WO2017110586A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2017110586A1
WO2017110586A1 PCT/JP2016/087079 JP2016087079W WO2017110586A1 WO 2017110586 A1 WO2017110586 A1 WO 2017110586A1 JP 2016087079 W JP2016087079 W JP 2016087079W WO 2017110586 A1 WO2017110586 A1 WO 2017110586A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
mass addition
film
films
electrode fingers
Prior art date
Application number
PCT/JP2016/087079
Other languages
English (en)
French (fr)
Inventor
克也 大門
玉崎 大輔
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017518372A priority Critical patent/JP6424958B2/ja
Priority to CN201680069692.2A priority patent/CN108292913B/zh
Priority to KR1020187014678A priority patent/KR102011468B1/ko
Priority to DE112016005980.9T priority patent/DE112016005980T5/de
Publication of WO2017110586A1 publication Critical patent/WO2017110586A1/ja
Priority to US15/983,315 priority patent/US11374550B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02858Means for compensation or elimination of undesirable effects of wave front distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device using a piston mode.
  • Patent Document 1 an example of an acoustic wave device using a piston mode is shown.
  • This elastic wave device has an intersecting region where a plurality of first electrode fingers and a plurality of second electrode fingers of an IDT electrode overlap when viewed in the elastic wave propagation direction.
  • the intersecting region includes a central region in the direction in which the first and second electrode fingers extend, and first and second edge regions provided outside the central region in the extending direction of the first and second electrode fingers.
  • a dielectric film is laminated on the piezoelectric substrate so as to cover the IDT electrode.
  • a titanium layer is embedded in portions of the dielectric film located in the first and second edge regions.
  • An object of the present invention is to provide an acoustic wave device that can reduce the influence of film thickness variation in the intersecting region of IDT electrodes and can sufficiently suppress transverse mode spurious.
  • An elastic wave device includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, wherein the IDT electrode is opposed to each other, the first and second bus bars, and the first A plurality of first electrode fingers having one end connected to one bus bar, and a plurality of second electrode fingers having one end connected to the second bus bar.
  • the intersecting region is A central region located on the center side in the direction in which the first and second electrode fingers extend, and first and second edge regions disposed on both sides of the central region, the IDT electrode being A first dielectric provided on the piezoelectric substrate so as to cover A film and a first dielectric film, each extending along a direction in which each of the first and second electrode fingers extends, and provided in the central region; A first mass-added film that overlaps the plurality of first and second electrode fingers, and is provided on the first dielectric film and provided in the first edge region.
  • a second mass-added film that partially overlaps at least one of the first and second electrode fingers, And a third mass addition film provided in the second edge region and partially overlapping at least one of the first and second electrode fingers in plan view, More than the dimension along the elastic wave propagation direction of the first mass addition film, the second and second The longer dimension along the elastic wave propagation direction of the mass adding film.
  • the sound velocity of the elastic wave in the central region is V1
  • the sound velocity of the elastic wave in the first and second edge regions is V2
  • the acoustic velocity of the elastic wave in the region located between the first bus bar and in the region located between the second edge region and the second bus bar is V3> V1> V2.
  • the material density of the first to third mass addition films is higher than the material density of the IDT electrode. In this case, the excitation efficiency of the IDT electrode can be effectively increased.
  • the second and third mass addition films extend over the entire length of the first and second edge regions in the elastic wave propagation direction. In this case, the sound speed in the first and second edge regions can be effectively reduced. Therefore, transverse mode spurious can be further suppressed.
  • the acoustic wave device includes a plurality of the second mass addition films, and the plurality of second mass addition films are arranged with a gap therebetween in the acoustic wave propagation direction.
  • Each of the second mass-added films overlaps each of the first and second electrode fingers in a plan view over the entire length of the first and second electrode fingers in the elastic wave propagation direction.
  • a plurality of the third mass addition films wherein the plurality of third mass addition films are disposed with a gap therebetween in the elastic wave propagation direction, and each of the third mass addition films is a flat surface.
  • the first and second electrode fingers overlap the entire length of the first and second electrode fingers in the elastic wave propagation direction.
  • the first to third mass addition films can be easily formed using the lift-off method. Therefore, productivity can be improved.
  • the first mass addition film and the second and third mass addition films are connected.
  • the first mass addition film and the second and third mass addition films are in a direction perpendicular to the elastic wave propagation direction. , Arranged with a gap.
  • the elastic wave device in the elastic wave propagation direction of the first mass addition film, rather than the dimension along the elastic wave propagation direction of each of the first and second electrode fingers.
  • the dimension along is shorter. In this case, the sound speed in the central region is unlikely to be slow. Therefore, transverse mode spurious can be further suppressed.
  • the elastic wave device further includes a second dielectric film laminated between the piezoelectric substrate and the IDT electrode.
  • the electromechanical coupling coefficient can be adjusted.
  • the elastic wave device According to the elastic wave device according to the present invention, it is possible to reduce the influence of the film thickness variation in the intersecting region of the IDT electrodes, and to sufficiently suppress the transverse mode spurious.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG.
  • FIG. 3 shows the widths of the second and third mass addition films in the acoustic wave device when the thickness of the first to third mass addition films in the first embodiment of the present invention is 95 nm. It is a figure which shows the relationship with the effective electromechanical coupling coefficient of the next and higher order.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG.
  • FIG. 3 shows the widths of the second and third mass addition films in the acoustic wave device when the thickness of the first to third mass addition films in the first embodiment of the present invention is 95 nm. It is a figure which shows the relationship with the effective electromechanical coupling coefficient of the next and higher order.
  • FIG. 4 shows the widths of the second and third mass addition films in the acoustic wave device when the thickness of the first to third mass addition films in the first embodiment of the present invention is 70 nm, and 1 It is a figure which shows the relationship with the effective electromechanical coupling coefficient of the next and higher order.
  • FIG. 5 shows the widths of the second and third mass addition films in the acoustic wave device when the thickness of the first to third mass addition films in the first embodiment of the present invention is 120 nm, and 1 It is a figure which shows the relationship with the effective electromechanical coupling coefficient of the next and higher order.
  • FIG. 5 shows the widths of the second and third mass addition films in the acoustic wave device when the thickness of the first to third mass addition films in the first embodiment of the present invention is 120 nm, and 1 It is a figure which shows the relationship with the effective electromechanical coupling coefficient of the next and higher order.
  • FIG. 6 shows the widths of the second and third mass addition films in the acoustic wave device and the primary and higher order effective values when the thickness of the second and third mass addition films in the comparative example is 6 nm. It is a figure which shows the relationship with an electromechanical coupling coefficient.
  • FIG. 7 shows the widths of the second and third mass addition films in the acoustic wave device when the film thickness of the second and third mass addition films in the comparative example is 4.5 nm, and the primary and higher orders. It is a figure which shows the relationship with the effective electromechanical coupling coefficient of no.
  • FIG. 8 shows the widths of the second and third mass addition films in the acoustic wave device when the film thickness of the second and third mass addition films in the comparative example is 7.5 nm.
  • FIG. 9 is a plan view of an acoustic wave device according to a first modification of the first embodiment of the present invention.
  • FIG. 10 is a plan view of an acoustic wave device according to a second modification of the first embodiment of the present invention.
  • FIG. 11 is an enlarged front cross-sectional view of an acoustic wave device according to a third modification of the first embodiment of the present invention.
