WO2023027117A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2023027117A1
WO2023027117A1 PCT/JP2022/031907 JP2022031907W WO2023027117A1 WO 2023027117 A1 WO2023027117 A1 WO 2023027117A1 JP 2022031907 W JP2022031907 W JP 2022031907W WO 2023027117 A1 WO2023027117 A1 WO 2023027117A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
cable
core
fiber cable
core wire
Prior art date
Application number
PCT/JP2022/031907
Other languages
English (en)
French (fr)
Inventor
裕 橋本
文昭 佐藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023543961A priority Critical patent/JPWO2023027117A1/ja
Priority to EP22861405.3A priority patent/EP4394470A1/en
Publication of WO2023027117A1 publication Critical patent/WO2023027117A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present disclosure relates to fiber optic cables.
  • This application claims priority based on Japanese Patent Application No. 2021-137057 filed on August 25, 2021, and incorporates all the descriptions described in said application.
  • Patent Document 1 describes an optical fiber cable in which an optical fiber ribbon is housed in an SZ twisted slot rod.
  • the optical fiber tape core wires are arranged in the longitudinal direction between adjacent optical fiber core wires.
  • a connecting portion and a non-connecting portion are intermittently formed.
  • the occupancy ratio of the optical fiber tape core wire calculated from the cross-sectional area of the optical fiber tape core wire to the cross-sectional area of the slot groove is 35% or more and 60% or less.
  • Patent Document 2 describes an optical fiber cable in which an optical fiber ribbon is accommodated in a slot rod having a plurality of slot grooves.
  • the outer diameter dimension of the optical fiber core wire is 0.22 mm or less
  • the optical fiber tape core wire has a longitudinal dimension between the adjacent optical fiber core wires in order to mount the optical fiber core wires at a high density.
  • a connecting portion and a non-connecting portion are intermittently formed in the direction.
  • the density of the number of cores of the optical fiber core wire is 4.8 cores/mm 2 or more in the cross section of the optical fiber cable.
  • Patent Document 3 describes an optical fiber cable that accommodates an optical unit in which an optical fiber tape core wire composed of a plurality of optical fiber core wires is collected in a slot rod having a plurality of grooves.
  • this optical fiber cable even if the optical fiber ribbons are mounted in the grooves at high density, the optical units are stored in the grooves in a twisted state in order to suppress the occurrence of macrobend loss.
  • the occupancy of the optical unit calculated from the cross-sectional area of the optical unit with respect to the cross-sectional area of the groove is 25% or more and 60% or less.
  • a fiber optic cable includes: An optical fiber cable in which an optical fiber tape core wire formed by arranging a plurality of optical fiber core wires is mounted in an internal space,
  • the core portion of the optical fiber core wire is made of pure silica glass, and the effective cross-sectional area of the core portion at a wavelength of 1550 nm is 110 ⁇ m 2 or more and 150 ⁇ m 2 or less
  • the optical fiber core wire includes an intermittent connection portion in which a connection portion to which an adhesive resin is applied and a non-connection portion to which the adhesive resin is not applied are alternately provided between adjacent optical fiber core wires.
  • the ratio of the total adhesion length coated with the adhesive resin to the total length between all the core wires is 40% or more in the unit length of the optical fiber tape core wire,
  • the occupancy ratio of the optical fiber ribbon to the cross-sectional area of the internal space is 30% or more and 40% or less.
  • FIG. 1 is a cross-sectional view showing an optical fiber cable according to the first embodiment.
  • FIG. 2 is a cross-sectional view of an optical fiber cable housed in the optical fiber cable shown in FIG.
  • FIG. 3 is a plan view of intermittently connected optical fiber ribbons housed in an optical fiber cable.
  • FIG. 4 is a plan view of intermittently connected optical fiber tape core wires for every two cores accommodated in an optical fiber cable.
  • FIG. 5 is a cross-sectional view showing an optical fiber cable according to the second embodiment.
  • a fiber optic cable includes: (1) An optical fiber cable in which an optical fiber tape core wire formed by arranging a plurality of optical fiber core wires is mounted in an internal space, The core portion of the optical fiber core wire is made of pure silica glass, and the effective cross-sectional area of the core portion at a wavelength of 1550 nm is 110 ⁇ m 2 or more and 150 ⁇ m 2 or less,
  • the optical fiber core wire includes an intermittent connection portion that is connected by alternately providing a connection portion coated with an adhesive resin and a non-connection portion not coated with the adhesive resin between adjacent optical fiber core wires.
  • the ratio of the total adhesion length coated with the adhesive resin to the total length between all the core wires in the unit length of the optical fiber core wire is 40% or more
  • the occupancy ratio of the optical fiber ribbon to the cross-sectional area of the internal space is 30% or more and 40% or less. According to this configuration, since the effective cross-sectional area of the core portion is 110 ⁇ m 2 or more and 150 ⁇ m 2 or less, a high-output optical signal can be input, and the optical fiber ribbon mounted with respect to the cross-sectional area of the internal space is 30% or more and 40% or less, the optical fiber ribbons can be accommodated at high density.
  • the ratio of the bonding length coated with the adhesive resin to the total length between all the core wires is 40% or more, so the bending rigidity of the optical fiber tape core wire is high. , buckling of the optical fiber is less likely to occur even when bending stress is applied to the cable. This makes it possible to realize an optical fiber cable with low transmission loss.
  • silica glass is silica glass that does not contain dopants, but it is allowed to contain some impurities as long as they do not affect the characteristics.
  • an optical fiber cable includes (2) The intermittent connection part may be provided every two cores in the optical fiber ribbon. Since the intermittent connection part is provided for every two cores in the optical fiber ribbon, the non-connection part is also provided for every two cores. At this time, since the bending rigidity of the optical fiber ribbon is increased, buckling of the optical fiber ribbon is less likely to occur even when bending stress is applied to the cable. This makes it possible to realize an optical fiber cable with further reduced transmission loss.
  • the adhesion length to which the adhesive resin is applied with respect to the total length between all the core wires The total ratio may be 73% or more. According to this configuration, the ratio of the total adhesive length coated with the adhesive resin to the total length between all optical fiber ribbons is 73% or more in the unit length of the optical fiber ribbon.
  • the optical fiber cable according to any one of (1) to (3) above may be a tape slot type optical fiber cable having a slot rod. According to this configuration, in the tape-slot type optical fiber cable, transmission loss can be suppressed, high-output optical signals can be input, and optical fiber tape core wires can be accommodated at high density. can be realized.
  • the optical fiber cable according to any one of the above (1) to (3) includes a cable core configured by twisting a plurality of the optical fiber tape core wires, and a cable provided around the cable core. and a slotless fiber optic cable. According to this configuration, since the slot rod is not provided, a cable with a smaller diameter and lighter weight can be realized even if the same number of fiber cores as the tape slot type optical fiber cable is accommodated.
  • FIG. 1 is a cross-sectional view of an optical fiber cable 1A according to the first embodiment.
  • the optical fiber cable 1A is a tape-slot type optical fiber cable including a slot rod 10, a tension member 12 embedded in the center of the slot rod 10, and a tension member 12 wound around the slot rod 10.
  • a presser winding tape 14 to be applied and a jacket 16 covering the periphery of the presser winding tape 14 are provided.
  • the slot rod 10 is formed with a plurality (five in this example) of slot grooves 11 (11a to 11e: an example of internal space) capable of accommodating the optical fiber ribbon 5 therein.
  • a position identification mark 18 for identifying the position of the slot groove 11 is provided on the outer circumference of the slot rod 10 .
  • the internal space corresponds to five slot grooves 11 .
  • the slot rod 10 is an elongated body with a substantially circular cross section.
  • the slot groove 11 is spirally formed on the outer peripheral surface of the slot rod 10 along the longitudinal direction.
  • the helical shape of the slot groove 11 may be a unidirectional helical shape or an SZ shape that is periodically reversed.
