WO2017116041A1 - 연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막-전극 접합체 및 연료 전지 - Google Patents

연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막-전극 접합체 및 연료 전지 Download PDF

Info

Publication number
WO2017116041A1
WO2017116041A1 PCT/KR2016/014540 KR2016014540W WO2017116041A1 WO 2017116041 A1 WO2017116041 A1 WO 2017116041A1 KR 2016014540 W KR2016014540 W KR 2016014540W WO 2017116041 A1 WO2017116041 A1 WO 2017116041A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrode
conductive polymer
membrane
metal
Prior art date
Application number
PCT/KR2016/014540
Other languages
English (en)
French (fr)
Inventor
임정혁
김상욱
양은준
이주호
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150188627A external-priority patent/KR20170078271A/ko
Priority claimed from KR1020150188629A external-priority patent/KR20170078272A/ko
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2017116041A1 publication Critical patent/WO2017116041A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Electrolyte membrane for fuel cell Electrolyte membrane for fuel cell, electrode for fuel cell, membrane-electrode assembly and fuel cell using same
  • the present invention relates to an electrolyte membrane for a fuel cell, an electrode for a fuel cell, a membrane-electrode assembly using the same, and a fuel cell. More specifically, a membrane-electrode assembly capable of effectively removing radicals generated when the battery is driven to realize stable performance using a fuel cell electrolyte membrane having excellent durability, a fuel cell electrode, the electrolyte membrane or a fuel cell electrode, and Relates to a fuel cell.
  • Polymer electrolyte fuel cell is a fuel cell using polymer membrane with hydrogen ion exchange characteristics as electrolyte, solid polymer electrolyte fuel cell (SPEFC), Hydrogen is called by various names such as proton exchange membrane fuel cells (PEMFC).
  • PEMFC proton exchange membrane fuel cells
  • the polymer electrolyte membrane fuel cell has a low operating temperature of 8 (rc), high efficiency, high current density and power density, short start-up time, and fast response to load changes.
  • the polymer membrane is used as the electrolyte, which eliminates the need for corrosion and electrolyte control, and is less sensitive to changes in the pressure of the reaction vessel, and because of its simplicity of design, ease of manufacture, and the ability to produce a wide range of outputs.
  • the polymer electrolyte fuel cell has the advantage that can be used in a wide variety of fields, such as the power source of pollution-free vehicles, local installation power generation, mobile power, military power.
  • the characteristics of hydrogen ion exchange membrane in polymer electrolyte fuel cell (PEFC) are mainly expressed by ion exchange capacity (IEC) or equivalent weight (EW) and used as electrolyte membrane for fuel cell.
  • Hydrogen exchange membranes should have high hydrogen ion conductivity, mechanical strength, low gas permeability and water transport. When dehydration, the conductivity of hydrogen ions drops rapidly, so it must be resistant to dehydration. It must have a high resistance to oxidation and reduction reactions, hydrolysis, etc., which are directly experienced by the electrolyte membrane, have a positive cationic binding force, and require homogeneity. And these properties must be maintained for some time. In addition to satisfying all of these conditions, linking with commercialization requires the development of cheap and environmentally friendly manufacturing techniques.
  • the polymer electrolyte membrane may be classified into a perfluorine system, a partial fluorine system, and a hydrocarbon system.
  • Perfluoro-based electrolyte membranes are suitable for high mechanical strength, physical and chemical stability, and high cationic conductivity, including Naf i on® from Dufont, Ac ipl ex® from Asahi Chemi Cal, and Flemi on® from Asahi Gl ass.
  • the hydrogen ion permeability is high and the Cell performance is deteriorated due to decreased physical and chemical stability.
  • the electrolyte membrane is destroyed by radicals generated during fuel cell operation, and the membrane-electrode assembly is typically formed by impregnating a radical scavenger such as Ce02 into the porous support together with the electrolyte membrane. Improves the radical resistance.
  • the present invention effectively removes radicals generated during battery operation It is to provide an electrolyte membrane for a fuel cell or an electrode for a fuel cell having a durability.
  • the present invention is to provide a membrane-electrode assembly and a fuel cell that can implement a stable performance using the electrolyte membrane or the electrode.
  • the conductive film A radical protective layer formed on at least one surface of the ion conductive membrane and including at least one metal and an ion conductive polymer; And an insulating layer formed on the radical protective layer, the insulating layer including an ion conductive polymer, wherein the metal included in the radical protective layer is formed in a state in which the conductive polymer is brought into contact with a surface thereof .
  • An electrolyte membrane for an acid fuel cell is provided.
  • the electrode catalyst layer An insulating layer formed on at least one surface of the electrode catalyst layer, the conductive layer including a conductive polymer; And a radical protective layer formed on the insulating layer, the radical protective layer including at least one metal and an ion conductive polymer, wherein the metal included in the radical protective layer is dispersed in contact with a conductive polymer subsequent to the surface thereof.
  • An electrode is provided.
  • a fuel cell membrane-electrode assembly including an electrolyte membrane and an electrode catalyst layer provided on both surfaces of the electrolyte membrane.
  • a fuel cell membrane-electrode assembly including an electrolyte membrane and two electrodes provided on both sides of the electrolyte membrane, and at least one of the two electrodes includes the fuel cell electrode. Also provided herein is a fuel cell comprising the membrane-electrode assembly.
  • the ion conductive membrane; A radical protective layer formed on at least one surface of the ion conductive membrane and including at least one metal and an ion conductive polymer; And formed on the radical protective layer, and ion conductive An insulating layer including a polymer; and the metal included in the radical protection layer may be provided with an electrolyte membrane for a fuel cell in which the conductive polymer is dispersed in contact with a surface thereof.
  • the present inventors further introduce an insulating layer containing an ion conductive polymer onto the radical protective layer by using the above-described specific fuel cell electrolyte membrane, thereby separating the radical protective layer and the electrode layer and the electrode layer when the membrane-electrode assembly is bonded. It was confirmed that the electrical protection of the radical protecting insects with the catalyst can be blocked. Accordingly, by fully exhibiting the radical removal effect by the radical protective layer, it was confirmed through experiments that an electrolyte membrane structure having physically and chemically excellent durability was confirmed and completed the invention.
  • the radical protective layer can secure insulation by a separate insulating layer, it is not necessary to use a separate carbon support as in the prior art, and the ion conductive polymer directly contacts the metal surface in the radical protective layer. Can be dispersed in a state, it is possible to maximize the radical removal efficiency.
  • the insulating layer contains a conductive polymer, which not only blocks the electrical contact between the electrode charge and the catalyst of the radical protective layer when the membrane-electrode assembly is bonded, but also provides excellent electrical properties even when applied and driven in a fuel cell. As a result, the improved performance can be realized.
  • the electrolyte membrane for a fuel cell of one embodiment described above can be used in all energy storage and production devices such as solar cells, secondary cells, supercapacitors and the like. It can also be used in organic electroluminescent devices.
  • the ion conductive membrane, the radical protective layer, and the insulating layer included in the electrolyte membrane for a fuel cell of the embodiment are as follows. Ion conductive membrane
  • the ion conductive membrane is a polymer membrane having electrical insulation and subsequent conductivity, and may include a conductive polymer.
  • the ion conductive polymer refers to a polymer having a property of transporting charges by ions, and the ion conductive polymer may include a fluorine-based polymer or a hydrocarbon-based polymer. Specific examples of the fluorine-based polymer are not particularly limited, and examples For example, a perfluorinated sulfonic acid group-containing polymer or a perfluoro-based proton conductive polymer can be used.
  • hydrocarbon-based polymer examples are not particularly limited, for example, sulfonated polysulfone copolymer, sulfonated poly (ether-ketone) -based polymer, sulfonated polyether ether ketone-based polymer, polyimide-based polymer Polystyrene-based polymers, polysulfone-based polymers, clay-sulfonated polysulfone nanocomposites or mixtures of two or more thereof may be used.
  • the radical protective layer included in the electrolyte membrane for the fuel cell may be formed on at least one surface of the ion conductive membrane and include at least one metal and an ion conductive polymer.
  • At least one surface of the conductive film on which the radical protective layer is formed may mean one surface of the upper surface or the lower surface of the ion conductive film, or may include both the upper surface and the lower surface.
  • a radical protective layer 3 may be formed on the upper surface of the ion conductive membrane (4).
  • the radical protection layer may include at least one metal to effectively remove radicals generated during operation of the fuel cell.
  • the at least one metal is a catalyst for promoting oxidation of hydrogen and reduction of oxygen, and may serve to remove radicals by decomposing peroxy radicals and hydroperoxy radicals into water and oxygen.
  • the at least one metal may include at least one metal selected from the group consisting of metal elements belonging to groups 3 to 13 of the periodic table. That is, the additive metal may include a transition metal belonging to Groups 3 to 12 of the Periodic Table or a post-transition metal belonging to Group 13 of the Periodic Table.
  • the at least one metal is palladium (Pal ladium, Pd) or alloys including palladium.
  • the alloy containing palladium may include at least one metal selected from the group consisting of palladium and metal elements belonging to Groups 3 to 13 of the Periodic Table.
  • the palladium metal has a higher hydrogen bonding energy than other metals, the palladium metal may exhibit better selectivity for radicals or ions. Accordingly, when the palladium metal is used as the radical protection layer, the generation of hydrogen peroxide and radicals generated during fuel cell operation is suppressed. The effect of removing the generated radicals can be maximized, thereby improving the durability while reducing the gas permeability of the electrolyte membrane.
  • Examples of metals other than palladium added in the alloy including the palladium are not particularly limited.
  • the alloy containing palladium include palladium-cobalt alloy, palladium-titanium alloy, palladium-manganese alloy, palladium-platinum alloy, palladium-nickel alloy or a combination thereof.
  • the radical protective layer may include a conductive polymer.
  • the conductive polymer may serve as a binder in which the radical protective layer including the metal may be more stably laminated. Accordingly, in the radical protective layer, at least one metal may be dispersed in the ion conductive polymer.
  • the metal may be dispersed in a state in which the ion conductive polymer is in contact with the surface. This is because the metal is directly used without being supported on a carrier such as a carbon support. As the metal is used directly without being supported on the carrier, the active surface area of the metal is increased, and the radical removal efficiency by the radical protection layer can be maximized.
  • the total surface area of the metal contained in the radical protective layer is more specifically, the total surface area of the metal contained in the radical protective layer
  • 50% or more, or 50% to 100% may be in contact with the ion conductive polymer.
  • hydrogen peroxide and radical scavenging action by the metal may exhibit activity. Therefore metal full table
  • the active surface area of the metal may increase to 5 or more of the total surface area.
  • the ion conductive polymer refers to a polymer having a property of transporting charges by silver, and the ion conductive polymer may include a fluorine-based polymer or a hydrocarbon-based polymer.
  • fluorine-based polymer examples are not particularly limited.
  • a perfluorinated sulfonic acid group-containing polymer or a perfluoro-based proton conductive polymer may be used.
  • hydrocarbon-based polymer examples are not particularly limited.
  • sulfonated polysulfone copolymer sulfonated poly (ether-ketone) polymer, sulfonated polyether ether ketone polymer, polyimide polymer , Polystyrene-based polymers, polysulfene-based polymers, clay-sulfonated polysulfone nanocomposites or two or more kinds thereof may be used.
  • the silver conductive polymer included in the radical protective layer and the ion conductive polymer included in the silver conductive film described above may be the same material or different materials.
  • the radical protective layer is 1 part by weight to 20 parts by weight, or 3 parts by weight to 10 parts by weight, or 5 parts by weight to 10 parts by weight, or 5.5 parts by weight based on 100 parts by weight of the ion conductive polymer. It may contain up to 10 parts by weight.
  • the coating composition for reducing the stability and uniformity of the coating composition for forming the radical protective layer may be reduced.
  • the radical protective layer may have a thickness of 10 inn to 2000 nm, or 50 ran to 1500 nm. When the thickness of the radical protective layer is too thick, exceeding 2000 ran, the performance of the membrane-electrode assembly may be degraded, and it may be difficult to manufacture a thin electrolyte membrane having a thin thickness. Insulation layer
  • the insulating layer included in the electrolyte membrane for the fuel cell is formed on the radical protective layer, and may include an ion conductive polymer.
  • the insulating layer may be formed on the radical protective layer and stacked for the purpose of separating the radical protective layer from the electrode catalyst layer. Specifically.
  • the insulating layer may be formed on the other side of the radical protection insect that does not contact the aion conductive film. That is, an ion conductive film may be formed on one surface of the radical protection layer, and an insulating layer may be formed on the other surface.
  • the electrolyte membrane on which the insulating layer is formed may have a three-layer structure in which the conductive membrane 4, the radical protective layer 3, and the insulating layer 2 are laminated in this order. .
  • the insulating layer may include an ion conductive polymer.
  • the ion conductive polymer refers to a polymer having a property of transporting charges by ions
  • the silver conductive polymer may include a fluorine-based polymer or a hydrocarbon-based polymer.
  • fluorine-based polymer examples are not particularly limited.
  • a perfluorinated sulfonic acid group-containing polymer or a perfluoro-based proton conductive polymer may be used.
  • hydrocarbon-based polymer examples are not particularly limited.
  • sulfonated polysulfone copolymer sulfonated poly (ether-ketone) polymer, sulfonated polyether ether ketone polymer, polyimide polymer , Polystyrene-based polymers, polysulfone-based polymers, clay-sulfonated polysulfone nanocomposites or two or more kinds thereof can be used.
  • the silver conductive polymer included in the insulating layer and the silver conductive polymer included in the radical protective layer or the ion conductive membrane described above may be the same material or different materials.
  • the content of the ion conductive polymer included in the insulating layer may be 300 parts by weight to 500 parts by weight, or 350 parts by weight to 400 parts by weight with respect to 100 parts by weight of the ion conductive polymer included in the radical protecting insect.
  • the thickness of the insulating layer may be 10 nm to 2000 ran, or 50 nm to 1500 inn. If the thickness of the insulating layer is too thick, more than 2000 nm, the performance of the membrane-electrode assembly may be degraded, it may be difficult to manufacture a thin electrolyte membrane of a thin thickness.
  • the ratio of the radical protective layer thickness to the thickness of the insulating layer may be 1 to 10, or 1.1 to 5, or 1.2 to 3.
  • the radical protective layer thickness ratio with respect to the insulation layer thickness means a value obtained by dividing the thickness of the radical protective layer by the thickness of the insulating layer.
