WO2017090758A1 - プリプレグシート - Google Patents

プリプレグシート Download PDF

Info

Publication number
WO2017090758A1
WO2017090758A1 PCT/JP2016/085069 JP2016085069W WO2017090758A1 WO 2017090758 A1 WO2017090758 A1 WO 2017090758A1 JP 2016085069 W JP2016085069 W JP 2016085069W WO 2017090758 A1 WO2017090758 A1 WO 2017090758A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg sheet
thermoplastic resin
fiber
fibers
thickness
Prior art date
Application number
PCT/JP2016/085069
Other languages
English (en)
French (fr)
Inventor
太田 善久
将也 松下
健 八牟禮
Original Assignee
株式会社ユウホウ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015232227A external-priority patent/JP6788340B2/ja
Application filed by 株式会社ユウホウ filed Critical 株式会社ユウホウ
Priority to PL16868701T priority Critical patent/PL3381974T3/pl
Priority to ES16868701T priority patent/ES2908779T3/es
Priority to EP16868701.0A priority patent/EP3381974B1/en
Priority to US15/774,661 priority patent/US10697097B2/en
Priority to CN201680068287.9A priority patent/CN108350202B/zh
Publication of WO2017090758A1 publication Critical patent/WO2017090758A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/105Coating or impregnating independently of the moulding or shaping step of reinforcement of definite length with a matrix in solid form, e.g. powder, fibre or sheet form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a prepreg sheet that is an intermediate of a molded body made of a nonwoven fabric containing carbon fibers and thermoplastic resin fibers.
  • Carbon fiber is generally a fiber made by carbonizing acrylic fiber or pitch (by-products such as petroleum, coal, coal tar, etc.) as a raw material at high temperature. Under JIS standards, a precursor of organic fiber is heated and carbonized. And 90% or more by mass ratio is defined as a fiber composed of carbon. Carbon fiber is less dispersible than other fibers, and entanglement between fibers is weak. Therefore, when forming nonwoven fabrics, carbon fibers are rarely used as a single material. Resin fibers such as synthetic resins and carbon fibers It is used as a composite material in combination.
  • a nonwoven fabric is formed by mixing 20 to 70% by weight of carbon fibers and 30 to 80% by weight of binder fibers to form a nonwoven fabric, and then burning the nonwoven fabric to remove the binder fibers. Is described.
  • Patent Document 1 Although a non-woven fabric composed only of carbon fibers can be obtained, the non-woven fabric is easily frayed because the entanglement between the carbon fibers is weak, and the carbon fibers that are broken and shortened during production are obtained. There is a drawback that it is easy to drop off.
  • the laminate of the sheet is entangled with the carbon fiber and the thermoplastic resin fiber with a needle punch or the like
  • the entangled thermoplastic resin fibers tend to melt and untangling the fibers.
  • the prepreg sheet obtained by heating and pressure molding the nonwoven fabric tends to expand in the thickness direction.
  • the present invention has been made in consideration of the above-described conventional problems, and the expansion of the thickness is suppressed even when heated during molding, enabling smooth insertion into the mold, and the desired molded product.
  • the present invention provides a prepreg sheet capable of obtaining the above.
  • the prepreg sheet of the present invention that has solved the above problems is a prepreg sheet that is an intermediate of a molded body made of a nonwoven fabric containing carbon fibers and thermoplastic resin fibers, and the melting point of the thermoplastic resin fibers to the melting point +100 It is characterized in that the thickness expansion coefficient when heated at a temperature of 90 ° C. for 90 seconds is 250% or less.
  • the prepreg sheet preferably has a needle punch mark of 5 pieces / cm 2 or less.
  • the number of carbon fibers that are partly displaced by 1 mm or more in the thickness direction is preferably 100 / cm 2 or less.
  • the prepreg sheet preferably has a weight per unit area of 100 to 1500 g / m 2 and a thickness of 0.5 to 6.0 mm.
  • an average fiber length of the carbon fibers is 15 to 100 mm and an average fiber length of the thermoplastic resin fibers is 25 to 100 mm.
  • thermoplastic resin fiber may be selected from polypropylene, polyamide, polycarbonate, polyphenylene sulfide, and polyetherimide.
  • the carbon fiber and the thermoplastic resin fiber are preferably mixed at a mass ratio of 20/80 to 80/20.
  • the prepreg sheet of the present invention has a thickness expansion coefficient of 250% or less when subjected to heat treatment (hereinafter referred to as pre-molding treatment) performed before mold molding after prepreg formation, and thus a conventional prepreg sheet was used.
  • pre-molding treatment heat treatment
  • the sheet It is possible to suppress the phenomenon that the material expands in the thickness direction.
  • the present inventors have found that the pre-molding process (specifically, the heat A prepreg sheet having a thickness expansion coefficient of 250% or less when heated at a temperature ranging from the melting point of the plastic resin fiber to the melting point + 100 ° C. for 90 seconds) was successfully obtained. Thereby, expansion of the thickness direction is suppressed at the time of molding of the sheet, and a smooth insert into the mold is enabled, and a desired molded product can be obtained.
  • the thickness expansion coefficient does not need to satisfy 250% or less in the entire temperature range as long as it satisfies 250% or less at any temperature in the temperature range.
