WO2015099457A1 - Production method for graphene - Google Patents

Production method for graphene Download PDF

Info

Publication number
WO2015099457A1
WO2015099457A1 PCT/KR2014/012829 KR2014012829W WO2015099457A1 WO 2015099457 A1 WO2015099457 A1 WO 2015099457A1 KR 2014012829 W KR2014012829 W KR 2014012829W WO 2015099457 A1 WO2015099457 A1 WO 2015099457A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
dispersant
dispersion
graphite
carbon
Prior art date
Application number
PCT/KR2014/012829
Other languages
French (fr)
Korean (ko)
Inventor
유광현
손권남
권원종
이길선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140187595A external-priority patent/KR101682007B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016538052A priority Critical patent/JP6300930B2/en
Priority to EP14875212.4A priority patent/EP3056469B1/en
Priority to CN201480071372.1A priority patent/CN105849040B/en
Priority to US15/039,655 priority patent/US9950930B2/en
Publication of WO2015099457A1 publication Critical patent/WO2015099457A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation

Definitions

  • the present invention relates to a method for producing graphene having a thinner thickness and larger area and capable of producing graphene with reduced defects in a simplified process.
  • graphene is a semi-metallic material having a thickness corresponding to a carbon atom layer in an arrangement in which carbon atoms are arranged in a hexagonal shape by sp2 bonds in two dimensions.
  • the electron mobility may exhibit very good electrical conductivity of about 50,000 cm 2 / Vs or more.
  • graphene is characterized by structural, chemical stability and excellent thermal conductivity. In addition, it is easy to process one-dimensional or two-dimensional nanopattern made of carbon, which is a relatively light element. Above all, the graphene sheet is an inexpensive material and has excellent price competitiveness when compared with conventional nanomaterials. Due to such electrical, structural, chemical and economic characteristics, it is expected that graphene will be able to replace silicon-based semiconductor technology and transparent electrodes in the future. In particular, it is expected that the graphene may be used for flexible electronic devices due to its excellent mechanical properties. Due to the many advantages and excellent properties of the graphene, various methods for mass production of graphene from carbon-based materials such as graphite have been proposed or studied.
  • the present invention provides a method for producing graphene, which has a thinner thickness and a larger area and can produce graphene having a reduced defect occurrence in a simplified process.
  • the present invention comprises the steps of forming a dispersion comprising a carbon-based material and dispersant, including unoxidized graphite; And continuously passing the dispersion through a high pressure homogenizer comprising a microchannel having a diameter of a micrometer scale and connecting the inlet, the outlet, and the inlet and the outlet.
  • a high pressure homogenizer comprising a microchannel having a diameter of a micrometer scale and connecting the inlet, the outlet, and the inlet and the outlet.
  • the carbon-based material is peeled while passing through the micro-channel under the application of shear force to provide a method for producing graphene is formed of graphene (graphene) having a nanoscale thickness.
  • the unoxidized graphite is an elemental ratio of oxygen to carbon (O / C atomic) measured by elemental analysis measurement by combustion or X-ray photoelectron spectrometry analysis. ratio) is about 5% or less, or about 0 to 5%, black may be about 0,001 to 3% graphite.
  • the unoxidized graphite used as the raw material is suitably formed into a plate-like abyss.
  • the dispersion may be a dispersion in which the carbon-based material and the dispersing agent are dissolved or dispersed in a solvent or a polar organic solvent.
  • the dispersant may be various dispersants, but more preferably, a mixture of plural kinds of polyaromatic hydrocarbon oxides, and includes a polyaromatic hydrocarbon oxide having a molecular weight of about 300 to 1000 in an amount of about 60% by weight or more. It may be to include a mixture.
  • the dispersant was analyzed for poly-aromatic hydrocarbons, oxides of the plurality of types of elements it contains, may be that the oxygen content of about 12 to 50 parts by weight 0/0 of the total element content.
  • the polyaromatic hydrocarbon oxide included in the dispersant may have a structure in which at least one oxygen-containing functional group is bonded to an aromatic hydrocarbon including 5 to 30 or 7 to 20 benzene rings.
  • the fine flow path of the high pressure homogenizer may have a diameter of about 10 to 800 im.
  • the dispersion may be introduced into the inlet of the high pressure homogenizer under pressure application of about 100 to 3000 bar, and then peeled while passing through the microchannel to be manufactured into graphene.
  • the graphene flakes prepared by the method described above may have a thickness of about 3 to 50 nm, or about 0.3 to 30 nm, and may have a diameter of about 0.1 to 10 / m, or about 0.1 to 5 ⁇ , and about 50 To 6000, black may have a diameter / thickness ratio of about 50 to 1000.
  • the method for producing graphene may further include recovering and drying the graphene flakes from the dispersion of the graphene flakes.
  • the recovery step may be carried out by centrifugation, vacuum filtration or pressure filtration
  • the drying step may be carried out by vacuum drying at a temperature of about 30 to 200 ° C.
  • the graphene can be prepared by optimizing the peeling method thereof in a state where the raw material .micronized graphite is more uniformly dispersed.
  • a pretreatment process of a conventional peeling process for example, a silver heat treatment and crushing process for forming a graphite worm, an oxidation process for forming graphite oxide, etc. can be omitted. It may be more prominent by using platelets as the raw material. Therefore, it is possible to suppress the occurrence of a plurality of defects in the high temperature heat treatment and shredding process or the oxidation process, and to prevent the graphene manufacturing process from being complicated by the oxidation and re-reduction process and to produce the graphene. Can be greatly simplified.
  • graphene flakes having a thinner thickness and a large area, etc. are easily obtained with a high yield. Can be prepared.
  • 1 is a schematic diagram showing the original of the high pressure homogenizer that can be used in the method for producing graphene of one embodiment.
  • 2A and 2B (enlarged view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the pitch used for the preparation of the dispersant of the preparation example analyzed by MALDI-TOF mass spectrum.
  • 3A and 3B (enlarged view of the molecular weight 400 to ' 500 region) is a diagram showing the molecular weight distribution of the dispersant obtained in Preparation Example 1 analyzed by MALDI-TOF mass spectrum.
  • Fig. 5 is a diagram showing the results of the analysis of the pitch and the dispersant of Preparation Example 1, respectively, by FT-IR.
  • Figure shows the analysis by MALDI-TOF mass spectrum and the result of analysis.
  • FIG. 7 shows electron micrographs (a) of graphite used as raw materials for preparing the graphene flakes of the examples, and electron micrographs (b) and (b) of the graphene flakes prepared in Example 1.
  • FIG. 7 shows electron micrographs (a) of graphite used as raw materials for preparing the graphene flakes of the examples, and electron micrographs (b) and (b) of the graphene flakes prepared in Example 1.
  • Too . 8 shows TEM analysis results (a) and (b) and AFM analysis results (c) and (d), respectively, for measuring the diameter and thickness of the graphene flakes of Example 1.
  • FIG. 12 shows the Raman spectrum of the graphene flakes of Example 1.
  • FIG. 13 shows the electron micrograph of the graphene oxide flake of Comparative Example 2.
  • dispenser means uniformly dispersing other components, such as graphite such as plate-like graphite, or carbon-based material such as graphene (flakes), in an aqueous solvent, an organic solvent, or a liquid medium. May refer to any ingredient.
  • a composition in which other components to be dispersed such as a "dispersant” and a carbon-based material are dispersed in a liquid medium may be referred to as a “dispersion” or “dispersion composition”, and such a “dispersion” or “dispersion composition” is a solution. It can exist in various states, such as a phase, a slurry form, or a paste form.
  • Such a “dispersion” or “dispersion composition” is a composition used in the manufacturing process of graphene described below; A conductive material composition of a secondary battery; Electrodes or conductive compositions applied in the manufacturing process of various batteries, displays or devices; Active material compositions such as secondary batteries; Compositions for producing various polymers or resin composites; Or it can be used for a variety of uses, such as ink or paste composition applied in the manufacturing process of various electronic materials or devices, and the use thereof is not particularly limited, as long as the "dispersant” and the component to be dispersed are included together in the liquid medium. It may be defined as belonging to the category of "dispersion liquid,” or “dispersion composition,” irrespective of its state or use.
  • polyaromatic hydrocarbon may refer to an aromatic hydrocarbon compound in which at least two, or at least five, benzene rings are bonded and included in a single compound structure.
  • polyaromatic hydrocarbon oxide may refer to any compound in which the "polyaromatic hydrocarbon” described above reacts with an oxidant such that at least one oxygen containing functional group is bonded in its chemical structure.
  • the oxygen-containing functional group which can be introduced into the "polyaromatic hydrocarbon" by reaction with the oxidizing agent may be bonded to an aromatic ring such as a hydroxyl group, an epoxy group, a carboxyl group, a nitro group or a sulfonic acid, and optionally include one or more oxygen in the functional group. It can be a functional group of.
  • carbon-based material means any material mainly containing carbon-carbon bonds, for example, graphite, carbon nanotubes, graphite such as graphite, or derivatives thereof, and carbon.
  • Fullerene represented by black, C60 Other similar fullerene materials or derivatives thereof may be referred to collectively.
  • polyaromatic hydrocarbon or an oxide thereof, which is a main component or main raw material of a specific “dispersant” described below, does not belong to the category of "carbon-based material”.
  • non-oxidized graphite may refer to any other non-oxidized graphite or abyss, for example, an amorphous axle, a plate-like axle or artificial graphite.
  • the “non-oxidized graphite” may include a small amount of naturally occurring oxygen by natural oxidation by air, and the like, when the oxygen content is analyzed by elemental analysis by combustion or XPS analysis.
  • the atomic ratio of oxygen to carbon may be about 5% or less, or about 0 to 5%, or about 0,001 to 3%.
  • non-oxidized graphite has a significantly lower content than the “oxidized graphite” (eg, having an O / C atomic ratio of about 20% or more) which has undergone a separate oxidation treatment. It is obvious to include oxygen.
  • a method for producing graphene, which is formed of graphene having a thickness, is provided.
  • a pretreatment process for example, a high temperature heat treatment and crushing process for graphite to form a graphite worm, and an oxidation process, which are essentially required in a peeling method using a conventional homogenizer or ultrasonic irradiation.
  • a separate oxidation process for forming graphite may be omitted. That is, work
  • the dispersion is continuously passed through a high pressure homogenizer having a predetermined structure, so that a thinner thickness and size It was confirmed that graphene having an area can be produced in high yield.
  • the step of performing a stripping process using a high pressure homogenizer after "continuously” means that there is no separate heat treatment or crushing step or oxidation step between the forming step of the dispersion and the stripping step. May be referred to, and may be interpreted in the same sense unless otherwise indicated in the following specification. ,.
  • the pretreatment process such as the high temperature heat treatment and crushing process or the oxidation process
  • the process of exfoliating graphite oxide to obtain graphene oxide and then re-reducing it to obtain graphene may also be omitted, the manufacturing process of graphene showing excellent electrical properties and the like may be greatly simplified.
  • the manufacturing method of the embodiment the occurrence of defects is minimized, and graphene showing excellent characteristics as having a thinner thickness and a large area can be manufactured in a very simplified process.
  • the peeling It was necessary to further add a dispersant to the prepared graphene, and to further carry out ultrasonic dispersion.
  • the surface direction fracture of the graphene may occur in the ultrasonic irradiation process or the like, the area of the graphene is further reduced and its characteristics are also deteriorated.
  • the graphene may be dispersed together during the peeling process. Therefore, the post-process such as ultrasonic irradiation for improving the dispersibility is not necessary, and in the process, the surface direction fracture of the graphene can also be suppressed, thereby making the graphene or its dispersion of a larger area into a very simplified process. After preparation, it can be preferably applied for various uses.
  • the type of unoxidized graphite that can be used as the raw material is not particularly limited, and is a graphite, abysmal or similar carbon structure that is not oxidized or pretreated by a separate process, and has a three-dimensional structure in which a carbon atom layer is loaded.
  • any carbon-based material can be used that can be peeled off by any physical force such as high speed, high pressure, ultrasonic irradiation, or shear force to be made of graphene or the like having one or more layers of carbon atoms.
  • non-oxidized graphite examples include amorphous graphite, plate-like or artificial alum, and two or more kinds selected from these may be used as the non-oxidized graphite as the raw material.
  • a plate-shaped alum can be used among the said unoxidized graphite. Due to the use of these platelets, the formation of graphene by peeling thereof can be made more effective. Therefore, the graphene having a thinner thickness and a larger area can be peeled off more effectively by a high pressure homogenizer while eliminating the pretreatment process such as a high-silver heat treatment and crushing process for forming a graphite worm or a separate oxidation process for forming graphite oxide. Can be prepared. Therefore, through this, it is possible to produce graphene with better characteristics and minimized defects.
  • the dispersion may be a dispersion in which a carbon-based material including unoxidized graphite and a dispersant are dissolved or dispersed in an aqueous solvent or a polar organic solvent.
  • a dispersion due to the action of the dispersant, carbon-based materials including graphite oxide may be present in a uniformly dispersed state, and thus, in such an optimized dispersion state, a subsequent peeling process may be performed to have a thinner thickness and a larger area. Pin flakes can be formed effectively.
  • the water-soluble solvent or the polar organic solvent may include water, NMP, acetone, DMF (N, N-dimethylfoamide), DMSO (dimethyl sulfoxide), Ethanol, isopropyl alcohol, methanol, butanol, 2-ethoxy ethane, 2-butoxy ethanol, 2-methoxy propanol, THF (tetrahydroforan), ethylene glycol, pyridine, dimethylacetamide, N-vinylpyridone, Any aqueous solvent or polar organic solvent may be used, such as one or more selected from the group consisting of methyl ethyl ketone (butanone), alpha-terpinol, formic acid, ethyl acetate and acrylonitrile.
  • aqueous solvent or polar organic solvent may be used, such as one or more selected from the group consisting of methyl ethyl ketone (butanone), alpha-terpinol, formic acid,
  • any substance known to be usable for uniformly dispersing various carbon-based materials in a free solvent such as Tanic acid or the trade name Triton X-100 or Pluronics F-127, may be used.
  • a dispersing agent which more preferably comprises a common compound containing as a common compound plurality of types of poly-aromatic hydrocarbon oxides, of about 300 to 1000 poly aromatic hydrocarbon oxide of molecular weight in an amount of about 60 ⁇ amount 0/0 or more .
  • Pitch discharged from wastes during the refining of fossil fuels such as petroleum or coal is a by-product used for asphalt production, etc., and is a viscous mixture containing a plurality of polyaromatic hydrocarbons having a plurality of aromatic rings.
  • the polyaromatic hydrocarbons included in the pitch are decomposed, and at least a part of the polyaromatic hydrocarbons having an excessively large molecular weight is decomposed and a relatively narrow molecular weight distribution.
  • poly aromatic hydrocarbon oxide obtained in is was analyzed by MALDI-TOF MS, a molecular weight of "about 300 to 1000, or from about 300 to 700 poly the aromatic hydrocarbon oxide about 60% by weight or more, the black It will have been identified including about 65 parts by weight 0/0 or more, or about 70 to 95 weight 0/0.
  • Specific types, structures, and distributions of the polyaromatic hydrocarbon oxides contained in such a mixture may vary depending on the kind of pitch used as the raw material, its origin, or the kind of oxidizing agent. Can vary.
  • the mixture of polyaromatic hydrocarbon oxides included in the dispersant is a poly having a structure in which at least one oxygen-containing functional group is introduced into the polyaromatic hydrocarbon containing 5 to 30, black to 7 to 20 benzene rings, respectively.
  • a plurality of aromatic hydrocarbon oxides are included, and the polyaromatic hydrocarbon oxide in such a mixture has the above-described molecular weight distribution, that is, an oxide having a molecular weight of about 300 to 1000, or about ' 300 to 700, being about 60% by weight or more of the total mixture. It will have a molecular weight distribution.
  • the type of the oxygen-containing functional group may vary depending on the type of oxidizing agent used in the oxidation process such as pitch, etc., for example, at least one selected from the group consisting of hydroxy group, epoxy group, carboxyl group, nitro group and sulfonic acid. Can be.
  • Polyaromatic hydrocarbon oxides satisfying the above-described structural characteristics, molecular weight distribution, and the like, and a mixture thereof, may simultaneously have a hydrophobic ⁇ -domain where aromatic rings are collected and a hydrophilic region by oxygen-containing functional groups bonded to the aromatic ring.
  • the hydrophobic ⁇ -domain can interact with the surface of a carbon-based material on which carbon-carbon bonds such as graphitized graphite or graphene (flake) are formed, and the hydrophilic region is a single carbon.
  • the repulsive force between the system material for example, each graphene or each particle of graphite
  • the system material for example, each graphene or each particle of graphite
  • the above-described dispersant comprising a mixture of polyaromatic hydrocarbon oxides may be present between the molecules of the carbon-based material in a liquid medium such as a water-soluble solvent or a polar organic solvent to uniformly disperse such carbon-based material.
  • a liquid medium such as a water-soluble solvent or a polar organic solvent to uniformly disperse such carbon-based material.
  • the dispersant may exhibit excellent dispersing power to uniformly disperse the carbonaceous material evenly at a high concentration even when a relatively small amount is used.
  • the dispersant may exhibit water solubility in itself due to the presence of a hydrophilic region by an oxygen-containing functional group, and the like, and thus the carbonaceous material may be uniformly dispersed in an environmentally friendly solvent.
  • the dispersant exhibits an excellent dispersing force capable of uniformly dispersing the carbonaceous material in a high concentration in various polar organic solvents, as well as an environmentally friendly solvent.
  • the dispersant Due to the excellent dispersing power of the dispersant, it is possible to more uniformly disperse the unoxidized graphite raw material in a high concentration in the manufacturing method of one embodiment. Therefore, by peeling the raw material in such an optimized dispersion state, graphene having a thinner thickness and larger area can be produced more easily. Furthermore, since the dispersant may remain physically attached to the surface of the finally formed graphene, the graphene prepared by the method of the embodiment may exhibit excellent dispersibility in various polar solvents and the like by itself.
  • the above-described dispersant was analyzed element of poly aromatic hydrocarbons, oxides of a plurality of types it contains, about 12 of the oxygen content contained in the entire common compound total element content to 50 parts by weight 0/0, or from about 15 to 45 wt. Can be%.
  • the oxygen content can be included as reflecting the degree to which the oxygen-containing functional group by the oxidation step in the poly-aromatic hydrocarbons oxide introduced, hydrophilic regions mentioned above in accordance with the oxygen content of such meets suitable degree.
  • such a dispersant may be used to more uniformly disperse the unoxidized graphite as a raw material, thereby more effectively obtaining graphene having a thin thickness, and to more effectively disperse the prepared graphene. Can be improved.
  • the oxygen content is The polyaromatic hydrocarbon oxides of plural kinds contained in the above-described mixture can be calculated by elemental analysis. That is, when the mixture sample (for example, about lmg) is heated to a high temperature of about 900 ° C on, for example, a thin foil, the temperature rises to about 1500 to 1800 ° C while the foil melts momentarily. In this way, gas may be generated from the complex sample due to the silver and thus, it may be collected and measured and analyzed. As a result of this elemental analysis, the total elemental content of carbon, oxygen, hydrogen and nitrogen contained in the plurality of polyaromatic hydrocarbon oxides can be measured and analyzed, and the oxygen content with respect to the total elemental content can be obtained.
  • elemental analysis that is, when the mixture sample (for example, about lmg) is heated to a high temperature of about 900 ° C on, for example, a thin foil, the temperature rises to about 1500 to 1800 ° C while the foil melts momentarily. In this way,
  • the above-described dispersant may be prepared by a method comprising the step of oxidizing a mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 in the presence of an oxidizing agent.
  • the pitch discharged from the residue of the fossil fuel may include a plurality of polyaromatic hydrocarbons, and may have a viscous or powdery complex state.
  • the specific type, structure, composition ratio of the polyaromatic hydrocarbon or may vary, the pitch may include, for example, a plurality of polyaromatic hydrocarbons in which 5 to 50 aromatic rings, for example, a benzene ring, are included in the structure, and generally have a molecular weight of about 200 to about And 1500 polyaromatic hydrocarbons.
  • a mixture comprising polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 used as starting material in the method of preparing the dispersant may contain at least about 80% by weight of polyaromatic hydrocarbons in this molecular weight range, black may comprise an amount of about 90 parts by weight 0/0 or more.
  • polyaromatic hydrocarbons having an excessively large molecular weight are decomposed in the polyaromatic hydrocarbons included in the pitch, and a relatively narrow molecular weight distribution is obtained.
  • Mixtures of polyaromatic hydrocarbons having can be obtained.
  • polyaromatic hydrocarbons having a molecular weight greater than about 1000 and black can be broken down into small molecular weights.
  • a mixture comprising a plurality of polyaromatic hydrocarbon oxides that is, a dispersant used in the method of one embodiment can be produced very simply.
  • the oxidizing agent can be used without any particular limitation as long as the kind thereof is not particularly limited and can cause oxidation reaction to introduce oxygen-containing functional groups to aromatic hydrocarbons.
  • oxidants include nitric acid (HN0 3 ), sulfuric acid (H 2 S0 4 ), hydrogen peroxide (H 2 0 2 ), ammonium cerium (IV) sulfate; (NH 4 ) Ce (S0 4 ) 4 ) or ammonium cerium (IV) nitrate (Ammonium cerium (IV) nitrate; (NH 4 ) 2 Ce (N0 3 ) 6 ), and the like.
  • HN0 3 nitric acid
  • sulfuric acid H 2 S0 4
  • hydrogen peroxide H 2 0 2
  • ammonium cerium (IV) sulfate NH 4 ) Ce (S0 4 ) 4
  • ammonium cerium (IV) nitrate Ammonium cerium (IV) nitrate
  • NH 4 ) 2 Ce (N0 3 ) 6 and the like.
  • This oxidation step can then be carried out in a solvent, for about 0.5 to 20 hours at a reaction temperature of about 10 to 1 HC.
  • a solution oxidant such as sulfuric acid and / or nitric acid
  • a certain amount of the mixture including the polyaromatic hydrocarbons is added, and about 1 to 12 at room temperature, for example, about 20 ° C. or 80 ° C.
  • the oxidation step may proceed for a time.
  • the characteristics of the above-described dispersant for example, the degree of oxidation of the polyaromatic hydrocarbons, etc. are appropriately adjusted to have the desired characteristics.
  • Dispersants can be prepared.
  • the mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 as a starting material of the production method may be derived from a pitch obtained from a fossil fuel or a product thereof.
  • the type, structure or molecular weight distribution of the polyaromatic hydrocarbons may be different from each other. Nevertheless, as the oxidation process is carried out on a mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 derived from the pitch, etc., the above-described dispersing agent exhibiting excellent dispersibility for carbon-based materials can be simply prepared.
  • the above-described manufacturing method after the oxidation step, may further comprise the step of purifying the resultant to obtain a mixture of a plurality of polyaromatic hydrocarbon oxides
  • the purification step is a step of centrifuging the result of the oxidation step It may proceed to include.
  • the dispersion after forming and providing the dispersion, the dispersion is continuously passed through a high pressure homogenizer having a predetermined structure, the graphite oxide contained in the dispersion To peel off, it can be produced through the graphene.
  • the existing method using a homogenizer requires not only a high temperature heat treatment and crushing process for forming a graphite worm, but also an oxidation process for forming a graphite oxide, and graphene in the process.
  • a number of defects may occur, and there is a disadvantage in that mass productivity is also reduced.
  • the previously Yes having a "thin-walled similar to the large-area and several atomic layer proceeds only the step of peeling off without pre-treatment process, such as a separate oxidation step, a high temperature heat treatment process or crushing process, such as a homogenizer for a non-oxidized graphite It is not well known that pins can be manufactured.
  • the peeling is continuously carried out in the state of unoxidized graphite (that is, without a separate pretreatment step), so that a large area and a thin thickness are generated and defects are generated. It was first confirmed that this minimized graphene can be prepared. Therefore, when the peeling process using a high pressure homogenizer is performed by the method of the embodiment, it is possible to easily mass-produce graphene having a thinner, more uniform thickness, a large area, and minimize defects without a separate pretreatment process. It was confirmed that the problem of the existing method can be solved.
  • Figure 1 is a schematic diagram showing the principle of the high pressure homogenizer that can be used in the manufacturing method of the graphene of one embodiment.
  • the high pressure homogenizer includes a structure including a microchannel having a diameter of a micrometer and connecting the inlet of the raw material, the outlet of the graphene flakes peeling resultant, and the inlet and the outlet.
  • the inlet of such a high pressure homogenizer for example, when a raw material in a dispersion state containing unoxidized graphite is introduced while applying a high pressure of about 100 to 3000 bar, the raw material is micron ( ⁇ ) scale, for example, About 1 mm or less, while black passes through a microchannel having a diameter of 10 to 800 ⁇ , the velocity of this raw material is accelerated to supersonic speed and high shear force can be applied.
  • the synergy with the dispersant described above allows mass production of graphene having a very thin thickness and large area in a simpler process without defects.
  • the manufacturing method of the graphene of the above-described embodiment may further comprise the step of recovering and drying the graphene flakes from the dispersion of the graphene flakes
  • the recovery step may be performed by centrifugation, reduced pressure filtration or pressure filtration.
  • the drying step may be carried out by vacuum drying under a silver degree of about 30 to 200 ° C.
  • graphene having a very thin thickness and a very large area (diameter) corresponding to the carbon atomic layer thickness can be easily produced in high yield.
  • such graphene may have a variety of forms with a sheet, plate or plate on which one or more layers of carbon atoms are laminated, and more specifically, graphene flakes having a thickness of about 0.3 to 50 nm, or about 0.3 to 30 nm. It can be prepared mainly in the form of. Furthermore, these graphene flakes are about 0.1-10 im, black is about 0.1. Can have a large diameter of from 5 to 5. Further, the graphene flakes are thick compared to the area (diameter) of the "very large and may have a diameter / thickness ratio of about 50 to 6000, or from about 50 to 1000. At this time, the graphene flakes
  • Diameter may be defined as “the longest distance between the straight lines connecting any two points on the plane of each particle when viewed from the plane with the largest area of each particle of graphene flakes”.
  • the method more graphene having a thin thickness and large area, for example, well as the pin flakes such as 5> i produced, this graphene is maximized more excellent electrical conductivity, thermal conductivity, and stability thereof Can be expressed. Due to the excellent properties of the graphene, it can be used in various fields and applications, such as conductive paste compositions, conductive ink compositions, heat-dissipating substrate-forming compositions, electrically conductive composites, EMI shielding composites, or battery conductive materials. It can be very preferably used in any field or application for which application is possible or known to be necessary.
  • Such graphene may be typically used in the form of a dispersion or dispersion composition dissolved or dispersed in a polar solvent, and the dispersion or dispersion composition is applied to a substrate, printed and then patterned, or cast directly into a film. Can be used in various ways.
  • an aqueous solvent such as water or any polar solvent may be applied without particular limitation.
  • polar solvents include water, NMP, acetone, DMF ( ⁇ , ⁇ -dimethylforaiamide), DMSO (dimethyl sulfoxide), ethanol, isopropyl alcohol, methanol, butanol, 2-ethoxyethane, Ethane, 2-methoxy propanol, THF (tetrahydroiliran), ethylene glycol, pyridine, dimethylacetamide, N-vinylpyridone, methyl ethyl ketone (butanone), alpha-terpinol, formic acid, ethyl acetate and acrylo At least one selected from the group consisting of nitriles can be used.
  • Pitch which is a petroleum by-product obtained from POSCO, was subjected to the following oxidation and purification processes to prepare a dispersant of Preparation Example 1.
  • the pitch reaction solution subjected to the oxidation reaction was cooled to room temperature, diluted with distilled water about 5 times, and centrifuged at about 3500 rpm for 30 minutes. Subsequently, the supernatant was removed, the same amount of distilled water was added and redispersed, followed by centrifugation again under the same conditions, and finally the precipitate was recovered and dried. Through this, the dispersant of Preparation Example 1 was prepared.
  • the molecular weight distribution of the pitch used as a raw material during the preparation of such a dispersant was analyzed by MALDI-TOF mass spectrum, and is shown in FIGS. 2A and 2B (an enlarged view of the molecular weight 400 to 500 region).
  • the molecular weight distribution was similarly analyzed and shown in FIGS. 3A and 3B (enlarged view of the molecular weight 400 to 500 region).
  • This analysis was carried out using MALDI-TOF mass spectrum equipment (Ultraflex II, Bruker), the pitch or dispersant was added to the matrix, mixed, and dried.
  • the pitch was found to include polyaromatic hydrocarbons having a molecular weight of 200 to 1500, and in particular, in the enlarged view of FIG. felled From these, it was confirmed that a plurality of polyaromatic hydrocarbons having different numbers of aromatic rings (benzene rings) are connected by aliphatic hydrocarbons.
  • FIGS. 3A and 3B enlarged view
  • the dispersant of Preparation Example 1 was observed in the polyaromatic hydrocarbons with large peaks present at intervals of 44 Da and 16 D, respectively.
  • oxygen-containing functional groups such as -OH or -S03H are present in the form of a mixture of introduced polyaromatic hydrocarbon-oxides, the oxide having a molecular weight of about 300 to 1000, or about 300 to 700 Inclusion was confirmed.
  • the pitch (top) used as the raw material and the dispersant (bottom) of Preparation Example 1 were analyzed by 13C CPMAS NMR (Varian 400MHz Solid—State NMR), respectively, and the results of the analysis were compared with FIG. 4.
  • the carbon-derived peak of the aromatic hydrocarbon and the carbon-derived peak of some aliphatic hydrocarbon were confirmed, but the presence of the oxygen-containing functional group was not confirmed.
  • the peak of the oxygen-containing functional group was confirmed. It was confirmed that such oxygen-containing functional groups were epoxy groups, hydroxyl groups, carboxyl groups, and the like. '
  • This dispersant was analyzed by MALDI-TOF mass spectrum in the same manner as in Preparation Example 1, and compared with FIG. Referring to FIG. 6, as the oxidation time is increased, the content of components (polyaromatic hydrocarbon oxides) of molecular weight of about 1000 and black of more than about 700 in the dispersant decreases, so that the molecular weight of about 300 to 1000 Or a dispersant in the form of a mixture containing a higher content of about 300 to 700 polyaromatic hydrocarbon oxides was obtained.
  • Test Example 1 Measurement of Oxygen Content of Dispersant
  • Figure 7 (a) is shown an electron micrograph of a plate-shaped abyss used as a raw material for the production of graphene flakes, (b) and (c) (enlarged view of (b)) is prepared in Example 1 Electron micrographs of the pin flakes are shown. (B) and (c) of FIG. For reference, it was confirmed that graphene flakes having a very thin thickness and a large area and minimizing defects were formed very well.
  • the graphene flakes of Example 1 were TEM analyzed and the images are shown in FIGS. 8A and 8B (magnified view of (a)).
  • FIG. 8A the graphene flakes prepared in Example 1 were found to have a very large area having a diameter of about 0.5 to 5.
  • FIG. 8 (b) the graphene flakes of Example 1 are very thin so that the lower carbon grid (red arrow in the drawing) disposed for TEM analysis is observed through the graphene flakes. It was confirmed to have a thickness.
  • Example 2 Preparation of Graphene Flakes
  • Example 2 In the same manner as in Example 1, except that the dispersant of Preparation Example 2 was used instead of the dispersant of Preparation Example 1 .
  • the graphene flakes of Example 2 were prepared.
  • Example 2 The graphene flakes of Example 2 were confirmed by electron microscopic analysis. As a result, it was found that graphene flakes having a very thin thickness and a large crop size and minimizing defects were formed well. As a result of TEM and AFM analysis of the graphene flakes of Example 2 in the same manner as in Example 1, it was confirmed that the graphene flakes of Example 2 have a very large area having a diameter of about 0.5 to 10, and about 5 to about It was found to have a very thin thickness of 20 nm.
  • Example 3 Preparation of Graphene Flakes
  • Example 3 The graphene flakes of Example 3 were prepared in the same manner as in Example 1 except that the trade name Triton X-100 dispersant was used instead of the dispersant of Preparation Example 1.
  • FIG. 9 shows an electron micrograph of the graphene flakes of Example 3.
  • FIG. 9 it was confirmed that thin and uniform graphene flakes having an area of about 5 ⁇ 2 were formed very well.
  • Example 4 Preparation of Graphene Flakes
  • Example 4 The graphene flakes of Example 4 were prepared in the same manner as in Example 1, except that the trade name Pluronics F-127 dispersant was used instead of the dispersant of Preparation Example 1.
  • the graphene flakes of Comparative Example 1 were prepared using a high pressure homogenizer by the method described in the examples of Korean Unexamined Patent Publication No. 2013-0004638 without using a dispersant such as Preparation Example 1.
  • Example 1 shows an electron micrograph of the graphene flakes of Comparative Example 1 (FIG. 1 (a)), and an electron micrograph of the graphene flakes obtained in Example 1 (FIG. 1 (b)).
  • the graphene flakes prepared in Example 1 not only show an area of 10 ⁇ 2 or more that is larger than that of the comparative example 1, but also Wrinkle is observed, which is graphene flakes. It has been proved that the film is thinly peeled to an extremely thin thickness of less than several nm.
  • Figure 12 shows the Raman spectrum of the graphene flake of Example 1
  • D peak (at -1,350 cm ⁇ 1 ) intensity is correspondingly increased as the defects in the graphene increases
  • the higher the G peak (at ⁇ l, 580 cm- and the Inensity ratio (Gi / O ⁇ ) the higher the graphene quality. Therefore, the larger the D of the graphene flakes prepared in Example 1 , ( ⁇ 14.5) is a high quality with fewer defects than C Di ( ⁇ 5.5) of the graphene flake of Comparative Example 1.