  • the optical fiber cable 1A shown in FIG. 1 exemplifies a 100-fiber tape slot type cable in which five 4-fiber optical fiber ribbons 5 are stacked and accommodated in each of the slot grooves 11a to 11e. .
  • the optical fiber ribbon 5 may be twisted at a twist pitch equal to the spiral pitch of the slot groove 11, for example, and twisted in accordance with the twist direction of the slot groove 11. .
  • the details of the optical fiber ribbon 5 will be described later.
  • the shape of the slot groove 11 is formed in a rectangular shape, but it is not limited to this.
  • the shape of the slot groove 11 may be formed in a U shape, for example.
  • the accommodation form of the optical fiber ribbons 5 to be accommodated in the slot grooves 11 is not limited to a form in which a plurality of optical fiber ribbons are stacked. You may make it roll up so that it may bend
  • the number of optical fibers constituting the optical fiber ribbon is not limited to four, as long as it is plural.
  • FIG. 2 is a cross-sectional view of an optical fiber cable 20 forming the optical fiber tape cable 5.
  • the optical fiber core wire 20 includes a glass fiber 23 composed of a core portion 21 having a higher refractive index than the surrounding glass and a clad portion 22 surrounding the core portion 21, and a It has two covering layers 24 and 25 and a colored layer 26 covering the circumference of the covering layer 25 .
  • the inner coating layer 24 of the two coating layers is made of a hardened primary resin.
  • the outer coating layer 25 of the two coating layers is made of a hardened secondary resin.
  • the glass fiber 23 has a core portion 21 at its center and a clad portion 22 covering the core portion 21 .
  • the core portion 21 is made of pure silica glass containing no additives.
  • the core portion 21 is formed to have an effective area (Aeff) of 110 ⁇ m 2 or more and 150 ⁇ m 2 or less at a wavelength of 1550 nm.
  • a soft resin with a relatively low Young's modulus is used as a buffer layer for the primary resin that constitutes the inner primary coating layer 24 that contacts the glass fiber 23 .
  • a hard resin having a relatively high Young's modulus is used as a protective layer for the secondary resin forming the outer secondary coating layer 25 .
  • the Young's modulus of the cured product of the primary resin is 1.0 MPa or less, preferably 0.7 MPa or less at room temperature (eg, 23° C.).
  • the cured product of the secondary resin has a Young's modulus of 900 MPa or higher, preferably 1000 MPa or higher, and more preferably 1500 MPa or higher at room temperature (for example, 23° C.).
  • the outer diameter of the optical fiber core wire 20 is formed to be, for example, 220 ⁇ m or less.
  • the sum of the cross-sectional areas of the optical fiber ribbons 5 accommodated in the slot grooves 11a to 11e with respect to the sum of the cross-sectional areas of the slot grooves 11a to 11e is designed to be 30% or more and 40% or less.
  • the occupancy of the total cross-sectional area of the optical fiber ribbon 5 is expressed as "each slot The total cross-sectional area of the optical fiber ribbons accommodated in the grooves/the cross-sectional area of each slot groove.
  • FIG. 3 is a plan view of the optical fiber ribbon 5 accommodated in the optical fiber cable 1A (see FIG. 1).
  • FIG. 3 shows the optical fiber ribbon 5 with the optical fibers 20 opened in the arrangement direction.
  • the optical fiber tape core wire 5 has a connection portion 6 in which four optical fiber core wires 20 are arranged in parallel and the adjacent optical fiber core wires 20 are connected by an adhesive resin. , and non-connected portions 7 in which the adjacent optical fiber core wires 20 are not connected are alternately and repeatedly provided in the longitudinal direction. Since the intermittent connection part 8 is provided between adjacent optical fiber core wires 20, the optical fiber ribbon core wire 5 is an intermittent connection type optical fiber tape core wire.
  • the adhesion length ratio is the ratio of the total adhesion length coated with the adhesive resin to the total length between all core wires in the unit length of the optical fiber ribbon.
  • the total length of the adhesive to which the adhesive resin is applied is expressed as (n ⁇ 1) ⁇ a since (n ⁇ 1) connecting portions (adhesion length a) are provided.
  • FIG. 4 is a plan view of the optical fiber ribbon 105 accommodated in the optical fiber cable 1A (see FIG. 1). 4 shows the optical fiber ribbon 105 with the optical fibers 20 opened in the arrangement direction.
  • the optical fiber tape core wire 105 is a state in which four optical fiber core wires 20 are arranged in parallel, and the adjacent light beams are not provided with an intermittent connection and are entirely bonded with an adhesive resin. Between the fiber core wires 20 and between the adjacent optical fiber core wires 20 having the intermittent connection portion 108 are alternately repeated for each core wire. Since the intermittent connection part 108 is provided every two cores, the optical fiber tape core wire 105 is an optical fiber tape core wire of the intermittent connection type for every two cores.
  • the unit length of the optical fiber tape core wire 105 is defined as the length (pitch p) of the intermittent connection portion 108 obtained by adding one connection portion 106 and one non-connection portion 107 of the optical fiber ribbon core wire. At this time, since n optical fiber core wires 20 are arranged in parallel, the total length between all the core wires corresponding to the unit length of the optical fiber tape core wire 105 (n ⁇ 1) ⁇ p is expressed.
  • the total adhesive length to which the adhesive resin is applied is calculated by subtracting the total non-connected portion (non-adhesive length c) from (n ⁇ 1) ⁇ p, which is the total length between all core wires. be done. Since (n/2-1) non-connected portions are provided, it is expressed as (n-1).times.p-(n/2-1).times.c.
  • the adhesion length ratio is ⁇ (n-1) x p-(n/2-1) x c ⁇ / ⁇ (n-1) x p ⁇ .
  • the adhesive resin is applied to the total length between all the core wires.
  • the ratio of the total adhesive length to which is applied is configured to be 40% or more.
  • optical fiber cables that can efficiently transmit signals in response to the shift to the 5th generation mobile communication system (5G) and the increased capacity of backbone systems due to the increase in video information.
  • optical fiber cables are always required to have a smaller diameter and a lighter weight from the viewpoint of securing conduit space and convenience during installation.
  • the occupancy rate of the optical fiber ribbon (core ribbon cross-sectional area/slot groove cross-sectional area for slot type cables, tape core cross-sectional area/jacket for slotless cables) If the inner cross-sectional area) is too large, the optical fiber ribbon cannot move freely in the slot groove or in the jacket, and the external pressure received from the side wall increases micro-bend loss and macro-bend loss. Therefore, in order to ensure good transmission characteristics, it is necessary to keep the occupancy rate of the optical fiber ribbon within a predetermined range.
  • the core portion 21 of the optical fiber cable 20 is made of pure silica glass, and the effective cross-sectional area of the core portion 21 is 110 ⁇ m 2 or more and 150 ⁇ m 2 or less. ing. Since the core portion 21 of the optical fiber core wire 20 is made of pure silica glass containing no additives, it suppresses an increase in transmission loss compared to an ordinary optical fiber core wire in which the core is doped with germanium. be able to. In addition, by increasing the effective cross-sectional area of the core portion of the optical fiber core wire 20 to 110 ⁇ m 2 or more and 150 ⁇ m 2 or less, the power density of the input optical signal is lowered and the distortion of the signal waveform during transmission is simplified. (so as not to complicate the distortion).
  • the occupancy ratio of the optical fiber tape core wires 5, 105 to the slot groove 11 calculated by the ratio of the cross-sectional area of the slot groove 11 (internal space) to the cross-sectional area of the optical fiber tape core wires 5, 105 is 30% or more. It is formed so as to be 40% or less. Loss tends to increase as the effective cross-sectional area increases, but if the occupation ratio is 40% or less, the loss does not increase so much. That is, by setting the occupation ratio of the optical fiber tape core wires 5 and 105 to 40% or less with respect to the slot groove 11, the optical fiber core wire 20 is allowed to move freely within the slot groove 11 to some extent.
  • the external pressure or the like received from the side wall of the slot groove 11 is reduced, and the occurrence of bending loss (micro bend loss or macro bend loss) can be suppressed.
  • the occupation ratio to 30% or more, high-density mounting of the optical fiber ribbons 5 and 105 can be ensured. Therefore, by setting the occupation rate of the optical fiber tape core wires 5 and 105 to 30% or more and 40% or less with respect to the slot groove 11, good transmission characteristics can be maintained even if the effective cross-sectional area of the core portion 21 is increased.