  • FIG. 12 is a plan view of an acoustic wave device according to a fourth modification of the second embodiment of the present invention.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II in FIG. In FIG. 1, a dielectric film on first to third mass addition films described later is omitted.
  • the acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 or an appropriate piezoelectric ceramic.
  • An IDT electrode 3 is provided on the piezoelectric substrate 2.
  • the IDT electrode 3 includes first and second bus bars 3a1 and 3b1 that face each other.
  • the IDT electrode 3 has a plurality of first electrode fingers 3a2, one end of which is connected to the first bus bar 3a1. Further, the IDT electrode 3 has a plurality of second electrode fingers 3b2 having one end connected to the second bus bar 3b1.
  • the plurality of first and second electrode fingers 3a2 and 3b2 are interleaved with each other.
  • a portion where the first electrode finger 3a2 and the second electrode finger 3b2 overlap in the elastic wave propagation direction is defined as an intersection region A.
  • the intersection region A has a central region A1 located on the central side in the direction in which the first and second electrode fingers 3a2 and 3b2 extend.
  • the intersecting region A also includes first and second edge regions A2a and A2b arranged on both sides of the central region A1 in the direction in which the first and second electrode fingers 3a2 and 3b2 extend.
  • the first edge region A2a is located on the first bus bar 3a1 side
  • the second edge region A2b is located on the second bus bar 3b1 side.
  • the IDT electrode 3 has first and second outer regions Ba and Bb, which are regions opposite to the central region A1 side of the first and second edge regions A2a and A2b.
  • the first outer region Ba is located between the first edge region A2a and the first bus bar 3a1.
  • the second outer region Bb is located between the second edge region A2b and the second bus bar 3b1.
  • the IDT electrode 3 is made of Al.
  • the IDT electrode 3 may be made of an appropriate metal other than Al.
  • the IDT electrode 3 may be made of a single-layer metal film or a laminated metal film.
  • the elastic wave device 1 is an elastic wave device using a piston mode.
  • the sound velocity of the elastic wave in the central region A1 is V1
  • the sound velocity of the elastic wave in the first and second edge regions A2a and A2b is V2
  • the sound velocity of the elastic wave in the first and second outer regions Ba and Bb is V3.
  • transverse mode spurious can be effectively suppressed.
  • the relationship between the above sound speeds V1, V2, and V3 is shown in FIG. In addition, it shows that a sound speed is high as it goes to the left side in FIG.
  • a first dielectric film 4 is provided on the piezoelectric substrate 2 so as to cover the IDT electrode 3.
  • the first dielectric film 4 is not particularly limited, but is made of SiO 2 .
  • first to third mass addition films 5 a to 5 c are provided so as to overlap the first and second electrode fingers 3 a 2 and 3 b 2 in plan view. More specifically, a plurality of first mass addition films 5a are provided in the central region A1. The plurality of first mass addition films 5a extend along the direction in which the first and second electrode fingers 3a2 and 3b2 extend, and extend over the entire length of the central region A1 in the direction. The plurality of first mass addition films 5a are provided with a gap therebetween in the elastic wave propagation direction. The plurality of first mass addition films 5a includes a first mass addition film 5a that overlaps the first electrode finger 3a2 and a first mass addition film that overlaps the second electrode finger 3b2 in plan view.
  • membrane 5a be a width
  • the width of each first mass addition film 5a is narrower than the width of each of the first and second electrode fingers 3a2 and 3b2.
  • the second mass addition film 5b is provided in the first edge region A2a.
  • the second mass addition film 5b extends over the entire length of the first edge region A2a in the elastic wave propagation direction.
  • the third mass addition film 5c is provided in the second edge region A2b.
  • the third mass addition film 5c extends over the entire length of the second edge region A2b in the elastic wave propagation direction.
  • the dimension along the elastic wave propagation direction of the second mass addition film 5b and the third mass addition film 5c is longer than the dimension along the elastic wave propagation direction of the first mass addition film 5a.
  • the plurality of first mass addition films 5a and the second and third mass addition films 5b and 5c are continuous.
  • the first to third mass addition films 5a to 5c are made of Pt.
  • the first to third mass addition films 5a to 5c may be made of an appropriate metal other than Pt.
  • the material density of the first to third mass addition films 5 a to 5 c is preferably higher than the material density of the IDT electrode 3. Thereby, the excitation efficiency of the IDT electrode 3 can be effectively increased.
  • the first to third mass addition films 5a to 5c may be made of a single layer metal film or may be made of a laminated metal film.
  • a dielectric layer 6 is provided on the first dielectric film 4.
  • the dielectric layer 6 covers the first to third mass addition films 5a to 5c shown in FIG.
  • the dielectric layer 6 includes a first layer 6a located on the first dielectric film 4 side, and a second layer 6b stacked on the first layer 6a.
  • the first layer 6a may be made of SiO 2 or the like
  • the second layer 6b may be made of SiN or the like.
  • the dielectric layer 6 may be a single layer.
  • the feature of this embodiment is that the first to third mass addition films 5a to 5c are provided so as to overlap the intersection region A of the IDT electrode 3 in plan view. Thereby, the influence of the variation in film thickness in the intersecting region A of the IDT electrode 3 can be reduced. Furthermore, transverse mode spurious can be sufficiently suppressed. This will be described below.
  • the portion of the IDT electrode 3 located in the first outer region Ba is only the first electrode finger 3a2.
  • the portion of the IDT electrode 3 located in the second outer region Bb is only the second electrode finger 3b2.
  • the first to third mass addition films 5a to 5c are provided, so that the sound speed is slow. Accordingly, in the acoustic wave device 1, V3> V1 and V3> V2 are set.
  • a plurality of first mass addition films 5a are provided with a gap in the elastic wave propagation direction.
  • the second and third mass addition films 5b and 5c extend over the entire length of the intersecting region A in the elastic wave propagation direction.
  • region A2a, A2b can be enlarged. Therefore, the mass added to the IDT electrode 3 can be increased in the first and second edge regions A2a and A2b. Therefore, the sound velocity V2 in the first and second edge regions A2a and A2b can be effectively reduced.
  • it can be set as V1> V2, and the difference of the sound speed V1 and the sound speed V2 can be enlarged. Therefore, transverse mode spurious can be effectively suppressed.
  • the dimension of the second and third mass addition films 5b and 5c in the direction perpendicular to the elastic wave propagation direction is the width of the second and third mass addition films 5b and 5c.
  • the second and third mass addition films 5b and 5c have the same width.
  • FIG. 3 shows the widths of the second and third mass addition films in the acoustic wave device when the film thickness of the first to third mass addition films in the first embodiment is 95 nm, and the primary and high values. It is a figure which shows the relationship with the following effective electromechanical coupling coefficient.
  • FIG. 4 shows the widths of the second and third mass addition films in the acoustic wave device when the film thicknesses of the first to third mass addition films in the first embodiment are set to 70 nm, and the primary and high values. It is a figure which shows the relationship with the following effective electromechanical coupling coefficient.
  • FIG. 4 shows the widths of the second and third mass addition films in the acoustic wave device when the film thicknesses of the first to third mass addition films in the first embodiment are set to 70 nm, and the primary and high values. It is a figure which shows the relationship with the following effective electromechanical coupling coefficient.
  • FIG. 5 shows the widths of the second and third mass addition films in the acoustic wave device when the film thickness of the first to third mass addition films in the first embodiment is 120 nm, and the primary and high values. It is a figure which shows the relationship with the following effective electromechanical coupling coefficient. When obtaining the relationships shown in FIGS. 3 to 5, the film thickness of the IDT electrode was 20 nm.
  • the diamond-shaped plots and solid lines in FIGS. 3 to 5 indicate the primary effective electromechanical coupling coefficient. Rectangular plots and dashed lines indicate third order effective electromechanical coupling coefficients. The triangular plot and the broken line show the fifth-order effective electromechanical coupling coefficient. The X-shaped plot and the broken line show the seventh-order effective electromechanical coupling coefficient. The I-shaped plot and the dashed line indicate the 9th order effective electromechanical coupling coefficient. Circular plots and dashed lines indicate 11th order effective electromechanical coupling coefficients. The value of the first order effective electromechanical coupling coefficient is shown on the right vertical axis, and the value of the third or higher order effective electromechanical coupling coefficient is shown on the left vertical axis. The relationship between the shape and line type of the plot and each order is the same in FIGS. 6 to 8 described later.
