WO2017115330A1 - Método de obtención de nano partículas de cobre y uso de dichas partículas - Google Patents

Método de obtención de nano partículas de cobre y uso de dichas partículas Download PDF

Info

Publication number
WO2017115330A1
WO2017115330A1 PCT/IB2016/058110 IB2016058110W WO2017115330A1 WO 2017115330 A1 WO2017115330 A1 WO 2017115330A1 IB 2016058110 W IB2016058110 W IB 2016058110W WO 2017115330 A1 WO2017115330 A1 WO 2017115330A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
copper
derivatives
poly
copper nanoparticles
Prior art date
Application number
PCT/IB2016/058110
Other languages
English (en)
French (fr)
Inventor
Harold Ivan Lozano Zarto
Eglantina Javiera Benavente Espinosa
Fernando Javier Mendizabal Emaldia
Guillermo Antonio Alberto GONZALEZ MORAGA
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Priority to EP16881386.3A priority Critical patent/EP3398700A4/en
Priority to CN201680081407.9A priority patent/CN108778569B/zh
Priority to US16/067,298 priority patent/US20180297121A1/en
Publication of WO2017115330A1 publication Critical patent/WO2017115330A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/05Water or water vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/056Particle size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a process for obtaining copper nanoparticles (NPs), specifically with a size between 10 nm to 200 nm.
  • the present invention relates to a method of obtaining said copper nanoparticles that uses low amounts of stabilizers, antioxidants and counter-ion of the copper salt, generating a maturation towards non-spherical morphologies of the NPs that finally present optical properties such as birefringence.
  • a composition of metal nanoparticles is described by converting a metal (1) to a metal (O ) and to form one or more metal nanoparticles of metal (O).
  • One or more metal nanoparticles are stabilized with one or more biocompatible stabilizers (Chitosan) to prevent agglomeration and make them susceptible to biomedical applications.
  • Chitosan biocompatible stabilizers
  • the invention is a process comprising the steps of mixing a first heated solution comprising a base and / or a reducing agent (for example, a non-polyol reducing agent), a polyol and a vinylpyrrolidone polymer with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol.
  • a reducing agent for example, a non-polyol reducing agent
  • the invention is a process that includes the steps of heating a powder of a vinylpyrrolidone polymer; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
  • the pH range> 5 preferably a pH between 5 and 12.5; of the present invention is greater than those reported in the state of the art. This offers greater versatility in the regulation of the synthesis parameters and greater chemical stability of the nanoparticles in moderately acidic or basic media.
  • NPs stable copper nanoparticles
  • the method of obtaining stable copper nanoparticles (NPs) in environmental conditions by means of environmentally benign procedures succeeds in replacing gold or silver nanoparticles (NPs) with metallic NPs with similar properties but at With a lower cost for use in commercial applications.
  • Figure 1 shows the general scheme of the method of obtaining copper nanoparticles of the present invention.
  • A Copper salt or oxide
  • B Molecule or stabilizing polymer
  • C Primary Complexer
  • D alkali to adjust pH
  • E Antifoam
  • F Reducer
  • G Antioxidant
  • H Secondary Complexer
  • 1 Cleaning and / or purification of nanoparticles with water, ethanol, etc .
  • J Secondary polymer or modifying molecule
  • synthesis conditions e, T "t, Y t2).
  • Figure 2 shows the size distribution (number of particles determined by DLS analysis) of the metallic copper nanoparticles obtained according to example 1.
  • Figure 3 shows the UV-Vis Spectrum of the sample obtained according to example 1.
  • the maximum absorption by Plasmon resonance is between 573nm and 578nm.
  • Figure 4 shows a Thermogram of mass loss (TG) by progressive heating up to 800 ° C in N 2 of the nanoparticles according to example 1.
  • Figure 5 shows the UV-Vis spectra of the sample obtained according to example 2. The maximum absorption by Plasmon resonance between 579 nm (24 h after completion of the synthesis) and 595 nm (washed after 3 days).
  • Figure 6 shows the UV-Vis spectra of the sample obtained according to the method of example 3.
  • a 580 nm resonance Plasmon is presented, in the second phase a second Plasma appears near 700 nm when anisotropic growth begins.
  • the third phase clearly shows the presence of the two plasmons with equal intensity. After the ripening process the second Plasmon It increases its intensity by inducing a change in the shape of the spectrum.
  • Figure 7 shows the UV-Vis spectra of the sample obtained according to the method of the present invention (example 4), showing an example of the optical properties of the nanoparticles by anisotropic growth.
  • the continuous line with squares is the spectrum taken by diffuse reflectance and the dashed line with circles is the spectrum taken by transmission (absorption spectrum).
  • the change in the profile indicates that there are differences in the way in which the nanoparticles interact with the light (transmitted and / or reflected form).
  • Figure 8 shows the application of the new particles with optical properties obtained with the invention.
  • Polymeric membranes with copper nanoparticles show dependence between the intensity and contrast of the light transmitted with the observation angle.
  • Figure A on the left shows the photos of the membranes in three viewing angles (30 °, 45 ° and 60 °).
  • Figure B on the right shows the profiles of the membrane with and without nanoparticles with respect to the reference value without membrane.
  • Figure 9 shows the UV-Vis Spectrum of the sample obtained according to the method of the present invention (example 2). This figure compares the UV-Vis absorption spectra of a sample with 1 day after synthesis and after 90 days of storage with a low content of 0 2 . The maximum absorption by Plasmon resonance changed from 587nm to 600nm. There is no presence of oxidized copper (Cu 2+ ).
  • the method of obtaining stable copper nanoparticles and in benign environmental conditions comprises the following steps:
  • i) Dissolve in a container at least one salt, oxide or copper hydroxide in distilled water until a molar concentration of 0.1 to 1.5 M is achieved, where the copper salt is selected from Copper Chloride (I ) (CuCI), Copper Chloride (II) (CuCI 2 ), Copper Cyanide (I) (CuCN), Copper Sulfate (CuS0 4 ), Copper Nitrate (Cu (N0 3 ) 2 ), Copper Acetate ( CH 3 COO) 2 Cu, Copper carbonate (CuC0 3 ), copper acetylacetonate C 5 H 7 Cu0 2 , copper perchlorate (II) Cu (CIC0 4 ) 2 , copper stearate (II), copper ethylenediamine (II ), copper (II) trifluoroacetylacetonate, copper hexafluoroacetylacetonate (ll), copper formate (ll), copper methacrylate (II), copper neodecanoate (ll),
  • ii) Dissolve in a container at least one stabilizer in distilled water until a molar concentration of 0.5 to 20 M is achieved, where the stabilizer is selected from polymers: poly (vinyl pyrrolidone) (PVP), polyvinyl alcohol, polycarbonates, polyphenols, polyethylene glycol and polyols such as ethylene glycol, diethylene glycol, tri-ethylene glycol, propylene glycols, alkyldiols such as butanediols, dipropylene glycol and polyethylene glycols, chitosan and its derivatives, polyacids and derivatives thereof, mercaptoalkanoates, and oxybenzoic acids.
  • PVP poly (vinyl pyrrolidone)
  • polyacids including any or more of those selected from a group of poly (acrylic) acid, poly (maleic acid), poly (methyl methacrylate), poly (acrylic acid - co - methacrylic acid), poly (maleic acid co -acrylic acid), and poly (acrylamide - coacrylic acid), cellulose acetates, polyvinylacetates, polysulfonsa, polyphenylsulfones, polyethersulfones, polyketones, polyether ketones, polyesters, polyethatates, polymers and copolymers of two or more of these and derivatives including among others or more than those selected from a group of ammonium, sodium or potassium salts of the polyacids. But it is not limited to these.
  • iii) Mix the two solutions prepared in step i) and ii) in a reactor, with stirring in the range of 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
  • a primary complexer in a 5 to 12 M molar concentration with agitation in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours, where the primary complexer is selected from ammonia (NH 3 ), ammonium hydroxide, primary and secondary amines: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, hexadecylamine , diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, in addition
  • step iv) Add an alkali to the reaction mixture from step iv), until the mixture is adjusted to a pH> 5, preferably a pH between 5 and 12.5; wherein the alkali is selected from sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) , calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases.
  • step v) Add antifoam to the reaction mixture of step v) in a concentration not greater than 1% of the total mixture and heat the reaction mixture between 25-120 ° C with stirring in the range of 5 to 10,000 rpm ; wherein the antifoam is selected from high molar weight alcohols such as hexanol, 1-heptane, 1-octanol, 1-mannanol, 1-decanol, 1-undecanol, 1-dodecanol, 1 -tridecanol, 1-tetradecanol, 1-pentadecanol , 1 - hexadecanol, 1-heptadecanol, 1-octadecanol and any of these with ramifications in its main chain.