  • the optical fiber ribbons 5, 105 can be accommodated at high density.
  • the optical fiber tape core wires 5, 105 are intermittently connected tape core wires, and the adhesive resin for the unit length of the optical fiber tape core wires 5, 105, which is the total length between all the core wires, is The proportion of total adhesive length applied is greater than 40%. Thereby, the rigidity of the optical fiber ribbons 5, 105 is sufficiently ensured. As a result, even when the optical fiber cable 1A is bent and deformed, the optical fiber tape core wires 5 and 105 are less likely to be deformed.
  • the intermittent connection part 108 may be provided every two cores in the optical fiber ribbon 105 .
  • the optical fiber tape core wires 105 are intermittently connected optical fiber tape core wires 105 every two cores, the length to be connected by applying the adhesive resin is long, and the rigidity of the optical fiber tape core wires 105 becomes higher. Therefore, it is easy to maintain good transmission characteristics in the optical fiber cable 1A.
  • the optical fiber tape core wires 5, 105 may be configured so that the ratio of the total length of the adhesive coated with the adhesive resin to the total length between all the core wires is 73% or more. At this time, the rigidity of the optical fiber tape cable cores 5 and 105 becomes higher, so that it is easy to maintain good transmission characteristics in the optical fiber cable 1A. If the total bonding length ratio is too high, the transmission loss will worsen, so the total bonding length ratio is preferably 85% or less.
  • FIG. 5 is a cross-sectional view of a slotless optical fiber cable 1B.
  • the optical fiber cable 1B includes a cable core 50 configured by twisting a plurality of optical fiber ribbons 5, a pressure winding tape 31 provided around the cable core 50, and a pressure winding. and a cable sheath 32 covering the periphery of the tape 31 .
  • a tension member 33 is provided inside the cable jacket 32 along the longitudinal direction of the optical fiber cable 1B.
  • a tear string 34 is provided in the cable jacket 32 along the longitudinal direction of the optical fiber cable 1B.
  • the internal space corresponds to the space inside the cable jacket 32 .
  • the cable core 50 of this example is formed by twisting together a plurality of (five in this embodiment) optical fiber units 51 each having five laminated and bundled four optical fiber tape core wires 5 . . Therefore, the optical fiber cable 1B of this example has a 100-core slot in which a cable core 50 consisting of five optical fiber units 51 is accommodated in an internal space 35 formed inside the cable jacket 32 and the pressure winding tape 31. It is a less cable.
  • the accommodation form of the optical fiber ribbon 5 accommodated in the cable jacket 32 is not limited to a form in which a plurality of the optical fiber ribbons 5 are stacked. You may make it accommodate what twisted the sheet.
  • the optical fiber tape core wire 5 forming the cable core 50 has the same configuration as the optical fiber tape core wire 5 described in the first embodiment. Further, the optical fiber core wire 20 constituting the optical fiber tape core wire 5 also has the same configuration as the optical fiber core wire 20 described in the first embodiment.
  • the optical fiber tape core wires forming the cable core 50 may be intermittently connected optical fiber tape core wires 105 every two cores.
  • the occupation ratio of the total cross-sectional area of the optical fiber tape core wires 5 to the cross-sectional area of the internal space 35 that is, “total cross-sectional area of the optical fiber tape core wires accommodated in the internal space”/”
  • the value calculated by "the cross-sectional area of the internal space” is designed to be 30% or more and 40% or less, like the optical fiber cable 1A of the first embodiment.
  • optical fiber cable 1B of the second embodiment similarly to the first embodiment, it is possible to input a high-output optical signal, and an optical fiber cable suitable for long-distance transmission can be provided.
  • the slotless type optical fiber cable 1B will be described below with specific experimental examples.
  • an optical fiber ribbon 5 formed by using four optical fibers 20 having an effective cross-sectional area of 110 ⁇ m 2 at a wavelength of 1550 nm was accommodated in the optical fiber cable 1B, and the space inside the cable jacket 32 was A plurality of samples were prepared with different occupancy ratios of the optical fiber ribbons 5 (cross-sectional area of the tape core/cross-sectional area of the internal space) and different adhesive length ratios.
  • a sample in which the optical fiber ribbons are intermittently connected per core and a sample in which the optical fiber ribbons are intermittently connected per two cores were used. These samples were evaluated for the relationship between each parameter and the transmission loss of the optical fiber cable.
  • the transmission loss indicates the transmission loss value of signal light with a wavelength of 1550 nm for the optical fiber core wire 20 .
  • the temperature characteristics of transmission loss (increase value ⁇ of transmission loss) at ⁇ 30 to +70° C. are also shown.
  • is required to be 0.15 dB/km or less.
  • each sample number is rated from A to C in the determination of transmission loss.
  • Evaluation A is attached to a sample that satisfies a transmission loss of 0.21 dB/km or less, which is the application standard for low transmission loss cables for long-distance transmission.
  • Evaluation B is given to samples that do not meet the standards for low transmission loss cables for long-distance transmission, but that meet the standards required for general cables with a transmission loss of 0.25 dB/km or less.
  • a rating of C is given to samples that do not meet the standards required by common cables.
  • sample number No. 4 to No. 9 optical fiber cables i.e., optical fiber cables with an optical fiber tape core wire occupation rate of 40% or less, have a transmission loss of at least 0.25 dB/km or less, and the quality of the transmission loss is evaluated as A or A, respectively. was either B. It was confirmed that when the adhesion length ratio was 40% or more, the transmission loss decreased as the occupation ratio of the optical fiber tape core wires decreased. However, if the occupancy rate does not reach 30%, it is possible to maintain a good judgment of the transmission loss, but it is not possible to increase the density of the optical fiber ribbon 5 .
  • Sample No. 4 to No. 9 the number of cores provided with the intermittent connection portion will be described.
  • Sample No. 4 to No. The fiber occupancy rate of the optical fiber ribbons of the optical fiber cables of No. 6 is all 40%, but the sample No.
  • the optical fiber cable of No. 4 is an intermittent connection type optical fiber tape core wire for each core. 5 to No.
  • the optical fiber cable 6 is an intermittent connection type optical fiber tape core wire every two cores.
  • the sample number No. 4 optical fiber cable, sample number no. 5 to No. It was confirmed that the transmission loss was reduced in the optical fiber cable of No. 6. That is, the sample number No.
  • the evaluation of the transmission loss of the optical fiber cable of No. 4 was evaluation B, but the evaluation of the sample No. 4 was evaluated. 5 to No.
  • the evaluation of the transmission loss of the optical fiber cable of No. 6 was A.
  • sample number No. 7 to No. The occupancy rate of the optical fiber tape core wire of the optical fiber cable No. 9 is all 35%.
  • the optical fiber cable of No. 7 is an intermittent connection type optical fiber tape core wire for each core, and sample number No. 7 is used. 8 to No.
  • An optical fiber cable 9 is an intermittent connection type optical fiber tape core wire every two cores.
  • Sample No. 4 to No. 9 will be described with a focus on the bonding length ratio.
  • the fiber occupancy rate of the optical fiber ribbons of the optical fiber cables of No. 6 is all 40%, but the sample No.
  • the adhesion length ratio of the optical fiber cable No. 4 is 40%, and the sample No.
  • the adhesion length ratio of the No. 5 optical fiber cable is 73%.
  • the bonding length ratio of 6 optical fiber cables is 80%.
  • the evaluation of the transmission loss of the optical fiber cable of No. 4 was evaluation B, but the evaluation of the sample No. 4 was evaluated. 5 to No.
  • the evaluation of the transmission loss of the optical fiber cable of No. 6 was A.
  • the occupancy rate of the optical fiber tape core wire of the optical fiber cable No. 9 is all 35%.
  • the adhesion length ratio of the optical fiber cable No. 7 was 40%, and the sample No.
  • the adhesion length ratio of the optical fiber cable No. 8 was 73%.
  • the adhesion length ratio of the optical fiber cable of No. 9 is 80%. At this time, although there was no difference in the determination of the transmission loss, it was confirmed that the larger the adhesion length ratio of the sample, the lower the transmission loss.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