  • the width of the third mass addition film is substantially the same. Accordingly, energy efficiency can be effectively increased, and transverse mode spurious can be effectively suppressed.
  • the results shown in FIG. 4 are the results when the thicknesses of the first to third mass-added films when the relationship shown in FIG. 3 is obtained are reduced by 25 nm. Even in this case, the widths of the second and third mass-added films at which the first-order effective electromechanical coupling coefficient has a maximum value, and the second and third at which the third-order or more effective electromechanical coupling coefficient has a minimum value. The deviation from the width of the mass-added film is small.
  • the results shown in FIG. 5 are the results when the thicknesses of the first to third mass-added films when the relationship shown in FIG. 3 is obtained are increased by 25 nm. Even in this case, the widths of the second and third mass-added films at which the first-order effective electromechanical coupling coefficient has a maximum value, and the second and third at which the third-order or more effective electromechanical coupling coefficient has a minimum value. The deviation from the width of the mass-added film is small.
  • the transverse mode spurious can be effectively suppressed in the wide range where the film thickness of the first to third mass addition films is 95 ⁇ 25 nm. Accordingly, it is possible to reduce the influence of the film thickness variation of the first to third mass-added films, and to reduce the influence of the film thickness variation in the intersection region of the IDT electrodes.
  • the elastic wave device of the comparative example is different from the first embodiment in that the IDT electrode is made of Pt and does not have the first mass addition film.
  • FIG. 6 shows the widths of the second and third mass addition films in the acoustic wave device and the primary and higher order effective values when the thickness of the second and third mass addition films in the comparative example is 6 nm. It is a figure which shows the relationship with an electromechanical coupling coefficient.
  • FIG. 7 shows the widths of the second and third mass addition films in the acoustic wave device when the film thickness of the second and third mass addition films in the comparative example is 4.5 nm, and the primary and higher orders. It is a figure which shows the relationship with the effective electromechanical coupling coefficient of no.
  • FIG. 6 shows the widths of the second and third mass addition films in the acoustic wave device and the primary and higher order effective values when the thickness of the second and third mass addition films in the comparative example is 6 nm. It is a figure which shows the relationship with an electromechanical coupling coefficient.
  • FIG. 7 shows the widths of the second and third mass addition films in the acoustic wave device when the film thickness of the second
  • FIGS. 6 to 8 shows the widths of the second and third mass addition films in the acoustic wave device when the film thickness of the second and third mass addition films in the comparative example is 7.5 nm. It is a figure which shows the relationship with the effective electromechanical coupling coefficient of no. In determining the relationships shown in FIGS. 6 to 8 below, the film thickness of the IDT electrode was 20 nm.
  • the widths of the second and third mass-added films where the primary effective electromechanical coupling coefficient is a maximum value and the effective electromechanical coupling coefficient of the third order or more are minimum values.
  • the deviation from the width of the second and third mass addition films is small.
  • the widths of the second and third mass-added films where the first-order effective electromechanical coupling coefficient is the maximum value and the third-order or more effective electromechanical coupling coefficient are the minimum values.
  • the width of the second and third mass-added films is greatly deviated.
  • the change in the effective electromechanical coupling coefficient of the 9th order or more is small.
  • results shown in FIG. 7 are the results when the thicknesses of the second and third mass-added films when the relationship shown in FIG. 6 is obtained are reduced by 1.5 nm.
  • results shown in FIG. 8 are the results when the thicknesses of the second and third mass-added films when the relationship shown in FIG. 6 is obtained are increased by 1.5 nm.
  • the range of the thickness range of the first to third mass addition films is wider than 10 times that of the comparative example.
  • the influence of the variation in film thickness can be further effectively reduced.
  • Table 1 below shows the relationship between V2 / V1 and the film thickness of the IDT electrode in the first embodiment.
  • V2 / V1 is a ratio of the sound velocity V2 in the first and second edge regions to the sound velocity V1 in the central region.
  • the film thickness of the first to third mass addition films was 80 nm.
  • Table 1 shows the relationship between V2 / V1 and the film thickness of the IDT electrode in the comparative example.
  • the film thickness of the second and third mass addition films in the comparative example was 10 nm.
  • V2 / V1 is different because the film thickness of the IDT electrode is different.
  • the variation in the film thickness of the IDT electrode has almost no influence on V2 / V1. Therefore, in the first embodiment, it is possible to further reduce the influence of film thickness variation in the IDT electrode intersection region.
  • the width of each of the first mass addition films 5a is narrower than the width of each of the first and second electrode fingers 3a2 and 3b2.
  • the speed of sound in the first and second edge regions A2a and A2b is slowed by providing the second and third mass addition films 5b and 5c. Therefore, it is not necessary to increase the width of the first and second electrode fingers 3a2 and 3b2 of the IDT electrode 3 in the first and second edge regions A2a and A2b. Therefore, resistance to electrostatic breakdown when a voltage is applied can be increased.
  • the elastic wave device 1 of the first embodiment includes the first dielectric film 4 made of SiO 2 .
  • TCF Temporal coefficient of frequency
  • the first dielectric film 4 may be made of an appropriate material such as SiN, SiON, or tantalum pentoxide.
  • the dielectric layer 6 shown in FIG. 2 preferably contains SiN. Thereby, the frequency of the elastic wave used by the elastic wave device 1 can be adjusted. Note that the dielectric layer 6 is not necessarily provided.
  • a plurality of second and third mass addition films 15b and 15c may be provided.
  • the plurality of second mass addition films 15b are arranged with a gap therebetween in the elastic wave propagation direction.
  • the plurality of third mass addition films 15c are also arranged with a gap therebetween in the elastic wave propagation direction.
  • the first mass addition film 5a and the second and third mass addition films 15b and 15c can be easily formed using the lift-off method. it can. Therefore, productivity can be improved.
  • the first mass addition film 5 a and the plurality of second and third mass addition films 15 b and 15 c are formed on the first dielectric film 4.
  • a resist layer for forming the film is formed.
  • the resist layer is patterned.
  • the resist layer also reaches the portion corresponding to the gap in the elastic wave propagation direction between the second and third mass addition films 15b and 15c.
  • a portion of the resist layer overlapping the central region A1 of the IDT electrode 3 and a portion of the resist layer overlapping the first and second outer regions Ba and Bb are connected.
  • a metal film to be the first mass addition film 5a and the plurality of second and third mass addition films 15b and 15c is formed on the resist layer.
  • the resist layer is peeled off. At this time, since the resist layer has a pattern connected as described above, the resist layer can be easily peeled off.
  • the second and third mass addition films 15b and 15c only need to partially overlap at least one of the first and second electrode fingers 3a2 and 3b2 in plan view.
  • the first mass addition film 25a and the second and third mass addition films 5b and 5c have an elastic wave propagation in plan view. It may be arranged with a gap in a direction perpendicular to the direction.
  • the second dielectric film 37 may be laminated between the piezoelectric substrate 2 and the IDT electrode 3.
  • the second dielectric film 37 is not particularly limited, but is made of SiO 2 or SiN.
  • the electromechanical coupling coefficient can be adjusted by providing the second dielectric film 37.
  • the first mass addition film 45 a has the same width as the widths of the first and second electrode fingers 3 a 2 and 3 b 2 of the IDT electrode 3. There may be.
  • a fourth mass addition film 45d may be provided on the first dielectric film 4 so as to overlap at least a part of the first bus bar 3a1 in plan view.
  • a fifth mass addition film 45e may be provided on the first dielectric film 4 so as to overlap at least a part of the second bus bar 3b1 in plan view.
  • the fourth and fifth mass addition films 45d and 45e are provided so as to overlap the entire length of the intersecting region A in the elastic wave propagation direction when viewed from the direction in which the first and second electrode fingers 3a2 and 3b2 extend. It may be.
  • the present invention can be suitably applied to an acoustic wave resonator, a band-pass filter, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

