WO2017119461A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same Download PDF

Info

Publication number
WO2017119461A1
WO2017119461A1 PCT/JP2017/000178 JP2017000178W WO2017119461A1 WO 2017119461 A1 WO2017119461 A1 WO 2017119461A1 JP 2017000178 W JP2017000178 W JP 2017000178W WO 2017119461 A1 WO2017119461 A1 WO 2017119461A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
component
aligning agent
carbon atoms
Prior art date
Application number
PCT/JP2017/000178
Other languages
French (fr)
Japanese (ja)
Inventor
玲久 小西
大輝 山極
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2017560415A priority Critical patent/JP6919574B2/en
Priority to KR1020187022535A priority patent/KR20180101453A/en
Priority to CN201780015102.2A priority patent/CN109073935B/en
Publication of WO2017119461A1 publication Critical patent/WO2017119461A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element using the liquid crystal alignment film.
  • Liquid crystal display elements used in liquid crystal televisions, navigators, smartphones, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • the liquid crystal alignment film has a function of controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal.
  • a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates. In this case, liquid crystal molecules are aligned in a certain direction with a pretilt angle by the liquid crystal alignment film, and respond by applying a voltage to an electrode provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image by utilizing the orientation change due to the response of the liquid crystal molecules.
  • liquid crystal alignment film a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is mainly used. It is used.
  • a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide
  • a high voltage holding ratio a small residual charge when a DC voltage is applied, and / or Alternatively, characteristics such as quick relaxation of accumulated residual charges due to DC voltage are required, but in recent years, a material having a high voltage holding ratio is particularly required for power saving of liquid crystal display elements.
  • liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels.
  • a backlight with a large calorific value may be used.
  • the liquid crystal alignment film is required to have high stability against light from the backlight.
  • a burn-in defect also called line burn-in
  • the liquid crystal alignment film in addition to good initial characteristics, for example, it is required that the voltage holding ratio does not easily decrease even after being exposed to light irradiation for a long time.
  • an alignment film having a high voltage holding capability is further required.
  • a liquid crystal aligning agent obtained by adding various crosslinking agents to polyamic acid is used, a liquid crystal display element having excellent voltage holding characteristics can be obtained, but the liquid crystal aligning property may be impaired.
  • the effect of the crosslinking agent may not be sufficiently exhibited depending on the combination with the polymer species contained in the liquid crystal aligning agent, and the voltage holding ratio may be insufficient.
  • the gist of the present invention is as follows.
  • a liquid crystal aligning agent comprising the following component (A), component (B), component (C) and an organic solvent.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a group represented by the following formula (1), at least one of which is a protecting group that is replaced with a hydrogen atom by heat.
  • R 3 , R 4 , and R 5 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms that may have a substituent.
  • D is a thermally leaving group which is a protecting group that is replaced by a hydrogen atom by heat.
  • X 1 is a tetravalent organic group represented by the following formula (X-1)
  • Y 1 is a divalent organic group
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Each of A 1 and A 2 independently represents a hydrogen atom, or an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 2 to 10 carbon atoms. Alkynyl group.
  • Component A compound containing two or more crosslinkable functional groups.
  • the liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal aligning film that maintains the voltage holding ratio even after being exposed to light irradiation, without impairing the liquid crystal aligning property over a long period of time.
  • the liquid crystal display element which has the liquid crystal aligning film obtained from the liquid crystal aligning agent of this invention can provide the outstanding display used for a liquid crystal television, a smart phone, a car navigation etc.
  • Component (A) contained in the liquid crystal aligning agent of the present invention includes a tetracarboxylic acid derivative component, a diamine compound having a structure of the following formula [A-1], a diamine having a structure of the following formula [A-2], A polyimide precursor obtained using a diamine component containing at least one diamine compound selected from diamine compounds having the structure of the following formula [A-3] and at least one polymer selected from polyimides (hereinafter referred to as specific (Also referred to as polymer (A)).
  • R 1 , R 2 and A are the same as defined above.
  • at least one or both of R 1 and R 2 is a thermally leaving group that is a protecting group that is replaced with a hydrogen atom by heat.
  • the thermal leaving group is preferably a protecting group that is not released at room temperature, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, from the viewpoint of storage stability of the liquid crystal aligning agent. is there.
  • thermally leaving group a group represented by the following formula (1) or a 9-fluorenylmethoxycarbonyl group is preferable.
  • A is a divalent group consisting of a single bond or a hydrocarbon group having 1 to 4 carbon atoms, preferably an alkylene group. From the viewpoint of elimination temperature, a tert-butoxycarbonyl group is preferred.
  • diamine having a structure represented by the above formula [A-1] in the molecule include diamines represented by the following formula [A-1-1].
  • R 1 and R 2 are the same as in the formula [A-1], including preferred examples thereof.
  • the two n's are each independently an integer of 0 to 3, and are preferably 0 or 1 and more preferably 1 in view of availability of raw materials.
  • the amino group (—NH 2 ) in each benzene ring may be any of ortho, meta, or para with respect to the bonding position of the alkylene group. From the viewpoint of ease of polymerization and polymerization reactivity, the meta position or the para position is preferable, and the para position is more preferable.
  • Preferred examples of the diamine represented by the formula [A-1-1] include the following compounds.
  • R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • D is a thermally leaving group which is a protecting group that can be replaced by a hydrogen atom by heat, and includes the preferred embodiment and is as defined in the above formula [A-2].
  • a tert-butoxycarbonyl group is preferable.
  • a 1 and A 5 are each independently a single bond or an alkylene group having 1 to 5 carbon atoms. From the viewpoint of reactivity with the functional group in the sealing agent, a single bond or a methylene group is preferable.
  • a 2 and A 4 are alkylene groups having 1 to 5 carbon atoms, preferably a methylene group or an ethylene group.
  • a 3 is an alkylene group having 1 to 6 carbon atoms or a cycloalkylene group. From the viewpoint of reactivity with the functional group in the sealant, a methylene group or an ethylene group is preferable.
  • B 1 and B 2 are each independently a single bond, —O—, —NH—, —NMe—, —C ( ⁇ O) —, —C ( ⁇ O) O—, —C ( ⁇ O) NH—, —C ( ⁇ O) NMe—, —OC ( ⁇ O) —, —NHC ( ⁇ O) —, or —N (Me) C ( ⁇ O) —.
  • D 1 is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group. From the viewpoint of deprotection temperature, a tert-butoxycarbonyl group is preferred.
  • a is 0 or 1;
  • diamine represented by the formula (A-2-2) include the following formulas (2-1) to (2-21).
  • Me represents a methyl group
  • D 2 represents a tert-butoxycarbonyl group.
  • the formulas (2-1) to (2-4) are more preferable, and the formula (2-1) is particularly preferable.
  • the diamine having the structure represented by the above formula [A-3] those represented by the following formula [A-3-1] or the following formula [A-3-2] are particularly preferable.
  • the cases represented by the following formula [A-3-3] and the following formula [A-3-4] are particularly preferable because the liquid crystal alignment property of the obtained liquid crystal alignment film becomes high.
  • a 1 , A 5 , B 1 , and B 2 are the same as those described in Formula [A-2-1], including preferred examples. , A 1 , A 5 , B 1 and B 2 .
  • Each R 5 is independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. From the viewpoint of liquid crystal orientation, R 5 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom.
  • a 6 is a single bond or an alkylene group having 1 to 6 carbon atoms. From the viewpoint of liquid crystal alignment, a single bond, a methylene group, an ethylene group, or a propylene group is preferable, and a single bond or a methylene group is more preferable.
  • D 1 is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group, and a tert-butoxycarbonyl group is preferred from the viewpoint of deprotection temperature.
  • a is 0 or 1;
  • a 6 , R 5, and D 1 is, according to the preferred examples are also the formula [A-2-1], A 6 , R 5 , and it is the same definition as D 1.
  • Specific examples include the following formulas (3-1) to (3-5).
  • D 2 represents a tert-butoxycarbonyl group.
  • the formulas (3-1) to (3-4) are more preferable, and the formula (3-1) is particularly preferable.
  • diamine component used for the component (A) contained in the liquid crystal aligning agent of the present invention examples include diamines having a structure represented by the above formulas [A-1], [A-2] and [A-3]. Other diamines can be used together with at least one diamine selected.
  • Examples of other diamines include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4 ' -Diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-d
  • diamine compounds used for the component (A) contained in the liquid crystal aligning agent of the present invention are the solubility of the component (A) in the solvent, the coating property of the liquid crystal aligning agent, and the liquid crystal aligning property when used as a liquid crystal aligning film. Depending on the characteristics such as voltage holding ratio and accumulated charge, one or more kinds can be used.
  • the tetracarboxylic acid derivative component for producing the component (A) contained in the liquid crystal aligning agent of the present invention includes not only tetracarboxylic dianhydride but also tetracarboxylic acid and tetracarboxylic acid that are tetracarboxylic acid derivatives thereof.
  • Acid dihalides, tetracarboxylic acid dialkyl esters or tetracarboxylic acid dialkyl ester dihalides can also be used. Among them, it is preferable to use at least one selected from tetracarboxylic dianhydrides represented by the following formula [4] and tetracarboxylic dialkyl esters which are derivatives thereof.
  • the tetracarboxylic dianhydride represented by the following formula [4] and derivatives thereof are collectively referred to as a specific tetracarboxylic acid component.
  • Z represents at least one structure selected from the group consisting of the following formulas [4a] to [4q].
  • Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring.
  • Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group.
  • Z is, among others, from the viewpoint of ease of synthesis and ease of polymerization reactivity in producing a polymer, the formula [4a], the formula [4c] to the formula [4g], the formula [4k] to the formula [4m ] Or the formula [4p] is preferable. More preferable is the formula [4a], the formula [4e] to the formula [4g], the formula [4l], the formula [4m], or the formula [4p]. Particularly preferred is [4a], [4e], [4f], [4l], [4m] or [4p].
  • the specific tetracarboxylic acid component in component (A) is preferably from 50 to 100 mol%, particularly preferably from 70 to 100 mol%, particularly from 80 to 100 mol%, in 100 mol% of all tetracarboxylic acid derivative components. preferable.
  • the specific tetracarboxylic acid component depends on the properties such as the solubility of the specific polymer (A) in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal in the case of the liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. One type or two or more types can also be used.
  • tetracarboxylic acid components other than the specific tetracarboxylic acid component can also be used.
  • examples of other tetracarboxylic acid components include the following tetracarboxylic acids, tetracarboxylic dianhydrides, tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
  • tetracarboxylic acid components include 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenone Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1, 3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3 -Dicar
  • the other tetracarboxylic acid components have characteristics such as the solubility of the specific polymer (A) in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal aligning property when the liquid crystal aligning film is used, the voltage holding ratio, and the accumulated charge. Depending on the situation, one kind or a mixture of two or more kinds may be used.
  • the component (B) contained in the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (2) and an imidized polymer of the polyimide precursor. (Hereinafter also referred to as the specific polymer (B)).
  • X 1 , Y 1, R 1, A 1 to A 2 are as defined above.
  • R 1 is preferably a hydrogen atom or a methyl group, a hydrogen atom is particularly preferred.
  • a 1 to A 2 are preferably a hydrogen atom or a methyl group.
  • R 1 Specific examples of the alkyl group for R 1 include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, and n-pentyl group. Etc. From the viewpoint of ease of imidization by heating, R 1 is preferably a hydrogen atom or a methyl group.
  • a preferable content ratio of the structural unit (2) is 5 to 90 mol%, more preferably 10 to 90 mol%, still more preferably 10 to 80 mol% in the same polymer.
  • the polymer of (B) component may have a structural unit of following formula (3) other than the structural unit represented by the said Formula (2).
  • the component (B) of the present invention may be a polymer having a structural unit represented by the formula (2) and a structural unit represented by the formula (3), and a polymer having a structural unit represented by the formula (2).
  • a mixture of the polymer and a polymer having the structural unit of the formula (3) may be used, but the former is preferable.
  • the content of the structural unit of the formula (3) contained in the polymer of the component (B) is 5 to 90 mol% in the polymer, preferably 10 to 90 mol%, preferably 20 to 90 mol%. More preferred.
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and the structure thereof is not particularly limited. X 2 is two or more types may be mixed. Specific examples of X 2 include the following formulas (X-2) to (X-44).
  • R 8 to R 11 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group or a phenyl group. It is.
  • R 8 to R 11 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group or an ethyl group is preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • X 2 preferably contains a structure selected from (X-2) to (X-14) in view of availability of monomers.
  • X 2 preferably has a structure consisting only of an aliphatic group such as (X-2) to (X-7) and (X-10).
  • X-2) is more preferred.
  • X 2 is more preferably represented by the following formula (X2-1) or (X2-2) in order to exhibit good liquid crystal alignment.
  • a 1 and A 2 each independently have a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent. Or an alkynyl group having 2 to 10 carbon atoms and an alkynyl group having 2 to 10 carbon atoms which may have a substituent.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group which is a substituent can have a structure represented by OR.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • organooxy group examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • organothio group which is a substituent
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • alkenyl group as a substituent examples include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • alkynyl group that is a substituent examples include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • the reactivity of the amino group and the liquid crystal orientation may be lowered.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
  • Y 1 is a divalent organic group derived from diamine, and examples thereof include the following Y-1 to Y-118.
  • Y 1 is more preferably at least one selected from structures represented by the following formulas (5) and (6) from the viewpoint of the liquid crystal alignment property and the pretilt angle of the obtained liquid crystal alignment film.
  • R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms
  • R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms
  • a is R is an integer of 1 to 4, and when a is 2 or more, R 12 and R 13 may be the same or different
  • R 14 in formula (6) is a single bond, —O—, —S—. , —NR 15 —, an amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms
  • R 15 is a hydrogen atom or a methyl group.
  • Formula (5) and Formula (6) include the following structures.
  • High structural linearity since it is possible to enhance the orientation of the liquid crystal when the liquid crystal alignment film, as Y 1 is, Y-7, Y-21 , Y-22, Y-23, Y-25, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-72, Y-73, Y-74, Y-75, Y-98, Y- 99, Y-100 and Y-118 are more preferable.
  • the proportion of the above structure that can enhance the liquid crystal orientation is preferably 20 mol% or more of Y 1 as a whole, more preferably 60 mol% or more, and further preferably 80 mol% or more.
  • the side chain has a long-chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination of these in Y 1. .
  • Y 1 examples include Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y- 86, Y-87, Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, Y-97 are preferred.
  • the proportion of the above structure for increasing the pretilt angle is preferably 1 to 30 mol%, more preferably 1 to 20 mol% of the entire Y 1 .
  • the polyimide precursor used in the present invention is obtained from a reaction between a diamine component and a tetracarboxylic acid derivative, and examples thereof include polyamic acid and polyamic acid ester.
  • the component (C) contained in the liquid crystal aligning agent of the present invention is a compound containing two or more crosslinkable functional groups.
  • the crosslinkable functional group include, but are not limited to, a hydroxyl group, a hydroxyalkylamide group, a (meth) acrylate group, a blocked isocyanate group, an oxetane group, and an epoxy group.
  • a hydroxyl group, a blocked isocyanate group, or an epoxy group is preferable, and a hydroxyl group or an epoxy group is more preferable.
  • (C) component may have 2 or more of the same crosslinkable functional groups in the structure, and may have 2 or more of 2 or more types of different crosslinkable functional groups.
  • Examples of the compound containing two or more hydroxyl groups include compounds represented by the following formula (7).
  • X 3 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group, n is an integer of 2 to 6, and R 6 and R 7 are respectively Independently a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms, and R 6 and R 7 At least one of them is represented by the following formula (6).
  • R 8 to R 11 each independently represents a hydrogen atom, a hydrocarbon group, or a hydrocarbon group substituted with a hydroxy group.
  • X 3 is preferably an aliphatic hydrocarbon group from the viewpoint of liquid crystal alignment and solubility, and more preferably has 1 to 10 carbon atoms, as described above.
  • n represents an integer of 2 to 6, and n is preferably 2 to 4 from the viewpoint of solubility.
  • Examples of the compound containing two or more blocked isocyanate groups include compounds represented by the following formula (9).
  • Z's are each independently an alkyl group having 1 to 3 carbon atoms, a hydroxyl group, or an organic group represented by the following formula (10), and at least one of Z is represented by the following formula (10). It is an organic group.
  • Examples of the compound containing two or more blocked isocyanate groups other than the above formula (11) include the following compounds.
  • Specific examples of the compound containing two or more epoxy groups include the following compounds.
  • Specific examples of the compound containing two or more (meth) acrylate groups include the following compounds.
  • the content ratio of the component (A) is preferably 20 to 80% by mass during the liquid crystal alignment. 20 to 60% by mass is more preferable, and 30 to 50% by mass is particularly preferable.
  • the content of the component (B) is preferably 20 to 80% by mass, more preferably 40 to 80% by mass, and particularly preferably 50 to 70% by mass with respect to the component (A).
  • the content of the component (C) is preferably 1 to 30% by weight, more preferably 3 to 20% by weight, particularly 3 to 15% by weight, based on the total of the components (A) and (B). preferable.
  • the polyamic acid which is a polyimide precursor used for the component (A) and the component (B) is produced by the following method. Specifically, a tetracarboxylic acid component such as tetracarboxylic dianhydride and a diamine component are -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C in the presence of an organic solvent, for 30 minutes to 24 hours. Preferably, it can be produced by reacting for 1 to 12 hours.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved.
  • Specific examples of the organic solvent used in the reaction include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide. Or 1,3-dimethyl-imidazolidinone.
  • the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3].
  • An organic solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • An alkyl group is shown.
  • These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
  • the concentration of the polyamic acid polymer in the reaction system is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass because polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the obtained polyamic acid can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid ester which is a polyimide precursor can be manufactured by the manufacturing method of (1), (2) or (3) shown below.
  • (1) When manufacturing from polyamic acid A polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be manufactured.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 mol with respect to 1 mol of the polyamic acid repeating unit.
  • organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone.
  • solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3]
  • the indicated solvents can be used. These solvents may be used alone or in combination.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be produced by reacting for a period of time.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 moles relative to the diamine component because it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the production method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like.
  • triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below and redissolved in an organic solvent to obtain a liquid crystal aligning agent. It is preferable.
  • Chemical imidation can be performed by stirring the polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent of this invention has the form of the solution in which the above-mentioned specific polymer (A), specific polymer (B), and (C) component were melt
  • the molecular weight of the specific polymer (A) and the specific polymer (B) is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, still more preferably 10, 000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the content (concentration) of the polymer containing the specific polymer (A) and the specific polymer (B) in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the coating film to be formed. However, it is preferably 1% by weight or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by weight or less from the viewpoint of storage stability of the solution. Among these, 2 to 7% by mass is preferable, and 3 to 6% by mass is particularly preferable.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the specific structure polymer is uniformly dissolved.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferable.
  • the solubility of the polymer in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
  • the good solvent in the liquid crystal aligning agent is preferably 20% by mass to 99% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • a solvent also referred to as a poor solvent
  • it can be used.
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, or dipropylene glycol dimethyl ether are preferable.
  • These poor solvents are preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 10 to 80% by mass is preferable. More preferred is 20 to 70% by mass.
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc.
  • Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When firing the compound, and further, the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization by heating of the polyimide precursor may be added.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used.
  • Use of a substrate on which an ITO electrode or the like is formed is preferable from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
  • Examples of the method for applying the liquid crystal aligning agent include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the rubbing process can be performed using an existing rubbing apparatus.
  • Examples of the material of the rubbing cloth at this time include cotton, nylon, and rayon.
  • As the conditions for rubbing treatment generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and an indentation amount of 0.1 to 1.0 mm are used. Thereafter, the residue generated by rubbing is removed by ultrasonic cleaning using pure water or alcohol.
  • the photo-alignment treatment method there is a method of imparting liquid crystal alignment ability by irradiating the coating film surface with radiation deflected in a certain direction, and further subjecting to a temperature of 150 to 250 ° C. in some cases.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film can stably align liquid crystal molecules in a certain direction.
  • a higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the film irradiated with the polarized radiation may be contact-treated with a solvent containing at least one selected from water and an organic solvent.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. Two or more of these solvents may be used in combination.
  • At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable.
  • Water, 2-propanol, and a mixed solvent of water and 2-propanol are particularly preferable.
  • the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is preferably performed by a treatment such that the film and the liquid are sufficiently in contact with each other, such as an immersion treatment or a spraying treatment.
  • a method of immersing the film in a solution containing an organic solvent preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying, or both May be done.
  • the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
  • the heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, the effect of reorientation of the molecular chain may not be obtained, and if it is too long, the molecular chain may be decomposed, and is preferably 10 seconds to 30 minutes. More preferred is ⁇ 10 minutes.
  • the liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film.
  • the liquid crystal display element is obtained by obtaining a substrate with a liquid crystal alignment film from a liquid crystal aligning agent by the method for producing a liquid crystal alignment film, then preparing a liquid crystal cell by a known method, and using it as a liquid crystal display element. is there.
  • a liquid crystal cell manufacturing method a liquid crystal display element having a passive matrix structure will be described. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • TFT Thin Film Transistor
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the sealing agent for example, a resin that is cured by ultraviolet irradiation or heating having a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxyl group, an allyl group, or an acetyl group is used.
  • a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
  • An inorganic filler may be added to the sealant for the purpose of improving adhesiveness and moisture resistance.
  • the inorganic filler that can be used is not particularly limited. Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, Calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc.
  • Two or more of the above inorganic fillers may be mixed and used.
  • NMP N-methyl-2-pyrrolidone
  • PB propylene glycol monobutyl ether
  • IPA isopropanol
  • DA-1 1,2-bis (4-aminophenoxy) ethane
  • DA-2 see formula (DA-2) below
  • DA-3 1,2-bis (4-aminophenoxy) methane
  • DA-4 p-phenylenediamine
  • DA-5 1,2-bis (4-aminophenoxy) propane
  • DA-6 see formula (DA-6) below
  • DA-7 4,4′diaminodiphenylamine
  • DA-8 See the following formula (DA-8), DA-9: 4,4′diaminodiphenylmethane
  • DAH-1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • DAH-2 see formula (DAH-2) below
  • DAH-3 see formula (DAH-3) below
  • DAH-4 cyclobutanetetra Carboxylic dianhydride
  • DAH-5 pyromellitic dianhydride 1,3DM-CBDE-Cl: dimethyl 1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate
  • AD-1 to 3 Crosslinkable additive
  • AD-4 Imidization accelerator
  • the molecular weight of the polyimide was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC device manufactured by Shodex (GPC-101), Column: manufactured by Shodex (series of KD803 and KD805), column temperature: 50 ° C.
  • a polyimide resin powder (SPI-1) was obtained by taking 32.70 g of the obtained polyimide resin powder in a 200 ml sample tube containing a stir bar, adding 239.8 g of NMP, and stirring and dissolving at 70 ° C. for 20 hours.
  • Example 1 In a 50 mL Erlenmeyer flask containing a stirrer, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.62 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 2.83g of NMP, 3.45g of GBL and 3.60g of PB were added, 0.495g of 10% NMP solution of AD-1 and 0.139g of AD-4 were added and stirred overnight with a magnetic stirrer to align the liquid crystal Agent (AL-1) was obtained.
  • SPI-1 polyimide solution obtained in Synthesis Example 2
  • Example 2 In a 50 mL Erlenmeyer flask containing a stirrer, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.62 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 3.32 g of NMP, 3.45 g of GBL and 3.60 g of PB were added, 0.0297 g of AD-2 and 0.139 g of AD-4 were added, and the mixture was stirred overnight with a magnetic stirrer (AL-2 )
  • Example 3 In a 50 mL Erlenmeyer flask containing a stirrer, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.62 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 3.32 g of NMP, 3.45 g of GBL and 3.60 g of PB were added, 0.0297 g of AD-3 and 0.139 g of AD-4 were added, and the mixture was stirred overnight with a magnetic stirrer (AL-3 )
  • Example 4 In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 3.60 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. . 5.40 g of NMP and 5.40 g of BCS were added, 0.45 g of 10% NMP solution of AD-1 was added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-4).
  • PAA-4 polyamic acid solution obtained in Synthesis Example 5
  • Example 5 In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 3.60 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. . 5.85 g of NMP and 5.40 g of BCS were added, 0.027 g of AD-2 was added, and the mixture was stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-5).
  • PAA-4 polyamic acid solution obtained in Synthesis Example 5
  • PAA-5 polyamic acid solution obtained in Synthesis Example 6
  • Example 6 In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 3.60 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. . 5.85 g of NMP and 5.40 g of BCS were added, 0.045 g of AD-3 was added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-6).
  • PAA-4 polyamic acid solution obtained in Synthesis Example 5
  • Example 7 In a 50 mL Erlenmeyer flask containing a stir bar, 3.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 8 and 3.96 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 9 were placed. It was. Add 1.54g of NMP, 5.12g of GBL and 3.60g of BCS, then add 0.495g of 10% NMP solution of AD-1 and stir overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-7). It was.
  • Example 8 In a 50 mL Erlenmeyer flask containing a stirring bar, 1.87 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 11 and 4.80 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 9 were taken. . 5.58 g of NMP and 5.40 g of BCS were added, and 0.45 g of 10% NMP solution of AD-1 was further added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-8).
  • PAA-9 polyamic acid solution obtained in Synthesis Example 11
  • This cell was heat-treated at 120 ° C. for 30 minutes to complete a liquid crystal cell.
  • a voltage of 1V was applied for 60 ⁇ s at a temperature of 60 ° C., and the voltage after 500 ms was measured to determine how much the voltage was maintained. Obtained as retention.
  • Example 10 and 11 Comparative Examples 9 and 10
  • a liquid crystal cell was prepared and evaluated in the same manner as in Example 9 except that the liquid crystal aligning agent shown in Table 1 was used instead of the liquid crystal aligning agent AL-1.
  • Table 1 shows the results of initial orientation and voltage holding ratio of each liquid crystal cell.
  • Example 12 The liquid crystal aligning agent (AL-4) obtained in Example 4 was filtered through a filter having a pore size of 1.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 2 minutes. It was. Thereafter, the film was baked for 30 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 100 nm. The fired film was irradiated with UV light of 254 nm through a polarizing plate at 150 mJ / cm 2 . Thereafter, baking was further performed in a hot air circulation oven at 230 ° C. for 30 minutes.
  • a substrate with a liquid crystal alignment film was obtained.
  • two substrates with the above-mentioned liquid crystal alignment film were prepared, and a 6 ⁇ m spacer was dispersed on the one liquid crystal alignment film.
  • a sealant was printed from above, and another substrate was bonded so that the liquid crystal alignment film faces and the photo-alignment direction were parallel, and then the sealant was cured to produce an empty cell.
  • Liquid crystal ML-7026-100 manufactured by Merck Japan Co., Ltd.
  • Example 13 and 14 Comparative Examples 11 and 12
  • a liquid crystal cell was prepared and evaluated in the same procedure as in Example 9 except that the liquid crystal aligning agent shown in Table 1 was used instead of the liquid crystal aligning agent AL-4.
  • Table 1 shows the results of initial orientation and voltage holding ratio of each liquid crystal cell.
  • Example 16 The liquid crystal aligning agent (AL-8) obtained in Example 8 was filtered through a filter having a pore size of 1.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 2 minutes. It was. Thereafter, the film was baked for 20 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 110 nm. The fired film was subjected to orientation treatment by rubbing. Thereafter, it was washed with running water for 1 minute and dried at 80 ° C. for 10 minutes. Thereby, a substrate with a liquid crystal alignment film was obtained.
  • This cell was heat-treated at 120 ° C. for 30 minutes to complete a liquid crystal cell.
  • a voltage of 1V is applied at 20 ° C. for 60 ⁇ s, the voltage after 500 ms is measured, and the voltage holding ratio is defined as the voltage holding ratio. Asked.
  • component 1 is a polymer component containing a thermal leaving group.
  • a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can be suitably used as a wide range display such as a liquid crystal television, a smartphone, and a car navigation.
  • a liquid crystal television a liquid crystal television
  • a smartphone a smartphone
  • a car navigation a wide range display
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2016-001659 filed on Jan. 7, 2016 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a liquid crystal aligning agent which enables the achievement of a liquid crystal alignment film that maintains an adequate voltage holding ratio even after being exposed to light irradiation, without being deteriorated in the liquid crystal aligning properties. A liquid crystal aligning agent which is characterized by containing the component (A), the component (B) and the component (C) described below and an organic solvent. Component (A): at least one polymer selected from among polyimides and polyimide precursors, which are obtained using a tetracarboxylic acid derivative component and a diamine component that contains at least one diamine compound selected from among diamine compounds having a structure of formula (A-1), diamine compounds having a structure of formula (A-2) and diamine compounds having a structure of formula (A-3) Component (B): at least one polymer selected from the group consisting of polyimide precursors having a structural unit represented by formula (2) and imidized polymers of the polyimide precursors Component (C): a compound having two or more crosslinkable functional groups (In the formulae, the symbols are as defined in the description.)