光ファイバ心線を複数本並列して形成された光ファイバテープ心線を内部空間に実装する光ファイバケーブルは、光ファイバ心線のコア部は純石英ガラスで構成され、波長1550nmにおけるコア部の実効断面積が110μm2以上150μm2以下であり、光ファイバ心線は、隣接する光ファイバ心線間に、接着樹脂が塗布される連結部と接着樹脂が塗布されない非連結部とが交互に設けられることで連結された間欠連結部を含む間欠連結型光ファイバテープ心線を構成している。光ファイバテープ心線は、前記光ファイバ心線の単位長さにおいて、全心線間の長さの合計に対する接着樹脂が塗布される接着長の合計の比率は40%以上であり、内部空間の断面積に対する前記光ファイバテープ心線の占有率は30%以上40%以下である。

Description

光ファイバケーブル
 本開示は、光ファイバケーブルに関する。
 本出願は、2021年8月25日出願の日本国特許出願2021-137057号に基づく優先権を主張し、前記出願に記載された全ての記載内容を援用するものである。
 特許文献1には、SZ撚スロットロッドに光ファイバテープ心線を収容した光ファイバケーブルが記載されている。当該光ファイバケーブルでは、ロスを増加させずに良好な伝送特性を確保した状態で光ファイバケーブルを細径化するために、光ファイバテープ心線が、隣り合う光ファイバ心線間の長手方向に連結部と非連結部が間欠的に形成されている。そして、スロット溝の断面積に対する光ファイバテープ心線の断面積から計算される光ファイバテープ心線の占有率が35%以上60%以下とされている。
 特許文献2には、複数のスロット溝を有するスロットロッドに光ファイバテープ心線を収容した光ファイバケーブルが記載されている。当該光ファイバケーブルでは、光ファイバ心線を高密度実装するために、光ファイバ心線の外径寸法が0.22mm以下であり、光ファイバテープ心線が、隣り合う光ファイバ心線間の長手方向に連結部と非連結部が間欠的に形成されている。そして、光ファイバ心線の心数の密度が、光ファイバケーブルの断面において、4.8心/mm以上とされている。
 特許文献3には、複数条の溝を有するスロットロッドに複数の光ファイバ心線で構成される光ファイバテープ心線が集められた光ユニットを収容する光ファイバケーブルが記載されている。当該光ファイバケーブルでは、光ファイバテープ心線を溝に高密度で実装しても、マクロベンドロスの発生を抑えるために、光ユニットが撚られた状態で溝に収納されている。そして、溝の断面積に対する光ユニットの断面積から計算される光ユニットの占有率が25%以上60%以下とされている。
日本国特開2014-211511号公報 日本国特開2017-223730号公報 日本国特開2017-32749号公報
 本開示の一態様に係る光ファイバケーブルは、
 光ファイバ心線を複数本並列して形成された光ファイバテープ心線を内部空間に実装する光ファイバケーブルであって、
 前記光ファイバ心線のコア部は純石英ガラスで構成され、波長1550nmにおける前記コア部の実効断面積が110μm以上150μm以下であり、
 前記光ファイバ心線は、隣接する光ファイバ心線間に、接着樹脂が塗布される連結部と前記接着樹脂が塗布されない非連結部とが交互に設けられることで連結された間欠連結部を含む間欠連結型光ファイバテープ心線を構成しており、
 前記光ファイバテープ心線は、前記光ファイバテープ心線の単位長さにおいて、全心線間の長さの合計に対する前記接着樹脂が塗布される接着長の合計の比率は40%以上であり、
 前記内部空間の断面積に対する前記光ファイバテープ心線の占有率は30%以上40%以下である。
(本開示が解決しようとする課題)
 次世代移動通信システムへの移行や、映像情報の増加による信号容量の増加に対応するため、効率的な信号伝送が可能な光ファイバケーブルのニーズが高まっている。このようなニーズに応えるため、特許文献1~3のような光ファイバケーブルの構成には改善の余地がある。特に、高出力の光信号を入力するためには、光ファイバの実効断面積を大きくすることが望ましいが、実効断面積が大きい光ファイバを高密度化すると、ロスが増加しやすくなる。
図1は、第一実施形態に係る光ファイバケーブルを示す断面図である。 図2は、図1に示す光ファイバケーブルに収容される光ファイバ心線の断面図である。 図3は、光ファイバケーブルに収容される1心毎間欠連結型光ファイバテープ心線の平面図である。 図4は、光ファイバケーブルに収容される2心毎間欠連結型光ファイバテープ心線の平面図である。 図5は、第二実施形態に係る光ファイバケーブルを示す断面図である。
(本開示の効果)
 本開示によれば、伝送損失を抑制し且つ高出力の光信号を入力することが可能であるとともに、光ファイバテープ心線を高密度に収容することが可能な光ファイバケーブルを提供することができる。
(本開示の実施形態の説明)
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る光ファイバケーブルは、
 (1)光ファイバ心線を複数本並列して形成された光ファイバテープ心線を内部空間に実装する光ファイバケーブルであって、
 前記光ファイバ心線のコア部は純石英ガラスで構成され、波長1550nmにおける前記コア部の実効断面積が110μm以上150μm以下であり、
 前記光ファイバ心線は、隣接する光ファイバ心線間に、接着樹脂が塗布される連結部と前記接着樹脂が塗布されない非連結部とが交互に設けられることで連結された間欠連結部を含む間欠連結型光ファイバテープ心線を構成しており、
 前記光ファイバテープ心線は、前記光ファイバ心線の単位長さにおいて、全心線間の長さの合計に対する前記接着樹脂が塗布される接着長の合計の比率は40%以上であり、
 前記内部空間の断面積に対する前記光ファイバテープ心線の占有率は30%以上40%以下である。
 この構成によれば、コア部の実効断面積が110μm以上150μm以下であるため高出力の光信号を入力することができ、内部空間の断面積に対して実装される光ファイバテープ心線の断面積の比である占有率は30%以上40%以下であるため、光ファイバテープ心線を高密度に収容することができる。さらに、光ファイバ心線の単位長さにおいて、全心線間の合計長さに対する接着樹脂が塗布される接着長さの比率は40%以上であるので、光ファイバテープ心線の曲げ剛性が高く、ケーブルに曲げ応力が負荷されたときであっても、光ファイバ心線の座屈が起きにくい。これにより、伝送損失を低く抑制した光ファイバケーブルを実現することができる。
 なお、純石英ガラスとは、ドーパントを含まない石英ガラスのことであるが、特性に影響を与えない程度であれば、多少の不純物を含むことは許容する。
 また、本開示の一態様に係る光ファイバケーブルは、
 (2)前記間欠連結部は、前記光ファイバテープ心線において2心毎に設けられてもよい。
 間欠連結部は、光ファイバテープ心線において2心毎に設けられるので、非連結部も2心毎に設けられる。このとき、光ファイバテープ心線の曲げ剛性が高くなるので、ケーブルに曲げ応力が負荷されたときであっても、光ファイバ心線の座屈がより起きにくい。これにより、伝送損失をさらに低減した光ファイバケーブルを実現することができる。
 (3)上記(1)または(2)に係る光ファイバケーブルは、前記光ファイバテープ心線の単位長さにおいて、全心線間の長さの合計に対する前記接着樹脂が塗布される接着長の合計の比率は73%以上であってもよい。