  • They are also selected from aromatic alcohols, and any defoamers for water-based systems such as polysiloxane-based defoamers, based on mineral oil, based on vegetable oil, and based on polymers, but
  • the reductant is selected from hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanioaldehyde or salts thereof, hypophosphites, sulphites, tetrahydrohydrates, tetraaluminohydrates Lithium (LiAIH 4 ), sodium borohydride, polyhydroxybenzene such as hydroquinone and its derivatives, phenylenediamines and their derivatives, aminophenols and their derivatives, carboxylic acids and their derivatives such as ascorbic acid, cit
  • the reductant is selected from hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanioalde
  • step viii) Stop the reaction in step vii) by cooling to a reaction temperature between 0 ° C-25 ° C while maintaining the stirring in the range of 5 to 10,000 rpm.
  • step viii) Add at least one antioxidant pre-dissolved in distilled water with a 0.5 to 3 M molar concentration in the reaction mixture of step viii), where the antioxidant is selected from carboxylic acids and their derivatives as ascorbic acid , citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, Ammonium, acetaldehyde and propanioaldehyde or salts thereof, hypophosphites and similar antioxidant agents.
  • carboxylic acids and their derivatives as ascorbic acid , citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, Ammonium, acetaldehyde and propanioaldehyde or salts thereof, hypophosphites and similar antioxidant agents.
  • step ix Add at least one secondary complexer pre-dissolved in distilled water in a 0.1 to 1.5 M molar concentration to the reaction mixture of step ix), wherein the secondary complexer is selected from carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary and secondary amines. From the carboxylic acids and their derivatives is selected from the group of ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid but is not limited to these.
  • carboxylic acids and their derivatives is selected from the group of ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid but is not limited to these.
  • dicarboxylic acids ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenodioic acid, phthalic acid, 2,4-diphenyl 3-cyclobutan-1, - dicarboxylic, 3,4-diphenylcyclobutan-1,2-dicarboxylic acid, but is not limited to these.
  • the secondary complexer can be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, eláidico, vaccenic, linoleic, linoeládico, citric acid, tartaric acid, cinnamic acid, without limiting them.
  • primary and secondary amines are selected from: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, but is not limited to these.
  • stage xi Maturing the mixture of stage x) for a time of 1 min to 15 days, at a temperature of 10 ° C to 70 ° C with and / or without stirring in the range of 5 to 10,000 rpm.
  • the Secondary polymer is selected from the group of polymers such as poly (vinyl pyrrolidone) (PVP), polyvinyl alcohol, polycarbonates, polyphenols, polyethylene glycol and polyols such as ethylene glycol, diethylene glycol, tri-ethylene glycol, propylene glycols, alkyldiols such as butanediols, polypropylene glycols and dipropylene glycols their derivatives, polyacids and derivatives thereof, mercaptoalkanoates, and oxybenzoic acids; wherein the polyacids include one or more of those selected from the group of poly (acrylic) acid, poly (maleic acid), poly (methyl methacrylate), poly (acrylic acid-co-methacrylic acid),
  • spherical nanoparticles of sizes between 10 nm and 200 nm are obtained, where the size of the nanoparticles can be regulated by varying the molar ratio between the copper salt and the polymer stabilizer.
  • they show a UV-Vis spectrum with a plasmon that moves from 579 nm to 595 nm.
  • polymeric membranes were prepared, in a chitosan-based matrix and another depolymethylmethacrylate (PMMA) by the gel-casting method with nanoparticle contents of up to 15%, based on the matrix.
  • PMMA depolymethylmethacrylate
  • EXAMPLE 1 Example of obtaining copper nanoparticles of size 40 nm.
  • Two previously prepared solutions are mixed: one by dissolving 0.9983 g of the copper salt (CH3C00) 2Cu in 20 mL of distilled water and the other by dissolving 5,550 g of PVP (40 kDa) as a polymeric stabilizer in 20 mL of distilled water, for 30 min with stirring in the range of 5 to 10,000 rpm. 3.0 mL of NH 3 - The mixture is stirred for 30 min. 0.050 g of NaOH is added to the previous mixture, to adjust the pH to a value greater than 10.5. 0.01 mL of the 1-octanol antifoam is added to the reaction mixture, and the reaction mixture is heated to 95 ° C with stirring in the range of 5 to 10,000 rpm.
  • the mixture is allowed to ripen for 2 hours at a temperature of 25 ° C with stirring in the range of 5 to 10,000 rpm and then allowed to ripen 1 day at a temperature of 60 ° C without stirring in the range of 5 to 10,000 rpm.
  • the nanoparticles obtained are washed with ethanol by dialysis.
  • Figures 2, 3, and 4 show the results of the characterization analyzes of the nanoparticles.
  • Two previously prepared solutions are mixed: one for dissolution of 4.9913 g of (CH 3 COO) 2 Cu in 100 mL of distilled water and the other for dissolution of 13.8750 g of PVP (140 kD) in 100 mL of water distilled; with 30 min of agitation in the range of 5 to 10,000 rpm. 14.95 mL of NH 3 are added to the mixture as complexer. The mixture is stirred for 30 min. 10 mL of 5M NaOH is added to the previous mixture, to adjust the pH to a value greater than 10.5. 0.1 mL of the antifoam (1-octanol) is added to the reaction mixture, and the reaction mixture is heated to 85 ° e with stirring in the range of 5 to 10,000 rpm.
  • the mixture is allowed to mature for 2 hours at a temperature of 25 ° C with stirring in the range of 5 to 10,000 rpm and then allowed to ripen for 2 days at a temperature of 25 ° C without stirring, in the range of 5 to 10,000 rpm.
  • the nanoparticles thus obtained be washed by dialysis with deionized water.
  • Figure 5 shows the UV-Vis spectrum of a sample of this example after it has been synthesized (24 hours) compared to that obtained for the nanoparticles after washing at 3 days. Plasma moves from 579 nm to 595 nm, showing that there is no excessive growth of nanoparticles.
  • Two previously prepared solutions are mixed: one for dissolution of 4.9913 g of (CH 3 COO) 2 Cu in 100 mL of distilled water and the other for dissolution of 13.8750 g of PVP (140 kD) in 100 mL of water distilled; with 30 min of agitation in the range of 5 to 10,000 rpm. 14.95 mL of NH 3 are added to the mixture as complexer. The mixture is stirred for 30 min. 10 mL of 5M NaOH is added to the previous mixture, to adjust the pH to a value greater than 10.5. 0.1 mL of the antifoam (1-octanol) is added to the reaction mixture, and the reaction mixture is heated to 80 ° C with stirring in the range of 5 to 10,000 rpm.
  • the mixture is allowed to ripen for 2 hours at a temperature of 25 ° C with stirring in the range of 5 to 10,000 rpm and then allowed to ripen 15 days at a temperature of 25 ° C without stirring in the range of 5 to 10,000 rpm.
  • the nanoparticles thus obtained are washed by dialysis with deionized water.
  • Figure 6 shows the UV-Vis Spectra of a sample of nanoparticles at different stages of maturation and / or growth.
  • a Resonance Plasmon is presented at 580 nm
  • a second plasmon appears near 700 nm when anisotropic growth begins.
  • the third phase clearly shows the presence of the two plasmons with equal intensity, after this, the maturation finally causes the second plasmon to increase its intensity causing the spectrum to change the shape
  • Example of copper nanoparticles of a size of 150nm with optical properties Example of copper nanoparticles of a size of 150nm with optical properties.
  • Two previously prepared solutions are mixed: one by dissolving 9.9825 g of (CH 3 COO) 2 Cu in 200 mL of distilled water and the other by dissolving 55.5000 g of PVP (140 kD) in 200 mL of water distilled; with 30 min of agitation in the range of 5 to 10,000 rpm.
  • 30 mL of NH 3 are added to the mixture as complexing agent.
  • the mixture is stirred for 30 min.
  • 20 mL of 5M NaOH is added to the previous mixture, to adjust the pH to a value greater than 10.5.
  • 0.3 mL of the antifoam (1-octanol) is added to the reaction mixture, and the reaction mixture is heated to 70cC with stirring in the range of 5 to 10,000 rpm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Nano partículas de cobre y método de obtención de ellas que comprende las siguientes etapas: disolver en un recipiente al menos una sal, óxido o hidróxido de cobre en agua destilada; disolver en un recipiente al menos un estabilizante en agua destilada; mezclar las dos soluciones en un reactor; adicionar un acomplejante primario; adicionar un álcali; adicionar un antiespumante; adicionar al menos un reductor, detener la reacción enfriando a una temperatura de reacción de entre 0°C a 25°C manteniendo la agitación; adicionar al menos un antioxidante; adicionar al menos un acomplejante secundario; madurar y lavar la mezcla. Uso de las nanopartículas de cobre.