Abstract

The present invention relates to a graphene production method which makes it possible to use a simplified process in order to produce graphene which has a relatively thin thickness and large surface area and has a reduced incidence of defects. The graphene production method comprises: a step of forming a liquid dispersion comprising a dispersing agent and a carbon-based material comprising unoxidised graphite; and a step of continuously passing the liquid dispersion through a high-pressure homogeniser comprising an inlet, an outlet and a microchannel that has a diameter on the micrometre scale and connects the space between the inlet and the outlet, and the carbon-based material is formed into graphene having a thickness on the nanoscale by being delaminated while passing through the microchannel with the application of a shearing force.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
그래핀의 제조 방법  Graphene Manufacturing Method
【기술분야】  Technical Field
본 발명은 보다 얇은 두께 및 대면적을 가지며, 결함 발생이 감소된 그래핀을 단순화된 공정으로 제조할 수 있는 그래핀의 제조 방법에 관한 것이다. 【배경기술】  The present invention relates to a method for producing graphene having a thinner thickness and larger area and capable of producing graphene with reduced defects in a simplified process. Background Art
일반적으로 그래핀은 탄소원자들이 2차원 상에서 sp2 결합에 의한 6각형 모양으로 연결된 배열을 이루면서 탄소 원자층에 대응하는 두께를 갖는 반 금속성 물질이다. 최근 들어, 한층의 탄소 원자층을 갖는 그래핀 시트의 특성을 평가한 결과, 전자의 이동도가 약 50,000 cm2/Vs 이상으로서 매우 우수한 전기 전도도를 나타낼 수 있음이 보고된 바 있다. In general, graphene is a semi-metallic material having a thickness corresponding to a carbon atom layer in an arrangement in which carbon atoms are arranged in a hexagonal shape by sp2 bonds in two dimensions. Recently, as a result of evaluating the characteristics of the graphene sheet having a single layer of carbon atoms, it has been reported that the electron mobility may exhibit very good electrical conductivity of about 50,000 cm 2 / Vs or more.
또한, 그래핀은 구조적, 화학적 안정성 및 뛰어난 열 전도도의 특징을 가자고 있다. 뿐만 아니라 상대적으로 가벼운 원소인 탄소만으로 이루어져 1차원 혹은 2차원 나노패턴을 가공하기가 용이하다. 무엇보다도 상기 그래핀 시트는 값싼 재료로서 기존의 나노재료와 비교할 경우 우수한 가격경쟁력을 갖고 있다. 이러한 전기적, 구조적, 화학적, 경제적 특성으로 인하여 그래핀은 향후 실리콘 기반 반도체 기술 및 투명전극을 대체할 수 있을 것으로 예측되며, 특히 우수한 기계적 물성으로 유연 전자소자 분야에 웅용이 가능할 것으로 기대된다. 이러한 그래핀의 많은 장점 및 뛰어난 특성으로 인해, 그라파이트 등 탄소계 소재로부터 그래핀을 보다 효과적으로 양산할 수 있는 다양한 방법이 제안 또는 연구되어 왔다. 특히, 그래핀의 우수한 특성이 더욱 극적으로 발현될 수 있도록, 결함의 발생이 작으면서도 보다 얇은 두께 및 대면적을 갖는 그래핀 시트 또는 플레이크를 보다 단순화된 공정으로 제조할 수 있는 방법에 관한 연구가 다양하게 이루어져 왔다. 이러한 기존의 그래핀 제조 방법에는 다음과 같은 것들이 있다.  In addition, graphene is characterized by structural, chemical stability and excellent thermal conductivity. In addition, it is easy to process one-dimensional or two-dimensional nanopattern made of carbon, which is a relatively light element. Above all, the graphene sheet is an inexpensive material and has excellent price competitiveness when compared with conventional nanomaterials. Due to such electrical, structural, chemical and economic characteristics, it is expected that graphene will be able to replace silicon-based semiconductor technology and transparent electrodes in the future. In particular, it is expected that the graphene may be used for flexible electronic devices due to its excellent mechanical properties. Due to the many advantages and excellent properties of the graphene, various methods for mass production of graphene from carbon-based materials such as graphite have been proposed or studied. In particular, in order to express the excellent characteristics of graphene more dramatically, a study on a method for manufacturing a graphene sheet or flake having a thinner thickness and a larger area with less defects in a simpler process can be made. It has been done in various ways. Such conventional graphene manufacturing methods include the following.
먼저 , 테이프를 사용하는 등 물리적인 방법으로 그라파이트로부터 그래핀 시트를 박리하는 방법이 알려져 있다. 그러나, 이러한 방법은 양산에 부적합하며, 박리 수율이 매우 낮다.  First, a method of peeling a graphene sheet from graphite by a physical method such as using a tape is known. However, this method is not suitable for mass production, and the peeling yield is very low.
또한, 그라파이트를 산화하는 등의 화학적인 방법으로 박리하거나, 그라파이트의 탄소 층간에 산, 염기, metal 등을 삽입하여 인터칼레이션 화합물 (intercalation compound) 로부터 박리시킨 그래핀 또는 이의 산화물을 얻는 방법이 알려진 바 있다. 그러나, 전자의 방법은 그라파이트를 산화하여 박리를 진행하고, 이로부터 얻어진 그래핀 산화물을 다시 환원하여 그래핀을 얻는 과정에서, 최종 제조된 그래핀 상에 다수의 결함이 발생할 수 있다. 이는 최종 제조된 그래핀의 특성에 악영향을 미칠 수 있다. 그리고, 후자의 방법 역시 인터칼레이션 화합물을 사용 및 처리하는 등의 공정이 추가로 필요하여 전체적인 공정이 복잡해지고 수율이 충분치 않으며 공정의 경제성이 떨어질 수 있다. 더 나아가, 이러한 방법에서는 대면적의 그래핀 시트 또는 플레이크를 얻기가 용이치 않다. In addition, by peeling by a chemical method such as oxidizing the graphite, A method of obtaining graphene or an oxide thereof separated from an intercalation compound by inserting an acid, a base, a metal, or the like into a carbon layer of graphite has been known. However, in the former method, a plurality of defects may be generated on the final manufactured graphene in the process of oxidizing graphite to proceed with peeling and reducing the graphene oxide obtained therefrom to obtain graphene. This may adversely affect the properties of the final prepared graphene. In addition, the latter method may further require a process such as using and treating an intercalation compound, and thus, the overall process may be complicated, the yield may not be sufficient, and the economic efficiency of the process may be reduced. Furthermore, it is not easy to obtain large area graphene sheets or flakes in this method.
이러한 방법들의 문제점으로 인해, 최근에는 그라파이트 등을 액상 분산시킨 상태에서, 초음파 조사 또는 볼밀 등을 사용한 밀링 방법으로 그라파이트에 포함된 탄소 층들을 박리하여 그래핀을 제조하는 방법이 가장 많이 적용되고 있다. 그러나, 이러한 방법들 역시 층분히 얇은 두께를 갖는 그래핀을 얻기가 어렵거나, ,박리 과정에서 그래핀 상에 많은 결함이 발생하거나, 박리 수율이 층분치 못하고 양산성이 충분치 못하게 되는 등의 문제점이 있었다. 부가하여, 고속 균질기 등 균질기를 사용해 상기 그라파이트 등을 박리하여 그래핀을 제조하는 방법 역시 제안된 바 있다. 그러나, 이러한 기존의 방법에서는 주로 그라파이트 등 원료를 산화하거나, 고온 열처리 및 파쇄하여 그라파이트 월 또는 산화 그라파이트 등을 형성한 후, 이를 박리하여 '그래핀을 제조하는 것이 일반적이었다. 그런데, 이러한 고온 열처리 및 파쇄 공정 중에 원료 물질에 다수의 결함이 발생하여 최종 제조된 그래핀의 열적, 전기적 또는 기계적 물성이 크게 저하되는 단점이 있었다. 또한, 상기 고온 열처리 및 파쇄 공정 등의 진행 필요성으로 인해, 전체적인 공정이 복잡해지고, 충분히 큰 면적을 갖는 그래핀을 제조하기 어렵게 되는 등의 단점 또한 존재하였다. Due to the problems of these methods, in recent years, a method of preparing graphene by peeling carbon layers included in graphite by a milling method using ultrasonic irradiation or a ball mill in the state of dispersing graphite or the like in liquid phase has been most applied. However, these methods also have problems such as difficulty in obtaining graphene having a thin thickness, many defects occurring on the graphene during peeling, insufficient peeling yield, and insufficient productivity. there was. In addition, a method of manufacturing graphene by peeling the graphite and the like using a homogenizer such as a high speed homogenizer has also been proposed. However, it is common in such conventional methods, mainly oxidation of the graphite raw material, or high-temperature heat treatment and crushing after the formation of the month, such as graphite or graphite oxide, and peeling it, yes for producing a pin. By the way, a large number of defects in the raw material during the high temperature heat treatment and crushing process has a disadvantage in that the thermal, electrical or mechanical properties of the final manufactured graphene is greatly reduced. In addition, due to the necessity of the high temperature heat treatment and crushing process, such as the overall process is complicated, there are also disadvantages such as difficult to manufacture graphene having a sufficiently large area.
더구나, 상기 산화 그라파이트를 박리하는 경우, 박리된 결과물이 결함 및 산소를 포함하는 산화 그래핀으로 얻어짐에 따라, 일반적인 그래핀에 비해 전기전도도가 떨어지게 된다. 이를 해결하기 위해 그래핀을 얻기 위해서는 추가적으로 산화 그래핀의 환원 공정 등이 필요하게 된다. 그 결과 전체적인 공정이 더욱 복잡해 질 뿐 아니라 환원 후에도 산화 전의 물성으로 완벽히 복원되지 않는 단점이 있었다. In addition, when the graphite oxide is peeled off, as the result of the peeled off is obtained as a graphene oxide containing defects and oxygen, the electrical conductivity is lower than that of general graphene. In order to solve this problem, in order to obtain graphene, a reduction process of graphene oxide is additionally required. As a result, the overall process becomes more complicated and the properties before oxidation even after reduction are completely There was a disadvantage of not being restored.
이로 인해, 보다 얇은 두께 및 대면적을 가지며, 결함 발생이 감소되어 우수한 특성을 유지하는 그래핀을 단순화된 공정으로 제조할 수 있는 그래핀의 제조 방법이 계속적으로 요구되고 있다ᅳ  As a result, there is a continuous demand for a method of manufacturing graphene, which can produce graphene having a thinner thickness and a larger area, and reduce the occurrence of defects and maintain excellent characteristics in a simplified process.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 보다 얇은 두께 및 대면적을 가지며, 결함 발생이 감소된 그래핀을 단순화된 공정으로 제조'할 수 있는 그래핀의 제조 방법을 제공하는 것이다.  The present invention provides a method for producing graphene, which has a thinner thickness and a larger area and can produce graphene having a reduced defect occurrence in a simplified process.
【과제의 해결 수단】  [Measures of problem]
본 발명은 미산화 그라파이트를 포함한 탄소계 소재 및 분산제를 포함한 분산액을 형성하는 단계; 및 상기 분산액을 연속적으로, 유입부와, 유출부와, 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 고압 균질기 (High Pressure Homogenizer)에 통과시키는 단계를 포함하고, 상기 탄소계 소재는 전단력의 인가 하에 상기 미세 유로를 통과하면서 박리되어 나노 스케일의 두께를 갖는 그래핀 (graphene)으로 형성되는 그래핀의 제조 방법을 제공한다.  The present invention comprises the steps of forming a dispersion comprising a carbon-based material and dispersant, including unoxidized graphite; And continuously passing the dispersion through a high pressure homogenizer comprising a microchannel having a diameter of a micrometer scale and connecting the inlet, the outlet, and the inlet and the outlet. In addition, the carbon-based material is peeled while passing through the micro-channel under the application of shear force to provide a method for producing graphene is formed of graphene (graphene) having a nanoscale thickness.
이러한 그래핀의 제조 방법에서, 상기 미산화 그라파이트는 연소에 의한 원소 분석법 (elemental analysis measurement by combustion) 또는 XPS 분석법 (X-ray photoelectron spectrometry analysis)으로 측정된 산소 대 탄소의 원소비 (O/C atomic ratio)가 약 5% 이하, 혹은 약 0 내지 5%, 흑은 약 0,001 내지 3%인 그라파이트로 될 수 있다.  In the graphene manufacturing method, the unoxidized graphite is an elemental ratio of oxygen to carbon (O / C atomic) measured by elemental analysis measurement by combustion or X-ray photoelectron spectrometry analysis. ratio) is about 5% or less, or about 0 to 5%, black may be about 0,001 to 3% graphite.
그리고, 상기 그래핀의 제조 방법에서, 상기 원료로 사용되는 미산화 그라파이트는 판상 혹연으로 됨이 적절하다.  In the method for producing graphene, the unoxidized graphite used as the raw material is suitably formed into a plate-like abyss.
또한, 상기 그래핀의 제조 방법에서, 상기 분산액은 수용매 또는 극성 유기 용매 내에 상기 탄소계 소재와 분산제가 용해 또는 분산된 분산액으로 될 수 있다.  In addition, in the graphene manufacturing method, the dispersion may be a dispersion in which the carbon-based material and the dispersing agent are dissolved or dispersed in a solvent or a polar organic solvent.
그리고, 상기 분산제는 다양한 분산제로 될 수 있지만, 보다 적절하게는 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로서, 분자량 약 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 약 60 중량% 이상의 함량으로 포함한 흔합물을 포함하는 것으로 될 수 있다. 이러한 분산제는 이에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 전체 원소 함량의 약 12 내지 50 중량0 /0인 것으로 될 수 있다. In addition, the dispersant may be various dispersants, but more preferably, a mixture of plural kinds of polyaromatic hydrocarbon oxides, and includes a polyaromatic hydrocarbon oxide having a molecular weight of about 300 to 1000 in an amount of about 60% by weight or more. It may be to include a mixture. The dispersant was analyzed for poly-aromatic hydrocarbons, oxides of the plurality of types of elements it contains, may be that the oxygen content of about 12 to 50 parts by weight 0/0 of the total element content.
또한, 상기 분산제에 포함된 폴리 방향족 탄화수소 산화물은 5 내지 30 개, 혹은 7 내지 20 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 가질 수 있다.  In addition, the polyaromatic hydrocarbon oxide included in the dispersant may have a structure in which at least one oxygen-containing functional group is bonded to an aromatic hydrocarbon including 5 to 30 or 7 to 20 benzene rings.
한편, 상술한 그래핀의 제조 방법에서, 상기 고압 균질기의 미세 유로는 약 10 내지 800 i m의 직경을 가질 수 있다. 또, 상기 분산액은 약 100 내지 3000 bar의 압력 인가 하에 상기 고압 균질기의 유입부로 유입되어 미세 유로를 통과하면서 박리되어 그래핀으로 제조될 수 있다.  On the other hand, in the above-described method for producing a pin, the fine flow path of the high pressure homogenizer may have a diameter of about 10 to 800 im. In addition, the dispersion may be introduced into the inlet of the high pressure homogenizer under pressure application of about 100 to 3000 bar, and then peeled while passing through the microchannel to be manufactured into graphene.
상술한 방법으로 제조된 그래핀 플레이크는 약 으3 내지 50nm, 혹은 약 0.3 내지 30nm의 두께를 가질 수 있으며, 약 0.1 내지 10 /m, 혹은 약 0.1내지 5 μι 의 직경을 가질 수 있고, 약 50 내지 6000, 흑은 약 50 내지 1000 의 직경 /두께비를 가질 수 있다.  The graphene flakes prepared by the method described above may have a thickness of about 3 to 50 nm, or about 0.3 to 30 nm, and may have a diameter of about 0.1 to 10 / m, or about 0.1 to 5 μιη, and about 50 To 6000, black may have a diameter / thickness ratio of about 50 to 1000.
상술한 그래핀의 제조 방법은 상기 그래핀 플레이크의 분산액으로부터 그래핀 플레이크를 회수 및 건조하는 단계를 더 포함할 수 있다. 이때, 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행될 수 있고, 상기 건조 단계는 약 30 내지 200 °C의 온도 하에 진공 건조하여 진행될 수 있다. The method for producing graphene may further include recovering and drying the graphene flakes from the dispersion of the graphene flakes. At this time, the recovery step may be carried out by centrifugation, vacuum filtration or pressure filtration, the drying step may be carried out by vacuum drying at a temperature of about 30 to 200 ° C.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 분산제의 사용 및 고압 균질기의 사용으로 인해, 원료인 .미산화 그라파이트를 보다 균일하게 분산시킨 상태에서 이의 박리 방법을 최적화하여 그래핀을 제조할 수 있다.  According to the present invention, due to the use of a dispersant and the use of a high pressure homogenizer, the graphene can be prepared by optimizing the peeling method thereof in a state where the raw material .micronized graphite is more uniformly dispersed.
따라서, 본 발명에 따르면, 종래에 적용되었던 박리 공정의 전처리 공정, 예를 들어, 그라파이트 웜의 형성을 위한 고은 열처리 및 파쇄 공정이나, 산화 그라파이트의 형성을 위한 산화 공정 등을 생략할 수 있으며, 이는 상기 원료로서 판상 혹연을 사용하여 더욱 두드러질 수 있다. 그러므로, 상기 고온 열처리 및 파쇄 공정 또는 산화 공정 등의 과정에서 다수의 결함이 발생하는 것을 억제할 수 있고, 상기 산화 및 재환원 공정에 의해 그래핀의 제조 공정이 복잡해지는 것을 막고 그래핀의 제조 공정을 매우 단순화할 수 있다. 또한, 본 발명에 따르면 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크 등이 높은 수율로 용이하게 제조될 수 있다. Therefore, according to the present invention, a pretreatment process of a conventional peeling process, for example, a silver heat treatment and crushing process for forming a graphite worm, an oxidation process for forming graphite oxide, etc. can be omitted. It may be more prominent by using platelets as the raw material. Therefore, it is possible to suppress the occurrence of a plurality of defects in the high temperature heat treatment and shredding process or the oxidation process, and to prevent the graphene manufacturing process from being complicated by the oxidation and re-reduction process and to produce the graphene. Can be greatly simplified. In addition, according to the present invention, graphene flakes having a thinner thickness and a large area, etc. are easily obtained with a high yield. Can be prepared.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 은 일 구현예의 그래핀의 제조 방법에서 사용 가능한 고압 균질기의 원라를 나타내는 개략적인 모식도이다.  1 is a schematic diagram showing the original of the high pressure homogenizer that can be used in the method for producing graphene of one embodiment.
도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)는 제조예의 분산제 제조를 위해 사용되는 pitch의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 나타낸 도면이다.  2A and 2B (enlarged view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the pitch used for the preparation of the dispersant of the preparation example analyzed by MALDI-TOF mass spectrum.
도 3a 및 도 3b (분자량 400 내지' 500 영역의 확대도)는 제조예 1 에서 얻어진 분산제의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 나타낸 도면이다. 3A and 3B (enlarged view of the molecular weight 400 to ' 500 region) is a diagram showing the molecular weight distribution of the dispersant obtained in Preparation Example 1 analyzed by MALDI-TOF mass spectrum.