  • the number of traces by a needle punch machine generally used as a method for entanglement of carbon fibers and thermoplastic resin fibers is preferably 5 / cm 2 or less, more preferably 3 / cm 2 or less, more preferably 2 / cm 2 or less.
  • the number of traces by the needle punch machine is 5 / cm 2 or less, the entanglement of the carbon fiber and the thermoplastic resin fiber is small, so that the entanglement of the fiber is loosened and the force to return the carbon fiber to the original state before the entanglement is small.
  • the phenomenon that the prepreg sheet expands in the thickness direction can be suppressed.
  • the number of carbon fibers and other parts displaced by 1 mm or more in the thickness direction is 100 / cm 2 or less, more preferably. Is 50 / cm 2 or less, more preferably 20 / cm 2 or less.
  • the number of carbon fibers that are oriented in the thickness direction of the sheet is small. Entanglement with the plastic resin fibers can be suppressed, and the phenomenon that the prepreg sheet expands in the thickness direction can be suppressed.
  • a prepreg is generally a semi-cured sheet-form molding intermediate material in which carbon fiber is impregnated with a thermosetting resin or thermoplastic resin, and is known for its stable quality when used as a molded product. ing. Recently, from the viewpoints of mass productivity, reduction of molding time, and reduction of equipment costs, carbon fiber and thermoplastic resin fibers are attracting attention, which requires weight reduction and high performance. It is used for aerospace applications, automotive parts applications, sports applications, etc.
  • Carbon fiber is generally a fiber made by carbonizing acrylic fiber or pitch (by-products such as petroleum, coal, coal tar, etc.) at a high temperature as a raw material. Under JIS standards, a precursor of organic fiber is heated and carbonized. 90% or more of the fiber obtained by processing is defined as a fiber composed of carbon. Carbon fibers using acrylic fibers are classified as PAN (Polyacrylonitrile), and carbon fibers using pitch are classified as pitch (PITCH).
  • PAN Polyacrylonitrile
  • PITCH Carbon fibers using pitch
  • carbon fiber is less dispersible than other fibers, and the entanglement between fibers is weak. Therefore, when forming a nonwoven fabric, carbon fibers are rarely used as a single material, and resins such as synthetic resins are used. Use as a composite material in which fibers and carbon fibers are combined has been performed.
  • the carbon fiber used for the prepreg sheet of the present invention is also used as a composite material combined with a thermoplastic resin fiber.
  • any of PAN-based and pitch-based carbon fibers can be used, but PAN-based is more preferable from the viewpoint of dispersibility with thermoplastic resin fibers.
  • the average fiber length of carbon fibers is preferably 15 to 100 mm, more preferably 20 to 80 mm, still more preferably 30 to 70 mm.
  • the average fiber length is 15 mm or more, the mechanical strength is easily maintained when a prepreg sheet made of a nonwoven fabric containing carbon fibers and thermoplastic resin fibers is molded.
  • the average fiber length is 100 mm or less, the dispersibility of the carbon fibers and the thermoplastic resin fibers in the nonwoven fabric is improved, and a uniform nonwoven fabric is easily formed.
  • the thermoplastic resin used as the resin fiber is not particularly limited as long as it is a synthetic resin that has elasticity at room temperature, hardly deforms, can be softened by heating and can be molded into a desired shape. Specifically, in view of productivity, material cost, etc., those selected from polypropylene, polyamide, polycarbonate, polyphenylene sulfide, and polyetherimide are preferable. It is preferable to use fibers having an average fiber length of 25 to 100 mm, more preferably 30 to 80 mm, and still more preferably 40 to 70 mm.
  • seat which consists of a nonwoven fabric containing a carbon fiber and a thermoplastic resin fiber improves.
  • the average fiber length is 100 mm or less, the dispersibility of the carbon fibers and the thermoplastic resin fibers in the nonwoven fabric is improved, and a uniform nonwoven fabric is easily formed.
  • the mass ratio of carbon fiber to thermoplastic resin fiber is preferably in the range of 20/80 to 80/20.
  • the thermoplastic resin fiber is sufficiently melted in the heating / pressurizing treatment after the nonwoven fabric is formed, and the shape of the prepreg sheet is easily maintained. Become.
  • the weight per unit area and the thickness of the prepreg sheet are 100 to 1500 g / m 2 , 0.5, respectively, in consideration of smooth processing of molded products such as automotive parts.
  • FIG. 1 is a schematic view showing an example of a method for producing a prepreg sheet according to an embodiment of the present invention and a method for producing a molded product from the prepreg sheet.
  • FIG. 2 begins with the opening of a carbon fiber bundle, and then forms a sheet from a blend of carbon fibers and thermoplastic resin fibers, laminates it to obtain a nonwoven fabric, and obtains a prepreg sheet from the nonwoven fabric and a molded product from the prepreg sheet. It is the chart figure which showed an example of this process.
  • the carbon fiber 3 obtained by opening the carbon fiber bundle 2 and the thermoplastic resin fiber 4 are mixed with a desired mass ratio (for example, 40% by mass of carbon fiber and 60% by mass of thermoplastic resin fiber). Then, after the sheet is formed and further laminated to obtain the nonwoven fabric 5, the nonwoven fabric 5 is heated and pressurized (for example, when thermoplastic resin fibers made of polypropylene are used, 240 ° C., 90 seconds) 1 MPa). The basis weight and thickness of the obtained prepreg sheet 1 are adjusted to desired values (for example, basis weight 250 g / m 2 , thickness 0.5 to 6.0 mm).