  • the method of manufacturing an electrolyte membrane for a fuel cell includes coating a first coating composition including at least one metal and a conductive polymer on at least one surface of an ion conductive membrane to form a radical protective layer; And forming an insulating layer by coating a second coating composition including an ion conductive polymer on the radical protection layer.
  • the first coating composition including the at least one metal and the ion conductive polymer on at least one surface of a subsequent conductive film to form a radical protective layer
  • the first coating composition is a composition for forming a radical protective layer, at least It may include one or more metal and ion conductive polymers. Details of the metal ion conductive polymer, the ion conductive membrane, and the radical protective layer may include the above-described details in the embodiment.
  • the first coating composition may further include a solvent.
  • the solvent may include an aqueous solvent or an organic solvent, a water-based or organic solvent that is commonly used without limitation, and may be the same as the solvent used in the preparation of the electrode catalyst layer composition to be described later.
  • An example of a method of preparing the first coating composition is not particularly limited.
  • a method of dispersing the at least one metal or ion conductive polymer in an organic solvent or an aqueous solvent may be used.
  • Examples of the method of coating the first coating composition are also not limited in scope, for example, spraying, screen printing, inkjet printing, dipping, bar Coating, cap coating, knife coating, slot die coating, gravure coating and the like can be carried out through a variety of known methods.
  • the method may further include drying the coated radical protective layer.
  • these coating layers may be dried together, and the respective coating layers may be separately formed and dried. have.
  • drying step are not particularly limited, for example, a first heat treatment process performed for 1 to 24 hours at 20 to 100 ° C, and a second performed for 0.5 to 10 minutes under 120 to 250 ° C.
  • Heat treatment processes may be included. Residual solvent included in the coating layer may be sufficiently removed through the first and second heat treatment processes, and the radical protective layer may be more stably laminated on the ion conductive membrane.
  • the thermal curing may be performed through the plurality of heat treatment processes.
  • the second coating composition may further include a solvent.
  • Information on the ion conductive polymer may include the above-described information in the embodiment.
  • the solvent may include an aqueous solvent or an organic solvent, a water-based or organic solvent that is commonly used without limitation, may be used in the same manner as the solvent used in the preparation of the electrocatalyst layer composition to be described later.
  • An example of a method of preparing the second coating composition is not particularly limited.
  • a method of dispersing the ion conductive polymer in an organic solvent or an aqueous solvent may be used.
  • Examples of the method of coating the second coating composition are also not limited thereto, and for example, spraying, screen printing, inkjet printing, dipping, bar coating, cap coating, knife coating, slurry die coating, and gravure Known coatings This can be done through various methods.
  • the method may further include drying the coated insulating worm.
  • these coating layers may be dried together, or the coating layers may be formed and dried separately. have.
  • drying step are not particularly limited, for example, the first heat treatment process is performed for 1 to 24 hours at 20 to 100 ° C, and the second is performed for 0.5 to 10 minutes under 120 to 250 ° C.
  • Heat treatment processes may be included. Through the first and second heat treatment processes, the residual solvent included in the coating layer may be sufficiently removed, and the insulating layer may be more stably stacked.
  • the thermal curing may be performed through the plurality of heat treatment processes.
  • the electrode catalyst layer An insulating layer formed on at least one surface of the electrode catalyst layer and including an ion conductive polymer; And a radical protective layer formed on the insulating layer and including at least one metal and an ion conductive polymer, wherein the metal included in the radical protective layer is dispersed in a state in which the ion conductive polymer is in contact with the surface.
  • An electrode for a fuel cell may be provided.
  • the present inventors further introduce an insulating layer containing an ion conductive polymer together with a radical protective layer by using the above-described specific fuel cell electrode, thereby separating the radical protective layer and the electrode catalyst layer and included in the electrode and the radical protective layer, respectively. It was confirmed that the electrical contact of the catalyst can be blocked. Accordingly, by fully exhibiting the radical removal effect by the radical protective layer, it was confirmed through experiments that an electric structure having excellent physical and chemical durability was formed through experiments and completed the invention.
  • the radical protective layer can ensure insulation by a separate insulating layer, it is not necessary to use a separate carbon support as in the prior art. Accordingly, the ion conductive polymer may be dispersed in a directly contacted state on the metal surface in the radical protection layer, thereby maximizing radical removal efficiency.
  • the insulating layer includes an ion conductive polymer, and not only blocks electrical contact between the electrode catalyst layer and the catalyst of the radical protective layer, but also provides excellent electrical properties when driven and applied to a fuel cell. Improved performance can be achieved.
  • the fuel cell electrode of one embodiment described above may be used in all energy storage and production devices such as solar cells, secondary cells, supercapacitors, and the like. It can also be used in organic electroluminescent devices.
  • the electrode catalyst layer may comprise conventional metals known to promote oxidation of hydrogen and reduction of oxygen.
  • the electrode catalyst layer may comprise a platinum group metal (platinum, para, rhodium, ruthenium, iridium, and osmium), gold, silver, or an alloy thereof, and the metals and base metal (gallium) , Titanium vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, and the like.
  • the metal may be used in an unsupported state or a supported state.
  • it When the metal is supported, it may be used in a state supported on an inorganic carrier such as acetylene black or carbon-based carrier such as graphite, alumina or silica.
  • the carrier When used in a supported state of the metal, in order to express an appropriate catalytic effect, the carrier has a specific surface area of at least 150 m '/ g or 500 to 1200 m7 g and an average particle diameter of 10 to 300 nm or 20 to 100 nm. It is preferable to have.
  • An example of a method of manufacturing the electrode catalyst layer is not particularly limited, but for example, the metal, the binder, and the solvent may be mixed to prepare a catalyst slurry, and may be prepared by a method of applying the catalyst slurry.
  • the insulation worm included in the electrode for the fuel cell is formed on at least one surface of the electrode catalyst layer, and may include an ion conductive polymer.
  • the insulating layer may be formed on at least one surface of the electrode catalyst layer and stacked for the purpose of separating the radical protective layer from the electrode catalyst layer.
  • At least one surface of the electrode catalyst layer on which the insulating layer is formed may mean one surface of an upper surface or a lower surface of the electrode catalyst layer, or may include both an upper surface and a lower surface.
  • the insulating layer 4 may be formed on the upper surface of the electrode catalyst layer 5 through FIG. 1.
  • the insulating layer may include a conductive polymer.
  • the ion conductive polymer refers to a polymer having a property of transporting charges by silver, and the silver conductive polymer may include a fluorine-based polymer or a hydrocarbon-based polymer.
  • fluorine-based polymer examples are not particularly limited, and for example, a perfluorinated sulfonic acid group-containing polymer or a perfluoro-based proton conductive polymer may be used.
  • hydrocarbon-based polymer examples are not particularly limited, but for example, sulfonated pulleysulphene copolymer, sulfonated pulley (ether-kerone) -based polymer, sulfonated polyether ether ketone polymer, polyimide polymer , Polystyrene-based polymers, polysulfone-based polymers, clay-sulfonated polysulfone nanocomposites or two or more kinds thereof can be used.
  • the content of the ion conductive polymer included in the insulating layer may be 300 parts by weight to 500 parts by weight, or 350 parts by weight to 400 parts by weight with respect to 100 parts by weight of the ion conductive polymer included in the radical protective layer.
  • the thickness of the insulating layer may be 10 i to 2000 ran, or 50 ran to 1500 iim. If the thickness of the insulating layer is too thick, exceeding 2000 ran, the performance of the film-electrode assembly may be degraded, and it may be difficult to manufacture a thin electrode having a thin thickness.
  • the ratio of the radical protective layer thickness to the thickness of the insulating layer may be 1 to 10, or 1.1 to 5, or 1.2 to 3.
  • the radical protective layer thickness ratio to the insulating layer thickness is the radical protective layer It means the value obtained by dividing the thickness by the insulation layer thickness.
  • the radical protective layer included in the fuel cell electrode may be formed on the insulating layer and include at least one metal and an ion conductive polymer. Specifically, the radical protective layer may be formed on the other surface of the insulating layer that is not in contact with the electrode catalyst layer. That is, an electrode catalyst layer is formed on one surface of the insulating layer, and a radical protection layer may be formed on the other surface.
  • the electrode on which the radical protective layer is formed may have a three-layer structure stacked in the order shown in FIG. 3, the electrode catalyst layer 5, the insulating layer 2, and the radical protective layer 3. have.
  • the radical protective layer may include at least one metal to effectively remove radicals generated during operation of the fuel cell.
  • the at least one metal is a catalyst for promoting the oxidation of hydrogen and the reaction of oxygen reduction, and may serve to remove radicals by decomposing peroxy radicals and hydroperoxy radicals into water and oxygen.
  • the at least one metal may include at least one metal selected from the group consisting of metal elements belonging to groups 3 to 13 of the periodic table. That is, the metal may include a transition metal belonging to group 3 to 12 of the periodic table or a post-transit ion metal belonging to group 13 of the periodic table.
  • the at least one metal may include palladium (Pal) or an alloy including palladium.
  • the alloy containing palladium may include one or more metals selected from the group consisting of metal elements belonging to the group 3 to 13 of the periodic table.
  • the palladium metal has a higher hydrogen bonding energy than other metals, the palladium metal may exhibit better selectivity for radicals or ions. Accordingly, when palladium metal is used as the radical protecting insect, generation of hydrogen peroxide and radicals generated during fuel cell operation is suppressed. Generated radicals Removal effect can be maximized, thereby improving the durability while reducing the gas permeability of the electrode.
  • metals other than palladium added in the alloy containing palladium are not particularly limited.
  • platinum (Pt), gold (Au), silver (Ag), gallium (Ga), titanium (Ti), Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), molybdenum (Mo), zinc (Zn) or two of these Mixtures of more than one species can be used.
  • examples of the alloy containing palladium include a palladium-cobalt alloy, a palladium-titanium alloy, a palladium-manganese alloy, a palladium-platinum alloy, a palladium-nickel alloy, or a combination thereof.
  • the radical protective layer may include an ion conductive polymer.
  • the ion conductive polymer may serve as a binder to allow the radical protective layer including the metal to be more stably laminated. Accordingly, in the radical protective layer, at least one metal may be dispersed in the silver conductive polymer.
  • the metal may be dispersed in a state in which the ion conductive polymer is in contact with the surface. This is because the metal is directly used without being supported on a carrier such as a carbon support. As such, as the metal is directly used without being supported on the carrier, the active surface area of the metal is increased, thereby maximizing radical removal efficiency by the radical protection layer.
  • the total surface area of the metal contained in the radical protective layer is more specifically, the total surface area of the metal contained in the radical protective layer
  • 50% or more, or 50% to 100% may be in contact with the ion conductive polymer.
  • the hydrogen peroxide and radical scavenging action by the metal may be active on the surface of the metal in contact with the conductive polymer. Therefore, when more than 503 ⁇ 4> of the total surface area of the metal is in contact with the ion conductive polymer, the active surface area of the metal may increase to more than 50% of the total surface area.
  • the ion conductive polymer has a property of carrying charges by silver It means a polymer having, the ion conductive polymer may include a fluorine-based polymer or a hydrocarbon-based polymer.
  • fluorine-based polymer examples are not particularly limited.
  • a perfluorinated sulfonic acid group-containing polymer or a perfluoro-based proton conductive polymer may be used.
  • hydrocarbon-based polymer examples are not particularly limited.
  • sulfonated polysulfone copolymer sulfonated poly (ether-ketone) polymer, sulfonated polyether ether ketone polymer, polyimide polymer , Polystyrene-based polymers, polysulfone-based polymers, clay-sulfonated polysulfone nanocomposites or two or more kinds thereof can be used.
  • the silver conductive polymer included in the radical protecting insect and the ion conductive polymer included in the insulating layer described above may be the same material or different materials.
  • the radical protective layer is 1 part by weight to 20 parts by weight, or 3 parts by weight to 10 parts by weight, or 5 parts by weight to 10 parts by weight, or 5.5 parts by weight to at least one metal based on 100 parts by weight of the ion conductive polymer. It can be included in 10 increments. When too much metal is added to the ion conductive polymer in the radical protective layer, coating stability may be reduced by decreasing the stability and uniformity of the coating composition for forming the radical protective layer.
  • the radical protective layer may have a thickness of 10 ran to 2000 nm, or 50 ran to 1500 nm. When the thickness of the radical protective layer is too thick, exceeding 2000 ran, the performance of the membrane-electrode assembly may be degraded, and it may be difficult to manufacture a thin electrode having a thin thickness. Manufacturing method of electrode for fuel cell
  • the method for manufacturing an electrode for a fuel cell may include forming an insulating worm by coating a first coating composition including an ion conductive polymer on at least one surface of an electrode catalyst layer; And coating a second coating composition comprising at least one metal and an ion conductive polymer on the insulating layer to form a radical protective layer. It may include.
  • the first coating composition is a composition for forming the insulating layer, it may include a conductive polymer have.
  • the first coating composition may further include a solvent.
  • the solvent may include an aqueous solvent or an organic solvent, a conventionally widely used aqueous or organic solvent may be used without limitation, and specifically, the same solvent as that used in the preparation of the electrolytic membrane described below may be used.
  • An example of a method of preparing the first coating composition is not particularly limited.
  • a method of dispersing the ion conductive polymer in an organic solvent or an aqueous solvent may be used.
  • Examples of the method of coating the first coating composition are also not limited to, for example, spraying, screen printing, inkjet printing, dipping, bar coating, cap coating, knife coating, slot die coating, gravure coating It may be carried out through various known methods such as.
  • the method may further include drying the coated insulating charge.
  • the coating layers may be dried together, or the coating layers may be formed and dried separately.
  • drying step are not particularly limited, for example, the first heat treatment process performed for 1 to 24 hours under 20 to 100 t, and the second heat treatment carried out for 0.5 to 10 minutes under 120 to 250 ° C. This may include the process. Residual solvents included in the coating layer may be removed through the first and second heat treatment processes, and the insulating layer may be more stably stacked on the electrode catalyst layer. In addition, when an ion conductive polymer is used, the thermal curing may be performed through the plurality of heat treatment processes.