도 4는 pitch 및 제조예 1의 분산제를 각각 13C CPMAS. NMR로 분석하여, 그 분석 결과를 나타낸 도면이다ᅳ  4 is 13C CPMAS pitch and the dispersant of Preparation Example 1, respectively. It is a figure which analyzed by NMR and shows the analysis result.
도 5 는 pitch 및 제조예 1 의 분산제를 각각 FT-IR 로 분석하여, 그 분석 결과를 나타낸 도면이다.  Fig. 5 is a diagram showing the results of the analysis of the pitch and the dispersant of Preparation Example 1, respectively, by FT-IR.
도 6 은 제조예 2 내지 4 에서 각각 얻어진 분산제의 분자량 분포를 6 is a molecular weight distribution of the dispersant obtained in Production Examples 2 to 4, respectively.
MALDI-TOF mass spectrum으로 분석하고, 그 분석 결과를 비교하여 나타낸 도면이다ᅳ Figure shows the analysis by MALDI-TOF mass spectrum and the result of analysis.
도 7 은 실시예의 그래핀 플레이크 제조를 위해 원료로 사용된 그라파이트의 전자 현미경 사진 (a)와, 실시예 1 에서 제조된 그래핀 플레이크의 전자 현미경 사진 (b) 및 (b)를 나타낸다.  7 shows electron micrographs (a) of graphite used as raw materials for preparing the graphene flakes of the examples, and electron micrographs (b) and (b) of the graphene flakes prepared in Example 1. FIG.
. 8 은 실시예 1 의 그래핀 플레이크의 직경 및 두께를 측정하기 위한 TEM 분석 결과 (a) 및 (b)와, AFM 분석 결과 (c) 및 (d)를 각각 나타낸다. Too . 8 shows TEM analysis results (a) and (b) and AFM analysis results (c) and (d), respectively, for measuring the diameter and thickness of the graphene flakes of Example 1.
도 9 내지 11 은 각각 실시예 3, 4 및 비교예 1 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 나타낸다.  9 to 11 show electron micrographs of the graphene flakes prepared in Examples 3 and 4 and Comparative Example 1, respectively.
도 12는 실시예 1의 그래핀 플레이크의 라만스펙트럼을 나타낸다.  12 shows the Raman spectrum of the graphene flakes of Example 1. FIG.
도 13 은 비교예 2 의 산화 그래핀 플레이크의 전자 현미경 사진을 나타낸다.  13 shows the electron micrograph of the graphene oxide flake of Comparative Example 2. FIG.
도 14 및 15 는 비교예 2 의 산화 그래핀 플레이크의 원소 분석 결과 및 라만 스펙트럼을 각각 나타낸다.  14 and 15 show elemental analysis results and Raman spectra of graphene oxide flakes of Comparative Example 2, respectively.
【발명을 실시하기 위한 구체적인 내용】 이하, 발명의 구체적인 구현예에 따른 그래핀의 제조 방법과, 그래핀의 분산 조성물 등에 대해 보다 구체적으로 설명하기로 한다. [Specific contents to carry out invention] Hereinafter, a method for preparing graphene and a dispersion composition of graphene according to a specific embodiment of the present invention will be described in more detail.
이하의 명세서에서 사용된 용어의 일부는 다음과 같이 정의될 수 있다. 먼저, 이하의 명세서에서, "분산제"란 수용매, 유기 용매 기타 액상의 매질 내에 다른 성분, 예를 들어, 판상 흑연과 같은 그라파이트, 또는 그래핀 (플레이크) 등의 탄소계 소재를 균일하게 분산시키기 위한 임의의 성분을 지칭할 수 있다. 이러한 "분산제" 및 탄소계 소재 등 분산의 대상이 되는 다른 성분이 액상 매질 내에 분산되어 있는 조성물을 "분산액" 또는 "분산 조성물 "로 지칭할 수 있으며, 이러한 "분산액" 또는 "분산 조성물 "은 용액상, 슬러리상 또는 페이스트상 등의 여러 상태로 존재할 수 있다. 또한, 이러한 "분산액" 또는 "분산 조성물 "은 이하에서 설명하는 그래핀의 제조 과정에서 사용되는 조성물; 2 차 전지의 도전재 조성물; 각종 전지, 디스플레이 또는 소자 등의 제조 과정에서 적용되는 전극용 또는 전도성 조성물 ; 2차 전지 등의 활물질 조성물; 각종 고분자 또는 수지 복합체 제조용 조성물; 또는 여러 가지 전자 소재 또는 소자 등의 제조 과정에서 적용되는 잉크 또는 페이스트 조성물 등 다양한 용도에 사용 가능한 것으로 그 용도가 별달리 제한되지 않으며, 상기 "분산제" 및 분산 대상 성분이 액상 매질 내에 함께 포함되어 있기만 하면, 그 상태나 용도에 무관하게 상기 "분산액,, 또는 "분산 조성물,,의 범주에 속하는 것으로 정의될 수 있다ᅳ  Some of the terms used in the following specification may be defined as follows. First, in the following specification, "dispersant" means uniformly dispersing other components, such as graphite such as plate-like graphite, or carbon-based material such as graphene (flakes), in an aqueous solvent, an organic solvent, or a liquid medium. May refer to any ingredient. A composition in which other components to be dispersed such as a "dispersant" and a carbon-based material are dispersed in a liquid medium may be referred to as a "dispersion" or "dispersion composition", and such a "dispersion" or "dispersion composition" is a solution. It can exist in various states, such as a phase, a slurry form, or a paste form. In addition, such a "dispersion" or "dispersion composition" is a composition used in the manufacturing process of graphene described below; A conductive material composition of a secondary battery; Electrodes or conductive compositions applied in the manufacturing process of various batteries, displays or devices; Active material compositions such as secondary batteries; Compositions for producing various polymers or resin composites; Or it can be used for a variety of uses, such as ink or paste composition applied in the manufacturing process of various electronic materials or devices, and the use thereof is not particularly limited, as long as the "dispersant" and the component to be dispersed are included together in the liquid medium. It may be defined as belonging to the category of "dispersion liquid," or "dispersion composition," irrespective of its state or use.
또한, 이하의 명세서에서, "폴리 방향족 탄화수소"라 함은 단일 화합물 구조 내에 방향족 고리, 예를 들어, 벤젠 고리가 2 개 이상, 혹은 5 개 이상 결합 및 포함되어 있는 방향족 탄화수소 화합물을 지칭할 수 있다. 또한, "폴리 방향족 탄화수소 산화물 "은 상술한 "폴리 방향족 탄화수소"가 산화제와 반응을 일으켜 이의 화학 구조 내에 산소 함유 작용기가 하나 이상 결합되어 있는 임의의 화합물을 지칭할 수 있다. 이때, 상기 산화제와의 반웅에 의해 "폴리 방향족 탄화수소"에 도입될 수 있는 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 또는 술폰산 등 방향족 고리에 결합될 수 있고 작용기 중에 산소를 하나 이상 포함하는 임의의 작용기로 될 수 있다.  In addition, in the following specification, the term "polyaromatic hydrocarbon" may refer to an aromatic hydrocarbon compound in which at least two, or at least five, benzene rings are bonded and included in a single compound structure. . In addition, "polyaromatic hydrocarbon oxide" may refer to any compound in which the "polyaromatic hydrocarbon" described above reacts with an oxidant such that at least one oxygen containing functional group is bonded in its chemical structure. At this time, the oxygen-containing functional group which can be introduced into the "polyaromatic hydrocarbon" by reaction with the oxidizing agent may be bonded to an aromatic ring such as a hydroxyl group, an epoxy group, a carboxyl group, a nitro group or a sulfonic acid, and optionally include one or more oxygen in the functional group. It can be a functional group of.
그리고, 이하의 명세서에서 "탄소계 소재"라 함은 탄소 -탄소 결합을 주로 포함하는 임의의 소재, 예를 들어, 그래핀 (graphene), 탄소 나노 튜브, 판상 흑연 등의 그라파이트 또는 이의 유도체, 카본블랙, C60 로 표시되는 플러렌 (fiillerene) 기타 이와 유사한 플러렌계 소재 또는 이들의 유도체 등을 포괄하여 지칭할 수 있다. 단, 이러한 "탄소계 소재"의 범주에는 이하에서 설명하는 특정한 "분산제"의 주 성분 또는 주 원료로 되는 "폴리 방향족 탄화수소" 또는 이의 산화물은 속하지 않는 것으로 해석될 수 있다. In the following specification, the term "carbon-based material" means any material mainly containing carbon-carbon bonds, for example, graphite, carbon nanotubes, graphite such as graphite, or derivatives thereof, and carbon. Fullerene represented by black, C60 Other similar fullerene materials or derivatives thereof may be referred to collectively. However, it can be interpreted that "polyaromatic hydrocarbon" or an oxide thereof, which is a main component or main raw material of a specific "dispersant" described below, does not belong to the category of "carbon-based material".
또한, 이하의 명세서에서 "미산화 그라파이트"라 함은 별도의、 산화 처리되지 않은 그라파이트 또는 혹연, 예를 들어, 부정형 혹연, 판상 혹연 또는 인조 흑연 등을 포괄하여 지칭할 수 있다. 다만, 상기 "미산화 그라파이트"는 공기에 의한 자연 산화 등에 의해 미량의 자연 발생 산소를 포함할 수 있으며, 이러한 산소 함량은 연소에 의한 원소 분석법 또는 XPS 분석법으로 상기 "미산화 그라파이트"를 분석하였을 때, 산소 대 탄소의 원소비 (O/C atomic ratio)가 약 5% 이하, 혹은 약 0 내지 5%, 혹은 약 0,001 내지 3%인 것으로 될 수 있다. 다만, 이러한 "미산화 그라파이트"는 별도의 산화 처리를 거친 "산화 그라파이트" (예를 들어, 약 20% 이상의 산소 대 탄소의 원소비 (O/C atomic ratio)를 가짐)에 비해 현저히 낮은 함량의 산소를 포함함이 자명하다. 한편, 발명의 일 구현예에 따르면, 미산화 그라파이트를 포함한 탄소계 소재 및 분산제를 포함한 분산액을 형성하는 단계; 및 상기 분산액을 연속적으로, 유입부와, 유출부와, 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 고압 균질기 (High Pressure Homogenizer)에 통과시키는 단계를 포함하고, 상기 탄소계 소재는 전단력의 인가 하에 상기 미세 유로를 통과하면서 박리되어 나노 스케일의 .두께를 갖는 그래핀으로 형성되는 그래핀의 제조 방법이 제공된다. In addition, in the following specification, "non-oxidized graphite" may refer to any other non-oxidized graphite or abyss, for example, an amorphous axle, a plate-like axle or artificial graphite. However, the "non-oxidized graphite" may include a small amount of naturally occurring oxygen by natural oxidation by air, and the like, when the oxygen content is analyzed by elemental analysis by combustion or XPS analysis. The atomic ratio of oxygen to carbon may be about 5% or less, or about 0 to 5%, or about 0,001 to 3%. However, such "non-oxidized graphite" has a significantly lower content than the "oxidized graphite" (eg, having an O / C atomic ratio of about 20% or more) which has undergone a separate oxidation treatment. It is obvious to include oxygen. On the other hand, according to one embodiment of the invention, the step of forming a dispersion containing a carbon-based material and dispersant including unoxidized graphite; And continuously passing the dispersion through a high pressure homogenizer comprising a micro flow path having an inlet, an outlet, and an inlet and an outlet, the microchannel having a diameter of a micrometer scale. And, the carbon-based material is peeled while passing through the micro-channel under the application of shear force to the nano-scale . A method for producing graphene, which is formed of graphene having a thickness, is provided.
일 구현예의 그래핀의 제조 방법에서는, 박리 전 단계에서의 분산제의 사용 및 박리 단계에서의 고압 균질기의 사용으로 인해, 원료인 미산화 그라파이트를 보다 균일하게 분산시킨 상태에서 이의 박리 방법을 최적화하여 그래핀을 제조할 수 있다.  In the graphene manufacturing method of one embodiment, due to the use of a dispersant in the pre-peeling step and the use of a high pressure homogenizer in the peeling step, by optimizing the peeling method in the state in which the unoxidized graphite raw material is more uniformly dispersed Graphene can be prepared.
따라서, 일 구현예의 제조 방법에 따르면, 기존의 균질기 또는 초음파 조사 등을 사용한 박리 방법에서 필수적으로 요구되었던 전처리 공정, 예를 들어, 그라파이트 웜의 형성을 위한 그라파이트에 대한 고온 열처리 및 파쇄 공정 및 산화 그라파이트의 형성을 위한 별도의 산화 공정 등을 생략할 수 있다. 즉, 일 구현예의 방법에서는, 상기 미산화 그라파이트와 분산제를 포함한 분산액을 얻은 후, 연속적으로 이러한 분산액을 소정의 구조를 갖는 고압 균질기로 통과시킴에 따라, 별도의 전처리 공정을 거치지 않더라고, 보다 얇은 두께 및 대면적을 갖는 그래핀을 높은 수율로 제조할 수 있음이 확인되었다. Therefore, according to one embodiment, a pretreatment process, for example, a high temperature heat treatment and crushing process for graphite to form a graphite worm, and an oxidation process, which are essentially required in a peeling method using a conventional homogenizer or ultrasonic irradiation. A separate oxidation process for forming graphite may be omitted. That is, work In the method of the embodiment, after obtaining a dispersion containing the unoxidized graphite and a dispersant, the dispersion is continuously passed through a high pressure homogenizer having a predetermined structure, so that a thinner thickness and size It was confirmed that graphene having an area can be produced in high yield.
이때, 상기 분산액을 얻은 후, "연속적으로" 이후의 고압 균질기를 이용한 박리 공정을 진행한다고 함은, 상기 분산액의 형성 공정과, 박리 공정 사이에 별도의 열처리 또는 파쇄 공정이나 산화 공정 등이 진행되지 않음을 지칭할 수 있으며, 이하의 명세서에서 특별한 다른 언급이 없는 한 동일한 의미로 해석될 수 있다. ,.  At this time, after the dispersion is obtained, the step of performing a stripping process using a high pressure homogenizer after "continuously" means that there is no separate heat treatment or crushing step or oxidation step between the forming step of the dispersion and the stripping step. May be referred to, and may be interpreted in the same sense unless otherwise indicated in the following specification. ,.
이와 같이, 상기 고온 열처리 및 파쇄 공정 또는 산화 공정 등의 전처리 공정이 생략 가능해짐에 따라, 이러한 전처리 과정에서 다수의 결함이 발생하는 것을 억제할 수 있고, 그래핀의 제조 공정을 매우 단순화할 수 있다. 특히, 이전에 산화 그라파이트를 박리하여 산화 그래핀을 얻은 후 이를 재환원하여 그래핀을 얻는 공정 역시 생략할 수 있으므로, 우수한 전기적 특성 등을 나타내는 그래핀의 제조 공정이 매우 단순화될 수 있다.  As such, as the pretreatment process such as the high temperature heat treatment and crushing process or the oxidation process can be omitted, it is possible to suppress the occurrence of a large number of defects in the pretreatment process and to simplify the manufacturing process of graphene. . In particular, since the process of exfoliating graphite oxide to obtain graphene oxide and then re-reducing it to obtain graphene may also be omitted, the manufacturing process of graphene showing excellent electrical properties and the like may be greatly simplified.
따라서, 일 구현예의 제조 방법에 따르면, 결함의 발생이 최소화되고, 보다 얇은 두께 및 대면적을 가짐에 따라 우수한 특성을 나타내는 그래핀을 매우 단순화된 공정으로 제조할 수 있다.  Therefore, according to the manufacturing method of the embodiment, the occurrence of defects is minimized, and graphene showing excellent characteristics as having a thinner thickness and a large area can be manufactured in a very simplified process.
부가하여, 기존의 방법에서는, 그래핀의 제조 과정 중 또는 이의 제조 후에 , 박리된 그래핀의 분산성을 추가적으로 향상시키고 다양한 용도로 적용하기 위한 분산액 또는 분산 조성물 등을 형성하기 위한 목적으로, 상기 박리된 그래핀에 분산제를 추가 투입하고, 초음파 분산 등을 추가로 진행할 필요가 있었다. 더구나, 이러한 기존의 방법에서는, 상기 초음파 조사 공정 등에서, 상기 그래핀의 면 방향 파쇄가 일어날 수 있으므로, 그래핀의 면적이 더욱 줄어들고 그 특성 또한 저하되는 단점이 있었다.  In addition, in the existing method, for the purpose of further improving the dispersibility of the exfoliated graphene during the manufacturing process or after the preparation of the graphene and to form a dispersion or dispersion composition for use in various applications, the peeling It was necessary to further add a dispersant to the prepared graphene, and to further carry out ultrasonic dispersion. In addition, in such an existing method, since the surface direction fracture of the graphene may occur in the ultrasonic irradiation process or the like, the area of the graphene is further reduced and its characteristics are also deteriorated.
그러나, 일 구현예의 방법에서는, 분산제를 함유한 분산액 상태에서 고압 균질기를 사용한 박리 공정이 진행됨에 따라, 박리 공정 중에 그래핀의 분산이 함께 이루어질 수 있다. 따라서, 상기 분산성 향상을 위한 초음파 조사 등의 후공정이 필요치 않게 되고, 그 과정에서 그래핀의 면 방향 파쇄 역시 억제될 수 있으므로, 보다 넓은 면적의 그래핀 또는 이의 분산액을 매우 단순화된 공정으로 제조한 후, 이를 다양한 용도로 바람직하게 적용할 수 있다. However, in the method of the embodiment, as the peeling process using the high pressure homogenizer is progressed in the dispersion state containing the dispersant, the graphene may be dispersed together during the peeling process. Therefore, the post-process such as ultrasonic irradiation for improving the dispersibility is not necessary, and in the process, the surface direction fracture of the graphene can also be suppressed, thereby making the graphene or its dispersion of a larger area into a very simplified process. After preparation, it can be preferably applied for various uses.
한편, 이하에서는 일 구현예에 따른 그래핀의 제조 방법을 각 단계별로 보다 구체적으로 설명하기로 한다.  On the other hand, it will be described in more detail in each step the manufacturing method of graphene according to an embodiment.
상술한 일 구현예의 그래핀의 제조 방법에서는, 먼저, 미산화 그라파이트를 포함한 탄소계 소재 및 분산제를 포함한 분산액을 형성할 수 있다. 이때, 상기 원료로 사용 가능한 미산화 그라파이트의 종류는 특히 제한되지 않으며, 별도의 공정을 통해 산화 또는 전처리되지 않은 그라파이트, 혹연 또는 이와 유사한 탄소 구조체로서, 탄소 원자층이 적충된 형태의 입체 구조를 가짐에 따라, 고속, 고압, 초음파 조사 또는 전단력 등의 임의의 물리적 힘에 의해 박리되어 하나 이상의 탄소 원자층을 갖는 그래핀 등으로 제조될 수 있는 임의의 탄소계 소재를 사용할 수 있다.  In the graphene manufacturing method of the embodiment described above, first, it is possible to form a dispersion containing a carbon-based material and dispersant including graphite oxide. At this time, the type of unoxidized graphite that can be used as the raw material is not particularly limited, and is a graphite, abysmal or similar carbon structure that is not oxidized or pretreated by a separate process, and has a three-dimensional structure in which a carbon atom layer is loaded. As such, any carbon-based material can be used that can be peeled off by any physical force such as high speed, high pressure, ultrasonic irradiation, or shear force to be made of graphene or the like having one or more layers of carbon atoms.
따라서, 이러한 미산화 그라파이트의 보다 구체적인 예로는, 부정형 흑연, 판상 혹연, 또는 인조 혹연 등을 들 수 있고, 이들 중에 선택된 2 종 이상의 흔합물을 상기 원료인 미산화 그라파이트로 사용할 수도 있다.  Therefore, specific examples of such non-oxidized graphite include amorphous graphite, plate-like or artificial alum, and two or more kinds selected from these may be used as the non-oxidized graphite as the raw material.
보다 적합하게는 상기 미산화 그라파이트 중에서도 판상 혹연을 사용할 수 있다. 이러한 판상 혹연의 사용으로 인해, 이의 박리에 의한 그래핀의 형성이 더욱 효과적으로 이루어질 수 있다. 따라서, 그라파이트 웜의 형성을 위한 고은 열처리 및 파쇄 공정이나, 산화 그라파이트의 형성을 위한 별도 산화 공정 등의 전처리 공정이 생략되면서도, 고압 균질기에 의해 더욱 효과적으로 박리되어 더욱 얇은 두께 및 넓은 면적을 갖는 그래핀이 제조될 수 있다. 그러므로, 이를 통해 보다 우수한 특성을 가지며 결함 발생이 최소화된 그래핀을 양호하게 제조할 수 있다.  More suitably, a plate-shaped alum can be used among the said unoxidized graphite. Due to the use of these platelets, the formation of graphene by peeling thereof can be made more effective. Therefore, the graphene having a thinner thickness and a larger area can be peeled off more effectively by a high pressure homogenizer while eliminating the pretreatment process such as a high-silver heat treatment and crushing process for forming a graphite worm or a separate oxidation process for forming graphite oxide. Can be prepared. Therefore, through this, it is possible to produce graphene with better characteristics and minimized defects.