  • the prepreg sheet 1 is a pre-molding treatment (for example, 240 ° C., 90 ° C. when a material using polypropylene as a thermoplastic resin fiber is used in consideration of performing a smooth insert in the subsequent molding process. Seconds).
  • a well-known method can be used about the method of laminating
  • a commercially available blender machine can be used, and for sheeting and lamination, a carding system can be used, and a commercially available card machine can be used.
  • the method for heating / pressurizing the obtained nonwoven fabric 5 is not particularly limited, and a known method can be used.
  • the heating temperature is preferably from the melting point of the thermoplastic resin fiber to the melting point + 100 ° C. in consideration of the melting point of the thermoplastic resin fiber, more preferably the melting point of the thermoplastic resin fiber + 20 ° C. to the melting point + 100 ° C., more preferably The melting point of the thermoplastic resin fiber is preferably + 40 ° C. to the melting point + 100 ° C.
  • the heating time is preferably 30 to 300 seconds, more preferably 60 to 240 seconds, and still more preferably 60 to 180 seconds.
  • the applied pressure is preferably 0.1 to 10 MPa, more preferably 0.5 to 10 MPa, and still more preferably 1 to 10 MPa in consideration of the homogeneity of the carbon fiber and the thermoplastic resin fiber and the strength after the treatment. good.
  • the pre-molding process performed before the prepreg sheet 1 is molded is performed in the infrared heating furnace 6 at a predetermined heating temperature and heating time.
  • the melting point of the thermoplastic resin fiber to the melting point + 100 ° C. is preferable, the melting point of the thermoplastic resin fiber + 20 ° C. to the melting point + 100 ° C., more preferably the melting point of the thermoplastic resin fiber + 40 ° C. to The melting point + 100 ° C. is good.
  • the heating time is preferably 90 seconds.
  • the nonwoven fabric obtained above was sent to a commercially available belt press and processed in a commercially available infrared heating furnace to obtain a prepreg sheet.
  • the obtained prepreg sheet was used as the product of the present invention.
  • the prepreg sheet had a weight per unit area of 250 g / m 2 and a thickness of 1.3 mm.
  • the heating temperature is 240 ° C.
  • the heating time is 90 seconds
  • the applied pressure is 1 MPa.
  • the density of the needles (the number of needles pierced by the needle punching machine per unit area of the nonwoven fabric) is obtained with respect to the front and back surfaces of the nonwoven fabric using a commercially available needle punch machine.
  • a prepreg sheet obtained by the same method as the product of the present invention was used as a comparative product, except that fiber entanglement was performed at 30 fibers / cm 2 .
  • the prepreg sheet obtained by the above method was processed in a commercially available infrared heating furnace.
  • the heating temperature is 240 ° C. (polypropylene melting point + 72 ° C.), and the heating time is 90 seconds.
  • the number of traces by the needle punching machine per unit area of the pre-molded prepreg sheet was calculated visually.
  • the numbers of traces of the prepreg sheets of the present invention product and the comparative product were 0 / cm 2 and 30 / cm 2 , respectively.
  • FIG. 3 shows a cross-sectional photograph of the prepreg sheet of the present invention
  • Fig. 4 shows a cross-sectional photograph of the comparative prepreg sheet.
  • (A) shows before the pre-molding process
  • (b) shows after the pre-molding process.
  • FIG. 5 shows an enlarged cross-sectional photograph after the pre-molding process of the prepreg sheet of the present invention (lens magnification: 30 ⁇ , visual field area: 3 mm ⁇ 5 mm)
  • FIG. 6 shows the pre-molding process of the comparative prepreg sheet.
  • 2 shows an enlarged cross-sectional photograph (lens magnification: 30 times, visual field area: 3 mm ⁇ 5 mm).
  • the cross section of the prepreg sheet of the present invention has no fiber entanglement in the thickness direction regardless of before and after the pre-molding treatment.
  • the cross-section of the comparative prepreg sheet is a carbon fiber in which a part of the carbon fiber and the other part are displaced by 1 mm or more in the thickness direction by the needle punch applied before the pre-molding process (FIG. It can be seen that the fiber entanglement between the carbon fiber and the thermoplastic resin fiber occurs, and the state of fiber entanglement is maintained even after the pre-molding process.
  • the prepreg sheets of the products of the present invention (Nos. 1 to 6) have a thickness expansion coefficient of 176.6 to 226.4% after the pre-molding treatment, and the comparative products (Nos. 7 to 10) and It can be seen that it is suppressed to a small expansion compared to.
  • the cross section of the prepreg sheets of the comparative products (No. 7 to 10) has a thickness expansion coefficient of 452.5 to 727.7% after the pre-molding process, and can suppress the expansion after the pre-molding process. You can see that it is not.
  • a prepreg sheet was produced in the same manner as the product of the present invention except that the sheet density and the laminated one were changed using a commercially available needle punch machine. Thereby, the influence of the needle density on the thickness expansion coefficient of the prepreg sheet was examined.
  • the needle density a prepreg sheet subjected to a predetermined needle punch is cut out with a cutter knife, and observed with an optical microscope in the same manner as the cross-sectional observation before and after the pre-molding process, whereby the carbon fiber in the cross section of the sheet is obtained. The number of part and other parts displaced by 1 mm or more in the thickness direction was counted visually, and the number per 1 cm 2 was calculated.
  • FIG. 7 shows the result of the thickness expansion coefficient when the needle density is changed. From FIG. 7, when the number of needles punched per unit area (1 cm 2 ) (needle density) is about 0 to 5, the thickness expansion rate is 250% or less, and the expansion after the pre-molding process is It turns out that it is possible to suppress. On the other hand, when the number of piercings exceeds 5, the thickness expansion rate exceeds 250%, and it was found that the expansion after the pre-molding process cannot be suppressed. These results show that when the number of traces by the needle punch machine is 5 pieces / cm 2 or less, the thickness expansion rate is 250% or less, and the expansion of the prepreg sheet after the pre-molding treatment is suppressed as in the present invention product.
  • a prepreg sheet was produced by the same method as that of the present invention except that the thickness was changed to 1.3 mm (the weight per unit area was constant). Thereby, the influence on the thickness expansion coefficient by the difference in the thickness of a prepreg sheet was examined.
  • FIG. 8 shows the result. From FIG. 8, the thickness expansion coefficient tends to decrease when the thickness of the prepreg sheet is changed from 0.5 to 2.0 mm. In any case, the thickness expansion coefficient shows a value of 250% or less. As in the case of the product of the present invention, it was found that the expansion after the pre-molding process can be suppressed.
  • FIG. 9 shows the result. From FIG. 9, in any case where the fiber length of the carbon fiber is 24, 48, or 70 mm, the thickness expansion coefficient shows a value of 250% or less, and the expansion after the pre-molding treatment is suppressed similarly to the product of the present invention. It turns out that it is possible.
  • thermoplastic resin fiber types In the production of the nonwoven fabric, a prepreg sheet was prepared in the same manner as the product of the present invention except that the thermoplastic resin fiber polypropylene was changed to polyamide. Thereby, the influence on the thickness expansion coefficient by the difference in the thermoplastic resin fiber was examined.
  • FIG. 10 shows the result. From FIG. 10, even when polyamide is used as the thermoplastic resin fiber, the coefficient of thickness expansion shows a value of 250% or less, which is almost the same as that when polypropylene is used. It was found that expansion can be suppressed.
  • FIG. 11 shows the result. From FIG. 11, when the mass ratio of the carbon fiber to the thermoplastic resin fiber is in the range of 20/80 to 80/20, the thickness expansion coefficient shows a value of 250% or less. It was found that the expansion of can be suppressed.
  • the prepreg sheet of the present invention suppresses expansion in the thickness direction even when heated at the time of molding, it enables smooth insertion into the mold of the prepreg sheet, for aerospace applications, automotive applications, sports applications, etc. A desired molded product can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

成型時に加熱しても厚みの膨張が抑えられ、金型へのスムーズなインサートを可能にして、所望の成型品を得ることができるプリプレグシートを提供する。 炭素繊維と熱可塑性樹脂繊維を含む不織布からなる成型体の中間体であるプリプレグシートであって、前記熱可塑性樹脂繊維の融点~該融点+100℃の温度で90秒加熱した場合の厚さ膨張率が250%以下である。

Description

プリプレグシート
 本発明は、炭素繊維と熱可塑性樹脂繊維を含む不織布からなる成型体の中間体であるプリプレグシートに関する。
 炭素繊維は、一般に、アクリル繊維またはピッチ(石油、石炭、コールタール等の副生成物)を原料に高温で炭化して作った繊維であり、JIS規格では、有機繊維のプレカーサを加熱炭素化処理して得られ、質量比で90%以上が炭素で構成される繊維であると定義されるものである。炭素繊維は、他の繊維よりも分散性、繊維同士の絡み合いが弱いことから、不織布を形成する際には炭素繊維を単独の材料として利用することは少なく、合成樹脂等の樹脂繊維と炭素繊維とを組み合わせた複合材料として用いることが行なわれている。
 例えば、特許文献1では、炭素繊維20~70重量%とバインダー繊維30~80重量%の比率で混合して不織布を形成し、この不織布を燃焼させバインダー繊維を除去することによって炭素繊維からなる不織布を得る方法が記載されている。
 また、炭素繊維と熱可塑性樹脂繊維との絡み合いを向上させて不織布を得る方法として、炭素繊維のステープル状の短繊維と熱可塑性樹脂繊維を混綿させ、シート化させた後、当該シートを積層したものをニードルパンチ等で炭素繊維と熱可塑性樹脂繊維を交絡させる方法が知られている(例えば、特許文献2実施例)。
特開平10-314519号公報 特開2008-081872号公報
 しかしながら、特許文献1に開示された方法によれば、炭素繊維のみからなる不織布が得られるものの、炭素繊維同士の絡み合いが弱いために不織布がほつれやすく、また製造時に折れて短くなった炭素繊維が脱落しやすいという欠点がある。
 また、炭素繊維束を開繊し、開繊した炭素繊維と熱可塑性樹脂繊維を混綿させ、シート化させた後、当該シートを積層したものをニードルパンチ等で炭素繊維と熱可塑性樹脂繊維を交絡させる方法で得られた不織布は、該不織布を用いて加熱・加圧成型して成型品を得る際に、繊維交絡している熱可塑性樹脂繊維が溶融し、繊維の交絡がほどける傾向にある。さらに、炭素繊維が元の開繊前の状態に戻ろうとする力が働くため、該不織布を加熱・加圧成型して得られるプリプレグシートは厚み方向に膨張する傾向にある。
 また、上記膨張傾向にあるプリプレグシートを用いて、金型で成型品を作製する場合、当該プリプレグシートを金型にインサートすることが困難となり、所望の成型品を製造することができないという状況を引き起こしていた。
 本発明は、以上のような従来の課題を考慮してなされたものであり、成型時に加熱しても厚みの膨張が抑えられ、金型へのスムーズなインサートを可能にして、所望の成型品を得ることができるプリプレグシートを提供するものである。
 上記課題を解決し得た本発明のプリプレグシートは、炭素繊維と熱可塑性樹脂繊維を含む不織布からなる成型体の中間体であるプリプレグシートであって、前記熱可塑性樹脂繊維の融点~該融点+100℃の温度で90秒加熱した場合の厚さ膨張率が250%以下である点に特徴を有する。
 上記プリプレグシートは、ニードルパンチ痕が5個/cm以下であることが好ましい。
 上記プリプレグシートは、該プリプレグシートの断面において、炭素繊維の一部と他部が厚み方向に1mm以上変位しているものの本数が100本/cm以下であることが好ましい。
 上記プリプレグシートは、目付重量が100~1500g/m、厚みが0.5~6.0mmであることが好ましい。
 上記プリプレグシートにおいて、前記炭素繊維の平均繊維長が15~100mm、前記熱可塑性樹脂繊維の平均繊維長が25~100mmであることが好ましい。
 上記プリプレグシートにおいて、前記熱可塑性樹脂繊維は、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、及びポリエーテルイミドから選択されるものを用いることができる。
 上記プリプレグシートにおいて、前記炭素繊維と前記熱可塑性樹脂繊維が、20/80~80/20の質量比で混合されたものであることが好ましい。
 本発明のプリプレグシートは、プリプレグ形成後の金型成型前に行なう加熱処理(以下、プレ成型処理という)した場合の厚さ膨張率が250%以下であることから、従来のプリプレグシートを用いた際に発生する、加熱成型する際に繊維交絡している熱可塑性樹脂繊維が溶融し、繊維の交絡がほどけると共に、炭素繊維が元の交絡前の状態に戻ろうとする力が働き、該シートが厚み方向に膨張するという現象を抑えることが可能となる。 
本発明の実施の形態に係るプリプレグシートの製法、及び該プリプレグシートから成型品を得る製法の一例を示した概略図である。 本発明の実施の形態に係るプリプレグシート、及び該プリプレグシートから成型品を得るまでのプロセスの一例を示した図である。 本発明の実施の形態に係るプリプレグシートの断面写真である。(a)はプレ成型処理前、(b)はプレ成型処理後を示す。 従来のニードルパンチ処理したプリプレグシートの断面写真である。(a)はプレ成型処理前、(b)はプレ成型処理後を示す。 本発明の実施の形態に係るプリプレグシートのプレ成型処理後の拡大断面写真である。 従来のニードルパンチ処理したプリプレグシートのプレ成型処理後の拡大断面写真である。 針密度と厚さ膨張率との関係を示す図である。 プリプレグシート厚みと厚さ膨張率との関係を示す図である。 炭素繊維繊維長と厚さ膨張率との関係を示す図である。 熱可塑性樹脂繊維種と厚さ膨張率との関係を示す図である。 炭素繊維及び熱可塑性樹脂繊維の質量比と厚さ膨張率との関係を示す図である。
 以下、図面を参照しつつ、本発明のプリプレグシートについて詳細に説明する。
 本発明者らは、当該プリプレグシートを用いて成型品を得る際に、前処理として行なうプレ成型処理において該シートが膨張する現象について種々検討した結果、該プレ成型処理(具体的には、熱可塑性樹脂繊維の融点~該融点+100℃の温度で90秒加熱)した場合の該シートの厚さ膨張率が250%以下のプリプレグシートを得ることに成功した。これにより、該シートの成型時において厚み方向の膨張が抑えられ、金型へのスムーズなインサートを可能にして、所望の成型品を得ることができる。なお、厚さ膨張率は上記温度範囲全てにおいて250%以下を満たす必要はなく、上記温度範囲のいずれかの温度で250%以下を満たしていれば良い。
 また、本発明のプリプレグシートは、炭素繊維と熱可塑性樹脂繊維を交絡させる方法として一般に用いられているニードルパンチ機による痕跡が5個/cm以下であることが好ましく、より好ましくは3個/cm以下、さらに好ましくは2個/cm以下が良い。ニードルパンチ機による痕跡が5個/cm以下の場合、炭素繊維と熱可塑性樹脂繊維の交絡が少ないため、繊維の交絡がほどけて炭素繊維が元の交絡前の状態に戻ろうとする力が小さくて済み、プリプレグシートが厚み方向に膨張するという現象を抑えることが可能となる。
 さらに、本発明のプリプレグシートは、該シートの断面において、炭素繊維の一部と他部が厚み方向に1mm以上変位しているものの本数が100本/cm以下であることが好ましく、より好ましくは50本/cm以下、さらに好ましくは20本/cm以下が良い。プリプレグシート断面において、炭素繊維の一部と他部が厚み方向に1mm以上変位するものの本数が100本/cm以下の場合、該シートの厚み方向に配向する炭素繊維自体が少ないことから、熱可塑性樹脂繊維との交絡を抑えることができ、プリプレグシートが厚み方向に膨張するという現象を抑制することができる。
 プリプレグとは、一般に、炭素繊維に熱硬化性樹脂や熱可塑性樹脂を含浸させた半硬化状態のシート状成型用中間材料のことで、成型品として用いた場合に品質が安定することで知られている。最近では、量産性、成型時間の短縮化、及び設備費用の削減化等の観点から、炭素繊維に熱可塑性樹脂繊維を組み合わせたものが注目されており、軽量化、高性能化を必要とする航空宇宙用途、自動車部品用途、スポーツ用途等に用いられている。
 炭素繊維とは、一般に、アクリル繊維またはピッチ(石油、石炭、コールタール等の副生成物)を原料に高温で炭化して作った繊維であり、JIS規格では、有機繊維のプレカーサを加熱炭素化処理して得られる、質量比で90%以上が炭素で構成される繊維であると定義されるものである。アクリル繊維を使った炭素繊維は、PAN系(Polyacrylonitrile)、ピッチを使った炭素繊維は、ピッチ系(PITCH)と区分される。
 炭素繊維は、前述したとおり、他の繊維よりも分散性、繊維同士の絡み合いが弱いことから、不織布を形成する際には炭素繊維を単独の材料として利用することは少なく、合成樹脂等の樹脂繊維と炭素繊維とを組み合わせた複合材料として用いることが行なわれている。本発明のプリプレグシートに用いる炭素繊維についても、熱可塑性樹脂繊維と組み合わせた複合材料として用いる。
 なお、本発明の実施の形態において、PAN系、ピッチ系のいずれの炭素繊維でも用いることが可能であるが、熱可塑性樹脂繊維との分散性の観点から、PAN系を用いることがより好ましい。
 炭素繊維の平均繊維長としては、15~100mmのものを用いることが好ましく、より好ましくは20~80mm、さらに好ましくは30~70mmである。平均繊維長が15mm以上の場合、炭素繊維と熱可塑性樹脂繊維を含む不織布からなるプリプレグシートを成型した際の力学的強度が維持されやすい。また、平均繊維長が100mm以下の場合、該不織布における炭素繊維と熱可塑性樹脂繊維の分散性が良くなり、均一な不織布を形成しやすくなる。
 樹脂繊維として用いる熱可塑性樹脂は、常温では弾性を持ち、変形しにくく、加熱により軟化して所望の形に成型加工できる合成樹脂であれば、特に限定されるものではない。具体的には、生産性、材料コスト等を考慮して、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、及びポリエーテルイミドから選択されるものが好ましい。また、平均繊維長が25~100mmのものを用いることが好ましく、より好ましくは30~80mm、さらに好ましくは40~70mmのものを用いることが良い。平均繊維長が25mm以上の場合、炭素繊維と熱可塑性樹脂繊維を含む不織布からなるプリプレグシートを成型した際の力学的強度が向上する。また、平均繊維長が100mm以下の場合、該不織布における炭素繊維と熱可塑性樹脂繊維の分散性が良くなり、均一な不織布を形成しやすくなる。さらに、繊度について、2.2~22dtexのものを用いることが好ましく、より好ましくは2.2~20dtex、さらに好ましくは2.2~15dtexのものを用いることが良い。繊度が2.2dtex以上の場合、または、22dtex以下の場合、該不織布における炭素繊維と熱可塑性樹脂繊維の分散性が良くなり、均一な不織布を形成しやすくなる。
 炭素繊維と熱可塑性樹脂繊維の質量比については、20/80~80/20の範囲であることが好ましい。炭素繊維が80質量%以下の場合、または、炭素繊維が20質量%以上の場合、不織布形成後の加熱・加圧処理における熱可塑性樹脂繊維の溶融が十分となり、プリプレグシートの形状を保持しやすくなる。
 なお、本発明の実施の形態において、プリプレグシートの目付重量、及び厚みは、自動車部品用途等の成型品加工をスムーズに行なうことを考慮して、それぞれ、100~1500g/m、0.5~6.0mmが好ましく、より好ましくは250~1200g/m、1.0~5.0mm、さらに好ましくは500~1000g/m、2.0~4.5mmを用いることが良い。
 次に、本発明のプリプレグシートの製造方法、及び該プリプレグシートから成型品を得る方法について、その一例を図1、及び図2に基づいて以下説明する。
 図1は、本発明の実施の形態に係るプリプレグシートの製法、及び該プリプレグシートから成型品を得る製法の一例を示した概略図である。図2は、炭素繊維束の開繊に始まり、炭素繊維と熱可塑性樹脂繊維の混綿からシート化、積層化して不織布を得て、該不織布からプリプレグシート、及び該プリプレグシートから成型品を得るまでのプロセスの一例を示したチャート図である。
 本発明のプリプレグシート1は、炭素繊維束2を開繊した炭素繊維3と熱可塑性樹脂繊維4を所望の質量比(例えば、炭素繊維40質量%、熱可塑性樹脂繊維60質量%)にて混綿してシート状にし、さらに積層して不織布5を得た後、該不織布5を加熱・加圧処理(例えば、熱可塑性樹脂繊維としてポリプロピレンを素材とするものを用いた場合、240℃、90秒、1MPa)することで得られる。得られたプリプレグシート1の目付重量、厚みは所望の値(例えば、目付重量250g/m、厚み0.5~6.0mm)に調整される。プリプレグシート1は、後工程の金型成型でのスムーズなインサートを行なうことを考慮して、プレ成型処理(例えば、熱可塑性樹脂繊維としてポリプロピレンを素材とするものを用いた場合、240℃、90秒)が施される。
 なお、炭素繊維束2を開繊した炭素繊維3と熱可塑性樹脂繊維4を混綿後、シート状にして積層する方法については、公知の方法を用いることができる。例えば、混綿は、市販のブレンダー機を用いることができ、また、シート化・積層化については、カーディング方式を用いることができ、市販のカード機を用いることができる。
 また、得られた不織布5を加熱・加圧処理する方法としては、特段制限されるものではなく、公知の方法を用いることができる。例えば、操作性、汎用性の観点から、赤外線加熱炉6内においてベルトプレス7を行なう方法を用いることが好ましいが、他の方法として、市販のヒートスルーやオーブンでの装置による加熱も可能である。加熱温度は、熱可塑性樹脂繊維の融点を考慮して該熱可塑性樹脂繊維の融点~該融点+100℃が好ましく、より好ましくは該熱可塑性樹脂繊維の融点+20℃~該融点+100℃、さらに好ましくは該熱可塑性樹脂繊維の融点+40℃~該融点+100℃が良い。加熱時間は、30~300秒が好ましく、より好ましくは60~240秒、さらに好ましくは、60~180秒が良い。また、加圧力は、炭素繊維と熱可塑性樹脂繊維の均質性や処理後の強度を考慮して、0.1~10MPaが好ましく、より好ましくは0.5~10MPa、さらに好ましくは1~10MPaが良い。
 プリプレグシート1の金型成型前に行なうプレ成型処理は、赤外線加熱炉6内において、所定の加熱温度、加熱時間により行なう。具体的には、熱可塑性樹脂繊維の融点~該融点+100℃が好ましく、より好ましくは該熱可塑性樹脂繊維の融点+20℃~該融点+100℃、さらに好ましくは該熱可塑性樹脂繊維の融点+40℃~該融点+100℃が良い。また、加熱時間は90秒が好ましい。
  本願は2015年11月27日に出願された日本国特許出願第2015-232227号、及び2016年11月22日に出願された日本国特許出願第2016-226768号に基づく優先権の利益を主張するものである。上記出願の明細書の全内容が本願に参考のため援用される。
 以下、実施例を用いて本発明をさらに具体的に説明するが、本発明は以下の実施例のみに限定されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
(不織布の製造)
 炭素繊維束を開繊した平均繊維長48mmのPAN系炭素繊維(東レ製)40質量%と、平均繊維長51mm、融点168℃のポリプロピレン(ダイワボウ製)60質量%を市販のブレンダーで混綿した後、市販のカード機によりカーディングすることにより、シート化、及び積層化して不織布を作製した。
(加熱・加圧処理)
 上記で得られた不織布を市販のベルトプレス機に送り、市販の赤外線加熱炉にて処理することによりプリプレグシートを得た。得られたプリプレグシートを本発明品とした。該プリプレグシートの目付重量は250g/m、厚みは1.3mmであった。なお、加熱温度は240℃、加熱時間は90秒、加圧力は1MPaである。