Description

MÉTODO DE OBTENCIÓN DE NANO PARTÍCULAS DE COBRE Y USO DE DICHAS
PARTÍCULAS
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con un proceso de obtención de nanopartículas (NPs) de cobre, específicamente con un tamaño entre los 10 nm a los 200 nm. En particular, la presente invención se relaciona con un método de obtención de dichas nanopartículas de cobre que utiliza bajas cantidades de estabilizantes, de antioxidantes y contra-ión de la sal de cobre, generando una maduración hacia morfologías no esféricas de la NPs que presentan finalmente propiedades ópticas tales como la birrefringencia.
Específicamente, se describe un método para la fabricación de NPs metálicas con dependencia angular en la transmisión de luz, en agua y en ambiente abierto a la atmosfera, que produce suspensiones con alta carga de partículas resistentes a la oxidación prematura.
ESTADO DEL ARTE
Dentro de la bibliografía existente, se describen variados métodos que producen nanopartículas NPs de cobre. Entre ellos los más conocidos corresponden al método del poliol, el tratamiento hidrotermal, la síntesis en dos fases, en una sola fase apolar, y la síntesis en fase acuosa.
En el caso de la solicitud de patente US20100172997A, de fecha 30 de diciembre de 2008, se describe una composición de nanopartículas metálicas, su método de fabricación y uso de la misma, mediante la conversión de un metal (1 ) a un metal (O) y para formar una o más nanopartículas metálicas de metal (O). Una o más nanopartículas metálicas se estabilizan con uno o más estabilizadores biocompatibles (Quitosano) para evitar la aglomeración y hacerlos susceptibles para aplicaciones biomédicas.
En la solicitud de patente internacional WO2010010569A, de fecha 24 de Julio de 2008, se hace referencia a un procedimiento que comprende la preparación de nanopartículas metálicas (cobre, oro, plata, platino, zinc, magnesio, titanio o aleaciones) en presencia de un agente estabilizante (quitosano, citrato trisódico), en el que el agente estabilizante se añade junto con el agente de reducción (dihidrato de citrato trisódico, ácido ascórbico, tirosina, hidrazina) y la adición de las nanopartículas metálicas a la ceniza de cascarilla de arroz para obtener ceniza de cáscara de arroz con nanopartículas metálicas unidas.
En la solicitud de patente US 2010269635 describe procesos para la producción de nanopartículas metálicas. En un aspecto, la invención es un procedimiento que comprende las etapas de mezclar una primera solución calentada que comprende una base y/o un agente reductor (por ejemplo, un agente reductor no poliol), un poliol y un polímero de vinilpirrolidona con una segunda solución que comprende un precursor de metal que es capaz de ser reducido a un metal por el poliol. En otro aspecto, la invención es un proceso que incluye las etapas de calentar un polvo de un polímero de vinilpirrolidona; formando una primera solución que comprende el polvo y un poliol; y mezclar la primera solución con una segunda solución que comprende un precursor de metal capaz de ser reducido a un metal por el poliol.
En los métodos descritos en el estado del arte que utilizan un medio acuoso, se observa que todos ellos utilizan en su mayoría sales de cobre I y II. Aunque algunos involucran el uso del poli(vinilpirrolidona) (PVP) como estabilizador, ninguno hace uso de poliaminosacáridos como estabilizante o protector a la oxidación. En general, estos métodos trabajan con concentraciones de 2, 5, 10 Y hasta 100 veces más bajas que las concentraciones utilizadas en el método de la presente solicitud, lo que obliga a que emplear extracciones con solventes orgánicos.
Tal como se puede observar en el estado del arte, aquellos métodos que trabajan con protectores poliméricos (poli(vinilpirrolidona) PVP) deben hacerlo bajo una atmosfera inerte. Estas condiciones específicas, encarecen los costos de elaboración de las nanopartículas y dificulta la aplicación del método.
Del mismo modo, el rango de pH > 5, preferentemente un pH entre 5 y 12,5; de la presente invención es mayor que los reportados en el estado del arte. Esto ofrece una mayor versatilidad en la regulación de los parámetros de la síntesis y una mayor estabilidad química de las nanopartículas en medios medianamente ácidos o básicos.
El método de obtención de nanopartículas (NPs) de cobre estables en condiciones ambientales mediante procedimientos ambientalmente benignos, logra reemplazar las nanopartículas (NPs) de oro o plata por NPs metálicas con propiedades similares pero a con un menor costo para su uso en aplicaciones comerciales.
Entre estas aplicaciones comerciales encontramos cableado, encapsulamiento, y conexiones eléctricas en electrónica y microelectrónica; conductores transparentes de alto rendimiento para pantallas táctiles, sensores capacitivos, blindajes contra interferencia electromagnética y uso de NPs o compositos como bactericidas para protección ambiental, textiles y vestuario, alimentos, o la manufacturas de electrodomésticos con recubrimiento a base de ese tipo de materiales.
DESCRIPCIÓN DE LAS FIGURAS
En la Figura 1 se observa el esquema general del método de obtención de nanopartículas de cobre de la presente invención.
A: Sal u óxido de Cobre; B: Molécula o polímero estabilizante; C: Acomplejante Primario; D: álcali para ajustar pH; E: Antiespumante; F: Reductor; G: Antioxidante; H: Acomplejante Secundario; 1 : Limpieza y/o purificación de nanopartículas con agua, etanol, etc.; J: Polímero secundario o molécula modificante; y condiciones de síntesis (e, T" t, Y t2) .
En la Figura 2 se observa la distribución de tamaño (número de partículas determinado por análisis DLS) de las nanopartículas de cobre metálico obtenidas según el ejemplo 1 .
En la Figura 3 se observa el Espectro UV-Vis de la muestra obtenida según ejemplo 1 . El máximo de absorción por Plasmón de resonancia está entre 573nm y 578nm.
En la Figura 4 se observa un Termograma de pérdida de masa (TG) por calentamiento progresivo hasta 800°C en N2 de las nanopartículas según ejemplo 1 .
En la Figura 5 se observan Espectros UV-Vis de muestra obtenida según ejemplo 2. El máximo de absorción por Plasmón de resonancia entre 579 nm (24 h tras finalizar la síntesis) y 595nm (lavadas después de 3 días).
En la Figura 6 se observan los Espectros UV-Vis de muestra obtenida según el método del ejemplo 3. En la primera fase de crecimiento, se presenta un Plasmón de resonancia a 580nm, en la segunda fase aparece un segundo Plasmó n cerca de los 700nm cuando se inicia el crecimiento anisotrópico. La tercera fase muestra claramente la presencia de los dos plasmones con igual intensidad. Tras el proceso de maduración el segundo Plasmón aumenta su intensidad induciendo un cambio de forma del espectro.
En la Figura 7 se observan los Espectros UV-Vis de muestra obtenida según el método de la presente invención (ejemplo 4), mostrando ejemplo de las propiedades ópticas de las nanopartículas por crecimiento anisotropico. El trazo continuo con cuadrados es el espectro tomado por reflectancia difusa y el trazo discontinuo con círculos es el espectro tomado por trasmisión (espectro de absorción). El cambio en el perfil indica que existen diferencias en la forma en que interactúan las nanopartículas con la luz (forma trasmitida y/o reflejada).
En la Figura 8 se observa la aplicación de las nuevas partículas con propiedades ópticas obtenidas con la invención. Las membranas poliméricas con nanopartículas de cobre presentan dependencia entre la intensidad y contraste de la luz transmitida con el ángulo de observación. En la figura A de la izquierda se presenta las fotos de las membranas en tres ángulos de observación (30°, 45° Y 60°). En la figura B de la derecha, se muestran los perfiles de la membrana con y sin nanopartículas respecto al valor de referencia sin membrana.
En la Figura 9 se observa el Espectro UV-Vis de la muestra obtenida según el método de la presente invención (ejemplo 2). En esta figura se comparan los espectros de absorción UV-Vis de una muestra con 1 día después de la síntesis y tras 90 días de almacenamiento con bajo contenido de 02. El máximo de absorción por Plasmón de resonancia cambio de 587nm a 600nm. No hay presencia de cobre oxidado (Cu2+).
DESCRIPCION DETALLADA DE LA INVENCIÓN
El método de obtención de nanopartículas de cobre estables y en condiciones ambientales benignas, comprende las siguientes etapas:
i) Disolver en un recipiente al menos una sal, oxido o hidróxido de cobre en agua destilada hasta lograr una concentración molar de 0,1 a 1 ,5 M, en donde la sal de cobre es seleccionada a partir de Cloruro de cobre (I) (CuCI), Cloruro de cobre (II) (CuCI2), Cianuro de cobre (I) (CuCN), Sulfato de cobre (CuS04), nitrato de cobre (Cu(N03)2), acetato de cobre (CH3COO)2Cu, Carbonato de cobre (CuC03), acetilacetonato de cobre C5H7Cu02, perclorato de cobre (II) Cu(CIC04)2, estearato de cobre (II) , etilendiamina de cobre (II), trifluoroacetilacetonato de cobre (II), hexafluoroacetilacetonato de cobre (ll),formiato de cobre (ll),metacrilato de cobre (II), neodecanoato de cobre (ll),etilhexanoato de cobre (ll),trifluroacetato de cobre (ll),y otras fuentes de cobre tales como, oxido de cobre (I) (Cu20), oxido de Cobre (II) (CuO), hidróxido de cobre (N)(CuOH)2.
ii) Disolver en un recipiente al menos un estabilizante en agua destilada hasta lograr una concentración molar de 0,5 a 20 M, en donde el estabilizante es seleccionado a partir de polímeros: poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenglicol y polioles como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoicos. Aquí, los poliácidos incluyendo cualquiera o más de los seleccionados de un grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico - co - ácido metacrílico), poli(ácido maleico-co-ácido acrílico), and poli(acrilamida - ácido coacrílico), acetatos de celulosa, polivinilacetatos, polisulfonsa, polifenilsulfonas, polietersulfonas, policetonas, polietercetonas, poliésteres, poliacetatos, polímeros y copolímeros de dos o más de estos y los derivados incluyendo entre otros cualquiera o más de los seleccionados de un grupo de sales de amonio, sódico o potásico de los poliácidos. pero no se limita a estos.
iii) Mezclar las dos soluciones preparadas en la etapa i) y ii) en un reactor, con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas.
iv) Adicionar a la mezcla de reacción de la etapa iii) un acomplejante primario en una concentración molar 5 a 12 M con agitación en el rango de entre 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas, en donde el acomplejante primario es seleccionado de entre amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, nonilamina, decilamina, undecilamina, dodecilamina, tridecilamina, tetradecilamina, pentadecilamina, hexadecilamina, heptadecilamina, octadecilamina, dietilamina, dipropilamina, dibutilamina, dipentilamina, dihexilamina, diheptilamina, dioctilamina, además, terbutilamina, anilina, o cualquier bases de Schiff, pero no es limitado a estos.
v) Adicionar un álcali a la mezcla de reacción de la etapa iv), hasta ajustar la mezcla a un pH > 5, preferentemente un pH entre 5 y 12,5; en donde el álcali se selecciona de entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius.
vi) Adicionar antiespumante a la mezcla de reacción de la etapa v) en una concentración no mayor de 1 % del total de la mezcla y calentar la mezcla de reacción entre 25-120°C con agitación en el rango de entre 5 a 10.000 rpm; en donde el antiespumante se selecciona de alcoholes de alto peso molar como hexanol, 1 -heptanol, 1 -octanol, 1 -nonanol, 1 - decanol, 1 -undecanol, 1 -dodecanol, 1 -tridecanol, 1 -tetradecanol, 1 - pentadecanol, 1 - hexadecanol, 1 -heptadecanol, 1 -octadecanol y cualquiera de estos con ramificaciones en su cadena principal. Además se seleccionan de alcoholes aromáticos, y cualquier antiespumante para sistemas de base acuosa como antiespumantes a base de polisiloxanos, a base de aceite mineral, a base de aceite vegetal, ya base de polímeros, pero no limitado a estos.
vii) Adicionar al menos un reductor a la mezcla de reacción en agitación en el rango de entre 5 a 10.000 rpm de la etapa vi) que se encuentra en una concentración molar 0,5 a 3 M Y mantener agitación en el rango de entre 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas de reducción; en donde el reductor se selecciona de entre monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehidos como formaldehido, formiato de amonio, acetaldehído y propanioaldehido o sales de estos, hipofosfitos, sulfitos, tetrahídroboratos, tetraalumínohídruro de litio (LiAIH4), borohidruro de sodio, polihidroxibenceno como hidroquinona y sus derivados, fenilendiaminas y sus derivados, aminofenoles y sus derivados, ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, pero no es limitado a estos.
viii) Detener la reacción de la etapa vii) enfriando a una temperatura de reacción de entre 0°C-25°C manteniendo la agitación en el rango de entre 5 a 10.000 rpm.
ix) Adicionar al menos un antioxidante pre-disuelto en agua destilada con una concentración molar 0,5 a 3 M en la mezcla de reacción de la etapa viii), en donde el antioxidante sea seleccionado de entre ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehidos como formaldehido, formato de amonio, acetaldehído y propanioaldehido o sales de estos, hipofosfitos y agentes antioxidantes similares.
x) Adicionar al menos un acomplejante secundario pre-disuelto en agua destilada en una concentración molar 0,1 a 1 ,5 M a la mezcla de reacción de la etapa ix), en donde el acomplejante secundario es seleccionado de entre ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias. De los ácidos carboxílicos y sus derivados se selecciona del grupo de ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos, como ácido benzoico, ácido fenilacético pero no es limitado a estos. Además de los siguientes ácidos dicarboxílicos: ácido etanodioico, ácido propanodioico, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido ftálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4-difenilciclobutan-1 ,2-dicarboxílico, pero no es limitado a estos. Así también el acomplejante secundario se puede seleccionar de ácidos carboxílicos insaturados: acrílico, crotónico, isocrotónico, sórbico, palmitoleico, sapiénico, oleico, eláidico, vaccénico, linoleico, linoeláidico, ácido cítrico, ácido tartárico, ácido cinámico, sin limitar a estos. Asimismo, las aminas primarias y secundarias se seleccionan de: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, , pero no es limitado a estos.
xi) Madurar la mezcla de la etapa x) por un tiempo de 1 min a 15 días, a una temperatura de 10°C a 70°C con y/o sin agitación en el rango de entre 5 a 10.000 rpm.
xii) Lavar las nanopartículas por centrifugación y/o diálisis con al menos un solvente seleccionado de entre agua, preferiblemente desionizada, solventes monopróticos como metanol, etanol, isopropanol, acetona, o una mezcla de estos, pero no es limitado a estos.
Finalmente, de manera alternativa es posible adicionar un polímero secundario o una molécula modificante en cualquiera de las etapas i), iii), iv), v), vi), vii), x), xi) y xii), en donde el polímero secundario es seleccionado del grupo de polímeros tales como poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenoglicol y polioles tales como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoico; en donde los poliácidos incluyen uno o más de los seleccionados del grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico - co - ácido metacrilico), poli(ácido maleico-co-ácido acrílico), and poli(acrilamida - ácido coacrílico), acetatos de celulosa, polivinilacetatos, polisulfonas, polifenilsulfonas, polietersulfonas, policetonas, polietercetonas, poliésteres y sus derivados, incluyendo uno o más de los seleccionados del grupo de sales de amonio, sódico o potásico de los poliácidos, polímeros inorgánicos tipo fosfacenos y en donde una molécula modificante es seleccionada del grupo de moléculas alifáticas y/o aromáticas, con 2 o más átomos de carbono, que puede incluir átomos de oxígeno, nitrógeno, azufre, fosforo o mezcla de ellos, con uno o más grupos funcionales, que además pueden ser complejos organometálicos, clústers o mezcla de átomos, grupos funcionales homo- y heteronucleares, y moléculas con propiedades químicas y física definidas, sin limitar a estos.
Con este método se obtienen nanopartículas esféricas de tamaños entre los 10 nm y los 200 nm, en donde el tamaño de las nanopartículas puede ser regulado variando la relación molar entre la sal de cobre y el estabilizante polimérico. Además, muestran un espectro UV-Vis con un plasmón que se mueve desde los 579 nm a los 595 nm.
Con estas nanopartículas obtenidas a partir del método descrito anteriormente, se prepararon membranas poliméricas, en una matriz a base de quitosano y otra depolimetilmetaacrilato (PMMA) por el método de gel-casting con contenidos de nanopartículas de hasta un 15%, en base a la matriz.
El presente método de obtención da como resultado nanopartículas de cobre con una maduración a morfologías no esféricas de las NPs de cobre que presentan variaciones en la interacción con la luz, tanto en la transmitancia como en la reflectancia de la misma.
EJEMPLOS DE APLICACIÓN
EJEMPLO 1 . Ejemplo de obtención de nanopartículas de cobre de tamaño 40 nm.