Description

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
 本発明は、液晶表示素子の製造において用いられる液晶配向剤、この液晶配向剤から得られる液晶配向膜及びこの液晶配向膜を使用した液晶表示素子に関するものである。 The present invention relates to a liquid crystal alignment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element using the liquid crystal alignment film.
 液晶テレビ、ナビゲーター、スマートフォンなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜は、液晶表示素子や重合性液晶を用いた位相差板等において、液晶分子の配向を一定方向に制御する機能を有する。例えば、液晶表示素子は、液晶層をなす液晶分子が、一対の基板のそれぞれの表面に形成された液晶配向膜で挟まれた構造を有する。そこでは、液晶分子が、液晶配向膜によってプレチルト角を伴って一定方向に配向し、基板と液晶配向膜との間に設けられた電極への電圧印加により応答をする。その結果、液晶表示素子は、液晶分子の応答による配向変化を利用して所望とする画像の表示を行う。 Liquid crystal display elements used in liquid crystal televisions, navigators, smartphones, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals. The liquid crystal alignment film has a function of controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal. For example, a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates. In this case, liquid crystal molecules are aligned in a certain direction with a pretilt angle by the liquid crystal alignment film, and respond by applying a voltage to an electrode provided between the substrate and the liquid crystal alignment film. As a result, the liquid crystal display element displays a desired image by utilizing the orientation change due to the response of the liquid crystal molecules.
 液晶配向膜としては、これまで、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。
 液晶表示素子の高機能化に伴い、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が要求されるが、近年では液晶表示素子の省電力化に向け、高い電圧保持率の材料がとりわけ求められている。
Conventionally, as the liquid crystal alignment film, a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (polyamic acid) or a solution of soluble polyimide to a glass substrate or the like and baking it is mainly used. It is used.
As liquid crystal display elements become more sophisticated, in liquid crystal alignment films, in addition to excellent liquid crystal alignment and stable pretilt angle, a high voltage holding ratio, a small residual charge when a DC voltage is applied, and / or Alternatively, characteristics such as quick relaxation of accumulated residual charges due to DC voltage are required, but in recent years, a material having a high voltage holding ratio is particularly required for power saving of liquid crystal display elements.
 上記の要求にこたえるために、種々の提案がなされてきている。例えば、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向剤(例えば、特許文献1参照)や、イソシアネート構造を含有する添加剤を含む液晶配向剤(例えば、特許文献2参照)などが提案されている。 Various proposals have been made to meet the above requirements. For example, in addition to polyamic acid and imide group-containing polyamic acid, a liquid crystal aligning agent containing a tertiary amine having a specific structure (for example, see Patent Document 1), a liquid crystal aligning agent containing an additive containing an isocyanate structure (for example, Patent Document 2) has been proposed.
日本特開平9-316200号公報Japanese Unexamined Patent Publication No. 9-316200 WO2014/178406号公報WO2014 / 178406
 近年の液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビや、車載用途、例えば、カーナビゲーションシステムやメーターパネルなどの用途に液晶表示素子が用いられている。こうした用途では、高輝度を得るために、発熱量の大きいバックライトを使用する場合がある。このため、液晶配向膜には、バックライトからの光に対する高い安定性が要求されるようになっている。特に、液晶表示素子の電気特性の1つである電圧保持率が、バックライトからの光照射によって低下してしまうと、液晶表示素子の表示不良の1つである焼き付き不良(線焼き付きともいわれる)が発生しやすくなり、信頼性の高い液晶表示素子を得ることができない。 With the recent improvement in performance of liquid crystal display elements, liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels. In such applications, in order to obtain high luminance, a backlight with a large calorific value may be used. For this reason, the liquid crystal alignment film is required to have high stability against light from the backlight. In particular, when the voltage holding ratio, which is one of the electrical characteristics of the liquid crystal display element, is reduced by light irradiation from the backlight, a burn-in defect (also called line burn-in), which is one of the display defects of the liquid crystal display element. Is likely to occur, and a highly reliable liquid crystal display element cannot be obtained.
 したがって、液晶配向膜においては、初期特性が良好なことに加え、例えば、長時間、光の照射に曝された後であっても、電圧保持率が低下しにくいことが求められている。また、消費電力を削減するために低周波駆動への要求も高まっており、高い電圧保持能力を有する配向膜がさらに必要とされている。
 ポリアミド酸に各種の架橋剤を加えた液晶配向剤を用いると、電圧保持特性に優れる液晶表示素子は得られるものの、液晶配向性を損ねることがある。また、架橋剤の効果は液晶配向剤に含有される重合体種との組み合わせによっては十分に発揮されず、電圧保持率が不十分となることがあった。
Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, for example, it is required that the voltage holding ratio does not easily decrease even after being exposed to light irradiation for a long time. In addition, in order to reduce power consumption, demand for low-frequency driving is increasing, and an alignment film having a high voltage holding capability is further required.
When a liquid crystal aligning agent obtained by adding various crosslinking agents to polyamic acid is used, a liquid crystal display element having excellent voltage holding characteristics can be obtained, but the liquid crystal aligning property may be impaired. In addition, the effect of the crosslinking agent may not be sufficiently exhibited depending on the combination with the polymer species contained in the liquid crystal aligning agent, and the voltage holding ratio may be insufficient.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明の要旨は以下に示す通りである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have completed the present invention. That is, the gist of the present invention is as follows.
 下記の(A)成分、(B)成分、(C)成分及び有機溶剤を含有することを特徴とする液晶配向剤。
 (A)成分:テトラカルボン酸誘導体成分と、下記式[A-1]の構造を有するジアミン化合物、下記式[A-2]の構造を有するジアミン化合物、及び下記式[A-3]の構造を有するジアミン化合物から選ばれる少なくとも1種のジアミン化合物を含有するジアミン成分とを用いて得られるポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000009
(R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基又は下記式(1)で表される基であり、その少なくとも一方は、熱により水素原子に置き換わる保護基である熱脱離性基である。R、R、及びRは、それぞれ独立して、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基であり、Dは熱により水素原子に置き換わる保護基である熱脱離性基である。)
 (B)成分:下記式(2)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体。
Figure JPOXMLDOC01-appb-C000010
 Xは、下記式(X-1)で表される4価の有機基であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~5のアルキル基であり、A~Aはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基である。
Figure JPOXMLDOC01-appb-C000011
 (C)成分:架橋性官能基を2つ以上含有する化合物。
A liquid crystal aligning agent comprising the following component (A), component (B), component (C) and an organic solvent.
Component (A): a tetracarboxylic acid derivative component, a diamine compound having a structure of the following formula [A-1], a diamine compound having a structure of the following formula [A-2], and a structure of the following formula [A-3] A polyimide precursor obtained using a diamine component containing at least one diamine compound selected from diamine compounds having at least one polymer selected from polyimides.
Figure JPOXMLDOC01-appb-C000009
(R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a group represented by the following formula (1), at least one of which is a protecting group that is replaced with a hydrogen atom by heat. R 3 , R 4 , and R 5 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms that may have a substituent. D is a thermally leaving group which is a protecting group that is replaced by a hydrogen atom by heat.)
Component (B): at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (2) and an imidized polymer of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000010
X 1 is a tetravalent organic group represented by the following formula (X-1), Y 1 is a divalent organic group, and R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Each of A 1 and A 2 independently represents a hydrogen atom, or an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 2 to 10 carbon atoms. Alkynyl group.
Figure JPOXMLDOC01-appb-C000011
(C) Component: A compound containing two or more crosslinkable functional groups.
 本発明の液晶配向剤によれば、長期にわたって、液晶配向性を損なうことなく、特に、光照射にさらされた後でも電圧保持率を維持した液晶配向膜を得ることができる。これにより、本発明の液晶配向剤から得られた液晶配向膜を有する液晶表示素子は、液晶テレビ、スマートフォン、カーナビゲーションなどに使用される優れたディスプレイが提供できる。 According to the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film that maintains the voltage holding ratio even after being exposed to light irradiation, without impairing the liquid crystal aligning property over a long period of time. Thereby, the liquid crystal display element which has the liquid crystal aligning film obtained from the liquid crystal aligning agent of this invention can provide the outstanding display used for a liquid crystal television, a smart phone, a car navigation etc.
<(A)成分>
 本発明の液晶配向剤に含有される(A)成分は、テトラカルボン酸誘導体成分と、下記式[A-1]の構造を有するジアミン化合物、下記式[A-2]の構造を有するジアミン、下記式[A-3]の構造を有するジアミン化合物から選ばれる少なくとも1種のジアミン化合物を含有するジアミン成分を用いて得られるポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体(以下、特定重合体(A)ともいう。)である。
<(A) component>
Component (A) contained in the liquid crystal aligning agent of the present invention includes a tetracarboxylic acid derivative component, a diamine compound having a structure of the following formula [A-1], a diamine having a structure of the following formula [A-2], A polyimide precursor obtained using a diamine component containing at least one diamine compound selected from diamine compounds having the structure of the following formula [A-3] and at least one polymer selected from polyimides (hereinafter referred to as specific (Also referred to as polymer (A)).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式[A-1]中、R、R、及びAは、上記で定義したとりである。なかでも、R及びRは、その少なくとも一方、又は両方とも、熱により水素原子に置き換わる保護基である熱脱離性基である。ラビング時の配向膜強度の観点から、R及びRのどちらか一方のみが熱脱離性基であるのが特に好ましい。
 熱脱離性基としては、液晶配向剤の保存安定性の点から、室温において脱離しないことが好ましく、好ましくは80℃以上、更に好ましくは100℃以上での熱で脱離する保護基である。熱脱離性基としては、下記式(1)で表される基、又は9-フルオレニルメトキシカルボニル基が好ましい。
Figure JPOXMLDOC01-appb-C000013

 式(1)中、Aは、単結合、又は炭素数1~4の炭化水素基、好ましくはアルキレン基からなる2価の基である。脱離する温度の点から、tert-ブトキシカルボニル基が好ましい。
In the formula [A-1], R 1 , R 2 and A are the same as defined above. Among these, at least one or both of R 1 and R 2 is a thermally leaving group that is a protecting group that is replaced with a hydrogen atom by heat. From the viewpoint of the alignment film strength during rubbing, it is particularly preferable that only one of R 1 and R 2 is a heat-eliminable group.
The thermal leaving group is preferably a protecting group that is not released at room temperature, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, from the viewpoint of storage stability of the liquid crystal aligning agent. is there. As the thermally leaving group, a group represented by the following formula (1) or a 9-fluorenylmethoxycarbonyl group is preferable.
Figure JPOXMLDOC01-appb-C000013