 この構成によれば、光ファイバテープ心線の単位長さにおいて、全心線間の長さの合計に対する前記接着樹脂が塗布される接着長の合計の比率は73%以上であるので、光ファイバテープ心線の曲げ剛性がさらに高くなり、ケーブルに曲げ応力が負荷されたときであっても、光ファイバ心線の座屈をより低減できるので、伝送損失をさらに低減した光ファイバケーブルを実現することができる。
 (4)上記(1)から(3)のいずれかに係る光ファイバケーブルは、スロットロッドを有する、テープスロット型の光ファイバケーブルであってもよい。
 この構成によれば、テープスロット型の光ファイバケーブルにおいて、伝送損失を抑制し且つ高出力の光信号を入力することが可能で、光ファイバテープ心線を高密度に収容することが可能なケーブルを実現することができる。
 (5)上記(1)から(3)のいずれかに係る光ファイバケーブルは、前記光ファイバテープ心線が複数本撚り合わされて構成されたケーブルコアと、前記ケーブルコアの周囲に設けられたケーブル外被と、を有するスロットレス型の光ファイバケーブルであってもよい。
 この構成によれば、スロットロッドを有しない分、テープスロット型の光ファイバケーブルと同じファイバ心数を収容していても、より細径で軽量化されたケーブルを実現できる。
(本開示の実施形態の詳細)
 本開示の実施形態に係る光ファイバケーブルの具体例を、以下に図面を参照して説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(第一実施形態)
 図1は、第一実施形態に係る光ファイバケーブル1Aの断面図である。
 図1に示すように、光ファイバケーブル1Aは、テープスロット型の光ファイバケーブルであり、スロットロッド10と、スロットロッド10の中心部に埋設されるテンションメンバ12と、スロットロッド10の周囲に巻かれる押え巻きテープ14と、押え巻きテープ14の周囲を被覆する外被16と、を備えている。スロットロッド10には、光ファイバテープ心線5を収容可能な複数(本例では5個)のスロット溝11(11a~11e:内部空間の一例)が形成されている。また、スロットロッド10の外周には、スロット溝11の位置を識別するための位置識別マーク18が設けられている。なお、第一実施形態の場合、内部空間は、5個のスロット溝11に相当する。
 スロットロッド10は、略円形断面の長尺体である。スロット溝11は、スロットロッド10の外周面に長手方向に沿って螺旋状に形成されている。スロット溝11の螺旋形状は、一方向の螺旋状であってもよいし、周期的に反転するSZ状であってもよい。なお、図1に示す光ファイバケーブル1Aは、各スロット溝11a~11eに、4心の光ファイバテープ心線5が5枚ずつ積層されて収容される100心テープスロット型ケーブルを例示している。光ファイバテープ心線5は、スロット溝11内に収容されることで、例えばスロット溝11の螺旋ピッチと等しい撚りピッチで撚られ、スロット溝11の撚り方向に合わせて捻回されていてもよい。光ファイバテープ心線5についての詳細は後述する。
 なお、図1に示す光ファイバケーブル1Aでは、スロット溝11の形状が矩形状に形成されているが、これに限られない。スロット溝11の形状は、例えばU字状に形成されてもよい。また、スロット溝11内に収容する光ファイバテープ心線5の収容形態としては、複数枚を積層する形態に限られず、例えば光ファイバテープ心線5を幅方向、すなわち光ファイバ心線の並列する方向に折り曲げるように丸めて、複数枚を収容するようにしてもよい。また、光ファイバテープ心線を構成する光ファイバ心線の本数は複数本であればよく、4本に限定されない。
 図2は、光ファイバテープ心線5を構成する光ファイバ心線20の断面図である。
 図2に示すように、光ファイバ心線20は、周囲のガラスより屈折率の高いコア部21とコア部21を取り囲むクラッド部22とから構成されるガラスファイバ23と、ガラスファイバ23の周囲を覆う二層の被覆層24,25と、被覆層25の周囲を覆う着色層26と、を有している。二層の被覆層のうちの内側の被覆層24はプライマリ樹脂の硬化物で形成されている。また、二層の被覆層のうちの外側の被覆層25はセカンダリ樹脂の硬化物で形成されている。
 ガラスファイバ23は、中心部にコア部21が設けられ、コア部21の周囲を覆ってクラッド部22が設けられている。コア部21は、添加物を含まない純石英ガラスで構成されている。コア部21は、波長1550nmにおける実効断面積(Aeff)が110μm以上150μm以下となるように形成されている。
 ガラスファイバ23と接触する内側のプライマリ被覆層24を構成するプライマリ樹脂には、バッファ層として比較的ヤング率が低い軟質の樹脂が用いられている。また、外側のセカンダリ被覆層25を構成するセカンダリ樹脂には、保護層として比較的ヤング率が高い硬質の樹脂が用いられている。プライマリ樹脂の硬化物のヤング率は、常温(例えば、23℃)において、1.0MPa以下であり、好ましくは0.7MPa以下である。セカンダリ樹脂の硬化物のヤング率は、常温(例えば、23℃)において、900Mpa以上であり、好ましくは1000MPa以上、さらに好ましくは1500MPa以上である。光ファイバ心線20の外径は、例えば220μm以下となるように形成されている。
 このような構成の光ファイバケーブル1Aにおいて、各スロット溝11a~11eの断面積の和に対する各スロット溝11a~11eに収容される光ファイバテープ心線5の断面積の和(光ファイバテープ心線5の総断面積)の比率である占有率は、30%以上40%以下となるように設計されている。なお、各スロット溝の断面積と、各スロット溝に収容されるテープ心線の数が、各スロット溝で等しい場合は、光ファイバテープ心線5の総断面積の占有率は、「各スロット溝に収容される光ファイバテープ心線の総断面積」/「各スロット溝の断面積」となる。
(1心毎間欠連結型光ファイバテープ心線)
 次に、本実施形態における光ファイバテープ心線5について説明する。図3は、光ファイバケーブル1A(図1参照)に収容される光ファイバテープ心線5の平面図である。なお、図3には光ファイバ心線20を配列方向に開いた状態の光ファイバテープ心線5が示されている。
 図3に示すように、光ファイバテープ心線5は、4本の光ファイバ心線20が並列に配置された状態において、隣接する光ファイバ心線20間が接着樹脂で連結された連結部6と、隣接する光ファイバ心線20間が連結されていない非連結部7と、が長手方向に交互に繰り返し設けられる間欠連結部8を有している。間欠連結部8が隣接する各々の光ファイバ心線20間において設けられているので、光ファイバテープ心線5は1心毎間欠連結型の光ファイバテープ心線である。
 ここで図3を参照しながら、n本(図3ではn=4である)の光ファイバ心線が並列に配置された1心毎間欠連結型の光ファイバテープ心線の接着長比率について説明する。接着長比率とは、光ファイバテープ心線の単位長さにおいて、全心線間の長さの合計に対する接着樹脂が塗布される接着長の合計の比率である。
 一つの連結部6と一つの非連結部7とを足し合わせた間欠連結部8の長さ(ピッチp)を光ファイバテープ心線5の単位長さとする。一つの連結部6の長さをaとし、一つの非連結部7の長さをcとすると、ピッチp=a+cである。このとき、n本の光ファイバ心線が並列に配置されているから、光ファイバテープ心線5の単位長さに対応する全心線間の合計長さは(n-1)×pで表される。
 また、接着樹脂が塗布される接着長の合計は、連結部(接着長a)が(n-1)個設けられるから、(n-1)×aと表される。