  • the second coating composition may further comprise a solvent.
  • the metal, ion conductive polymer, the electrode catalyst layer, the radical protective layer may include the above-described details in one embodiment.
  • the solvent may include an aqueous solvent or an organic solvent, an aqueous or organic solvent which is generally widely used may be used without limitation, and specifically, the same solvent as that used in the preparation of the electrolyte membrane described later may be used.
  • An example of a method of preparing the second coating composition is not particularly limited.
  • a method of dispersing the at least one metal or ion conductive polymer in an organic solvent or an aqueous solvent may be used.
  • Examples of the method of coating the second coating composition are also not limited thereto, for example, spraying, screen printing, inkjet printing, dipping, bar coating, cap coating, knife coating, slot die coating, gravure coating It can be carried out through various known methods such as.
  • the method may further include drying the coated radical protective layer.
  • these coating layers may be dried together, or the formation and drying of each coating layer may be performed separately. have.
  • a second heat treatment but is not an example of the drying step greatly restricted, for example, performed during the first heat treatment step, a 0.5 to 10 minutes at from 120 to 250 t is performed for 1 to 24 hours under 20 within the support 100 ° C This may include the process.
  • the residual solvent included in the coating may be removed in layers, and the radical protective layer may be more stably laminated.
  • the thermal curing may be performed through the plurality of heat treatment processes.
  • the fuel cell electrolyte membrane and the electrode catalyst layer provided on both sides of the electrolyte membrane of the embodiment Membrane-electrode assemblies for fuel cells can be provided.
  • the content of the electrolyte membrane for the fuel cell includes the content described above with respect to the embodiment.
  • the electrode catalyst layers provided on both surfaces of the electrolyte membrane may include a conventional metal known to promote oxidation of hydrogen and reduction of oxygen.
  • the electrode catalyst layer may include platinum group metals (platinum, palladium, rhodium, ruthenium, iridium, and osmium), gold, silver, or alloys thereof, and the metals and base metals (gallium, titanium) Alloys of vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, and the like.
  • the metal may be used in an unsupported state or a supported state.
  • it When the metal is supported, it may be used in a state supported on an inorganic carrier such as acetylene black, graphite and ground carbon-based carrier, alumina or silica.
  • the carrier When used in a supported state of the metal, in order to express an appropriate catalytic effect, the carrier has a specific surface area of 150 mVg or more or 500 to 1200 mVg and an average particle diameter of 10 to 300 ran or 20 to 100 nm. desirable.
  • the membrane-electrode assembly may further include a gas diffusion layer.
  • the gas diffusion layer serves to support the electrode catalyst layer and to improve reaction efficiency by diffusing the reaction gas into the electrode catalyst layer.
  • carbon paper or carbon cloth may be used.
  • a water repellent treatment of carbon paper or carbon cloth with a fluorine resin such as polytetrafluoroethylene may be used.
  • the water diffusion treated gas diffusion layer may prevent the performance of the gas diffusion layer from being deteriorated by water generated when the fuel cell is driven.
  • a microporous layer may be further included between the electrode catalyst layer and the gas diffusion layer to further increase the diffusion effect of the gas.
  • the microporous layer may be prepared by coating a composition including a carbon powder, a carbon block, an activated carbon, a conductive material such as acetylene black, a binder such as polytetrafluororoethylene, and a conductive polymer.
  • the membrane-electrode assembly may further include a sub-gasket.
  • the sub gasket protects the electrode catalyst layer and the electrolyte membrane, and assembles the fuel cell. In order to ensure ease of handling in the case, it may be bonded to both edge regions of the electrode catalyst layer or the electrolyte membrane.
  • the specific example of the said sub-gasket is not restrict
  • An example of a method of manufacturing the electrode catalyst layer is not particularly limited.
  • the metal, binder, and solvent may be mixed to prepare a catalyst slurry, and the method may be prepared by applying the catalyst slurry to a gas diffusion layer. All. ⁇
  • an example of a method of manufacturing the membrane-electrode assembly is not particularly limited.
  • an electrolyte membrane for a fuel cell of the embodiment is inserted between the prepared electrode catalyst layers (anode and cathode), and press or hot
  • the method of pressing by the crimping method can be used.
  • the press compression method may be performed under a pressure of 0 to 2000 psi, a silver content of 50 to 300 ° C, and an isotropic speed of 0.1 to 3 m / min.
  • the hot pressing may be performed under a pressure of 500 to 2000 psi, a silver of 50 to 300 ° C., and a pressing time of 1 to 60 minutes.
  • an electrolyte membrane and two electrodes provided on both sides of the electrolyte membrane, at least one or more of the two electrodes includes a fuel cell electrode of the embodiment Membrane-electrode assemblies can be provided
  • the electrolyte membrane may include a conductive polymer, which is a polymer membrane having electrical insulation and subsequent conductivity.
  • the ion conductive polymer refers to a polymer having a property of transporting charges by ions, and the ion conductive polymer may include a fluorine-based polymer or a hydrocarbon-based polymer. Specific examples of the fluorine-based polymer are not particularly limited, but for example, a perfluorinated sulfonic acid group-containing polymer or a perfluoro-based proton conductive polymer may be used.
  • hydrocarbon-based polymer examples are not particularly limited, for example, sulfonated polysulfone copolymer, sulfonated poly (ether-ketone) Type polymer, sulfonated polyether ether ketone type polymer, polyimide type polymer, polystyrene type polymer, polysulfone type polymer, clay-sulfonated polysulfone nanocomposite or two or more kinds thereof can be used.
  • the silver conductive polymer included in the electrolyte membrane and the ion conductive polymer included in the radical protective layer or the insulating layer of the embodiment may be the same material or different materials.
  • More specific examples include Aquivion® membranes.
  • Two electrodes may be included on both surfaces of the electrolyte membrane.
  • the two electrodes (anode and cathode) may be formed on both surfaces of the electrolyte membrane, respectively, and serve as a hydrogen electrode or an air electrode.
  • At least one of the two electrodes may include the fuel cell electrode of the embodiment. That is, only one of the two electrodes may be the fuel cell electrode of the embodiment, or both electrodes may be the fuel cell electrode of the embodiment.
  • an insulating layer 2 and a radical protective layer 3 are disposed between the electrode catalyst charge 5 and the electrolyte membrane 4. It is desirable to position.
  • the membrane-electrode assembly may further include a gas diffusion layer.
  • the gas diffusion layer serves to support the electrode catalyst layer included in the electrode and to improve reaction efficiency by diffusing the reaction gas into the electrode catalyst layer.
  • Examples of the gas diffusion layer may include carbon paper or carbon cloth, and preferably water repellent treated carbon paper or carbon cloth with a fluorine resin such as polytetrafluoroethylene.
  • the water diffusion treated gas diffusion layer can prevent the performance of the gas diffusion layer from being deteriorated by water generated when the fuel cell is driven.
  • a microporous layer may be further included between the electrode catalyst layer and the gas diffusion layer to further increase the diffusion effect of the gas.
  • the microporous layer may be prepared by coating a composition containing a conductive material such as carbon powder, carbon black, activated carbon, acetylene black, a binder such as polytetrafluorofluoroethylene, and an ion conductive polymer.
  • the membrane-electrode assembly may further include a sub-gasket. The sub-gasket protects the electrode and the electrolyte membrane and ensures easy handling on assembly of the fuel cell, and may be bonded to both edge regions of the electrode or the electrolyte membrane.
  • polymeric films such as polyethylene (PE) and polyethylene naphthalate (PEN), can be used.
  • an example of a method of manufacturing the membrane-electrode assembly is not particularly limited.
  • a method of inserting an electrolyte membrane between two electrodes (the anode and the cathode) and pressing the electrode by pressing or hot pressing may be used.
  • the press compression method may be performed under a pressure of 0 to 2000 psi, a temperature of 50 to 300 ° C, and a moving speed of 0.1 to 3 m / min.
  • the hot pressing may be performed at a pressure of 500 to 2000 psi, a temperature of 50 to 300 ° C., and a pressurization time of 1 to 60 minutes.
  • a fuel cell comprising the fuel cell membrane-electrode assembly is provided.
  • the fuel cell may include a fuel cell membrane-electrode assembly.
  • the number of the membrane-electrode assemblies is not limited, and may include a single or a plurality.
  • the fuel cell may include a power generation unit in which a separator is added to both surfaces of the membrane-electrode assembly.
  • the separator is attached to both sides of the membrane-electrode assembly, and the separator attached to the anode is called an anode separator and the separator attached to the cathode is called a cathode separator.
  • the anode separator has a flow path for supplying fuel to the anode, and serves as an electron conductor for transferring electrons generated from the anode to an external circuit or an adjacent unit cell.
  • the cathode separator has a flow path for supplying an oxidant to the cathode, and serves as an electron conductor for transferring electrons supplied from an external circuit or an adjacent unit cell to the cathode.
  • the fuel cell may further include at least one selected from the group consisting of a reformer, a fuel tank, and a fuel pump.
  • a reformer a fuel tank
  • a fuel pump a fuel pump
  • the reformer, fuel tank, lead Fuel pumps can be used without limitation as are well known in the fuel cell art.
  • the fuel cell may be a direct methanol fuel cell.
  • the configuration and output of the fuel cell may be designed according to the purpose thereof.
  • the fuel cell may be a vehicle fuel cell.
  • the vehicle may include a vehicle for all purposes, such as a vehicle for transportation such as an automobile, a truck, a vehicle for other uses such as an excavator, a forklift, and the like. More specifically, it can be used in fuel cell systems in an environment where repetitive residuals are required to be changed in a short time, such as on / off or sudden start of an automobile.
  • a membrane-electrode assembly and a fuel cell capable of achieving stable performance by using a fuel cell electrolyte membrane, a fuel cell electrode, the electrolyte membrane or an electrode having excellent durability by effectively removing radicals generated by a battery driver. May be provided.
  • FIG. 1 schematically shows the structure of an electrolyte membrane for a fuel cell prepared in Example 1.
  • FIG. 2 schematically shows the structure of a membrane-electrode composite for a fuel cell prepared in Example 1.
  • FIG. 3 schematically shows the structure of an electrode for a fuel cell prepared in Example 2.
  • Figure 4 schematically shows the structure of the membrane-electrode composite for a fuel cell prepared in Example 2.
  • Distilled water, isopropyl alcohol and 1-propyl alcohol were added to a 3.25 g (5% dispersion) Aquivion® ionomer di spersion solution containing 0.195 g of Palarch Black in a volume ratio of 1: 1.
  • Ultrasonic vibration agitation was performed to prepare a radical protective layer coating solution.
  • the radical protective layer was coated by spraying the radical protective layer coating solution on the fluorine-based reinforcing film using a compression spray.
  • an insulating layer was prepared by spraying the insulating layer coating solution on the radical protective layer using a compression spray. Thereafter, the resultant was dried for 12 hours in an oven at 80 ° C., and heat-treated at 180 ° C. to obtain a radical protective layer having a thickness of 1000 nm and a fluorine-based reinforcement layer coated with an insulating insect having a thickness of 800 nm.
  • the insulating layer coating solution was sprayed on the electrode by using a compression spray to coat the insulating layer.
  • a fluorine-based reinforcing layer (Aquivion® membrane) between the electrode and the other electrode is coated with the radical protective layer and the insulating layer, was pressed by using a press. At this time, the fluorine-based reinforcing film was inserted at a position between the radical protective layer and the other electrode of the electrode coated with the radical protective layer and the insulating layer.
  • the 25-ciif-sized sub-gaskets were overlaid and the membrane-electrode composite was prepared by thermal compression using a press.
  • the film coated with the electrode catalyst layer was 25 ⁇ ! After cutting two sheets with a fluorine-based reinforcing film (Aquivion® membrane) in which no radical protective layer and insulating layer were formed therebetween, and thermally crimped by using a press, the above Example In the same manner as in 1, a membrane-electrode composite was prepared. Comparative Example 2
  • a membrane-electrode composite was prepared in the same manner as in Example 2, except that an electrode without a radical protective layer and an insulating layer was used. Compare ⁇ ] 4
  • a membrane-electrode composite was prepared in the same manner as in Example 2, except that only a radical protective layer was formed and an electrode without an insulating layer was used.
  • the unit cells were disposed by arranging gas diffusion charges (SGL 10BB, SGL Carbon Group) adjacent to both sides of the membrane-electrode composite. It was assembled.
  • gas diffusion charges SGL 10BB, SGL Carbon Group
  • the cell temperature is 80 ° C
  • the relative humidity of the hydrogen electrode and the air electrode is 50%
  • the atmospheric pressure and the pressure difference are maintained at 0 psig
  • the flow rate is 0.11 L / min, 0.34 L / min at the hydrogen electrode and the air electrode, respectively
  • the open circuit voltage The change of (Open Circuit Voltage, 0CV) was measured for 300 hours in real time.
  • the cell temperature is 65 ° C, 100% relative humidity after the activation for 3 hours to evaluate the current-voltage and 0CV, the performance reduction rate was confirmed, the results are shown in Table 1 below.
  • Example 1 As shown in Table 1, the 0CV reduction rate of Example 1 in which both the radical protective layer and the insulating layer were secured was 32 uV / h, and 143 uV / h of Comparative Example 1 in which neither the radical protective layer nor the insulating layer was secured. And it can be seen that very low compared to 92 uV / h of Comparative Example 2 secured only a radical protective layer.
  • Example 2 in which both the radical protective layer and the insulating layer were secured was 41 uV / h. It can be seen that it is very low compared with 95 uV / h of Comparative Example 4 secured.
  • the membrane-electrode composite with the insulating layer secured 0CV durability as it can exert the maximum radical removal effect by blocking the electrical contact between the catalyst of the electrode layer and the protective layer when compared with the membrane-electrode composite without the insulating layer. It was confirmed that this could be improved.
  • Example 1 in which both the radical protective layer and the insulating layer are secured is 51 uV / h @ 1.2 A / cuf, and in Comparative Example 1 in which neither the radical protective layer nor the insulating layer is secured. 183 uV / h @ 1.2A / ciu ! And it can be seen that very low compared to 103 uV / h @ 1.2A / cuf of Comparative Example 2 secured only a radical protective layer.
  • Example 2 the performance reduction rate of Example 2 in which both the radical protective layer and the insulating layer were secured was 53 uV / h @ 1.2 A / cuf, and 187 uV / h of Comparative Example 3 in which neither the radical protective layer nor the insulating layer was secured. @ 1.2 A / aif and the radical protective layer only 100 uV / h @ 1.2 A / cuf of Comparative Example 4 can be confirmed that the very low.
  • the membrane-electrode complexes were found to increase the physical and chemical radical resistance of the electrolyte membranes compared to the conventional membrane-electrode complexes, thereby improving 0CV performance and durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은, 전지 구동시 발생하는 라디칼을 효과적으로 제거하여 우수한 내구성을 갖는 연료 전지용 전해질 막, 연료 전지용 전극, 상기 전해질막 또는 연료 전지용 전극을 이용하여 안정적인 성능을 구현할 수 있는 막-전극 접합체 및 연료 전지에 관한 것이다.