그리고, 상기 분산액은 수용매 또는 극성 유기 용매 내에, 미산화 그라파이트를 포함한 탄소계 소재 및 분산제가 용해 또는 분산된 분산액으로 될 수 있다. 이러한 분산액에서는 분산제의 작용으로 인해, 미산화 그라파이트를 포함한 탄소계 소재가 균일하게 분산된 상태로 존재할 수 있으므로, 이러한 최적화된 분산 상태에서 이후의 박리 공정을 진행하여 보다 얇은 두께 및 대면적을 갖는 그래핀 플레이크가 효과적으로 형성될 수 있다.  The dispersion may be a dispersion in which a carbon-based material including unoxidized graphite and a dispersant are dissolved or dispersed in an aqueous solvent or a polar organic solvent. In such a dispersion, due to the action of the dispersant, carbon-based materials including graphite oxide may be present in a uniformly dispersed state, and thus, in such an optimized dispersion state, a subsequent peeling process may be performed to have a thinner thickness and a larger area. Pin flakes can be formed effectively.
그리고, 상기 원료로 사용되는 분산액에서, 상기 수용매 또는 극성 유기 용매로는, 물, NMP, 아세톤, DMF (N,N-dimethylfo amide), DMSO (Dimethyl sulfoxide), 에탄올, 이소프로필알코올, 메탄올, 부탄올, 2-에톡시 에탄을, 2-부록시 에탄올, 2- 메톡시 프로판올, THF (tetrahydroforan), 에틸렌글리콜, 피리딘, 디메틸아세트아미드, N—비닐피를리돈, 메틸에틸케톤 (부탄온), 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1 종 이상과 같은 임의의 수용매 또는 극성 유기 용매를 사용할 수 있다ᅳ In the dispersion used as the raw material, the water-soluble solvent or the polar organic solvent may include water, NMP, acetone, DMF (N, N-dimethylfoamide), DMSO (dimethyl sulfoxide), Ethanol, isopropyl alcohol, methanol, butanol, 2-ethoxy ethane, 2-butoxy ethanol, 2-methoxy propanol, THF (tetrahydroforan), ethylene glycol, pyridine, dimethylacetamide, N-vinylpyridone, Any aqueous solvent or polar organic solvent may be used, such as one or more selected from the group consisting of methyl ethyl ketone (butanone), alpha-terpinol, formic acid, ethyl acetate and acrylonitrile.
또한, 상기 분산제로는 Tanic acid나, 상품명 Triton X-100 또는 Pluronics F- 127 등과 같이, 이전부터 다양한 탄소계 소재를 늑성 용매에 균일하게 분산시키기 위해 사용 가능한 것으로 알려진 임의의 물질을 사용할 수 있다. 다만, 보다 적합하게는 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로서, 분자량 약 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 약 60 ^량0 /0 이상의 함량으로 포함한 흔합물을 포함하는 분산제를 사용할 수 있다. In addition, as the dispersant, any substance known to be usable for uniformly dispersing various carbon-based materials in a free solvent, such as Tanic acid or the trade name Triton X-100 or Pluronics F-127, may be used. However, it is possible to use a dispersing agent which more preferably comprises a common compound containing as a common compound plurality of types of poly-aromatic hydrocarbon oxides, of about 300 to 1000 poly aromatic hydrocarbon oxide of molecular weight in an amount of about 60 ^ amount 0/0 or more .
이러한 특정 분산제는 본 발명자들이 새로이 제조하여, 한국 특허 출원 제 10-2013-0091625 호 (2013. 8. 1.)로 출원한 바 있는 것으로서, 이에 대해 구체적으로 설명하면 이하와 같다.  This particular dispersant is newly prepared by the present inventors, and has been filed with Korean Patent Application No. 10-2013-0091625 (August 1, 2013), which will be described in detail below.
석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치 (pitch)는 아스팔트 제조 등을 위해 사용되는 부산물로서, 다수의 방향족 고리를 갖는 폴리 방향족 탄화수소를 복수 종 포함하는 점성 있는 혼합물 형태를 떨 수 있다. 그런데, 본 발명자들의 실험 결과, 이러한 피치 등에 대해 산화제를 사용한 산화 공정을 거치게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 증 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들의 적어도 일부가 분해되고, 비교적 좁은 분자량 분포를 갖는 폴리 방향족 탄화수소들의 흔합물이 얻어지는 것으로 확인되었다. 이와 함께, 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용기가 도입되면서, 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물이 얻어지는 것으로 확인되었다.  Pitch discharged from wastes during the refining of fossil fuels such as petroleum or coal is a by-product used for asphalt production, etc., and is a viscous mixture containing a plurality of polyaromatic hydrocarbons having a plurality of aromatic rings. Can be. However, as a result of the experiments of the present inventors, when the oxidation process using an oxidant for such a pitch, etc., the polyaromatic hydrocarbons included in the pitch are decomposed, and at least a part of the polyaromatic hydrocarbons having an excessively large molecular weight is decomposed and a relatively narrow molecular weight distribution. It was confirmed that a mixture of polyaromatic hydrocarbons having In addition, it was confirmed that a mixture containing a plurality of polyaromatic hydrocarbon oxides was obtained while introducing one or more oxygen-containing functional groups into the aromatic ring of each polyaromatic hydrocarbon.
구체적으로, 이러한 방법으로 얻어지는 폴리 방향족 탄화수소 산화물들의 흔합물은 MALDI-TOF MS로 분석하였을 때, 분자량이 '약 300 내지 1000, 혹은 약 300 내지 700 인 폴리 방향족 탄화수소 산화물들을 약 60 중량% 이상, 흑은 약 65 중량0 /0 이상, 혹은 약 70 내지 95 중량0 /0로 포함함이 확인되었다. 이러한 흔합물 중에 포함되는 폴리 방향족 탄화수소 산화물들의 구체적인 종류, 구조 및 분포 등은 그 원료로 되는 피치의 종류나 그 유래, 혹은 산화제의 종류 등에 따라 달라질 수 있다. 그러나, 적어도, 상기 분산제에 포함되는 폴리 방향족 탄화수소 산화물들의 흔합물은 5 내지 30개, 흑은 7 내지 20개의 벤젠 고리가 각각 포함된 폴리 방향족 탄화수소에 산소 함유 작용기가 하나 이상 도입된 구조를 갖는 폴리 방향족 탄화수소 산화물을 복수 종 포함하며, 이러한 흔합물 중의 폴리 방향족 탄화수소 산화물은 상술한 분자량 분포, 즉, 분자량 약 300 내지 1000, 혹은 약 ' 300 내지 700 의 산화물이 전체 흔합물의 약 60 증량 % 이상으로 되는 분자량 분포를 갖게 된다. Specifically, when such a common compound of the methods poly aromatic hydrocarbon oxide obtained in is was analyzed by MALDI-TOF MS, a molecular weight of "about 300 to 1000, or from about 300 to 700 poly the aromatic hydrocarbon oxide about 60% by weight or more, the black It will have been identified including about 65 parts by weight 0/0 or more, or about 70 to 95 weight 0/0. Specific types, structures, and distributions of the polyaromatic hydrocarbon oxides contained in such a mixture may vary depending on the kind of pitch used as the raw material, its origin, or the kind of oxidizing agent. Can vary. However, at least, the mixture of polyaromatic hydrocarbon oxides included in the dispersant is a poly having a structure in which at least one oxygen-containing functional group is introduced into the polyaromatic hydrocarbon containing 5 to 30, black to 7 to 20 benzene rings, respectively. A plurality of aromatic hydrocarbon oxides are included, and the polyaromatic hydrocarbon oxide in such a mixture has the above-described molecular weight distribution, that is, an oxide having a molecular weight of about 300 to 1000, or about ' 300 to 700, being about 60% by weight or more of the total mixture. It will have a molecular weight distribution.
이때, 상기 산소 함유 작용기의 종류는 피치 등의 산화 공정에서 사용되는 산화제의 종류 등에 따라 달라질 수 있지만, 예를 들어, 히드록시기, 에폭시기, 카르복시기, 니트로기 및 술폰산으로 이루어진 군에서 선택된 1 .종 이상으로 될 수 있다.  At this time, the type of the oxygen-containing functional group may vary depending on the type of oxidizing agent used in the oxidation process such as pitch, etc., for example, at least one selected from the group consisting of hydroxy group, epoxy group, carboxyl group, nitro group and sulfonic acid. Can be.
상술한 구조적 특성 및 분자량 분포 등을 충족하는 폴리 방향족 탄화수소 산화물들과, 이들의 흔합물은 방향족 고리들이 모인 소수성 π - 도메인과, 상기 방향족 고리 등에 결합된 산소 함유 작용기들에 의한 친수성 영역을 동시에 가질 수 있다. 이들 중 소수성 π - 도메인은 미산화 그라파이트나, 그래핀 (플레이크) 등 탄소 -탄소 결합들이 형성되어 있는 탄소계 소재의 표면과 π - π 상호 작용을 할 수 있으며, 친수성 영역은 각각의 단일한 탄소계 소재 (예를 들어, 각각의 그래핀이나, 그라파이트의 각 입자) 간의 반발력이 발현되도록 할 수 있다. 그 결과, 상기 폴리 방향족 탄화수소 산화물들의 흔합물을 포함하는 상술한 분산제는 수용매나 극성 유기 용매 등 액상 매질 내에서 탄소계 소재의 분자들 사이에 존재하여 이러한 탄소계 소재를 균일하게 분산시킬 수 있다. 따라서, 상기 분산제는 상대적으로 작은 양이 사용되더라도 상기 탄소계 소재를 보다 고농도로 균일하게 분산시키는 우수한 분산력을 나타낼 수 있음이 확인되었다.  Polyaromatic hydrocarbon oxides satisfying the above-described structural characteristics, molecular weight distribution, and the like, and a mixture thereof, may simultaneously have a hydrophobic π-domain where aromatic rings are collected and a hydrophilic region by oxygen-containing functional groups bonded to the aromatic ring. Can be. Among them, the hydrophobic π-domain can interact with the surface of a carbon-based material on which carbon-carbon bonds such as graphitized graphite or graphene (flake) are formed, and the hydrophilic region is a single carbon. The repulsive force between the system material (for example, each graphene or each particle of graphite) can be expressed. As a result, the above-described dispersant comprising a mixture of polyaromatic hydrocarbon oxides may be present between the molecules of the carbon-based material in a liquid medium such as a water-soluble solvent or a polar organic solvent to uniformly disperse such carbon-based material. . Accordingly, it was confirmed that the dispersant may exhibit excellent dispersing power to uniformly disperse the carbonaceous material evenly at a high concentration even when a relatively small amount is used.
더구나, 상술한 분산제는 산소 함유 작용기 등에 의한 친수성 영역의 존재로 인해 그 자체로 수용성을 나타낼 수 있으므로, 친환경적인 수용매 내에서도 상기 탄소계 소재를 균일하게 분산시킬 수 있다. 특히, 상기 분산제는 친환경적인 수용매뿐 아니라, 다양한 극성 유기 용매 내에서, 상기 탄소계 소재를 고농도로 균일하게 분산시킬 수 있는 우수한 분산력을 나타냄이 확인되었다.  In addition, the dispersant may exhibit water solubility in itself due to the presence of a hydrophilic region by an oxygen-containing functional group, and the like, and thus the carbonaceous material may be uniformly dispersed in an environmentally friendly solvent. In particular, it was confirmed that the dispersant exhibits an excellent dispersing force capable of uniformly dispersing the carbonaceous material in a high concentration in various polar organic solvents, as well as an environmentally friendly solvent.
이러한 분산제의 우수한 분산력으로 인해, 일 구현예의 제조 방법에서 원료인 미산화 그라파이트를 보다 균일하게 고농도로 분산시킬 수 있게 된다. 따라서, 이러한 최적화된 분산 상태로 원료를 박리함으로서, 보다 얇은 두께 및 대면적을 갖는 그래핀이 더욱 용이하게 제조될 수 있다. 더 나아가, 상기 분산제는 최종 형성된 그래핀 표면에 물리적으로 부착된 상태로 유지될 수 있으므로, 일 구현예의 방법으로 제조된 그래핀이 그 자체로 다양한 극성 용매에 우수한 분산성 등을 나타내게 할 수 있다. Due to the excellent dispersing power of the dispersant, it is possible to more uniformly disperse the unoxidized graphite raw material in a high concentration in the manufacturing method of one embodiment. Therefore, by peeling the raw material in such an optimized dispersion state, graphene having a thinner thickness and larger area can be produced more easily. Furthermore, since the dispersant may remain physically attached to the surface of the finally formed graphene, the graphene prepared by the method of the embodiment may exhibit excellent dispersibility in various polar solvents and the like by itself.
한편, 상술한 분산제는 이에 포함된 복수 종의 폴리 방향족 탄화수소 산화물들을 원소 분석하였을 때, 전체 흔합물에 포함된 산소 함량이 전체 원소 함량의 약 12 내지 50 중량0 /0, 혹은 약 15 내지 45 중량%로 될 수 있다. 이러한 산소 함량은 상기 폴리 방향족 탄화수소 산화물에서 산화 공정에 의해 산소 함유 작용기가 도입된 정도를 반영하는 것으로서, 이러한 산소 함량의 충족에 따라 상술한 친수성 영역이 적절한 ' 정도로 포함될 수 있다. 그 결과, 상술한 일 구현예의 방법에서 이러한 분산제를 사용해 원료인 미산화 그라파이트를 보다 균일하게 분산시키고 이로부터 얇은 두께를 갖는 그래핀을 더욱 효과적으로 얻을 수 있고, 최종 제조된 그래핀의 분산성을 보다 향상시킬 수 있다. On the other hand, the above-described dispersant was analyzed element of poly aromatic hydrocarbons, oxides of a plurality of types it contains, about 12 of the oxygen content contained in the entire common compound total element content to 50 parts by weight 0/0, or from about 15 to 45 wt. Can be%. The oxygen content can be included as reflecting the degree to which the oxygen-containing functional group by the oxidation step in the poly-aromatic hydrocarbons oxide introduced, hydrophilic regions mentioned above in accordance with the oxygen content of such meets suitable degree. As a result, in the method of the above-described embodiment, such a dispersant may be used to more uniformly disperse the unoxidized graphite as a raw material, thereby more effectively obtaining graphene having a thin thickness, and to more effectively disperse the prepared graphene. Can be improved.
상기 산소 함량은. 상술한 흔합물에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하여 산출할 수 있다. 즉, 상기 흔합물 시료 (예를 들어, 약 lmg)를, 예를 들어, 얇은 호일 위에서 약 900 °C 내외의 고온으로 가열하면 호일이 순간적으로 녹으면서 그 온도가 약 1500 내지 1800 °C까지 상승할 수 있고, 이러한 고은에 의해 상기 흔합물 시료로부터 기체가 발생하여 이를 포집 및 원소 함량을 측정 및 분석할 수 있다. 이러한 원소 분석 결과, 상기 복수 종의 폴리 방향족 탄화수소 산화물에 포함된 탄소, 산소, 수소 및 질소의 총 원소 함량이 측정 및 분석될 수 있고, 이러한 총 원소 함량에 대한 산소 함량을 구할 수 있다. The oxygen content is The polyaromatic hydrocarbon oxides of plural kinds contained in the above-described mixture can be calculated by elemental analysis. That is, when the mixture sample (for example, about lmg) is heated to a high temperature of about 900 ° C on, for example, a thin foil, the temperature rises to about 1500 to 1800 ° C while the foil melts momentarily. In this way, gas may be generated from the complex sample due to the silver and thus, it may be collected and measured and analyzed. As a result of this elemental analysis, the total elemental content of carbon, oxygen, hydrogen and nitrogen contained in the plurality of polyaromatic hydrocarbon oxides can be measured and analyzed, and the oxygen content with respect to the total elemental content can be obtained.
한편, 상술한 분산제는 산화제의 존재 하에, 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물을 산화하는 단계를 포함하는 방법에 의해 제조될 수 있다.  On the other hand, the above-described dispersant may be prepared by a method comprising the step of oxidizing a mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 in the presence of an oxidizing agent.
이미 상술한 바와 같이, 석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치는 폴리 방향족 탄화수소를 복수 종 포함하고, 점성을 띠거나 분말 형태를 갖는 흔합물 상태로 될 수 있다. 물론, 피치의 원료나 유래 등에 따라 상기 폴리 방향족 탄화수소의 구체적 종류, 구조, 조성비 또는 분자량 분포 등이 달라질 수 있지만, 상기 피치는, 예를 들어, 5 내지 50 개의 방향족 고리, 예를 들어, 벤젠 고리가 구조 중에 포함된 폴리 방향족 탄화수소를 복수 종 포함할 수 있으며, 대체로 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함할 수 있다. 예를 들어, 상기 분산제의 제조 방법에서 출발 물질로 사용되는 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물 (예를 들어, 피치)은 이러한 분자량 범위의 폴리 방향족 탄화수소들을 약 80 중량% 이상, 흑은 약 90 중량0 /0 이상의 함량으로 포함할 수 있다. As already described above, the pitch discharged from the residue of the fossil fuel, such as petroleum or coal, may include a plurality of polyaromatic hydrocarbons, and may have a viscous or powdery complex state. Of course, the specific type, structure, composition ratio of the polyaromatic hydrocarbon or Although the molecular weight distribution and the like may vary, the pitch may include, for example, a plurality of polyaromatic hydrocarbons in which 5 to 50 aromatic rings, for example, a benzene ring, are included in the structure, and generally have a molecular weight of about 200 to about And 1500 polyaromatic hydrocarbons. For example, a mixture (e.g., pitch) comprising polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 used as starting material in the method of preparing the dispersant may contain at least about 80% by weight of polyaromatic hydrocarbons in this molecular weight range, black may comprise an amount of about 90 parts by weight 0/0 or more.
그런데, 이러한 피치 등 폴리 방향족 탄화수소들을 포함한 흔합물에 대해 산화제를 사용한 산화 공정을 거치게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 중에 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들이 분해되고, 비교적 좁은 분자량 분포를 갖는 폴리 방향족 탄화수소들의 흔합물이 얻어질 수 있다. 예를 들어, 약 1000, 흑은 약 700 을 초과하는 분자량을 갖는 폴리 방향족 탄화수소들이 작은 분자량을 갖는 것으로 분해될 수 있다. 또한, 이와 함께 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용기가 도입되면서, 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물, 다시 말해서 일 구현예의 방법에서 사용되는 분산제가 매우 간단하게 제조될 수 있다. 이러한 분산제의 제조 방법에서, 산화제는 그 종류가 특히 제한되지 않고 방향족 탄화수소에 산소 함유 작용기를 도입하는 산화 반웅을 일으킬 수 있는 것이라면 별다른 제한 없이 모두 사용될 수 있다. 이러한 산화제의 구체적인 예로는, 질산 (HN03), 황산 (H2S04), 과산화수소 (H202), 암모늄 세륨 (IV) 황산염 (Ammonium cerium(IV) sulfate; (NH4) Ce(S04)4) 또는 암모늄 세륨 (IV) 질산염 (Ammonium cerium(IV) nitrate; (NH4)2Ce(N03)6) 등을 들 수 있고, 이들 중에 선택된 2종 이상의 흔합물을 사용할 수도 있음은 물론이다. However, when the oxidation process using an oxidizing agent is performed on a mixture including polyaromatic hydrocarbons such as pitch, polyaromatic hydrocarbons having an excessively large molecular weight are decomposed in the polyaromatic hydrocarbons included in the pitch, and a relatively narrow molecular weight distribution is obtained. Mixtures of polyaromatic hydrocarbons having can be obtained. For example, polyaromatic hydrocarbons having a molecular weight greater than about 1000 and black can be broken down into small molecular weights. In addition, with the introduction of one or more oxygen-containing functional groups into the aromatic ring of each polyaromatic hydrocarbon, a mixture comprising a plurality of polyaromatic hydrocarbon oxides, that is, a dispersant used in the method of one embodiment can be produced very simply. have. In the production method of such a dispersant, the oxidizing agent can be used without any particular limitation as long as the kind thereof is not particularly limited and can cause oxidation reaction to introduce oxygen-containing functional groups to aromatic hydrocarbons. Specific examples of such oxidants include nitric acid (HN0 3 ), sulfuric acid (H 2 S0 4 ), hydrogen peroxide (H 2 0 2 ), ammonium cerium (IV) sulfate; (NH 4 ) Ce (S0 4 ) 4 ) or ammonium cerium (IV) nitrate (Ammonium cerium (IV) nitrate; (NH 4 ) 2 Ce (N0 3 ) 6 ), and the like. Of course.