 したがって、接着長比率は、{(n-1)×a}/{(n-1)×p}=a/pである。
(2心毎間欠連結型光ファイバテープ心線)
 次に、光ファイバテープ心線5の別の例について説明する。図4は、光ファイバケーブル1A(図1参照)に収容される光ファイバテープ心線105の平面図である。なお、図4には光ファイバ心線20を配列方向に開いた状態の光ファイバテープ心線105が示されている。
 図4に示すように、光ファイバテープ心線105は、4本の光ファイバ心線20が並列に配置された状態において、間欠連結部が設けられず全体が接着樹脂で接着された隣接する光ファイバ心線20間と、間欠連結部108を有する、隣接する光ファイバ心線20間とが、1心線間毎に交互に繰り返される。間欠連結部108は2心毎に設けられているので、光ファイバテープ心線105は2心毎間欠連結型の光ファイバテープ心線である。
 ここで図4を参照しながら、n本の光ファイバ心線が並列に配置された2心毎間欠連結型の光ファイバテープ心線について、光ファイバテープ心線の単位長さにおいて、全心線間の合計長さに対する接着樹脂が塗布される合計接着長さの比率について説明する(図4ではn=12である)。
 光ファイバテープ心線の一つの連結部106と一つの非連結部107とを足し合わせた間欠連結部108の長さ(ピッチp)を光ファイバテープ心線105の単位長さとする。このとき、n本の光ファイバ心線20が並列に配置されているから、光ファイバテープ心線105の単位長さに対応する全心線間の長さの合計(n-1)×pで表される。
 また、接着樹脂が塗布される接着長の合計は、全心線間の長さの合計である(n-1)×pから、非連結部(非接着長c)の合計を引くことで算出される。非連結部は(n/2-1)個設けられるから、(n-1)×p-(n/2-1)×cと表される。
 したがって、接着長比率は、{(n-1)×p-(n/2-1)×c}/{(n-1)×p}である。
 本実施形態における1心毎間欠連結型の光ファイバテープ心線5においても、2心毎間欠連結型の光ファイバテープ心線105においても、全心線間の長さの合計に対して接着樹脂が塗布される接着長の合計の比率は40%以上となるように構成されている。
 近年、例えば第5世代移動通信システム(5G)への移行や、映像情報の増加による基幹系の容量増に対応するため、効率的に信号を伝送することが可能な光ファイバケーブルのニーズが増えている。また、光ファイバケーブルは、管路スペースの確保や敷設時の利便性の観点から、常に細径化と軽量化が求められている。ただし、細径化を追求して光ファイバテープ心線の占有率(スロット型ケーブルの場合はテープ心線断面積/スロット溝断面積、スロットレス型ケーブルの場合はテープ心線断面積/外被内断面積)を大きくし過ぎると、光ファイバテープ心線がスロット溝内や外被内で自由に動けなくなり、側壁から受ける外圧等によってマイクロベンドロスやマクロベンドロスが増加する。このため、良好な伝送特性を確保するには、光ファイバテープ心線の占有率を、所定の範囲内に収めることが必要である。
 そこで、本実施形態に係る光ファイバケーブル1Aは、光ファイバ心線20のコア部21が純石英ガラスで構成され、コア部21の実効断面積が110μm以上150μm以下となるように形成されている。光ファイバ心線20のコア部21が添加物を含まない純石英ガラスで構成されているので、通常のゲルマニウムがコアにドープされている光ファイバ心線に比べて、伝送損失の増加を抑制することができる。また、光ファイバ心線20におけるコア部の実効断面積を110μm以上150μm以下まで大きくすることで、入力された光信号のパワー密度を下げて、伝送中の信号波形の歪を単純化させる(歪を複雑化させないようにする)ことができる。
 また、スロット溝11(内部空間)の断面積と光ファイバテープ心線5,105の断面積との比で算出されるスロット溝11に対する光ファイバテープ心線5,105の占有率が30%以上40%以下となるように形成されている。実効断面積が大きいほど、ロス増しやすくなる傾向がみられるが、占有率が40%以下であれば、それほどロスは増加しない。すなわち、スロット溝11に対する光ファイバテープ心線5,105の占有率を40%以下にすることで、光ファイバ心線20がスロット溝11内である程度自由に動くことを許容するので、例えば光ファイバケーブル1Aを曲げた際にスロット溝11の側壁から受ける外圧等が軽減され、曲げ損失(マイクロベンドロスやマクロベンドロス)の発生を抑制できる。また、上記占有率を30%以上にすることで、光ファイバテープ心線5,105の高密度実装を確保できる。このため、スロット溝11に対する光ファイバテープ心線5,105の占有率を30%以上40%以下とすることにより、コア部21の実効断面積を大きくしても良好な伝送特性を維持したまま光ファイバテープ心線5,105を高密度に収容することができる。
 さらに、光ファイバテープ心線5,105は、間欠連結型テープ心線であり、光ファイバテープ心線5,105の単位長さにおいて、全心線間の長さの合計であるに対する接着樹脂が塗布される接着長の合計の比率は40%以上である。これにより、光ファイバテープ心線5,105の剛性が十分に確保される。これにより、光ファイバケーブル1Aが曲げ変形した場合であっても、光ファイバテープ心線5,105は変形しにくくなる。
 以上の構成により、高出力の光信号を入力することが可能となり、長距離伝送に適した光ファイバケーブルを提供できる。
 また、間欠連結部108は、光ファイバテープ心線105において2心毎に設けられてもよい。光ファイバテープ心線105が2心毎間欠連結型の光ファイバテープ心線105であるとき、接着樹脂が塗布されて連結される長さが長く、光ファイバテープ心線105の剛性がより高くなるので、光ファイバケーブル1Aにおいて良好な伝送特性を維持しやすい。
 また、光ファイバテープ心線5,105は、全心線間の長さの合計に対する接着樹脂が塗布される接着長の合計の比率は73%以上となるように構成されていてもよい。このとき、光ファイバテープ心線5,105の剛性がより高くなるので、光ファイバケーブル1Aにおいて良好な伝送特性を維持しやすい。なお、接着長の合計の比率が高くなりすぎると、逆に伝送損失が悪化するため、接着長の合計の比率は、85%以下であることが好ましい。
(第二実施形態)
 本開示はスロットレス型の光ファイバケーブルに対しても適用可能である。図5は、スロットレス型の光ファイバケーブル1Bの断面図である。
 図5に示すように、光ファイバケーブル1Bは、複数の光ファイバテープ心線5が撚り合わされて構成されるケーブルコア50と、ケーブルコア50の周囲に設けられた押さえ巻きテープ31と、押さえ巻きテープ31の周囲を被覆するケーブル外被32と、を備えている。また、ケーブル外被32内には光ファイバケーブル1Bの長手方向に沿ってテンションメンバ33が設けられている。さらに、ケーブル外被32内には、引き裂き紐34が光ファイバケーブル1Bの長手方向に沿って設けられている。なお、第二実施形態の場合、内部空間は、ケーブル外被32の内側の空間に相当する。
 本例のケーブルコア50は、4心の光ファイバテープ心線5を5枚積層して束ねた光ファイバユニット51が複数本(本実施形態では、5本)撚り合わせて形成されたものである。したがって、本例の光ファイバケーブル1Bは、ケーブル外被32及び押さえ巻きテープ31の内側に形成される内部空間35に、5本の光ファイバユニット51からなるケーブルコア50が収容された100心スロットレス型ケーブルである。なお、ケーブル外被32内に収容される光ファイバテープ心線5の収容形態としては、複数枚を積層する形態に限られず、例えば光ファイバテープ心線5を幅方向に折り曲げるように丸めて複数枚を撚り合わせたものを収容するようにしてもよい。
