WO2017105208A1 - Process for preparing concentrates of graphene nanoplatelets via the milling of graphite and exfoliants - Google Patents

Process for preparing concentrates of graphene nanoplatelets via the milling of graphite and exfoliants Download PDF

Info

Publication number
WO2017105208A1
WO2017105208A1 PCT/MX2016/000058 MX2016000058W WO2017105208A1 WO 2017105208 A1 WO2017105208 A1 WO 2017105208A1 MX 2016000058 W MX2016000058 W MX 2016000058W WO 2017105208 A1 WO2017105208 A1 WO 2017105208A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphene
scrubs
grinding
preparation
Prior art date
Application number
PCT/MX2016/000058
Other languages
Spanish (es)
French (fr)
Inventor
José Alberto RODRÍGUEZ GONZÁLEZ
Salvador FERNÁNDEZ TAVIZÓN
Jesús Alfonso MERCADO SILVA
Ilse Nataly ZUÑIGA CORONADO
Original Assignee
Centro De Investigación En Química Aplicada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigación En Química Aplicada filed Critical Centro De Investigación En Química Aplicada
Publication of WO2017105208A1 publication Critical patent/WO2017105208A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs.
  • the novelty of this process lies in the use of fatty acids and fatty acid esters as exfoliants of graphene nanoplates in the milling system. Both fatty acids and fatty acid esters facilitate the delamination process, while also acting as stabilizers for graphene nanoplates, allowing their easy dispersion in both solvents and polymers.
  • the concentrates obtained allow to take advantage of the excellent properties of graphene because during the process it does not undergo a chemical modification.
  • the graphite exfoliation which is among the top-down preparation methods, basically consists of the separation of the graphene sheets that constitute the graphite. Although conceptually it is very simple, the procedure is far from trivial; Among the problems associated with its use is that, once the exfoliation aids that keep the graphene sheets separated are removed, they tend to be re-stacked to become graphite again.
  • Oxidation introduces multiple oxygenated functional groups both in the periphery of the material and in its basal plane; these groups facilitate the separation of the layers given the steric hindrance and electrostatic repulsion of the carboxyl, anhydride, hydroxyl, epoxy and keto groups generated, facilitating their exfoliation in aqueous solutions by mechanical agitation or ultrasound [Sungjin Park, Rodney S Ruoff and Mechanical Engineering, 'Chemical Methods for the Production of Graphenes.', Nature Nanotechnology, 4 (2009), 217-24 http://dx.doi.org/10.1038/nnano.2009.58; Yongchao Si and Edward T Samulski, 'Synthesis of Water Soluble Graphene', Nano Letters, 8 (2008), 1679-82 http://dx.doi.org/10.1021/nl080604h].
  • Another disadvantage is that only stable suspensions are achieved with low concentrations, that is, with a maximum of 0.5 mg / ml, which makes many of the possible applications of graphene difficult.
  • One more of the drawbacks of this method is the possibility that the solvent used interferes with the intended use intention.
  • the solvents with which the highest concentrations are obtained in the suspensions obtained by EFL are N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF), dimethyl acetamide (DMA), butyral lactone range (GBLA) and dimethyl sulfoxide (DMSO); NMP giving the best results, with which concentrations of up to 0.5 mg / mL are achieved.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethyl formamide
  • DMA dimethyl acetamide
  • GBLA butyral lactone range
  • DMSO dimethyl sulfoxide
  • a recurring option to overcome the difficulty of delaminating graphite particles by grinding is the use of previously expanded graphite.
  • Said material is obtained by incorporating intercalants in the spaces between the sheets.
  • a mixture of acids with precursor graphites is used and subsequently the material is subjected to a thermal expansion process or microwave irradiation to increase the distance between the sheets and facilitate the mechanical exfoliation process.
  • expanded graphites is involved in the milling process to obtain graphene nanoplates, WO2009106507A2, US8524067B2, KR20150021460A, and US8747623B2.
  • plasticizers available for elastomer formulations, such as polyester glutarate, trioctyl trimellitate, di (2-ethylhexyl) ⁇ alate, di (butoxy-ethoxy-ethyl) adipate, dibutyl phthalate (DBP) and combinations thereof .
  • the pre-mixing preparation is done by grinding, sonication with high power tip, and homogenization with high cutting efforts.
  • FIG. 1 An X-ray diffractogram of graphene nanoplate platelet concentrates prepared by grinding graphite and scrubs is shown.
  • FIG. 1a A micrograph of SEM at 4000 magnifications of graphene nanoplates is shown in the concentrate prepared by grinding graphite and scrubs.
  • FIG. 2b A micrograph of SEM at 11000 magnifications of graphene nanoplates is shown in the concentrate prepared by grinding graphite and scrubs.
  • FIG. 3c A photograph of the front view of the vials is shown with the dispersions of the ground graphite (GM m ) and the graphene nanoplate platelet prepared by milling graphite and a fatty acid ester (GM-BC) immediately after prepared
  • GM m ground graphite
  • GM-BC fatty acid ester
  • FIG. 3d figure. A photograph of the front view of the vials is shown with the dispersions of the ground graphite (GM m ) and the graphene nanoplate platelet prepared by milling graphite and a fatty acid ester (GM-BC) after two weeks.
  • Figure 4e A photograph of the front view of the vials taken immediately after the dispersions in different solvents of the graphene nanoplate plate concentrate prepared by milling graphite and a fatty acid ester are prepared, the solvents are deionized water (ADI), isopropanol (IPA), acetone (Acet), chloroform (Chlorine) and methanol (MeOH).
  • ADI deionized water
  • IPA isopropanol
  • Acet acetone
  • Chlorine chloroform
  • MeOH methanol
  • Figure 4f A photograph of the front view of the vials taken after two weeks of preparing the dispersions in different solvents of the graphene nanoplate platelet prepared by grinding graphite and a fatty acid ester is shown, the solvents are deionized water (ADI) , isopropanol (IPA), acetone (Acet), chloroform (Chlorine) and methanol (MeOH).
  • ADI deionized water
  • IPA isopropanol
  • Acet acetone
  • Chlorine chloroform
  • MeOH methanol
  • FIG. 5 A micrograph of SEM at 15000 magnifications of a graphene nanoplate obtained from the dispersion of the concentrate prepared by milling graphite and a fatty acid ester is shown.
  • the present invention relates to a process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs.
  • the novelty of this process lies in the use of fatty acids and fatty acid esters as exfoliants of graphene nanoplates in a milling system. Both fatty acids and fatty acid esters facilitate the process of delarnination, while acting as stabilizers for graphene nanoplates, allowing easy dispersion in both solvents and polymers.
  • the concentrates obtained allow to take advantage of the excellent properties of graphene because during the process it does not undergo a chemical modification.
  • the process of preparing the concentrates comprises the use of at least one scrub selected from the group of fatty acid esters, fatty acids.
  • fatty acid ester also called biodiesel
  • used in this process is chosen from the group comprising at least one derivative of vegetable oils, both pure and recycled, such as cane, palm, sesame, safflower, hemp, rapeseed, olive, soy , sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha; as well as biodiesel obtained from both vegetable and animal triglycerides.
  • At least one saturated fatty acid derived from the oils and fats listed above, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, lignoceric and cerotic, as well as some unsaturated fatty acids, is used as an exfoliating medium , among them, in a non-limiting manner, palmitoleic, oleic and erucic.
  • the scrub is used in a weight ratio with graphite between 0.1 and 99.9%.
  • At least one solvent from the group of solvents for use in chemical processes is used as a suspension medium, among them, as non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert -butanol), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), aliphatic solvents (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide N-methylpyrrolidna, dimethyl sulfoxide,
  • at least one graphite chosen from the group of natural graphite, synthetic graphite, Kish graphite, meso-porous graphit
  • the graphite required for this process has a particle size between 0.1 and 500 um as well as a purity greater than 90%.
  • the concentration of graphite used in the concentrates is between 0.1 and 99.9% by weight.
  • the grinding system used in the process of preparing graphene nanoplate plate concentrates comprises the use of at least one of the mills selected from the group of the planetary mill, horizontal mill, high energy mill, attrition mill, and vibratory mill. Said grinding system uses at least one grinding element selected from the group of balls, discs, and bars. Balls are preferably used as an element in the grinding system.
  • the process allows to obtain materials with concentrations above 1000 mg of graphene nanoplates for each ml of scrub used
  • Example 1 Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a planetary ball mill.
  • the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a planetary ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, Kish meso-porous graphite graphite, expanded graphite and graphite interspersed
  • concentrations of graphite used in the concentrates are between 0.1 and 99.9% by weight. Preferably concentrations between 20 and 70% by weight of graphite are used.
  • at least one scrub selected from the group of esters of fatty acids, fatty acids and organic and inorganic solvents is used.
  • the fatty acid ester, also called biodiesel, used in this process is chosen from the group comprising at least one derivative of vegetable oils, both pure and recycled, such as cane, palm, sesame, safflower, hemp, rapeseed, olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha; as well as biodiesel obtained from both vegetable and animal triglycerides.
  • at least one acid derived from the oils and fats listed above, such as stearic, palmitic, erucic, oleic, is used as an exfoliating medium.
  • the scrub is used in a weight ratio with graphite between 0.1 and 99.9%.
  • at least one solvent from the group of solvents for use in chemical processes is used as an exfoliant, among them, as non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol ), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), aliphatic solvents (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N- methylpyrrolidna, and dimethyl sulfoxide.
  • solvents for use in chemical processes is used as an exfoliant, among them, as non
  • the load of the planetary ball mill employs a ratio of grinding element and material to be ground between 1: 5 and 30: 1. Preferably a ratio of 10: 1.
  • the operating speed of the planetary ball mill for the preparation of graphene nanoplate plate concentrates is between 100 and 1100 rpm, preferably it uses a speed of 350 rpm.
  • the grinding times used for the preparation of graphene concentrates comprise 10 to 1440 minutes. Preferably the grinding time is between 30 and 300 minutes.
  • Example 2 Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a horizontal ball mill.
  • the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a planetary horizontal ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, meso-porous graphite Kish graphite, expanded graphite and interleaved graphite
  • the graphite concentrations used in the concentrates were 0.1 to 99.9% by weight. Preferably concentrations between 20 and 70% by weight of graphite are used.
  • fatty acid esters are used, also called biodieseles, derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides.
  • biodieseles derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides.
  • fatty acids derived from the oils and fats listed above such as stearic, palmitic, erucic, oleic, and mixtures thereof, are used as exfoliating medium, as stabilizers of graphene sheets in the suspension.
  • At least one solvent from the solvent group used in chemical processes is used as an exfoliant, including non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), solvents aliphatic (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N-methylpyrrolidna, and dimethyl sulfoxide.
  • alcohols methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol
  • ketones such as acetone
  • the loading of the horizontal ball mill uses a ratio of grinding element and material to be ground between 1: 5 and 30: 1. Preferably a ratio of 10: 1.
  • the operating speed of the horizontal ball mill for the preparation of graphene concentrates is between 50 and 500 rpm, preferably it uses a speed of 150 rpm.
  • the grinding times used for the preparation of graphene concentrates comprise 10 to 1440 minutes. Preferably the grinding time is between 30 and 600 minutes.
  • Example 3 Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a high energy ball mill.
  • the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a high energy ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, meso-porous graphite Kish graphite, expanded graphite and graphite intercalated.
  • the graphite concentrations used in the concentrates they were from 0.1 to 99.9% by weight. Preferably, concentrations between 30 and 50% by weight of graphite are used.
  • fatty acid esters are used, also called biodieseles, derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides.
  • biodieseles derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides.
  • fatty acids derived from the oils and fats listed above such as stearic, palmitic, erucic, oleic, and mixtures thereof, are used as exfoliating medium, as stabilizers of graphene sheets in the suspension.
  • At least one solvent from the group of solvents for use in chemical processes is used as an exfoliant, among them, as non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol ), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), aliphatic solvents (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N- methylpyrrolidna, and dimethyl sulfoxide.
  • alcohols methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol
  • the loading of the high-energy ball mill uses a ratio of grinding element and material to be ground between 1: 5 and 30: 1. Preferably a ratio of 10: 1.
  • the grinding times used for the preparation of graphene concentrates comprise between 10 and 1440 minutes. Preferably the grinding time is between 30 and 300 minutes.
  • Example 4 Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in an attractor ball mill.
  • the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in an attractor ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, Kish graphite, meso-porous graphite, expanded graphite and graphite interspersed
  • the graphite concentrations used in the concentrates were 0.1 to 99.9% by weight. Preferably, concentrations between 30 and 50% by weight of graphite are used.
  • fatty acid esters are used, also called biodieseles, derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides.
  • biodieseles derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides.
  • fatty acids derived from the oils and fats listed above such as stearic, palmitic, erucic, oleic, and mixtures thereof, are used as exfoliating medium, as stabilizers of graphene sheets in the suspension.
  • At least one solvent from the solvent group used in chemical processes is used as an exfoliant, including non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), solvents aliphatic (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N-methylpyrrolidna, and dimethyl sulfoxide.
  • alcohols methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol
  • ketones such as acetone
  • the operating speed of the attrition ball mill for the preparation of graphene concentrates is between 100 to 1100 rpm, preferably uses a speed of 600 rpm.
  • the grinding times used for the preparation of graphene concentrates comprise 10 to 1440 minutes. Preferably the grinding time is between 100 and 300 minutes.
  • Example 5 X-ray scattering analysis (DRX) of graphene nanoplate platelet concentrates prepared by milling graphite and scrubs.
  • DRX X-ray scattering analysis
  • Graphene nanoplate plate concentrates prepared from the other types of graphite in a planetary ball mill also show variation in the decrease of said signal. In all cases, this decrease indicates that the grinding system generates a process of delamination of the graphite particles due to the energy applied.
  • Example 6 Scanning electron microscopy (SEM) analysis of graphene nanoplate platelet concentrates prepared by milling graphite and scrubs.
  • Example 7 Evaluation of the effect of both the scrub on solvent dispersion of graphene nanoplate plate concentrates prepared in grinding systems.
  • the process of preparing graphene nanoplaquettes by milling graphite and scrubs in different grinding systems has as its main objective the obtaining of a material that is easily dispersible in different solvents.
  • the evaluation of the effect of the use of both fatty acids and fatty acid esters on the dispersibility of graphene concentrates was carried out in different solvents of the alcohol, ketone and chloroform groups. Preferably chloroform is used as solvent.
  • a ground graphite prepared under similar conditions is used as the preparation of graphite concentrates with both fatty acids and fatty acid esters. That is, graphite is milled in a planetary mill at 350 rpm for 6 cycles of 30 minutes each. 2 mg of the ground graphite (GM m ) is dispersed in 10 ml of chloroform, to obtain a concentration of 0.2 mg / ml. Simultaneously, 4 mg of the concentrate GM-BC is dispersed in 10 ml of chloroform, because the concentrate has a weight ratio of graphite: biodiesel of 1: 1, the final concentration of the dispersion is 0.2 mg / ml. Both samples are shaken in an ultrasound bath for 3 minutes.
  • Figure 3c shows the photograph of the front view of the vials containing the dispersions. It can be seen that the dispersion on the left, which contains the ground graphite, has a fainter coloration than the one on the right vial, which contains the dispersion of the concentrate. Two weeks later the vials have an appearance as shown in the photograph in Figure 3d. In this it can be seen that the dispersion of ground graphite continues to be less colored than its similar with the concentrate.
  • Example 8 Dispersion in solvents of graphene nanoplate plate concentrates prepared by milling graphite and scrubs.
  • the purpose of preparing graphene nanoplate plate concentrates by milling graphite and scrubs in different grinding systems is to obtain a material that is easily dispersible in different solvents.
  • the evaluation of the dispersibility of graphene concentrates was carried out in alcohols of the group of ethanol, methanol, propanol, isopropanol, butanol, and combinations thereof. It is preferably performed in methanol and isopropanol.
  • Solvents from the halogenated group such as chloroform, chloromethane, and dichloromethane. Preferably chloroform is used as solvent.
  • ketone solvents such as acetone were used.
  • deionized water was used as polar solvent.
  • the dispersions were prepared at a concentration of graphene nanoplate in solvent of 0.2 mg / ml.
  • 4 mg of the graphene concentrate prepared with graphite and coconut biodiesel were dispersed, with a weight ratio of 1: 1, in 10 ml of each solvent.
  • the dispersions were sonicated in a bath for 3 minutes.
  • the vials with the dispersions of the GM-BC concentrate in deionized water (ADI), isopropanol (IPA), acetone (Acet), chloroform (Chlorine) and methanol (MeOH) are observed, all at a concentration of 0.2 mg / ml graphene.
  • the concentrate has a great ability to form dispersions of both alcohols, acetone and chloroform.
  • there is no dispersibility of graphene concentrate in deionized water which is due to the fatty nature of the scrubs used, which is not compatible with water.
  • the dispersions of graphene concentrates prepared from graphite with both fatty acids and fatty acid esters in the different grinding systems were evaluated by the SEM technique.
  • the sample is prepared by immersing a copper grid in the dispersion of the graphene concentrate in acetone with a concentration of less than 0.2 mg / ml.
  • the grid is analyzed in a JEM JCM-6000 SEM microscope, with high vacuum, in secondary electron mode (SEI), at 15 kilovolts.
  • SEI secondary electron mode