그리고, 이러한 산화 단계는 수용매 내에서, 약 10 내지 1 H C의 반웅 온도 하에 약 0.5 내지 20 시간 동안 진행될 수 있다. 구체적인 예에서, 황산 및 /또는 질산 등의 용액상 산화제의 존재 하에, 상기 폴리 방향족 탄화수소들을 포함한 흔합물을 일정량 첨가하고, 상온, 예를 들어, 약 20 °C 혹은 80 °C에서 약 1 내지 12 시간 동안 상기 산화 단계를 진행할 수 있다. 이러한 산화 단계의 반웅 온도 또는 시간 등을 조절함에 따라, 상술한 분산제의 특성, 예를 들어, 폴리 방향족 탄화수소들이 산화되는 정도 등을 적절히 조절하여 원하는 특성을 갖는 분산제를 제조할 수 있다. This oxidation step can then be carried out in a solvent, for about 0.5 to 20 hours at a reaction temperature of about 10 to 1 HC. In a specific example, in the presence of a solution oxidant such as sulfuric acid and / or nitric acid, a certain amount of the mixture including the polyaromatic hydrocarbons is added, and about 1 to 12 at room temperature, for example, about 20 ° C. or 80 ° C. The oxidation step may proceed for a time. By controlling the reaction temperature or time of such an oxidation step, the characteristics of the above-described dispersant, for example, the degree of oxidation of the polyaromatic hydrocarbons, etc. are appropriately adjusted to have the desired characteristics. Dispersants can be prepared.
또한, 이미 상술한 바와 같이, 상기 제조 방법의 출발 물질로 되는 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물은 화석 연료 또는 이의 산물로부터 얻어진 피치 (pitch)에서 유래할 수 있으며, 이러한 원료 등의 종류에 따라, 상기 폴리 방향족 탄화수소들의 종류, 구조 또는 분자량 분포 등은 서로 달라질 수 있다. 그럼에도 불구하고, 상기 피치 등에서 유래한 분자량 약 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물에 대해 산화 공정을 진행함에 따라, 탄소계 소재에 대해 우수한 분산력을 나타내는 상술한 분산제가 간단히 제조될 수 있다.  In addition, as described above, the mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 as a starting material of the production method may be derived from a pitch obtained from a fossil fuel or a product thereof. Depending on the type, the type, structure or molecular weight distribution of the polyaromatic hydrocarbons may be different from each other. Nevertheless, as the oxidation process is carried out on a mixture including polyaromatic hydrocarbons having a molecular weight of about 200 to 1500 derived from the pitch, etc., the above-described dispersing agent exhibiting excellent dispersibility for carbon-based materials can be simply prepared.
한편, 상술한 제조 방법은, 산화 단계 후에, 그 결과물을 정제하여 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물을 얻는 단계를 더 포함할 수 있고, 이러한 정제 단계는 산화 단계의 결과물을 원심분리하는 단계를 포함하여 진행될 수 있다. 이러한 정제 단계의 진행으로, 이미 상술한 분자량 분포 등을 층족하는 폴리 방향족 탄화수소 산화물들의 흔합물을 보다 순도 높고 적절하게 얻을 수 있으며, 이를 포함하는 분산제를 사용해 일 구현예의 방법으로 그래핀을 더욱 효과적으로 제조할 수 있다.  On the other hand, the above-described manufacturing method, after the oxidation step, may further comprise the step of purifying the resultant to obtain a mixture of a plurality of polyaromatic hydrocarbon oxides, the purification step is a step of centrifuging the result of the oxidation step It may proceed to include. Through such a purification step, a mixture of polyaromatic hydrocarbon oxides which satisfy the above-described molecular weight distribution and the like can be obtained more highly and appropriately, and graphene can be more effectively prepared by the method of the embodiment using a dispersant containing the same. can do.
한편, 일 구현예의 그래핀 제조 방법에서, 상기 분산액을 형성 및 제공한 후에는, 소정의 구조를 갖는 고압 균질기 (High Pressure Homogenizer)에 상기 분산액을 연속적으로 통과시켜, 분산액에 포함된 미산화 그라파이트를 박리할 수 있으며, 이를 통해 그래핀을 제조할 수 있다.  On the other hand, in the graphene manufacturing method of one embodiment, after forming and providing the dispersion, the dispersion is continuously passed through a high pressure homogenizer having a predetermined structure, the graphite oxide contained in the dispersion To peel off, it can be produced through the graphene.
기존에는 고속 균질기 (High Speed Homogenizer), 볼밀, 비드밀 또는 초음파 조사기를 사용하여 상기 박리 공정을 진행하는 방법이 알려진 바 있다. 그러나, 초음파 조사를 이용한 방법은 균일한 두께 및 대면적을 갖는 그래핀을 얻기가 어렵거나, 박리 과정에서 그래핀 상에 많은 결함이 발생하거나, 박리 수율이 충분치 못하게 될 수 있다. 또, 볼밀이나 비드밀을 사용하는 방법 역시 층분히 얇은 두께를 갖는 그래핀을 얻기 어려을 수 있으며, 박리 수율 역시 충분치 못할 수 있다. 이에 더하여, 고속 균질기 등 균질기를 사용하는 기존 방법의 경우, 그라파이트 웜을 형성을 위한 고온 열처리 및 파쇄 공정이나 산화 그라파이트의 형성을 위한 산화 공정 등의 진행 필요성이 있을 뿐 아니라, 그 과정에서 그래핀에 다수의 결함이 발생할 수 있고, 양산성 또한 떨어지는 단점이 있었다. 특히, 이전에는 별도의 산화 공정, 고온 열처리 공정 또는 파쇄 공정 등의 전처리 공정 없이, 미산화 그라파이트에 대해 균질기 등으로 박리하는 공정만을 진행하여 대면적 및 수개 원자층에 준하는'얇은 두께를 갖는 그래핀이 제조될 수 있음은 제대로 알려진 바 없었다. Conventionally, a method of performing the peeling process using a high speed homogenizer, a ball mill, a bead mill, or an ultrasonic irradiator has been known. However, the method using ultrasonic irradiation may be difficult to obtain graphene having a uniform thickness and large area, many defects may occur on the graphene during peeling, or peeling yield may not be sufficient. In addition, a method using a ball mill or a bead mill may also be difficult to obtain a graphene having a thin thickness, the peeling yield may also be insufficient. In addition, the existing method using a homogenizer, such as a high-speed homogenizer, requires not only a high temperature heat treatment and crushing process for forming a graphite worm, but also an oxidation process for forming a graphite oxide, and graphene in the process. A number of defects may occur, and there is a disadvantage in that mass productivity is also reduced. In particular, the previously Yes having a "thin-walled similar to the large-area and several atomic layer proceeds only the step of peeling off without pre-treatment process, such as a separate oxidation step, a high temperature heat treatment process or crushing process, such as a homogenizer for a non-oxidized graphite It is not well known that pins can be manufactured.
그러나, 본 발명자들은 상기 고압 균질기를 사용한 일 구현예의 방법을 적용함에 따라, 미산화 그라파이트 상태에서 연속적으로 (즉, 별도의 전처리 공정 없이) 박리를 진행하여, 대면적 및 얇은 두께를 가지며 결함의 발생이 최소화된 그래핀을 제조할 수 있음을 최초로 확인하였다. 따라서, 일 구현예의 방법에 의해 고압 균질기를 사용한 박리 공정을 진행할 경우, 별도의 전처리 공정 없이도, 보다 얇고 균일한 두께와, 대면적을 가지며 결함이 최소화된 그래핀을 용이하게 양산할 수 있어서 상술한 기존 방법의 문제점을 해결할 수 있는 것으로 확인되었다.  However, according to the present inventors applying the method of one embodiment using the high pressure homogenizer, the peeling is continuously carried out in the state of unoxidized graphite (that is, without a separate pretreatment step), so that a large area and a thin thickness are generated and defects are generated. It was first confirmed that this minimized graphene can be prepared. Therefore, when the peeling process using a high pressure homogenizer is performed by the method of the embodiment, it is possible to easily mass-produce graphene having a thinner, more uniform thickness, a large area, and minimize defects without a separate pretreatment process. It was confirmed that the problem of the existing method can be solved.
도 1 에는 일 구현예의 그래핀의 제조 방법에서 사용 가능한 고압 균질기의 원리를 나타내는 개략적인 모식도가 도시되어 있다.  Figure 1 is a schematic diagram showing the principle of the high pressure homogenizer that can be used in the manufacturing method of the graphene of one embodiment.
도 1 을 참고하면, 고압 균질기는 원료의 유입부와, 그래핀 플레이크 둥 박리 결과물의 유출부와, 상기 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 구조를 가질 수 있다. 이러한 고압 균질기의 유입부를 통해, 예를 들어, 약 100 내지 3000 bar의 고압을 인가하면서 미산화 그라파이트를 포함하는 분산액 상태의 원료를 유입시키면, 이러한 원료가 미크론 (μηι) 스케일, 예를 들어, 약 1mm 이하, 흑은 10 내지 800 μπι의 직경을 갖는 미세 유로를 통과하면서, 이러한 원료의 속도가 초음속으로 가속되며 높은 전단력 (shear force)이 인가될 수 있다.  Referring to FIG. 1, the high pressure homogenizer includes a structure including a microchannel having a diameter of a micrometer and connecting the inlet of the raw material, the outlet of the graphene flakes peeling resultant, and the inlet and the outlet. Can have. Through the inlet of such a high pressure homogenizer, for example, when a raw material in a dispersion state containing unoxidized graphite is introduced while applying a high pressure of about 100 to 3000 bar, the raw material is micron (μηι) scale, for example, About 1 mm or less, while black passes through a microchannel having a diameter of 10 to 800 μπι, the velocity of this raw material is accelerated to supersonic speed and high shear force can be applied.
이러한 전단력의 작용으로, 공유 결합을 . 형성하고 있는 미산화 그라파이트의 Basal plane에서 보다는 반 데르 발스 결합에 의해 탄소 원자들이 결합되어 있는 탄소 원자층 간이 용이하게 박리되어 매우 얇은 두께 및 대면적을 갖는 그래핀이 효과적으로 형성될 수 있다. 일 구현예의 방법에서는, 상술한 분산제와의 상승 작용으로 매우 얇은 두께 및 대면적을 갖는 그래핀을 결함없이 보다 단순화된 공정으로 양산할 수 있게 된다.  By the action of these shear forces, covalent bonds. Rather than the basal plane of the graphite oxide being formed, the van der Waals bonds easily separate the carbon atom layers to which the carbon atoms are bonded, thereby effectively forming graphene having a very thin thickness and a large area. In one embodiment, the synergy with the dispersant described above allows mass production of graphene having a very thin thickness and large area in a simpler process without defects.
한편, 상술한 일 구현예의 그래핀의 제조 방법은, 상기 그래핀 플레이크의 분산액으로부터 그래핀 플레이크를 회수 및 건조하는 단계를 더 포함할 수도 았으며, 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행될 수 있다. 또, 상기 건조 단계는 약 30 내지 200°C의 은도 하에 진공 건조하여 진행될 수 있다. On the other hand, the manufacturing method of the graphene of the above-described embodiment, may further comprise the step of recovering and drying the graphene flakes from the dispersion of the graphene flakes The recovery step may be performed by centrifugation, reduced pressure filtration or pressure filtration. In addition, the drying step may be carried out by vacuum drying under a silver degree of about 30 to 200 ° C.
상술한 일 구현예의 방법에 따르면, 탄소 원자층 두께에 대응하는 매우 얇은 두께 및 매우 큰 면적 (직경)을 갖는 그래핀이 높은 수율로 용이하게 양산될 수 있다.  According to the method of one embodiment described above, graphene having a very thin thickness and a very large area (diameter) corresponding to the carbon atomic layer thickness can be easily produced in high yield.
예를 들어, 이러한 그래핀은 하나 이상의 탄소 원자층이 적층된 시트, 플레이트 또는 플레이트와 다양한 형태를 가질 수 있으며 , 보다 구체적으로는 약 0.3 내지 50nm, 혹은 약 0.3 내지 30nm의 두께를 갖는 그래핀 플레이크의 형태로서 주로 제조될 수 있다. 더 나아가, 이러한 그래핀 플레이크는 약 0.1 내지 10 im, 흑은 약 0.1 . 내지 5 의 큰 직경올ᅳ、가질 수 있다. 또, 상기 그래핀 플레이크는 두께 대비 면적 (직경)이' 매우 크게되어, 약 50 내지 6000, 혹은 약 50 내지 1000의 직경 /두께비를 가질 수 있다. 이때, 상기 그래핀 플레이크의For example, such graphene may have a variety of forms with a sheet, plate or plate on which one or more layers of carbon atoms are laminated, and more specifically, graphene flakes having a thickness of about 0.3 to 50 nm, or about 0.3 to 30 nm. It can be prepared mainly in the form of. Furthermore, these graphene flakes are about 0.1-10 im, black is about 0.1. Can have a large diameter of from 5 to 5. Further, the graphene flakes are thick compared to the area (diameter) of the "very large and may have a diameter / thickness ratio of about 50 to 6000, or from about 50 to 1000. At this time, the graphene flakes
"직경 "이라 함은 "그래핀 플레이크의 각 입자를 가장 넓은 면적을 갖는 평면상에서 보았을 때, 각 입자의 평면상의 임의의 두 점을 연결하는 직선 거리 중 최장 거리"로 정의될 수 있다. “Diameter” may be defined as “the longest distance between the straight lines connecting any two points on the plane of each particle when viewed from the plane with the largest area of each particle of graphene flakes”.
이와 같이, 일 구현예의 방법으로 보다 얇은 두께 및 큰 면적을 갖는 그래핀, 예를 들어, 그래핀 플레이크 등5>ᅵ 제조됨에 따라, 이러한 그래핀은 이의 우수한 전기 전도성, 열 전도성 및 안정성을 보다 극대화하여 발현할 수 있다. 이러한 그래핀의 우수한 특성으로 인해, 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열 기판 형성용.조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재 등의 다양한 분야 및 용도에 사용될 수 있으며, 이외에도 그래핀의 적용이 가능하거나 필요한 것으로 알려진 임의의 분야나 용도에 매우 바람직하게 사용될 수 있다. Thus, one embodiment the method more graphene having a thin thickness and large area, for example, well as the pin flakes such as 5> i produced, this graphene is maximized more excellent electrical conductivity, thermal conductivity, and stability thereof Can be expressed. Due to the excellent properties of the graphene, it can be used in various fields and applications, such as conductive paste compositions, conductive ink compositions, heat-dissipating substrate-forming compositions, electrically conductive composites, EMI shielding composites, or battery conductive materials. It can be very preferably used in any field or application for which application is possible or known to be necessary.
이러한 그래핀은 대표적으로 극성 용매에 용해 또는 분산된 분산액 또는 분산 조성물 등의 형태로 사용될 수 있으며, 이러한 분산액 또는 분산 조성물을 기재에 도포하거나, 이를 인쇄한 후 패터닝하거나, 이를 직접 필름으로 캐스팅하는 등의 다양한 방법으로 사용될 수 있다.  Such graphene may be typically used in the form of a dispersion or dispersion composition dissolved or dispersed in a polar solvent, and the dispersion or dispersion composition is applied to a substrate, printed and then patterned, or cast directly into a film. Can be used in various ways.
또, 이러한 분산액 또는 분산 조성물에서, 상기 그래핀을 분산시키기 위한 극성 용매로는 물 등의 수용매나, 임의의 극성 용매를 별다른 제한 없이 적용할 수 있다. 이러한 극성 용매의 구체적인 예로는, 물, NMP, 아세톤, DMF (Ν,Ν- dimethylforaiamide), DMSO (Dimethyl sulfoxide), 에탄올, 이소프로필알코을, 메탄올, 부탄올 , 2-에록시 에탄을 , 2-부특시 에탄을 , 2-메록시 프로판올, THF (tetrahydroiliran), 에틸렌글리콜, 피리딘, 디메틸아세트아미드, N-비닐피를리돈, 메틸에틸케톤 (부탄온), 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. 제조예 1 : 분산제의 제조 In this dispersion or dispersion composition, as the polar solvent for dispersing the graphene, an aqueous solvent such as water or any polar solvent may be applied without particular limitation. Can be. Specific examples of such polar solvents include water, NMP, acetone, DMF (Ν, Ν-dimethylforaiamide), DMSO (dimethyl sulfoxide), ethanol, isopropyl alcohol, methanol, butanol, 2-ethoxyethane, Ethane, 2-methoxy propanol, THF (tetrahydroiliran), ethylene glycol, pyridine, dimethylacetamide, N-vinylpyridone, methyl ethyl ketone (butanone), alpha-terpinol, formic acid, ethyl acetate and acrylo At least one selected from the group consisting of nitriles can be used. Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples of the invention. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined. Preparation Example 1 Preparation of Dispersant
포스코로부터 입수한 석유 부산물인 피치 (pitch)에 대해 다음과 같은 산화 공정 및 정제 공정을 진행하여 제조예 1의 분산제를 제조하였다.  Pitch, which is a petroleum by-product obtained from POSCO, was subjected to the following oxidation and purification processes to prepare a dispersant of Preparation Example 1.
먼저, 황산 /질산의 흔합 용액 (부피비 3:1)의 75 ml에 피치 0.5 내지 1.5 g을 첨가하고, 70 °C에서 약 3.5 시간 동안 산화 반응을 진행하였다. First, 0.5-1.5 g of pitch was added to 75 ml of a mixed solution of sulfuric acid / nitric acid (volume ratio 3: 1), and oxidation reaction was performed at 70 ° C. for about 3.5 hours.
이후, 상기 산화 반응이 진행된 피치 반응 용액을 상온으로 넁각시킨 후, 5 배 가량 증류수로 희석시킨 다음, 약 3500 rpm에서 30 분간 원심분리하였다. 이어서, 상등액을 제거하고, 동일량의 증류수를 넣고 재분산한 후에, 동일 조건에서 다시 원심분리하여 최종적으로 침전물을 회수하고 건조하였다. 이를 통해, 제조예 1의 분산제를 제조하였다.  Thereafter, the pitch reaction solution subjected to the oxidation reaction was cooled to room temperature, diluted with distilled water about 5 times, and centrifuged at about 3500 rpm for 30 minutes. Subsequently, the supernatant was removed, the same amount of distilled water was added and redispersed, followed by centrifugation again under the same conditions, and finally the precipitate was recovered and dried. Through this, the dispersant of Preparation Example 1 was prepared.
먼저, 이러한 분산제의 제조 과정 중 원료로 사용된 피치의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)에 도시하였고, 제조예 1 의 분산제의 분자량 분포를 마찬가지로 분석하여 도 3a 및 도 3b (분자량 400 내지 500 영역의 확대도)에 도시하였다. 이러한 분석은 MALDI-TOF mass spectrum 장비 (Ultraflex II, Bruker)를 사용하여, 상기 피치 또는 분산제를 matrix에 넣고 흔합한 후에 건조하여 진행하였다.  First, the molecular weight distribution of the pitch used as a raw material during the preparation of such a dispersant was analyzed by MALDI-TOF mass spectrum, and is shown in FIGS. 2A and 2B (an enlarged view of the molecular weight 400 to 500 region). The molecular weight distribution was similarly analyzed and shown in FIGS. 3A and 3B (enlarged view of the molecular weight 400 to 500 region). This analysis was carried out using MALDI-TOF mass spectrum equipment (Ultraflex II, Bruker), the pitch or dispersant was added to the matrix, mixed, and dried.