Description

【명세서】
【발명의 명칭】
연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막 -전극 접 합체 및 연료 전지
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2015년 12월 29일자 한국 특허 출원 제 10-2015-0188627호 및 2015년 12월 29일자 한국 특허 출원 제 10-2015-0188629호에 기초한 우 선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내 용은본 명세서의 일부로서 포함된다.
본 발명은 연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막 -전극 접합체 및 연료 전지에 관한 것이다. 보다 상세하게는, 전지 구동 시 발생하는 라디칼을 효과적으로 제거하여 우수한 내구성을 갖는 연료 전 지용 전해질 막, 연료 전지용 전극, 상기 전해질막 또는 연료 전지용 전극 을 이용하여 안정적인 성능을 구현할 수 있는 막 -전극 접합체 및 연료 전지 에 관한 것이다.
【발명의 배경이 되는 기술】
고분자 전해질 연료전지 (polymer electrolyte fuel cel l , PEFC)는 수 소이온 교환 특성을 갖는 고분자막을 전해질로 사용하는 연료 전지이며, 고 체 고분자 전해질 연료전지 (sol id polymer electro lyte fuel cel ls , SPEFC) , 수소이은 교환막 연료전지 (proton exchange membrane fuel eel I s , PEMFC)등 의 다양한 이름으로 불리고 있다. 고분자 전해질 막 연료전지 (PEMFC)는 다 른 형태의 연료전지에 비하여 작동온도가 8(rc 정도로 낮고, 효율이 높으며, 전류밀도 및 출력밀도가 크고, 시동 시간이 짧은 동시에 부하변화에 따른 응답이 빠른 특성이 있다. 특히 전해질로 고분자막을 사용하기 때문에 부식 및 전해질 조절이 필요 없고 반웅기체의 압력 변화에도 덜 민감하다. 또한 디자인이 간단하고 제작이 쉬우며 다양한 범위의 출력을 낼 수 있는 장점이 있기 때문에, 고분자전해질 연료전지 (PEFC)는 무공해 차량의 동력원, 현지 설치형 발전, 이동용 전원, 군사용 전원 등 매우 다양한 분야에 웅용 될 수 있는 장점이 있다. 고분자 전해질 연료전지 (PEFC)에 있어서 수소이온 교환막의 특성은 주로 이온 교환 용량 ( IEC : ion exchange capac i ty) 또는 당량 중량 (EW : equi val ent weight )으로 나타내어지고, 연료전지용 전해질 막으로 사용되는 수소이온 교환막이 가져야 할 성질은, 높은 수소이온 전도도와 기계적 강도 그리고 낮은 기체 투과도 및 물의 이동이다. 탈수 시에는 수소이온 전도도 가 급격히 떨어지므로 탈수에 저항성이 있어야 한다. 전해질 막이 직접 겪 게 되는 산화 및 환원 반응, 가수 분해 등에 대한 내성이 커야 하며, 양이 온 결합력이 좋아야 하고, 균질성이 요구된다. 그리고 이와 같은 성질들은 일정시간 동안 유지되어야 한다. 이러한 조건을 모두 만족시키는 것 이외에 도, 이를 상업화와 연계하기 위해서는 값싸고 환경 친화적인 제조 기술 개 발이 필요하다.
고분자 전해질 막의 종류는 과불소계와 부분 블소계, 탄화수소계로 구분지을 수 있다. 과불소계 전해질 막은 Dufont사의 Naf i on® , Asahi Chemi cal사의 Ac ipl ex® , Asahi Gl ass사의 Flemi on® 등이 높은 기계적 강 도 및 물리, 화학적 안정성, 높은 양이온 전도도 둥 수소이온 교환막의 요 건을 충족하고 있어 상용화 되었지만 수소이온 투과도가 높으며, 장시간 운 전시 물리적, 화학적 안정도가 감소하여 Ce l l 성능이 저하된다. 한편, 불소 계 및 탄화수소계 전해질 막은 연료전지 구동중 생성되는 라디칼에 의한 전 해질 막의 파괴가 발생하며 이를 억제하고자 대표적으로 Ce02 등의 라디칼 포착제를 전해질 막과 함께 다공성 지지체에 함침함으로써 막-전극접합체의 내 라디칼성을 향상시키고 있다.
하지만 종래의 기술의 경우, 전해질 막 표면의 라디칼보호층의 촉매 와 전극층이 전기적으로 접촉하고 있는 경우에는 라디칼 제거 효과가 감소 하고 투과도가증가하여 MEA성능이 떨어지게 되는 한계가 있었다.
이에, 라디칼 제거 효과를 극대화하면서 전지에 적용시 안정적인 성 능을 구현할 수 있는 고분자 전해질 연료전지용 전해질 막 또는 고분자 전 해질 연료전지용 전극의 개발이 요구되고 있다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 전지 구동시 발생하는 라디칼을 효과적으로 제거하여 우수 한 내구성을 갖는 연료 전지용 전해질 막 또는 연료 전지용 전극을 제공하 기 위한 것이다.
또한, 본 발명은 상기 전해질막또는 전극을 이용하여 안정적인 성능 을 구현할수 있는 막 -전극 접합체 및 연료 전지를 제공하기 위한 것이다. 【과제의 해결 수단】
본 명세서에서는, 이은 전도성 막; 상기 이온 전도성 막의 적어도 일 면에 형성되고, 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함한 라 디칼 보호층; 및 상기 라디칼 보호층 상에 형성되고, 이온 전도성 고분자를 포함한 절연층;을 포함하고, 상기 라디칼 보호층에 포함된 금속은 표면에 이은 전도성 고분자가 접촉한 상태로 분.산되는 연료 전지용 전해질 막이 제 공된다.
본 명세서에서는 또한, 전극 촉매층; 상기 전극 촉매층의 적어도 일 면에 형성되고, 이은 전도성 고분자를 포함한 절연층; 및 상기 절연층 상에 형성되고, 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함한 라디칼 보호층;을 포함하고, 상기 라디칼 보호층에 포함된 금속은 표면에 이은 전 도성 고분자가 접촉한상태로 분산되는 연료 전지용 전극이 제공된다.
본 명세서에서는 또한, 전해질 막 및 상기 전해질 막의 양면에 구비 된 전극 촉매층을 포함하는 연료 전지용 막 -전극 접합체가 제공된다.
본 명세서에서는 또한, 전해질 막 및 상기 전해질 막의 양면에 구비 된 2개의 전극을 포함하고, 상기 2개의 전극 중 적어도 하나 이상은 상기 연료 전지용 전극을 포함하는 연료 전지용 막 -전극 접합체가 제공된다. 본 명세서에서는 또한, 상기 막 -전극 접합체를 포함하는 연료 전지가 제공된다.
이하 발명의 구체적인 구현예에 따른 연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막 -전극 접합체 및 연료 전지에 대하여 보다 상 세하게 설명하기로 한다. 발명의 일 구현예에 따르면, 이온 전도성 막; 상기 이온 전도성 막의 적어도 일면에 형성되고, 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함한 라디칼 보호층; 및 상기 라디칼 보호층 상에 형성되고, 이온 전도성 고분자를 포함한 절연층;을 포함하고, 상기 라디칼 보호층에 포함된 금속은 표면에 이은 전도성 고분자가 접촉한 상태로 분산되는 연료 전지용 전해질 막이 제공될 수 있다.
본 발명자들은상술한 특정의 연료 전지용 전해질 막을 이용하면, 라 디칼 보호층 상에 이온 전도성 고분자를 포함한 절연층을 추가로 도입함으 로서 , 라디칼 보호층과 전극층을 분리하여 막 -전극접합체 접합시 전극층과 라디칼 보호충의 촉매와의 전기적 접촉을 차단할 수 있음을 확인하였다. 이 에 따라, 상기 라디칼 보호층에 의한 라디칼 제거효과를 최대한 발휘함으로 써, 물리적 /화학적으로 우수한 내구성을 갖는 전해질막 구조를 형성할 수 있다는 점을 실험올통하여 확인하고 발명을 완성하였다.
특히, 상기 라디칼 보호층은 별도의 절연층에 의해 절연성을 확보할 수 있기 때문에, 종래와 같이 별도의 탄소지지체를 사용하지 않아도 됨에 따라, 상기 라디칼 보호층에서 금속 표면에 이온 전도성 고분자가 직접 접 촉한상태로 분산될 수 있어, 라디칼 제거효율을 극대화시킬 수 있다.
또한, 상기 절연층은 이은 전도성 고분자를 포함하고 있어, 막 -전극 접합체 접합시 전극충과 라디칼 보호층의 촉매와의 전기적 접촉을 차단할 뿐만 아니라, 연료전지에 적용되어 구동시켰을 때에도, 우수한 전기적 특성 을 바탕으로 종래에 비해 향상된 성능을 구현할수 있다.
상술한 일 구현예의 연료 전지용 전해질 막은 태양전지, 2차 전지 , 수퍼 커패시커 등과 같은 모든 에너지 저장 및 생산 장치에 사용될 수 있다. 또한, 유기 전계 발광소자에도사용될 수 있다.
구체적으로, 상기 일 구현예의 연료 전지용 전해질 막에 포함된 이온 전도성 막, 라디칼 보호층 및 절연층을 살펴보면 다음과 같다. 이온 전도성 막
상기 이온 전도성 막은 전기 절연성과 이은 전도성을 갖는 고분자 막 으로써, 이은 전도성 고분자를포함할 수 있다. 상기 이온 전도성 고분자는 이온에 의해서 전하가 운반되는 성질을 갖는 고분자를 의미하며, 상기 이온 전도성 고분자는 불소계 고분자또는 탄화수소계 고분자를 포함할수 있다. 상기 불소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예 를 들어, 과불소화 술폰산기 함유 고분자 또는 퍼플루오로계 양성자 전도성 고분자를사용할 수 있다.
또한, 상기 탄화수소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, 술폰화 폴리술폰 공중합체, 술폰화 폴리 (에테르-케톤) 계 고분자, 술폰화 폴리에테르 에테르 케톤계 고분자, 폴리이미드계 고분자 플리스티렌계 고분자, 폴리술폰계'고분자, 클레이-술폰화 폴리술폰 나노 복 합체 또는 이들의 2종 이상의 혼합물을사용할수 있다.
보다 구체적인 예로서는, 불소계 강화막 (Aquivion® membrane)을 들 수 있다. 라디칼보호층
상기 연료 전지용 전해질막에 포함된 라디칼 보호층은 상기 이온 전 도성 막의 적어도 일면에 형성되고, 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함할 수 있다.
상기 라디칼 보호층이 형성되는 이은 전도성 막의 적어도 일면이란, 상기 이온 전도성 막의 상부표면 또는 하부표면 가운데 하나의 면을 의미하 거나, 상부표면과 하부표면 모두를 포함할 수 있다. 구체적으로 하기 도 1을 통해 예를 들면, 이온 전도성 막 (4) 상부 표면에 라디칼 보호층 (3)이 형성 될 수 있다.
상기 라디칼보호층은 연료 전지의 작동시 발생되는 라디칼을 효과적 으로 제거하기 위하여, 적어도 1 이상의 금속을 포함할 수 있다. 상기 적어 도 1 이상의 금속은 수소의 산화 및 산소의 환원 반응을 촉진시키는 촉매로 서, 퍼옥시 라디칼 및 하이드로퍼옥시 라디칼을 물 및 산소로 분해하여 라 디칼을 제거하는 역할을 수행할수 있다.
상기 적어도 1 이상의 금속은 주기율표 3족 내지 13족에 속하는 금속 원소로 이루어진 군에서 선택된 1종 이상의 금속을 포함할 수 있다. 즉, 상 가 금속은 주기율표 3족 내지 12족에 속하는 전이금속 (transit ion metal ) 또는 주기을표 13족에 속하는 전이후 금속 (post-transi t ion metal )을 포함 할수 있다.
보다 구체적으로, 상기 적어도 1 이상의 금속은 팔라듐 (Pal ladium , Pd) 또는 팔라듐을 포함한 합금을 포함할 수 있다. 상기 팔라듐을 포함한 합금은 팔라듐 및 주기율표 3족 내지 13족에 속하는 금속원소로 이루어진 군에서 선택된 1종 이상의 금속을 포함할 수 있다.
상기 팔라듐 금속은 다른 금속에 비해 높은 수소 결합에너지를 가짐 에 따라, 라디칼 또는 이온에 대한 보다 우수한 선택성을 나타낼 수 있다. 이에 따라, 상기 라디칼 보호층에 팔라듐 금속을 사용할 경우, 연료전지 구 동중 발생되는 과산화 수소 및 라디칼의 생성을 억제하고. 발생된 라디칼을 제거하는 효과가 극대화될 수 있으며, 이를 통해 전해질막의 기체 투과도를 감소시키면서 내구성능을 향상시킬 수 있다.
상기 팔라듬을 포함한 합금에서 팔라듐이외로 첨가되는 금속의 예가 크게 한정되는 것은 아니나, 예를 들어, 백금 (Pt ) , 금 (Au) , 은 (Ag) , 갈륨 (Ga) , 티타늄 (Ti ) , 바나듐 (V), 크로뮴 (Cr) , 망간 (Mn) , 철 (Fe) , 코발트 (Co) , 니켈 (Ni ) , 구리 (Cu) , 몰리브데넘 (Mo) , 아연 (Zn) 또는 이들의 2종 이상의 흔 합물을 사용할 수 있다. 보다 구체적으로 상기 팔라듐을 포함한 합금의 예 로는 팔라듐—코발트 합금, 팔라듐-티타늄 합금, 팔라듐 -망간 합금, 팔라듐- 백금 합금, 팔라듐 -니켈 합금또는 이들의 흔합물을 들 수 있다.
상기 라디칼 보호층은 이은 전도성 고분자를 포함할 수 있다. 상기 이은 전도성 고분자는 상기 금속을 포함한 라디칼 보호층이 보다 안정적으 로 적층될 수 있도특 하는 바인더 역할을 수행할 수 있다. 이에 따라, 상기 라디칼 보호층에서는 상기 이온 전도성 고분자에 적어도 1종의 금속이 분산 될 수 있다.
구체적으로, 상기 금속은 표면에 이온 전도성 고분자가 접촉한 상태 로 분산될 수 있다. 이는 상기 금속이 탄소지지체 등과 같은 담체에 담지되 지 않은 상태에서 직접 사용되기 때문이다. 이처럼 상기 금속이 담체에 담 지되지 않고 직접 사용됨에 따라, 상기 금속의 활성 표면적이 증가하여, 상 기 라디칼보호층에 의한 라디칼 제거효율이 극대화될 수 있다.
보다 구체적으로, 상기 라디칼 보호층에 포함된 금속 전체 표면적의
50%이상, 또는 50% 내지 100%가 이온 전도성 고분자와 접촉할 수 있다. 상 기 이온 전도성 고분자와 접촉하는 금속의 표면에서는 금속에 의한 과산화 수소 및 라디칼 제거 작용이 활성을 나타낼 수 있다. 따라서 금속 전체 표 면적의 50%이상이 이온 전도성 고분자와 접촉할 경우, 상기 금속의 활성 표 면적이 전체 표면적의 5 이상으로 증가할수 있다.
반면, 상기 금속을 담체에 담지시켜 사용하는 종래의 기술과 같이, 금속 전체 표면적의 50% 미만이 이온 전도성 고분자와 접촉할 경우, 금속의 활성 표면적이 50% 미만으로 감소함에 따라, 라디칼 보호층에 의한 과산화 수소 및 라디칼 제거 효율이 감소하는 한계가 있다.
상기 이온 전도성 고분자는 이은에 의해서 전하가 운반되는 성질을 갖는 고분자를 의미하며, 상기 이온전도성 고분자는 불소계 고분자 또는 탄 화수소계 고분자를 포함할 수 있다.
상기 불소계 고분자의 구체적인 예가크게 한정되는 것은 아니나, 예 를 들어, 과불소화 술폰산기 함유 고분자 또는 퍼플루오로계 양성자 전도성 고분자를사용할 수 있다.
또한, 상기 탄화수소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, 술폰화 폴리술폰 공중합체, 술폰화 폴리 (에테르-케톤) 계 고분자, 술폰화 폴리에테르 에테르 케톤계 고분자, 폴리이미드계 고분자, 폴리스티렌계 고분자, 플리술픈계 고분자, 클레이-술폰화 폴리술폰 나노 복 합체 또는 이들의 2종 이상의 흔합물을사용할수 있다.