Abstract

The invention relates to a process for preparing concentrates of graphene nanoplatelets via the milling of graphite and exfoliants. The novel aspect of this process is characterised by the use of fatty acids and fatty acid esters as exfoliants of the graphene nanoplatelets in the milling system. Both the fatty acids and the fatty acid esters facilitate the delamination process, while simultaneously acting as stabilisers for the graphene nanoplatelets, permitting same to be easily dispersed in both solvents and polymers. The obtained concentrates permit the excellent properties of the graphene to be used, given that same does not undergo a chemical modification during the process.

Description

PROCESO PARA LA PREPARACIÓN DE CONCENTRADOS DE NANOPLAQUETAS DE GRAFENO MEDIANTE LA MOLIENDA DE GRAFITO Y EXFOLIANTES  PROCESS FOR THE PREPARATION OF GRAPHENE NANOPLAQUETTE CONCENTRATES THROUGH GRAPHITE GRINDING AND EXFOLIANTS
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención se refiere a un proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes. La novedad de este proceso radica en el uso de ácidos grasos y ésteres de ácidos grasos como exfoliantes de las nanoplaquetas de grafeno en el sistema de molienda. Tanto los ácidos grasos como los ésteres de ácidos grasos facilitan el proceso de deslaminación, a la vez que actúan como estabilizadores de las nanoplaquetas de grafeno permitiendo su fácil dispersión tanto en solventes como en polímeros. Los concentrados obtenidos permiten aprovechar las excelentes propiedades del grafeno debido a que durante el proceso este no sufre una modificación química. The present invention relates to a process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs. The novelty of this process lies in the use of fatty acids and fatty acid esters as exfoliants of graphene nanoplates in the milling system. Both fatty acids and fatty acid esters facilitate the delamination process, while also acting as stabilizers for graphene nanoplates, allowing their easy dispersion in both solvents and polymers. The concentrates obtained allow to take advantage of the excellent properties of graphene because during the process it does not undergo a chemical modification.
ANTECEDENTES BACKGROUND
En los últimos años se han incrementado exponencialmente las investigaciones para aprovechar las excelentes propiedades del grafeno en distintos campos desde aplicaciones cotidianas como dispositivos electrónicos hasta aplicaciones especializadas. Entre los posibles usos del grafeno podemos mencionar su empleo en la fabricación de circuitos electrónicos flexibles, como componente para la manufactura de baterías y supercapacitores para el almacenamiento de energía, como materia prima en la elaboración de matrices poliméricas conductoras de electricidad o calor o como escudo de interferencia electromagnética, por señalar algunas de las aplicaciones que ofrecen mayores posibilidades comerciales. In recent years, research has increased exponentially to take advantage of the excellent properties of graphene in different fields from everyday applications such as electronic devices to specialized applications. Among the possible uses of graphene we can mention its use in circuit manufacturing flexible electronics, as a component for the manufacture of batteries and supercapacitors for energy storage, as a raw material in the production of polymeric matrices conductive of electricity or heat or as a shield of electromagnetic interference, to point out some of the applications that offer greater commercial possibilities .
Aunque se han desarrollado múltiples pruebas de concepto, al igual que la manufactura y prueba de diversos prototipos, no ha sido alcanzado el despliegue de fabricación industrial y uso comercial, principalmente por carecer de procedimientos económicos, confiables e industrialmente escalables que permitan su elaboración.  Although multiple proofs of concept have been developed, as well as the manufacturing and testing of various prototypes, the deployment of industrial manufacturing and commercial use has not been achieved, mainly due to the lack of economical, reliable and industrially scalable procedures that allow their elaboration.
Aunque en la presente solamente nos referimos a la obtención de grafeno por exfoliación de grafito, existen una serie de alternativas para lograrla las cuales se clasifican como de arriba-abajo o de abajo-arriba dependiendo del procedimiento y de la materia prima de partida [Hyunwoo Kim, Ahmed A Abdala and Christopher W Macosko, 'Graphene/Polymer Nanocomposites', Macromolecules, 43 (2010), 6515-30 http://dx.doi.org/10.1021/mal00572e]. Los métodos enmarcados en la primera clasificación involucran el uso de sustancias o compuestos de peso molecular y/o grandes dimensiones a los que se disminuyen su tamaño o se re-arreglan los átomos que los constituyen para generar la red poliaromática bidimensional de grafeno.  Although we are only referring to obtaining graphene by graphite exfoliation, there are a number of alternatives to achieve this which are classified as top-down or bottom-up depending on the procedure and starting raw material [Hyunwoo Kim, Ahmed A Abdala and Christopher W Macosko, 'Graphene / Polymer Nanocomposites', Macromolecules, 43 (2010), 6515-30 http://dx.doi.org/10.1021/mal00572e]. The methods framed in the first classification involve the use of substances or compounds of molecular weight and / or large dimensions to which their size is reduced or the atoms that constitute them are re-arranged to generate the two-dimensional polyamromatic graphene network.
Por otra parte, la exfoliación de grafito, que se encuentra entre los métodos de preparación arriba-abajo, consiste básicamente en la separación de las láminas de grafeno que constituyen al grafito. Pese a que conceptualmente es muy simple, el procedimiento dista de ser trivial; entre los problemas asociados con su utilización es el que, una vez se retiran las ayudas de exfoliación que mantienen a las láminas de grafeno separadas, éstas tienden a re-apilarse para constituirse nuevamente en grafito. Una de las opciones propuestas para evitar o disminuir esta dificultad consiste en recurrir a una oxidación profunda del grafito convirtiéndolo en óxido de grafito (GO, por sus siglas en inglés) [D W Lee and others, 'The Structure of Graphite Oxide: Investigation of Its Surface Chemical Groups', The Journal of Physical Chemistry B, 114 (2010), 5723-28 http://dx.doi.org/10.1021/jpl002275; Antón Lerf and others, 'Structure of Graphite Oxide Revisited', Journal of Physical Chemistry B, 102 (1998), 4477-82 http://dx.doi.org/10.1021^p9731821; K Andre Mkhoyan and others, 'Atomic and Electronic Structure of Graphene-Oxide', Nano Letters, 9 (2009), 1058-63 http://dx.doi.org/10.1021/nl8034256; J I Paredes and others, 'Graphene Oxide Dispersions in Organic Solvents', Langmuir, 24 (2008), 10560-64; D A Dikin and others, 'Preparation and Characterization of Graphene Oxide Paper', Notare, 448 (2007), 457- 60 http://dx.doi.org/10.1038/nature06016]. La oxidación introduce múltiples grupos funcionales oxigenados tanto en la periferia del material como en su plano basal; estos grupos facilitan la separación de las capas dado el impedimento estérico y la repulsión electrostática de los grupos carboxilo, anhídrido, hidroxilo, epoxi y ceto generados, facilitando su exfoliación en soluciones acuosas mediante agitación mecánica o ultrasonido [Sungjin Park, Rodney S Ruoff and Mechanical Engineering, 'Chemical Methods for the Production of Graphenes.', Nature Nanotechnology, 4 (2009), 217-24 http://dx.doi.org/10.1038/nnano.2009.58; Yongchao Si and Edward T Samulski, 'Synthesis of Water Soluble Graphene', Nano Letters, 8 (2008), 1679-82 http://dx.doi.org/10.1021/nl080604h]. A pesar de que la sonicación del GO fácilmente genera láminas de óxido de grafeno, el procedimiento tiene el gran inconveniente de modificar parcialmente la estructura aromática del grafeno, de la que se derivan las más de sus características. Para recuperar las propiedades, las láminas exfoliadas de óxido de grafeno requieren ser sometidas a procesos de reducción; docenas de métodos se han probado con resultados variables, sin. embargo ninguno de ellos es capaz de recuperar en su totalidad la estructura aromática [Yanvvu Zhu and others, 'Microwave Assisted Exfoliation and Reduction of Graphite Oxide for Ultracapacitors', Carbón, 48 (2010), 2118-22 http://dx.doi.Org/10.1016/j.carbon.2010.02.001; Athanasios B Bourlinos and others, 'Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids', Langmuir, 19 (2003), 6050-55 http://te.doi.org/10.1021/la026525h; Laura J Cote, Rodolfo Cruz-silva and Jiaxing Huang, 'Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite', Journal of the American Chemical Society, 131 (2009), 11027-32 http://dx.doi.org/10.1021/ja902348k; Goki Eda, Giovanni Fanchini and Manish Chhowalla, 'Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material', Nat Nano, 3 (2008), 270-74; Songfeng Pei and Hui- ming Cheng, 'The Reduction of Graphene Oxide', Carbón, 50 (2011), 3210-28 http://dx.doi.Org/10.1016/j.carbon.2011.11.010]. Otro inconveniente es que, dadas las condiciones extremas de oxidación se generan una gran cantidad de defectos en las láminas, las que se rompen generando vacancias que no pueden ser reparadas [Daniel R Dreyer and others, 'The Chemistry of Graphene Oxide.', Chemical Society Reviews, 39 (2010), 228-40 <http://dx.doi.org/10.1039/b917103g>; Sungjin Park and Rodney S Ruoff, 'Chemical Methods for the Production of Graphenes', Nat Nano, 4 (2009), 217- 24; Pei and Cheng]. Por último, y lo más importante, estos procedimientos no logran evitar el que el óxido de grafeno reducido (rGO, por sus siglas en inglés) vuelva a apilarse reformando grafito. Los inconvenientes mencionados han sido ampliamente reportados motivando a que se dedique un enorme esfuerzo para solucionarlos. Una técnica que evita muchos de los problemas, particularmente los relacionados con la oxidación profunda, toma ventaja de que algunos solventes, auxiliados por sonicación o mezclado bajo condiciones de alto esfuerzo de corte, son capaces de humectar la superficie de las láminas presentes en el grafito facilitando su separación. Esto ha dado lugar a la obtención de suspensiones estables de grafeno de una o un número pequeño de capas. Este procedimiento general se conoce como exfoliación en fase líquida (EFL). Desafortunadamente, como en el proceso anterior, la remoción de los solventes tiene como consecuencia el re apilamiento de las láminas de grafeno. Otra de las desventajas es que solo se logran suspensiones estables con bajas concentraciones, esto es, con un máximo de 0.5 mg/ml, lo cual dificulta muchas de las aplicaciones posibles del grafeno. Una más de los inconvenientes de este método es la posibilidad de que el solvente utilizado interfiera con la intención de uso deseada. Entre los solventes con los que se obtienen las concentraciones más altas en las suspensiones obtenidas por EFL se encuentran la N-metil-2-pirrolidona (NMP), dimetil formamida (DMF), dimetil acetamida (DMA), gama butiro lactona (GBLA) y el sulfóxido de dimetilo (DMSO); dando los mejores resultados la NMP, con la que se consiguen concentraciones de hasta 0.5 mg/mL. Sin embargo, estos solventes son costosos y algunos de ellos se consideran potencialmente dañinos para el medio ambiente. Como consecuencia, es necesario encontrar métodos de exfoliación de grafeno de menor costo, con mayor contenido de grafeno por volumen de solvente empleado. On the other hand, the graphite exfoliation, which is among the top-down preparation methods, basically consists of the separation of the graphene sheets that constitute the graphite. Although conceptually it is very simple, the procedure is far from trivial; Among the problems associated with its use is that, once the exfoliation aids that keep the graphene sheets separated are removed, they tend to be re-stacked to become graphite again. One of the options proposals to avoid or reduce this difficulty consist in resorting to a deep oxidation of graphite turning it into graphite oxide (GO) [DW Lee and others, 'The Structure of Graphite Oxide: Investigation of Its Surface Chemical Groups' , The Journal of Physical Chemistry B, 114 (2010), 5723-28 http://dx.doi.org/10.1021/jpl002275; Antón Lerf and others, 'Structure of Graphite Oxide Revisited', Journal of Physical Chemistry B, 102 (1998), 4477-82 http://dx.doi.org/10.1021^p9731821; K Andre Mkhoyan and others, 'Atomic and Electronic Structure of Graphene-Oxide', Nano Letters, 9 (2009), 1058-63 http://dx.doi.org/10.1021/nl8034256; JI Paredes and others, 'Graphene Oxide Dispersions in Organic Solvents', Langmuir, 24 (2008), 10560-64; DA Dikin and others, 'Preparation and Characterization of Graphene Oxide Paper', Notare, 448 (2007), 457-60 http://dx.doi.org/10.1038/nature06016]. Oxidation introduces multiple oxygenated functional groups both in the periphery of the material and in its basal plane; these groups facilitate the separation of the layers given the steric hindrance and electrostatic repulsion of the carboxyl, anhydride, hydroxyl, epoxy and keto groups generated, facilitating their exfoliation in aqueous solutions by mechanical agitation or ultrasound [Sungjin Park, Rodney S Ruoff and Mechanical Engineering, 'Chemical Methods for the Production of Graphenes.', Nature Nanotechnology, 4 (2009), 217-24 http://dx.doi.org/10.1038/nnano.2009.58; Yongchao Si and Edward T Samulski, 'Synthesis of Water Soluble Graphene', Nano Letters, 8 (2008), 1679-82 http://dx.doi.org/10.1021/nl080604h]. Although the sonication of GO easily generates graphene oxide sheets, the process has the great disadvantage of partially modifying the aromatic structure of graphene, from which the most of its characteristics are derived. To recover the properties, exfoliated oxide sheets of Graphene need to be subjected to reduction processes; Dozens of methods have been tested with variable results, without. However, none of them is capable of recovering the aromatic structure in its entirety [Yanvvu Zhu and others, 'Microwave Assisted Exfoliation and Reduction of Graphite Oxide for Ultracapacitors', Carbon, 48 (2010), 2118-22 http: //dx.doi .Org / 10.1016 / j.carbon.2010.02.001; Athanasios B Bourlinos and others, 'Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids', Langmuir, 19 (2003), 6050-55 http://te.doi.org/10.1021/la026525h; Laura J Cote, Rodolfo Cruz-silva and Jiaxing Huang, 'Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite', Journal of the American Chemical Society, 131 (2009), 11027-32 http://dx.doi.org /10.1021/ja902348k; Goki Eda, Giovanni Fanchini and Manish Chhowalla, 'Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material', Nat Nano, 3 (2008), 270-74; Songfeng Pei and Huing Cheng, 'The Reduction of Graphene Oxide', Carbon, 50 (2011), 3210-28 http://dx.doi.Org/10.1016/j.carbon.2011.11.010]. Another drawback is that, given the extreme oxidation conditions, a large number of defects are generated in the sheets, which break causing vacancies that cannot be repaired [Daniel R Dreyer and others, 'The Chemistry of Graphene Oxide.', Chemical Society Reviews, 39 (2010), 228-40 <http://dx.doi.org/10.1039/b917103g>; Sungjin Park and Rodney S Ruoff, 'Chemical Methods for the Production of Graphenes', Nat Nano, 4 (2009), 217-24; Pei and Cheng]. Finally, and most importantly, these procedures fail to prevent the reduced graphene oxide (rGO) from being stacked again by reforming graphite. The aforementioned inconveniences have been widely reported motivating an enormous effort to solve them. A technique that avoids many of the problems, particularly those related to deep oxidation, takes advantage of the fact that some solvents, aided by sonication or mixing under conditions of high cutting stress, are able to wet the surface of the sheets present in the graphite facilitating its separation. This has resulted in the obtaining of stable graphene suspensions of one or a small number of layers. This general procedure is known as liquid phase exfoliation (EFL). Unfortunately, as in the previous process, solvent removal results in the stacking of graphene sheets. Another disadvantage is that only stable suspensions are achieved with low concentrations, that is, with a maximum of 0.5 mg / ml, which makes many of the possible applications of graphene difficult. One more of the drawbacks of this method is the possibility that the solvent used interferes with the intended use intention. Among the solvents with which the highest concentrations are obtained in the suspensions obtained by EFL are N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF), dimethyl acetamide (DMA), butyral lactone range (GBLA) and dimethyl sulfoxide (DMSO); NMP giving the best results, with which concentrations of up to 0.5 mg / mL are achieved. However, these solvents are expensive and some of them are considered potentially harmful to the environment. As a consequence, it is necessary to find less expensive graphene exfoliation methods, with a higher graphene content per volume of solvent used.
Otro de los métodos que han sido utilizados para la obtención de nanoplaquetas de grafeno a partir de grafito es mediante la molienda de este último. El proceso de la molienda ha sido utilizado desde hace siglos para la reducción del tamaño de partícula de materiales tan diversos como alimentos y minerales. Sin embargo, en las últimas décadas ha tomado auge el estudio del fenómeno químico que se presenta debido a la aplicación de energía durante el proceso de molienda. Another method that has been used to obtain graphene nanoplates from graphite is by milling the latter. The milling process has been used for centuries to reduce the particle size of Materials as diverse as food and minerals. However, in the last decades the study of the chemical phenomenon that occurs due to the application of energy during the milling process has boomed.
Entre 2002 y 2005, Janot y colaboradores [Raphae! Janot and Daniel Guérard, 'Ball- Milling: The Behavior of Graphite as a Function of the Dispersal Media', Carbón, 40 (2002), 2887-96 http://dx.doi.0rg/lO.l 016/S0008-6223(02)00223-3; Raphael Janot and Daniel Guérard, 'Ball-Milling in Liquid Media: Applications to the Preparation of Anodic Materials for Lithium-Ion Batteries', Progress in Materials Science, 50 (2005), 1-92 http://dx.doi.org/10.1016/S0079-6425(03)00050-l] reportaron la obtención de partículas de grafito de 20 nm de espesor en un molino de bolas planetario en presencia de agua y dodecano para aplicaciones en electroquímica, sin embargo, no reportan los rendimientos de partículas obtenidos. Un año después del reporte de Janot, Antisari y colaboradores publican la obtención de láminas delgadas de grafeno mediante molienda por 60 h. [M. Vittori Antisari and others, 'Low Energy Puré Shear Milling: A Method for the Preparation of Graphite Nano-Sheets', Scripía Materialia, 55 (2006), 1047-50 http://dx.doi.org/10.1016 /j.scriptamat.2006.08.002].  Between 2002 and 2005, Janot et al [Raphae! Janot and Daniel Guérard, 'Ball-Milling: The Behavior of Graphite as a Function of the Dispersal Media', Carbon, 40 (2002), 2887-96 http: //dx.doi.0rg/lO.l 016 / S0008- 6223 (02) 00223-3; Raphael Janot and Daniel Guérard, 'Ball-Milling in Liquid Media: Applications to the Preparation of Anodic Materials for Lithium-Ion Batteries', Progress in Materials Science, 50 (2005), 1-92 http://dx.doi.org /10.1016/S0079-6425(03)00050-l] reported obtaining 20 nm thick graphite particles in a planetary ball mill in the presence of water and dodecane for electrochemical applications, however, they do not report the yields of particles obtained. One year after the report by Janot, Antisari and collaborators publish obtaining thin sheets of graphene by grinding for 60 h. [M. Vittori Antisari and others, 'Low Energy Puré Shear Milling: A Method for the Preparation of Graphite Nano-Sheets', Scripía Materialia, 55 (2006), 1047-50 http://dx.doi.org/10.1016 /j.scriptamat .2006.08.002].
Una opción recurrente para vencer la dificultad de deslaminar las partículas de grafito mediante la molienda es el uso de grafito expandido previamente. Dicho material se obtiene mediante la incorporación de intercalantes en los espacios entre las láminas. Para lo anterior se utiliza una mezcla de ácidos con grafitos precursores y posteriormente el material es sometido a un proceso de expansión térmica o por irradiación de microondas para incrementar la distancia entre las láminas y facilitar el proceso de exfoliación mecánica. En las patentes siguientes se involucra el uso de grafitos expandidos en el proceso de molienda para la obtención de las nanoplaquetas de grafeno, WO2009106507A2, US8524067B2, KR20150021460A, y US8747623B2. En el trabajo desarrollado por Tang y colaboradores [Qunwei Tang and others, 'Crystallizatíon Degree Change of Expended Graphite by Milling and Annealing', Journal of Alloys and Compounds, 475 (2009), 429-33 http://dx.doi.Org/10.1016/j.jallcom.2008.07.063] se comprobó que la molienda de grafito expandido a 1050°C, por un tiempos menor a 12 horas, produce la amorfización de las partículas, pero después de 16 horas de molienda se obtiene un proceso de re-cristalización que permite obtener grafito nano-expandido. Sin embargo está reportado que este procedimiento también genera la presencia de defectos en las láminas de grafeno [Xueqing Yue and others, 'In-Plane Defects Produced by Ball-Milling of Expended Graphite', Journal of Alloys and Compounds, SOS (2010), 286-90 http://dx.doi.org/10.1016 /j.jallcom.2010.06.048]. Un método menos agresivo para exfoliar nanoplaquetas de grafeno mediante molienda de grafito expandido lo propusieron Borah y colaboradores [Munu Borah and others, 'Few Layer Graphene Derived from Wet Ball Milling of Expanded Graphite and Few Layer Graphene Based Polymer Composite', Materials Focus, 3 (2014), 300-309 http://dx.doi.Org/10.l 166/mat.2014.1185] al incorporar DMF en el proceso. La presencia de un solvente afín a las láminas de grafeno facilita su deslaminación disminuyendo el daño generado por el proceso de molienda. A recurring option to overcome the difficulty of delaminating graphite particles by grinding is the use of previously expanded graphite. Said material is obtained by incorporating intercalants in the spaces between the sheets. For this, a mixture of acids with precursor graphites is used and subsequently the material is subjected to a thermal expansion process or microwave irradiation to increase the distance between the sheets and facilitate the mechanical exfoliation process. In the following patents the use of expanded graphites is involved in the milling process to obtain graphene nanoplates, WO2009106507A2, US8524067B2, KR20150021460A, and US8747623B2. In the work developed by Tang et al [Qunwei Tang and others, 'Crystallization Degree Change of Expended Graphite by Milling and Annealing', Journal of Alloys and Compounds, 475 (2009), 429-33 http://dx.doi.Org /10.1016/j.jallcom.2008.07.063] it was found that the milling of expanded graphite at 1050 ° C, for a time less than 12 hours, produces the amorphization of the particles, but after 16 hours of grinding a process is obtained of re-crystallization that allows to obtain nano-expanded graphite. However, it is reported that this procedure also generates the presence of defects in graphene sheets [Xueqing Yue and others, 'In-Plane Defects Produced by Ball-Milling of Expended Graphite', Journal of Alloys and Compounds, SOS (2010), 286-90 http://dx.doi.org/10.1016 /j.jallcom.2010.06.048]. A less aggressive method of exfoliating graphene nanoplates through expanded graphite milling was proposed by Borah et al. [Munu Borah and others, 'Few Layer Graphene Derived from Wet Ball Milling of Expanded Graphite and Few Layer Graphene Based Polymer Composite', Materials Focus, 3 (2014), 300-309 http://dx.doi.Org/10.l 166 / mat.2014.1185] by incorporating DMF into the process. The presence of a solvent related to graphene sheets facilitates delamination by reducing the damage generated by the milling process.
El uso de surfactantes también ha sido reportado para la exfoliación de grafito sin modificar, EP2687485A1 y US2014106153A1. Sin embargo, estos métodos presentan el inconveniente de que es necesaria la remoción del surfactante para poder explotar las propiedades del grafeno.  The use of surfactants has also been reported for unmodified graphite exfoliation, EP2687485A1 and US2014106153A1. However, these methods have the disadvantage that surfactant removal is necessary in order to exploit the properties of graphene.
El uso de solventes orgánicos en la deslaminación de grafito sin modificación química fue mostrado por Damm y colaboradores [Cornelia Darnm, Thomas J. Nacken and Wolfgang Peukert, 'Quantitative Evaluation of Delamination of Graphite by Wet
Figure imgf000010_0001
The use of organic solvents in graphite delamination without chemical modification was shown by Damm et al. [Cornelia Darnm, Thomas J. Nacken and Wolfgang Peukert, 'Quantitative Evaluation of Delamination of Graphite by Wet
Figure imgf000010_0001