상기 도 2a 및 도 2b (확대도)를 참고하면, pitch의 경우 분자량 200 내지 1500 의 분자량을 갖는 폴리 방향족 탄화수소들을 포함하는 것으로 확인되었고, 특히 도 2b의 확대도에서 분자량 14Da 간격으로 큰 피크들이 검출되는 것으로부터 서로 다른 개수의ᅳ방향족 고리 (벤젠 고리)들을 갖는 복수 종의 폴리 방향족 탄화수소들이 aliphatic hydrocarbon에 의하여 연결되어 있음이 확인되었다. 이에 비해, 도 3a 및 도 3b (확대도)를 참고하면, 제조예 1 의 분산제는 폴리 방향족 탄화수소들에 각각 44Da과 16D의 간격으로 존재하는 큰 피크들이 관찰되었는데 이는 이러한 방향족 탄화수소들에 -COOH, -OH 또는 -S03H 등 산소 함유 작용기들이 도입된 폴리 방향족 탄화수소 -산화물들의 흔합물 형태로 존재함을 증명하는 것으로, 약 300 내지 1000, 혹은 약 300 내지 700 의 분자량을 갖는 산화물들이 60 중량% 이상으로 포함됨이 확인되었다. Referring to FIGS. 2A and 2B (enlarged view), the pitch was found to include polyaromatic hydrocarbons having a molecular weight of 200 to 1500, and in particular, in the enlarged view of FIG. felled From these, it was confirmed that a plurality of polyaromatic hydrocarbons having different numbers of aromatic rings (benzene rings) are connected by aliphatic hydrocarbons. On the contrary, referring to FIGS. 3A and 3B (enlarged view), the dispersant of Preparation Example 1 was observed in the polyaromatic hydrocarbons with large peaks present at intervals of 44 Da and 16 D, respectively. Proof that oxygen-containing functional groups such as -OH or -S03H are present in the form of a mixture of introduced polyaromatic hydrocarbon-oxides, the oxide having a molecular weight of about 300 to 1000, or about 300 to 700 Inclusion was confirmed.
또한, 상기 원료로 사용된 pitch (상단) 및 제조예 1 의 분산제 (하단)를 각각 13C CPMAS NMR (Varian 400MHz Solid— State NMR)로 분석하여, 그 분석 결과를 도 4 에 비교하여 나타내었다. 도 4 를 참고하면, pitch에서는 방향족 탄화수소의 탄소 유래 피크와, 일부 지방족 탄화수소의 탄소 유래 피크가 확인되었으나, 산소 함유 작용기의 존재는 확인되지 않았다. 이에 비해, 제조예 1 의 분산제에 대한 NMR 분석 결과, 산소 함유 작용기의 피크가 확인되었다. 이러한 산소 함유 작용기의 종류는 에폭시기, 히드록시기 또는 카르복시기 등인 것으로 확인되었다. '  In addition, the pitch (top) used as the raw material and the dispersant (bottom) of Preparation Example 1 were analyzed by 13C CPMAS NMR (Varian 400MHz Solid—State NMR), respectively, and the results of the analysis were compared with FIG. 4. Referring to FIG. 4, in the pitch, the carbon-derived peak of the aromatic hydrocarbon and the carbon-derived peak of some aliphatic hydrocarbon were confirmed, but the presence of the oxygen-containing functional group was not confirmed. In contrast, as a result of NMR analysis for the dispersant of Preparation Example 1, the peak of the oxygen-containing functional group was confirmed. It was confirmed that such oxygen-containing functional groups were epoxy groups, hydroxyl groups, carboxyl groups, and the like. '
부가하여, 상기 원료로 사용된 pitch 및 제조예 1 의 분산제를 각각 분말 상태로서 FT-IR (Agilent 660-IR)로 분석하여 그 분석 결과를 도 5 에 비교하여 나타내었다. 이러한 도 5 를 통해서도, 제조예 1 의 분산제에서 산소 함유 작용기의 피크가 생성됨을 확인하였다. 제조예 2 내지 4: 분산제의 제조  In addition, the pitch used as the raw material and the dispersant of Preparation Example 1 were each analyzed by FT-IR (Agilent 660-IR) as a powder state, and the results of the analysis were compared with FIG. 5. 5, it was confirmed that the peak of the oxygen-containing functional group in the dispersant of Preparation Example 1. Preparation Examples 2 to 4: Preparation of Dispersant
포스코로부터 입수한 석유 부산물인 피치 (pitch; 단, 제조예 1 과는 다른 샘플의 피치 사용)를 사용하고, 산화 반웅 시간을 각각 1 시간 (제조예 2), 3.5 시간 (제조예 3) 및 7 시간으로 달리한 것을 제외하고는 제조예 1 과 동일한 방법으로 진행하여 제조예 2 내지 4의 분산제를 각각 제조하였다.  Using pitch, a petroleum by-product obtained from POSCO, except using a pitch of a sample different from Production Example 1, the reaction reaction time was 1 hour (Production Example 2), 3.5 hours (Production Example 3) and 7 The dispersing agents of Preparation Examples 2 to 4 were prepared in the same manner as in Preparation Example 1, except that the time was changed.
이러한 분산제를 제조예 1 과 동일한 방법으로 MALDI-TOF mass spectrum으로 분석하여, 도 6 에 비교하여 함께 나타내었다. 도 6 을 참고하면, 산화 시간의 증가에 따라, 분산제 중 분자량 약 1000, 흑은 약 700 초과의 성분 (폴리 방향족 탄화수소 산화물)의 함량이 줄어들어, 분자량 약 300 내지 1000, 혹은 약 300 내지 700 의 폴리 방향족 탄화수소 산화물을 보다 높은 함량으로 포함하는 흔합물 형태의 분산제가 얻어짐이 확인되었다. 시험예 1 : 분산제의 산소 함량 측정 This dispersant was analyzed by MALDI-TOF mass spectrum in the same manner as in Preparation Example 1, and compared with FIG. Referring to FIG. 6, as the oxidation time is increased, the content of components (polyaromatic hydrocarbon oxides) of molecular weight of about 1000 and black of more than about 700 in the dispersant decreases, so that the molecular weight of about 300 to 1000 Or a dispersant in the form of a mixture containing a higher content of about 300 to 700 polyaromatic hydrocarbon oxides was obtained. Test Example 1 Measurement of Oxygen Content of Dispersant
제조예 3 및 4 에서 얻어진 분산제 시료약 lmg을 얇은 호일 위에서 약 About lmg of the dispersant sample obtained in Preparation Examples 3 and 4 was prepared on a thin foil.
900 °C 내외의 고온으로 가열하였다. 이때, 호일이 순간적으로 녹으면서 그 온도가 약 1500 내지 1800 °C까지 상승하였으며, 이러한 고은에 의해 상기 시료로부터 기체가 발생하였다. 이러한 기체를 포집 및 원소 분석하여 탄소, 산소, 수소 및 질소의 각 원소 함량을 측정 및 분석하였다. 이러한 분석 결과는 각 분산제 제조를 위해 사용된 피치에 대한.분석 결과와 비교하여 하기 표 1에 나타내었다. Heated to a high temperature of about 900 ° C. At this time, the temperature of the foil melted instantaneously rose to about 1500 to 1800 ° C, gas generated from the sample by this solid silver. This gas was collected and elemental analyzed to determine and analyze the content of each element of carbon, oxygen, hydrogen and nitrogen. The results of these analyzes depend on the pitch used for each dispersant preparation . It is shown in Table 1 below in comparison with the analysis results.
[표 1] TABLE 1
Figure imgf000021_0001
상기 표 1 을 참고하면, 제조예 3 및 4 의 분산제 중에는, 각 원소의 함량을 분석하였을 때 산소의 함량이 전체 원소 함량의 약 12 내지 50 중량0 /0, 혹은 약 30 내지 40 중량0 /0로 됨이 확인되었다. 실시예 1 : 그래핀 플레이크의 제조
Figure imgf000021_0001
Referring to Table 1, Production Example 3, and while the four dispersant, the content of oxygen the total element content of from about 12 to 50 parts by weight when analyzed the content of each element 0/0, or from about 30 to 40 parts by weight 0/0 Was confirmed. Example 1 Preparation of Graphene Flakes
제조예 1 의 분산제 O.lg이 분산되어 있는 수분산액 500ml에 판상 혹연 2.5g을 첨가하여 분산액을 형성하였다. 이러한 분산액을 약 l,600bar의 고압으로 고압 균질기의 유입부에 유입시켜 미세 유로를 통과시켰으며, 이러한 과정을 10 회 반복하였다. 이를 통해, 상기 판상 흑연을 박리하고 실시예 1 의 그래핀 플레이크를 제조하였다.  To 500 ml of an aqueous dispersion in which the dispersant O.lg of Preparation Example 1 was dispersed, 2.5 g of a plate-like pendulum was added to form a dispersion. This dispersion was introduced into the inlet of the high pressure homogenizer at a high pressure of about 1,600 bar and passed through the microchannel, and this process was repeated 10 times. Through this, the plate graphite was peeled off to prepare the graphene flakes of Example 1.
도 7 의 (a)에는 그래핀 플레이크 제조를 위해 원료로 사용된 판상 혹연의 전자 현미경 사진을 도시하였고, (b) 및 (c) ((b)의 확대도)에는 실시예 1 에서 제조된 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 7 의 (b) 및 (c)를 참고하면, 매우 얇은 두께 및 큰 면적을 가지며, 결함이 최소화된 그래핀 플레이크가 매우 양호하게 형성되었음이 확인되었다. Figure 7 (a) is shown an electron micrograph of a plate-shaped abyss used as a raw material for the production of graphene flakes, (b) and (c) (enlarged view of (b)) is prepared in Example 1 Electron micrographs of the pin flakes are shown. (B) and (c) of FIG. For reference, it was confirmed that graphene flakes having a very thin thickness and a large area and minimizing defects were formed very well.
이러한 실시예 1 의 그래핀 플레이크를 TEM 분석하여 그 이미지를 도 8 의 (a) 및 (b) ((a)의 확대도)에 도시하였다. 상기 도 8 의 (a)를 참고하면, 실시예 1 에서 제조된 그래핀 플레이크는 약 0.5 내지 5 의 직경을 갖는 매우 대면적의 것으로 확인되었다. 또한, 상기 도 8 의 (b) 를 참고하면, 상기 실시예 1 의 그래핀 플레이크는 TEM 분석을 위해 배치한 하부의 탄소 그리드 (도면의 적색 화살표)가 상기 그래핀 플레이크를 통해 관찰될 정도로 매우 얇은 두께를 가짐이 확인되었다.  The graphene flakes of Example 1 were TEM analyzed and the images are shown in FIGS. 8A and 8B (magnified view of (a)). Referring to FIG. 8A, the graphene flakes prepared in Example 1 were found to have a very large area having a diameter of about 0.5 to 5. In addition, referring to FIG. 8 (b), the graphene flakes of Example 1 are very thin so that the lower carbon grid (red arrow in the drawing) disposed for TEM analysis is observed through the graphene flakes. It was confirmed to have a thickness.
부가하여, 실시예 1 의 그래핀 플레이크를 AFM 분석하여 그 결과를 도 In addition, AFM analysis of the graphene flakes of Example 1 was performed to show the results.
8의 (c) 및 (d)에 각각 도시하였다. 이를 참고하면, 실시예 1의 그래핀 플레이크는 약 6 내지 17nm의 매우 얇은 두께를 갖는 것으로 확인되었다. 실시예 2: 그래핀 플레이크의 제조 It is shown in (c) and (d) of 8, respectively. Referring to this, it was confirmed that the graphene flakes of Example 1 have a very thin thickness of about 6 to 17 nm. Example 2: Preparation of Graphene Flakes
제조예 1 의 분산제 대신 제조예 2 의 분산제를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로.실시예 2의 그래핀 플레이크를 제조하였다. In the same manner as in Example 1, except that the dispersant of Preparation Example 2 was used instead of the dispersant of Preparation Example 1 . The graphene flakes of Example 2 were prepared.
실시예 2 의 그래핀 플레이크를 전자 현미경 분석으로 확인하였다. 확인 결과, 매우 얇은 두께 및 큰 면작을 가지며, 결함이 최소화된 그래핀 플레이크가 양호하게 형성되었음이 밝혀졌다. 이러한 실시예 2 의 그래핀 플레이크를 실시예 1 과 동일한 방법으로 TEM 및 AFM 분석한 결과, 실시예 2의 그래핀 플레이크는 약 0.5 내지 10 의 직경을 갖는 매우 대면적의 것으로 확인되었고, 약 5 내지 20nm의 매우 얇은 두께를 갖는 것으로 확인되었다. 실시예 3: 그래핀 플레이크의 제조  The graphene flakes of Example 2 were confirmed by electron microscopic analysis. As a result, it was found that graphene flakes having a very thin thickness and a large crop size and minimizing defects were formed well. As a result of TEM and AFM analysis of the graphene flakes of Example 2 in the same manner as in Example 1, it was confirmed that the graphene flakes of Example 2 have a very large area having a diameter of about 0.5 to 10, and about 5 to about It was found to have a very thin thickness of 20 nm. Example 3: Preparation of Graphene Flakes
제조예 1 의 분산제 대신 상품명 Triton X-100 분산제를 사용한 것을 제외하고는 실시예 1 과 동일한 방법으로 실시예 3 의 그래핀 플레이크를 제조하였다.  The graphene flakes of Example 3 were prepared in the same manner as in Example 1 except that the trade name Triton X-100 dispersant was used instead of the dispersant of Preparation Example 1.
도 9에는 실시예 3의 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 9를 참고하면, 5 μηι2 내외의 면적을 갖는 얇고 균일한 그래핀 플레이크가 매우 양호하게 형성되었음을 확인하였다. 실시예 4: 그래핀 플레이크의 제조 9 shows an electron micrograph of the graphene flakes of Example 3. FIG. Referring to FIG. 9, it was confirmed that thin and uniform graphene flakes having an area of about 5 μηι 2 were formed very well. Example 4: Preparation of Graphene Flakes
제조예 1 의 분산제 대신 상품명 Pluronics F-127 분산제를 사용한 것을 제외하고는 실시예 1 과 동일한 방법으로 실시예 4 의 그래핀 플레이크를 제조하였다.  The graphene flakes of Example 4 were prepared in the same manner as in Example 1, except that the trade name Pluronics F-127 dispersant was used instead of the dispersant of Preparation Example 1.
도 10 에는 실시예 4 의 그래핀 플레이크의 전자 현미경 사진을 도시하였다. 도 10 을 참고하면, 5 μπι2 내외의 면적을 갖는 얇고 균일한 그래핀 플레이크가 매우 양호하게 형성되었음을 확인하였다. 비교예 1 : 그래핀 플레이크의 제조 10 shows an electron micrograph of the graphene flakes of Example 4. FIG. Referring to FIG. 10, it was confirmed that thin and uniform graphene flakes having an area of about 5 μπι 2 were formed very well. Comparative Example 1: Preparation of Graphene Flakes
제조예 1 의 분산제 등 분산제를 사용하지 않고 한국 공개 특허 공보 제 2013-0004638 호의 실시예에 기재된 방법으로 고압 균질기를 사용하여 비교예 1의 그래핀 플레이크를 제조하였다.  The graphene flakes of Comparative Example 1 were prepared using a high pressure homogenizer by the method described in the examples of Korean Unexamined Patent Publication No. 2013-0004638 without using a dispersant such as Preparation Example 1.
도 1 1 에는 비교예 1 의 그래핀 플레이크의 전자 현미경 사진 (도 1 1 의 (a))을 도시하였고, 이를 실시예 1 에서 얻어진 그래핀 플레이크의 전자 현미경 사진 (도 1 1 의 (b))과 비교하여 나타내었다. 도 1 1 의 (b)를 참고하면, 실시예 1 을 통해서 제조 된 그래핀 플레이크는 비교예 1 의 그래핀 플레이크보다 상대적으로 큰 10 μηι2 이상의 면적을 보일 뿐만 아니라 Wrinkle이 관측 되는데 이는 그래핀 플레이크가 수 nm 미만의 초박형에 가까운 정도로 얇게 박리되어 있음을 증명하고 있다. 1 shows an electron micrograph of the graphene flakes of Comparative Example 1 (FIG. 1 (a)), and an electron micrograph of the graphene flakes obtained in Example 1 (FIG. 1 (b)). In comparison with. Referring to (b) of FIG. 1, the graphene flakes prepared in Example 1 not only show an area of 10 μηι 2 or more that is larger than that of the comparative example 1, but also Wrinkle is observed, which is graphene flakes. It has been proved that the film is thinly peeled to an extremely thin thickness of less than several nm.
한편, 도 12에는 실시예 1 의 그래핀 플레이크의 라만스펙트럼이 도시되어 있다ᅳ 이러한 라만스펙트럼에서 D peak (at -1 ,350 cmᅳ1) intensity는 그래핀 내의 결함이 증가할수록 이에 상응하여 커지게 되므로 일반적으로 G peak (at ~l ,580 cm- 과의 Inensity ratio (Gi/O^} 클수록 그래핀의 품질이 높은것으로 평가되고 있다. 따라서, 실시예 1 을 통해서 제조된 그래핀 플레이크의 큰 D, (~14.5)는 비교예 1 의 그래핀 플레이크의 C Di (~5.5)보다 결함이 적은 고품질임을 증명하고 있다. 이는 비교예 1과 달리 열처리, 고속분쇄, 초음파분산 과정을 제거함으로써 얻어진 결과라 할수 있다. 비교예 2: 산화 그래핀 플레이크의 제조 먼저, 미산화 그라파이트 2.5g을 황산:질산 =3:1 (부피비)의 흔합산 용액 262.5 ml에 넣고 85 °C 에서 20시간 동안 반웅시킨 후, ice-cooled D.I. water 1L로 희석하였고, 반응용액을 vacuum filtration하여 산화 그라파이트 wet-cake을 제조하였다. On the other hand, Figure 12 shows the Raman spectrum of the graphene flake of Example 1 In this Raman spectrum D peak (at -1,350 cm 라 1 ) intensity is correspondingly increased as the defects in the graphene increases In general, the higher the G peak (at ~ l, 580 cm- and the Inensity ratio (Gi / O ^}), the higher the graphene quality. Therefore, the larger the D of the graphene flakes prepared in Example 1 , (~ 14.5) is a high quality with fewer defects than C Di (~ 5.5) of the graphene flake of Comparative Example 1. This result is obtained by removing the heat treatment, high-speed grinding, ultrasonic dispersion process, unlike Comparative Example 1 Comparative Example 2: Preparation of Graphene Oxide Flakes First, 2.5 g of unoxidized graphite was added to 262.5 ml of a mixed acid solution of sulfuric acid: nitric acid = 3: 1 (volume ratio) and reacted at 85 ° C. for 20 hours, and then diluted with 1 L of ice-cooled DI water. Graphite oxidized graphite wet-cake was prepared by vacuum filtration.
그리고, 상기 산화 그라파이트 wet-cake를 D.I. water 500 ml에 재분산시키고, 이러한 재분산액을 약 l,600bar의 고압으로 고압 균질기의 유입부에 유입시켜 미세 유로를 통과시켰으며, 이러한 과정을 10회 반복하였다. 이렇게 제조된 비교예 2의 산화 그래핀 플레이크의 형상, 산화도 및 결함을 각각 전자 현미경 사진 (Scanning Electron Microscopy; SEM), 원소 분석기 및 라만 스펙트로스코피 (Raman Spectroscopy)로 분석하여, 도 13 내지 15에 나타내었다. 도 13은 산화 그라파이트를 이용하여 박리시킨 산화 그래핀 플레이크의 전자 현미경 사진을 보여주고 있다. 또, 도 15의 라만 스펙트럼을 보면, 약 1350 cm 의 D-peak이 실시예의 그래핀 플레이크 등에서 얻어진 결과보다 매우 큰 것을 확인하였으며, 이는 그라파이트의 산화과정 중 발생된 결함으로 인한 결과임이 확인되었다.  And, the graphite oxide wet-cake D.I. The redispersion was carried out in 500 ml of water, and the redispersion was introduced into the inlet of the high pressure homogenizer at a high pressure of about 1,600 bar and passed through the microchannel. This process was repeated 10 times. The shape, degree of oxidation, and defects of the graphene oxide flakes of Comparative Example 2 thus prepared were analyzed by scanning electron microscopy (SEM), elemental analyzer, and Raman Spectroscopy, respectively. Indicated. FIG. 13 shows an electron micrograph of graphene oxide flakes peeled off using graphite oxide. In addition, looking at the Raman spectrum of Figure 15, it was confirmed that the D-peak of about 1350 cm is much larger than the results obtained in the graphene flakes of the embodiment, etc., it was confirmed that this is due to defects generated during the oxidation of graphite.
그리고, 도 14의 원소 분석 결과를 참고하면, 약 9.46%의 Oxygen content를 보였으며 이는 약 1% 내외의 Oxygen content를 보이는 미산화 그라파이트 또는 그래핀 대비 매우 높은 수준으로서 그 자체로는 전기적 특성이 떨어짐이 확인된다. 또한, 이를 다시 그래핀으로 제조하기 위해서는, 별도의 환원 공정이 필요하게 되어, 그 과정에서 그래핀의 결함 발생이 더욱 증가하고, 그 물성이 저하될 것으로 예측된다. , In addition, referring to the elemental analysis result of FIG. 14, it showed about 9.46% of Oxygen content, which is very high compared to unoxidized graphite or graphene having about 1% of Oxygen content, and thus, its electrical characteristics are inferior. This is confirmed. In addition, in order to manufacture it again into graphene, a separate reduction process is required, and in the process, the occurrence of defects of graphene is further increased, and its physical properties are expected to decrease. ,