In the formula (1), A is a divalent group consisting of a single bond or a hydrocarbon group having 1 to 4 carbon atoms, preferably an alkylene group. From the viewpoint of elimination temperature, a tert-butoxycarbonyl group is preferred.
 上記式[A-1]で表される構造を分子内に有するジアミンの好ましい例として、下記式[A-1-1]で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000014
Preferable examples of the diamine having a structure represented by the above formula [A-1] in the molecule include diamines represented by the following formula [A-1-1].
Figure JPOXMLDOC01-appb-C000014
 上記式[A-1-1]中、R及びRは、それぞれの好ましいものも含めて、式[A-1]における場合と同じである。2つのnは、それぞれ独立に、0~3の整数であり、原料入手の容易性から、好ましくは0又は1であり、より好ましくは1である。
 また、式[A-1-1]中、それぞれのベンゼン環におけるアミノ基(-NH)は、アルキレン基の結合位置に対して、オルト、メタ、又はパラのいずれでも位置もよいが、合成の容易性、及び重合反応性の点から、メタ位、又はパラ位が好ましく、パラ位がより好ましい。
In the above formula [A-1-1], R 1 and R 2 are the same as in the formula [A-1], including preferred examples thereof. The two n's are each independently an integer of 0 to 3, and are preferably 0 or 1 and more preferably 1 in view of availability of raw materials.
In the formula [A-1-1], the amino group (—NH 2 ) in each benzene ring may be any of ortho, meta, or para with respect to the bonding position of the alkylene group. From the viewpoint of ease of polymerization and polymerization reactivity, the meta position or the para position is preferable, and the para position is more preferable.
 式[A-1-1]で表されるジアミンの好ましい例としては、以下の化合物が挙げられる。 Preferred examples of the diamine represented by the formula [A-1-1] include the following compounds.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式[A-2]において、R及びRは、それぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~20の1価の炭化水素基である。特に、嵩高い置換基であると液晶配向性を低下させる可能性があるため、水素原子、炭素数1~6アルキル基、又はフェニル基が好ましく、水素原子、又はメチル基が特に好ましい。 In the formula [A-2], R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. In particular, since a bulky substituent may lower the liquid crystal alignment, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom or a methyl group is particularly preferable.
 Dは、熱により水素原子に置き換わる保護基である熱脱離性基であり、その好ましい態様も含めて上記式[A-2]で定義したとおりである。特に、tert-ブトキシカルボニル基が好ましい。 D is a thermally leaving group which is a protecting group that can be replaced by a hydrogen atom by heat, and includes the preferred embodiment and is as defined in the above formula [A-2]. In particular, a tert-butoxycarbonyl group is preferable.
 上記式[A-2]で表される構造を有するジアミンとしては、なかでも、下記式[A-2-1]で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000018
As the diamine having the structure represented by the above formula [A-2], among them, those represented by the following formula [A-2-1] are preferable.
Figure JPOXMLDOC01-appb-C000018
 なかでも、下記式[A-2-2]で表される場合には、得られる液晶配向膜の液晶配向性が高くなるので特に好ましい。
Figure JPOXMLDOC01-appb-C000019
Among these, the case where it is represented by the following formula [A-2-2] is particularly preferable because the liquid crystal alignment property of the obtained liquid crystal alignment film becomes high.
Figure JPOXMLDOC01-appb-C000019
 A及びAは、それぞれ独立して、単結合、又は炭素数1~5のアルキレン基である。シール剤中の官能基との反応性の点から、単結合又はメチレン基が好ましい。A及びAは、炭素数1~5のアルキレン基であり、好ましくは、メチレン基、又はエチレン基である。
 Aは、炭素数1~6のアルキレン基、又はシクロアルキレン基である。シール剤中の官能基との反応性の点から、メチレン基又はエチレン基が好ましい。
A 1 and A 5 are each independently a single bond or an alkylene group having 1 to 5 carbon atoms. From the viewpoint of reactivity with the functional group in the sealing agent, a single bond or a methylene group is preferable. A 2 and A 4 are alkylene groups having 1 to 5 carbon atoms, preferably a methylene group or an ethylene group.
A 3 is an alkylene group having 1 to 6 carbon atoms or a cycloalkylene group. From the viewpoint of reactivity with the functional group in the sealant, a methylene group or an ethylene group is preferable.
 B及びBは、それぞれ独立して、単結合、-O-、 -NH-、 -NMe-、 -C(=O)-、-C(=O)O-、 -C(=O)NH-、 -C(=O)NMe-、 -OC(=O)-、 -NHC(=O)-、 又は、-N(Me)C(=O)-である。得られる液晶配向膜の液晶配向性の点から、単結合、又は、-O-が好ましい。
 Dはtert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基である。脱保護する温度の点から、tert-ブトキシカルボニル基が好ましい。aは0又は1である。
B 1 and B 2 are each independently a single bond, —O—, —NH—, —NMe—, —C (═O) —, —C (═O) O—, —C (═O) NH—, —C (═O) NMe—, —OC (═O) —, —NHC (═O) —, or —N (Me) C (═O) —. From the viewpoint of the liquid crystal alignment property of the obtained liquid crystal alignment film, a single bond or —O— is preferable.
D 1 is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group. From the viewpoint of deprotection temperature, a tert-butoxycarbonyl group is preferred. a is 0 or 1;
 式(A-2-2)で表されるジアミンの具体例としては、下記式(2-1)~式(2-21)が挙げられる。
Figure JPOXMLDOC01-appb-C000020
Specific examples of the diamine represented by the formula (A-2-2) include the following formulas (2-1) to (2-21).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(2-1)~(2-21)において、Meはメチル基を表し、Dはtert-ブトキシカルボニル基を表す。
 なかでも、式(2-1)~(2-4)がより好ましく、式(2-1)が特に好ましい。
 上記式[A-3]で表される構造を有するジアミンとしては、なかでも、下記式[A-3-1]又は下記式[A-3-2]で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000023
In the formulas (2-1) to (2-21), Me represents a methyl group, and D 2 represents a tert-butoxycarbonyl group.
Of these, the formulas (2-1) to (2-4) are more preferable, and the formula (2-1) is particularly preferable.
As the diamine having the structure represented by the above formula [A-3], those represented by the following formula [A-3-1] or the following formula [A-3-2] are particularly preferable.
Figure JPOXMLDOC01-appb-C000023
 なかでも、下記式[A-3-3]及び下記式[A-3-4]で表される場合には、得られる液晶配向膜の液晶配向性が高くなるので特に好ましい。
Figure JPOXMLDOC01-appb-C000024
Among these, the cases represented by the following formula [A-3-3] and the following formula [A-3-4] are particularly preferable because the liquid crystal alignment property of the obtained liquid crystal alignment film becomes high.
Figure JPOXMLDOC01-appb-C000024
 式[A-3-1]及び式[A-3-3]において、A、A、B、及びBは、好ましい例も含めて、式[A-2-1]に記載の、A、A、B、及びBと同じ定義である。Rは、それぞれ独立して、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基である。液晶配向性の観点から、Rとしては、水素原子、メチル基、又はエチル基が好ましく、水素原子がより好ましい。
 Aは、単結合、又は炭素数1~6のアルキレン基である。液晶配向性の観点から、単結合、メチレン基、エチレン基、又はプロピレン基が好ましく、単結合、又はメチレン基がより好ましい。
In Formula [A-3-1] and Formula [A-3-3], A 1 , A 5 , B 1 , and B 2 are the same as those described in Formula [A-2-1], including preferred examples. , A 1 , A 5 , B 1 and B 2 . Each R 5 is independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. From the viewpoint of liquid crystal orientation, R 5 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom.
A 6 is a single bond or an alkylene group having 1 to 6 carbon atoms. From the viewpoint of liquid crystal alignment, a single bond, a methylene group, an ethylene group, or a propylene group is preferable, and a single bond or a methylene group is more preferable.
 Dはtert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基であり、脱保護する温度の点から、tert-ブトキシカルボニル基が好ましい。aは0又は1である。
 式[A-3-2]及び式[A-3-4]において、A、R、及びDは、好ましい例も式[A-2-1]に記載の、A、R、及びDと同じ定義である。
 具体例としては、下記式(3-1)~式(3-5)が挙げられる。
D 1 is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group, and a tert-butoxycarbonyl group is preferred from the viewpoint of deprotection temperature. a is 0 or 1;
In the formula [A-3-2] and the formula [A-3-4], A 6 , R 5, and D 1 is, according to the preferred examples are also the formula [A-2-1], A 6 , R 5 , and it is the same definition as D 1.
Specific examples include the following formulas (3-1) to (3-5).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(3-1)~(3-5)において、Dはtert-ブトキシカルボニル基を表す。
 中でも、式(3-1)~式(3-4)がより好ましく、式(3-1)が特に好ましい。
 上記式[A-1]で表される構造を有するジアミン、上記式[A-2]で表される構造を有するジアミン、及び上記式[A-3]で表される構造を有するジアミンから選ばれる少なくとも1種のジアミンの含有量は、本発明の液晶配向剤に含有される(A)成分に用いられるポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体の製造に用いられる全ジアミン成分に対して、好ましくは5~80モル%、より好ましくは10~50モル%である。
In formulas (3-1) to (3-5), D 2 represents a tert-butoxycarbonyl group.
Of these, the formulas (3-1) to (3-4) are more preferable, and the formula (3-1) is particularly preferable.
Selected from the diamine having the structure represented by the formula [A-1], the diamine having the structure represented by the formula [A-2], and the diamine having the structure represented by the formula [A-3]. The content of at least one kind of diamine to be added to the polyimide precursor used in the component (A) contained in the liquid crystal aligning agent of the present invention and all diamine components used in the production of the imidized polymer of the polyimide precursor. On the other hand, it is preferably 5 to 80 mol%, more preferably 10 to 50 mol%.
 本発明の液晶配向剤に含有される(A)成分に用いられるジアミン成分としては、上記式[A-1]、[A-2]及び[A-3]で表される構造を有するジアミンから選ばれる少なくとも1種のジアミンとともに、その他のジアミンを用いることもできる。 Examples of the diamine component used for the component (A) contained in the liquid crystal aligning agent of the present invention include diamines having a structure represented by the above formulas [A-1], [A-2] and [A-3]. Other diamines can be used together with at least one diamine selected.
 上記その他のジアミンとしては、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン又は1,12-ジアミノドデカン、さらに、これらのアミノ基が2級のアミノ基であるジアミンが挙げられる。 Examples of other diamines include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4 ' -Diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diamino Phenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl ) Silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 4,4′-diaminodiphenylamine, 3,3 '-Diaminodiphenylamine, 3, 4 -Diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3'-diaminodiphenyl) amine, N- Methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3, 3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5 -Diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis (3-aminophenyl) butane Bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4- Aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) ben 4,4 '-[1,4-phenylenebis (methylene)] dianiline, 4,4'-[1,3-phenylenebis (methylene)] dianiline, 3,4 '-[1,4-phenylenebis (Methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1, 3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [( 4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylene (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) Terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1, 3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide) ), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4- Aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2 ′ -Bis (4-aminophenyl) hexafluoropropane, 2,2'-bis (3-aminophenyl) hexafluoropropane, 2,2'-bis (3-amino-4-methylphenyl) hexafluoropropane, 2, 2'-bis (4-aminophenyl) propane, 2,2'-bis (3-aminophenyl) propane, 2,2'-bis (3-amino- -Methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1, 6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1, 0- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1 , 4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1, 11-diaminoundecane or 1,12-diaminododecane, and further diamines in which these amino groups are secondary amino groups Can be mentioned.
 本発明の液晶配向剤中に含有される(A)成分に用いられるその他ジアミン化合物は(A)成分の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を使用できる。 Other diamine compounds used for the component (A) contained in the liquid crystal aligning agent of the present invention are the solubility of the component (A) in the solvent, the coating property of the liquid crystal aligning agent, and the liquid crystal aligning property when used as a liquid crystal aligning film. Depending on the characteristics such as voltage holding ratio and accumulated charge, one or more kinds can be used.
<テトラカルボン酸誘導体成分>
 本発明の液晶配向剤に含有される(A)成分を製造するためのテトラカルボン酸誘導体成分としては、テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドを用いることもできる。その中でも、下記式[4]で示されるテトラカルボン酸二無水物及びその誘導体であるテトラカルボン酸ジアルキルエステルから選ばれる少なくとも1つを用いることが好ましい。下記式[4]で示されるテトラカルボン酸二無水物及びその誘導体を総称して特定テトラカルボン酸成分ともいう。
<Tetracarboxylic acid derivative component>
The tetracarboxylic acid derivative component for producing the component (A) contained in the liquid crystal aligning agent of the present invention includes not only tetracarboxylic dianhydride but also tetracarboxylic acid and tetracarboxylic acid that are tetracarboxylic acid derivatives thereof. Acid dihalides, tetracarboxylic acid dialkyl esters or tetracarboxylic acid dialkyl ester dihalides can also be used. Among them, it is preferable to use at least one selected from tetracarboxylic dianhydrides represented by the following formula [4] and tetracarboxylic dialkyl esters which are derivatives thereof. The tetracarboxylic dianhydride represented by the following formula [4] and derivatives thereof are collectively referred to as a specific tetracarboxylic acid component.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(4)中、Zは下記式[4a]~[4q]からなる群から選ばれる少なくとも1種の構造を示す。
Figure JPOXMLDOC01-appb-C000027
In the formula (4), Z represents at least one structure selected from the group consisting of the following formulas [4a] to [4q].
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 Z~Zは、それぞれ独立に、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を示す。Z及びZは、それぞれ独立に、水素原子又はメチル基を示す。
 Zは、なかでも、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]~式[4g]、式[4k]~式[4m]又は式[4p]が好ましい。より好ましいのは、式[4a]、式[4e]~式[4g]、式[4l]、式[4m]又は式[4p]である。特に好ましいのは、[4a]、式[4e]、式[4f]、式[4l]、式[4m]又は式[4p]である。
Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring. Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group.
Z is, among others, from the viewpoint of ease of synthesis and ease of polymerization reactivity in producing a polymer, the formula [4a], the formula [4c] to the formula [4g], the formula [4k] to the formula [4m ] Or the formula [4p] is preferable. More preferable is the formula [4a], the formula [4e] to the formula [4g], the formula [4l], the formula [4m], or the formula [4p]. Particularly preferred is [4a], [4e], [4f], [4l], [4m] or [4p].
 さらに、具体的には、下記式[4a-1]又は式[4a-2]が好ましい。
Figure JPOXMLDOC01-appb-C000029
More specifically, the following formula [4a-1] or [4a-2] is preferable.
Figure JPOXMLDOC01-appb-C000029
 (A)成分における特定テトラカルボン酸成分は、すべてのテトラカルボン酸誘導体成分100モル%中、50~100モル%が好ましく、なかでも、70~100モル%が好ましく、80~100モル%が特に好ましい。
 特定テトラカルボン酸成分は、特定重合体(A)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を使用することもできる。
The specific tetracarboxylic acid component in component (A) is preferably from 50 to 100 mol%, particularly preferably from 70 to 100 mol%, particularly from 80 to 100 mol%, in 100 mol% of all tetracarboxylic acid derivative components. preferable.
The specific tetracarboxylic acid component depends on the properties such as the solubility of the specific polymer (A) in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal in the case of the liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. One type or two or more types can also be used.
 特定重合体(A)のポリイミド系重合体には、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることもできる。
 その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
For the polyimide polymer of the specific polymer (A), other tetracarboxylic acid components other than the specific tetracarboxylic acid component can also be used.
Examples of other tetracarboxylic acid components include the following tetracarboxylic acids, tetracarboxylic dianhydrides, tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
 その他のテトラカルボン酸成分としては、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸などが挙げられる。 Other tetracarboxylic acid components include 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenone Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1, 3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3 -Dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ', 4,4'-diphenylsulfonetetra Examples thereof include carboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
 上記その他のテトラカルボン酸成分は、特定重合体(A)の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The other tetracarboxylic acid components have characteristics such as the solubility of the specific polymer (A) in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal aligning property when the liquid crystal aligning film is used, the voltage holding ratio, and the accumulated charge. Depending on the situation, one kind or a mixture of two or more kinds may be used.
<(B)成分>
 本発明の液晶配向剤に含まれる(B)成分は、下記式(2)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体(以下、特定重合体(B)ともいう。)である。
Figure JPOXMLDOC01-appb-C000030
<(B) component>
The component (B) contained in the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (2) and an imidized polymer of the polyimide precursor. (Hereinafter also referred to as the specific polymer (B)).
Figure JPOXMLDOC01-appb-C000030
 式(2)中、X、Y1、1、~A2、は、上記で定義したとおりである。なかでも、R水素原子またはメチル基が好ましく、水素原子が特に好ましい。A~A2、は、水素原子またはメチル基が好ましい。 In the formula (2), X 1 , Y 1, R 1, A 1 to A 2 are as defined above. Among them, R 1 is preferably a hydrogen atom or a methyl group, a hydrogen atom is particularly preferred. A 1 to A 2 are preferably a hydrogen atom or a methyl group.
 Rにおける上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。加熱によるイミド化のしやすさの観点から、Rは、水素原子、又はメチル基が好ましい。
 上記(2)の構造単位の好ましい含有割合は、同一重合体中の5~90モル%であり、より好ましくは10~90モル%、さらに好ましくは10~80モル%である。
Specific examples of the alkyl group for R 1 include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, and n-pentyl group. Etc. From the viewpoint of ease of imidization by heating, R 1 is preferably a hydrogen atom or a methyl group.
A preferable content ratio of the structural unit (2) is 5 to 90 mol%, more preferably 10 to 90 mol%, still more preferably 10 to 80 mol% in the same polymer.
 また、(B)成分の重合体は、上記式(2)で表される構造単位の他に、下記式(3)の構造単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000031
 本発明の(B)成分は、式(2)で表される構造単位と式(3)の構造単位とを有する重合体であってよく、式(2)で表される構造単位を有する重合体と、式(3)の構造単位とを有する重合体との混合物でもよいが、前者が好ましい。(B)成分の重合体に含まれる式(3)の構造単位の含有割合は、重合体中、5~90モル%であり、好ましく、10~90モル%が好ましく、20~90モル%がより好ましい。
Moreover, the polymer of (B) component may have a structural unit of following formula (3) other than the structural unit represented by the said Formula (2).
Figure JPOXMLDOC01-appb-C000031
The component (B) of the present invention may be a polymer having a structural unit represented by the formula (2) and a structural unit represented by the formula (3), and a polymer having a structural unit represented by the formula (2). A mixture of the polymer and a polymer having the structural unit of the formula (3) may be used, but the former is preferable. The content of the structural unit of the formula (3) contained in the polymer of the component (B) is 5 to 90 mol% in the polymer, preferably 10 to 90 mol%, preferably 20 to 90 mol%. More preferred.
 上記式(3)中、Xはテトラカルボン酸誘導体由来の4価の有機基であり、その構造は特に限定されるものではない。Xは2種類以上が混在していてもよい。Xの具体例を示すならば、下記式(X-2)~(X-44)が挙げられる。
Figure JPOXMLDOC01-appb-C000032
In the above formula (3), X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and the structure thereof is not particularly limited. X 2 is two or more types may be mixed. Specific examples of X 2 include the following formulas (X-2) to (X-44).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 上記式(X-2)中、R~R11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基又はフェニル基である。R~R11が嵩高い構造である場合、液晶配向性を低下させる可能性があるため、水素原子、メチル基又はエチル基が好ましく、水素原子又はメチル基が特に好ましい。 In the above formula (X-2), R 8 to R 11 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group or a phenyl group. It is. When R 8 to R 11 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group or an ethyl group is preferable, and a hydrogen atom or a methyl group is particularly preferable.
 式(3)において、Xはモノマーの入手性から、(X-2)~(X-14)から選ばれる構造を含有することが好ましい。
 得られる液晶配向膜の信頼性をさらに高められることから、Xは、(X-2)~(X-7)及び(X-10)のような脂肪族基のみからなる構造が好ましく、(X-2)がより好ましい。更に、良好な液晶配向性を示すため、Xは、下記式(X2-1)又は(X2-2)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000036
In the formula (3), X 2 preferably contains a structure selected from (X-2) to (X-14) in view of availability of monomers.
In order to further improve the reliability of the obtained liquid crystal alignment film, X 2 preferably has a structure consisting only of an aliphatic group such as (X-2) to (X-7) and (X-10). X-2) is more preferred. Further, X 2 is more preferably represented by the following formula (X2-1) or (X2-2) in order to exhibit good liquid crystal alignment.