tiempos cortos de molienda, de 1 hora, pero con bajos rendimientos, 0.0SS g/L en NMP, equivalentes a 0.0SS mg/ml. short grinding times, 1 hour, but with low yields, 0.0SS g / L in MPN, equivalent to 0.0SS mg / ml.
En 2012 se sometió la solicitud de patente WO2012018451A2 (US2012035309A1) la cual involucra la preparación de una pre-mezcla con el uso de aceites, plastifícantes y/o solventes como agentes dispersantes para la dispersión de nanopartículas en elastómeros. Los aceites propuestos para la preparación de la pre-mezcla incluyen aquellos que sirven como plastifícantes, suavizantes y ayudas de proceso durante el procesado de elastómeros. Además de los aceites también propone el uso de plastifícantes disponibles para formulaciones de elastómeros, tales como poliéster glutarato, trioctil trimelitato, di(2-etilhexil)ñalato, di(butoxi-etoxi-etil) adipato, dibutil ftalato (DBP) y sus combinaciones. La preparación de la pre-mezcla se realiza mediante molienda, sonicación con punta de alta potencia, y homogenización con altos esfuerzos de corte.  In 2012, the patent application WO2012018451A2 (US2012035309A1) was submitted, which involves the preparation of a pre-mixture with the use of oils, plasticizers and / or solvents as dispersing agents for the dispersion of nanoparticles in elastomers. The oils proposed for the preparation of the pre-mix include those that serve as plasticizers, softeners and process aids during elastomer processing. In addition to oils, it also proposes the use of plasticizers available for elastomer formulations, such as polyester glutarate, trioctyl trimellitate, di (2-ethylhexyl) ñalate, di (butoxy-ethoxy-ethyl) adipate, dibutyl phthalate (DBP) and combinations thereof . The pre-mixing preparation is done by grinding, sonication with high power tip, and homogenization with high cutting efforts.
Debido a la problemática presentada anteriormente, se propone un proceso para preparar concentrados de nanoplaquetas de grafeno a partir de grafito utilizando moléculas orgánicas como medio exfoliante e incorporándolos mediante molienda. Hemos encontrado que ciertos ácidos grasos y sus ésteres con alcoholes de bajo peso molecular se pueden usar con ventajas en la exfoliación de grafitos naturales y sintéticos para manufacturar suspensiones de grafeno de una capa o un número pequeño de ellas en concentraciones de varios mg/mL. Así, cuando grafito natural, sintético, Kish o expandido se tratan por molienda en molinos de bolas, planetario, de atrición, vibratorio y otros en presencia de ácidos grasos o sus ésteres de alcoholes de bajo peso molecular (conocidos como biodieseles) y se muelen por espacio de tiempo variable de horas o días, dependiendo de la relación en peso del grafito con los ácidos graso o sus esteres, se obtienen concentrados de diferente consistencia. Hemos determinado que los concentrados obtenidos forman suspensiones muy estables de nanoplaquetas de grafeno al dispersarlos en solventes de uso común tales como el metanol, etanol, iso-propanol, butanol, cloroformo, diclorometano y otros. Como ejemplo, cuando se mezclan 2 mg del concentrado obtenido al moler iguales cantidades en peso de grafito y ácido palmítico en un molino planetario, durante tres horas a 300 rpm, en 5 mL de cloroformo, se forma una suspensión de un color negro profundo; tras centrifugar la suspensión para retirar partículas gruesas de grafito una la mayor parte del material grafitico permanece en la suspensión sobrenadante. Esta suspensión no muestra efecto Tyndall pero éste aparece al diluirla en cloroformo; las suspensiones concentradas sobrenadantes obtenidas y las obtenidas tras dilución de las primeras son estables durante semanas, sin mostrar señales evidentes de sedimentación. Due to the problem presented above, a process is proposed to prepare graphene nanoplate platelets from graphite using organic molecules as an exfoliating medium and incorporating them by grinding. We have found that certain fatty acids and their esters with low molecular weight alcohols can be used with advantages in the exfoliation of natural and synthetic graphites to manufacture graphene suspensions of a layer or a small number of them in concentrations of several mg / mL. Thus, when natural, synthetic, Kish or expanded graphite are treated by milling in ball mills, planetary, attrition, vibratory and others in the presence of fatty acids or their esters of low molecular weight alcohols (known as biodieseles) and are milled for a variable period of hours or days, depending on the weight ratio of graphite with fatty acids or their esters, concentrates of different consistency are obtained. We have determined that the concentrates obtained form very stable suspensions of graphene nanoplates by dispersing them in common solvents such as methanol, ethanol, iso-propanol, butanol, chloroform, dichloromethane and others. As an example, when 2 mg of the concentrate obtained is mixed by grinding equal amounts by weight of graphite and palmitic acid in a planetary mill, for three hours at 300 rpm, in 5 mL of chloroform, a deep black suspension is formed; After centrifuging the suspension to remove coarse graphite particles, most of the graphite material remains in the supernatant suspension. This suspension does not show a Tyndall effect but it appears when diluted in chloroform; The supernatant concentrated suspensions obtained and those obtained after dilution of the former are stable for weeks, without showing obvious signs of sedimentation.
La dilución de los concentrados con los mismos ácidos grasos o sus biodieseles da lugar a suspensiones estables que pueden ser analizadas por SAXS; los difractogramas 2 teta no muestran la señal a 26.7° típica del grafito cristalino, en su lugar muestran un halo ancho de baja intensidad entre 10° y 30°, que indica la presencia de grafeno o nanoplaquetas de grafeno de un número reducido de láminas. La forma y localización de esa señal y la ausencia de la señal de grafito cristalino indican la separación de éste y su transformación a láminas de grafeno de bajo número de capas. El análisis de la información sugiere que las suspensiones obtenidas contienen nanoplaquetas con menos de 10 láminas de grafeno. BREVE DESCRIPCIÓN DE LAS FIGURAS Dilution of the concentrates with the same fatty acids or their biodiesel leads to stable suspensions that can be analyzed by SAXS; The teta 2 diffractograms do not show the signal at 26.7 ° typical of crystalline graphite, instead they show a wide low-intensity halo between 10 ° and 30 °, which indicates the presence of graphene or graphene nanoplates of a reduced number of sheets. The shape and location of that signal and the absence of the crystalline graphite signal indicate its separation and its transformation into graphene sheets of low number of layers. The analysis of the information suggests that the suspensions obtained contain nanoplates with less than 10 sheets of graphene. BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Se muestra un difractograma de rayos X de los concentrados de nanoplaquetas de grafeno preparados mediante la molienda de grafito y exfoliantes. Figure 1. An X-ray diffractogram of graphene nanoplate platelet concentrates prepared by grinding graphite and scrubs is shown.
Figura 2a. Se muestra una micrografía de SEM a 4000 magnificaciones de las nanoplaquetas de grafeno en el concentrado preparado mediante la molienda de grafito y exfoliantes. Figure 2a. A micrograph of SEM at 4000 magnifications of graphene nanoplates is shown in the concentrate prepared by grinding graphite and scrubs.
Figura 2b. Se muestra una micrografía de SEM a 11000 magnificaciones de las nanoplaquetas de grafeno en el concentrado preparado mediante la molienda de grafito y exfoliantes. Figure 2b A micrograph of SEM at 11000 magnifications of graphene nanoplates is shown in the concentrate prepared by grinding graphite and scrubs.
Figura 3c Se muestra una fotografía de la vista frontal de los viales con las dispersiones del grafito molido (GMm) y el concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y un éster de ácido graso (GM-BC) inmediatamente después de preparadas. Figure 3c A photograph of the front view of the vials is shown with the dispersions of the ground graphite (GM m ) and the graphene nanoplate platelet prepared by milling graphite and a fatty acid ester (GM-BC) immediately after prepared
Figura 3d. Se muestra una fotografía de la vista frontal de los viales con las dispersiones del grafito molido (GMm) y el concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y un éster de ácido graso (GM-BC) después de dos semanas. Figura 4e. Se muestra una fotografía de la vista frontal de los viales tomada inmediatamente después de preparadas las dispersiones en diferentes solventes del concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y un éster de ácido graso, los solventes son agua desionizada (ADI), isopropanol (IPA), acetona (Acet), cloroformo (Clor) y metanol (MeOH). 3d figure. A photograph of the front view of the vials is shown with the dispersions of the ground graphite (GM m ) and the graphene nanoplate platelet prepared by milling graphite and a fatty acid ester (GM-BC) after two weeks. Figure 4e A photograph of the front view of the vials taken immediately after the dispersions in different solvents of the graphene nanoplate plate concentrate prepared by milling graphite and a fatty acid ester are prepared, the solvents are deionized water (ADI), isopropanol (IPA), acetone (Acet), chloroform (Chlorine) and methanol (MeOH).
Figura 4f. Se muestra una fotografía de la vista frontal de los viales tomada después de dos semanas de preparadas las dispersiones en diferentes solventes del concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y un éster de ácido graso, los solventes son agua desionizada (ADI), isopropanol (IPA), acetona (Acet), cloroformo (Clor) y metanol (MeOH). Figure 4f. A photograph of the front view of the vials taken after two weeks of preparing the dispersions in different solvents of the graphene nanoplate platelet prepared by grinding graphite and a fatty acid ester is shown, the solvents are deionized water (ADI) , isopropanol (IPA), acetone (Acet), chloroform (Chlorine) and methanol (MeOH).
Figura 5. Se muestra una micrografía de SEM a 15000 magnificaciones de una nanoplaqueta de grafeno obtenida de la dispersión del concentrado preparado mediante la molienda de grafito y un éster de ácido graso. Figure 5. A micrograph of SEM at 15000 magnifications of a graphene nanoplate obtained from the dispersion of the concentrate prepared by milling graphite and a fatty acid ester is shown.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención se refiere a un proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes. La novedad de este proceso radica en el uso de ácidos grasos y ésteres de ácidos grasos como exfoliantes de las nanoplaquetas de grafeno en un sistema de molienda. Tanto los ácidos grasos como los ésteres de ácidos grasos facilitan el proceso de deslarninación, a la vez que actúan como estabilizadores de las nanoplaquetas de grafeno permitiendo su fácil dispersión tanto en solventes como en polímeros. Los concentrados obtenidos permiten aprovechar las excelentes propiedades del grafeno debido a que durante el proceso este no sufre una modificación química. The present invention relates to a process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs. The novelty of this process lies in the use of fatty acids and fatty acid esters as exfoliants of graphene nanoplates in a milling system. Both fatty acids and fatty acid esters facilitate the process of delarnination, while acting as stabilizers for graphene nanoplates, allowing easy dispersion in both solvents and polymers. The concentrates obtained allow to take advantage of the excellent properties of graphene because during the process it does not undergo a chemical modification.
El proceso de preparación de los concentrados comprende el uso de al menos un exfoliante seleccionado del grupo de ésteres de ácidos grasos, ácidos grasos. Opcionalmente incluye el uso de solventes orgánicos e inorgánicos como medio de dispersión. El éster de ácido graso, también denominado biodiesel, utilizado en este proceso se elige del grupo que comprende al menos un derivado de aceites vegetales, tanto puros como reciclados, tales como cañóla, palma, sésamo, cártamo, cáñamo, colza, oliva, soya, girasol, lino, arroz, maíz, cacahuate, almendra, nuez, avellana, aguacate, semilla de uva, semilla de calabaza, coco, palma de coco, jatropha; así como biodiesel obtenido a partir de triglicéridos tanto vegetales como animales. Opcionalmente, se utiliza como medio exfoliante al menos un ácido graso saturado derivado de los aceites y grasas antes enumeradas, ácido caprílico, cáprico, láurico, mirístico, palmítico, esteárico, araquídico, behénico, lignocérico y cerótico, al igual que algunos ácidos grasos insaturados, entre ellos, de forma no limitativa, el palmitoleico, oleico y erúcico. El exfoliante se utiliza en una relación en peso con el grafito entre 0.1 y 99.9%. Opcionalmente es utilizado como medio de suspensión al menos un solvente del grupo de solventes de uso en procesos químicos, entre ellos, como ejemplos no limitativos, agua, alcoholes (metanol, etanol, propanol, isopropanol, n-butanol, 2-butano, tert-butanol), cetonas como acetona, metiletilcetona, solventes aromáticos (benceno, tolueno, xilenos, clorobenceno, diclorobenceno), solventes alifáticos (éter de petróleo, pentano, hexano, heptano), solventes clorados (cloroformo, diclorometano), dimetilformarnida, dimetilacetamida, N-metilpirrolidna, sulfóxido de dimetilo, Para la preparación de concentrados de grafeno se utiliza al menos un grafito elegido del grupo de grafito natural, grafito sintético, grafito Kish, grafito meso-poroso, grafito expandido y grafito intercalado. Preferentemente el grafito requerido para este proceso presenta un tamaño de partícula entre 0.1 y 500 um así como una pureza superior al 90%. La concentración de grafito utilizada en los concentrados es entre 0.1 y 99.9% en peso. El sistema de molienda utilizado en el proceso de preparación de concentrados de nanoplaquetas de grafeno comprende el uso de al menos uno de los molinos seleccionados del grupo del molino planetario, molino horizontal, molino de alta energía, molino atricionador, y molino vibratorio. Dicho sistema de molienda utiliza al menos un elemento de molienda seleccionado del grupo de bolas, discos, y barras. Preferentemente se utilizan bolas como elemento en el sistema de molienda. The process of preparing the concentrates comprises the use of at least one scrub selected from the group of fatty acid esters, fatty acids. Optionally includes the use of organic and inorganic solvents as dispersion medium. The fatty acid ester, also called biodiesel, used in this process is chosen from the group comprising at least one derivative of vegetable oils, both pure and recycled, such as cane, palm, sesame, safflower, hemp, rapeseed, olive, soy , sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha; as well as biodiesel obtained from both vegetable and animal triglycerides. Optionally, at least one saturated fatty acid derived from the oils and fats listed above, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, lignoceric and cerotic, as well as some unsaturated fatty acids, is used as an exfoliating medium , among them, in a non-limiting manner, palmitoleic, oleic and erucic. The scrub is used in a weight ratio with graphite between 0.1 and 99.9%. Optionally, at least one solvent from the group of solvents for use in chemical processes is used as a suspension medium, among them, as non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert -butanol), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), aliphatic solvents (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide N-methylpyrrolidna, dimethyl sulfoxide, For the preparation of graphene concentrates, at least one graphite chosen from the group of natural graphite, synthetic graphite, Kish graphite, meso-porous graphite, expanded graphite and intercalated graphite is used. Preferably the graphite required for this process has a particle size between 0.1 and 500 um as well as a purity greater than 90%. The concentration of graphite used in the concentrates is between 0.1 and 99.9% by weight. The grinding system used in the process of preparing graphene nanoplate plate concentrates comprises the use of at least one of the mills selected from the group of the planetary mill, horizontal mill, high energy mill, attrition mill, and vibratory mill. Said grinding system uses at least one grinding element selected from the group of balls, discs, and bars. Balls are preferably used as an element in the grinding system.
El proceso permite obtener materiales con concentraciones por encima de los 1000 mg de nanoplaquetas de grafeno por cada mi de exfoliante utilizado  The process allows to obtain materials with concentrations above 1000 mg of graphene nanoplates for each ml of scrub used
Ejemplo 1. Preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas planetario. Example 1. Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a planetary ball mill.
La preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas planetario involucra el uso de al menos un grafito elegido del grupo de grafito natural, grafito sintético, grafito Kish grafito meso- poroso, grafito expandido y grafito intercalado. Las concentraciones de grafito que se utilizan en los concentrados son entre 0.1 y 99.9% en peso. Preferentemente se utilizan concentraciones entre 20 y 70% en peso de grafito. En la preparación de los concentrados se utiliza al menos un exfoliante seleccionado del grupo de esteres de ácidos grasos, ácidos grasos y solventes orgánicos e inorgánicos. El éster de ácido graso, también denominado biodiesel, utilizado en este proceso se elige del grupo que comprende al menos un derivado de aceites vegetales, tanto puros como reciclados, tal como de cañóla, palma, sésamo, cártamo, cáñamo, colza, oliva, soya, girasol, lino, arroz, maíz, cacahuate, almendra, nuez, avellana, aguacate, semilla de uva, semilla de calabaza, coco, palma de coco, jatropha; así como biodiesel obtenido a partir de triglicéridos tanto vegetales como animales. Opcionalmente, se utiliza como medio exfoliante al menos un ácido derivado de los aceites y grasas antes enumeradas, tales como el esteárico, palmítico, erúcico, oleico. El exfoliante se utiliza en una relación en peso con el grafito entre 0.1 y 99.9%. Opcionalmente es utilizado como exfoliante al menos un solvente del grupo de solventes de uso en procesos químicos, entre ellos, como ejemplos no limitativos, agua, alcoholes (metanol, etanol, propanol, isopropanol, n- butanol, 2-butano, tert-butanol), cetonas como acetona, metiletilcetona, solventes aromáticos (benceno, tolueno, xilenos, clorobenceno, diclorobenceno), solventes alifáticos (éter de petróleo, pentano, hexano, heptano), solventes clorados (cloroformo, diclorometano), dimetilformamida, dimetilacetamida, N-metilpirrolidna, y sulfóxido de dimetilo. The preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a planetary ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, Kish meso-porous graphite graphite, expanded graphite and graphite interspersed The concentrations of graphite used in the concentrates are between 0.1 and 99.9% by weight. Preferably concentrations between 20 and 70% by weight of graphite are used. In the preparation of the concentrates, at least one scrub selected from the group of esters of fatty acids, fatty acids and organic and inorganic solvents is used. The fatty acid ester, also called biodiesel, used in this process is chosen from the group comprising at least one derivative of vegetable oils, both pure and recycled, such as cane, palm, sesame, safflower, hemp, rapeseed, olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha; as well as biodiesel obtained from both vegetable and animal triglycerides. Optionally, at least one acid derived from the oils and fats listed above, such as stearic, palmitic, erucic, oleic, is used as an exfoliating medium. The scrub is used in a weight ratio with graphite between 0.1 and 99.9%. Optionally, at least one solvent from the group of solvents for use in chemical processes is used as an exfoliant, among them, as non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol ), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), aliphatic solvents (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N- methylpyrrolidna, and dimethyl sulfoxide.
En el sistema de molienda la carga del molino de bolas planetario emplea una relación de elemento de molienda y material a moler entre 1 :5 y 30:1. Preferentemente una relación de 10:1.  In the grinding system the load of the planetary ball mill employs a ratio of grinding element and material to be ground between 1: 5 and 30: 1. Preferably a ratio of 10: 1.
La velocidad de operación del molino de bolas planetario para la preparación de los concentrados de nanoplaquetas de grafeno es entre 100 y 1100 rpm, preferentemente utiliza una velocidad de 350 rpm. Los tiempos de molienda utilizados para la preparación de los concentrados de grafeno comprenden de 10 a 1440 minutos. Preferentemente el tiempo de molienda es entre 30 y 300 minutos. The operating speed of the planetary ball mill for the preparation of graphene nanoplate plate concentrates is between 100 and 1100 rpm, preferably it uses a speed of 350 rpm. The grinding times used for the preparation of graphene concentrates comprise 10 to 1440 minutes. Preferably the grinding time is between 30 and 300 minutes.
Ejemplo 2. Preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas horizontal. Example 2. Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a horizontal ball mill.
La preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas horizontal planetario involucra el uso de al menos un grafito elegido del grupo de grafito natural, grafito sintético, grafito Kish grafito meso-poroso, grafito expandido y grafito intercalado. Las concentraciones de grafito utilizadas en los concentrados fueron de 0.1 a 99.9% en peso. Preferentemente se utilizan concentraciones entre 20 y 70% en peso de grafito. The preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a planetary horizontal ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, meso-porous graphite Kish graphite, expanded graphite and interleaved graphite The graphite concentrations used in the concentrates were 0.1 to 99.9% by weight. Preferably concentrations between 20 and 70% by weight of graphite are used.
Como medio exfoliante en la preparación de concentrados de grafeno se utilizan esteres de ácidos grasos, también denominados biodieseles, derivados de aceites vegetales tanto puros como reciclados del grupo comprendido, más no limitado, de la cañóla, palma, sésamo, cártamo, cáñamo, colza, oliva, soya, girasol, lino, arroz, maíz, cacahuate, almendra, nuez, avellana, aguacate, semilla de uva, semilla de calabaza, coco, palma de coco, jatropha, y mezclas de estos, así como los biodieseles obtenidos a partir de triglicéridos tanto vegetales como animales. Opcionalmente se utilizan como medio exfoliante ácidos grasos derivados de los aceites y grasas antes enumeradas, tales como el esteárico, palmítico, erúcico, oleico, y mezclas de estos, como estabilizadores de las láminas de grafeno en la suspensión. Opcionalmente es utilizado como exfoliante al menos un solvente del grupo de solventes de uso en procesos químicos, entre ellos, como ejemplos no limitativos, agua, alcoholes (metanol, etanol, propanol, isopropanol, n- butanol, 2-butano, tert-butanol), cetonas como acetona, metiletilcetona, solventes aromáticos (benceno, tolueno, xilenos, clorobenceno, diclorobenceno), solventes alifáticos (éter de petróleo, pentano, hexano, heptano), solventes clorados (cloroformo, diclorometano), dimetilformamida, dimetilacetamida, N-metilpirrolidna, y sulfóxido de dimetilo. As an exfoliating medium in the preparation of graphene concentrates, fatty acid esters are used, also called biodieseles, derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides. Optionally, fatty acids derived from the oils and fats listed above, such as stearic, palmitic, erucic, oleic, and mixtures thereof, are used as exfoliating medium, as stabilizers of graphene sheets in the suspension. Optionally, at least one solvent from the solvent group used in chemical processes is used as an exfoliant, including non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), solvents aliphatic (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N-methylpyrrolidna, and dimethyl sulfoxide.
En la preparación de los concentrados de grafeno la carga del molino de bolas horizontal utiliza una relación de elemento de molienda y material a moler entre 1:5 y 30:1. Preferentemente una relación de 10: 1.  In the preparation of graphene concentrates the loading of the horizontal ball mill uses a ratio of grinding element and material to be ground between 1: 5 and 30: 1. Preferably a ratio of 10: 1.