상기 라디칼 보호층에 포함된 이은 전도성 고분자와 상술한 이은 전 도성 막에 포함된 이온 전도성 고분자는 서로 동일한 물질이거나 또는 상이 한물질일 수 있다.
상기 라디칼보호층은 이온 전도성 고분자 100 중량부에 대하여 적어 도 1이상의 금속을 1 중량부 내지 20 증량부, 또는 3 증량부 내지 10 중량 부, 또는 5 증량부 내지 10 중량부, 또는 5.5 중량부 내지 10 중량부로 포 함할 수 있다. 상기 라디칼 보호층에서 이온 전도성 고분자에 대하여 지나 치게 많은 금속이 첨가되는 경우, 상기 라디칼 보호층을 형성하기 위한 코 팅 조성물의 안정성, 균일성이 감소하여 코팅성이 저하될 수 있다.
상기 라디칼 보호층의 두께는 10 inn 내지 2000 nm , 또는 50 ran 내지 1500 nm일 수 있다. 상기 라디칼 보호층의 두께가 2000 ran 초과로 너무 두 꺼워지면, 막 -전극 접합체의 성능이 저하될 수 있고, 얇은 두께의 미세한 전해질막의 제조가 어려워질 수 있다. 절연층
상기 연료 전지용 전해질막에 포함된 절연층은 라디칼 보호층 상에 형성되고, 이온 전도성 고분자를 포함할 수 있다.
상기 절연층은 상기 라디칼보호층 상에 형성되어, 상기 라디칼보호 층과 전극 촉매층과의 분리를 목적으로 적층될 수 있다. 구체적으로. 상기 절연층은 상기 아온 전도성 막과 접하지 않는 라디칼 보호충의 다른 일면 상에 형성될 수 있다. 즉, 상기 라디칼 보호층의 일면에는 이온 전도성 막 이 형성되어 있고 다른 일면에는 절연층이 형성될 수 있다.
보다 구체적으로 상기 절연층이 형성된 전해질막은, 하기 도 1에 나타 난 바와 같이, 이은 전도성 막 (4) , 라디칼 보호층 (3) , 절연층 (2) 순으로 적 층된 3층 구조를 가질 수 있다.
상기 절연층은 이온 전도성 고분자를 포함할 수 있다. 상기 이온 전 도성 고분자는 이온에 의해서 전하가 운반되는 성질을 갖는 고분자를 의미 하며, 상기 이은전도성 고분자는 불소계 고분자 또는 탄화수소계 고분자를 포함할수 있다.
상기 불소계 고분자의 구체적인 예가크게 한정되는 것은 아니나, 예 를 들어, 과불소화 술폰산기 함유 고분자 또는 퍼플루오로계 양성자 전도성 고분자를사용할 수 있다.
또한, 상기 탄화수소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, 술폰화 폴리술폰 공중합체, 술폰화 폴리 (에테르-케톤) 계 고분자, 술폰화 폴리에테르 에테르 케톤계 고분자, 폴리이미드계 고분자, 폴리스티렌계 고분자, 플리술폰계 고분자, 클레이-술폰화 폴리술폰 나노 복 합체 또는 이들의 2종 이상의 흔합물을사용할 수 있다.
상기 절연층에 포함된 이은 전도성 고분자와 상술한 라디칼 보호층 또는 이온 전도성 막에 포함된 이은 전도성 고분자는 서로 동일한 물질이거 나 또는 상이한물질일 수 있다.
상기 라디칼보호충에 포함된 이온 전도성 고분자 100 중량부에 대하 여 상기 절연층에 포함된 이온 전도성 고분자의 함량이 300 중량부 내지 500중량부, 또는 350 증량부 내지 400 중량부일 수 있다. 상기 절연층의 두께는 10 nm 내지 2000 ran , 또는 50 nm 내지 1500 inn 일 수 있다. 상기 절연층의 두께가 2000 nm 초과로 너무 두꺼워지면, 막-전 극 접합체의 성능이 저하될 수 있고, 얇은 두께의 미세한 전해질막의 제조 가 어려워질 수 있다.
보다구체적으로, 상기 절연층 두께에 대한 상기 라디칼 보호층 두께 비을이 1 내지 10, 또는 1.1 내지 5, 또는 1.2 내지 3일 수 있다. 상기 절 연층 두께에 대한 상기 라디칼 보호층 두께 비율이란, 상기 라디칼 보호층 의 두께를 상기 절연층의 두께로 나눈 값을 의미한다. 연료전지용 전해질 막 제조방법
상기 연료전지용 전해질 막을 제조하는 방법은 적어도 1 이상의 금속 및 이은 전도성 고분자를 포함한 제 1코팅 조성물을 이온 전도성 막의 적어 도 일면에 코팅하여 라디칼 보호층을 형성하는 단계; 및 상기 라디칼 보호 층 상에 이온 전도성 고분자를 포함한 제 2코팅 조성물을 코팅하여 절연층을 형성하는 단계;를 포함할수 있다.
상기 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함한 제 1코팅 조성물을 이은 전도성 막의 적어도 일면에 코팅하여 라디칼 보호층을 형성 하는 단계에서, 상기 제 1 코팅 조성물은 라디칼 보호층을 형성하기 위한 조성물로서, 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함할 수 있 다. 상기 금속 이온 전도성 고분자, 이온 전도성 막, 라디칼 보호층에 대 한 내용은상기 일 구현예에서 상술한 내용을 포함할수 있다.
상기 제 1 코팅 조성물은 용매를 더 포함할 수 있다. 상기 용매는 수 계 용매 또는 유기 용매를 포함할 수 있고, 통상적으로 널리 사용되는 수계 또는 유기 용매를 제한 없이 사용할 수 있으며, 구체적으로 후술하는 전극 촉매층 조성물의 제조시 사용한용매와동일한 것을 사용할수 있다.
상기 제 1 코팅 조성물을 제조하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 상기 적어도 1 이상의 금속 또는 이온 전도성 고분자를 유기 용매 또는 수계 용매에 분산시키는 방법을 사용할수 있다.
상기 제 1코팅 조성물을 코팅하는 방법의 예 또한, 크게 한정되는 것 은 아니며, 예를 들어, 스프레잉, 스크린 프린팅, 잉크젯 프린팅, 디핑, 바 코팅, 캡 코팅, 나이프 코팅, 술롯 다이 코팅, 그라비어 코팅 등의 공지된 다양한 방법을 통해 수행될 수 있다.
상기 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함한 제 1코팅 조성물을 이온 전도성 막의 적어도 일면에 코팅하여 라디칼 보호층을 형성 하는 단계 이후에, 상기 코팅된 라디칼 보호층을 건조하는 단계를 더 포함 할 수 있다. 상기 이은 전도성 막 상에 상기 제 1 코팅조성물의 코팅층과 제 2코팅조성물의 코팅층을 순차로 형성시킨 후, 이들 코팅층을 함께 건조시킬 수도 있고, 상기 각 코팅층의 형성과 이에 대한 건조가 별도로 이루어질 수 도 있다.
상기 건조단계의 예가크게 한정되는 것은 아니나, 예를 들어, 20 내 지 100 °C 하에서 1 내지 24 시간 동안 수행되는 제 1 열처리 공정과, 120 내지 250 °C 하에서 0.5 내지 10 분 동안 수행되는 제 2 열처리 공정을 포 함할 수 있다. 상기 제 1 및 제 2 열처리 공정을 통해 코팅층에 포함된 잔 류 용매가 충분히 제거될 수 있고, 상기 라디칼 보호층이 상기 이온 전도성 막에 보다 안정적으로 적층될 수 있다 . 또한, 이온 전도성 고분자가 사용되 는 경우 상기 복수의 열처리 공정을 통해 층분한 열경화가 이루어질 수 있 다.
상기 라디칼 보호층 상에 이온 전도성 고분자를 포함한 제 2코팅 조성 물을 코팅하여 절연층을 형성하는 단계에서, 상기 제 2 코팅 조성물은 용매 를 더 포함할 수 있다. 상기 이온 전도성 고분자에 대한 내용은 상기 일 구 현예에서 상술한 내용을 포함할 수 있다. 상기 용매는 수계 용매 또는 유기 용매를 포함할 수 있고, 통상적으로 널리 사용되는 수계 또는 유기 용매를 제한 없이 사용할 수 있으며, 구체적으로 후술하는 전극촉매층 조성물의 제 조시 사용한 용매와동일한 것을사용할수 있다.
상기 제 2 코팅 조성물을 제조하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 상기 이온 전도성 고분자를 유기 용매 또는 수계 용매 에 분산시키는 방법을사용할수 있다.
상기 제 2코팅 조성물을 코팅하는 방법의 예 또한, 크게 한정되는 것 은 아니며, 예를 들어, 스프레잉, 스크린 프린팅 , 잉크곗 프린팅, 디핑, 바 코팅, 캡 코팅, 나이프 코팅, 슬릇 다이 코팅, 그라비어 코팅 등의 공지된 다양한 방법을 통해 수행될 수 있다.
상기 이온 전도성 고분자를 포함한 제 2코팅 조성물을 라디칼 보호층 상에 코팅하여 절연층을 형성하는 단계 이후에, 상기 코팅된 절연충을 건조 하는 단계를 더 포함할 수 있다. 상기 이온 전도성 막 상에 상기 게 1 코팅 조성물의 코팅층과 제 2코팅조성물의 코팅층을 순차로 형성시킨 후, 이들 코 팅층을 함께 건조시킬 수도 있고, 상기 각 코팅층의 형성과 이에 대한 건조 가 별도로 이루어질 수도 있다.
상기 건조단계의 예가크게 한정되는 것은 아니나, 예를 들어, 20 내 지 100 °C 하에서 1 내지 24 시간 동안 수행되는 제 1 열처리 공정과, 120 내지 250 °C 하에서 0.5 내지 10 분 동안 수행되는 제 2 열처리 공정을 포 함할 수 있다. 상기 제 1 및 제 2 열처리 공정을 통해 코팅층에 포함된 잔 류 용매가 충분히 제거될 수 있고, 상기 절연층이 보다 안정적으로 적층될 수 있다. 또한 이온 전도성 고분자가 사용되는 경우 상기 복수의 열처리 공정을통해 층분한 열경화가 이루어질 수 있다. 한편, 발명의 다른 구현예에 따르면, 전극 촉매층; 상기 전극 촉매층 의 적어도 일면에 형성되고, 이온 전도성 고분자를 포함한 절연층; 및 상기 절연층 상에 형성되고, 적어도 1 이상의 금속 및 이온 전도성 고분자를 포 함한 라디칼 보호층;을 포함하고, 상기 라디칼 보호층에 포함된 금속은 표 면에 이온 전도성 고분자가 접촉한 상태로 분산되는 연료 전지용 전극이 제 공될 수 있다.
본 발명자들은 상술한 특정의 연료 전지용 전극을 이용하면, 라디칼 보호층과 함께 이온 전도성 고분자를 포함한 절연층을 추가로 도입함으로서, 라디칼 보호층과 전극 촉매층을 분리하여 전극과 라디칼 보호층에 각각 포 함된 촉매의 전기적 접촉을 차단할 수 있음을 확인하였다. 이에 따라, 상기 라디칼 보호층에 의한 라디칼 제거효과를 최대한 발휘함으로써, 물리적 /화 학적으로 우수한 내구성을 갖는 전끅 구조를 형성할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
특히, 상기 라디칼 보호층은 별도의 절연층에 의해 절연성을 확보할 수 있기 때문에, 종래와 같이 별도의 탄소지지체를 사용하지 않아도 됨에 따라, 상기 라디칼 보호층에서 금속 표면에 이온 전도성 고분자가 직접 접 촉한상태로 분산될 수 있어, 라디칼 제거효율을 극대화시킬 수 있다.
또한, 상기 절연층은 이온 전도성 고분자를 포함하고 있어, 전극 촉 매층과 라디칼 보호층의 촉매와의 전기적 접촉을 차단할 뿐만 아니라, 연료 전지에 적용되어 구동시켰을 때에도, 우수한 전기적 특성을 바탕으로 종래 에 비해 향상된 성능을구현할수 있다.
상술한 일 구현예의 연료 전지용 전극은 태양전지, 2차 전지, 수퍼 커패시커 등과 같은 모든 에너지 저장 및 생산 장치에 사용될 수 있다. 또 한, 유기 전계 발광소자에도사용될 수 있다.
구체적으로, 상기 일 구현예의 연료 전지용 전극을 살펴보면 다음과 같다. 전극촉매층
상기 전극 촉매층은 수소의 산화 및 산소의 환원 반응을 촉진시키는 것으로 알려진 통상의 금속을 포함할 수 있다. 예를 들어, 상기 전극 촉매 층은 백금족 금속 (백금, 팔라듬, 로듐, 루테늄, 이리듐, 및 오스뮴), 금, 은, 또는 이들의 합금을 포함할 수 있으며, 상기 금속들과 베이스 금속 (갈 륨, 티타늄ᅳ 바나듐, 크로뮴, 망간, 철, 코발트, 니켈, 구리, 아연 등)의 합금이 포함될 수 있다.
상기 금속은 비담지 상태 또는 담지 상태로 사용될 수 있다. 상기 금 속이 담지 상태인 경우, 아세틸렌 블랙, 흑연과 같은 탄소계 담체, 알루미 나, 실리카와 같은 무기 담체에 담지된 상태로 사용될 수 있다. 상기 금속 이 담지된 상태로 사용되는 경우, 적절한 촉매 효과의 발현을 위하여, 상기 담체는 150 m'/g 이상 또는 500 내지 1200 m7g의 비표면적과, 10 내지 300 nm 또는 20 내지 100 nm의 평균 입경을 갖는 것이 바람직하다.
상기 전극 촉매층을 제조하는 방법의 예가 크게 한정되는 것은 아니 나, 예를 들어, 상기 금속, 바인더 및 용매를 혼합하여 촉매 슬러리를 제조 하고, 상기 촉매 슬러리를 도포하는 방법으로 제조될 수 있다. 상기 연료 전지용 전극에 포함된 절연충은 상기 전극 촉매층의 적어 도 일면에 형성되고, 이온 전도성 고분자를 포함할수 있다.
상기 절연층은 상기 전극촉매층의 적어도 일면에 형성되어, 상기 라 디칼보호층과 전극촉매층과의 분리를 목적으로 적층될 수 있다.
상기 절연층이 형성되는 전극 촉매층의 적어도 일면이란, 상기 전극 촉매층의 상부표면 또는 하부표면 가운데 하나의 면을 의미하거나, 상부표 면과 하부표면 모두를 포함할 수 있다. 구체적으로 하기 도 1을 통해 예를 들면, 전극촉매층 (5) 상부 표면에 절연층 (4)이 형성될 수 있다.
상기 절연층은 이은 전도성 고분자를 포함할 수 있다. 상기 이온 전 도성 고분자는 이은에 의해서 전하가 운반되는 성질을 갖는 고분자를 의미 하며, 상기 이은전도성 고분자는 불소계 고분자 또는 탄화수소계 고분자를 포함할수 있다.
상기 블소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예 를 들어 , 과불소화 술폰산기 함유 고분자 또는 퍼플루오로계 양성자 전도성 고분자를사용할수 있다.
또한, 상기 탄화수소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, 술폰화 풀리술픈 공중합체, 술폰화 풀리 (에테르-케론) 계 고분자, 술픈화 플리에테르 에테르 케톤계 고분자, 폴리이미드계 고분자, 플리스티렌계 고분자, 플리술폰계 고분자, 클레이-술폰화 폴리술폰 나노 복 합체 또는 이들의 2종 이상의 흔합물을사용할 수 있다.
상기 라디칼 보호층에 포함된 이온 전도성 고분자 100 중량부에 대하 여 상기 절연층에 포함된 이온 전도성 고분자의 함량이 300 중량부 내지 500 증량부, 또는 350 중량부 내지 400 중량부일 수 있다.
상기 절연층의 두께는 10 i 내지 2000 ran , 또는 50 ran 내지 1500 iim 일 수 있다. 상기 절연층의 두께가 2000 ran 초과로 너무 두꺼워지면, 막-전 극 접합체의 성능이 저하될 수 있고, 얇은 두께의 미세한 전극의 제조가 어 려워질 수 있다.
보다구체적으로, 상기 절연층 두께에 대한 상기 라디칼보호층 두께 비율이 1 내지 10, 또는 1.1 내지 5, 또는 1.2 내지 3일 수 있다. 상기 절 연층 두께에 대한 상기 라디칼 보호층 두께 비율이란 상기 라디칼 보호층 두께를 상기 절연층 두께로 나눈 값을 의미한다. 라디칼보호층
상기 연료 전지용 전극에 포함된 라디칼 보호층은 상기 절연층 상에 형성되고, 적어도 1 이상의 금속 및 이온 전도성 고분자를포함할 수 있다. 구체적으로, 상기 라디칼 보호층은 상기 전극 촉매층과 접하지 않는 절연층의 다른 일면 상에 형성될 수 있다. 즉, 상기 절연층의 일면에는 전 극 촉매층이 형성되어 있고, 다른 일면에는 라디칼 보호층이 형성될 수 있 다.
보다 구체적으로 상기 라디칼 보호층이 형성된 전극은, 하기 도 3에 나타난 바와 갈이, 전극 촉매층 (5), 절연층 (2) , 라디칼 보호층 (3) 순으로 적층된 3층 구조를 가질 수、있다.
상기 라디칼 보호층은 연료 전지의 작동시 발생되는 라디칼올 효과적 으로 제거하기 위하여, 적어도 1 이상의 금속을 포함할 수 있다. 상기 적어 도 1 이상의 금속은 수소의 산화 및 산소의 환원 반웅을 촉진시키는 촉매로 서, 퍼옥시 라디칼 및 하이드로퍼옥시 라디칼을 물 및 산소로 분해하여 라 디칼을 제거하는 역할을 수행할수 있다.
상기 적어도 1 이상의 금속은주기율표 3족 내지 13족에 속하는 금속 원소로 이루어진 군에서 선택된 1종 이상의 금속을 포함할 수 있다. 즉, 상 기 금속은 주기율표 3족 내지 12족에 속하는 전이금속 (transi t ion metal ) 또는 주기율표 13족에 속하는 전이후 금속 (post-transi t ion metal )을 포함 할수 있다.
보다 구체적으로, 상기 적어도 1 이상의 금속은 팔라듐 (Pal ladium, Pd) 또는 팔라듐을 포함한 합금을 포함할 수 있다. 상기 팔라듐을 포함한 합금은 팔라듬 및 주기율표 3족 내지 13족에 속하는 금속원소로 이루어진 군에서 선택된 1종 이상의 금속을포함할 수 있다.
상기 팔라듐 금속은 다른 금속에 비해 높은 수소 결합에너지를 가짐 에 따라, 라디칼 또는 이온에 대한 보다 우수한 선택성을 나타낼 수 있다. 이에 따라, 상기 라디칼 보호충에 팔라듐 금속을 사용할 경우, 연료전지 구 동중 발생되는 과산화 수소 및 라디칼의 생성을 억제하고. 발생된 라디칼을 제거하는 효과가 극대화될 수 있으며, 이를 통해 전극의 기체 투과도를 감 소시키면서 내구성능을 향상시킬 수 있다.
상기 팔라듐을 포함한 합금에서 팔라둠이외로 첨가되는 금속의 예가 크게 한정되는 것은 아니나, 예를 들어, 백금 (Pt ) , 금 (Au) , 은 (Ag) , 갈륨 (Ga) , 티타늄 (Ti ) , 바나듐 (V) , 크로뮴 (Cr) , 망간 (Mn) , 철 (Fe) , 코발트 (Co) , 니켈 (Ni ) , 구리 (Cu) , 몰리브데넘 (Mo) , 아연 (Zn) 또는 이들의 2종 이상의 혼 합물을 사용할 수 있다. 보다 구체적으로 상기 팔라듐을 포함한 합금의 예 로는 팔라듬-코발트 합금, 팔라듐-티타늄 합금, 팔라듐 -망간 합금, 팔라듐- 백금 합금, 팔라듐 -니켈 합금또는 이들의 흔합물을 들 수 있다.
상기 라디칼 보호층은 이온 전도성 고분자를 포함할 수 있다. 상기 이온 전도성 고분자는 상기 금속을 포함한 라디칼 보호층이 보다 안정적으 로 적층될 수 있도록 하는 바인더 역할을 수행할 수 있다. 이에 따라, 상기 라디칼 보호층에서는 상기 이은 전도성 고분자에 적어도 1종의 금속이 분산 될 수 있다.
구체적으로, 상기 금속은 표면에 이온 전도성 고분자가 접촉한 상태 로 분산될 수 있다. 이는 상기 금속이 탄소지지체 등과 같은 담체에 담지되 지 않은 상태에서 직접 사용되기 때문이다. 이처럼, 상기 금속이 담체에 담 지되지 않고 직접 사용됨에 따라, 상기 금속의 활성 표면적이 증가하여, 상 기 라디칼보호층에 의한 라디칼 제거효율이 극대화될 수 있다.
보다 구체적으로, 상기 라디칼 보호층에 포함된 금속 전체 표면적의
50%이상, 또는 50% 내지 100%가 이온 전도성 고분자와 접촉할 수 있다. 상 기 이은 전도성 고분자와 접촉하는 금속의 표면에서는 금속에 의한 과산화 수소 및 라디칼 제거 작용이 활성을 나타낼 수 있다. 따라서 금속 전체 표 면적의 50¾> 이상이 이온 전도성 고분자와 접촉할 경우, 상기 금속의 활성 표면적이 전체 표면적의 50% 이상으로 증가할수 있다.
반면, 상기 금속을 담체에 담지시켜 사용하는 종래의 기술과 같이, 금속 전체 표면적의 50% 미만이 이온 전도성 고분자와 접촉할 경우, 금속의 활성 표면적이 50% 미만으로 감소함에 따라, 라디칼 보호층에 의한 과산화 수소 및 라디칼 제거 효율이 감소하는 한계가 있다.
상기 이온 전도성 고분자는 이은에 의해서 전하가 운반되는 성질을 갖는 고분자를 의미하며, 상기 이온전도성 고분자는 불소계 고분자 또는 탄 화수소계 고분자를 포함할수 있다.
상기 불소계 고분자의 구체적인 예가크게 한정되는 것은 아니나, 예 를 들어, 과불소화 술폰산기 함유 고분자 또는 퍼플루오로계 양성자 전도성 고분자를 사용할수 있다.
또한, 상기 탄화수소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, 술폰화 폴리술폰 공중합체 , 술폰화 폴리 (에테르-케톤) 계 고분자, 술폰화 폴리에테르 에테르 케톤계 고분자, 폴리이미드계 고분자, 폴리스티렌계 고분자, 폴리술폰계 고분자, 클레이-술폰화 폴리술폰 나노 복 합체 또는 이들의 2종 이상의 흔합물을사용할수 있다.
상기 라디칼 보호충에 포함된 이은 전도성 고분자와 상술한 절연층에 포함된 이온 전도성 고분자는 서로 동일한 물질이거나 또는 상이한 물질일 수 있다.
상기 라디칼보호층은 이온 전도성 고분자 100 중량부에 대하여 적어 도 1이상의 금속을 1 중량부 내지 20 중량부, 또는 3 증량부 내지 10 증량 부, 또는 5 중량부 내지 10 중량부, 또는 5.5 중량부 내지 10 증량부로 포 함할 수 있다. 상기 라디칼 보호층에서 이온 전도성 고분자에 대하여 지나 치게 많은 금속이 첨가되는 경우, 상기 라디칼 보호층을 형성하기 위한 코 팅 조성물의 안정성, 균일성이 감소하여 코팅성이 저하될 수 있다.
상기 라디칼 보호층의 두께는 10 ran 내지 2000 nm , 또는 50 ran 내지 1500 nm일 수 있다. 상기 라디칼 보호층의 두께가 2000 ran 초과로 너무 두 꺼워지면, 막 -전극 접합체의 성능이 저하될 수 있고, 얇은 두께의 미세한 전극의 제조가어려워질 수 있다. 연료전지용 전극 제조방법
상기 연료전지용 전극을 제조하는 방법은 이온 전도성 고분자를 포함 한 제 1코팅 조성물을 전극 촉매층의 적어도 일면에 코팅하여 절연충을 형성 하는 단계; 및 상기 절연층 상에 적어도 1 이상의 금속 및 이온 전도성 고 분자를 포함한 제 2코팅 조성물을 코팅하여 라디칼 보호층을 형성하는 단계; 를 포함할수 있다. 상기 이은 전도성 고분자를 포함한 제 1코팅 조성물을 전극 촉매층의 적어도 일면에 코팅하여 절연층을 형성하는 단계에서, 상기 제 1 코팅 조성 물은 절연층을 형성하기 위한 조성물로서, 이은 전도성 고분자를 포함할 수 있다.
상기 제 1 코팅 조성물은 용매를 더 포함할 수 있다. 상기 용매는 수 계 용매 또는 유기 용매를 포함할 수 있고, 통상적으로 널리 사용되는 수계 또는 유기 용매를 제한 없이 사용할 수 있으며, 구체적으로 후술하는 전해 질 막의 제조시 사용한 용매와동일한 것을사용할 수 있다.
상기 제 1 코팅 조성물을 제조하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 상기 이온 전도성 고분자를 유기 용매 또는 수계 용매 에 분산시키는 방법을사용할 수 있다.
상기 제 1코팅 조성물올 코팅하는 방법의 예 또한, 크게 한정되는 것 은 아니며, 예를 들에 스프레잉, 스크린 프린팅 , 잉크젯 프린팅, 디핑, 바 코팅, 캡 코팅, 나이프 코팅, 슬롯 다이 코팅, 그라비어 코팅 등의 공지된 다양한 방법을 통해 수행될 수 있다.
상기 이은 전도성 고분자를 포함한 제 1코팅 조성물을 전극 촉매층의 적어도 일면에 코팅하여 절연층을 형성하는 단계 이후에, 상기 코팅된 절연 충을 건조하는 단계를 더 포함할 수 있다. 상기 전극 촉매층 상에 상기 제 1 코팅조성물의 코팅층과 제 2코팅조성물의 코팅층을 순차로 형성시킨 후, 이 들 코팅층을 함께 건조시킬 수도 있고, 상기 각 코팅층의 형성과 이에 대한 건조가 별도로 이루어질 수도 있다.
상기 건조단계의 예가크게 한정되는 것은 아니나, 예를 들어, 20 내 지 100 t 하에서 1 내지 24시간 동안 수행되는 제 1 열처리 공정과, 120 내지 250 °C 하에서 0.5 내지 10 분 동안 수행되는 제 2 열처리 공정을 포 함할 수 있다. 상기 제 1 및 제 2 열처리 공정을 통해 코팅층에 포함된 잔 류 용매가 층분히 제거될 수 있고, 상기 절연층이 상기 전극 촉매층에 보다 안정적으로 적층될 수 있다. 또한, 이온 전도성 고분자가 사용되는 경우 상 기 복수의 열처리 공정을통해 층분한 열경화가 이루어질 수 있다.
상기 절연층 상에 적어도 1 이상의 금속 및 이온 전도성 고분자를 포 함한 제 2코팅 조성물을 코팅하여 라디칼 보호층을 형성하는 단계에서, 상기 제 2 코팅 조성물은 용매를 더 포함할 수 있다. 상기 금속, 이온 전도성 고 분자, 전극 촉매층, 라디칼 보호층에 대한 내용은 상기 일 구현예에서 상술 한 내용을 포함할 수 있다.
상기 용매는 수계 용매 또는 유기 용매를 포함할 수 있고, 통상적으 로 널리 사용되는 수계 또는 유기 용매를 제한 없이 사용할 수 있으며, 구 체적으로 후술하는 전해질 막의 제조시 사용한 용매와 동일한 것을 사용할 수 있다.
상기 제 2 코팅 조성물을 제조하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 상기 적어도 1 이상의 금속 또는 이온 전도성 고분자를 유기 용매 또는 수계 용매에 분산시키는 방법을사용할 수 있다.
상기 제 2코팅 조성물을 코팅하는 방법의 예 또한, 크게 한정되는 것 은 아니며, 예를 들어, 스프레잉, 스크린 프린팅, 잉크젯 프린팅, 디핑, 바 코팅, 캡 코팅, 나이프 코팅, 술롯 다이 코팅, 그라비어 코팅 등의 공지된 다양한 방법을통해 수행될 수 있다.
상기 적어도 1 이상의 금속 및 이은 전도성 고분자를 포함한 제 2코팅 조성물을 절연층 상에 코팅하여 라디칼 보호층을 형성하는 단계 이후에, 상 기 코팅된 라디칼 보호층을 건조하는 단계를 더 포함할 수 있다. 상기 전극 촉매층 상에 상기 제 1 코팅조성물의 코팅층과 제 2코팅조성물의 코팅층을 순 차로 형성시킨 후, 이들 코팅층을 함께 건조시킬 수도 있고, 상기 각 코팅 층의 형성과 이에 대한.건조가 별도로 이루어질 수도 있다.
상기 건조단계의 예가크게 한정되는 것은 아니나, 예를 들어, 20 내 지 100 °C 하에서 1 내지 24 시간 동안 수행되는 제 1 열처리 공정과, 120 내지 250 t 하에서 0.5 내지 10 분 동안 수행되는 제 2 열처리 공정을 포 함할 수 있다. 상기 제 1 및 제 2 열처리 공정을 통해 코팅충에 포함된 잔 류 용매가 층분하 제거될 수 있고, 상기 라디칼 보호층이 보다 안정적으로 적층될 수 있다. 또한, 이온 전도성 고분자가 사용되는 경우 상기 복수의 열처리 공정을 통해 층분한 열경화가 이루어질 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 상기 일 구현예의 연료 전지 용 전해질 막 및 상기 전해질 막의 양면에 구비된 전극 촉매층을 포함하는 연료 전지용 막 -전극 접합체가 제공될 수 있다.
상기 연료 전지용 전해질 막에 관한 내용은 상기 일 구현예에 관하여 상술한 내용을 포함한다.
그리고, 상기 전해질 막의 양면에 구비된 전극 촉매층은 수소의 산화 및 산소의 환원 반응을 촉진시키는 것으로 알려진 통상의 금속을 포함할 수 있다. 예를 들어, 상기 전극 촉매층은 백금족 금속 (백금, 팔라듐, 로듐, 루테늄, 이리듐, 및 오스뮴), 금, 은, 또는 이들의 합금을 포함할 수 있으 며 , 상기 금속들과 베이스 금속 (갈륨, 티타늄, 바나듐, 크로뮴 , 망간, 철 , 코발트, 니켈, 구리, 아연 등)의 합금이 포함될 수 있다.
상기 금속은 비담지 상태 또는 담지 상태로사용될 수 있다. 상기 금 속이 담지 상태인 경우, 아세틸렌 블랙, 흑연과 갈은 탄소계 담체, 알루미 나, 실리카와 같은 무기 담체에 담지된 상태로 사용될 수 있다. 상기 금속 이 담지된 상태로 사용되는 경우, 적절한 촉매 효과의 발현을 위하여, 상기 담체는 150 mVg 이상 또는 500 내지 1200 mVg의 비표면적과, 10 내지 300 ran 또는 20 내지 100 nm의 평균 입경을 갖는 것이 바람직하다.
상기 막 -전극 접합체는 기체 확산층을 더 포함할 수 있다. 상기 기체 확산층은 상기 전극 촉매층을 지지하는 역할과 함께 전극 촉매층으로 반웅 가스를 확산시켜 반웅 효율을 향상시키는 역할을 한다. 상기 기체 확산층의 예로는 탄소 페이퍼 또는 탄소 천 등을 사용될 수 있으며, 바람직하게는 탄 소 페이퍼 또는 탄소 천을 폴리테트라플루오로에틸렌과 같은 불소계 수지로 발수 처리한 것이 사용될 수 있다. 이처럼 발수 처리된 기체 확산층은 연료 전지의 구동시 발생하는 물에 의해 기체 확산층의 성능이 저하되는 것을 방 지할수 있다.
또한, 상기 전극 촉매층과 기체 확산층의 사이에는 기체의 확산 효과 를 더욱 증시키기 위한 미세다공층 (mi croporous l ayer )이 추가로 포함될 수 있다. 상기 미세다공층은 탄소 분말, 카본 블택, 활성 탄소, 아세틸렌 블랙 등의 전도성 물질, 폴리테트라플루로로에틸렌과 같은 바인더 및 이은 전도 성 고분자를 포함하는조성물을 도포하여 제조될 수 있다.
또한, 상기 막 -전극 접합체는 서브 가스켓을 더 포함할 수 있다. 상 기 서브 가스켓은 전극 촉매층 및 전해질 막을 보호하고, 연료전지의 조립 시 핸들링상 용이성을 확보하기 위한 것으로서, 상기 전극 촉매층 또는 전 해질막의 양면 테두리 영역에 접합될수 있다. 상기 서브 가스켓의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, 폴리에틸렌 (PE) , 폴리에틸렌 나프탈레이트 (PEN) 등의 고분자 필름을사용할수 있다.
상기 전극 촉매층을 제조하는 방법의 예가 크게 한정되는 것은 아니 나, 예를 들어, 상기 금속, 바인더 및 용매를 흔합하여 촉매 슬러리를 제조 하고, 상기 촉매 슬러리를 기체 확산층에 도포하는 방법으로 제조될 수 있 다. ᅳ
한편, 상기 막 -전극 접합체를 제조하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 각각 제조된 전극 촉매층 (애노드와 캐소드) 사이 에 상기 일 구현예의 연료 전지용 전해질 막을 삽입하고 를 프레스 또는 열 간 압착법으로 압착하는 방법을 사용할 수 있다. 이때, 상기 를 프레스 압 착법은 0 내지 2000 psi의 압력, 50 내지 300 °C의 은도, 및 0.1 내지 3 m/min의 이등 속도 하에서 수행될 수 있다. 그리고, 상기 열간 압착법은 500 내지 2000 psi의 압력, 50 내지 300 °C의 은도, 및 1 내지 60 분의 가 압시간 하에서 수행될 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 전해질 막 및 상기 전해질 막의 양면에 구비된 2개의 전극을 포함하고, 상기 2개의 전극 증 적어도 하 나 이상은 상기 일 구현예의 연료 전지용 전극을 포함하는 연료 전지용 막- 전극 접합체가 제공될 수 있다ᅳ
상기 전해질 막은 전기 절연성과 이은 전도성을 갖는 고분자 막으로 써 이은 전도성 고분자를 포함할 수 있다. 상기 이온 전도성 고분자는 이 온에 의해서 전하가 운반되는 성질을 갖는 고분자를 의미하며 , 상기 이온전 도성 고분자는불소계 고분자또는 탄화수소계 고분자를 포함할 수 있다. 상기 불소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예 를 들어, 과불소화 술폰산기 함유 고분자 또는 퍼플루오로계 양성자 전도성 고분자를사용할수 있다.
또한, 상기 탄화수소계 고분자의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, 술폰화 폴리술폰 공중합체 , 술폰화 폴리 (에테르-케톤) 계 고분자, 술폰화 폴리에테르 에테르 케톤계 고분자, 폴리이미드계 고분자, 폴리스티렌계 고분자, 폴리술폰계 고분자, 클레이-술폰화 폴리술폰 나노 복 합체 또는 이들의 2종 이상의 흔합물을사용할 수 있다.
상기 전해질 막에 포함된 이은 전도성 고분자와상기 일 구현예의 라 디칼 보호층 또는 절연층에 포함된 이온 전도성 고분자는 서로 동일한 물질 이거나또는 상이한물질일 수 있다.
보다 구체적인 예로서는, 불소계 강화막 (Aquivion® membrane)을 들 수 있다.
상기 전해질 막의 양면에는 2개의 전극을 포함할 수 있다. 상기 2 개 의 전극 (애노드와 캐소드)은 각각 전해질 막의 양면에 형성되어, 수소극 또 는 공기극으로서의 역할을 수행할 수 있다. 상기 2 개의 전극 가운데 적어 도 하나 이상은 상기 일 구현예의 연료 전지용 전극을 포함할 수 있다. 즉, 2개의 전극 중 어느 하나의 전극만이 상기 일 구현예의 연료전지용 전극이 거나, 2개의 전극 모두가상기 일 구현예의 연료전지용 전극일 수 있다.
구체적으로, 상기 일 구현예의 연료전지용 전극을 사용할 경우에는, 하기 도 4에 나타난 바와 같이, 전극 촉매충 (5)과 전해질 막 (4) 사이에 절연 층 (2) 및 라디칼보호층 (3)이 위치하도록 하는 것이 바람직하다.
상기 막 -전극 접합체는 기체 확산층을 더 포함할 수 있다. 상기 기체 확산층은 상기 전극에 포함된 전극 촉매층을 지지하는 역할과 함께 전극 촉 매층으로 반웅 가스를 확산시켜 반웅 효율을 향상시키는 역할을 한다. 상기 기체 확산층의 예로는 탄소 페이퍼 또는 탄소 천 등을 사용될 수 있으며, 바람직하게는 탄소 페이퍼 또는 탄소 천을 폴리테트라플루오로에틸렌과 같 은 불소계 수지로 발수 처리한 것이 사용될 수 있다. 이처럼 발수 처리된 기체 확산층은 연료 전지의 구동시 발생하는 물에 의해 기체 확산층의 성능 이 저하되는 것을 방지할수 있다.
또한, 상기 전극 촉매층과 기체 확산충의 사이에는 기체의 확산 효과 를 더욱 증시키기 위한 미세다공층 (microporous layer)이 추가로 포함될 수 있다. 상기 미세다공층은 탄소 분말, 카본 블랙, 활성 탄소, 아세틸렌 블랙 등의 전도성 물질, 폴리테트라플루로로에틸렌과 같은 바인더 및 이온 전도 성 고분자를 포함하는조성물을도포하여 제조될 수 있다. 또한, 상기 막 -전극 접합체는 서브 가스켓을 더 포함할 수 있다. 상 기 서브 가스켓은 전극 및 전해질 막을 보호하고, 연료전지의 조립시 핸들 링상 용이성을 확보하기 위한 것으로서, 상기 전극 또는 전해질 막의 양면 테두리 영역에 접합될 수 있다. 상기 서브 가스켓의 구체적인 예가 크게 한 정되는 것은 아니나, 예를 들어, 폴리에틸렌 (PE) , 폴리에틸렌 나프탈레이트 (PEN) 등의 고분자 필름을사용할 수 있다.
한편, 상기 막 -전극 접합체를 제조하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 2개의 전극 (애노드와 캐소드) 사이에 전해질 막을 삽입하고 를 프레스 또는 열간 압착법으로 압착하는 방법을 사용할 수 있다. 이때 상기 를 프레스 압착법은 0 내지 2000 psi의 압력, 50 내지 300 °C의 온도, 및 0. 1 내지 3 m/min의 이동 속도 하에서 수행될 수 있다. 그리고, 상기 열간 압착법은 500 내지 2000 psi의 압력, 50 내지 300 °C의 온도, 및 1 내지 60 분의 가압 시간하에서 수행될 수 있다. 한편, 발명의 또 다른 구현 예에 따르면, 상기 연료 전지용 막—전극 접합체를포함하는 연료 전지가 제공된다.
구체적으로 , 상기 연료전지는 연료 전지용 막 -전극 접합체를 포함할 수 있다. 상기 막 -전극 접합체의 개수는 한정되지 않으며, 단독 또는 복수 개를 포함할 수 있다.
또한, 상기 연료전지는 상기 막-전극접합체의 양면에 분리판이 부가 된 발전부를 포함할 수 있다. 상기 분리판은 막 -전극 접합체의 양면에 각각 부착되며, 애노드에 부착되는 분리판을 애노드 분리판, 캐소드에 부착되는 분리판을 캐소드 분리판이라 한다. 상기 애노드 분리판은 애노드에 연료를 공급하기 위한 유로를 구비하고 있으며, 애노드에서 발생한 전자를 외부 회 로 또는 인접하는 단위전지로 전달하기 위한 전자 전도체의 역할을 한다. 상기 캐소드 분리판은 캐소드에 산화제를 공급하기 위한 유로를 구비하고 있으며, 외부회로 또는 인접하는 단위전지로부터 공급된 전자를 캐소드로 전달하기 위한 전자 전도체의 역할을 한다.
또한, 상기 연료전지는 개질기, 연료 탱크 및 연료 펌프로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있다. 상기 개질기, 연료 탱크, 연 료 펌프는 연료 전지 분야에서 널리 알려진 내용을 제한 없이 사용할 수 있 다.
상기 연료 전지는 직접 메탄올 연료 전지일 수 있다. 그리고, 상기 연료 전지의 구성 및 출력 등은 그 용도에 따라 작절히 설계될 수 있다. 구 체적으로 상기 연료전지의 용도의 예를 들면, 차량용 (vehicle) 연료전지일 수 있다. 상기 차량은 자동차, 트럭 등의 운반용 차량, 굴삭기, 지게차 등 의 기타 다른 용도의 차량 등 모든용도의 차량을 포함할 수 있다. 보다 구 체적으로, 자동차의 On/Off , 급발진과 같은 단시간에 반복적인 잔류가 변화 가요구되는 환경의 연료전지시스템에 사용될 수 있다.
【발명의 효과】
본 발명에 따르면, 전지 구동사 발생하는 라디칼을 효과적으로 제거 하여 우수한 내구성을 갖는 연료 전지용 전해질 막, 연료 전지용 전극, 상 기 전해질막 또는 전극을 이용하여 안정적인 성능을 구현할 수 있는 막-전 극 접합체 및 연료 전지가 제공될 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1에서 제조한 연료 전지용 전해질막의 구조를 개략적으 로 나타낸 것이다.
도 2은 실시예 1에서 제조한 연료 전지용 막-전극복합체의 구조를 개 략적으로 나타낸 것이다.
도 3은 실시예 2에서 제조한 연료 전지용 전극의 구조를 개략적으로 나타낸 것이다.
도 4은 실시예 2에서 제조한 연료 전지용 막-전극복합체의 구조를 개 략적으로 나타낸 것이다.
【발명을실시하기 위한구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하 여 한정되는 것은 아니다.
<실시예 : 막 -전극복합체의 제조:
실시예 1 a)라디칼보호층코팅용액의 제조
0.195g의 팔라듬 블랙이 함유된 3.25g(5% 분산수용액)의 이오노머 (Aquivion® ionomer di spersion) 용액에 증류수, 이소프로필알콜 및 1-프 로필알콜을 1 : 1 : 1의 부피비로 첨가후 초음파진동 교반을 실시하여 라디칼 보호층 코팅용액을 제조하였다.
b)절연층코팅용액의 제조
12.6g(24% 분산수용액)의 이오노머 (Aquivion® ionomer di spersion) 용액에 증류수, 이소프로필알콜 및 1-프로필알콜을 1 : 1 : 1의 부피비로 첨가 후초음파진동 교반을 실시하여 절연충 이오노머 코팅용액을 제조하였다. c)라디칼보호층 및 절연층의 제조
불소계 강화막 (Aquivion® membrane)를 60°C 건조판에 고정시킨 후, 상기 불소계 강화막 상에 압축 스프레이를 이용해 상기 라디칼 보호층 코팅 용액을 분사하여 라디칼보호층을 코팅하였다.
또한, 상기 라디칼보호층 상에 압축 스프레이를 이용해 상기 절연층 코팅용액을 분사하여 절연층을 제조하였다. 이후, 80°C 오븐에서 12시간동 안 건조하였으며, 180°C 오본에서 열처리하여 두께가 1000 nm인 라디칼 보 호층 및 두께가 800 nm인 절연충으로 코팅된 불소계 강화막을 얻었다.
d) 막—전극복합체의 제조
전극 촉매층이 코팅된 필름을 25αιί으로 2매 절단후, 이들 사이에 라 디칼 보호층 및 절연층이 코팅된 불소계 강화막 (Aquivion® membrane)을 삽 입한후, 를 프레스를 이용하여 열 압착하였다. 여기에 25 αιί 크기의 서브 가스켓을 겹친 후 를 프레스를 이용한 열 압착을 통해 막 -전극 복합체를 제 조하였다. 실시여 12
a)라디칼보호층 코팅용액의 제조
0. 19 의 팔라듐 블랙이 함유된 3.25g(5% 분산수용액)의 이오노머 (Aquivion® ionomer di spersion D83-24B) 용액에 증류수, 이소프로필알콜 및 1-프로필알콜을 1 : 1 : 1의 부피비로 첨가후 초음파진동 교반을 실시하여 라디칼보호층코팅용액을 제조하였다. b)절연층 코팅용액의 제조
12.6g(24% 분산수용액)의 이오노머 (Aquivion® ionomer di spersion D83-24B) 용액에 증류수, 이소프로필알콜 및 1-프로필알콜을 1 : 1 : 1의 부피 비로 첨가후 초음파진동 교반을 실시하여 절연층 이오노머 코팅용액을 제조 하였다.
c)라디칼보호층 및 절연층의 제조
전극을 60°C 건조관에 고정시킨 후, 상기 전극 상에 압축 스프레이를 이용해 상기 절연층 코팅용액을 분사하여 절연층을 코팅하였다.
또한, 상기 절연충 상에 압축 스프레이를 이용해 상기 라디칼 보호층 코팅용액을 분사하여 라디칼 보호층을 제조하였다. 이후, 80°C 오븐에서 12 시간동안 건조하였으며, 180°C 오븐에서 열처리하여 두께가 800 nm인 절연 층 및 두께가 1000 nm인 라디칼보호층으로 코팅된 전극을 얻었다.
d) 막-전극복합체의 제조
상기 라디칼 보호층 및 절연층이 코팅된 전극과 다른 전극사이에 불 소계 강화막 (Aquivion® membrane)을 삽입한 후, 를 프레스를 이용하여 열 압착하였다. 이때, 상기 라디칼 보호층 및 절연층이 코팅된 전극의 라디칼 보호층과 다른 전극 사이의 위치에 상기 불소계 강화막을 삽입하였다. 여기 에 25 ciif 크기의 서브 가스켓을 겹친 후 를 프레스를 이용한 열 압착을 통 해 막 -전극 복합체를 제조하였다.
<비교예 : 막 -전극복합체의 제조 >
비교
전극촉매층이 코팅된 필름을 25αη!으로 2매 절단후, 이들 사이에 라 디칼 보호층 및 절연층이 형성되어 있지 않은 불소계 강화막 (Aquivion® membrane)을 삽입하고, 를 프레스를 이용하여 열 압착한 점을 제외하고, 상 기 실시예 1과 동일한 방법으로 막-전극복합체를 제조하였다. 비교예 2
전극 촉매층이 코팅된 필름을 25cm'으로 2매 절단후, 이들사이에 라 디칼 보호층만 형성되고, 절연층이 형성되지 않은 불소계 강화막 (Aquivion® membrane)을 삽입하고, 를 프레스를 이용하여 열 압착한 점을 제외하고, 상기 실시예 1과 동일한 방법으로 막-전극복합체를 제조하였다. 비교^ 13
라디칼 보호층 및 절연층이 형성되어 있지 않은 전극을 사용한 점을 제외하고, 상기 실시예 2와 동일한 방법으로 막-전극복합체를.제조하였다. 비교^ ]4
라디칼 보호층만 형성되고, 절연층이 형성되지 않은 전극을 사용한 점을 제외하고, 상기 실시예 2와 동일한 방법으로 막-전극복합체를 제조하 였다.
<실험예 : 실시예 및 비교예에서 얻어진 막 -전극복합체의 성능측정 실험예 1 : 전지의 내구성 평가
실시예 및 비교예에서 얻어진 막 -전극 복합체를 포함하는 단위 전지 의 성능을 시험하기 위하여, 막 -전극 복합체의 양면 각각에 기체 확산충 (SGL 10BB, SGL Carbon Group)을 인접하게 배치하여 단위 전지들을 조립하 였다.
셀 온도 80°C , 수소극 및 공기극의 상대습도 50%, 대기압과 압력 차 이 0 psig로 유지하고, 유량은 수소극과 공기극 각각에 0.11 L/분, 0.34 L/ 분을 유지하여 개회로 전압 (Open Circuit Voltage, 0CV)의 변화를 실시간으 로 300시간 동안 측정하였다. 그리고 150시간 간격으로 셀온도 65°C , 상대 습도 100%에서 3시간 동안 활성화 진행 후에 전류-전압을 평가하여 0CV, 성 능 감소율을 확인하였고, 그 결과를 하기 표 1 에 나타내었다.
【표 1】
실시예 및 비교예의 막 -전극 복합체를 이용한 전지꾀 내구성 평가 결 과
구분 초기 IV 0CV 초기 IV성능 IV 0CV 감소율 성능 감소율
(V) (mA/cii ) (uV/h) (uV/h @ 1.2A/ cm') 실시예 1 1.013 1200 32 51 실시예 2 1.005 1210 41 53 비교예 1 0.975 1250 143 183 비교예 2 0.992 1220 92 103 비교예 3 0.975 1250 143 187 비교예 4 0.993 1200 95 100
상기 표 1 에 나타난 바와 같이, 라디칼보호층 및 절연층이 모두 확 보된 실시예 1의 0CV 감소율은 32 uV/h로, 라디칼 보호충 및 절연층이 모두 확보되지 않은 비교예 1의 143 uV/h 및 라디칼 보호층만 확보된 비교예 2의 92 uV/h 에 비해 매우 낮은 것을 확인할 수 있다.
또한, 라디칼 보호층 및 절연층이 모두 확보된 실시예 2의 0CV 감소 율은 41 uV/h로, 라디칼 보호층 및 절연층이 모두 확보되지 않은 비교예 3 의 143 uV/h 및 라디칼 보호층만 확보된 비교예 4의 95 uV/h 에 비해 매우 낮은 것을 확인할 수 있다.
절연층이 확보된 막-전극복합체는 절연층이 존재하지 않는 막—전극복 합체와 비교하였을 때, 전극층과 보호층의 촉매와의 전기적 접촉을 차단하 여 라디칼 제거효과를 최대한 발휘할 수 있어 0CV 내구성이 향상될 수 있는 것을 확인하였다.
또한, 상기 표 1에서, 라디칼보호층 및 절연층이 모두 확보된 실시예 1의 성능 감소율은 51 uV/h @ 1.2A/cuf로, 라디칼 보호층 및 절연층이 모두 확보되지 않은 비교예 1의 183 uV/h @ 1.2A/ciu! 및 라디칼 보호층만 확보된 비교예 2의 103 uV/h @ 1.2A/cuf 에 비해 매우 낮은 것을 확인할 수 있다. 또한, 라디칼보호층 및 절연층이 모두 확보된 실시예 2의 성능 감소 율은 53 uV/h @ 1.2A/cuf로, 라디칼 보호층 및 절연층이 모두 확보되지 않은 비교예 3의 187 uV/h @ 1.2A/aif 및 라디칼 보호층만 확보된 비교예 4의 100 uV/h @ 1.2A/cuf 에 비해 매우 낮은 것올 확인할 수 있다.
라디칼 보호층이 존재하지 않는 비교예 1 및 3의 막-전극복합체는 성 능시험에서 라디칼에 의한 막 -전극복합체 저항의 증가로 인하여 0CV 성능 감소율이 크게 증가되는 것을 확인하였다.
이에 따라, 건조 /가습 환경에서 라디칼 보호충 및 절연층이 모두 확 보된 막-전극복합체는 종래의 막-전극복합체에 비해 전해질 막의 물리적, 화학적 라디칼 내성을 증가시켜 0CV 성능 및 내구성이 향상됨을 확인하였다.
【부호의 설명】
1 - 전극촉매층
2 - 절연층
3 - 라디칼보호층
4 - 이온 전도성 막
5 - 전극촉매층