IDT電極の交差領域における膜厚のばらつきの影響を小さくすることができ、横モードスプリアスを充分に抑制することができる、弾性波装置を提供する。 弾性波装置1は、平面視においてIDT電極3の複数本の第1及び第2の電極指3a2,3b2に重なるように、第1の誘電体膜4上に設けられており、各第1及び第2の電極指3a2,3b2が延びる方向に沿って延びており、かつ中央領域A1に設けられている、第1の質量付加膜5aと、第1の誘電体膜4上に設けられており、かつ第1及び第2のエッジ領域A2a,A2bに設けられており、平面視において第1及び第2の電極指3a2,3b2のうち少なくとも一方に一部が重なっている、第2及び第3の質量付加膜5b,5cとを備える。第1の質量付加膜5aの弾性波伝搬方向に沿う寸法よりも、第2及び第3の質量付加膜5b,5cの弾性波伝搬方向に沿う寸法の方が長い。

Description

弾性波装置
 本発明は、ピストンモードを利用した弾性波装置に関する。
 従来、横モードスプリアスを抑制するために、ピストンモードを利用した弾性波装置が提案されている。
 例えば、下記の特許文献1には、ピストンモードを利用した弾性波装置の一例が示されている。この弾性波装置は、IDT電極の複数本の第1の電極指と複数本の第2の電極指とが、弾性波伝搬方向に見たときに重なっている交差領域を有する。交差領域は、第1,第2の電極指が延びる方向において、中央領域と、中央領域の第1,第2の電極指の延びる方向の外側に設けられた第1,第2のエッジ領域とを有する。
 他方、IDT電極を覆うように、圧電基板上に誘電体膜が積層されている。誘電体膜の第1,第2のエッジ領域に位置する部分に、チタン層が埋め込まれている。これにより、第1,第2のエッジ領域における音速が、中央領域及び第1,第2のエッジ領域の外側の領域における音速よりも遅くなり、横モードスプリアスを抑制し得るとしている。
特開2012-186808号公報
 特許文献1の弾性波装置を得るための製造工程では、第1,第2のエッジ領域にチタン層を形成する必要がある。そのため、中央領域における部分と第1,第2のエッジ領域における部分とを、同一の工程で形成することができなかった。よって、交差領域の膜厚に大きなばらつきが生じるおそれがあった。従って、横モードスプリアスを充分に抑制できないおそれがあった。
 本発明の目的は、IDT電極の交差領域における膜厚のばらつきの影響を小さくすることができ、横モードスプリアスを充分に抑制することができる、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、圧電基板と、前記圧電基板上に設けられているIDT電極とを備え、前記IDT電極が、互いに対向し合っている第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指とを有し、前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指が弾性波伝搬方向において重なり合っている部分を交差領域とした場合に、該交差領域が、前記第1及び第2の電極指が延びる方向において、中央側に位置している中央領域と、前記中央領域の両側に配置された第1及び第2のエッジ領域とを有し、前記IDT電極を覆うように、前記圧電基板上に設けられている第1の誘電体膜と、前記第1の誘電体膜上に設けられており、前記各第1及び第2の電極指が延びる方向に沿って延びており、かつ前記中央領域に設けられており、平面視において、前記複数本の第1及び第2の電極指に重なっている、第1の質量付加膜と、前記第1の誘電体膜上に設けられており、かつ前記第1のエッジ領域に設けられており、平面視において、前記第1及び第2の電極指のうち少なくとも一方に一部が重なっている、第2の質量付加膜と、前記第1の誘電体膜上に設けられており、かつ前記第2のエッジ領域に設けられており、平面視において、前記第1及び第2の電極指のうち少なくとも一方に一部が重なっている、第3の質量付加膜とをさらに備え、前記第1の質量付加膜の弾性波伝搬方向に沿う寸法よりも、前記第2及び第3の質量付加膜の弾性波伝搬方向に沿う寸法の方が長い。
 本発明に係る弾性波装置のある特定の局面では、前記中央領域における弾性波の音速をV1、前記第1及び第2のエッジ領域における弾性波の音速をV2、前記第1のエッジ領域と前記第1のバスバーとの間及び前記第2のエッジ領域と前記第2のバスバーとの間に位置する領域における弾性波の音速をV3とした場合、V3>V1>V2とされている。この場合には、横モードスプリアスをより一層抑制することができる。
 本発明に係る弾性波装置の他の特定の局面では、前記IDT電極の材料の密度よりも前記第1~第3の質量付加膜の材料の密度の方が高い。この場合には、IDT電極の励振効率を効果的に高めることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第2及び第3の質量付加膜が、前記第1及び第2のエッジ領域の弾性波伝搬方向における全長にわたっている。この場合には、第1及び第2のエッジ領域における音速を効果的に遅くすることができる。従って、横モードスプリアスをより一層抑制することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記第2の質量付加膜を複数有し、前記複数の第2の質量付加膜が、弾性波伝搬方向において互いにギャップを隔てて配置されており、前記各第2の質量付加膜が、平面視において、前記各第1及び第2の電極指に、前記各第1及び第2の電極指の弾性波伝搬方向における全長にわたって重なっており、前記第3の質量付加膜を複数有し、前記複数の第3の質量付加膜が、弾性波伝搬方向において互いにギャップを隔てて配置されており、前記各第3の質量付加膜が、平面視において、前記各第1及び第2の電極指に、前記各第1及び第2の電極指の弾性波伝搬方向における全長にわたって重なっている。この場合には、弾性波装置を得るための製造工程において、第1~第3の質量付加膜を、リフトオフ法を用いて容易に形成することができる。よって、生産性を高めることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記第1の質量付加膜と前記第2及び第3の質量付加膜とが連なっている。
 本発明に係る弾性波装置のさらに別の特定の局面では、平面視において、前記第1の質量付加膜と前記第2及び第3の質量付加膜とが、弾性波伝搬方向に垂直な方向において、ギャップを隔てて配置されている。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記各第1及び第2の電極指の弾性波伝搬方向に沿う寸法よりも、前記第1の質量付加膜の弾性波伝搬方向に沿う寸法の方が短い。この場合には、中央領域における音速が遅くなり難い。従って、横モードスプリアスをより一層抑制することができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記圧電基板と前記IDT電極との間に積層されている、第2の誘電体膜がさらに備えられている。この場合には、電気機械結合係数を調整することができる。
 本発明に係る弾性波装置によれば、IDT電極の交差領域における膜厚のばらつきの影響を小さくすることができ、横モードスプリアスを充分に抑制することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。 図2は、図1中のI-I線に沿う断面図である。 図3は、本発明の第1の実施形態における第1~第3の質量付加膜の膜厚を95nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。 図4は、本発明の第1の実施形態における第1~第3の質量付加膜の膜厚を70nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。 図5は、本発明の第1の実施形態における第1~第3の質量付加膜の膜厚を120nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。 図6は、比較例における第2,第3の質量付加膜の膜厚を6nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。 図7は、比較例における第2,第3の質量付加膜の膜厚を4.5nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。 図8は、比較例における第2,第3の質量付加膜の膜厚を7.5nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。 図9は、本発明の第1の実施形態の第1の変形例に係る弾性波装置の平面図である。 図10は、本発明の第1の実施形態の第2の変形例に係る弾性波装置の平面図である。 図11は、本発明の第1の実施形態の第3の変形例に係る弾性波装置の拡大正面断面図である。 図12は、本発明の第2の実施形態の第4の変形例に係る弾性波装置の平面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。図2は、図1中のI-I線に沿う断面図である。なお、図1においては、後述する第1~第3の質量付加膜上の誘電体膜は省略している。