Se mezclan dos soluciones preparadas previamente: una por la disolución de 0,9983 g de la sal de cobre (CH3C00)2Cu en 20 mL de agua destilada y la otra por la disolución de 5,550 g de PVP (40 kDa) como estabilizante polimérico en 20 mL de agua destilada, por 30 min con agitación en el rango de 5 a 10000 rpm. Se adicionan a la mezcla 3,0 mL de NH3- Se agita la mezcla por 30 mino Se adicionan 0,050 g de NaOH a la mezcla anterior, para ajusfar el pH a un valor mayor a 10,5. Se adicionan 0,01 mL del antiespumante 1 - octanol, a la mezcla de reacción, y se calienta la mezcla de reacción a 95°C con agitación en el rango de 5 a 10000 rpm. Cuando se alcanza la temperatura, se adicionan 0,8495 mL de monohidrato de hidracina y se deja reaccionar la mezcla por 60 min con agitación en el rango de 5 a 10000 rpm. Al finalizar ese tiempo se detiene la reacción enfriando a 25°C de temperatura pero con agitación en el rango de 5 a 10000 rpm.
Luego, se adicionan 0,8806 g de ácido ascórbico pre-disuelto en 5 mL de agua destilada junto con 1 ,4705 g de citrato de sodio pre-disuelto en 5 mL de agua destilada.
La mezcla se deja madurar por 2 horas a temperatura de 25°C con agitación en el rango de 5 a 10000 rpm y luego se deja madurar 1 día a una temperatura de 60°C sin agitación en el rango de 5 a 10000 rpm. Las nanopartículas obtenidas ser lavan con etanol por diálisis.
En las figuras 2, 3, y 4, se muestran los resultados de los análisis de caracterización de las nanopartículas.
En la figura 2 se presenta la Distribución de tamaño (por número, según análisis DLS) de las nanopartículas de cobre metálico. Se presenta una distribución homogénea de nanopartículas de 40nm.
Los Espectro UV-Vis (Figura 3) mostraron un máximo de absorción por Plasmón de resonancia entre 573nm y 578nm indicando un tamaño nanométrico y que fue confirmado por TEM. La Figura 4, muestra que el estabilizante residual en las nanopartículas después de limpiarlas no es superior al 6%.
EJEMPLO 2.
Ejemplo de obtención de nanopartículas de cobre de tamaño 60 nm.
Se mezclan dos soluciones preparadas previamente: una por disolución de 4,9913 g de (CH3COO)2Cu en 100 mL de agua destilada y la otra por disolución de 13,8750 g de PVP (140 kD) en 100 mL de agua destilada; con 30 min de agitación en el rango de 5 a 10000 rpm. Se adicionan a la mezcla 14,95 mL de NH3 como acomplejante. Se agita la mezcla por 30 mino Se adicionan 10 mL de NaOH 5M a la mezcla anterior, para ajustar el pH a un valor mayor a 10,5. Se adicionan 0,1 mL del antiespumante (1 -octanol) a la mezcla de reacción, y se calienta la mezcla de reacción a 85°e con agitación en el rango de 5 a 10000 rpm. Al alcanzar la temperatura se adicionan 4,2473 mL de monohidrato de hidracina y se deja reaccionar la mezcla por 60 min con agitación en el rango de 5 a 10000 rpm. Al cabo de este tiempo se detiene la reacción enfriando a 21 °C de temperatura pero con agitación en el rango de 5 a 10000 rpm. Se adicionan 4,4030 g de ácido ascórbico pre-disuelto en 12,5 mL de agua destilada junto con 7,3525 g de citrato de sodio pre-disuelto en 12,5 mL de agua destilada.
La mezcla se deja madurar de 2 horas a temperatura de 25°C con agitación en el rango de 5 a 10000 rpm y luego se deja madurar 2 días a temperatura de 25°C sin agitación, en el rango de 5 a 10000 rpm Las nanopartículas así obtenidas ser lavan por diálisis con agua desionizada.
En la figura 5 se muestran los espectro UV-Vis de una muestra de este ejemplo después de sintetizado (24 horas) en comparación con aquel obtenido para las nanopartículas después de lavarlas a los 3 días. El plasmó n se mueve desde los 579 nm a los 595 nm evidenciando que no existe un crecimiento desmedido de las nanopartículas.
EJEMPLO 3
Ejemplo de obtención de nanopartículas de cobre de tamaño 100nm, en donde se muestran las propiedades ópticas de las mismas.
Se mezclan dos soluciones preparadas previamente: una por disolución de 4,9913 g de (CH3COO)2Cu en 100 mL de agua destilada y la otra por disolución de 13,8750 g de PVP (140 kD) en 100 mL de agua destilada; con 30 min de agitación en el rango de 5 a 10000 rpm. Se adicionan a la mezcla 14,95 mL de NH3 como acomplejante. Se agita la mezcla por 30 mino Se adicionan 10 mL de NaOH 5M a la mezcla anterior, para ajustar el pH a un valor mayor a 10,5. Se adicionan 0,1 mL del antiespumante (1 -octanol) a la mezcla de reacción, y se calienta la mezcla de reacción a 80°C con agitación en el rango de 5 a 10.000 rpm. Al alcanzar la temperatura se adicionan 4,2473 mL de monohidrato de hidracina y se deja reaccionar la mezcla por 60 min con agitación en el rango de 5 a 10.000 rpm. Al cabo de este tiempo se detiene la reacción enfriando a 20°C de temperatura pero con agitación en el rango de 5 a 10.000 rpm. Se adicionan 4,4030 g de ácido ascórbico pre-disuelto en 12,5 mL de agua destilada junto con 7,3525 g de citrato de sodio pre-disuelto en 12,5 mL de agua destilada.
La mezcla se deja madurar de 2 horas a temperatura de 25°C con agitación en el rango de 5 a 10.000 rpm y luego se deja madurar 15 días a temperatura de 25°C sin agitación en el rango de 5 a 10.000 rpm. Las nanopartículas así obtenidas se lavan por diálisis con agua desionizada.
En la figura 6, se muestran los Espectros UV-Vis de una muestra de nanopartículas a diferentes estadios de maduración y/o crecimiento. En la primera fase de crecimiento, se presenta un Plasmón de resonancia a 580nm, en la segunda fase un segundo plasmón aparece cerca de los 700nm cuando se inicia el crecimiento anisotropico. La tercera fase muestra claramente la presencia de los dos plasmones con igual intensidad, posterior a esto, la maduración finalmente hace que el segundo plasmón aumente su intensidad haciendo que el espectro cambie la forma
EJEMPLO 4
Ejemplo de nanopartículas de cobre de un tamaño de150nm con propiedades ópticas.
Se mezclan dos soluciones preparadas previamente: una por disolución de 9,9825 g de (CH3COO)2Cu en 200 mL de agua destilada y la otra por disolución de 55,5000 g de PVP (140 kD) en 200 mL de agua destilada; con 30 min de agitación en el rango de 5 a 10000 rpm. Se adicionan a la mezcla 30 mL de NH3 como acomplejante. Se agita la mezcla por 30 mino Se adicionan 20 mL de NaOH 5M a la mezcla anterior, para ajustar el pH a un valor mayor a 10,5. Se adicionan 0,3 mL del antiespumante (1 -octanol) a la mezcla de reacción, y se calienta la mezcla de reacción a 70cC con agitación en el rango de 5 a 10000 rpm. Al alcanzar la temperatura se adicionan 4,2473 mL de monohidrato de hidracina y se deja reaccionar la mezcla por 60 min con agitación en el rango de 5 a 10000 rpm. Al cabo de este tiempo se detiene la reacción enfriando a 18°C de temperatura pero con agitación en el rango de 5 a 10000 rpm. Se adicionan 8,8060 g de ácido ascórbico pre-disuelto en 50,0 mL de agua destilada junto con 14,7050 g de citrato de sodio pre-disuelto en 50,0 mL de agua destilada. La mezcla se deja madurar de 24 horas a temperatura de 60°C con agitación en el rango de 5 a 10000 rpm y luego se deja madurar 15 días a temperatura de 25°C sin agitación en el rango de 5 a 10000 rpm. Las nanopartículas así obtenidas ser lavan por diálisis.
Con las nanopartículas obtenidas en el ejemplo 4, se procede a preparar dos membranas poliméricas, una a matriz base de quitosano y otra a base de polimetilmetaacrilato (PMMA) por el método de gel-casting con contenidos de nanopartículas de hasta un 15% de la matriz base. Las membranas mostraron un color diferente al ser observadas con diferentes ángulos de iluminación. Para evaluar este efecto se midió el espectro de absorción de luz UV-visible por dos métodos, uno mediante la medición con reflectancia difusa (luz reflejada) y otro de absorción (luz transmitida).
En la figura 7 se muestran los resultados de este análisis de las propiedades ópticas de las nanopartículas debidas al crecimiento anisotrópico. El trazo continuo con cuadrados es el espectro tomado por reflectancia difusa y el trazo discontinuo con círculos es el espectro tomado por transmisión (espectro de absorción). El cambio en el perfil indica que existen diferencias en la forma en que interactúan las nanopartículas con la luz (forma trasmitida y/o reflejada). Este tipo de comportamiento de las nanopartículas frente a la luz, es obtenible únicamente por el método de la invención, junto a la elevada estabilidad y la producción en medio acuoso y con atmosfera abierta constituye grandes ventajas frente a los demás métodos conocidos en el estado del arte para la aplicación de las nanopartículas de cobre en el cableado, encapsulamiento, y conexiones eléctricas en electrónica y microelectrónica; conductores transparentes de alto rendimiento para pantallas táctiles, sensores capacitivos, blindajes contra interferencia electromagnética y uso de NPs o compositos de las mismas como bactericidas para protección ambiental, textiles y vestuario, alimentos, o la manufactura de electrodomésticos con recubrimiento a base de ese tipo de materiales

Claims

REIVINDICACIONES
1 . Un método de obtención de nanopartículas de cobre CARACTERIZADO porque comprende las siguientes etapas:
i) disolver en un recipiente al menos una sal, oxido o hidróxido de cobre en agua, preferentemente agua destilada, hasta lograr una solución de una concentración desde 0,1 M hasta 1 ,5 M;
ii) disolver en un recipiente al menos un estabilizante en agua, preferentemente destilada, hasta lograr una solución de estabilizante de una concentración desde
0,5 hasta 20 M;
iii) mezclar las dos soluciones en un reactor y mantener con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de entre 1 min y 24 horas;
iv) adicionar a la mezcla de reacción obtenida en la etapa iii) al menos un acomplejante primario en una concentración molar desde 5 hasta 12 M, agitando la mezcla de reacción de acomplejamiento por un tiempo entre 1 min y 24 horas;
v) adicionar un álcali a la mezcla de reacción anterior, hasta ajustar la mezcla a un pH > 5;
vi) luego adicionar un antiespumante a la mezcla de reacción en una concentración no mayor a 1 % del total de la mezcla y calentar la mezcla de reacción entre 25- 120°C con agitación en el rango de entre 5 a 10.000 rpm;
vii) adicionar al menos un reductor a la mezcla de reacción de la etapa vi) con agitación en el rango de entre 5 a 10.000 rpm que se encuentra en una concentración molar desde 0,5 hasta 3 M; agitando la mezcla de reacción por un tiempo entre 1 min y 24 horas de reducción;
viii) detener la reacción enfriando a una temperatura de reacción de entre 0°C a 25°C manteniendo la agitación en el rango de entre 5 a 10.000 rpm;
ix) adicionar al menos un antioxidante pre-disuelto en agua destilada con una concentración molar desde 0,5 hasta 3 M;
x) adicionar al menos un acomplejante secundario pre-disuelto en agua destilada en una concentración molar desde 0,1 hasta 1 ,5 M;
xi) madurar la mezcla de la etapa x) por un tiempo de 1 min a 15 días, a una temperatura de 10°C a 70°C con o sin agitación en el rango de entre 5 a 10.000 rpm;
xii) lavar las nanopartículas por centrifugación y/o diálisis con al menos un solvente.
2. El método de obtención de nanopartículas de cobre de acuerdo a la reivindicación 1 , CARACTERIZADO porque la sal, oxido o hidróxido de cobre de la etapa i) es seleccionado desde el grupo que consiste de cloruro de cobre (I) (CuCI), cloruro de cobre (II) (CuCI2), cianuro de cobre (I) (CuCN), sulfato de cobre (CuS04), nitrato de cobre (Cu(N03)2, acetato de cobre (CH3COO)2Cu, carbonato de cobre (CuC03), acetilacetonato de cobre C5H7Cu02, perclorato de cobre (II), estearato de cobre (II), etilendiamina de cobre (II), trifluoroacetilacetonato de cobre (II), hexafluoroacetilacetonato de cobre (II), formiato de cobre (II), metacrilato de cobre (II), neodecanoato de cobre (II), etilhexanoato de cobre (II), trifluroacetato de cobre (II), oxido de cobre (I) (Cu20), oxido de Cobre (II) (CuO), hidróxido de cobre (II) (CuOH)2.
3. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 2, CARACTERIZADO porque el estabilizante de la etapa ii) se selecciona desde el grupo que consiste de polímeros tales como poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenoglicol y polioles tales como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoico; en donde los poliácidos incluyen uno o más de los seleccionados del grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico - co - ácido metacrilíco), poli(ácido maleico-co-ácido acrílico), and poli(acrilamida - ácido coacrílico), acetatos de celulosa, polivinilacetatos, polisulfonas, polifenilsulfonas, polietersulfonas, policetonas, polietercetonas, poliésteres y sus derivados, incluyendo uno o más de los seleccionados del grupo de sales de amonio, sódico o potásico de los poliácidos.
4. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 3, CARACTERIZADO porque el acomplejante primario de la etapa iv) es seleccionado del grupo que consiste en amoniaco (NH3), hidróxido de amonio y del grupo de aminas primarias y secundarias tales como isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, nonilamina, decilamina, undecilamina, dodecilamina, tridecilamina, tetradecilamina, pentadecilamina, hexadecilamina, heptadecilamina, octadecilamina, dietilamina, dipropilamina, dibutilamina, dipentilamina, dihexilamina, diheptilamina, dioctilamina, terbutilamina, anilina o bases de Schiff.
5. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 4, CARACTERIZADO porque el álcali de la etapa v) se selecciona de entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), de bario (Ba(OH)2), de calcio (Ca(OH)2) y bases de Arrhenius.
6. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 5, CARACTERIZADO porque el antiespumante de la etapa vi) se selecciona de alcoholes de alto peso molar tales como hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol y sus derivados ramificados; en donde además el antiespumante es seleccionado de alcoholes aromáticos, y cualquier antiespumante para sistemas de base acuosa como antiespumantes a base de polisiloxanos, a base de aceite mineral, a base de aceite vegetal, ya base de polímeros.
7. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 6, CARACTERIZADO porque el reductor de la etapa vii) se selecciona de entre monohidrato de hidracina y sus derivados; hidroxilamina y sus derivados; alcoholes monohídricos tales como metanol, etanol; aldehidos tales como formaldehido, formiato de amonio, acetaldehído y propanioaldehido o sales de estos; hipofosfitos, sulfitos, tetrahidroboratos, tetraaluminohidruro de litio (LiAIH4), borohidruro de sodio, polihidroxibenceno como hidroquinona y sus derivados, fenilendiaminas y sus derivados, aminofenoles y sus derivados, ácidos carboxílicos y sus derivados tales como ácido ascórbico y ácido cítrico.
8. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 7, CARACTERIZADO porque el antioxidante de la etapa ix) se selecciona de entre ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos tales como metanol, etanol, aldehidos como formaldehido, formiato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos.
9. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 8, CARACTERIZADO porque el acomplejante secundario x) es seleccionado de entre ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias.
10. El método de obtención de nanopartículas de cobre de acuerdo a la reivindicación 9, CARACTERIZADO porque los ácidos carboxílicos y sus derivados seleccionan de entre ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos.
1 1 . El método de obtención de nanopartículas de cobre de acuerdo a la reivindicación 10, CARACTERIZADO porque los ácidos carboxílicos alifáticos y aromáticos se seleccionan de entre acido benzoico y ácido fenilacético.
12. El método de obtención de nanopartículas de cobre de acuerdo a la reivindicación 9, CARACTERIZADO porque los ácidos dicarboxílicos se seleccionan de entre ácido etanodioico, ácido propanodioico, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido ftálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4-difenilciclobutan-1 ,2-dicarboxílico.
13. El método de obtención de nanopartículas de cobre de acuerdo a la reivindicación 9, CARACTERIZADO porque las aminas primarias y secundarias se seleccionan de entre isopropilamina, butilamina, pentilamina, hexilamina, heptilamina y octilamina.
14. El método de obtención de nanopartículas de cobre de acuerdo a las reivindicaciones 1 a 13, CARACTERIZADO porque el solvente de la etapa xii) es seleccionado entre agua, preferiblemente desionizada, y solventes monopróticos tales como metanol, etanol, isopropanol, acetona.
15. El método de obtención de nanopartículas de cobre de acuerdo a la reivindicación 1 , CARACTERIZADO porque en la etapa v) el pH se debe ajustar a un valor entre 5 y
12,5.
16. El método de obtención de nanopartículas de cobre de acuerdo a la reivindicación 1 , CARACTERIZADO porque se adiciona un polímero secundario o una molécula modificante en cualquiera de las etapas i), iii), iv), v), vi), vii), x), xi) y xii), en donde el polímero secundario es seleccionado del grupo de polímeros tales como poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenoglicol y polioles tales como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoico; en donde los poliácidos incluyen uno o más de los seleccionados del grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico - co - ácido metacrílico), poli(ácido maleico-co-ácido acrílico), and poli(acrilamida - ácido coacrílico), acetatos de celulosa, polivinilacetatos, polisulfonas, polifenilsulfonas, potietersulfonas, policetonas, polietercetonas, poliésteres y sus derivados, incluyendo uno o más de los seleccionados del grupo de sales de amonio, sódico o potásico de los poliácidos y polímeros inorgánicos tipo fosfacenos y en donde una molécula modificante es seleccionada del grupo de. moléculas alifáticas y/o aromáticas, con 2 o más átomos de carbono, que puede incluir átomos de oxígeno, nitrógeno, azufre, fosforo o mezcla de ellos, con uno o más grupos funcionales, que además pueden ser complejos organometálicos, clúster o mezcla de átomos, grupos funcionales horno- y heteronucleares.
17. Nanopartículas de cobre obtenidas de acuerdo al método descrito en las reivindicaciones 1 a 16, CARACTERIZADAS porque comprenden un tamaño entre los 10 nm a los 200 nm, y muestran un espectro UV-Vis con un plasmón que se mueve desde los 579 nm a los 595 nm.
18. Uso de las nanopartículas de cobre obtenidas de acuerdo al método descrito en las reivindicaciones 1 a 16, CARACTERIZADO porque sirve para preparar membranas poliméricas.
PCT/IB2016/058110 2015-12-30 2016-12-30 Método de obtención de nano partículas de cobre y uso de dichas partículas WO2017115330A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16881386.3A EP3398700A4 (en) 2015-12-30 2016-12-30 PROCESS FOR THE PRODUCTION OF COPPER NANOPARTICLES AND USE OF THESE PARTICLES
CN201680081407.9A CN108778569B (zh) 2015-12-30 2016-12-30 用于获得纳米铜颗粒的方法和这些颗粒的用途
US16/067,298 US20180297121A1 (en) 2015-12-30 2016-12-30 Method for producing copper nanoparticles and use of said particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2015003794A CL2015003794A1 (es) 2015-12-30 2015-12-30 Método de obtención de nano partículas de cobre y uso de dichas partículas
CL201503794 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017115330A1 true WO2017115330A1 (es) 2017-07-06

Family

ID=56610122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/058110 WO2017115330A1 (es) 2015-12-30 2016-12-30 Método de obtención de nano partículas de cobre y uso de dichas partículas

Country Status (5)

Country Link
US (1) US20180297121A1 (es)
EP (1) EP3398700A4 (es)
CN (1) CN108778569B (es)
CL (1) CL2015003794A1 (es)
WO (1) WO2017115330A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190193061A1 (en) * 2017-12-22 2019-06-27 Universidad De Chile Method for preparing laminar zinc hydroxide organic-inorganic nanocomposites for use in the removal and degradation of dyes from textile effluents
WO2020077879A1 (zh) * 2018-10-17 2020-04-23 深圳先进技术研究院 一种自组装铜球、导电油墨及其制备方法和应用

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715888B (zh) * 2019-03-20 2023-10-24 香港科技大学 铜基纳米结构体、其制备方法、透明导电膜及电子装置
CN110052232A (zh) * 2019-03-21 2019-07-26 常州大学 一种高吸附性能纳米Cu2O超声辅助制备方法
CN110697680A (zh) * 2019-10-18 2020-01-17 龙岩学院 一种高比表面积的杂原子掺杂多孔碳材料及其制备方法
CN111097923A (zh) * 2020-02-25 2020-05-05 南宁师范大学 一种以间氨基苯酚为还原剂制备金纳米棒的方法
CN111529756B (zh) * 2020-06-23 2021-04-06 北京大学 一种骨科植入器械表面涂层的制备方法
CN111715891B (zh) * 2020-06-29 2023-06-20 太原师范学院 一种铜纳米颗粒溶液及其制备方法和应用
CN111889692B (zh) * 2020-07-09 2022-10-14 荆楚理工学院 一种单分散超细铜粉及其制备方法
CN111975011B (zh) * 2020-07-20 2022-01-18 华南理工大学 一种芯片无压烧结互连用纳米铜浆及其制备方法与应用
CN112497374A (zh) * 2020-11-28 2021-03-16 无锡市森泰木制品有限公司 一种环保抗菌实木地板的制备方法
CN112548096A (zh) * 2020-12-14 2021-03-26 中北大学 一种钴包覆陶瓷复合粉末及其制备方法和应用
BR102020026481A2 (pt) * 2020-12-22 2022-07-05 Cecil S/A Laminação De Metais Processo para produção de agente antimicrobiano e antiviral híbrido de nanopartículas de cobre e compostos orgânicos ativos, agente antimicrobiano e antiviral assim produzido e, uso do agente antimicrobiano e antiviral
CN112919526A (zh) * 2021-03-31 2021-06-08 辽宁工程技术大学 一种氧化亚铜纳米材料制备方法
CN113229292B (zh) * 2021-05-17 2022-03-11 泉州师范学院 一种Cu/C复合纳米片层材料及其制备方法与应用
CN113996799B (zh) * 2021-10-08 2024-02-02 郑州工程技术学院 铜纳米材料的制备方法
CN115121259B (zh) * 2022-05-10 2024-03-22 陕西师范大学 氧化亚铜@金纳米模拟酶及制备方法和应用
CN115255381B (zh) * 2022-08-08 2024-06-25 淮安中顺环保科技有限公司 一种水溶性纳米铜粉的宏量制备方法
CN115283689B (zh) * 2022-08-09 2024-06-21 北京化工大学 具有自身抗氧化性的铜纳米材料的制备方法和由该方法制得的铜纳米材料
CN115386226B (zh) * 2022-08-25 2023-08-18 四川大学 一种聚醚砜抗氧化微球、其制备方法及用途
CN115676871B (zh) * 2022-11-04 2023-12-05 安徽铜冠产业技术研究院有限责任公司 一种纳米氧化铜粉体的制备工艺
US11801553B1 (en) 2022-11-29 2023-10-31 King Faisal University Method for making carbon-coated copper nanoparticles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048316A2 (en) * 2005-12-20 2008-04-24 Pchem Associates, Inc. Synthesis of metallic nanoparticle dispersions
US20100172997A1 (en) * 2008-12-30 2010-07-08 University Of North Texas Gold, silver, and copper nanoparticles stabilized in biocompatible aqueous media
US20120037041A1 (en) * 2008-12-12 2012-02-16 Ulrich Nolte Method for producing metal nanoparticles and nanoparticles obtained in this way and use thereof
WO2015132719A1 (en) * 2014-03-03 2015-09-11 P.V. Nano Cell Ltd. Nanometric copper formulations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593699B2 (ja) * 2008-02-07 2014-09-24 旭硝子株式会社 水素化銅ナノ粒子、その製造方法、金属ペーストおよび物品
WO2010108837A1 (en) * 2009-03-24 2010-09-30 Basf Se Preparation of shaped metal particles and their uses
CN101693297B (zh) * 2009-10-16 2011-06-08 厦门大学 一种不同粒径铜纳米粒子的制备方法
CN102205422A (zh) * 2011-01-17 2011-10-05 深圳市圣龙特电子有限公司 一种电子浆料用纳米铜粉及其制作工艺
JP5450725B2 (ja) * 2011-08-30 2014-03-26 富士フイルム株式会社 コラーゲンペプチド被覆銅ナノ粒子、コラーゲンペプチド被覆銅ナノ粒子分散物、コラーゲンペプチド被覆銅ナノ粒子の製造方法、導電性インク、導電膜の製造方法、及び導体配線

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048316A2 (en) * 2005-12-20 2008-04-24 Pchem Associates, Inc. Synthesis of metallic nanoparticle dispersions
US20120037041A1 (en) * 2008-12-12 2012-02-16 Ulrich Nolte Method for producing metal nanoparticles and nanoparticles obtained in this way and use thereof
US20100172997A1 (en) * 2008-12-30 2010-07-08 University Of North Texas Gold, silver, and copper nanoparticles stabilized in biocompatible aqueous media
WO2015132719A1 (en) * 2014-03-03 2015-09-11 P.V. Nano Cell Ltd. Nanometric copper formulations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEN AISSA, M. ET AL.: "Copper nanoparticles of well-controlled size and shape: a new advance in synthesis and self-organization", NANOSCALE, vol. 7, January 2015 (2015-01-01), pages 3189 - 3195, XP055321628 *
See also references of EP3398700A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190193061A1 (en) * 2017-12-22 2019-06-27 Universidad De Chile Method for preparing laminar zinc hydroxide organic-inorganic nanocomposites for use in the removal and degradation of dyes from textile effluents
WO2019123412A1 (en) * 2017-12-22 2019-06-27 Universidad De Chile Preparing laminar zinc hydroxide organic-inorganic nanocomposites for use in removal and degradation of dyes from textile effluents
US10987663B2 (en) * 2017-12-22 2021-04-27 Universidad De Chile Method for preparing laminar zinc hydroxide organic-inorganic nanocomposites for use in the removal and degradation of dyes from textile effluents
WO2020077879A1 (zh) * 2018-10-17 2020-04-23 深圳先进技术研究院 一种自组装铜球、导电油墨及其制备方法和应用

Also Published As

Publication number Publication date
US20180297121A1 (en) 2018-10-18
EP3398700A4 (en) 2019-08-07
EP3398700A1 (en) 2018-11-07
CN108778569B (zh) 2021-10-29
CL2015003794A1 (es) 2016-07-29
CN108778569A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017115330A1 (es) Método de obtención de nano partículas de cobre y uso de dichas partículas
US9080255B2 (en) Method of producing silver nanowires in large quantities
Mavani et al. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent
Lignier et al. Scalable strategies for the synthesis of well-defined copper metal and oxide nanocrystals
Li et al. Rapid microwave-assisted preparation and characterization of cellulose–silver nanocomposites
Siddiqui et al. Synthesis and characterization of silver oxide and silver chloride nanoparticles with high thermal stability
KR20080035315A (ko) 은 나노입자의 제조방법 및 이에 의하여 제조되는 은나노입자
Carp et al. Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures
JP2008075181A (ja) マイクロ波を用いた銅ナノ粒子の製造方法
WO2012022332A2 (de) Verfahren zur herstellung von silber-nanodrähten
KR101561859B1 (ko) 안정화된 금속 염 입자의 형성 방법
WO2011033040A2 (en) Antibacterial particles and their synthesis
Sun et al. Facile one-pot green synthesis of Au–Ag alloy nanoparticles using sucrose and their composition-dependent photocatalytic activity for the reduction of 4-nitrophenol
CN1249276C (zh) 化学沉淀法制备稳定的纳米氧化亚铜晶须的方法
Costa et al. Synthesis and characterization of Nd (OH) 3-ZnO composites for application in photocatalysis and disinfection
Darroudi et al. Neuronal toxicity of biopolymer-template synthesized ZnO nanoparticles
WO2007032001A2 (en) Method for preparation of silver-polymer composites by sonochemical deposition
KR101021960B1 (ko) 고분자로 코팅되어 있는, 다양한 크기와 모양의 금 나노입자 및 그 제조방법
Mei et al. White luminescent hybrid soft materials of lanthanide (Eu3+, Sm3+) beta-diketonates and Ag/Ag2S nanoparticles based with thiol-functionalized ionic liquid bridge
Zaheer et al. Reversible encapsulation of silver nanoparticles into the helix of amylose (water soluble starch)
Shin et al. Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials.
Lavrynenko et al. Morphology, phase and chemical composition of the nanostructures formed in the systems containing lanthanum, cerium, and silver
CN111347060A (zh) 一种可控粒径大小的纳米银胶制备方法
Spadaro et al. PMA capped silver nanoparticles produced by UV-enhanced chemical process
Gönen et al. Zinc stearate production by precipitation and fusion processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 16067298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881386

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881386

Country of ref document: EP

Effective date: 20180730