Figure JPOXMLDOC01-appb-C000036
 上記式(2)、式(3)において、A及びAは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基である。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
In the above formulas (2) and (3), A 1 and A 2 each independently have a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a substituent. Or an alkynyl group having 2 to 10 carbon atoms and an alkynyl group having 2 to 10 carbon atoms which may have a substituent.
Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group. Examples of the alkenyl group include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C═C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups. And isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like. Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
 上記のアルキル基、アルケニル基、アルキニル基は置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
The above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
Examples of such substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. A group, an alkenyl group and an alkynyl group.
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
Examples of the halogen group as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
A phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
The organooxy group which is a substituent can have a structure represented by OR. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。 As the organothio group which is a substituent, a structure represented by —S—R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above. Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。 The organosilyl group as a substituent can have a structure represented by —Si— (R) 3 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The acyl group as a substituent can have a structure represented by —C (O) —R. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
As the ester group which is a substituent, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
The thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
The phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 . The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R. The structure represented by can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal orientation may be lowered. Therefore, as A 1 and A 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
 式(2)、式(3)において、Yはジアミン由来の2価の有機基であり、その例を示すならば、下記のY-1~Y-118が挙げられる。
Figure JPOXMLDOC01-appb-C000037
In the formulas (2) and (3), Y 1 is a divalent organic group derived from diamine, and examples thereof include the following Y-1 to Y-118.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 式(Y-109)中、m、nは、独立して1~11であり、m+nは2~12であり、式(Y-114)中、hは1~3であり、式(Y-111)、(Y-117)中、jは0~3である。
 Yとしては、得られる液晶配向膜の液晶配向性やプレチルト角の観点から、下記式(5)及び(6)で表される構造から選ばれる少なくとも1種がより好ましい。
In the formula (Y-109), m and n are independently 1 to 11, m + n is 2 to 12, and in the formula (Y-114), h is 1 to 3, and the formula (Y− 111) and (Y-117), j is 0-3.
Y 1 is more preferably at least one selected from structures represented by the following formulas (5) and (6) from the viewpoint of the liquid crystal alignment property and the pretilt angle of the obtained liquid crystal alignment film.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 式(5)中、R12は単結合、又は炭素数1~30の2価の有機基であり、R13は水素原子、ハロゲン原子又は炭素数1~30の1価の有機基、aは1~4の整数であり、aが2以上の場合は、R12、R13は互いに同一でも異なっていてもよく、式(6)中のR14は単結合、-O-、-S-、-NR15-、アミド結合、エステル結合、ウレア結合、又は炭素数1~40の2価の有機基であり、R15は、水素原子、又はメチル基である。 In the formula (5), R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms, R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms, a is R is an integer of 1 to 4, and when a is 2 or more, R 12 and R 13 may be the same or different, and R 14 in formula (6) is a single bond, —O—, —S—. , —NR 15 —, an amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms, and R 15 is a hydrogen atom or a methyl group.
 式(5)及び式(6)の具体例としては、以下の構造が挙げられる。
 直線性の高い構造は、液晶配向膜としたときに液晶の配向性を高めることができるため、Y1としては、Y-7、Y-21、Y-22、Y-23、Y-25、Y-43、Y-44、Y-45、Y-46、Y-48、Y-63、Y-71、Y-72、Y-73、Y-74、Y-75、Y-98、Y-99,Y-100、Y-118がさらに好ましい。液晶配向性を高めることができる上記構造の割合としては、Y全体の20モル%以上が好ましく、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。
Specific examples of Formula (5) and Formula (6) include the following structures.
High structural linearity, since it is possible to enhance the orientation of the liquid crystal when the liquid crystal alignment film, as Y 1 is, Y-7, Y-21 , Y-22, Y-23, Y-25, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-72, Y-73, Y-74, Y-75, Y-98, Y- 99, Y-100 and Y-118 are more preferable. The proportion of the above structure that can enhance the liquid crystal orientation is preferably 20 mol% or more of Y 1 as a whole, more preferably 60 mol% or more, and further preferably 80 mol% or more.
 液晶配向膜としたときに液晶のプレチルト角を高くしたい場合には、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造をY1に有すると好ましい。そのようなY1としては、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、Y-97が好ましい。プレチルト角を高くしたい場合の上記構造の割合としては、Y全体の1~30モル%が好ましく、1~20モル%がより好ましい。
 本発明に用いるポリイミド前駆体は、ジアミン成分とテトラカルボン酸誘導体との反応から得られるものであり、ポリアミック酸やポリアミック酸エステル等が挙げられる。
When it is desired to increase the pretilt angle of the liquid crystal when the liquid crystal alignment film is used, it is preferable that the side chain has a long-chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination of these in Y 1. . Examples of such Y 1 include Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y- 86, Y-87, Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, Y-97 are preferred. The proportion of the above structure for increasing the pretilt angle is preferably 1 to 30 mol%, more preferably 1 to 20 mol% of the entire Y 1 .
The polyimide precursor used in the present invention is obtained from a reaction between a diamine component and a tetracarboxylic acid derivative, and examples thereof include polyamic acid and polyamic acid ester.
<(C)成分>
 本発明の液晶配向剤に含有される(C)成分は、架橋性官能基を2つ以上含有する化合物である。架橋性官能基としては、ヒドロキシル基、ヒドロキシアルキルアミド基、(メタ)アクリレート基、ブロックイソシアネート基、オキセタン基、エポキシ基などが挙げられるが、これらに限定されるものではない。
 なかでも、入手性及び電圧保持率改善効果の観点から、ヒドロキシル基、ブロックイソシアネート基、又はエポキシ基が好ましく、ヒドロキシル基、又はエポキシ基がより好ましい。なお、(C)成分は、その構造中に同じ架橋性官能基を2つ以上有していても良いし、異なる2種以上の架橋性官能基を2つ以上有していても良い。
 ヒドロキシル基を2つ以上含有する化合物としては、例えば下記式(7)で示されるような化合物が挙げられる。
<(C) component>
The component (C) contained in the liquid crystal aligning agent of the present invention is a compound containing two or more crosslinkable functional groups. Examples of the crosslinkable functional group include, but are not limited to, a hydroxyl group, a hydroxyalkylamide group, a (meth) acrylate group, a blocked isocyanate group, an oxetane group, and an epoxy group.
Especially, from a viewpoint of availability and a voltage holding ratio improvement effect, a hydroxyl group, a blocked isocyanate group, or an epoxy group is preferable, and a hydroxyl group or an epoxy group is more preferable. In addition, (C) component may have 2 or more of the same crosslinkable functional groups in the structure, and may have 2 or more of 2 or more types of different crosslinkable functional groups.
Examples of the compound containing two or more hydroxyl groups include compounds represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 Xは、炭素数1~20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、nは2~6の整数であり、R及びRは、それぞれ独立に、水素原子、又は置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基であり、R及びRのうち少なくとも1つは下記式(6)で表される。
Figure JPOXMLDOC01-appb-C000055
 R~R11は、それぞれ独立に、水素原子、炭化水素基、又は、ヒドロキシ基で置換された炭化水素基のいずれかを表す。Xは、脂肪族炭化水素基であることが、上記と同じく液晶配向性及び溶解性の観点から好ましく、炭素数1~10であることがより好ましい。nは2~6の整数を表すが、溶解性の観点からnは2~4が好ましい。
X 3 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group, n is an integer of 2 to 6, and R 6 and R 7 are respectively Independently a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms, and R 6 and R 7 At least one of them is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000055
R 8 to R 11 each independently represents a hydrogen atom, a hydrocarbon group, or a hydrocarbon group substituted with a hydroxy group. X 3 is preferably an aliphatic hydrocarbon group from the viewpoint of liquid crystal alignment and solubility, and more preferably has 1 to 10 carbon atoms, as described above. n represents an integer of 2 to 6, and n is preferably 2 to 4 from the viewpoint of solubility.
 具体的には以下のような化合物が例示される。
Figure JPOXMLDOC01-appb-C000056
Specifically, the following compounds are exemplified.
Figure JPOXMLDOC01-appb-C000056
 ブロックイソシアネート基を2つ以上含有する化合物としては、下記式(9)で表される化合物が例示される。
Figure JPOXMLDOC01-appb-C000057
 4つのZは、それぞれ独立して、炭素数1~3のアルキル基、水酸基又は下記式(10)で表される有機基であり、Zの少なくとも1つは、下記式(10)で表される有機基である。
Examples of the compound containing two or more blocked isocyanate groups include compounds represented by the following formula (9).
Figure JPOXMLDOC01-appb-C000057
Four Z's are each independently an alkyl group having 1 to 3 carbon atoms, a hydroxyl group, or an organic group represented by the following formula (10), and at least one of Z is represented by the following formula (10). It is an organic group.
Figure JPOXMLDOC01-appb-C000058
 具体的には、以下のような化合物が例示される。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000058
Specifically, the following compounds are exemplified.
Figure JPOXMLDOC01-appb-C000059
 上記式(11)以外のブロックイソシアネート基を2つ以上含有する化合物は、以下のような化合物が例示される。
Figure JPOXMLDOC01-appb-C000060
Examples of the compound containing two or more blocked isocyanate groups other than the above formula (11) include the following compounds.
Figure JPOXMLDOC01-appb-C000060
 エポキシ基を2つ以上含有する化合物としては、具体的には、以下のような化合物が例示される。
Figure JPOXMLDOC01-appb-C000061
Specific examples of the compound containing two or more epoxy groups include the following compounds.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 (メタ)アクリレート基を2つ以上含有する化合物としては、具体的には、以下のような化合物が例示される。
Figure JPOXMLDOC01-appb-C000063
Specific examples of the compound containing two or more (meth) acrylate groups include the following compounds.
Figure JPOXMLDOC01-appb-C000063
 その他、以下の化合物も例示される。
Figure JPOXMLDOC01-appb-C000064
In addition, the following compounds are also exemplified.
Figure JPOXMLDOC01-appb-C000064
<各成分の含有割合>
 本発明の液晶配向剤に含有される(A)成分、(B)成分、及び(C)成分の含有割合について、(A)成分の含有割合は、液晶配向中、20~80質量%が好ましく、20~60質量%がより好ましく、30~50 質量%が特に好ましい。
 また、(B)成分の含有割合は、(A)成分に対して、20~80質量%が好ましく、40~80質量%がより好ましく、50~70質量%が特に好ましい。
 また、上記(C)成分の含有割合は、(A)成分と(B)成分の合計に対して1~30重量%が好ましく、3~20重量%がより好ましく、3~15重量%が特に好ましい。
<Content ratio of each component>
Regarding the content ratio of the component (A), the component (B), and the component (C) contained in the liquid crystal aligning agent of the present invention, the content ratio of the component (A) is preferably 20 to 80% by mass during the liquid crystal alignment. 20 to 60% by mass is more preferable, and 30 to 50% by mass is particularly preferable.
The content of the component (B) is preferably 20 to 80% by mass, more preferably 40 to 80% by mass, and particularly preferably 50 to 70% by mass with respect to the component (A).
The content of the component (C) is preferably 1 to 30% by weight, more preferably 3 to 20% by weight, particularly 3 to 15% by weight, based on the total of the components (A) and (B). preferable.
<ポリイミド前駆体-ポリアミック酸の製造>
 上記(A)成分及び(B)成分に用いられるポリイミド前駆体であるポリアミック酸は、以下の方法により製造される。具体的には、テトラカルボン酸二無水物などのテトラカルボン酸成分とジアミン成分とを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって製造できる。
<Polyimide precursor-production of polyamic acid>
The polyamic acid which is a polyimide precursor used for the component (A) and the component (B) is produced by the following method. Specifically, a tetracarboxylic acid component such as tetracarboxylic dianhydride and a diamine component are -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C in the presence of an organic solvent, for 30 minutes to 24 hours. Preferably, it can be produced by reacting for 1 to 12 hours.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。 The reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples of the organic solvent used in the reaction include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide. Or 1,3-dimethyl-imidazolidinone.
 また、ポリイミド前駆体の溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される有機溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000065
When the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. An organic solvent can be used.
Figure JPOXMLDOC01-appb-C000065
 式[D-1]~D-3]中、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す。
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
In the formulas [D-1] to D-3], D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents an alkyl group having 1 to 4 carbon atoms. An alkyl group is shown.
These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried solvent.
 反応系中におけるポリアミック酸ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいことから、1~30質量%が好ましく、5~20質量%がより好ましい。
 得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
The concentration of the polyamic acid polymer in the reaction system is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass because polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
The obtained polyamic acid can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド前駆体-ポリアミック酸エステルの製造>
 ポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の製法で製造することができる。
(1)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造できる。
<Polyimide precursor-production of polyamic acid ester>
The polyamic acid ester which is a polyimide precursor can be manufactured by the manufacturing method of (1), (2) or (3) shown below.
(1) When manufacturing from polyamic acid A polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be manufactured.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モルが好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 mol with respect to 1 mol of the polyamic acid repeating unit.
 有機溶剤としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は前記式[D-1]~式[D-3]で示される溶媒を用いることができる。
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
Examples of the organic solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone. When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3] The indicated solvents can be used.
These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried solvent.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good. The concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造できる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
(2) When manufactured by reaction of tetracarboxylic acid diester dichloride and diamine The polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造できる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造できる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
(3) When manufacturing from tetracarboxylic-acid diester and diamine Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine.
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be produced by reacting for a period of time.
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいことから、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base added is preferably 2 to 4 moles relative to the diamine component because it can be easily removed and a high molecular weight product can be easily obtained.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の製法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the methods for producing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the production method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド>
 本発明に用いられるポリイミドは、前記したポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用できる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。特に、トリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
<Polyimide>
The polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. In particular, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、液晶配向剤とすることが好ましい。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below and redissolved in an organic solvent to obtain a liquid crystal aligning agent. It is preferable.
When manufacturing a polyimide from a polyamic acid, chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御できる。
Chemical imidation can be performed by stirring the polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明の液晶配向剤は、前記した特定重合体(A)、特定重合体(B)、及び(C)成分が有機溶媒中に溶解された溶液の形態を有する。特定重合体(A)及び特定重合体(B)の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention has the form of the solution in which the above-mentioned specific polymer (A), specific polymer (B), and (C) component were melt | dissolved in the organic solvent. The molecular weight of the specific polymer (A) and the specific polymer (B) is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, still more preferably 10, 000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 本発明の液晶配向剤における特定重合体(A)及び特定重合体(B)を含む重合体の含有量(濃度)は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させることから1質重量%以上が好ましく、溶液の保存安定性の点からは10質重量%以下が好ましい。なかでも、2~7質量%が好ましく、3~6質量%が特に好ましい。
 液晶配向剤に含有される有機溶媒は、特定構造重合体が均一に溶解するものであれば特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンが好ましい。
The content (concentration) of the polymer containing the specific polymer (A) and the specific polymer (B) in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the coating film to be formed. However, it is preferably 1% by weight or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by weight or less from the viewpoint of storage stability of the solution. Among these, 2 to 7% by mass is preferable, and 3 to 6% by mass is particularly preferable.
The organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the specific structure polymer is uniformly dissolved. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like. Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone is preferable.
 さらに、重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20質量%~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
Furthermore, when the solubility of the polymer in the solvent is high, it is preferable to use the solvents represented by the formulas [D-1] to [D-3].
The good solvent in the liquid crystal aligning agent is preferably 20% by mass to 99% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。 As long as the effects of the present invention are not impaired, the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied. it can. Although the specific example of a poor solvent is given to the following, it is not limited to these examples.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル又は前記式[D-1]~式[D-3]を挙げられる。 For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1 , 2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, -Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene Carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1 -(Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol , Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol mono Acetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene Glycol monoethyl ether, Methyl acetate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxy Ethyl propionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, lactate n-propyl ester, lactate n-butyl ester, Examples thereof include isoamyl lactate and the above formulas [D-1] to [D-3].
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、又はジプロピレングリコールジメチルエーテルが好ましい。
 これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%であることが好ましい。なかでも、10~80質量%が好ましい。より好ましいのは20~70質量%である。
Of these, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, or dipropylene glycol dimethyl ether are preferable.
These poor solvents are preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 10 to 80% by mass is preferable. More preferred is 20 to 70% by mass.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc. Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When firing the compound, and further, the coating film, an imidization accelerator for the purpose of efficiently proceeding imidization by heating of the polyimide precursor may be added.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking. The substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. Use of a substrate on which an ITO electrode or the like is formed is preferable from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