 弾性波装置1は、圧電基板2を有する。圧電基板2は、LiNbOまたはLiTaOなどの圧電単結晶や、適宜の圧電セラミックスからなる。
 圧電基板2上には、IDT電極3が設けられている。IDT電極3は、対向し合っている第1,第2のバスバー3a1,3b1を有する。IDT電極3は、第1のバスバー3a1に一端が接続されている、複数本の第1の電極指3a2を有する。さらに、IDT電極3は、第2のバスバー3b1に一端が接続されている、複数本の第2の電極指3b2を有する。
 複数本の第1,第2の電極指3a2,3b2は、互いに間挿し合っている。ここで、第1の電極指3a2と第2の電極指3b2とが弾性波伝搬方向において重なり合っている部分を交差領域Aとする。このとき、交差領域Aは、第1,第2の電極指3a2,3b2が延びる方向において、中央側に位置している中央領域A1を有する。交差領域Aは、第1,第2の電極指3a2,3b2が延びる方向において、中央領域A1の両側に配置された第1,第2のエッジ領域A2a,A2bも有する。第1のエッジ領域A2aは第1のバスバー3a1側に位置し、第2のエッジ領域A2bは第2のバスバー3b1側に位置している。
 IDT電極3は、第1,第2のエッジ領域A2a,A2bの中央領域A1側とは反対側の領域である、第1,第2の外側領域Ba,Bbを有する。第1の外側領域Baは、第1のエッジ領域A2aと第1のバスバー3a1との間に位置している。第2の外側領域Bbは、第2のエッジ領域A2bと第2のバスバー3b1との間に位置している。
 本実施形態では、IDT電極3は、Alからなる。なお、IDT電極3は、Al以外の適宜の金属からなっていてもよい。IDT電極3は、単層の金属膜からなっていてもよく、あるいは積層金属膜からなっていてもよい。
 ここで、弾性波装置1は、ピストンモードを利用した弾性波装置である。中央領域A1における弾性波の音速をV1、第1,第2のエッジ領域A2a,A2bにおける弾性波の音速をV2、第1,第2の外側領域Ba,Bbにおける弾性波の音速をV3とする。このとき、V3>V1>V2とされていることが好ましい。それによって、横モードスプリアスを効果的に抑制することができる。上記のような各音速V1,V2,V3の関係を図1に示す。なお、図1における左側に向かうにつれて、音速が高速であることを示す。
 図1に示すように、IDT電極3を覆うように、圧電基板2上に第1の誘電体膜4が設けられている。第1の誘電体膜4は、特に限定されないが、SiOからなる。
 第1の誘電体膜4上には、平面視において、第1,第2の電極指3a2,3b2に重なるように、第1~第3の質量付加膜5a~5cが設けられている。より具体的には、第1の質量付加膜5aは、中央領域A1に複数設けられている。複数の第1の質量付加膜5aは、各第1,第2の電極指3a2,3b2が延びる方向に沿って延びており、中央領域A1の該方向における全長にわたっている。複数の第1の質量付加膜5aは、弾性波伝搬方向において、互いにギャップを隔てて設けられている。複数の第1の質量付加膜5aは、平面視において、第1の電極指3a2に重なっている第1の質量付加膜5aと、第2の電極指3b2に重なっている第1の質量付加膜5aとを含む。ここで、各第1,第2の電極指3a2,3b2及び各第1の質量付加膜5aの弾性波伝搬方向に沿う寸法を幅とする。このとき、本実施形態では、各第1,第2の電極指3a2,3b2の幅よりも各第1の質量付加膜5aの幅の方が狭い。
 他方、第2の質量付加膜5bは第1のエッジ領域A2aに設けられている。第2の質量付加膜5bは、第1のエッジ領域A2aの、弾性波伝搬方向における全長にわたっている。
 第3の質量付加膜5cは第2のエッジ領域A2bに設けられている。第3の質量付加膜5cは、第2のエッジ領域A2bの、弾性波伝搬方向における全長にわたっている。このように、第1の質量付加膜5aの弾性波伝搬方向に沿う寸法よりも、第2の質量付加膜5b及び第3の質量付加膜5cの弾性波伝搬方向に沿う寸法の方が長い。
 本実施形態では、複数の第1の質量付加膜5aと、第2,第3の質量付加膜5b,5cとは連なっている。
 第1~第3の質量付加膜5a~5cは、本実施形態では、Ptからなる。なお、第1~第3の質量付加膜5a~5cは、Pt以外の適宜の金属からなっていてもよい。第1~第3の質量付加膜5a~5cの材料の密度は、IDT電極3の材料の密度よりも高いことが好ましい。それによって、IDT電極3の励振効率を効果的に高めることができる。なお、第1~第3の質量付加膜5a~5cは、単層の金属膜からなっていてもよく、あるいは積層金属膜からなっていてもよい。
 図2に示すように、第1の誘電体膜4上に誘電体層6が設けられている。誘電体層6は、図1に示した第1~第3の質量付加膜5a~5cを覆っている。誘電体層6は、第1の誘電体膜4側に位置している第1の層6aと、第1の層6a上に積層された第2の層6bとを有する。この場合には、例えば、第1の層6aはSiOなどからなっていてもよく、第2の層6bはSiNなどからなっていてもよい。なお、誘電体層6は、単層からなっていてもよい。
 図1に戻り、本実施形態の特徴は、平面視において、IDT電極3の交差領域Aに重なるように、第1~第3の質量付加膜5a~5cが設けられていることにある。それによって、IDT電極3の交差領域Aにおける膜厚のばらつきの影響を小さくすることができる。さらに、横モードスプリアスを充分に抑制することができる。これを、以下において説明する。
 図1に示すように、IDT電極3において第1の外側領域Baに位置している部分は、第1の電極指3a2のみである。IDT電極3において第2の外側領域Bbに位置している部分は、第2の電極指3b2のみである。加えて、交差領域Aにおいては、第1~第3の質量付加膜5a~5cが設けられているため、音速が遅くなっている。従って、弾性波装置1においては、V3>V1及びV3>V2とされている。
 中央領域A1においては、複数の第1の質量付加膜5aが弾性波伝搬方向にギャップを隔てて設けられている。これに対して、第1,第2のエッジ領域A2a,A2bにおいては、第2,第3の質量付加膜5b,5cが、交差領域Aの弾性波伝搬方向における全長にわたっている。これにより、第1,第2のエッジ領域A2a,A2bにおける第2,第3の質量付加膜5b,5cの面積を大きくすることができる。そのため、第1,第2のエッジ領域A2a,A2bにおいて、IDT電極3に付加される質量を大きくすることができる。よって、第1,第2のエッジ領域A2a,A2bにおける音速V2を効果的に遅くすることができる。これにより、V1>V2とすることができ、かつ音速V1と音速V2との差を大きくすることができる。従って、横モードスプリアスを効果的に抑制することができる。
 下記の図3~図5を用いて、第1の実施形態の効果をさらに説明する。ここで、第2,第3の質量付加膜5b,5cの弾性波伝搬方向に垂直な方向の寸法を、第2,第3の質量付加膜5b,5cの幅とする。第1の実施形態では、第2,第3の質量付加膜5b,5cの幅は同じ幅である。
 図3は、第1の実施形態における第1~第3の質量付加膜の膜厚を95nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。図4は、第1の実施形態における第1~第3の質量付加膜の膜厚を70nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。図5は、第1の実施形態における第1~第3の質量付加膜の膜厚を120nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。なお、図3~図5に示す関係を求めるに際し、IDT電極の膜厚は20nmとした。
 図3~図5における菱形のプロット及び実線は、1次の実効電気機械結合係数を示す。矩形のプロット及び破線は、3次の実効電気機械結合係数を示す。三角形のプロット及び破線は5次の実効電気機械結合係数を示す。X字形のプロット及び破線は7次の実効電気機械結合係数を示す。I字形のプロット及び破線は9次の実効電気機械結合係数を示す。円形のプロット及び破線は11次の実効電気機械結合係数を示す。1次の実効電気機械結合係数の値は右側の縦軸に示し、3次以上の実効電気機械結合係数の値は左側の縦軸に示す。上記プロットの形状及び線種と各次数との関係は、後述する図6~図8においても同様である。
 図3に示す結果では、1次の実効電気機械結合係数が極大値となる第2,第3の質量付加膜の幅と、3次以上の実効電気機械結合係数が極小値となる第2,第3の質量付加膜の幅とはほぼ同じ幅である。従って、エネルギー効率を効果的に高めることができ、かつ横モードスプリアスを効果的に抑制することができる。
 図4に示す結果は、図3に示した関係を求めたときの第1~第3の質量付加膜の膜厚を、25nm薄くした場合の結果である。この場合においても、1次の実効電気機械結合係数が極大値となる第2,第3の質量付加膜の幅と、3次以上の実効電気機械結合係数が極小値となる第2,第3の質量付加膜の幅とのずれは小さい。
 図5に示す結果は、図3に示した関係を求めたときの第1~第3の質量付加膜の膜厚を、25nm厚くした場合の結果である。この場合においても、1次の実効電気機械結合係数が極大値となる第2,第3の質量付加膜の幅と、3次以上の実効電気機械結合係数が極小値となる第2,第3の質量付加膜の幅とのずれは小さい。
 このように、第1~第3の質量付加膜の膜厚が95±25nmの広い範囲において、横モードスプリアスを効果的に抑制することができる。従って、第1~第3の質量付加膜の膜厚のばらつきの影響を小さくすることができ、IDT電極の交差領域における膜厚のばらつきの影響を小さくすることができる。
 次に、第1の実施形態と比較例とを比較することにより、第1の実施形態の効果を説明する。比較例の弾性波装置は、IDT電極がPtからなる点及び第1の質量付加膜を有しない点において、第1の実施形態と異なる。
 図6は、比較例における第2,第3の質量付加膜の膜厚を6nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。図7は、比較例における第2,第3の質量付加膜の膜厚を4.5nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。図8は、比較例における第2,第3の質量付加膜の膜厚を7.5nmとしたときの、弾性波装置における第2,第3の質量付加膜の幅と、1次及び高次の実効電気機械結合係数との関係を示す図である。なお、以下の図6~図8に示す関係を求めるに際し、IDT電極の膜厚は20nmとした。
 図6に示す比較例の結果では、1次の実効電気機械結合係数が極大値となる第2,第3の質量付加膜の幅と、3次以上の実効電気機械結合係数が極小値となる第2,第3の質量付加膜の幅とのずれは小さい。しかしながら、図7及び図8に示す結果では、1次の実効電気機械結合係数が極大値となる第2,第3の質量付加膜の幅と、3次以上の実効電気機械結合係数が極小値となる第2,第3の質量付加膜の幅とは、大きくずれている。さらに、図7に示す結果では、9次以上の実効電気機械結合係数の変化は小さくなっている。
 ここで、図7に示す結果は、図6に示した関係を求めたときの第2,第3の質量付加膜の膜厚を、1.5nm薄くした場合の結果である。図8に示す結果は、図6に示した関係を求めたときの第2,第3の質量付加膜の膜厚を、1.5nm厚くした場合の結果である。このように、比較例では、第2,第3の質量付加膜の膜厚が6±1.5nmの狭い範囲においても、該膜厚のばらつきの影響が大きい。
 第1の実施形態の弾性波装置では、図3~図5に示したように、第1~第3の質量付加膜の膜厚の範囲の広さが比較例の10倍より広い範囲において、該膜厚のばらつきの影響をより一層効果的に小さくすることができる。
 下記の表1に、第1の実施形態における、V2/V1と、IDT電極の膜厚との関係を示す。V2/V1は、第1,第2のエッジ領域の音速V2の、中央領域の音速V1に対する比である。なお、第1~第3の質量付加膜の膜厚は80nmとした。同様に、表1に、比較例におけるV2/V1とIDT電極の膜厚との関係を示す。比較例の第2,第3の質量付加膜の膜厚は10nmとした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例では、IDT電極の膜厚が異なることにより、V2/V1が異なっている。これに対して、第1の実施形態では、V2/V1に対して、IDT電極の膜厚のばらつきがほぼ影響していないことがわかる。従って、第1の実施形態では、IDT電極の交差領域における膜厚のばらつきの影響をより一層小さくすることができる。
 図1に戻り、第1の実施形態では、第1の誘電体膜4を介して、複数本の第1,第2の電極指3a2,3b2に対向している複数の第1の質量付加膜5aが設けられていることにより、IDT電極3の励振効率を効果的に高めることができる。加えて、第1の実施形態では、図1に示すように、各第1,第2の電極指3a2,3b2の幅よりも、各第1の質量付加膜5aの幅の方が狭い。それによって、中央領域A1における音速V1は遅くなり難い。従って、音速V1と音速V2との差をより一層大きくすることができ、横モードスプリアスをより一層抑制することができる。
 上述したように、第1,第2のエッジ領域A2a,A2bにおける音速は、第2,第3の質量付加膜5b,5cが設けられていることにより、遅くされている。よって、第1,第2のエッジ領域A2a,A2bにおいて、IDT電極3の第1,第2の電極指3a2,3b2の幅を広くする必要がない。従って、電圧を印加したときなどにおける静電破壊に対する耐性を高めることもできる。
 ところで、上述したように、第1の実施形態の弾性波装置1は、SiOからなる第1の誘電体膜4を有する。それによって、TCF(Temperature coefficient of frequency:周波数温度係数)の絶対値を小さくすることができる。よって、弾性波装置1の温度特性を改善することができる。なお、第1の誘電体膜4は、SiN、SiON、あるいは五酸化タンタルなどの適宜の材料からなっていてもよい。
 図2に示した誘電体層6は、SiNを含むことが好ましい。それによって、弾性波装置1が用いる弾性波の周波数を調整することができる。なお、誘電体層6は、必ずしも設けられていなくともよい。
 以下の図9~図12に示す第1の実施形態の第1~第4の変形例においても、IDT電極の交差領域における膜厚のばらつきの影響を小さくすることができる。さらに、横モードスプリアスを充分に抑制することができる。
 図9に示す第1の実施形態の第1の変形例のように、第2,第3の質量付加膜15b,15cをそれぞれ複数有していてもよい。複数の第2の質量付加膜15bは、弾性波伝搬方向において互いにギャップを隔てて配置されている。複数の第3の質量付加膜15cも、弾性波伝搬方向において互いにギャップを隔てて配置されている。この場合には、弾性波装置11を得るための製造工程において、第1の質量付加膜5a及び第2,第3の質量付加膜15b,15cを、リフトオフ法を用いて容易に形成することができる。よって、生産性を高めることができる。
 より具体的には、弾性波装置11を得るための製造工程において、第1の誘電体膜4上に、第1の質量付加膜5a及び複数の第2,第3の質量付加膜15b,15cを形成するためのレジスト層を形成する。次に、レジスト層をパターニングする。
 このとき、各第2,第3の質量付加膜15b,15c間の弾性波伝搬方向のギャップに相当する部分にもレジスト層が至っている。それによって、平面視において、IDT電極3の中央領域A1に重なる部分のレジスト層と、第1,第2の外側領域Ba,Bbに重なる部分のレジスト層とが接続されている。
 次に、レジスト層上に、第1の質量付加膜5a及び複数の第2,第3の質量付加膜15b,15cとなる金属膜を形成する。次に、レジスト層を剥離する。このとき、レジスト層が上記のように接続されたパターンであるため、レジスト層を容易に剥離することができる。
 なお、各第2,第3の質量付加膜15b,15cは、平面視において、各第1,第2の電極指3a2,3b2のうち少なくとも一方に、一部が重なっていればよい。
 図10に示す第1の実施形態の第2の変形例のように、平面視において、第1の質量付加膜25aと、第2,第3の質量付加膜5b,5cとは、弾性波伝搬方向に垂直な方向において、ギャップを隔てて配置されていてもよい。
 図11に示す第1の実施形態の第3の変形例のように、圧電基板2とIDT電極3との間に、第2の誘電体膜37が積層されていてもよい。第2の誘電体膜37は、特に限定されないが、SiOやSiNなどからなる。
 第3の変形例の弾性波装置においては、第2の誘電体膜37が設けられていることにより、電気機械結合係数を調整することができる。
 図12に示す第1の実施形態の第4の変形例のように、第1の質量付加膜45aは、IDT電極3の各第1,第2の電極指3a2,3b2の幅と同じ幅であってもよい。また、平面視において、第1のバスバー3a1の少なくとも一部に重なるように、第1の誘電体膜4上に第4の質量付加膜45dが設けられていてもよい。平面視において、第2のバスバー3b1の少なくとも一部に重なるように、第1の誘電体膜4上に第5の質量付加膜45eが設けられていてもよい。第4,第5の質量付加膜45d,45eは、例えば、第1,第2の電極指3a2,3b2が延びる方向から見て、交差領域Aの弾性波伝搬方向における全長と重なるように設けられていてもよい。
 本発明は、弾性波共振子や帯域通過型フィルタなどにも好適に適用することができる。
 1…弾性波装置
 2…圧電基板
 3…IDT電極
 3a1,3b1…第1,第2のバスバー
 3a2,3b2…第1,第2の電極指
 4…第1の誘電体膜
 5a~5c…第1~第3の質量付加膜
 6…誘電体層
 6a,6b…第1,第2の層
 11…弾性波装置
 15b,15c…第2,第3の質量付加膜
 25a…第1の質量付加膜
 37…第2の誘電体膜
 45a,45d,45e…第1,第4,第5の質量付加膜