 ケーブルコア50を形成する光ファイバテープ心線5は、上記第一実施形態で説明した光ファイバテープ心線5と同様の構成である。また、光ファイバテープ心線5を構成する光ファイバ心線20も上記第一実施形態で説明した光ファイバ心線20と同様の構成である。ケーブルコア50を形成する光ファイバテープ心線は、2心毎間欠連結型の光ファイバテープ心線105であっても良い。そして、光ファイバケーブル1Bにおいて、内部空間35の断面積に対する光ファイバテープ心線5の総断面積の占有率、すなわち、「内部空間に収容される光ファイバテープ心線の総断面積」/「内部空間の断面積」で算出される値は、第一実施形態の光ファイバケーブル1Aと同様に、30%以上40%以下となるように設計されている。
 第二実施形態の光ファイバケーブル1Bにおいても、第一実施形態と同様に、高出力の光信号を入力することが可能となり、長距離伝送に適した光ファイバケーブルを提供できる。
(実験例)
 スロットレス型の光ファイバケーブル1Bについて、具体的な実験例を挙げて以下に説明する。実験例においては、波長1550nmにおける実効断面積110μmの光ファイバ心線20を4本用いて形成した光ファイバテープ心線5を光ファイバケーブル1B内に収納し、ケーブル外被32の内側の空間に対する光ファイバテープ心線5の占有率(テープ心線断面積/内部空間断面積)および接着長比率が異なる複数のサンプルを用意した。また、光ファイバテープ心線が1心毎間欠連結型であるサンプルと2心毎間欠連結型であるサンプルを用いた。これらのサンプルについて、各パラメータと、光ファイバケーブルの伝送損失との関係について評価した。
 その評価結果を、表1に示す。伝送損失は、光ファイバ心線20について波長1550nmの信号光の伝送損失値を示す。また、-30~+70℃における伝送損失の温度特性(伝送損失の上昇値α)も併記する。一般にαは、0.15dB/km以下であることが要求される。
 なお、伝送損失の判定ではそれぞれのサンプル番号に対してA~Cの評価をつけている。評価Aは、長距離伝送用の低伝送損失ケーブルへの適用基準、伝送損失0.21dB/km以下を満たしたサンプルに付けられている。評価Bは、長距離伝送用の低伝送損失ケーブルへの適用基準は満たさないものの、一般的なケーブルで要求される基準、伝送損失0.25dB/km以下を満たすサンプルに付けられている。評価Cは、一般的なケーブルで要求される基準を満たしていないサンプルに付けられている。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、サンプル番号No.1~No.3までの光ファイバケーブル、すなわち、光ファイバテープ心線の占有率が45%の光ファイバケーブルは、伝送損失が0.25dB/kmより大きく、伝送損失の良否判定は評価Cであった。これに対して、サンプル番号No.4~No.9の光ファイバケーブル、すなわち、光ファイバテープ心線の占有率が40%以下の光ファイバケーブルは、少なくとも伝送損失が0.25dB/km以下であり、伝送損失の良否判定はそれぞれ評価Aまたは評価Bのいずれかであった。接着長比率が40%以上であれば、光ファイバテープ心線の占有率が低下すると、伝送損失は減少することが確認できた。ただし、占有率が30%に達しない場合には、伝送損失の良否判定を良好に保つことは可能であるが、光ファイバテープ心線5の高密度化を実現できない。
 サンプル番号No.4~No.9の光ファイバケーブルについて、間欠連結部が何心毎に設けられるかについて注目して説明する。サンプル番号No.4~No.6の光ファイバケーブルの光ファイバテープ心線の占有率はすべて40%であるが、サンプル番号No.4の光ファイバケーブルは1心毎間欠連結型光ファイバテープ心線であり、サンプル番号No.5~No.6の光ファイバケーブルは2心毎間欠連結型光ファイバテープ心線である。このとき、サンプル番号No.4の光ファイバケーブルよりもサンプル番号No.5~No.6の光ファイバケーブルの方が、伝送損失が低減されていることが確認された。つまり、サンプル番号No.4の光ファイバケーブルの伝送損失の判定は評価Bであったが、サンプル番号No.5~No.6の光ファイバケーブルの伝送損失の判定は評価Aであった。
 同様に、サンプル番号No.7~No.9の光ファイバケーブルの光ファイバテープ心線の占有率はすべて35%であるが、サンプル番号No.7の光ファイバケーブルは1心毎間欠連結型光ファイバテープ心線であり、サンプル番号No.8~No.9の光ファイバケーブルは2心毎間欠連結型光ファイバテープ心線である。このとき、伝送損失の判定は差異がないものの、サンプル番号No.7の光ファイバケーブルよりもサンプル番号No.8~No.9の光ファイバケーブルの方が、伝送損失が低減されていることが確認された。
 これにより、光ファイバテープ心線において、1心毎間欠連結型光ファイバテープ心線よりも2心毎間欠連結型光ファイバテープ心線の方が、伝送損失が低減されることが確認された。
 サンプル番号No.4~No.9の光ファイバケーブルについて、接着長比率について注目して説明する。サンプル番号No.4~No.6の光ファイバケーブルの光ファイバテープ心線の占有率はすべて40%であるが、サンプル番号No.4の光ファイバケーブルの接着長比率は40%であり、サンプル番号No.5の光ファイバケーブルの接着長比率は73%であり、No.6の光ファイバケーブルの接着長比率は80%である。このとき、接着長比率が大きいサンプルほど、伝送損失が低減されていることが確認された。つまり、サンプル番号No.4の光ファイバケーブルの伝送損失の判定は評価Bであったが、サンプル番号No.5~No.6の光ファイバケーブルの伝送損失の判定は評価Aであった。
 同様に、サンプル番号No.7~No.9の光ファイバケーブルの光ファイバテープ心線の占有率はすべて35%であるが、サンプル番号No.7の光ファイバケーブルの接着長比率は40%であり、サンプル番号No.8の光ファイバケーブルの接着長比率は73%であり、No.9の光ファイバケーブルの接着長比率は80%である。このとき、伝送損失の判定は差異がないものの、接着長比率が大きいサンプルほど、伝送損失が低減されていることが確認された。
 これにより、接着長比率が73%以上であれば、伝送損失がさらに低減されることが確認された。
 以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。
 1A,1B:光ファイバケーブル
 5,105:光ファイバテープ心線
 6,106:連結部
 7,107:非連結部
 8,108:間欠連結部
 10:スロットロッド
 11,11a,11b,11c,11d,11e:スロット溝(内部空間の一例)
 12,33:テンションメンバ
 14,31:抑え巻きテープ
 16:外被
 18:位置識別マーク
 20:光ファイバ心線
 21:コア部
 22:クラッド部
 23:ガラスファイバ
 24:プライマリ被覆層(プライマリ樹脂)
 25:セカンダリ被覆層(セカンダリ樹脂)
 26:着色層
 32:ケーブル外被
 34:引き裂き紐
 35:内部空間
 50:ケーブルコア
 51:光ファイバユニット 

