WO2017107635A1 - 一种聚碳酸酯复合材料 - Google Patents

一种聚碳酸酯复合材料 Download PDF

Info

Publication number
WO2017107635A1
WO2017107635A1 PCT/CN2016/102714 CN2016102714W WO2017107635A1 WO 2017107635 A1 WO2017107635 A1 WO 2017107635A1 CN 2016102714 W CN2016102714 W CN 2016102714W WO 2017107635 A1 WO2017107635 A1 WO 2017107635A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate composite
ppm
iron
copper
weight
Prior art date
Application number
PCT/CN2016/102714
Other languages
English (en)
French (fr)
Inventor
岑茵
佟伟
艾军伟
谢修好
董相茂
陈勇文
孙东海
叶南飚
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to EP16877446.1A priority Critical patent/EP3395897A4/en
Publication of WO2017107635A1 publication Critical patent/WO2017107635A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3072Iron sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention belongs to the field of polymer material modification, and particularly relates to a polycarbonate composite material which has significantly improved impact strength and molding toughness and long-term performance stability.
  • Polycarbonate PC has excellent heat resistance and high impact resistance and is widely used in exterior materials such as electrical/electronic products and automotive parts.
  • the thickness of the molded article obtained by molding the resin composition has been developed, and the improvement in various physical properties of the molded article has been increasing.
  • the current technology is to improve the impact strength of the composition by adding an impact modifier, but it will affect the heat distortion temperature and flow properties of the product, and the technology is through the size of the filler or the choice of surface treatment. To improve the impact strength, but the increase is not large, the effect is not obvious.
  • alkaline fillers are inevitably brought about by the addition of the filler, and the presence of the alkaline metal ions not only affects the color of the filler, but also causes a sharp drop in the molding toughness and a decrease in the stability of the molding use in the PC product.
  • the present inventors have surprisingly found that in the polycarbonate composite material containing the filler, by adding a trace amount of iron element and copper element, not only the pretreatment of the filler powder can be avoided, but also the alkaline ion in the system can be stabilized.
  • the obtained polycarbonate composite material has significantly improved impact strength and molding toughness, and can also take into consideration the rigidity of the filler, and the long-term performance is stable.
  • the object of the present invention is to provide a polycarbonate composite material, which can significantly improve the forming toughness and impact strength of the obtained polycarbonate composite material by adding a trace amount of iron element and copper element to the polycarbonate composite material.
  • the flexural modulus can also take into account the rigidity brought by the filler, and has excellent molding stability and color stability.
  • a polycarbonate composite comprising the following components:
  • the weight content of the iron element is from 0.1 ppm to 50 ppm based on the total weight of the polycarbonate composite material, and the weight content of the copper element is from 0.01 ppm to 20 ppm.
  • filler In polycarbonate composites, a certain amount of filler can be added to obtain better rigidity. Most of the fillers contain more or less alkali metal ions (such as Mg2+, Al3+, Cu2+, Fe3+). The presence of these basic metal ions not only affects the color of the filler, but also causes a sharp drop in the molding toughness of the material and a decrease in the stability of the molding use in the finished PC product.
  • the invention controls the content of copper element in the composite material to 0.01 ppm by adding a small amount of copper-containing compound and iron-containing elemental substance or iron-containing compound to the composite material, and reducing or avoiding the addition of other copper-containing compound and iron-containing compound.
  • the content of iron is controlled at 0.1ppm-50ppm, which not only avoids the pretreatment of the filler powder, but also stabilizes the alkaline ions in the system, and reduces the substitution of the screw or other metals, resulting in darker color and performance damage.
  • the obtained polycarbonate composite material has significantly improved molding toughness, flexural modulus and impact strength, and can also achieve the rigidity of the filler, and has excellent molding stability and color stability.
  • the addition amount of the copper-containing compound is preferably such that the content of the copper element in the composite material is controlled to be 0.01 ppm to 20 ppm, and the content of the iron-containing element or the iron-containing compound is controlled so that the content of the iron element in the composite material is controlled to be 0.1 ppm to 50 ppm, Polycarbonate resin is sensitive to metal ions. If the content of iron and copper is too high, the composite will degrade during production and processing, and the performance will be attenuated, while the color stability will decrease.
  • the iron element has a weight content of from 5 ppm to 40 ppm, preferably from 10 ppm to 30 ppm, based on the total weight of the polycarbonate composite, and the copper element has a weight content of from 0.1 ppm to 10 ppm, more preferably from 1 ppm to 5 ppm.
  • the iron element is derived from a simple substance containing iron or an iron-containing compound, and is specifically selected from one or more of a complex of ferric chloride, ferrous chloride, ferric nitrate, iron sulfate, ferrous sulfate or iron. .
  • the copper element is derived from a copper-containing compound, and is specifically selected from one or more of copper chloride, copper nitrate, copper sulfate, complex copper, copper ionomer, and the like.
  • the polycarbonate is selected from the group consisting of homopolycarbonates or copolycarbonates comprising repeating structural carbonate units.
  • the polycarbonate may have a weight average molecular weight of from about 15,000 to 40,000, and the weight average molecular weight can be determined by methods well known in the art.
  • the polycarbonate in the weight average molecular weight range can be used as a modifying component to achieve both processing fluidity and mechanical properties. If the weight average molecular weight is less than 15000, the modified composition loses toughness and cannot satisfy the use of the product. It is required that if the weight average molecular weight is higher than 40,000, it is difficult to process, and the scrap rate and energy consumption are increased.
  • the polycarbonate has a PDI coefficient of 2.0 to 4.0 and a PDI coefficient of polydispersity index, which is determined based on BPA polycarbonate standard gel chromatography.
  • the PDI value is greater than or equal to 1, and the PDI value indicates the homogeneity of the polymer molecular chain.
  • the melt flow rate of polycarbonate measured according to ASTM D1238 300 ° C under a load of 1.2 kg is 3g/10min-30g/10min; the general molding temperature of the composition is 300 ° C, at this processing temperature, if the flow of polycarbonate If the rate is too low, the viscosity is too large, and the compatibility with other components in the composition is poor, which ultimately leads to an increase in the instability of the product performance. If the flow rate of the polycarbonate is more than 30 g/10 min, the molecular segment end is indicated. The base content is high and the activity is high. The mechanical properties and color stability of the product are easily damaged by heat and oxygen in the process.
  • the ABS refers to an acrylonitrile-butadiene-styrene graft copolymer which is prepared by a method well known in the art and can be prepared by an emulsion method or a solution method, specifically, first by a conjugated diene, such as Butadiene or other copolymerizable monomers, such as styrene, are polymerized to provide a polymer backbone to produce a graft copolymer, after forming a polymer backbone, at least one graft monomer, and specifically two Polymerization is carried out in the presence of a polymer backbone to obtain a graft copolymer.
  • a conjugated diene such as Butadiene or other copolymerizable monomers, such as styrene
  • ABS can be obtained by emulsion or bulk polymerization.
  • the ABS copolymer has an average particle size of from 500 nm to 2000 nm, preferably has an average particle size of from 750 nm to 1250 nm, more preferably an average particle size of from 900 nm to 1100 nm. If the average particle size is greater than 2000 nm, the dispersibility of ABS in the matrix will be greatly reduced. If the average particle size is less than 500 nm, the synthesis process is demanding and the yield is low, which cannot meet the requirements of industrialization.
  • the glass transition temperature of the ABS copolymer is greater than 25 ° C, preferably greater than 70 ° C, more preferably greater than 100 ° C.
  • the glass transition temperature is too low, and the rubber content is too high, which will affect the compatibility.
  • the glass transition temperature is too high, the ABS polarity is high, the surface energy is large, and the dispersion is difficult.
  • the filler is a mineral filler, specifically talc, wollastonite, kaolin, clay, whiskers, diatomaceous earth, etc., and has a volume surface area value of 20 um to 90 um.
  • the filler may be without any surface treatment, or may be coated, such as alkyl surface coating, epoxy surface treatment, amide surface treatment, hydroxy silicone oil, alkyl silane, methoxy silane, sulfonic acid Base and other processing.
  • the polycarbonate composite of the present invention may further comprise 0-20 parts by weight of an antioxidant, a light stabilizer, an impact modifier, a flame retardant, an optical brightener, a lubricant, and an increase, depending on the needs of different uses.
  • the antioxidant is selected from one or more of a hindered amine antioxidant, a hindered phenol antioxidant or a phosphite antioxidant, and specific examples thereof are 1010, 168, 1076, 445, and 1098. One or a mixture of two or more;
  • the toughening agent is an EVA type toughening agent, an EMA type toughening agent, an ASA type toughening agent, an AES type toughening agent, a SAS type toughening agent, an acrylate type toughening agent, and a silicone toughening agent.
  • EVA type toughening agent an EVA type toughening agent
  • EMA type toughening agent an ASA type toughening agent
  • AES type toughening agent an AES type toughening agent
  • SAS type toughening agent an acrylate type toughening agent
  • silicone toughening agent One or more mixtures.
  • the light stabilizer is a mixture of one or more of a hindered amine or an ultraviolet absorber, and specifically one or two of UV-944, UV-234, 770DF, 328, 531, and 5411 and The above mixture;
  • the impact modifier is one or a mixture of two of PTW, styrene-ethylene/butylene-styrene block copolymer SEBS;
  • the flame retardant is a phosphorus-based flame retardant, and specifically may be one of bisphenol A bis(diphenyl phosphate) BDP, red phosphorus, OP1240, OP1230 or a mixture of two or more;
  • the fluorescent whitening agent is one of bistriazinylaminostilbene, titanium white powder or a mixture of the two;
  • the lubricant is one of talc, ethylene bis-stearamide EBS, erucamide, zinc stearate, silicone oil or a mixture of two or more;
  • the plasticizer is one or a mixture of two or more of glycerin, citric acid, butyl citrate, epoxidized soybean oil, and the like;
  • the antistatic agent is a permanent antistatic agent, and specifically one of PELESTAT-230, PELESTAT-6500, SUNNICO ASA-2500 or a mixture of two or more;
  • the release agent is one of silicone oil, paraffin wax, white mineral oil, petrolatum or a mixture of two or more;
  • the pigment is one of carbon black, black species, titanium white powder, zinc sulfide, indigo blue, fluorescent orange or a mixture of two or more.
  • the iron element and the copper element of the invention can be obtained by directly adding iron-containing elemental substance or iron-containing compound and copper-containing compound, iron-containing elemental substance or iron-containing compound and copper-containing compound during processing of the polycarbonate composite material.
  • the amount is such that the content of the iron element in the composite material is from 0.1 ppm to 50 ppm, and the content of the copper element is from 0.01 ppm to 20 ppm.
  • the polycarbonate composite of the present invention has a spline size of 12.6 mm * 3.2 mm, a length of more than 100 mm, and a bending modulus of more than 7000 MPa at a temperature of 23 ° C.
  • the polycarbonate composite material of the present invention has a spline size of 12.6 mm*3.2 m*67 mm, a 2.75 J pendulum, and a notched impact strength of more than 70 J/m at a temperature of 23 °C.
  • the polycarbonate composite of the present invention has a molding toughness of A grade of 1.2 mm in thickness and 100 mm * 100 mm in length and width.
  • the polycarbonate composite material of the invention not only has excellent flexural modulus, impact strength and molding toughness, but also has the rigidity brought by the filler, and has excellent molding stability and color stability, and can be applied to thin-walled products. , with enhanced features, such as laptop casings, home appliance casings and other areas that require relatively high rigidity.
  • the invention has the following beneficial effects:
  • the present invention can increase the content of copper in the composite by adding a small amount of a copper-containing compound and an iron-containing elemental or iron-containing compound to the composite, and reducing or avoiding the addition of other copper-containing compounds and iron-containing compounds.
  • the content of iron is controlled at 0.1ppm-50ppm, which not only avoids the pretreatment of the filler powder, but also stabilizes the basic ions in the system, and reduces the substitution of the screw or other metals to cause color change.
  • the deep and performance damage makes the obtained polycarbonate composite material have significantly improved molding toughness, flexural modulus and impact strength, and can also take into account the rigidity of the filler, and has excellent molding stability and color stability. .
  • PC homopolymer, weight average molecular weight of 30,000, PDI coefficient of 3.0, melt flow rate of 10 g/10 min Japanese light;
  • ABS1 SAN grafted butadiene, having an average particle size of 1000 nm and a glass transition temperature of 110 ° C;
  • ABS2 SAN grafted butadiene, having an average particle size of 750 nm and a glass transition temperature of 80 ° C;
  • ABS3 SAN grafted butadiene, having an average particle size of 1500 nm and a glass transition temperature of 60 ° C;
  • Filler 1 talc, volume surface area of 29um, alkyl surface coated Imery;
  • Filler 2 wollastonite, volume surface area 46um, alkyl surface coated with Nyclos;
  • toughening agent MBS Mitsubishi
  • the polycarbonate, the ABS resin, the copper-containing compound, and the iron-containing elemental substance, the iron-containing compound, and the filler are blended in a high-mixer to obtain a pretreated resin matrix; the pretreated resin matrix is prepared.
  • the blending is carried out by a high-mixer or a mixer, the extrusion temperature is 240 ° C, and the mixture is cooled by water to obtain a polycarbonate composite material of columnar particles.
  • Table 1 The composition and performance test results of each component are shown in Table 1.
  • the polycarbonate composite material was injection-molded at a molding temperature of 260 ° C, and the test piece having a mold temperature of 100 ° C and a spline size of 12.6 mm * 3.2 mm and a length of more than 100 mm was measured using a universal testing machine Autogragf manufactured by Shimadzu Corporation. At a flexural modulus of 23 ° C, the sensor pressure bar speed was 1 mm/min.
  • the polycarbonate composite was injection molded at an injection temperature of 260 ° C, the mold temperature was 100 ° C, the spline size was 12.6 mm * 3.2 m * 67 mm, and the notched impact strength at 23 ° C was measured using a 2.75 J pendulum.
  • the polycarbonate composite particles were placed in a stainless steel material of 60 mm * 60 mm * 20 mm and a 1 mm inner PTFE film, placed in a constant temperature and humidity instrument (85 ° C temperature, 85% humidity) for 100 h.
  • the solution was taken out and pretreated in a vacuum oven at a preset temperature of 100 ° C for 4 hours, and a weight of 2.16 kg was applied to a melter at 260 ° C for fluidity test.
  • the polycarbonate composite was injection molded at an injection temperature of 260 ° C.
  • the mold temperature was 100 ° C
  • the spline size was 100 mm * 100 mm * 1.5 mm
  • the second grade is B grade
  • the number of bends is less than 5 times and more than 2 times is grade C
  • the number of bends is less than 2 times is grade D.
  • the polycarbonate composite was injection molded to produce a plate having a thickness of 2 mm, a width of 40 mm, and a length of 100 mm, wherein the mold temperature was set at 80 ° C, and the injection molded plate was subjected to color difference after being adjusted at a humidity of 50% at room temperature of 23 ° C for 48 hours.
  • a plate having a thickness of 2 mm, a width of 40 mm, and a length of 100 mm was produced, in which the mold temperature was set at 80 °C.
  • the injection molded plate was subjected to a color difference test after adjusting the humidity at room temperature of 23 ° C for 50% for 48 hours, and the difference ( ⁇ E) between the two test plates was calculated. The smaller the difference, the smaller the hue change.
  • Table 1 The ratios (parts by weight) and performance test results of the components of Examples 1-14 and Comparative Examples 1-2
  • Comparative Example 1-2 when the content of iron in the polycarbonate composite is less than 0.1 ppm or more than 50 ppm, when the content of copper element is less than 0.01 ppm or more than 20 ppm, the flexural modulus, impact strength, molding toughness of the polycarbonate composite, Forming stability and color stability Qualitatively significantly worse than the examples. It can be seen that by controlling the content of iron and copper in the polycarbonate composite, the prepared polycarbonate composite has significantly improved impact strength and mold toughness, and can also take into account the rigidity of the filler, and has Excellent molding stability and color stability, excellent overall performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚碳酸酯复合材料,包括30-80重量份的聚碳酸酯;5-40重量份的ABS;5-80重量份的填料;其中,基于聚碳酸酯复合材料的总重量,铁元素的重量含量为0.1-50ppm,铜元素的重量含量为0.01ppm-20ppm。惊讶地发现,本发明通过在复合材料中添加微量的铁元素和铜元素,将复合材料中铁元素的含量控制在0.1-50ppm范围内,铜元素的含量控制在0.01-20ppm范围内,不仅可以避免对填料粉体的预处理,而且还能稳定体系中碱性离子,以及降低螺杆或其他金属的带入导致颜色变深以及性能损伤,使制得的聚碳酸酯复合材料具有明显改善的冲击强度、弯曲和成型韧性,还能兼顾填料带来的刚性,且且具有优良的成型使用稳定性和颜色稳定性。

Description

一种聚碳酸酯复合材料 技术领域
本发明属于高分子材料改性领域,具体涉及一种具有明显改善的冲击强度和成型韧性,且长期性能稳定的聚碳酸酯复合材料。
背景技术
聚碳酸酯PC具有优异的耐热性和较高耐冲击性,被广泛应用于电气/电子产品、汽车部件等外部材料领域。近年来,将树脂组合物成型而成的成型品的薄壁化得到发展,对成型品的各种物性的提高要求不断提高。
在聚碳酸酯中通过添加填料可以获得更好的刚性,但是延展性会大大降低。为了改善材料的冲击强度,目前有技术是通过添加抗冲击改性剂来改善组合物的冲击强度,但是会影响产品的热变形温度以及流动性能,也有技术是通过填料的尺寸或者表面处理的选择来提高冲击强度,但是提高的幅度不大,效果不明显。
另外,添加的填料中不可避免会带来碱性的金属离子,碱性的金属离子存在不仅会影响填料的颜色,而且在PC产品中会引起成型韧性骤降及成型使用稳定性的降低。
本发明惊讶地发现,在含有填料的聚碳酸酯复合材料中,通过添加微量的铁元素和铜元素,不仅可以避免对填料粉体的预处理,而且还能稳定体系中碱性离子,使制得的聚碳酸酯复合材料具有明显改善的冲击强度和成型韧性,还能兼顾填料带来的刚性,且长期性能稳定。
发明内容
本发明的目的在于提供一种聚碳酸酯复合材料,通过在聚碳酸酯复合材料中添加微量的铁元素和铜元素,可以使制得的聚碳酸酯复合材料具有明显改善的成型韧性、冲击强度和弯曲模量,还能兼顾填料带来的刚性,且具有优良的成型使用稳定性和颜色稳定性。
本发明是通过以下技术方案实现的:
一种聚碳酸酯复合材料,包括以下组份:
30-80重量份的聚碳酸酯;
5-40重量份的ABS;
5-80重量份的填料;
其中,基于聚碳酸酯复合材料的总重量,铁元素的重量含量为0.1ppm-50ppm,铜元素的重量含量为0.01ppm-20ppm。
在聚碳酸酯复合材料中,添加一定量的填料可以获得更好的刚性,大部分填料中或多或少的会含有少量的呈碱性的金属离子(如Mg2+,Al3+,Cu2+,Fe3+),这些碱性金属离子的存在不仅会影响填料的颜色,而且在PC成品中会引起材料的成型韧性骤降及成型使用稳定性的降低。本发明通过在复合材料中添加少量的含铜化合物和含铁单质或含铁化合物,以及减少或者避免其它含铜化合物和含铁化合物的加入,将复合材料中铜元素的含量控制在0.01ppm-20ppm,铁元素的含量控制在0.1ppm-50ppm,不仅可以避免对填料粉体的预处理,而且还能稳定体系中碱性离子,以及降低螺杆或其他金属的代入导致颜色变深以及性能损伤,使制得的聚碳酸酯复合材料具有明显改善的成型韧性、弯曲模量和冲击强度,还能兼顾填料带来的刚性,且具有优良的成型使用稳定性和颜色稳定性。含铜化合物的添加量使复合材料中铜元素的含量控制在0.01ppm-20ppm为宜,含铁单质或含铁化合物的加入量使复合材料中铁元素的含量控制在0.1ppm-50ppm为宜,由于聚碳酸酯树脂是对金属离子敏感的,如果铁元素和铜元素的含量过高,复合材料在生产以及加工过程中会发生降解,性能产生衰减,同时颜色稳定性会下降。
优选的,基于聚碳酸酯复合材料的总重量,铁元素的重量含量为5ppm-40ppm,优选为10ppm-30ppm,铜元素的重量含量为0.1ppm-10ppm,更优选为1ppm-5ppm。
其中,所述铁元素来源于含铁单质或含铁化合物,具体选自氯化铁,氯化亚铁,硝酸铁,硫酸铁,硫酸亚铁或铁的络合物中的一种或几种。
其中,所述铜元素来源于含铜化合物,具体选自氯化铜、硝酸铜、硫酸铜、络合铜、铜离子离聚物等中的一种或几种。
所述聚碳酸酯选自包括重复结构碳酸酯单元的均聚碳酸酯或共聚碳酸酯。
所述的聚碳酸酯可以具有约15000-40000的重均分子量,重均分子量可以通过本领域所公知的方法去测定。将此重均分子量范围内的聚碳酸酯作为改性组分,可以兼顾加工流动性以及机械性能,如果重均分子量低于15000,则改性后的组合物会丧失韧性,不能满足产品的使用要求,如果重均分子量高于40000,则在加工困难,会增加废品率以及能耗。
所述聚碳酸酯同时具备PDI系数为2.0-4.0,PDI系数为多分散指数,基于BPA聚碳酸酯标准凝胶色谱法测定。PDI值大于或等于1,PDI值表示聚合物分子链的均一性。
根据ASTM D1238 300℃在1.2kg负荷下测量的聚碳酸酯熔体流动速率为3g/10min-30g/10min;组合物的通用成型温度是300℃,在这个加工温度下,如果聚碳酸酯的流动速率太低,则黏度过大,与组合物中其它各组分的相容性差,最终导致产品性能的不稳定性提高,如果聚碳酸酯的流动速率大于30g/10min,则表明分子链段端基含量较高,活性高,产品的机械性能以及颜色稳定性在加工过程中容易受到热以及氧的入侵导致失效。
所述ABS是指丙烯腈-丁二烯-苯乙烯接枝共聚物,是通过本领域熟知的方法制备的,可以通过乳液法或者溶液法进行制备,具体的,首先通过共轭二烯,如丁二烯或者其它可共聚的单体,如苯乙烯聚合以提供聚合物主链来制备接枝共聚物,在形成聚合物主链后,将至少一种接枝单体,并且具体的两种在存在聚合物主链的情况下聚合以获得接枝共聚物。
ABS可以通过乳液法或者本体法聚合而得。
ABS共聚物具有500nm至2000nm的平均粒度,优选具有750nm-1250nm的平均粒度,更优选900nm至1100nm的平均粒度。如果平均粒度大于2000nm,ABS在基体中的分散性会大大降低,如果平均粒度小于500nm,合成工艺要求比较苛刻,产率较低,不能满足工业化的要求。
ABS共聚物的玻璃化转变温度大于25℃,优选大于70℃,更优选大于100℃。玻璃化温度太低,橡胶含量过高会影响相容性,玻璃化转变温度过高则ABS极性高,表面能大,增加分散的困难。
所述填料是矿物填料,具体可以为滑石粉、硅灰石、高岭土、黏土、晶须、硅藻土等等,其体积表面积值为20um至90um。
所述填料可以是不进行任何表面处理的,也可以是涂覆处理的,例如烷基表面包覆,环氧表面处理,酰胺表面处理,羟基硅油,烷基硅烷,甲氧基硅烷,磺酸基等处理。
根据不同的用途需要,本发明的聚碳酸酯复合材料还可以进一步包括0-20重量份的抗氧化剂、光稳定剂、抗冲改性剂、阻燃剂、荧光增白剂、润滑剂、增塑剂、增韧剂、抗静电剂、脱模剂、颜料等。
所述抗氧化剂选自受阻胺类抗氧剂、受阻酚类抗氧剂或亚磷酸酯类抗氧剂中的一种或几种,具体可以列举出1010、168、1076、445、1098中的一种或者两种及以上的混合物;
所述增韧剂是EVA型增韧剂、EMA型增韧剂、ASA型增韧剂、AES型增韧剂、SAS型增韧剂、丙烯酸酯类增韧剂、有机硅增韧剂中的一种或多种混合物。
所述光稳定剂为受阻胺类或紫外线吸收剂中的一种或几种的混合,具体可以列举出UV-944、UV-234、770DF、328、531、5411中的一种或者两种及以上的混合物;
所述抗冲改性剂为PTW、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物SEBS中的一种或者两种的混合物;
所述阻燃剂为磷系阻燃剂,具体可以为双酚A双(二苯基磷酸酯)BDP、红磷、OP1240、OP1230中的一种或者两种及以上的混合物;
所述荧光增白剂为双三嗪氨基二苯乙烯、钛白粉中的一种或者二者的混合物;
所述润滑剂为滑石粉、乙撑双硬脂酰胺EBS、芥酸酰胺、硬脂酸锌、硅油中的一种或者两种及以上的混合物;
所述增塑剂为甘油、柠檬酸、柠檬酸丁酯、环氧大豆油等中的一种或者两种及以上的混合物;
所述抗静电剂为永久性抗静电剂,具体可以列举出PELESTAT-230、PELESTAT-6500、SUNNICO ASA-2500中的一种或者两种及以上的混合物;
所述脱模剂为硅油、石蜡、白矿油、凡士林中的一种或者两种及以上的混合物;
所述颜料为炭黑、黑种、钛白粉、硫化锌、酞青蓝、荧光橙中的一种或者两种及以上的混合物。
本发明所述铁元素和铜元素的获得途径,可以通过在聚碳酸酯复合材料加工过程中直接添加含铁单质或含铁化合物和含铜化合物,含铁单质或含铁化合物和含铜化合物的加入量以使复合材料中铁元素的含量达到0.1ppm-50ppm,铜元素的含量达到0.01ppm-20ppm为适宜。
本发明所述聚碳酸酯复合材料在样条尺寸为12.6mm*3.2mm,长度大于100mm,温度为23℃的弯曲模量大于7000MPa。
本发明所述聚碳酸酯复合材料在样条尺寸为12.6mm*3.2m*67mm,使用2.75J的摆锤,温度为23℃的缺口冲击强度大于70J/m。
本发明所述聚碳酸酯复合材料在厚度为1.2mm,长宽为100mm*100mm的成型韧性为A等级。
本发明的聚碳酸酯复合材料不仅具有优异的弯曲模量、冲击强度和成型韧性,还能兼顾填料带来的刚性,且具有优良的成型使用稳定性和颜色稳定性,可应用于薄壁产品,具有增强的特性,如笔记本电脑外壳,家用电器外壳等需要比较高的刚性的领域。
本发明与现有技术相比,具有如下有益效果:
实验惊讶地发现,本发明通过在复合材料中添加少量的含铜化合物和含铁单质或含铁化合物,以及减少或者避免其它含铜化合物和含铁化合物的加入,将复合材料中铜元素的含量控制在0.01ppm-20ppm,铁元素的含量控制在0.1ppm-50ppm,不仅可以避免对填料粉体的预处理,而且还能稳定体系中碱性离子,以及降低螺杆或其他金属的代入导致颜色变深以及性能损伤,使制得的聚碳酸酯复合材料具有明显改善的成型韧性、弯曲模量和冲击强度,还能兼顾填料带来的刚性,且具有优良的成型使用稳定性和颜色稳定性。。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
PC:均聚物,重均分子量为30000,PDI系数为3.0,熔体流动速率为10g/10min日本出光;
ABS1:SAN接枝丁二烯,平均粒度为1000nm,玻璃化转变温度110℃;
ABS2:SAN接枝丁二烯,平均粒度为750nm,玻璃化转变温度80℃;
ABS3:SAN接枝丁二烯,平均粒度为1500nm,玻璃化转变温度60℃;
含铁化合物、铁单质、含铜化合物:均为市购;
填料1:滑石粉,体积表面积为29um,烷基表面包覆Imery;
填料2:硅灰石,体积表面积46um,烷基表面包覆Nyclos;
其他助剂:增韧剂:MBS三菱
抗氧剂1076,ciba
抗氧剂168,ciba
脱模剂PETS,龙沙
光稳定剂5411,氰特
实施例1--14及对比例1--2:聚碳酸酯复合材料的制备
按表1所示配方,将聚碳酸酯、ABS树脂、含铜化合物以及含铁单质、含铁化合物、填料在高混机中进行共混,得到预处理的树脂基体;将预处理的树脂基体和其它助剂按照比例称量后,通过高混机或者混合机完成共混,挤出温度为240℃,过水冷却,造粒得到柱状颗粒的聚碳酸酯复合材料。各组分的配比及性能测试结果如表1所示。
各性能评价方法:
(1)弯曲模量:
在260℃的注塑温度下将聚碳酸酯复合材料注塑成型,模具温度为100℃,样条尺寸为12.6mm*3.2mm并且长度大于100mm的测试样片,使用Shimadzu Corporation制的万能试验机Autogragf,测定在23℃的弯曲模量,传感器压感杆速度为1mm/min。
(2)冲击强度
在260℃的注塑温度下将聚碳酸酯复合材料注塑成型,模具温度为100℃,样条尺寸为12.6mm*3.2m*67mm,使用2.75J的摆锤,测定在23℃的缺口冲击强度。
(3)稳定性
将聚碳酸酯复合材料颗粒装在60mm*60mm*20mm的不锈钢材质的且内垫为1mm的聚四氟乙烯薄膜的盒子里,在恒温恒湿仪器(85℃温度,85%湿度)放置100h后取出,并将其放在预设温度为100℃的真空烘箱中预处理4小时,在260℃的熔指仪上施加2.16kg的砝码进行流动性测试。
(4)成型韧性:
在260℃的注塑温度下将聚碳酸酯复合材料注塑成型,模具温度为100℃,样条尺寸为100mm*100mm*1.5mm,在室温下放置48小时后,进行180度来回弯折,记录试验片出现裂纹的弯折次数。弯折次数大于30次则评判为A+级,弯折次数小于30次且大于20次为A级,弯折次数小于20次且大于10次为A-级,弯折次数小于10次且大于5次为B级,弯折次数小于5次且大于2次为C级,弯折次数小于2次为D级。
(5)成型使用稳定性评估:
10g聚碳酸酯复合材料颗粒装入容量为100cc的烧瓶中。并倒入30cc的去离子水,将烧瓶 浸入85℃的水浴中4小时后,进行酸碱滴定,由于聚碳酸酯复合材料中碱性物质的存在会引起去离子水的酸碱值变化。pH值为6.8-7.0则评判为优异,pH值为大于7.0小于7.2则评判为良,pH值为大于7.2小于7.3则评判为好,pH值为大于7.5则评判为差。
(6)铁元素和铜元素的含量测定方法
在分析天平中精确称量聚碳酸酯复合材料的颗粒2g,倒入100ml消解瓶中,然后加入97%的浓硫酸5ml,在预设温度300℃铁板加热仪器中加热10分钟,然后再加入68%的硝酸5ml,再保持加热20分钟,使颗粒物完全分解后冷却至室温,加入20ml的双氧水中和酸性至pH值为7后,用去离子水稀释上述液体,将液体通过进样管导入ICP检测仪器中测定铁元素和铜元素的浓度。
(7)颜色稳定性
将该聚碳酸酯复合材料进行注塑,生产出厚度2毫米、宽度40毫米、长度100毫米的板,其中模具温度设定在80℃,注塑板在室温23℃湿度为50%调节48h后进行色差测试,同时根据(3)的注塑条件,生产出厚度2毫米、宽度40毫米、长度100毫米的板,其中模具温度设定在80℃。注塑板在室温23℃湿度为50%调节48h后进行色差测试,通过计算两个测试板的差(ΔE)。这个差值越小,色调变化也越小。
表1实施例1-14及对比例1-2各组分的配比(重量份)及性能测试结果
Figure PCTCN2016102714-appb-000001
Figure PCTCN2016102714-appb-000002
从表1的实施例1-14可以看出,聚碳酸酯复合材料中铁元素含量在0.1-50ppm范围内,铜元素含量在0.01-20ppm范围内,聚碳酸酯复合材料的弯曲模量大于7000MPa,缺口冲击强度大于70J/m,成型韧性为A级,同时这些聚碳酸酯复合材料具有较好的使用稳定性和颜色稳定性。对比例1-2中,当聚碳酸酯复合材料中铁元素含量小于0.1ppm或大于50ppm时,铜元素含量小于0.01ppm或大于20ppm时,聚碳酸酯复合材料弯曲模量、冲击强度、成型韧性、成型使用稳定性以及颜色稳 定性明显差于实施例。由此可以看出,通过控制聚碳酸酯复合材料中铁元素和铜元素的含量,制备得到的聚碳酸酯复合材料具有明显改善的冲击强度和成型韧性,还能兼顾填料带来的刚性,且具有优良的成型使用稳定性和颜色稳定性,综合性能优异。

Claims (12)

  1. 一种聚碳酸酯复合材料,其特征在于,包括以下组份:
    30-80 重量份的聚碳酸酯;
    5-40 重量份的ABS;
    5-80 重量份的填料;
    其中,基于聚碳酸酯复合材料的总重量,铁元素的重量含量为0.1ppm-50ppm,铜元素的重量含量为0.01ppm-20ppm。
  2. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,所述铁元素和铜元素的重量含量是采用如下方法测定:在分析天平中精确称量聚碳酸酯复合材料的颗粒2g,倒入100ml消解瓶中,然后加入97%的浓硫酸5ml,在预设温度300℃铁板加热仪器中加热10分钟,然后再加入68%的硝酸5ml,再保持加热20分钟,使颗粒物完全分解后冷却至室温,加入20ml的双氧水中和酸性至pH值为7后,用去离子水稀释上述液体,将液体通过进样管导入ICP检测仪器中测定铁元素和铜元素的浓度。
  3. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,基于聚碳酸酯复合材料的总重量,铁元素的重量含量为5ppm-40ppm,优选为10ppm-30ppm,铜元素的重量含量为0.1ppm-10ppm,优选为1ppm-5ppm。
  4. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,所述聚碳酸酯为均聚碳酸酯或共聚碳酸酯,所述聚碳酸酯的重均分子量为15000-40000,PDI系数基于BPA聚碳酸酯标准凝胶色谱法测定为2.0-4.0,熔体流动速率根据ASTM D1238 300℃在1.2kg负荷下测量为3g/10min-30g/10min。
  5. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,所述ABS为乳液法或者溶液法制备,平均粒度为500nm至2000nm,优选为750nm-1250nm,更优选为900nm至1100nm,玻璃化转变温度大于25℃,优选大于70℃,更优选大于100℃。
  6. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,所述填料为矿物填料,体积表面积为20um至90um。
  7. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,所述铁元素来源于含铁单质或含铁化合物,所述含铁化合物选自氯化铁、氯化亚铁、硝酸铁、硫酸铁、硫酸亚铁或铁的络合物中的一种或几种。
  8. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,所述铜元素来源于含铜化合物,所述含铜化合物为氯化铜、硝酸铜、硫酸铜、络合铜或铜离子离聚物中的一种或几种。
  9. 根据权利要求1所述的聚碳酸酯复合材料,其特征在于,所述聚碳酸酯复合材料还包括 0-20重量份的抗氧化剂、光稳定剂、抗冲改性剂、阻燃剂、荧光增白剂、润滑剂、增塑剂、增韧剂、抗静电剂、脱模剂、颜料中的一种或多种。
  10. 根据权利要求1-9任一项所述的聚碳酸酯复合材料,其特征在于,所述聚碳酸酯复合材料在样条尺寸为12.6mm*3.2mm,长度大于100mm,温度为23℃的弯曲模量大于7000MPa。
  11. 根据权利要求1-9任一项所述的聚碳酸酯复合材料,其特征在于,所述聚碳酸酯复合材料在样条尺寸为12.6mm*3.2m*67mm,使用2.75J的摆锤,温度为23℃的缺口冲击强度大于70J/m。
  12. 根据权利要求1-9任一项所述的聚碳酸酯复合材料,其特征在于,所述聚碳酸酯复合材料在厚度为1.2mm,长宽为100mm*100mm的成型韧性为A等级。
PCT/CN2016/102714 2015-12-25 2016-10-20 一种聚碳酸酯复合材料 WO2017107635A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16877446.1A EP3395897A4 (en) 2015-12-25 2016-10-20 POLYCARBONATE COMPOSITE MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510988096.1 2015-12-25
CN201510988096.1A CN105482426B (zh) 2015-12-25 2015-12-25 一种聚碳酸酯复合材料

Publications (1)

Publication Number Publication Date
WO2017107635A1 true WO2017107635A1 (zh) 2017-06-29

Family

ID=55669714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102714 WO2017107635A1 (zh) 2015-12-25 2016-10-20 一种聚碳酸酯复合材料

Country Status (3)

Country Link
EP (1) EP3395897A4 (zh)
CN (1) CN105482426B (zh)
WO (1) WO2017107635A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482426B (zh) * 2015-12-25 2017-05-31 金发科技股份有限公司 一种聚碳酸酯复合材料
CN106336639A (zh) * 2016-08-26 2017-01-18 金发科技股份有限公司 一种pc合金材料及其制备方法和应用
CN106496999A (zh) * 2016-11-21 2017-03-15 上海金发科技发展有限公司 一种pc复合材料及其制备方法和应用
CN107793721A (zh) * 2016-11-22 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN107793722A (zh) * 2016-11-22 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN107793723A (zh) * 2016-11-25 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN107793724A (zh) * 2016-11-29 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1518341A1 (ru) * 1988-01-04 1989-10-30 Институт механики металлополимерных систем АН БССР Способ получени композиционного материала
CN1537145A (zh) * 2001-01-25 2004-10-13 具有低铁含量的聚碳酸酯组合物
CN101171303A (zh) * 2005-05-02 2008-04-30 通用电气公司 具有改进的光学表面品质的热塑性聚碳酸酯组合物、由其制成的制品及制造方法
WO2014156345A1 (ja) * 2013-03-28 2014-10-02 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2015074675A (ja) * 2013-10-07 2015-04-20 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、樹脂成形品、および樹脂成形品の製造方法
CN105102538A (zh) * 2013-03-15 2015-11-25 沙特基础全球技术有限公司 含有消费后的再循环塑料的稳定化聚碳酸酯共混物
CN105482426A (zh) * 2015-12-25 2016-04-13 金发科技股份有限公司 一种聚碳酸酯复合材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2517855A4 (en) * 2009-12-24 2014-06-18 Idemitsu Kosan Co PROCESS FOR RECOVERING POLYCARBONATE RESIN FROM OPTICAL DISCS DISPOSED OF WASTE AND / OR OPTICAL RECOVERY DISCS, FLAME RETARDANT POLYCARBONATE RESIN COMPOSITION, INJECTION MOLDED BODY, AND OPTICALLY MOLDED MOLDED ARTICLE
US8101680B1 (en) * 2010-10-12 2012-01-24 Sabic Innovative Plastics Ip B.V. Methods of preparing polymer nanocomposites
US8633265B2 (en) * 2011-01-19 2014-01-21 Sabic Innovative Plastics Ip B.V. UV stabilization of isosorbide polycarbonates

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1518341A1 (ru) * 1988-01-04 1989-10-30 Институт механики металлополимерных систем АН БССР Способ получени композиционного материала
CN1537145A (zh) * 2001-01-25 2004-10-13 具有低铁含量的聚碳酸酯组合物
CN101171303A (zh) * 2005-05-02 2008-04-30 通用电气公司 具有改进的光学表面品质的热塑性聚碳酸酯组合物、由其制成的制品及制造方法
CN105102538A (zh) * 2013-03-15 2015-11-25 沙特基础全球技术有限公司 含有消费后的再循环塑料的稳定化聚碳酸酯共混物
WO2014156345A1 (ja) * 2013-03-28 2014-10-02 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2015074675A (ja) * 2013-10-07 2015-04-20 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、樹脂成形品、および樹脂成形品の製造方法
CN105482426A (zh) * 2015-12-25 2016-04-13 金发科技股份有限公司 一种聚碳酸酯复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395897A4 *

Also Published As

Publication number Publication date
CN105482426B (zh) 2017-05-31
CN105482426A (zh) 2016-04-13
EP3395897A4 (en) 2019-08-14
EP3395897A1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2017107635A1 (zh) 一种聚碳酸酯复合材料
CN105504745B (zh) 一种聚碳酸酯复合材料
WO2017107634A1 (zh) 一种聚碳酸酯复合材料
KR101783528B1 (ko) 폴리카보네이트 수지 조성물 및 이의 제조방법
KR101697393B1 (ko) 아크릴레이트-스티렌-아크릴로니트릴계 그라프트 공중합체를 포함하는 열가소성 수지
KR101874160B1 (ko) 투명 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR101795132B1 (ko) 폴리카보네이트 수지 조성물 및 이로부터 제조된 성형품
EP3409702B1 (en) Graft copolymer, preparation method therefor, thermoplastic resin composition containing same, and molded product
EP2610306A1 (en) Thermoplastic resin composition with flowability, transparency, and impact strength
CN109819656B (zh) 热塑性树脂组合物、其制备方法和使用其制造的模制件
KR20160061628A (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
US20120264882A1 (en) Thermoplastic Resin Composition and Molded Product Using Same
KR100806123B1 (ko) 반응성 유화제를 이용한 열가소성 수지 조성물과 그 제조방법
JP5255407B2 (ja) 難燃性熱可塑性樹脂組成物及びそれからなる成形品
KR101676900B1 (ko) 폴리카보네이트 수지용 아크릴레이트계 공중합체, 및 폴리카보네이트 수지 조성물
KR101674243B1 (ko) 열가소성 수지 조성물 및 도금 성형품
KR101931585B1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR102177828B1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품
KR20210049674A (ko) 열가소성 수지 조성물
EP1065244A1 (en) Modifier for methacrylic resin
KR102490389B1 (ko) 열가소성 수지 조성물 및 이를 이용하여 제조된 성형품
CN105885335A (zh) 一种abs树脂复合材料
KR102382545B1 (ko) 사출 성형용 투명 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 사출 성형품
CN106633568B (zh) 热塑性树脂组合物及由其形成的模制品
KR20210098854A (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016877446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016877446

Country of ref document: EP

Effective date: 20180725