Claims (9)

  1.  圧電基板と、
     前記圧電基板上に設けられているIDT電極と、を備え、
     前記IDT電極が、互いに対向し合っている第1及び第2のバスバーと、前記第1のバスバーに一端が接続された複数本の第1の電極指と、前記第2のバスバーに一端が接続された複数本の第2の電極指と、を有し、
     前記複数本の第1及び第2の電極指が互いに間挿し合っており、前記第1の電極指と前記第2の電極指が弾性波伝搬方向において重なり合っている部分を交差領域とした場合に、該交差領域が、前記第1及び第2の電極指が延びる方向において、中央側に位置している中央領域と、前記中央領域の両側に配置された第1及び第2のエッジ領域と、を有し、
     前記IDT電極を覆うように、前記圧電基板上に設けられている第1の誘電体膜と、
     前記第1の誘電体膜上に設けられており、前記各第1及び第2の電極指が延びる方向に沿って延びており、かつ前記中央領域に設けられており、平面視において、前記複数本の第1及び第2の電極指に重なっている、第1の質量付加膜と、
     前記第1の誘電体膜上に設けられており、かつ前記第1のエッジ領域に設けられており、平面視において、前記第1及び第2の電極指のうち少なくとも一方に一部が重なっている、第2の質量付加膜と、
     前記第1の誘電体膜上に設けられており、かつ前記第2のエッジ領域に設けられており、平面視において、前記第1及び第2の電極指のうち少なくとも一方に一部が重なっている、第3の質量付加膜と、をさらに備え、
     前記第1の質量付加膜の弾性波伝搬方向に沿う寸法よりも、前記第2及び第3の質量付加膜の弾性波伝搬方向に沿う寸法の方が長い、弾性波装置。
  2.  前記中央領域における弾性波の音速をV1、前記第1及び第2のエッジ領域における弾性波の音速をV2、前記第1のエッジ領域と前記第1のバスバーとの間及び前記第2のエッジ領域と前記第2のバスバーとの間に位置する領域における弾性波の音速をV3とした場合、V3>V1>V2とされている、請求項1に記載の弾性波装置。
  3.  前記IDT電極の材料の密度よりも前記第1~第3の質量付加膜の材料の密度の方が高い、請求項1または2に記載の弾性波装置。
  4.  前記第2及び第3の質量付加膜が、前記第1及び第2のエッジ領域の弾性波伝搬方向における全長にわたっている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記第2の質量付加膜を複数有し、前記複数の第2の質量付加膜が、弾性波伝搬方向において互いにギャップを隔てて配置されており、前記各第2の質量付加膜が、平面視において、前記各第1及び第2の電極指に、前記各第1及び第2の電極指の弾性波伝搬方向における全長にわたって重なっており、
     前記第3の質量付加膜を複数有し、前記複数の第3の質量付加膜が、弾性波伝搬方向において互いにギャップを隔てて配置されており、前記各第3の質量付加膜が、平面視において、前記各第1及び第2の電極指に、前記各第1及び第2の電極指の弾性波伝搬方向における全長にわたって重なっている、請求項1~3のいずれか1項に記載の弾性波装置。
  6.  前記第1の質量付加膜と前記第2及び第3の質量付加膜とが連なっている、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  平面視において、前記第1の質量付加膜と前記第2及び第3の質量付加膜とが、弾性波伝搬方向に垂直な方向において、ギャップを隔てて配置されている、請求項1~5のいずれか1項に記載の弾性波装置。
  8.  前記各第1及び第2の電極指の弾性波伝搬方向に沿う寸法よりも、前記第1の質量付加膜の弾性波伝搬方向に沿う寸法の方が短い、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記圧電基板と前記IDT電極との間に積層されている、第2の誘電体膜をさらに備える、請求項1~8のいずれか1項に記載の弾性波装置。
PCT/JP2016/087079 2015-12-25 2016-12-13 弾性波装置 WO2017110586A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017518372A JP6424958B2 (ja) 2015-12-25 2016-12-13 弾性波装置
CN201680069692.2A CN108292913B (zh) 2015-12-25 2016-12-13 弹性波装置
KR1020187014678A KR102011468B1 (ko) 2015-12-25 2016-12-13 탄성파 장치
DE112016005980.9T DE112016005980T5 (de) 2015-12-25 2016-12-13 Vorrichtung für elastische Wellen
US15/983,315 US11374550B2 (en) 2015-12-25 2018-05-18 Elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-253657 2015-12-25
JP2015253657 2015-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/983,315 Continuation US11374550B2 (en) 2015-12-25 2018-05-18 Elastic wave device

Publications (1)

Publication Number Publication Date
WO2017110586A1 true WO2017110586A1 (ja) 2017-06-29

Family

ID=59090270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087079 WO2017110586A1 (ja) 2015-12-25 2016-12-13 弾性波装置

Country Status (6)

Country Link
US (1) US11374550B2 (ja)
JP (1) JP6424958B2 (ja)
KR (1) KR102011468B1 (ja)
CN (1) CN108292913B (ja)
DE (1) DE112016005980T5 (ja)
WO (1) WO2017110586A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222427A1 (en) * 2020-04-29 2021-11-04 Murata Manufacturing Co., Ltd. Elastic wave device
KR20220160662A (ko) 2020-05-27 2022-12-06 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116208119B (zh) * 2023-04-19 2023-07-14 深圳新声半导体有限公司 声表面波装置及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101350A (ja) * 2009-09-22 2011-05-19 Triquint Semiconductor Inc ピストンモード音響波装置と高結合係数を提供する方法
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2013138333A (ja) * 2011-12-28 2013-07-11 Panasonic Corp 弾性波素子
WO2015007319A1 (en) * 2013-07-18 2015-01-22 Epcos Ag Electroacoustic transducer with improved suppression of unwanted modes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158650B2 (ja) * 2003-08-20 2008-10-01 セイコーエプソン株式会社 弾性表面波デバイス及びその製造方法
JP5042763B2 (ja) * 2007-09-28 2012-10-03 日本電波工業株式会社 弾性波フィルタ
CN101842981B (zh) * 2007-11-06 2013-12-11 松下电器产业株式会社 弹性波谐振器、弹性波滤波器及采用其的天线共用器
JP5093402B2 (ja) * 2009-04-07 2012-12-12 株式会社村田製作所 弾性境界波共振子及びラダー型フィルタ
WO2010131450A1 (ja) * 2009-05-14 2010-11-18 パナソニック株式会社 アンテナ共用器
WO2012063521A1 (ja) * 2010-11-10 2012-05-18 株式会社村田製作所 弾性波装置及びその製造方法
JPWO2012102131A1 (ja) * 2011-01-27 2014-06-30 京セラ株式会社 弾性波素子およびそれを用いた弾性波装置
JP5936393B2 (ja) * 2011-03-07 2016-06-22 トライクイント・セミコンダクター・インコーポレイテッドTriQuint Semiconductor,Inc. トリミング効果とピストンモードでの不安定性を最小化する音響波導波装置および方法
JP5931868B2 (ja) * 2011-06-28 2016-06-08 京セラ株式会社 弾性波素子およびそれを用いた弾性波装置
WO2014020876A1 (ja) * 2012-07-30 2014-02-06 パナソニック株式会社 弾性波素子とこれを用いたアンテナ共用器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101350A (ja) * 2009-09-22 2011-05-19 Triquint Semiconductor Inc ピストンモード音響波装置と高結合係数を提供する方法
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2013138333A (ja) * 2011-12-28 2013-07-11 Panasonic Corp 弾性波素子
WO2015007319A1 (en) * 2013-07-18 2015-01-22 Epcos Ag Electroacoustic transducer with improved suppression of unwanted modes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222427A1 (en) * 2020-04-29 2021-11-04 Murata Manufacturing Co., Ltd. Elastic wave device
US11742827B2 (en) 2020-04-29 2023-08-29 Murata Manufacturing Co., Ltd. Elastic wave device
KR20220160662A (ko) 2020-05-27 2022-12-06 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치

Also Published As

Publication number Publication date
CN108292913A (zh) 2018-07-17
CN108292913B (zh) 2021-08-31
KR20180075584A (ko) 2018-07-04
US20180269852A1 (en) 2018-09-20
KR102011468B1 (ko) 2019-08-16
DE112016005980T5 (de) 2018-09-20
JPWO2017110586A1 (ja) 2017-12-21
JP6424958B2 (ja) 2018-11-21
US11374550B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2015156232A1 (ja) 弾性波フィルタ装置
WO2019139076A1 (ja) 弾性波装置
JP5861809B1 (ja) 弾性波装置
JP5697751B2 (ja) 高次横モード波を抑制した弾性波デバイス
JP6107947B2 (ja) 弾性波フィルタ装置
US10454449B2 (en) Elastic wave device
JP2019080093A (ja) 弾性波装置
JP6245378B2 (ja) 弾性波装置
WO2014192756A1 (ja) 弾性波装置
US11456716B2 (en) Elastic wave device and manufacturing method thereof
WO2018131360A1 (ja) 弾性波装置
WO2015182521A1 (ja) 弾性波装置及びラダー型フィルタ
JP6777221B2 (ja) 弾性波装置
WO2018216548A1 (ja) 弾性波装置
WO2017187724A1 (ja) 弾性波装置
WO2017110586A1 (ja) 弾性波装置
WO2015137089A1 (ja) 弾性波装置
WO2017077892A1 (ja) 弾性波装置
JP2011041082A (ja) 一ポート型弾性波共振子及び弾性波フィルタ装置
CN109417371B (zh) 弹性波装置
WO2016039026A1 (ja) 弾性表面波装置
WO2023048256A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518372

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187014678

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005980

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878477

Country of ref document: EP

Kind code of ref document: A1