Claims

【청구범위】
【청구항 1】
이온 전도성 막;
상기 이온 전도성 막의 적어도 일면에 형성되고, 적어도 1 이상의 금 속 및 이온 전도성 고분자를 포함한라디칼 보호층; 및
상기 라디칼 보호층 상에 형성되고, 이온 전도성 고분자를 포함한 절 연층;을포함하고,
상기 라디칼 보호층에 포함된 금속은 표면에 이온 전도성 고분자가 접촉한상태로 분산되는, 연료 전지용 전해질 막.
【청구항 2】
제 1항에 있어서,
상기 라디칼보호층에 포함된 금속은 전체 표면적의 50% 이상이 이온 전도성 고분자와 접촉하는, 연료 전지용 전해질 막.
【청구항 3】
제 1항에 있어서,
상기 라디칼보호층에서 이온 전도성 고분자 100 증량부에 대하여 적 어도 1 이상의 금속을 1 중량부 내지 20 중량부로 포함하는ᅳ 연료 전지용 전해질 막.
【청구항 4]
제 1항에 있어서,
상기 적어도 1 이상의 금속은 팔라듬 또는 팔라듬을 포함한 합금을 포함하는, 연료 전지용 전해질 막.
【청구항 5】
제 4항에 있어서,
상기 팔라듐을 포함한 합금은 팔라듐 및 주기율표 3족 내지 13족에 속하는 금속원소로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는, 연료 전지용 전해질 막.
【청구항 6]
제 1항에 있어서,
상기 절연층 두께에 대한 상기 라디칼보호층 두께 비율이 1 내지 10 인, 연료 전지용 전해질 막.
【청구항 7】
제 1항에 있어서,
상기 절연충에 포함된 이은 전도성 고분자는 불소계 고분자 또는 탄 화수소계 고분자를포함하는, 연료 전지용 전해질 막.
【청구항 8】
제 1항에 있어서
상기 이온 전도성 막은 이은 전도성 고분자를 포함하는, 연료 전지용 전해질 막.
【청구항 9]
전극 촉매층;
상기 전극 촉매충의 적어도 일면에 형성되고, 이은 전도성 고분자를 포함한 절연층; 및
상기 절연층 상에 형성되고, 적어도 1 이상의 금속 및 이온 전도성 고분자를 포함한 라디칼보호층;을 포함하고,
상기 라디칼 보호층에 포함된 금속은 표면에 이온 전도성 고분자가 접촉한상태로 분산되는, 연료 전지용 전극.
【청구항 10]
제 9항에 있어서,
상기 라디칼 보호층에 포함된 금속은 전체 표면적의 50%이상이 이은 전도성 고분자와 접촉하는, 연료 전지용 전극. 【청구항 111
제 9항에 있어서,
상기 라디칼보호층에서 이온 전도성 고분자 100 중량부에 대하여 적 어도 1 이상의 금속을 1 중량부 내지 20 중량부로 포함하는, 연료 전지용 전극.
【청구항 12]
계 9항에 있어서,
상기 적어도 1 이상의 금속은 팔라듐 또는 팔라듬을 포함한 합금을 포함하는, 연료 전지용 전극.
【청구항 13】
제 12항에 있어서,
상기 팔라듬을 포함한 합금은 팔라듐 및 주기율표 3족 내지 13족에 속하는 금속원소로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는, 연료 전 지용 전극.
【청구항 14】
제 9항에 있어서,
상기 절연층두께에 대한상기 라디칼보호층 두께 비을이 1 내지 10 인, 연료 전지용 전극.
【청구항 15】
제 9항에 있어서,
상기 절연층에 포함된 이은 전도성 고분자는 불소계 고분자 또는 탄 화수소계 고분자를 포함하는, 연료 전지용 전극.
【청구항 16】
제 1항의 연료 전지용 전해질 막; 및 상기 연료 전지용 전해질 막의 양면에 구비된 전극촉매층을포함하는, 연료 전지용 막 -전극 접합체 .
【청구항 17】
전해질 막 및 상기 전해질 막의 양면에 구비된 2개의 전극을 포함하 고,
상기 2개의 전극 중 적어도 하나 이상은 게 9항의 연료 전지용 전극을 포함하는, 연료 전지용 막 -전극 접합체 .
【청구항 18】
제 16항또는 제 17항의 연료 전지용 막 -전극 접합체를 포함하는, 연료 전지.
PCT/KR2016/014540 2015-12-29 2016-12-12 연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막-전극 접합체 및 연료 전지 WO2017116041A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150188627A KR20170078271A (ko) 2015-12-29 2015-12-29 연료 전지용 전해질 막, 이를 이용한 막-전극 접합체 및 연료 전지
KR10-2015-0188629 2015-12-29
KR10-2015-0188627 2015-12-29
KR1020150188629A KR20170078272A (ko) 2015-12-29 2015-12-29 연료 전지용 전극, 이를 이용한 막-전극 접합체 및 연료 전지

Publications (1)

Publication Number Publication Date
WO2017116041A1 true WO2017116041A1 (ko) 2017-07-06

Family

ID=59224975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014540 WO2017116041A1 (ko) 2015-12-29 2016-12-12 연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막-전극 접합체 및 연료 전지

Country Status (1)

Country Link
WO (1) WO2017116041A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079904A (ja) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその製造方法
KR20080083175A (ko) * 2005-12-22 2008-09-16 이 아이 듀폰 디 네모아 앤드 캄파니 무기 충전제를 함유하는 화학적으로 안정화된 이오노머의제조 방법
KR20100098022A (ko) * 2009-02-27 2010-09-06 주식회사 엘지화학 연료전지용 막전극 접합체 제조방법과 이로부터 제조된 연료전지
KR20110002957A (ko) * 2009-07-03 2011-01-11 광운대학교 산학협력단 고휘도용 냉음극 형광램프의 전극 콘넥터
KR20140068242A (ko) * 2005-09-26 2014-06-05 고어 엔터프라이즈 홀딩즈, 인코포레이티드 고체 고분자 전해질 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079904A (ja) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその製造方法
KR20140068242A (ko) * 2005-09-26 2014-06-05 고어 엔터프라이즈 홀딩즈, 인코포레이티드 고체 고분자 전해질 및 그의 제조 방법
KR20080083175A (ko) * 2005-12-22 2008-09-16 이 아이 듀폰 디 네모아 앤드 캄파니 무기 충전제를 함유하는 화학적으로 안정화된 이오노머의제조 방법
KR20100098022A (ko) * 2009-02-27 2010-09-06 주식회사 엘지화학 연료전지용 막전극 접합체 제조방법과 이로부터 제조된 연료전지
KR20110002957A (ko) * 2009-07-03 2011-01-11 광운대학교 산학협력단 고휘도용 냉음극 형광램프의 전극 콘넥터

Similar Documents

Publication Publication Date Title
KR102368761B1 (ko) 촉매
EP2250698B1 (en) Ion-conducting membrane structures
EP2873109B1 (en) Ion-conducting membrane
KR102225982B1 (ko) 촉매
CN106922203B (zh) 电极催化剂及其制造方法、电极催化剂层、膜电极接合体及燃料电池
CN112993270A (zh) 催化剂以及使用该催化剂的电极催化剂层、膜电极接合体及燃料电池
EP3520892A1 (en) Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell comprising same
CN113130954B (zh) 能够防止催化剂中毒的用于燃料电池的电解质膜及其制备方法
EP2144318B1 (en) Method for producing polymer electrolyte membrane for solid polymer fuel cell, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
US9520610B2 (en) Method of manufacturing 5-layer MEA having improved electrical conductivity
KR102296050B1 (ko) 연료 전지용 전해질 막 및 이의 제조 방법
CN108780898B (zh) 高分子电解质膜燃料电池用纳米结构电极及其制造方法
JP2005317238A (ja) 固体高分子形燃料電池、ハイブリッド膜及び膜/電極接合体
CN113764679A (zh) 包含耐久性增强层的燃料电池及其制造方法
WO2017116041A1 (ko) 연료 전지용 전해질 막, 연료 전지용 전극, 이를 이용한 막-전극 접합체 및 연료 전지
JP5458774B2 (ja) 電解質膜−電極接合体
US20100167160A1 (en) Method For Producing Polymer Electrolyte Membrane For Solid Polymer Fuel Cell, Membrane Eelctrode Assembly For Solid Polymer Fuel Cell, and Solid Polymer Fuel Cell
KR20170078272A (ko) 연료 전지용 전극, 이를 이용한 막-전극 접합체 및 연료 전지
KR20170078271A (ko) 연료 전지용 전해질 막, 이를 이용한 막-전극 접합체 및 연료 전지
JPWO2011114904A1 (ja) 燃料電池電極触媒層用スラリー、電極触媒層、膜電極接合体、及び燃料電池
JP5313569B2 (ja) 固体高分子電解質膜、および固体高分子電解質膜の製造方法
JP2005174827A (ja) 固体高分子電解質膜、これを用いた燃料電池、およびそれらの製造方法
KR20230034949A (ko) 촉매 제조
JP2024100169A (ja) 燃料電池用電極触媒層の製造方法
JP5609474B2 (ja) 燃料電池電極触媒層の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881993

Country of ref document: EP

Kind code of ref document: A1