La velocidad de operación del molino de bolas horizontal para la preparación de los concentrados de grafeno es entre 50 y 500 rpm, preferentemente utiliza una velocidad de 150 rpm.  The operating speed of the horizontal ball mill for the preparation of graphene concentrates is between 50 and 500 rpm, preferably it uses a speed of 150 rpm.
Los tiempos de molienda utilizados para la preparación de los concentrados de grafeno comprenden de 10 a 1440 minutos. Preferentemente el tiempo de molienda es entre 30 y 600 minutos.  The grinding times used for the preparation of graphene concentrates comprise 10 to 1440 minutes. Preferably the grinding time is between 30 and 600 minutes.
Ejemplo 3. Preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas de alta energía. Example 3. Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a high energy ball mill.
La preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas de alta energía involucra el uso de al menos un grafito elegido del grupo de grafito natural, grafito sintético, grafito Kish grafito meso- poroso, grafito expandido y grafito intercalado. Las concentraciones de grafito utilizadas en los concentrados fueron de 0.1 a 99.9% en peso. Preferentemente se utilizan concentraciones entre 30 a 50% en peso de grafito. The preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in a high energy ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, meso-porous graphite Kish graphite, expanded graphite and graphite intercalated. The graphite concentrations used in the concentrates they were from 0.1 to 99.9% by weight. Preferably, concentrations between 30 and 50% by weight of graphite are used.
Como medio exfoliante en la preparación de concentrados de grafeno se utilizan ésteres de ácidos grasos, también denominados biodieseles, derivados de aceites vegetales tanto puros como reciclados del grupo comprendido, más no limitado, de la cañóla, palma, sésamo, cártamo, cáñamo, colza, oliva, soya, girasol, lino, arroz, maíz, cacahuate, almendra, nuez, avellana, aguacate, semilla de uva, semilla de calabaza, coco, palma de coco, jatropha, y mezclas de estos, así como los biodieseles obtenidos a partir de triglicéridos tanto vegetales como animales. Opcionalmente se utilizan como medio exfoliante ácidos grasos derivados de los aceites y grasas antes enumeradas, tales como el esteárico, palmítico, erúcico, oleico, y mezclas de estos, como estabilizadores de las láminas de grafeno en la suspensión. Opcionalmente es utilizado como exfoliante al menos un solvente del grupo de solventes de uso en procesos químicos, entre ellos, como ejemplos no limitativos, agua, alcoholes (metanol, etanol, propanol, isopropanol, n- butanol, 2-butano, tert-butanol), cetonas como acetona, metiletilcetona, solventes aromáticos (benceno, tolueno, xilenos, clorobenceno, diclorobenceno), solventes alifáticos (éter de petróleo, pentano, hexano, heptano), solventes clorados (cloroformo, diclorometano), dimetilformamida, dimetilacetamida, N-metilpirrolidna, y sulfóxido de dimetilo.  As an exfoliating medium in the preparation of graphene concentrates, fatty acid esters are used, also called biodieseles, derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides. Optionally, fatty acids derived from the oils and fats listed above, such as stearic, palmitic, erucic, oleic, and mixtures thereof, are used as exfoliating medium, as stabilizers of graphene sheets in the suspension. Optionally, at least one solvent from the group of solvents for use in chemical processes is used as an exfoliant, among them, as non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol ), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), aliphatic solvents (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N- methylpyrrolidna, and dimethyl sulfoxide.
En la preparación de los concentrados de grafeno la carga del molino de bolas de alta energía utiliza una relación de elemento de molienda y material a moler entre 1:5 y 30:1. Preferentemente una relación de 10: 1. Los tiempos de molienda utilizados para la preparación de los concentrados de grafeno comprenden entre 10 y 1440 minutos. Preferentemente el tiempo de molienda es entre 30 y 300 minutos. In the preparation of graphene concentrates, the loading of the high-energy ball mill uses a ratio of grinding element and material to be ground between 1: 5 and 30: 1. Preferably a ratio of 10: 1. The grinding times used for the preparation of graphene concentrates comprise between 10 and 1440 minutes. Preferably the grinding time is between 30 and 300 minutes.
Ejemplo 4. Preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas atrícionador. Example 4. Preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in an attractor ball mill.
La preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en un molino de bolas atrícionador involucra el uso de al menos un grafito elegido del grupo de grafito natural, grafito sintético, grafito Kish grafito meso- poroso, grafito expandido y grafito intercalado. Las concentraciones de grafito utilizadas en los concentrados fueron de 0.1 a 99.9% en peso. Preferentemente se utilizan concentraciones entre 30 a 50% en peso de grafito. The preparation of graphene nanoplate plate concentrates by milling graphite and scrubs in an attractor ball mill involves the use of at least one graphite chosen from the group of natural graphite, synthetic graphite, Kish graphite, meso-porous graphite, expanded graphite and graphite interspersed The graphite concentrations used in the concentrates were 0.1 to 99.9% by weight. Preferably, concentrations between 30 and 50% by weight of graphite are used.
Como medio exfoliante en la preparación de concentrados de grafeno se utilizan ésteres de ácidos grasos, también denominados biodieseles, derivados de aceites vegetales tanto puros como reciclados del grupo comprendido, más no limitado, de la cañóla, palma, sésamo, cártamo, cáñamo, colza, oliva, soya, girasol, lino, arroz, maíz, cacahuate, almendra, nuez, avellana, aguacate, semilla de uva, semilla de calabaza, coco, palma de coco, jatropha, y mezclas de estos, así como los biodieseles obtenidos a partir de triglicéridos tanto vegetales como animales. Opcionalmente se utilizan como medio exfoliante ácidos grasos derivados de los aceites y grasas antes enumeradas, tales como el esteárico, palmítico, erúcico, oleico, y mezclas de estos, como estabilizadores de las láminas de grafeno en la suspensión. Opcionalmente es utilizado como exfoliante al menos un solvente del grupo de solventes de uso en procesos químicos, entre ellos, como ejemplos no limitativos, agua, alcoholes (metanol, etanol, propanol, isopropanol, n- butanol, 2-butano, tert-butanol), cetonas como acetona, metiletilcetona, solventes aromáticos (benceno, tolueno, xilenos, clorobenceno, diclorobenceno), solventes alifáticos (éter de petróleo, pentano, hexano, heptano), solventes clorados (cloroformo, diclorometano), dimetilformamida, dimetilacetamida, N-metilpirrolidna, y sulfóxido de dimetilo. As an exfoliating medium in the preparation of graphene concentrates, fatty acid esters are used, also called biodieseles, derived from both pure and recycled vegetable oils from the group, but not limited to, of hemp, palm, sesame, safflower, hemp, rapeseed , olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, coconut palm, jatropha, and mixtures of these, as well as the biodieseles obtained from both vegetable and animal triglycerides. Optionally, fatty acids derived from the oils and fats listed above, such as stearic, palmitic, erucic, oleic, and mixtures thereof, are used as exfoliating medium, as stabilizers of graphene sheets in the suspension. Optionally, at least one solvent from the solvent group used in chemical processes is used as an exfoliant, including non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), solvents aliphatic (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N-methylpyrrolidna, and dimethyl sulfoxide.
En la preparación de los concentrados de nanoplaquetas de grafeno la carga del molino de bolas atricionador utiliza una relación de elemento de molienda y material a moler entre 1 :5 a 30:1. Preferentemente una relación de 10:1.  In the preparation of graphene nanoplate plate concentrates the charge of the attrition ball mill uses a milling element and milling material ratio between 1: 5 to 30: 1. Preferably a ratio of 10: 1.
La velocidad de operación del molino de bolas de bolas atricionador para la preparación de los concentrados de grafeno es entre 100 a 1100 rpm, preferentemente utiliza una velocidad de 600 rpm.  The operating speed of the attrition ball mill for the preparation of graphene concentrates is between 100 to 1100 rpm, preferably uses a speed of 600 rpm.
Los tiempos de molienda utilizados para la preparación de los concentrados de grafeno comprenden de 10 a 1440 minutos. Preferentemente el tiempo de molienda es entre 100 y 300 minutos.  The grinding times used for the preparation of graphene concentrates comprise 10 to 1440 minutes. Preferably the grinding time is between 100 and 300 minutes.
Ejemplo 5. Análisis de dispersión de rayos X (DRX) de los concentrados de nanoplaquetas de grafeno preparados mediante la molienda de grafito y exfoliantes. Example 5. X-ray scattering analysis (DRX) of graphene nanoplate platelet concentrates prepared by milling graphite and scrubs.
Las láminas de grafeno que se encuentran en los apilamientos que constituyen las partículas de grafito se encuentran unidas por interacciones de van der Waals las cuales dificultan su separación en piezas individuales. El orden que guardan dichas láminas se observa mediante la técnica de rayos X como una señal angosta e intensa ubicada alrededor de 26.5° en 2Θ. Los concentrados de nanoplaquetas de grafeno preparados mediante la molienda de grafito y exfoliantes en los diferentes sistemas de molienda fueron evaluados mediante esta técnica. En la Figura 1 se observa que los análisis de DRX de los concentrados de nanoplaquetas de grafeno preparados a partir de Grafito de Mina en un molino de bolas planetario muestran una disminución variable de dicha señal. Como se puede observar en el difractograma la disminución de la señal con respecto al grafito original está en función del exfoliante utilizado. Los concentrados de nanoplaquetas de grafeno preparados a partir de los demás tipos de grafito en un molino de bolas planetario también muestran variación en la disminución de dicha señal. En todos los casos dicha disminución indica que el sistema de molienda genera un proceso de deslaminación de las partículas de grafito debido a la energía aplicada. The graphene sheets found in the stacks that constitute the graphite particles are joined by van der Waals interactions which make it difficult to separate them into individual pieces. The order of these sheets is observed by the X-ray technique as a narrow and intense signal located around 26.5 ° in 2Θ. Graphene nanoplate plate concentrates prepared by grinding graphite and scrubs in the different grinding systems were evaluated by this technique. In Figure 1 it is observed that the DRX analyzes of graphene nanoplate platelets prepared from Mine Graphite in a planetary ball mill show a variable decrease in said signal. As can be seen in the diffractogram the decrease of the signal with respect to the original graphite is a function of the scrub used. Graphene nanoplate plate concentrates prepared from the other types of graphite in a planetary ball mill also show variation in the decrease of said signal. In all cases, this decrease indicates that the grinding system generates a process of delamination of the graphite particles due to the energy applied.
El análisis de tamaño de cristal a partir de los resultados de rayos X permite calcular que las nanoplaquetas obtenidas tienen menos de 10 láminas de grafeno de espesor.  The analysis of crystal size from the results of X-rays allows to calculate that the nanoplaquetas obtained are less than 10 sheets of graphene thick.
Ejemplo 6. Análisis de microscopía electrónica de barrido (SEM, por sus siglas en ingles) de los concentrados de nanoplaquetas de grafeno preparados mediante la molienda de grafito y exfoliantes. Example 6. Scanning electron microscopy (SEM) analysis of graphene nanoplate platelet concentrates prepared by milling graphite and scrubs.
La preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en los diferentes sistemas de molienda tiene como principal objetivo la deslaminación de nanoplaquetas de grafeno. En un análisis mediante microscopía electrónica de barrido de los concentrados preparados fue posible observar nanoplaquetas de grafeno que presentaban una superficie de unas cuantas mieras. En las Figuras 2a y 2b se observan las micrografías de SEM de un concentrado de grafito con biodiesel de coco. En la Figura 2a se pueden observar nanoplaquetas de grafeno empalmadas con dimensiones menores a las 10 mieras, de acuerdo a la barra de escala. En algunas de estas es posible distinguir el contorno de la pieza que se encuentra abajo, tal como las que se indican con las flechas. En la Figura 2b se muestra un acercamiento de una nanoplaqueta que permite apreciar el contorno de la partícula de atrás. La transparencia de las nanoplaquetas es un indicativo de que están compuestas por unas cuantas láminas de grafeno. The preparation of graphene nanoplate concentrates by grinding graphite and scrubs in the different grinding systems has as its main objective the delamination of graphene nanoplates. In an analysis by scanning electron microscopy of the prepared concentrates it was possible to observe graphene nanoplates that had a surface area of a few microns. SEM micrographs of a graphite concentrate with coconut biodiesel are observed in Figures 2a and 2b. In Figure 2a spliced graphene nanoplates can be seen with dimensions smaller than 10 microns, according to the scale bar. In some of these it is possible to distinguish the contour of the piece below, as indicated by the arrows. Figure 2b shows an approach of a nanoplate that allows to appreciate the contour of the back particle. The transparency of the nanoplaquettes is an indication that they are composed of a few sheets of graphene.
Ejemplo 7. Evaluación del efecto tanto del exfoliante en la dispersión en solventes de los concentrados de nanoplaquetas de grafeno preparados en sistemas de molienda. Example 7. Evaluation of the effect of both the scrub on solvent dispersion of graphene nanoplate plate concentrates prepared in grinding systems.
El proceso de preparación de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en los diferentes sistemas de molienda tiene como objetivo principal la obtención de un material que sea fácilmente dispersable en distintos solventes. La evaluación del efecto que tiene el uso tanto de ácidos grasos como ésteres de ácidos grasos sobre la capacidad de dispersión de los concentrados de grafeno se realizó en diferentes solventes de los grupos de alcoholes, cetonas y cloroformo. Preferentemente se utiliza cloroformo como solvente. The process of preparing graphene nanoplaquettes by milling graphite and scrubs in different grinding systems has as its main objective the obtaining of a material that is easily dispersible in different solvents. The evaluation of the effect of the use of both fatty acids and fatty acid esters on the dispersibility of graphene concentrates was carried out in different solvents of the alcohol, ketone and chloroform groups. Preferably chloroform is used as solvent.
Se utiliza un grafito molido preparado bajo condiciones similares que la preparación de los concentrados de grafito tanto con ácidos grasos como con ésteres de ácidos grasos. Esto es, se muele grafito en un molino planetario a 350 rpm por 6 ciclos de 30 minutos cada uno. 2 mg del grafito molido (GMm) se dispersan en 10 mi de cloroformo, para obtener una concentración de 0.2 mg/ml. De manera simultánea, 4 mg del concentrado GM-BC se dispersan en 10 mi de cloroformo, debido a que el concentrado tiene una relación en peso de grafíto:biodiesel de 1:1, la concentración final de la dispersión es de 0.2 mg/ml. Ambas muestras se agitan en un baño de ultrasonido por 3 minutos. En la Figura 3c se muestra la fotografía de la vista frontal de los viales que contienen las dispersiones. Se aprecia que la dispersión de la izquierda, que contiene el grafito molido presenta una coloración más tenue que la del vial de la derecha, el cual contiene la dispersión del concentrado. Dos semanas después los viales presentan un aspecto como se muestra en la fotografía de la Figura 3d. En esta se aprecia que la dispersión de grafito molido continua siendo menos coloreada que su similar con el concentrado. A ground graphite prepared under similar conditions is used as the preparation of graphite concentrates with both fatty acids and fatty acid esters. That is, graphite is milled in a planetary mill at 350 rpm for 6 cycles of 30 minutes each. 2 mg of the ground graphite (GM m ) is dispersed in 10 ml of chloroform, to obtain a concentration of 0.2 mg / ml. Simultaneously, 4 mg of the concentrate GM-BC is dispersed in 10 ml of chloroform, because the concentrate has a weight ratio of graphite: biodiesel of 1: 1, the final concentration of the dispersion is 0.2 mg / ml. Both samples are shaken in an ultrasound bath for 3 minutes. Figure 3c shows the photograph of the front view of the vials containing the dispersions. It can be seen that the dispersion on the left, which contains the ground graphite, has a fainter coloration than the one on the right vial, which contains the dispersion of the concentrate. Two weeks later the vials have an appearance as shown in the photograph in Figure 3d. In this it can be seen that the dispersion of ground graphite continues to be less colored than its similar with the concentrate.
Lo anterior indica que la molienda de grafito en presencia tanto de ácidos grasos como ésteres de ácidos grasos permite obtener un material que es fácilmente dispersable en solventes como el cloroformo y que se mantiene estable en la dispersión aún por semanas, mientras que el grafito molido presenta menor capacidad de dispersión y menor estabilidad en el solvente. This indicates that the milling of graphite in the presence of both fatty acids and fatty acid esters allows obtaining a material that is easily dispersible in solvents such as chloroform and that remains stable in the dispersion even for weeks, while the ground graphite has Less dispersibility and less stability in the solvent.
Ejemplo 8. Dispersión en solventes de los concentrados de nanoplaquetas de grafeno preparados mediante la molienda de grafito y exfoliantes. Example 8. Dispersion in solvents of graphene nanoplate plate concentrates prepared by milling graphite and scrubs.
La finalidad de preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes en los diferentes sistemas de molienda es la obtención de un material que sea fácilmente dispersable en distintos solventes. La evaluación de la capacidad de dispersión de los concentrados de grafeno se realizó en alcoholes del grupo del etanol, metanol, propanol, isopropanol, butanol, y sus combinaciones. Preferentemente se realiza en metanol e isopropanol. También se utilizaron solventes del grupo de los halogenados como el cloroformo, clorometano, y diclorometano. Preferentemente se utiliza cloroformo como solvente. Además se utilizaron solventes cetónicos como la acetona. Por último, se utilizó agua desionizada como solvente polar. Las dispersiones se prepararon a una concentración de nanoplaquetas de grafeno en solvente de 0.2 mg/ml. Para esto se dispersaron 4 mg del concentrado de grafeno preparado con grafito y biodiesel de coco, con una relación en peso de 1 : 1, en 10 mi de cada solvente. Posteriormente las dispersiones se sonicaron en baño por 3 minutos. En la fotografía de la Figura 4e se observan los viales con las dispersiones del concentrado GM- BC en agua desionizada (ADI), isopropanol (IPA), acetona (Acet), cloroformo (Clor) y metanol (MeOH), todas a una concentración de grafeno de 0.2 mg/ml. Se puede apreciar que el concentrado presenta una gran facilidad de formar dispersiones tanto los alcoholes como la acetona y el cloroformo. Por otra parte, se observa una nula dispersabilidad del concentrado de grafeno en el agua desionizada, lo cual se debe a la naturaleza grasa de los exfoliantes utilizados, la cual no es compatible con el agua. En la fotografía de la Figura 4e se aprecian los viales con las dispersiones del concentrado en los diferentes solventes, agua desionizada, isopropanol, acetona, cloroformo, y metanol, después de transcurrido un día de haber sido dispersadas; en la fotografía 4f se muestran las mismas dispesiones un mes después de su preparación. Se puede apreciar que el concentrado no es muy estable en ambos alcoholes, precipitando la mayor parte del material. Sin embargo, tanto en la acetona como en el cloroformo la dispersión se mantiene estable. Lo anterior indica la gran capacidad de dispersión con que cuentan los concentrados de grafeno preparados a partir de grafito tanto con ácidos grasos como con ésteres de ácidos grasos en los diferentes sistemas de molienda. Ejemplo 9. Análisis de microscopía electrónica de barrido (SEM, por sus siglas en ingles) de las dispersiones de los concentrados de nanoplaquetas de grafeno preparados mediante la molienda de grafito y exfoliantes. The purpose of preparing graphene nanoplate plate concentrates by milling graphite and scrubs in different grinding systems is to obtain a material that is easily dispersible in different solvents. The evaluation of the dispersibility of graphene concentrates was carried out in alcohols of the group of ethanol, methanol, propanol, isopropanol, butanol, and combinations thereof. It is preferably performed in methanol and isopropanol. Solvents from the halogenated group such as chloroform, chloromethane, and dichloromethane. Preferably chloroform is used as solvent. In addition ketone solvents such as acetone were used. Finally, deionized water was used as polar solvent. The dispersions were prepared at a concentration of graphene nanoplate in solvent of 0.2 mg / ml. For this, 4 mg of the graphene concentrate prepared with graphite and coconut biodiesel were dispersed, with a weight ratio of 1: 1, in 10 ml of each solvent. Subsequently the dispersions were sonicated in a bath for 3 minutes. In the photograph of Figure 4e, the vials with the dispersions of the GM-BC concentrate in deionized water (ADI), isopropanol (IPA), acetone (Acet), chloroform (Chlorine) and methanol (MeOH) are observed, all at a concentration of 0.2 mg / ml graphene. It can be seen that the concentrate has a great ability to form dispersions of both alcohols, acetone and chloroform. On the other hand, there is no dispersibility of graphene concentrate in deionized water, which is due to the fatty nature of the scrubs used, which is not compatible with water. In the photograph of Figure 4e the vials with the dispersions of the concentrate in the different solvents, deionized water, isopropanol, acetone, chloroform, and methanol, after one day of having been dispersed; in photograph 4f the same dispersions are shown one month after its preparation. It can be seen that the concentrate is not very stable in both alcohols, most of the material precipitating. However, in both acetone and chloroform the dispersion remains stable. The above indicates the great dispersion capacity that graphene concentrates prepared from graphite have, both with fatty acids and with fatty acid esters in the different grinding systems. Example 9. Scanning electron microscopy (SEM) analysis of graphene nanoplate platelet dispersions prepared by milling graphite and scrubs.
Las dispersiones de los concentrados de grafeno preparados a partir de grafito tanto con ácidos grasos como con ésteres de ácidos grasos en los diferentes sistemas de molienda fueron evaluadas mediante la técnica de SEM. La muestra se prepara sumergiendo una rejilla de cobre en la dispersión del concentrado de grafeno en acetona con una concentración menor a los 0.2 mg/ml. La rejilla se analiza en un microscopio SEM JCM- 6000 marca JEOL, con alto vacío, en modo de electrones secundarios (SEI, por sus siglas en inglés), a 15 kilovoltios. En la micrograña que se muestra en la Figura 5 se aprecia una nanoplaqueta de grafeno sobre la rejilla de cobre. La lámina es lo suficientemente delgada para permitir que se aprecie la rejilla de soporte, lo cual indica un espesor menor a las 10 capas atómicas. The dispersions of graphene concentrates prepared from graphite with both fatty acids and fatty acid esters in the different grinding systems were evaluated by the SEM technique. The sample is prepared by immersing a copper grid in the dispersion of the graphene concentrate in acetone with a concentration of less than 0.2 mg / ml. The grid is analyzed in a JEM JCM-6000 SEM microscope, with high vacuum, in secondary electron mode (SEI), at 15 kilovolts. In the micrograna shown in Figure 5 a graphene nanoplate can be seen on the copper grid. The sheet is thin enough to allow the support grid to be appreciated, which indicates a thickness less than 10 atomic layers.