 液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分間乾燥させ、その後150℃~300℃で5分~120分間焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
Examples of the method for applying the liquid crystal aligning agent include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes. The thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
 ラビング処理は既存のラビング装置を利用して行うことができる。この際のラビング布の材質としては、コットン、ナイロン、レーヨンなどが挙げられる。ラビング処理の条件としては一般に、回転速度300~2000rpm、送り速度5~100mm/s、押し込み量0.1~1.0mmという条件が用いられる。その後、純水やアルコールなどを用いて超音波洗浄によりラビングにより生じた残渣が除去される。 The rubbing process can be performed using an existing rubbing apparatus. Examples of the material of the rubbing cloth at this time include cotton, nylon, and rayon. As the conditions for rubbing treatment, generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and an indentation amount of 0.1 to 1.0 mm are used. Thereafter, the residue generated by rubbing is removed by ultrasonic cleaning using pure water or alcohol.
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
As a specific example of the photo-alignment treatment method, there is a method of imparting liquid crystal alignment ability by irradiating the coating film surface with radiation deflected in a certain direction, and further subjecting to a temperature of 150 to 250 ° C. in some cases. Can be mentioned. As the radiation, ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably 1 ~ 10,000mJ / cm 2, particularly preferably 100 ~ 5,000mJ / cm 2. As described above, the liquid crystal alignment film can stably align liquid crystal molecules in a certain direction.
A higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
 上記で偏光された放射線を照射した膜は、次いで水及び有機溶媒から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
 接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。
The film irradiated with the polarized radiation may be contact-treated with a solvent containing at least one selected from water and an organic solvent.
The solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. Two or more of these solvents may be used in combination.
 汎用性や安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパンール、及び水と2-プロパノールの混合溶媒が特に好ましい。
 偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
From the viewpoint of versatility and safety, at least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable. Water, 2-propanol, and a mixed solvent of water and 2-propanol are particularly preferable.
The contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is preferably performed by a treatment such that the film and the liquid are sufficiently in contact with each other, such as an immersion treatment or a spraying treatment. Among them, a method of immersing the film in a solution containing an organic solvent, preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable. The contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C. Moreover, a means for enhancing contact such as ultrasonic waves can be applied as necessary.
 上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。
 さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に150℃以上で加熱してもよい。
After the above contact treatment, for the purpose of removing the organic solvent in the solution used, either rinsing (rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying, or both May be done.
Furthermore, the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
 加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
 加熱する時間は、短すぎると分子鎖の再配向の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1分~10分がより好ましい。
The heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C.
If the heating time is too short, the effect of reorientation of the molecular chain may not be obtained, and if it is too long, the molecular chain may be decomposed, and is preferably 10 seconds to 30 minutes. More preferred is ˜10 minutes.
<液晶表示素子>
 本発明の液晶表示素子は、前記液晶配向膜の製造方法によって得られた液晶配向膜を具備する。液晶表示素子は、液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
 液晶セル作製方法の一例として、パッシブマトリクス構造の液晶表示素子を説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
<Liquid crystal display element>
The liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film. The liquid crystal display element is obtained by obtaining a substrate with a liquid crystal alignment film from a liquid crystal aligning agent by the method for producing a liquid crystal alignment film, then preparing a liquid crystal cell by a known method, and using it as a liquid crystal display element. is there.
As an example of a liquid crystal cell manufacturing method, a liquid crystal display element having a passive matrix structure will be described. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
First, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
Next, the liquid crystal alignment film of the present invention is formed on each substrate. Next, the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealing material. In addition, it is preferable that spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
 シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
Next, a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. By passing through the above process, the liquid crystal display element of this invention is obtained.
As the sealing agent, for example, a resin that is cured by ultraviolet irradiation or heating having a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxyl group, an allyl group, or an acetyl group is used. In particular, it is preferable to use a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
 シール剤には接着性、耐湿性の向上を目的として無機充填剤を配合してもよい。使用しうる無機充填剤としては特に限定されないが、具体的には球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムである。前記の無機充填剤は2種以上を混合して用いても良い。 An inorganic filler may be added to the sealant for the purpose of improving adhesiveness and moisture resistance. The inorganic filler that can be used is not particularly limited. Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, Calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc. Preferably, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide Beam, calcium silicate, aluminum silicate. Two or more of the above inorganic fillers may be mixed and used.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。以下における、化合物の略号及び測定方法は、以下のとおりである。
NMP :N-メチル-2-ピロリドン、 GBL :γ-ブチルラクトン
BCS :ブチルセロソルブ、 PB:プロピレングリコールモノブチルエーテル、
IPA :イソプロパノール、 DA-1:1,2-ビス(4-アミノフェノキシ)エタン
DA-2:下記式(DA-2)参照、
DA-3:1,2-ビス(4-アミノフェノキシ)メタン、
DA-4:p-フェニレンジアミン、
DA-5:1,2-ビス(4-アミノフェノキシ)プロパン
DA-6:下記式(DA-6)参照、 DA-7:4,4’ジアミノジフェニルアミン、
DA-8:下記式(DA-8)参照、 DA-9:4,4’ジアミノジフェニルメタン、
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. In the following, the abbreviations and measuring methods of the compounds are as follows.
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyllactone BCS: butyl cellosolve, PB: propylene glycol monobutyl ether,
IPA: isopropanol, DA-1: 1,2-bis (4-aminophenoxy) ethane DA-2: see formula (DA-2) below,
DA-3: 1,2-bis (4-aminophenoxy) methane,
DA-4: p-phenylenediamine,
DA-5: 1,2-bis (4-aminophenoxy) propane DA-6: see formula (DA-6) below, DA-7: 4,4′diaminodiphenylamine,
DA-8: See the following formula (DA-8), DA-9: 4,4′diaminodiphenylmethane,
DAH-1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DAH-2:下記式(DAH-2)参照、DAH-3:下記式(DAH-3)参照
DAH-4:シクロブタンテトラカルボン酸二無水物
DAH-5:ピロメリット酸二無水物
1,3DM-CBDE-Cl:ジメチル1,3-ビス(クロロカルボニル)-1,3-ジメチルシクロブタン-2,4-ジカルボキシレート
DAH-1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride DAH-2: see formula (DAH-2) below, DAH-3: see formula (DAH-3) below DAH-4: cyclobutanetetra Carboxylic dianhydride DAH-5: pyromellitic dianhydride 1,3DM-CBDE-Cl: dimethyl 1,3-bis (chlorocarbonyl) -1,3-dimethylcyclobutane-2,4-dicarboxylate
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
[添加剤]
AD-1~3:架橋性添加剤、  AD-4:イミド化促進剤
Figure JPOXMLDOC01-appb-C000067
[Additive]
AD-1 to 3: Crosslinkable additive, AD-4: Imidization accelerator
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
H NMR]
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian製)400MHz、溶媒:重水素化ジメチルスルホキシド(DMSO-d))
標準物質:テトラメチルシラン(TMS)、積算回数:8、又は、32
[粘度]
 合成例において、ポリイミド及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[ 1 H NMR]
Apparatus: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) INOVA-400 (manufactured by Varian) 400 MHz, solvent: deuterated dimethyl sulfoxide (DMSO-d 6 ))
Standard substance: Tetramethylsilane (TMS), Integration count: 8 or 32
[viscosity]
In the synthesis example, the viscosity of the polyimide and polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), Measurement was performed at a temperature of 25 ° C.
[分子量]
 ポリイミドの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、及びポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)、
カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルについて別々に行った。
[Molecular weight]
The molecular weight of the polyimide was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
GPC device: manufactured by Shodex (GPC-101),
Column: manufactured by Shodex (series of KD803 and KD805), column temperature: 50 ° C.
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), flow rate: 1.0 ml / min standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100 manufactured by Tosoh Corporation , 30,000, 30,000) and polyethylene glycol (Peak Top Molecular Weight (Mp) of about 12,000, 4,000, 1,000) manufactured by Polymer Laboratories. In order to avoid the overlap of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Separately performed on two of the mixed samples.
 [イミド化率の測定]
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[Measurement of imidization rate]
20 mg of polyimide powder is put into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) (0.53 ml) ) Was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. Using the integrated value, the following formula was used.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
 [液晶配向性の評価]
 液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。
 評価基準
  ◎:液晶の配向が確認でき、且つ流動配向がない
  ○:液晶は配向しているが、流動配向が若干観察される
  ×:液晶は配向しているが、流動配向が多く観察される。
[Evaluation of liquid crystal alignment]
The liquid crystal cell was sandwiched between polarizing plates and the liquid crystal cell was rotated in a state where the backlight was irradiated from the rear, and it was visually observed whether the liquid crystal was aligned with the presence or absence of change in light and darkness or flow alignment. At that time, the following criteria were used for evaluation.
Evaluation Criteria A: The alignment of the liquid crystal can be confirmed and there is no fluid alignment. O: The liquid crystal is aligned, but the flow alignment is slightly observed. .
(合成例1)
 撹拌装置付き及び窒素導入管付きの1000mL四つ口フラスコに、DA-1を42.75g(175mmol)、 DA-2を59.7g(175mmol)取り、NMPを586g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-1を74.53g(332.5mmol)添加し、更に固形分濃度が18質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液(粘度:832mPa・s)を得た。
(Synthesis Example 1)
To a 1000 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 42.75 g (175 mmol) of DA-1 and 59.7 g (175 mmol) of DA-2 were added, 586 g of NMP was added, and the mixture was stirred while feeding nitrogen. And dissolved. While stirring this diamine solution, 74.53 g (332.5 mmol) of DAH-1 was added, NMP was further added so that the solid content concentration was 18% by mass, and the mixture was stirred at room temperature for 24 hours to polyamic acid (PAA- 1) (viscosity: 832 mPa · s) was obtained.
(合成例2)
 撹拌装置付き及び窒素導入管付きの1000ml四つ口フラスコに得られたポリアミック酸溶液(PAA-1)を200g取り、NMPを100g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を21.78g、ピリジンを2.81g加えて、60℃で3時間加熱し、化学イミド化を行った。得られた反応液を624.2gのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、続いて、624.2gのメタノールで3回洗浄し、1248gのメタノールで2回洗浄した。得られた樹脂粉末を60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。このポリイミド樹脂粉末のイミド化率は、68%、分子量はMn=9189、Mw=18252であった。
 撹拌子を入れた200mlサンプル管に得られたポリイミド樹脂粉末32.70gを取り、NMPを239.8g加え、70℃で20時間撹拌し溶解させて、ポリイミド溶液(SPI-1)を得た。
(Synthesis Example 2)
200 g of the polyamic acid solution (PAA-1) obtained in a 1000 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube was taken, 100 g of NMP was added, and the mixture was stirred for 30 minutes. To the obtained polyamic acid solution, 21.78 g of acetic anhydride and 2.81 g of pyridine were added and heated at 60 ° C. for 3 hours to perform chemical imidization. The obtained reaction solution was added to 624.2 g of methanol while stirring, and the deposited precipitate was collected by filtration, and then washed with 624.2 g of methanol three times and with 1248 g of methanol twice. The obtained resin powder was dried at 60 ° C. for 12 hours to obtain a polyimide resin powder. The imidation ratio of this polyimide resin powder was 68%, and the molecular weights were Mn = 9189 and Mw = 18252.
A polyimide resin powder (SPI-1) was obtained by taking 32.70 g of the obtained polyimide resin powder in a 200 ml sample tube containing a stir bar, adding 239.8 g of NMP, and stirring and dissolving at 70 ° C. for 20 hours.
(合成例3)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-3を7.14g(31mmol)取り、NMPとGBLの1:1混合溶媒を75.1g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-3を2.33g(9.3mmol)添加し、終夜撹拌した。その後更にDAH-2を6.13g(20.8mmol)加え、固形分濃度が15重量%になるようにNMPとGBLの1:1混合溶媒を加え、室温で5時間撹拌してポリアミック酸(PAA-2)の溶液(粘度:787mPa・s)を得た。
(Synthesis Example 3)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 7.14 g (31 mmol) of DA-3 was taken, 75.1 g of a 1: 1 mixed solvent of NMP and GBL was added, and the mixture was stirred while feeding nitrogen. Dissolved. While stirring this diamine solution, 2.33 g (9.3 mmol) of DAH-3 was added and stirred overnight. Thereafter, 6.13 g (20.8 mmol) of DAH-2 was further added, and a 1: 1 mixed solvent of NMP and GBL was added so that the solid content concentration was 15% by weight. The mixture was stirred at room temperature for 5 hours, and polyamic acid (PAA) was added. -2) (viscosity: 787 mPa · s).
(合成例4)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-3を5.53g(24mmol)取り、NMPとGBLの1:1混合溶媒を72.7g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-2を6.87g(23.4mmol)添加し、固形分濃度が12重量%になるようにNMPとGBLの1:1混合溶媒を加え終夜撹拌し、ポリアミック酸(PAA-3)の溶液(粘度:520mPa・s)を得た。
(Synthesis Example 4)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 5.53 g (24 mmol) of DA-3 was added, 72.7 g of a 1: 1 mixed solvent of NMP and GBL was added, and the mixture was stirred while feeding nitrogen. Dissolved. While stirring this diamine solution, 6.87 g (23.4 mmol) of DAH-2 was added, and a 1: 1 mixed solvent of NMP and GBL was added so that the solid content concentration was 12 wt%, and the mixture was stirred overnight. A solution (viscosity: 520 mPa · s) of (PAA-3) was obtained.
(合成例5)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-4を0.908g(8.4mmol)、DA-1を1.37g(5.6mmol)、DA-5を2.17g(8.4mmol)、DA-6を2.23g(5.6mmol)取り、NMPを76.8g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-1を5.99g(26.7mmol)添加し、固形分濃度が12重量%になるようにNMPを加え終夜撹拌し、ポリアミック酸(PAA-4)の溶液(粘度:397mPa・s)を得た。
(Synthesis Example 5)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.94 g (8.4 mmol) of DA-4, 1.37 g (5.6 mmol) of DA-1, and 2.17 g of DA-5 ( (8.4 mmol), 2.23 g (5.6 mmol) of DA-6 was added, 76.8 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 5.99 g (26.7 mmol) of DAH-1 was added, NMP was added so that the solid content concentration was 12 wt%, and the mixture was stirred overnight, and a solution of polyamic acid (PAA-4) ( Viscosity: 397 mPa · s) was obtained.
(合成例6)
 撹拌装置付き及び窒素導入管付きの500mL四つ口フラスコに、DA-7を15.9g(80mmol)、DA-8を6.0g(20mmol)取り、NMPを230.0g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-4を4.4g(22.5mmol)添加し、終夜撹拌した。その後更にDAH-3を18.8g(75mmol)加え、固形分濃度が15重量%になるようにNMPを加え、50℃で10時間撹拌してポリアミック酸(PAA-5)の溶液(粘度:1405mPa・s)を得た。
(Synthesis Example 6)
In a 500 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 15.9 g (80 mmol) of DA-7 and 6.0 g (20 mmol) of DA-8 were added, 230.0 g of NMP was added, and nitrogen was fed. While stirring, the mixture was dissolved. While stirring this diamine solution, 4.4 g (22.5 mmol) of DAH-4 was added and stirred overnight. Thereafter, 18.8 g (75 mmol) of DAH-3 was further added, NMP was added so that the solid concentration was 15% by weight, and the solution was stirred at 50 ° C. for 10 hours to obtain a polyamic acid (PAA-5) solution (viscosity: 1405 mPas). Obtained s).
(合成例7)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-7を1.91g(9.6mmol)、DA-8を0.72g(2.4mmol)取り、NMPとGBLの1:1混合溶媒を35.4g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-2を3.40g(11.6mmol)添加し、固形分濃度が12重量%になるようにNMPとGBLの1:1混合溶媒を加え終夜撹拌し、ポリアミック酸(PAA-6)の溶液(粘度:810mPa・s)を得た。
(Synthesis Example 7)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.91 g (9.6 mmol) of DA-7 and 0.72 g (2.4 mmol) of DA-8 were taken, and NMP and GBL were 1: 1. 35.4 g of the mixed solvent was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 3.40 g (11.6 mmol) of DAH-2 was added, and a 1: 1 mixed solvent of NMP and GBL was added so that the solid content concentration was 12 wt%, and the mixture was stirred overnight. A solution of (PAA-6) (viscosity: 810 mPa · s) was obtained.
(合成例8)
 撹拌装置及び窒素導入管付きの2Lの四つ口フラスコに、DA-4を10.00g(92.4mmol)及びDA-1を13.60g(55.5mmol)、DA-2を12.60g(37.0mmol)取り、NMPを379.00gとGBLを1023.00g及びピリジン34.60g(0.43mol)を加えて、溶解させた。次に、この溶液を撹拌しながら1,3DMCBDE-Clを58.30g(179.4mmol)を添加し、水冷下で14時間反応させた。得られたポリアミド酸溶液にアクリロイルクロリドを2.41g(26.6mmol)添加し、さらに4時間反応させた後、この溶液を8653mlのイソプロパノールに撹拌しながら投入し、析出した白色沈殿をろ取した。続いて21635mlのイソプロパノールを5回に分けて使って洗浄し、乾燥することで白色のポリアミド酸エステル樹脂粉末(PWD-1)を得た。このポリアミド酸エステルの分子量はMn=24,366であり、Mw=54,808であった。
 上記で得られたポリアミド酸エステル樹脂粉末(PWD-1)をGBLに溶解させ、固形分濃度12質量%のポリアミド酸エステル溶液(PAE-1)を得た。
(Synthesis Example 8)
In a 2 L four-necked flask equipped with a stirrer and a nitrogen inlet tube, 10.00 g (92.4 mmol) of DA-4, 13.60 g (55.5 mmol) of DA-1, and 12.60 g of DA-2 ( 37.0 mmol), 379.00 g of NMP, 1023.00 g of GBL and 34.60 g (0.43 mol) of pyridine were added and dissolved. Next, 58.30 g (179.4 mmol) of 1,3DMCBDE-Cl was added while stirring this solution, and the mixture was reacted under water cooling for 14 hours. 2.41 g (26.6 mmol) of acryloyl chloride was added to the obtained polyamic acid solution, and the mixture was further reacted for 4 hours. Then, this solution was added to 8653 ml of isopropanol with stirring, and the precipitated white precipitate was collected by filtration. . Subsequently, 21635 ml of isopropanol was washed in five portions and dried to obtain white polyamic acid ester resin powder (PWD-1). The molecular weight of this polyamic acid ester was Mn = 24,366 and Mw = 54,808.
The polyamic acid ester resin powder (PWD-1) obtained above was dissolved in GBL to obtain a polyamic acid ester solution (PAE-1) having a solid content concentration of 12% by mass.
(合成例9)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-7を2.23g(11.2mmol)、DA-9を0.56g(2.8mmol)取り、NMPを26.4g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-3を2.63g(9.3mmol)添加し、さらにNMPを4.4g加え、室温で3時間撹拌した。その後更にDAH-4を0.58g(2.94mmol)加え、固形分濃度が12重量%になるようにNMPとGBLの1:1混合溶媒を加え、室温で終夜撹拌してポリアミック酸(PAA-7)の溶液(粘度:630mPa・s)を得た。
(Synthesis Example 9)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.23 g (11.2 mmol) of DA-7 and 0.56 g (2.8 mmol) of DA-9 were added, and 26.4 g of NMP was added. The solution was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.63 g (9.3 mmol) of DAH-3 was added, 4.4 g of NMP was further added, and the mixture was stirred at room temperature for 3 hours. Thereafter, 0.58 g (2.94 mmol) of DAH-4 was further added, and a 1: 1 mixed solvent of NMP and GBL was added so that the solid content concentration was 12% by weight. The mixture was stirred overnight at room temperature, and polyamic acid (PAA-) was added. 7) (viscosity: 630 mPa · s) was obtained.