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
미산화 그라파이트를 포함한 탄소계 소재 및 분산제를 포함한 분산액을 형성하는 단계; 및 Forming a dispersion including a carbon-based material including unoxidized graphite and a dispersant; and
상기 분산액을 연속적으로, 유입부와, 유출부와, 유입부와 유출부 사이를 연결하며 마이크로미터 스케일의 직경을 갖는 미세 유로를 포함하는 고압 균질기 (High Pressure Homogenizer)에 통과시키는 단계를 포함하고, Continuously passing the dispersion through a high pressure homogenizer comprising an inlet, an outlet, and a micro-channel with a micrometer-scale diameter connecting the inlet and the outlet. ,
상기 탄소계 소재는 전단력의 인가 하에 상기 미세 유로를 통과하면서 박리되어 나노 스케일의 두께를 갖는 그래핀 (graphene)으로 형성되는 그래핀의 제조 방법. . A method of manufacturing graphene in which the carbon-based material is exfoliated while passing through the microchannel under the application of a shear force to form graphene having a nanoscale thickness. .
【청구항 2】 【Claim 2】
제 1 항에 있어서, 상기 미산화 그라파이트는 연소에 의한 원소 분석법 (elemental analysis measurement by combustion) 또는 XPS 분석법 (X-ray photoelectron spectrometry analysis)으로 즉정된 산소 대 탄소의 원소비 (0/C atomic ratio)가 5% 이하인 그래핀의 제조 방법. The method of claim 1, wherein the unoxidized graphite has an elemental ratio of oxygen to carbon (0/C atomic ratio) determined by elemental analysis measurement by combustion or X-ray photoelectron spectrometry analysis (XPS analysis). Method for producing graphene with 5% or less.
【청구항 3 ] [Claim 3]
제 1 항에 있어서, 상기 미산화 그라파이트는 판상 혹연을 포함하는 그래핀의 제조 방법. The method of producing graphene according to claim 1, wherein the unoxidized graphite includes plate-shaped graphite.
【청구항 4】 【Claim 4】
제 1 항에 있어서, 상기 분산액은 수용매 또는 극성 유기 용매 내에 상기 탄소계 소재와 분산제가 용해 또는 분산된 분산액인 그래핀의 제조 방법. The method of producing graphene according to claim 1, wherein the dispersion is a dispersion in which the carbon-based material and the dispersant are dissolved or dispersed in an aqueous solvent or a polar organic solvent.
【청구항 5】 【Claim 5】
제 1 항에 있어서, 상기 분산제는 The method of claim 1, wherein the dispersant is
복수 종의 폴리 방향족 탄화수소 산화물의 흔합물로서, A mixture of multiple types of polyaromatic hydrocarbon oxides,
분자량 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 60 중량0 /0 이상의 함량으로 포함한 흔합물을 포함하는 그래핀의 제조 방법. A method of producing graphene comprising a mixture containing a polyaromatic hydrocarbon oxide with a molecular weight of 300 to 1000 in an amount of 60 % by weight or more.
【청구항 6】 【Claim 6】
제 5 항에 있어서, 상기 분산제에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 전체 원소 함량의 12 내지 50 중량0 /0인 그래핀의 제조 방법. The method of claim 5, wherein when the plurality of polyaromatic hydrocarbon oxides contained in the dispersant are elementally analyzed, the oxygen content is 12 to 50 % by weight of the total element content.
【청구항 7】 【Claim 7】
제 5 항에 있어서, 상기 분산제에 포함된 폴리 방향족 탄화수소 산화물은 5 내지 30 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 갖는 그래핀의 제조 방법. The method of claim 5, wherein the polyaromatic hydrocarbon oxide contained in the dispersant has a structure in which one or more oxygen-containing functional groups are bonded to an aromatic hydrocarbon containing 5 to 30 benzene rings.
【청구항 8】 【Claim 8】
제 7 항에 있어서, 방향족 탄화수소는 7 내지 20 개의 벤젠 고리를 구조 내에 갖는 그래핀의 제조 방법. The method of producing graphene according to claim 7, wherein the aromatic hydrocarbon has 7 to 20 benzene rings in its structure.
【청구항 9】 【Claim 9】
제 1 항에 있어서, 상기 미세 유로는 10 내지 800 의 직경을 갖는 그래핀의 제조 방법. The method of producing graphene according to claim 1, wherein the microchannel has a diameter of 10 to 800.
【청구항 10】 【Claim 10】
제 1 항에 있어서, 상기 분산액은 100 내지 3000 bar의 압력 인가 하에 상기 고압 균질기의 유입부로 유입되어 미세 유로를 통과하는 그래핀의 제조 방법. The method of claim 1, wherein the dispersion is introduced into the inlet of the high-pressure homogenizer under a pressure of 100 to 3000 bar and passes through the microchannel.
【청구항 11】 - 제 1 항에 있어서, 상기 그래핀은 0.3 내지 50nm의 두께를 갖는 그래핀 플레이크를 포함하는 그래핀의 제조 방법. 【Claim 11】 - The method of producing graphene according to claim 1, wherein the graphene includes graphene flakes having a thickness of 0.3 to 50 nm.
【청구항 12】 【Claim 12】
게 10 항에 있어서, 상기 그래핀 플레이크는 0.1 내지 10卿의 직경을 가지며, 50 내지 6000의 직경 /두께비를 갖는 그래핀의 제조 방법 . The method of item 10, wherein the graphene flakes have a diameter of 0.1 to 10 卿. A method for producing graphene having a diameter/thickness ratio of 50 to 6000.
【청구항 13 ] [Claim 13]
게 1 항에 있어서, 상기 그래핀 플레이크의 분산액으로부터 그래핀 플레이크를 회수 및 건조하는 단계를 더 포함하는 그래핀의 제조 방법. The method of producing graphene according to claim 1, further comprising recovering and drying the graphene flakes from the dispersion of the graphene flakes.
【청구항 14] [Claim 14]
제 13 항에 있어서, 상기 회수 단계는 원심 분리, 감압 여과 또는 가압 여과로 진행되는 그래핀의 제조 방법. The method of claim 13, wherein the recovery step is performed by centrifugation, reduced pressure filtration, or pressure filtration.
【청구항 15】 【Claim 15】
제 13 항에 있어서, 상기 건조 단계는 30 내지 200 °C의 온도 하에 진공 건조하여 진행되는 그래핀의 제조 방법. The method of producing graphene according to claim 13, wherein the drying step is performed by vacuum drying at a temperature of 30 to 200 ° C.
PCT/KR2014/012829 2013-12-26 2014-12-24 Production method for graphene WO2015099457A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016538052A JP6300930B2 (en) 2013-12-26 2014-12-24 Method for producing graphene
EP14875212.4A EP3056469B1 (en) 2013-12-26 2014-12-24 Production method for graphene
CN201480071372.1A CN105849040B (en) 2013-12-26 2014-12-24 The preparation method of graphene
US15/039,655 US9950930B2 (en) 2013-12-26 2014-12-24 Preparation method of graphene