Claims (5)

  1.  光ファイバ心線を複数本並列して形成された光ファイバテープ心線を内部空間に実装する光ファイバケーブルであって、
     前記光ファイバ心線のコア部は純石英ガラスで構成され、波長1550nmにおける前記コア部の実効断面積が110μm以上150μm以下であり、
     前記光ファイバ心線は、隣接する光ファイバ心線間に、接着樹脂が塗布される連結部と前記接着樹脂が塗布されない非連結部とが交互に設けられることで連結された間欠連結部を含む間欠連結型光ファイバテープ心線を構成しており、
     前記光ファイバテープ心線は、前記光ファイバテープ心線の単位長さにおいて、全心線間の長さの合計に対する前記接着樹脂が塗布される接着長の合計の比率は40%以上であり、
     前記内部空間の断面積に対する前記光ファイバテープ心線の占有率は30%以上40%以下である、光ファイバケーブル。
  2.  前記間欠連結部は、前記光ファイバテープ心線において2心毎に設けられる、請求項1に記載の光ファイバケーブル。
  3.  前記光ファイバテープ心線の単位長さにおいて、全心線間の長さの合計に対する前記接着樹脂が塗布される接着長の合計の比率は73%以上である、請求項1または請求項2に記載の光ファイバケーブル。
  4.  前記光ファイバケーブルは、スロットロッドを有する、テープスロット型の光ファイバケーブルである、請求項1から請求項3のいずれか1項に記載の光ファイバケーブル。
  5. 前記光ファイバケーブルは、前記光ファイバテープ心線が複数本撚り合わされて構成されたケーブルコアと、前記ケーブルコアの周囲に設けられたケーブル外被と、を有するスロットレス型の光ファイバケーブルである、請求項1から請求項3のいずれか1項に記載の光ファイバケーブル。
PCT/JP2022/031907 2021-08-25 2022-08-24 光ファイバケーブル WO2023027117A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023543961A JPWO2023027117A1 (ja) 2021-08-25 2022-08-24
EP22861405.3A EP4394470A1 (en) 2021-08-25 2022-08-24 Optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-137057 2021-08-25
JP2021137057 2021-08-25

Publications (1)

Publication Number Publication Date
WO2023027117A1 true WO2023027117A1 (ja) 2023-03-02

Family

ID=85322874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031907 WO2023027117A1 (ja) 2021-08-25 2022-08-24 光ファイバケーブル

Country Status (3)

Country Link
EP (1) EP4394470A1 (ja)
JP (1) JPWO2023027117A1 (ja)
WO (1) WO2023027117A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211511A (ja) 2013-04-18 2014-11-13 住友電気工業株式会社 光ケーブル
JP2016194652A (ja) * 2015-04-01 2016-11-17 住友電気工業株式会社 光ファイバケーブル
JP2017032749A (ja) 2015-07-31 2017-02-09 住友電気工業株式会社 光ファイバケーブル
JP2017125932A (ja) * 2016-01-13 2017-07-20 住友電気工業株式会社 間欠連結型光ファイバテープ心線および光ケーブル
JP2017223730A (ja) 2016-06-13 2017-12-21 住友電気工業株式会社 光ファイバケーブル
WO2018174004A1 (ja) * 2017-03-21 2018-09-27 住友電気工業株式会社 光ファイバケーブル
US20190049681A1 (en) * 2017-08-08 2019-02-14 Corning Research & Development Corporation Rollable optical fiber ribbon with low attenuation, large mode field diameter optical fiber and cable
WO2020045372A1 (ja) * 2018-08-27 2020-03-05 住友電気工業株式会社 識別マーク付光ファイバ心線、識別マーク付光ファイバ心線の製造方法
JP2021137057A (ja) 2020-02-28 2021-09-16 株式会社三洋物産 遊技機
WO2022102666A1 (ja) * 2020-11-11 2022-05-19 住友電気工業株式会社 光ファイバケーブル

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211511A (ja) 2013-04-18 2014-11-13 住友電気工業株式会社 光ケーブル
JP2016194652A (ja) * 2015-04-01 2016-11-17 住友電気工業株式会社 光ファイバケーブル
JP2017032749A (ja) 2015-07-31 2017-02-09 住友電気工業株式会社 光ファイバケーブル
JP2017125932A (ja) * 2016-01-13 2017-07-20 住友電気工業株式会社 間欠連結型光ファイバテープ心線および光ケーブル
JP2017223730A (ja) 2016-06-13 2017-12-21 住友電気工業株式会社 光ファイバケーブル
WO2018174004A1 (ja) * 2017-03-21 2018-09-27 住友電気工業株式会社 光ファイバケーブル
US20190049681A1 (en) * 2017-08-08 2019-02-14 Corning Research & Development Corporation Rollable optical fiber ribbon with low attenuation, large mode field diameter optical fiber and cable
WO2020045372A1 (ja) * 2018-08-27 2020-03-05 住友電気工業株式会社 識別マーク付光ファイバ心線、識別マーク付光ファイバ心線の製造方法
JP2021137057A (ja) 2020-02-28 2021-09-16 株式会社三洋物産 遊技機
WO2022102666A1 (ja) * 2020-11-11 2022-05-19 住友電気工業株式会社 光ファイバケーブル

Also Published As

Publication number Publication date
JPWO2023027117A1 (ja) 2023-03-02
EP4394470A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
JP4619424B2 (ja) 光ファイバケーブル
WO2009104724A1 (ja) 光ファイバおよび光ケーブル
US8184934B2 (en) Optical fiber cable
EP2725399A2 (en) An optical fiber cable
JP7403574B2 (ja) 光ファイバ
US7609926B2 (en) Optical fiber cable
JP7135207B2 (ja) 光ファイバ
JP2008090040A (ja) 光ファイバテープ心線
EP3812815B1 (en) Optical fiber cable
WO2022102666A1 (ja) 光ファイバケーブル
WO2003058315A1 (en) Optical fiber cable with controlled helix values
CN113311535B (zh) 一种光纤带及光缆
WO2021045201A1 (ja) 光ファイバテープ心線、光ファイバケーブルおよびコネクタ付光ファイバコード
WO2023027117A1 (ja) 光ファイバケーブル
US11808972B2 (en) Optical fiber
US11803007B2 (en) Optical fiber
JP2007025233A (ja) 多心光ファイバケーブル
JP2012048829A (ja) 複合ケーブル
EP4239386A1 (en) Optical fiber cable with elongated strength members and manufacturing method thereof
EP4239385A2 (en) Aerial drop optical fibre cable
JP2004265780A (ja) メタル光複合ケーブル
WO2023021657A1 (ja) 光ファイバケーブル
EP4202520A1 (en) Optical fiber cable with coil elements
JP4568305B2 (ja) 光ファイバ
JP4013045B2 (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543961

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022861405

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861405

Country of ref document: EP

Effective date: 20240325