(合成例10)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-7を3.99g(20mmol)、DA-9を0.99g(5.0mmol)取り、NMPを74.8g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-2を5.15g(17.5mmol)添加し、室温で5時間撹拌した。その後DAH-4を1.20g(6.13mmol)加え、固形分濃度が12重量%になるようにNMPを加え終夜撹拌し、ポリアミック酸(PAA-8)の溶液(粘度:398mPa・s)を得た。
(Synthesis Example 10)
In a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 3.99 g (20 mmol) of DA-7 and 0.99 g (5.0 mmol) of DA-9 were added, and 74.8 g of NMP was added. The solution was stirred and dissolved while feeding. While stirring this diamine solution, 5.15 g (17.5 mmol) of DAH-2 was added and stirred at room temperature for 5 hours. Thereafter, 1.20 g (6.13 mmol) of DAH-4 was added, NMP was added so that the solid concentration was 12% by weight, and the mixture was stirred overnight, and a solution of polyamic acid (PAA-8) (viscosity: 398 mPa · s) was added. Obtained.
(合成例11)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-5を3.10g(12mmol)、DA-6を4.78g(12mmol)取り、NMPを74.5g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDAH-5を4.97g(22.8mmol)添加し、固形分濃度が12重量%になるようにNMPを加え終夜撹拌し、ポリアミック酸(PAA-9)の溶液(粘度:273mPa・s)を得た。
(Synthesis Example 11)
To a 100 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, take 3.10 g (12 mmol) of DA-5 and 4.78 g (12 mmol) of DA-6, add 74.5 g of NMP, and send nitrogen. While stirring, the mixture was dissolved. While stirring this diamine solution, 4.97 g (22.8 mmol) of DAH-5 was added, NMP was added so that the solid content concentration was 12 wt%, and the mixture was stirred overnight, and a solution of polyamic acid (PAA-9) ( Viscosity: 273 mPa · s) was obtained.
(実施例1)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)2.929g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.62g取った。NMPを2.83g、GBLを3.45g、PBを3.60g加え、さらにAD-1の10%NMP溶液を0.495g、AD-4を0.139g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-1)を得た。
Example 1
In a 50 mL Erlenmeyer flask containing a stirrer, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.62 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 2.83g of NMP, 3.45g of GBL and 3.60g of PB were added, 0.495g of 10% NMP solution of AD-1 and 0.139g of AD-4 were added and stirred overnight with a magnetic stirrer to align the liquid crystal Agent (AL-1) was obtained.
(実施例2)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)2.929g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.62g取った。NMPを3.32g、GBLを3.45g、PBを3.60g加え、さらにAD-2を0.0297g、AD-4を0.139g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-2)を得た。
(Example 2)
In a 50 mL Erlenmeyer flask containing a stirrer, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.62 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 3.32 g of NMP, 3.45 g of GBL and 3.60 g of PB were added, 0.0297 g of AD-2 and 0.139 g of AD-4 were added, and the mixture was stirred overnight with a magnetic stirrer (AL-2 )
(実施例3)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)2.929g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.62g取った。NMPを3.32g、GBLを3.45g、PBを3.60g加え、さらにAD-3を0.0297g、AD-4を0.139g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-3)を得た。
(Example 3)
In a 50 mL Erlenmeyer flask containing a stirrer, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.62 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 3.32 g of NMP, 3.45 g of GBL and 3.60 g of PB were added, 0.0297 g of AD-3 and 0.139 g of AD-4 were added, and the mixture was stirred overnight with a magnetic stirrer (AL-3 )
(比較例1)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)2.929g、合成例3で得られたポリアミック酸溶液(PAA-2)を4.62g取った。NMPを3.32g、GBLを3.45g、PBを3.60g加え、AD-4を0.139g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-A)を得た。
(Comparative Example 1)
In a 50 mL Erlenmeyer flask containing a stirrer, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 4.62 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 3 were taken. 3.32 g of NMP, 3.45 g of GBL and 3.60 g of PB were added, 0.139 g of AD-4 was added, and the mixture was stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-A).
(比較例2)
 撹拌子を入れた50mL三角フラスコに、合成例2で得られたポリイミド溶液(SPI-1)2.929g、合成例4で得られたポリアミック酸溶液(PAA-3)を5.90g取った。NMPを2.19g、GBLを2.81g、PBを3.60g加え、AD-1の10%NMP溶液を0.495g、AD-4を0.139g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-B)を得た。
(Comparative Example 2)
In a 50 mL Erlenmeyer flask containing a stir bar, 2.929 g of the polyimide solution (SPI-1) obtained in Synthesis Example 2 and 5.90 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 4 were taken. 2.19 g of NMP, 2.81 g of GBL and 3.60 g of PB were added, 0.495 g of 10% NMP solution of AD-1 and 0.139 g of AD-4 were added, and the mixture was stirred overnight with a magnetic stirrer. (AL-B) was obtained.
(実施例4)
 撹拌子を入れた50mL三角フラスコに、合成例5で得られたポリアミック酸溶液(PAA-4)3.249g、合成例6で得られたポリアミック酸溶液(PAA-5)を3.60g取った。NMPを5.40g、BCSを5.40g加え、AD-1の10%NMP溶液を0.45g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-4)を得た。
Example 4
In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 3.60 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. . 5.40 g of NMP and 5.40 g of BCS were added, 0.45 g of 10% NMP solution of AD-1 was added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-4).
(実施例5)
 撹拌子を入れた50mL三角フラスコに、合成例5で得られたポリアミック酸溶液(PAA-4)3.249g、合成例6で得られたポリアミック酸溶液(PAA-5)を3.60g取った。NMPを5.85g、BCSを5.40g加え、AD-2を0.027g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-5)を得た。
(Example 5)
In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 3.60 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. . 5.85 g of NMP and 5.40 g of BCS were added, 0.027 g of AD-2 was added, and the mixture was stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-5).
(実施例6)
 撹拌子を入れた50mL三角フラスコに、合成例5で得られたポリアミック酸溶液(PAA-4)3.249g、合成例6で得られたポリアミック酸溶液(PAA-5)を3.60g取った。NMPを5.85g、BCSを5.40g加え、AD-3を0.045g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-6)を得た。
(Example 6)
In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 3.60 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. . 5.85 g of NMP and 5.40 g of BCS were added, 0.045 g of AD-3 was added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-6).
(比較例3)
 撹拌子を入れた50mL三角フラスコに、合成例5で得られたポリアミック酸溶液(PAA-4)3.249g、合成例6で得られたポリアミック酸溶液(PAA-5)を3.60g取った。NMPを5.85g、BCSを5.40g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-C)を得た。
(Comparative Example 3)
In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 3.60 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 6 were taken. . 5.85 g of NMP and 5.40 g of BCS were added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-C).
(比較例4)
 撹拌子を入れた50mL三角フラスコに、合成例5で得られたポリアミック酸溶液(PAA-4)3.249g、合成例7で得られたポリアミック酸溶液(PAA-6)を4.58g取った。NMPを4.42g、BCSを5.40g加え、さらにAD-1の10%NMP溶液を0.45g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-D)を得た。
(Comparative Example 4)
In a 50 mL Erlenmeyer flask containing a stir bar, 3.249 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 5 and 4.58 g of the polyamic acid solution (PAA-6) obtained in Synthesis Example 7 were taken. . 4.42 g of NMP and 5.40 g of BCS were added, and 0.45 g of 10% NMP solution of AD-1 was further added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-D).
(実施例7)
 撹拌子を入れた50mL三角フラスコに、合成例8で得られたポリアミック酸エステル溶液(PAE-1)3.30g、合成例9で得られたポリアミック酸溶液(PAA-7)を3.96g取った。NMPを1.54g、GBLを5.12g、BCSを3.60g加え、さらにAD-1の10%NMP溶液を0.495g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-7)を得た。
(Example 7)
In a 50 mL Erlenmeyer flask containing a stir bar, 3.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 8 and 3.96 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 9 were placed. It was. Add 1.54g of NMP, 5.12g of GBL and 3.60g of BCS, then add 0.495g of 10% NMP solution of AD-1 and stir overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-7). It was.
(比較例5)
 撹拌子を入れた50mL三角フラスコに、合成例8で得られたポリアミック酸エステル溶液(PAE-1)3.30g、合成例9で得られたポリアミック酸溶液(PAA-7)を3.96g取った。NMPを2.03g、GBLを5.12g、BCSを3.60g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-E)を得た。
(Comparative Example 5)
In a 50 mL Erlenmeyer flask containing a stir bar, 3.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 8 and 3.96 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 9 were placed. It was. 2.03 g of NMP, 5.12 g of GBL, and 3.60 g of BCS were added, and the mixture was stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-E).
(比較例6)
 撹拌子を入れた50mL三角フラスコに、合成例8で得られたポリアミック酸エステル溶液(PAE-1)3.30g、合成例10で得られたポリアミック酸溶液(PAA-8)を4.94g取った。NMPを0.56g、GBLを5.12g、BCSを3.60g加え、さらにAD-1の10%NMP溶液を0.495g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-F)を得た。
(Comparative Example 6)
In a 50 mL Erlenmeyer flask containing a stir bar, 3.30 g of the polyamic acid ester solution (PAE-1) obtained in Synthesis Example 8 and 4.94 g of the polyamic acid solution (PAA-8) obtained in Synthesis Example 10 were placed. It was. Add 0.56g of NMP, 5.12g of GBL and 3.60g of BCS, add 0.495g of 10% NMP solution of AD-1 and stir overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-F). It was.
(実施例8)
 撹拌子を入れた50mL三角フラスコに、合成例11で得られたポリアミック酸溶液(PAA-9)1.87g、合成例9で得られたポリアミック酸溶液(PAA-7)を4.80g取った。NMPを5.58g、BCSを5.40g加え、さらにAD-1の10%NMP溶液を0.45g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-8)を得た。
(Example 8)
In a 50 mL Erlenmeyer flask containing a stirring bar, 1.87 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 11 and 4.80 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 9 were taken. . 5.58 g of NMP and 5.40 g of BCS were added, and 0.45 g of 10% NMP solution of AD-1 was further added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-8).
(比較例7)
 撹拌子を入れた50mL三角フラスコに、合成例11で得られたポリアミック酸溶液(PAA-9)1.87g、合成例9で得られたポリアミック酸溶液(PAA-7)を4.80g取った。NMPを6.03g、BCSを5.40g加え、マグネチックスターラーで終夜撹拌し液晶配向剤(AL-G)を得た。
(Comparative Example 7)
In a 50 mL Erlenmeyer flask containing a stirring bar, 1.87 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 11 and 4.80 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 9 were taken. . 6.03 g of NMP and 5.40 g of BCS were added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-G).
(比較例8)
 撹拌子を入れた50mL三角フラスコに、合成例11で得られたポリアミック酸溶液(PAA-9)1.87g、合成例10で得られたポリアミック酸溶液(PAA-8)を5.99g取った。NMPを4.50g、BCSを5.40g加え、さらにAD-1の10%NMP溶液を0.45g加えマグネチックスターラーで終夜撹拌し液晶配向剤(AL-H)を得た。
(Comparative Example 8)
In a 50 mL Erlenmeyer flask containing a stir bar, 1.87 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 11 and 5.99 g of the polyamic acid solution (PAA-8) obtained in Synthesis Example 10 were taken. . 4.50 g of NMP and 5.40 g of BCS were added, and 0.45 g of 10% NMP solution of AD-1 was further added and stirred overnight with a magnetic stirrer to obtain a liquid crystal aligning agent (AL-H).
(実施例9)
 実施例1で得られた液晶配向剤(AL-1)を孔径1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で2分間乾燥させた。その後、温度230℃の熱風循環式オーブンで20分間の焼成を経て、膜厚110nmのイミド化した膜を得た。焼成膜に対して、偏光板を介した254nmの紫外線を200mJ/cm照射を行った。その後IPA/水=1:1混合溶媒で5分間基板洗浄し、さらに230℃の熱風循環式オーブンで20分間焼成を行った。これにより、液晶配向膜付き基板を得た。
Example 9
The liquid crystal aligning agent (AL-1) obtained in Example 1 was filtered through a filter having a pore size of 1.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 2 minutes. It was. Thereafter, the film was baked for 20 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 110 nm. The fired film was irradiated with 200 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate. Thereafter, the substrate was washed with a mixed solvent of IPA / water = 1: 1 for 5 minutes and further baked for 20 minutes in a 230 ° C. hot air circulation oven. Thereby, a substrate with a liquid crystal alignment film was obtained.
 液晶セルの電気特性を評価するために、上記液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に6μmのスペーサーを散布した。その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い光配向方向が平行になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶ML-7026-100(メルク・ジャパン社製)を注入し、注入口を封止し、IPS液晶セルを得た。この液晶セルの初期配向性を上記した基準で評価確認した結果を下記の表1に示した。このセルを120℃30分熱処理して液晶セルを完成した。
 また、上記液晶セルをバックライト上に3日間置きエージングした後、60℃の温度下で1Vの電圧を60μs間印加し、500ms後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として求めた。
In order to evaluate the electrical characteristics of the liquid crystal cell, two substrates with the above-mentioned liquid crystal alignment film were prepared, and a 6 μm spacer was dispersed on the one liquid crystal alignment film. A sealant was printed from above, and another substrate was bonded so that the liquid crystal alignment film faces and the photo-alignment direction were parallel, and then the sealant was cured to produce an empty cell. Liquid crystal ML-7026-100 (manufactured by Merck Japan Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an IPS liquid crystal cell. The results of evaluating and confirming the initial orientation of the liquid crystal cell based on the above criteria are shown in Table 1 below. This cell was heat-treated at 120 ° C. for 30 minutes to complete a liquid crystal cell.
In addition, after aging the liquid crystal cell on the backlight for 3 days, a voltage of 1V was applied for 60 μs at a temperature of 60 ° C., and the voltage after 500 ms was measured to determine how much the voltage was maintained. Obtained as retention.
(実施例10、11、比較例9、10)
 液晶配向剤AL-1の代わりに、それぞれ、表1に示される液晶配向剤を用いた以外は実施例9と同様の手順で液晶セルを作製し、評価した。各液晶セルの初期配向性及び電圧保持率の結果を表1に示した。
(Examples 10 and 11, Comparative Examples 9 and 10)
A liquid crystal cell was prepared and evaluated in the same manner as in Example 9 except that the liquid crystal aligning agent shown in Table 1 was used instead of the liquid crystal aligning agent AL-1. Table 1 shows the results of initial orientation and voltage holding ratio of each liquid crystal cell.
(実施例12)
 実施例4で得られた液晶配向剤(AL-4)を孔径1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で2分間乾燥させた。その後、温度230℃の熱風循環式オーブンで30分間の焼成を経て、膜厚100nmのイミド化した膜を得た。焼成膜に対して、偏光板を介した254nmの紫外線を150mJ/cm照射を行った。その後さらに230℃の熱風循環式オーブンで30分間焼成を行った。これにより、液晶配向膜付き基板を得た。
 液晶セルの電気特性を評価するために、上記液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に6μmのスペーサーを散布した。その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い光配向方向が平行になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶ML-7026-100(メルク・ジャパン社製)を注入し、注入口を封止し、IPS液晶セルを得た。この液晶セルの初期配向性を上記した基準で評価確認した結果を下記の表1に示した。このセルを120℃30分熱処理して、液晶セルを完成した。
 また、上記液晶セルをバックライト上に3日間置きエージングした後、60℃の温度下で1Vの電圧を60μs間印加し、500ms後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として求めた。
Example 12
The liquid crystal aligning agent (AL-4) obtained in Example 4 was filtered through a filter having a pore size of 1.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 2 minutes. It was. Thereafter, the film was baked for 30 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 100 nm. The fired film was irradiated with UV light of 254 nm through a polarizing plate at 150 mJ / cm 2 . Thereafter, baking was further performed in a hot air circulation oven at 230 ° C. for 30 minutes. Thereby, a substrate with a liquid crystal alignment film was obtained.
In order to evaluate the electrical characteristics of the liquid crystal cell, two substrates with the above-mentioned liquid crystal alignment film were prepared, and a 6 μm spacer was dispersed on the one liquid crystal alignment film. A sealant was printed from above, and another substrate was bonded so that the liquid crystal alignment film faces and the photo-alignment direction were parallel, and then the sealant was cured to produce an empty cell. Liquid crystal ML-7026-100 (manufactured by Merck Japan Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an IPS liquid crystal cell. The results of evaluating and confirming the initial orientation of the liquid crystal cell based on the above criteria are shown in Table 1 below. This cell was heat-treated at 120 ° C. for 30 minutes to complete a liquid crystal cell.
In addition, after aging the liquid crystal cell on the backlight for 3 days, a voltage of 1V was applied for 60 μs at a temperature of 60 ° C., and the voltage after 500 ms was measured to determine how much the voltage was maintained. Obtained as retention.
(実施例13、14、比較例11、12)
 液晶配向剤AL-4の代わりに、それぞれ、表1に示される液晶配向剤を用いた以外は実施例9と同様の手順で液晶セルを作製し、評価した。各液晶セルの初期配向性及び電圧保持率の結果を表1に示した。
(Examples 13 and 14, Comparative Examples 11 and 12)
A liquid crystal cell was prepared and evaluated in the same procedure as in Example 9 except that the liquid crystal aligning agent shown in Table 1 was used instead of the liquid crystal aligning agent AL-4. Table 1 shows the results of initial orientation and voltage holding ratio of each liquid crystal cell.
(実施例16)
 実施例8で得られた液晶配向剤(AL-8)を孔径1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、温度80℃のホットプレート上で2分間乾燥させた。その後、温度230℃の熱風循環式オーブンで20分間の焼成を経て、膜厚110nmのイミド化した膜を得た。焼成膜に対して、ラビングによる配向処理を行った。その後、流水で1分間洗浄し、80℃で10分間乾燥した。これにより、液晶配向膜付き基板を得た。
 液晶セルの電気特性を評価するために、上記液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に6μmのスペーサーを散布した。その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い配向方向が平行になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶ML-7026-100(メルク・ジャパン社製)を注入し、注入口を封止し、IPS液晶セルを得た。この液晶セルの初期配向性を上記した基準で評価確認した結果を下記の表1に示した。このセルを120℃で30分熱処理して液晶セルを完成した。
 また、上記液晶セルをバックライト上に3日間置きエージングした後、20℃で1Vの電圧を60μs間印加し、500ms後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として求めた。
(Example 16)
The liquid crystal aligning agent (AL-8) obtained in Example 8 was filtered through a filter having a pore size of 1.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at a temperature of 80 ° C. for 2 minutes. It was. Thereafter, the film was baked for 20 minutes in a hot air circulating oven at a temperature of 230 ° C. to obtain an imidized film having a thickness of 110 nm. The fired film was subjected to orientation treatment by rubbing. Thereafter, it was washed with running water for 1 minute and dried at 80 ° C. for 10 minutes. Thereby, a substrate with a liquid crystal alignment film was obtained.
In order to evaluate the electrical characteristics of the liquid crystal cell, two substrates with the above-mentioned liquid crystal alignment film were prepared, and a 6 μm spacer was dispersed on the one liquid crystal alignment film. A sealing agent was printed from above, and another substrate was bonded so that the liquid crystal alignment film faces each other and the alignment directions were parallel, and then the sealing agent was cured to produce an empty cell. Liquid crystal ML-7026-100 (manufactured by Merck Japan Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an IPS liquid crystal cell. The results of evaluating and confirming the initial orientation of the liquid crystal cell based on the above criteria are shown in Table 1 below. This cell was heat-treated at 120 ° C. for 30 minutes to complete a liquid crystal cell.
In addition, after the liquid crystal cell is aged for 3 days on the backlight, a voltage of 1V is applied at 20 ° C. for 60 μs, the voltage after 500 ms is measured, and the voltage holding ratio is defined as the voltage holding ratio. Asked.
(比較例15、16)
 液晶配向剤AL-Gの代わりに、それぞれ、表1に示される液晶配向剤を用いた以外は実施例16と同様の手順で液晶セルを作製し、評価した。各液晶セルの初期配向性及び電圧保持率の結果を表1に示した。
(Comparative Examples 15 and 16)
A liquid crystal cell was prepared and evaluated in the same manner as in Example 16 except that the liquid crystal aligning agent shown in Table 1 was used instead of the liquid crystal aligning agent AL-G. Table 1 shows the results of initial orientation and voltage holding ratio of each liquid crystal cell.
 以上の結果を表1にまとめて示した。表1において成分1とは熱脱離基を含有するポリマー成分のことである。
Figure JPOXMLDOC01-appb-T000069
The above results are summarized in Table 1. In Table 1, component 1 is a polymer component containing a thermal leaving group.
Figure JPOXMLDOC01-appb-T000069
 本発明の液晶配向剤から得られた液晶配向膜を有する液晶表示素子は、液晶テレビ、スマートフォン、カーナビゲーション等の広範囲のディスプレイとして好適に使用できる。
 なお、2016年1月7日に出願された日本特許出願2016-001659号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
A liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can be suitably used as a wide range display such as a liquid crystal television, a smartphone, and a car navigation.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2016-001659 filed on Jan. 7, 2016 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (13)