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130164672 2013-12-26
KR10-2013-0164672 2013-12-26
KR1020140187595A KR101682007B1 (en) 2013-12-26 2014-12-23 Preparation method of graphene
KR10-2014-0187595 2014-12-23

Publications (1)

Publication Number Publication Date
WO2015099457A1 true WO2015099457A1 (en) 2015-07-02

Family

ID=53479221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012829 WO2015099457A1 (en) 2013-12-26 2014-12-24 Production method for graphene

Country Status (1)

Country Link
WO (1) WO2015099457A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106185910A (en) * 2016-07-28 2016-12-07 北京奈泊科技有限公司 Prepare the device and method of Graphene
WO2017198665A1 (en) * 2016-05-18 2017-11-23 Université Grenoble Alpes Method for exfoliating particles
US20180009667A1 (en) * 2016-07-05 2018-01-11 Vln Advanced Technologies Inc. Apparatus and method for preparing graphene by exfoliation of graphite using a pulsed or cavitating waterjet
CN107690419A (en) * 2015-09-07 2018-02-13 株式会社Lg化学 Sheet peeling device
CN107847941A (en) * 2015-09-25 2018-03-27 株式会社Lg化学 For peeling off the equipment for including microchannel of flaky material
CN107921440A (en) * 2015-09-25 2018-04-17 株式会社Lg化学 Include the sheet peeling device of optimization outlet
JP2018083724A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon
CN108367926A (en) * 2015-11-26 2018-08-03 意大利学院科技基金会 Pass through wet blasting grinding technique stripped laminar material
CN108473802A (en) * 2015-10-07 2018-08-31 剑桥企业有限公司 Stratified material and its processing method
CN111377437A (en) * 2018-12-31 2020-07-07 浙江工业大学 Device and method for stripping layered material
US10822238B2 (en) 2015-10-13 2020-11-03 Thomas Swan & Co. Ltd. Apparatus and method for bulk production of atomically thin 2- dimensional materials including graphene
WO2021086098A1 (en) * 2019-11-01 2021-05-06 주식회사 엘지에너지솔루션 Anode active material, preparation method therefor, and anode and secondary battery which comprise same
CN112758920A (en) * 2020-12-25 2021-05-07 深圳垒石热管理技术股份有限公司 High-solid-content graphene oxide dispersion liquid, graphene heat dissipation film and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014111A1 (en) * 2007-08-01 2011-01-20 Mary Anne Leugers Highly efficient process for manufacture of exfoliated graphene
KR20120049679A (en) * 2010-11-09 2012-05-17 한국전기연구원 Manufacturing method of single-layered reduced graphene oxide dispersion solution using shear stress and the single-layered reduced graphene oxide dispersion solution thereby
KR20130004638A (en) 2011-07-04 2013-01-14 (주)월드튜브 Method for mixed dispersion of graphene and graphite nanoplatelets and method for mixed powder of graphene and graphite nanoplatelets
KR20130091625A (en) 2012-02-08 2013-08-19 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 A semiconductor device and method of forming the same
KR20130109711A (en) * 2012-03-28 2013-10-08 주식회사 어플라이드카본나노 Method for manufacturing graphene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014111A1 (en) * 2007-08-01 2011-01-20 Mary Anne Leugers Highly efficient process for manufacture of exfoliated graphene
KR20120049679A (en) * 2010-11-09 2012-05-17 한국전기연구원 Manufacturing method of single-layered reduced graphene oxide dispersion solution using shear stress and the single-layered reduced graphene oxide dispersion solution thereby
KR20130004638A (en) 2011-07-04 2013-01-14 (주)월드튜브 Method for mixed dispersion of graphene and graphite nanoplatelets and method for mixed powder of graphene and graphite nanoplatelets
KR20130091625A (en) 2012-02-08 2013-08-19 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 A semiconductor device and method of forming the same
KR20130109711A (en) * 2012-03-28 2013-10-08 주식회사 어플라이드카본나노 Method for manufacturing graphene

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DU, WENCHENG ET AL.: "From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and fewlayered pristine graphene", JOURNAL OF MATERIALS CHEMISTRY A, vol. 1, 15 July 2013 (2013-07-15), pages 10592 - 10606, XP055096739 *
LIANG, SHUAISHUAI ET AL.: "One-step green synthesis of graphene nanomesh by fluid-based method", THE ROYAL SOCIETY OF CHEMISTRY, vol. 4, no. 31, 2 April 2014 (2014-04-02), pages 16127 - 16131, XP055338643 *
LUO, PEICHENG ET AL.: "Dispersion of single-walled carbon nanotubes by intense turbulent shear in micro-channels", CARBON, vol. 68, 25 November 2013 (2013-11-25), pages 610 - 618, XP055323818 *
See also references of EP3056469A4 *
YI, MIN ET AL.: "A fluid dynamics route for producing graphene and its analogues", CHINESE SCIENCE BULLETIN, vol. 59, no. 16, 4 April 2014 (2014-04-04), pages 1794 - 1799, XP008180820 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690419A (en) * 2015-09-07 2018-02-13 株式会社Lg化学 Sheet peeling device
CN107921440A (en) * 2015-09-25 2018-04-17 株式会社Lg化学 Include the sheet peeling device of optimization outlet
US11332375B2 (en) 2015-09-25 2022-05-17 Lg Chem, Ltd. Peeling device of sheet material including optimized outlet
EP3312140A4 (en) * 2015-09-25 2018-04-25 LG Chem, Ltd. Plate-shaped-material exfoliating apparatus comprising optimized discharge portion
EP3312141A4 (en) * 2015-09-25 2018-04-25 LG Chem, Ltd. Plate-shaped-material exfoliating apparatus comprising microchannel
CN107847941A (en) * 2015-09-25 2018-03-27 株式会社Lg化学 For peeling off the equipment for including microchannel of flaky material
US20180312404A1 (en) * 2015-10-07 2018-11-01 Cambridge Enterprise Limited Layered materials and methods for their processing
CN108473802A (en) * 2015-10-07 2018-08-31 剑桥企业有限公司 Stratified material and its processing method
CN108473802B (en) * 2015-10-07 2022-03-18 剑桥企业有限公司 Layered material and method for processing same
US10906814B2 (en) 2015-10-07 2021-02-02 Cambridge Enterprise Limited Layered materials and methods for their processing
US10822238B2 (en) 2015-10-13 2020-11-03 Thomas Swan & Co. Ltd. Apparatus and method for bulk production of atomically thin 2- dimensional materials including graphene
CN108367926A (en) * 2015-11-26 2018-08-03 意大利学院科技基金会 Pass through wet blasting grinding technique stripped laminar material
US11104578B2 (en) 2016-05-18 2021-08-31 Universite Grenoble Alpes Method for exfoliating particles
WO2017198665A1 (en) * 2016-05-18 2017-11-23 Université Grenoble Alpes Method for exfoliating particles
FR3051376A1 (en) * 2016-05-18 2017-11-24 Univ Grenoble Alpes METHOD OF EXFOLIATION OF PARTICLES
US10640383B2 (en) * 2016-07-05 2020-05-05 Vln Advanced Technologies Inc. Apparatus and method for preparing graphene by exfoliation of graphite using a pulsed or cavitating waterjet
US20180009667A1 (en) * 2016-07-05 2018-01-11 Vln Advanced Technologies Inc. Apparatus and method for preparing graphene by exfoliation of graphite using a pulsed or cavitating waterjet
CN106185910A (en) * 2016-07-28 2016-12-07 北京奈泊科技有限公司 Prepare the device and method of Graphene
JP2018083724A (en) * 2016-11-21 2018-05-31 大阪瓦斯株式会社 Method of manufacturing flaky carbon
CN111377437A (en) * 2018-12-31 2020-07-07 浙江工业大学 Device and method for stripping layered material
CN111377437B (en) * 2018-12-31 2024-01-16 浙江工业大学 Stripping device and stripping method for layered material
CN114424364A (en) * 2019-11-01 2022-04-29 株式会社Lg新能源 Negative electrode active material, method for preparing same, and negative electrode and secondary battery comprising same
WO2021086098A1 (en) * 2019-11-01 2021-05-06 주식회사 엘지에너지솔루션 Anode active material, preparation method therefor, and anode and secondary battery which comprise same
CN112758920A (en) * 2020-12-25 2021-05-07 深圳垒石热管理技术股份有限公司 High-solid-content graphene oxide dispersion liquid, graphene heat dissipation film and preparation method

Similar Documents

Publication Publication Date Title
US9950930B2 (en) Preparation method of graphene
WO2015099457A1 (en) Production method for graphene
KR101666478B1 (en) Preparation method of graphene and dispersed composition of graphene
Dao et al. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene
JP6106339B2 (en) Dispersant, method for producing the same, and dispersion composition of carbon-based material including the same
US10472242B2 (en) Method for preparing graphene by using high speed homogenization pretreatment and high pressure homogenation
US20170217775A1 (en) Partially oxidized graphene and method for preparing same
US20170036914A1 (en) Method for preparing carbon nanotube, and dispersion composition of carbon nanotube
WO2015099378A1 (en) Graphene production method, and graphene dispersion composition
KR102055926B1 (en) Preparation method for nanosheet of layered strucutre compound
KR101103672B1 (en) Apparatus for continuous synthesis and purification of graphene oxide with centrifugal separation type for mass production, and method of synthesis and purification of graphene oxide using the same
KR20160131454A (en) Method for preparation of graphene by using dye
WO2015178631A1 (en) Method for preparing carbon nanotube, and dispersion composition of carbon nanotube
Dave et al. Review on Carbon-Graphene Nanocomposite based conductive-ink in printed electronics
KR20160131660A (en) Method for preparation of graphene
KR20170067475A (en) Method of preparation for graphene dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875212

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014875212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15039655

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016538052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE