 2022-02-24 2023-08-31 昭和電線ケーブルシステム株式会社 光ファイバテープ心線およびスロットレス型光ケーブル

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6753417B2 (ja) * 2015-12-24 2020-09-09 住友電気工業株式会社 光デバイスおよび光デバイス製造方法
JP2017142285A (ja) * 2016-02-08 2017-08-17 住友電気工業株式会社 光ファイバケーブル
CN108474921A (zh) * 2016-02-23 2018-08-31 住友电气工业株式会社 间断性连结型光纤带芯线、间断性连结型光纤带芯线的制造方法、光缆及光纤软线
EP3640694A4 (en) * 2017-06-14 2021-03-03 Sumitomo Electric Industries, Ltd. SLOTTED OPTICAL CABLE
CN113316733B (zh) 2019-02-06 2023-07-18 住友电气工业株式会社 间歇连结型光纤带芯线、光纤线缆及间歇连结型光纤带芯线的制造方法
EP4177651A4 (en) * 2020-07-01 2024-07-10 Fujikura Ltd OPTICAL FIBER UNIT AND MANUFACTURING METHOD THEREFOR
WO2023027117A1 (ja) * 2021-08-25 2023-03-02 住友電気工業株式会社 光ファイバケーブル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118301A1 (en) * 2000-12-27 2003-06-26 Hurley William C. Fiber optic assembly and method of making same
JP2010008923A (ja) * 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバケーブル
JP2012088445A (ja) * 2010-10-18 2012-05-10 Fujikura Ltd 光ファイバテープの製造方法及び製造装置、並びに、光ファイバテープ
WO2012131811A1 (ja) * 2011-03-30 2012-10-04 昭和電線ケーブルシステム株式会社 光ファイバテープ心線、光ファイバテープ心線の製造方法、および光ケーブル
JP2012208363A (ja) * 2011-03-30 2012-10-25 Advanced Cable Systems Corp 光ファイバテープ心線及びその製造方法
JP2014228688A (ja) * 2013-05-22 2014-12-08 住友電気工業株式会社 光ファイバテープ心線及び光ケーブル
JP2015004778A (ja) * 2013-06-20 2015-01-08 株式会社フジクラ 光ファイバケーブル製造装置及び製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143651B2 (ja) 2006-04-04 2008-09-03 株式会社フジクラ 光ファイバテープ心線及び前記光ファイバテープ心線を収納した光ファイバケーブル
KR20140082763A (ko) * 2011-10-19 2014-07-02 크로미스 파이버옵틱스, 인크. 모놀리식 중합체 광섬유 리본
JP2015517679A (ja) * 2012-05-02 2015-06-22 エーエフエル・テレコミュニケーションズ・エルエルシー リボン型光ファイバー構造体を有する円形で小径の光ケーブル
JP2014016530A (ja) 2012-07-10 2014-01-30 Sumitomo Electric Ind Ltd 光ファイバテープ心線ユニットおよび光ファイバケーブル
JP2014211512A (ja) * 2013-04-18 2014-11-13 住友電気工業株式会社 光ファイバコード
JP2015007714A (ja) * 2013-06-25 2015-01-15 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、製造装置、及び製造方法
WO2015052951A1 (ja) * 2013-10-07 2015-04-16 株式会社フジクラ 光ファイバユニット、光ファイバ分岐方法、及び、光ファイバケーブル
JP6569429B2 (ja) * 2015-09-25 2019-09-04 住友電気工業株式会社 光ファイバテープ心線

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118301A1 (en) * 2000-12-27 2003-06-26 Hurley William C. Fiber optic assembly and method of making same
JP2010008923A (ja) * 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバケーブル
JP2012088445A (ja) * 2010-10-18 2012-05-10 Fujikura Ltd 光ファイバテープの製造方法及び製造装置、並びに、光ファイバテープ
WO2012131811A1 (ja) * 2011-03-30 2012-10-04 昭和電線ケーブルシステム株式会社 光ファイバテープ心線、光ファイバテープ心線の製造方法、および光ケーブル
JP2012208363A (ja) * 2011-03-30 2012-10-25 Advanced Cable Systems Corp 光ファイバテープ心線及びその製造方法
JP2014228688A (ja) * 2013-05-22 2014-12-08 住友電気工業株式会社 光ファイバテープ心線及び光ケーブル
JP2015004778A (ja) * 2013-06-20 2015-01-08 株式会社フジクラ 光ファイバケーブル製造装置及び製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127828A1 (ja) * 2021-12-27 2023-07-06 昭和電線ケーブルシステム株式会社 光ファイバテープ心線およびスロットレス型光ケーブル
WO2023162680A1 (ja) * 2022-02-24 2023-08-31 昭和電線ケーブルシステム株式会社 光ファイバテープ心線およびスロットレス型光ケーブル

Also Published As

Publication number Publication date
US20180314020A1 (en) 2018-11-01
EP3404462B1 (en) 2020-10-28
AU2017207081B2 (en) 2021-08-19
CN108463758B (zh) 2020-07-14
JP2017125932A (ja) 2017-07-20
JP6657976B2 (ja) 2020-03-04
TW201727298A (zh) 2017-08-01
EP3404462A4 (en) 2019-08-21
CN108463758A (zh) 2018-08-28
AU2017207081A1 (en) 2018-07-19
EP3404462A1 (en) 2018-11-21
US10488609B2 (en) 2019-11-26
TWI711849B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2017122665A1 (ja) 間欠連結型光ファイバテープ心線および光ケーブル
JP5564026B2 (ja) 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP6318161B2 (ja) 光ファイバユニット、光ファイバ分岐方法、及び、光ファイバケーブル
US20200064550A1 (en) Intermittently-coupled type optical fiber ribbon, manufacturing method thereof, optical fiber cable, and optical fiber cord
JP5802309B2 (ja) 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
WO2011043324A1 (ja) 光ファイバケーブル
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
CA2960325A1 (en) Optical fiber cable, and method and apparatus for manufacturing optical fiber cable
US10859780B2 (en) Optical fiber unit, optical fiber cable, and method for manufacturing optical fiber unit
US10705305B2 (en) Optical fiber unit and optical fiber cable
CN109716191B (zh) 光纤单元以及光缆
JP6967472B2 (ja) 光ファイバケーブル
JP2015004906A (ja) 光ファイバケーブル
WO2017199494A1 (ja) 光ファイバユニット及び光ファイバケーブル
JP7444692B2 (ja) 光ファイバケーブル
KR20240011802A (ko) 광케이블 및 광케이블 제조 방법
JP2005122017A (ja) 光ファイバテープ心線及びその製造方法、並びに光ファイバケーブル
JP2017009925A (ja) 光ファイバユニット、光ファイバケーブル、および光ファイバユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15771797

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017207081

Country of ref document: AU

Date of ref document: 20170111

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017738419

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738419

Country of ref document: EP

Effective date: 20180813