  1.  下記の(A)成分、(B)成分、(C)成分及び有機溶剤を含有することを特徴とする液晶配向剤。
     (A)成分:テトラカルボン酸誘導体成分と、下記式[A-1]の構造を有するジアミン化合物、下記式[A-2]の構造を有するジアミン化合物、及び下記式[A-3]の構造を有するジアミン化合物から選ばれる少なくとも1種のジアミン化合物を含有するジアミン成分とを用いて得られるポリイミド前駆体及びポリイミドから選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (R及びRは、それぞれ独立に、水素原子、炭素数1~4のアルキル基又は下記式(1)で表される基であり、その少なくとも一方は、熱により水素原子に置き換わる保護基である熱脱離性基である。R、R、及びRは、それぞれ独立して、水素原子又は置換基を有してもよい炭素数1~20の1価の炭化水素基であり、Dは熱により水素原子に置き換わる保護基である熱脱離性基である。
     (B)成分:下記式(2)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000002
    (Xは、下記式(X-1)で表される4価の有機基であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~5のアルキル基であり、A~Aはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基である。)
    Figure JPOXMLDOC01-appb-C000003
     (C)成分:架橋性官能基を2つ以上含有する化合物。
    A liquid crystal aligning agent comprising the following component (A), component (B), component (C) and an organic solvent.
    Component (A): a tetracarboxylic acid derivative component, a diamine compound having a structure of the following formula [A-1], a diamine compound having a structure of the following formula [A-2], and a structure of the following formula [A-3] A polyimide precursor obtained using a diamine component containing at least one diamine compound selected from diamine compounds having at least one polymer selected from polyimides.
    Figure JPOXMLDOC01-appb-C000001
    (R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a group represented by the following formula (1), at least one of which is a protecting group that is replaced with a hydrogen atom by heat. R 3 , R 4 , and R 5 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms that may have a substituent. And D is a thermally leaving group which is a protecting group that is replaced with a hydrogen atom by heat.
    Component (B): at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (2) and an imidized polymer of the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000002
    (X 1 is a tetravalent organic group represented by the following formula (X-1), Y 1 is a divalent organic group, and R 1 is a hydrogen atom or an alkyl having 1 to 5 carbon atoms. Each of A 1 and A 2 is independently a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 2 to 10 carbon atoms. An alkynyl group.)
    Figure JPOXMLDOC01-appb-C000003
    (C) Component: A compound containing two or more crosslinkable functional groups.
  2.  前記架橋性官能基を2つ以上含有する化合物は、ヒドロキシル基、ヒドロキシアルキルアミド基、(メタ)アクリレート基、ブロックイソシアネート基、オキセタン基、エポキシ基から選ばれる少なくとも1種の官能基を2つ以上含有する化合物である請求項1に記載の液晶配向剤。 The compound containing two or more crosslinkable functional groups includes at least one functional group selected from a hydroxyl group, a hydroxyalkylamide group, a (meth) acrylate group, a blocked isocyanate group, an oxetane group, and an epoxy group. The liquid crystal aligning agent of Claim 1 which is a compound to contain.
  3.  前記架橋性官能基を2つ以上含有する化合物は、ヒドロキシル基を2つ以上含有する化合物である請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein the compound containing two or more crosslinkable functional groups is a compound containing two or more hydroxyl groups.
  4.  前記架橋性官能基を2つ以上含有する化合物が、(A)成分と(B)成分の合計に対して0.1~20質量%含有される請求項1~3のいずれか1項に記載の液晶配向剤。 The compound according to any one of claims 1 to 3, wherein the compound containing two or more crosslinkable functional groups is contained in an amount of 0.1 to 20% by mass relative to the total of the component (A) and the component (B). Liquid crystal aligning agent.
  5.  前記架橋性官能基を2つ以上含有する化合物が、下記式(7)で表される請求項1~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (Xは炭素数1~20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、nは2~6の整数であり、R及びRは、それぞれ独立に、水素原子、又は置換基を有してもよい炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基であり、R及びRのうち少なくとも1つはヒドロキシ基で置換された炭化水素基を表す。)
    The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the compound containing two or more crosslinkable functional groups is represented by the following formula (7).
    Figure JPOXMLDOC01-appb-C000004
    (X 3 is an n-valent organic group containing an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group, n is an integer of 2 to 6, and R 6 and R 7 are respectively Independently a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms, and R 6 and R 7 At least one of them represents a hydrocarbon group substituted with a hydroxy group.)
  6.  R及びRのうち少なくとも1つが、下記式(8)で表される請求項5に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (R~R11は、それぞれ独立に、水素原子、炭化水素基、又はヒドロキシ基で置換された炭化水素基を表す。)
    At least one of R 6 and R 7, but the liquid crystal aligning agent of claim 5 represented by the following formula (8).
    Figure JPOXMLDOC01-appb-C000005
    (R 8 to R 11 each independently represents a hydrogen atom, a hydrocarbon group, or a hydrocarbon group substituted with a hydroxy group.)
  7.  (C)成分が、下記式で表される化合物である請求項1~6のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the component (C) is a compound represented by the following formula.
    Figure JPOXMLDOC01-appb-C000006
  8.  前記熱脱離性基が、下記式(1)で表される基である請求項1~7のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007