Claims

REIVINDICACIONES Habiendo descrito suficiente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas: CLAIMS Having described my invention sufficiently, I consider as a novelty and therefore claim as my exclusive property, the content of the following clauses:
1. Un proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes caracterizado porque comprende las etapas de 1. A process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs characterized in that it comprises the stages of
a) Deslaminación de grafito en nanoplaquetas de grafeno debido a la energía mecánica generada en el sistema de molienda; y b) Estabilización de las nanoplaquetas de grafeno mediante la incorporación de al menos un exfoliante.  a) Graphite delamination in graphene nanoplates due to the mechanical energy generated in the milling system; and b) Stabilization of graphene nanoplatelets by incorporating at least one scrub.
2. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 1, caracterizado porque las etapas descritas se llevan a cabo de forma simultánea.  2. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 1, characterized in that the described steps are carried out simultaneously.
3. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 1, caracterizado porque la etapa a) involucra el uso de al menos un grafito elegido del grupo de grafito natural, grafito sintético, grafito Kish grafito meso-poro so, grafito expandido y grafito intercalado.  3. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 1, characterized in that step a) involves the use of at least one graphite chosen from the group of natural graphite, graphite synthetic, graphite Kish graphite meso-pore so, expanded graphite and interleaved graphite.
4. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 3, caracterizado porque el grafito utilizado para este proceso presenta un tamaño de partícula entre 0.1 y 500 um, preferentemente un tamaño de partícula entre 0.2 y 200 um. 4. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 3, characterized in that the graphite used for this process it has a particle size between 0.1 and 500 um, preferably a particle size between 0.2 and 200 um.
5. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 3, caracterizado porque el grafito utilizado para este proceso presenta una pureza superior al 90%.  5. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 3, characterized in that the graphite used for this process has a purity greater than 90%.
6. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 3, caracterizado porque utiliza concentraciones de grafito entre 0.1 y 99.9% en peso.  6. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 3, characterized in that it uses graphite concentrations between 0.1 and 99.9% by weight.
7. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 1, caracterizado porque la etapa b) involucra el uso de al menos un exfoliante seleccionado del grupo de ácidos grasos y ésteres de ácidos grasos.  7. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 1, characterized in that step b) involves the use of at least one scrub selected from the group of fatty acids and esters of fatty acids.
8. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 7, caracterizado porque tanto los ácidos grasos como los ésteres de ácidos grasos facilitan el proceso de deslaminación de las nanoplaquetas de grafeno.  8. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 7, characterized in that both fatty acids and fatty acid esters facilitate the process of delamination of graphene nanoplates .
9. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 7, caracterizado porque tanto los ácidos grasos como los ésteres de ácidos grasos actúan como estabilizadores de las nanoplaquetas de grafeno. 9. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 7, characterized in that both fatty acids and fatty acid esters act as stabilizers for graphene nanoplates.
10. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 7, caracterizado porque el exfoliante utilizado es seleccionado del grupo que comprende ésteres de ácidos grasos derivados de aceites vegetales tanto puros como reciclados procedentes de la cañóla, palma, sésamo, cártamo, cáñamo, colza, oliva, soya, girasol, lino, arroz, maíz, cacahuate, almendra, nuez, avellana, aguacate, semilla de uva, semilla de calabaza, coco, palma de coco, jatropha; así como biodiesel obtenido a partir de triglicéridos tanto vegetales como animales. 10. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 7, characterized in that the scrub used is selected from the group comprising fatty acid esters derived from both pure and vegetable oils recycled from hemp, palm, sesame, safflower, hemp, rapeseed, olive, soy, sunflower, flax, rice, corn, peanut, almond, walnut, hazelnut, avocado, grape seed, pumpkin seed, coconut, palm coconut, jatropha; as well as biodiesel obtained from both vegetable and animal triglycerides.
11. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 7, caracterizado porque el exfoliante utilizado opcionalmente se selecciona del grupo conformado por un ácido derivado de los aceites y grasas antes enumeradas, tales como el esteárico, palmítico, erúcico, oleico.  11. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 7, characterized in that the scrub used optionally is selected from the group consisting of an acid derived from the oils and fats listed above. , such as stearic, palmitic, erucic, oleic.
12. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 7, caracterizado porque la etapa b) opcionalmente incluye el uso de un medio de dispersión para las nanoplaquetas de grafeno.  12. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 7, characterized in that step b) optionally includes the use of a dispersion medium for graphene nanoplates.
13. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 7, caracterizado porque el medio de dispersión opcionalmente consiste en un solvente del grupo de solventes utilizados en procesos químicos, entre ellos, como ejemplos no limitativos, agua, alcoholes (metanol, etanol, propanol, isopropanol, n-butanol, 2 -butano, tert-butanol), cetonas como acetona, metiletilcetona, solventes aromáticos (benceno, tolueno, xilenos, clorobenceno, diclorobenceno), solventes alifáticos (éter de petróleo, pentano, hexano, heptano), solventes clorados (cloroformo, diclorometano), dimetilformamida, dimetilacetamida, N-metilpirrolidna, y sulfóxido de dimetilo 13. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 7, characterized in that the dispersion medium optionally consists of a solvent from the group of solvents used in chemical processes, including , as non-limiting examples, water, alcohols (methanol, ethanol, propanol, isopropanol, n-butanol, 2-butane, tert-butanol), ketones such as acetone, methyl ethyl ketone, aromatic solvents (benzene, toluene, xylenes, chlorobenzene, dichlorobenzene), aliphatic solvents (petroleum ether, pentane, hexane, heptane), chlorinated solvents (chloroform, dichloromethane), dimethylformamide, dimethylacetamide, N-methylpyrrolidna dimethyl oxide
14. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 1, caracterizado porque el sistema de molienda comprende, más no se limita, a molinos del grupo del molino planetario, molino horizontal, molino de alta energía, molino atricionador, y molino vibratorio.  14. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 1, characterized in that the milling system comprises, but is not limited to, mills of the planetary mill group, mill horizontal, high energy mill, attrition mill, and vibratory mill.
15. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 14, caracterizado porque el sistema de molienda utiliza elementos de molienda seleccionados del grupo de bolas, discos, y barras.  15. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 14, characterized in that the milling system uses grinding elements selected from the group of balls, discs, and bars.
16. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 1S, caracterizado porque el sistema de molienda preferentemente utiliza bolas como elemento de molienda.  16. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 1S, characterized in that the milling system preferably uses balls as the milling element.
17. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 14, caracterizado porque el sistema de molienda consiste en un molino planetario.  17. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 14, characterized in that the milling system consists of a planetary mill.
18. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 17, caracterizado porque utiliza tiempos de molienda entre 10 y 1440 minutos, preferentemente utiliza tiempos de molienda entre 30 y 300 minutos. 18. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 17, characterized in that it uses grinding times between 10 and 1440 minutes, preferably uses grinding times between 30 and 300 minutes.
19. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 17, caracterizado porque utiliza una relación de elemento de molienda y material a moler entre 1:5 y 30:1, preferentemente una relación 10:1.  19. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 17, characterized in that it uses a ratio of grinding element and material to be ground between 1: 5 and 30: 1, preferably a 10: 1 ratio.
20. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 17, caracterizado porque utiliza una velocidad de operación entre 100 y 1100 rpm, preferentemente utiliza una velocidad de 350 rpm.  20. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 17, characterized in that it uses an operating speed between 100 and 1100 rpm, preferably uses a speed of 350 rpm.
21. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 14, caracterizado porque el sistema de molienda consiste en un molino de bolas horizontal.  21. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 14, characterized in that the milling system consists of a horizontal ball mill.
22. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 21, caracterizado porque la carga del molino de bolas horizontal utiliza una relación de elemento de molienda y material a moler entre 1:5 y 30:1, preferentemente una relación 10: 1.  22. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 21, characterized in that the loading of the horizontal ball mill uses a ratio of grinding element and material to be ground between 1 : 5 and 30: 1, preferably a 10: 1 ratio.
23. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 21 , caracterizado porque utiliza una velocidad de operación entre 50 y 500 rpm, preferentemente utiliza una velocidad de 150 rpm. 23. The process for preparing graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 21, characterized in that it uses an operating speed between 50 and 500 rpm, preferably uses a speed of 150 rpm.
24. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 21, caracterizado porque utiliza tiempos de molienda entre 10 y 1440 minutos, preferentemente utiliza tiempos de mezclado entre 30 y 600 minutos. 24. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 21, characterized in that it uses milling times between 10 and 1440 minutes, preferably uses mixing times between 30 and 600 minutes .
25. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 14, caracterizado porque el sistema de molienda consiste en un molino de bolas de alta energía.  25. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 14, characterized in that the milling system consists of a high energy ball mill.
26. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 25, caracterizado porque utiliza una relación de elemento de molienda y material a moler entre 1:5 y 30:1, preferentemente una relación 10: 1.  26. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 25, characterized in that it uses a ratio of grinding element and material to be ground between 1: 5 and 30: 1, preferably a 10: 1 ratio.
27. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 25, caracterizado porque utiliza un tiempo de molienda entre 10 y 1440 minutos, preferentemente el tiempo de molienda es entre 30 y 300 minutos.  27. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 25, characterized in that it uses a grinding time between 10 and 1440 minutes, preferably the grinding time is between 30 and 300 minutes
28. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 14, caracterizado porque el sistema de molienda consiste en un molino de bolas atricionador.  28. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 14, characterized in that the grinding system consists of an attrition ball mill.
29. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 28, caracterizado porque el sistema de molienda utiliza una relación de elemento de molienda y material a moler entre 1 :5 a 30:1, preferentemente una relación de 10: 1. 29. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 28, characterized in that the milling system uses a ratio of grinding element and material to be ground between 1: 5 to 30: 1, preferably a ratio of 10: 1.
30. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 28, caracterizado porque utiliza un tiempo de molienda entre 10 y 1440 minutos, preferentemente el tiempo de molienda es entre 30 y 300 minutos.  30. The process for the preparation of graphene nanoplate plate concentrates by grinding graphite and scrubs, according to claim 28, characterized in that it uses a grinding time between 10 and 1440 minutes, preferably the grinding time is between 30 and 300 minutes
31. El proceso para la preparación de concentrados de nanoplaquetas de grafeno mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 14, caracterizado porque el sistema de molienda genera la deslaminación de las nanoplaquetas de grafeno.  31. The process for the preparation of graphene nanoplate plate concentrates by milling graphite and scrubs, according to claim 14, characterized in that the grinding system generates the delamination of graphene nanoplates.
32. Un concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y exfoliantes, caracterizado porque se obtiene mediante el proceso descrito en las reivindicaciones 1 a 31.  32. A graphene nanoplate plate concentrate prepared by milling graphite and scrubs, characterized in that it is obtained by the process described in claims 1 to 31.
33. Un concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 32, caracterizado porque presenta una concentración final de entre 0.01 y 4000 miligramos de nanoplaquetas de grafeno por cada mililitro de exfoliante.  33. A concentrate of graphene nanoplaquets prepared by milling graphite and scrubs, according to claim 32, characterized in that it has a final concentration of between 0.01 and 4000 milligrams of graphene nanoplates for each milliliter of scrub.
34. Un concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 32, caracterizado porque las nanoplaquetas de grafeno poseen una longitud mayor a los cien nanómetros y menor a las cien mieras.  34. A graphene nanoplate plate concentrate prepared by grinding graphite and scrubs, according to claim 32, characterized in that the graphene nanoplates have a length greater than one hundred nanometers and less than one hundred microns.
35. Un concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 32, caracterizado porque las nanoplaquetas de grafeno poseen un espesor menor a las 10 láminas monoatómicas. 35. A graphene nanoplate plate concentrate prepared by milling graphite and scrubs, according to claim 32, characterized in that graphene nanoplates have a thickness less than 10 monoatomic sheets.
36. Un concentrado de nanoplaquetas de grafeno preparado mediante la molienda de grafito y exfoliantes, de acuerdo a la reivindicación 32, caracterizado porque el exfoliante es un agente estabilizador de las nanoplaquetas de grafeno.  36. A graphene nanoplate plate concentrate prepared by milling graphite and scrubs, according to claim 32, characterized in that the exfoliant is a stabilizing agent for graphene nanoplates.
PCT/MX2016/000058 2015-12-16 2016-06-07 Process for preparing concentrates of graphene nanoplatelets via the milling of graphite and exfoliants WO2017105208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2015/017401 2015-12-16
MX2015017401A MX2015017401A (en) 2015-12-16 2015-12-16 Process for preparing concentrates of graphene nanoplatelets via the milling of graphite and exfoliants.

Publications (1)

Publication Number Publication Date
WO2017105208A1 true WO2017105208A1 (en) 2017-06-22

Family

ID=59057009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000058 WO2017105208A1 (en) 2015-12-16 2016-06-07 Process for preparing concentrates of graphene nanoplatelets via the milling of graphite and exfoliants

Country Status (2)

Country Link
MX (1) MX2015017401A (en)
WO (1) WO2017105208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2779151A1 (en) * 2020-07-10 2020-08-13 Univ Madrid Complutense Large-scale production in one step and at room temperature of material composed of few graphene sheets with a high degree of defects by means of high-energy oscillatory dry mechanical grinding. (Machine-translation by Google Translate, not legally binding)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017013705A (en) * 2017-10-25 2019-04-26 Centro De Investigacion En Quim Aplicada Nanocomposites of graphene-metals and transition metal oxides and manufacturing methods.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100022422A1 (en) * 2002-05-30 2010-01-28 Gefei Wu High temperature shear stable nanographite dispersion lubricants with enhanced thermal conductivity and method for making
US20110046027A1 (en) * 2009-08-19 2011-02-24 Aruna Zhamu Nano graphene-modified lubricant
WO2015004283A1 (en) * 2013-07-12 2015-01-15 Eckart Gmbh Graphene-containing suspension, method for producing same, graphene platelets, and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100022422A1 (en) * 2002-05-30 2010-01-28 Gefei Wu High temperature shear stable nanographite dispersion lubricants with enhanced thermal conductivity and method for making
US20110046027A1 (en) * 2009-08-19 2011-02-24 Aruna Zhamu Nano graphene-modified lubricant
WO2015004283A1 (en) * 2013-07-12 2015-01-15 Eckart Gmbh Graphene-containing suspension, method for producing same, graphene platelets, and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APARNA, R. ET AL.: "An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants.", JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, vol. 5, no. 3, 2013, pages 033123 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2779151A1 (en) * 2020-07-10 2020-08-13 Univ Madrid Complutense Large-scale production in one step and at room temperature of material composed of few graphene sheets with a high degree of defects by means of high-energy oscillatory dry mechanical grinding. (Machine-translation by Google Translate, not legally binding)
WO2022008783A1 (en) 2020-07-10 2022-01-13 Universidad Complutense De Madrid (Ucm) Large-scale, one-step, room-temperature production of a material consisting of a few graphene flakes with a high degree of defects by high-energy oscillatory dry mechanical milling

Also Published As

Publication number Publication date
MX2015017401A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
Phiri et al. General overview of graphene: Production, properties and application in polymer composites
Durge et al. Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite
Layek et al. Noncovalent functionalization of reduced graphene oxide with pluronic F127 and its nanocomposites with gum Arabic
Kim et al. Graphene oxide/cellulose composite using NMMO monohydrate
KR101666478B1 (en) Preparation method of graphene and dispersed composition of graphene
Dao et al. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene
Du et al. From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single-and few-layered pristine graphene
Che et al. A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion
Li et al. The effect of the ultrasonication pre-treatment of graphene oxide (GO) on the mechanical properties of GO/polyvinyl alcohol composites
Yousefi et al. Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites
ES2875305T3 (en) Continuous process for the preparation of immaculate graphene nanoplates
Song et al. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites
Shang et al. Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets
US8132746B2 (en) Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites
Islam et al. Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites
Sa et al. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites
Liao et al. Aqueous reduced graphene/thermoplastic polyurethane nanocomposites
Li et al. Yolk–shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery
US20130087446A1 (en) One-step production of graphene materials
Wang et al. Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions
TWI542643B (en) Dispersing agent, its preparation method and dispersed composition of carbon-based material comprising the same
CA2903987A1 (en) Large scale oxidized graphene production for industrial applications
WO2015099457A1 (en) Production method for graphene
US9527745B2 (en) Method for producing few-layer graphene
WO2017083693A1 (en) Method of preparing metal diboride dispersions and films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16876105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16876105

Country of ref document: EP

Kind code of ref document: A1