    (Aは、単結合又は炭素数1~4の炭化水素基からなる2価の基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 7, wherein the thermally leaving group is a group represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000007

    (A is a divalent group consisting of a single bond or a hydrocarbon group having 1 to 4 carbon atoms.)
  9.  前記前記熱脱離性基が、tert-ブトキシカルボニル基である請求項1~8のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 8, wherein the thermally leaving group is a tert-butoxycarbonyl group.
  10.  前記(B)成分の重合体が、更に、下記式(3)で表される構造単位を有する請求項1~9のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008

    (Xは、4価の有機基(前記式(X-1)を除く)であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~5のアルキル基であり、A~Aはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基である。)
    The liquid crystal aligning agent according to any one of claims 1 to 9, wherein the polymer of the component (B) further has a structural unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000008

    (X 1 is a tetravalent organic group (excluding the above formula (X-1)), Y 1 is a divalent organic group, and R 1 is a hydrogen atom or an alkyl having 1 to 5 carbon atoms. Each of A 1 and A 2 is independently a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 2 to 10 carbon atoms. An alkynyl group.)
  11.  請求項1~10のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of claims 1 to 10.
  12.  請求項11に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 11.
  13.  請求項11に記載の液晶配向膜を具備する横電界駆動型液晶表示素子。 A lateral electric field drive type liquid crystal display device comprising the liquid crystal alignment film according to claim 11.
PCT/JP2017/000178 2016-01-07 2017-01-05 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same WO2017119461A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017560415A JP6919574B2 (en) 2016-01-07 2017-01-05 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
KR1020187022535A KR20180101453A (en) 2016-01-07 2017-01-05 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same
CN201780015102.2A CN109073935B (en) 2016-01-07 2017-01-05 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-001659 2016-01-07
JP2016001659 2016-01-07

Publications (1)

Publication Number Publication Date
WO2017119461A1 true WO2017119461A1 (en) 2017-07-13

Family

ID=59274137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000178 WO2017119461A1 (en) 2016-01-07 2017-01-05 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element using same

Country Status (5)

Country Link
JP (1) JP6919574B2 (en)
KR (1) KR20180101453A (en)
CN (1) CN109073935B (en)
TW (1) TWI724089B (en)
WO (1) WO2017119461A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026705A1 (en) * 2017-08-01 2019-02-07 シャープ株式会社 Method for manufacturing liquid crystal display device
JP2019101196A (en) * 2017-11-30 2019-06-24 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2019101195A (en) * 2017-11-30 2019-06-24 日産化学株式会社 Production method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
CN111602088A (en) * 2018-01-19 2020-08-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN111801401A (en) * 2018-11-20 2020-10-20 株式会社Lg化学 Liquid crystal alignment composition, method for preparing liquid crystal alignment film by using same, and liquid crystal display
WO2023068085A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391473B1 (en) * 2019-01-17 2022-04-26 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
KR20220056789A (en) * 2020-10-28 2022-05-06 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and method for manufacturing same, and liquid crystal device and manufacturing method thereof
CN112592475A (en) * 2020-12-20 2021-04-02 武汉市美克亚胺科技有限责任公司 Preparation method and application of polyimide micropowder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115118A1 (en) * 2010-03-15 2011-09-22 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester, and liquid crystal alignment film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613421B2 (en) 1996-05-31 2005-01-26 Jsr株式会社 Liquid crystal alignment agent
CN101109873A (en) * 2006-07-19 2008-01-23 Jsr株式会社 Liquid crystal aligning agent,liquid crystal aligning film and liquid crystal display device
CN103038704B (en) * 2010-06-10 2015-07-29 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells
KR101459178B1 (en) * 2011-09-30 2014-11-07 코오롱인더스트리 주식회사 Co-polymerized polyamide-imide film and method of producing the co-polmerized polyamide-imide
JP5930239B2 (en) * 2012-10-18 2016-06-08 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
KR102101530B1 (en) * 2012-11-30 2020-04-16 닛산 가가쿠 가부시키가이샤 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN105122128B (en) * 2013-02-13 2017-11-28 日产化学工业株式会社 The manufacture method of liquid crystal orientation film, liquid crystal orientation film, liquid crystal represent element and aligning agent for liquid crystal
JP6264577B2 (en) * 2013-02-28 2018-01-24 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014157625A1 (en) * 2013-03-29 2014-10-02 日産化学工業株式会社 Liquid crystal orienting agent containing polymer having blocked isocyanate group, liquid crystal orienting film, and liquid crystal display element
CN105359032B (en) 2013-05-01 2017-09-05 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
WO2015060360A1 (en) * 2013-10-23 2015-04-30 日産化学工業株式会社 Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
JP2017106941A (en) * 2014-04-09 2017-06-15 日産化学工業株式会社 Urea compound having alkoxysilyl group and liquid crystal aligning agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115118A1 (en) * 2010-03-15 2011-09-22 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester, and liquid crystal alignment film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026705A1 (en) * 2017-08-01 2019-02-07 シャープ株式会社 Method for manufacturing liquid crystal display device
JP2019101196A (en) * 2017-11-30 2019-06-24 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2019101195A (en) * 2017-11-30 2019-06-24 日産化学株式会社 Production method of liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
CN111602088A (en) * 2018-01-19 2020-08-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
CN111801401A (en) * 2018-11-20 2020-10-20 株式会社Lg化学 Liquid crystal alignment composition, method for preparing liquid crystal alignment film by using same, and liquid crystal display
US11667844B2 (en) 2018-11-20 2023-06-06 Lg Chem, Ltd. Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, and liquid crystal display using the same
CN111801401B (en) * 2018-11-20 2023-06-30 株式会社Lg化学 Liquid crystal alignment composition, method for preparing liquid crystal alignment film using the same, and liquid crystal display
WO2023068085A1 (en) * 2021-10-18 2023-04-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound

Also Published As

Publication number Publication date
JPWO2017119461A1 (en) 2018-10-25
JP6919574B2 (en) 2021-08-18
TW201739837A (en) 2017-11-16
TWI724089B (en) 2021-04-11
KR20180101453A (en) 2018-09-12
CN109073935B (en) 2021-06-25
CN109073935A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6919574B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
KR102275484B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6520716B2 (en) Liquid crystal aligning agent and liquid crystal display device using the same
JP6582988B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal alignment element
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
US9976086B2 (en) Liquid crystal aligning agent containing polyimide precursor having thermally-leaving group and/or polyimide
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102291426B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2016152928A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2016104514A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI813541B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2017094786A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TW201922853A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018216664A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187022535

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022535

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 17735998

Country of ref document: EP

Kind code of ref document: A1