 上記不織布の製造において、シート化、及び積層化したものを市販のニードルパンチ機を用いて不織布の表裏面に対して、それぞれ針密度(不織布単位面積当たりのニードルパンチ機の針が突き刺す本数)を30本/cmとして繊維交絡を施すこと以外は、本発明品と同様の方法で得られたプリプレグシートを比較品とした。
(プレ成型処理)
 上記の方法で得られたプリプレグシートを市販の赤外線加熱炉にて処理することにより行なった。なお、加熱温度は240℃(ポリプロピレンの融点+72℃)、加熱時間は90秒である。なお、プレ成型処理したプリプレグシート単位面積当たりのニードルパンチ機による痕跡の数を目視により算出した。本発明品、及び比較品のプリプレグシートの痕跡の数は、それぞれ、0個/cm、及び30個/cmであった。
(プレ成型処理前後における断面観察)
 上記の方法で得られたプリプレグシートのプレ成型処理前後における断面の様子を光学顕微鏡(KEYENCE製VHX-900)により観察し、炭素繊維と熱可塑性樹脂繊維との繊維交絡の状態を調べた。
 図3に本発明品のプリプレグシートの断面写真、図4に比較品のプリプレグシートの断面写真を示す。(a)はプレ成型処理前、(b)はプレ成型処理後を示す。また、図5に、本発明品のプリプレグシートのプレ成型処理後の拡大断面写真(レンズ倍率:30倍、視野面積:3mm×5mm)、図6に、比較品のプリプレグシートのプレ成型処理後の拡大断面写真(レンズ倍率:30倍、視野面積:3mm×5mm))を示す。
 図3、図5より、本発明品のプリプレグシートの断面は、プレ成型処理前後に関わらず、厚み方向への繊維交絡が存在しないことがわかる。一方、図4、図6より、比較品のプリプレグシートの断面は、プレ成型処理前に施したニードルパンチにより、炭素繊維の一部と他部が厚み方向に1mm以上変位する炭素繊維(図6の矢印の箇所を参照)が存在し、炭素繊維と熱可塑性樹脂繊維の繊維交絡が起こり、プレ成型処理後においても繊維交絡の状態が維持されていることがわかる。
(プレ成型前処理前後における見かけ厚み変化率の測定)
 本発明品、及び比較品について、プレ成型処理前後の見かけ厚みを市販の厚みゲージにより測定し、見かけ厚み変化率(厚さ膨張率)を求めた。表1にその結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明品(No.1~6)のプリプレグシートは、プレ成型処理後における厚さ膨張率が176.6~226.4%であり、比較品(No.7~10)と比べて小さな膨張に抑えられていることがわかる。一方、比較品(No.7~10)のプリプレグシートの断面は、プレ成型処理後における厚さ膨張率が452.5~727.7%であり、プレ成型処理後の膨張を抑えることができていないことがわかる。
(針密度の検討)
 上記不織布の製造において、シート化、及び積層化したものを市販のニードルパンチ機にて針密度を変化させること以外は、本発明品と同様の方法でプリプレグシートを作製した。これにより、針密度によるプリプレグシートの厚さ膨張率への影響を検討した。なお、針密度については、所定のニードルパンチを施したプリプレグシートをカッターナイフにて切り出し、上記プレ成型処理前後における断面観察と同様に光学顕微鏡で観察することにより、当該シートの断面における炭素繊維の一部と他部が厚み方向に1mm以上変位しているものの本数を目視にてカウントし、1cm当たりの本数を算出した。
 図7に針密度を変化させた場合の厚さ膨張率の結果を示す。図7より、単位面積(1cm)当たりのニードルパンチ機の突き刺す本数(針密度)が0本から5本程度までは、厚さ膨張率が250%以下であり、プレ成型処理後の膨張を抑えることが可能であることがわかった。一方、当該突き刺す本数が5本を超える場合、当該厚さ膨張率は250%を超えており、プレ成型処理後の膨張を抑えることができないことがわかった。これらの結果は、ニードルパンチ機による痕跡の数が5個/cm以下の場合、厚さ膨張率が250%以下となり、本発明品と同様に、プレ成型処理後のプリプレグシートの膨張を抑えることができることを示している。なお、実際のプレ成型処理したプリプレグシートの断面において、炭素繊維の一部と他部が厚み方向に1mm以上変位しているものの本数が100本/cm程度までは、厚さ膨張率が250%以下であり、本発明品と同様に、プレ成型処理後の膨張を抑えることが可能であることを確認した。
(厚みの検討)
 上記不織布の製造において、厚み1.3mmを変更する(目付重量は一定)こと以外は、本発明品と同様の方法でプリプレグシートを作製した。これにより、プリプレグシートの厚みの違いによる厚さ膨張率への影響を検討した。図8にその結果を示す。図8より、プリプレグシートの厚みを0.5~2.0mmに変化させると厚さ膨張率が低下する傾向にあるが、いずれの場合においても、厚さ膨張率は250%以下の値を示し、本発明品と同様に、プレ成型処理後の膨張を抑えることが可能であることがわかった。
(炭素繊維の繊維長の検討)
 上記不織布の製造において、炭素繊維の平均繊維長48mmを変更すること以外は、本発明品と同様の方法でプリプレグシートを作製した。これにより、炭素繊維の繊維長の違いによる厚さ膨張率への影響を検討した。図9にその結果を示す。図9より、炭素繊維の繊維長が24、48、70mmのいずれの場合においても、厚さ膨張率は250%以下の値を示し、本発明品と同様に、プレ成型処理後の膨張を抑えることが可能であることがわかった。
(熱可塑性樹脂繊維種の検討)
 上記不織布の製造において、熱可塑性樹脂繊維のポリプロピレンをポリアミドに変えること以外は、本発明品と同様の方法でプリプレグシートを作製した。これにより、熱可塑性樹脂繊維の違いによる厚さ膨張率への影響を検討した。図10にその結果を示す。図10より、熱可塑性樹脂繊維がポリアミドを用いた場合においても、厚み膨張率はポリプロピレンを用いた場合とほぼ同等の250%以下の値を示し、本発明品と同様に、プレ成型処理後の膨張を抑えることが可能であることがわかった。
(炭素繊維と熱可塑性樹脂繊維の質量比の検討)
 上記不織布の製造において、炭素繊維と熱可塑性樹脂繊維のポリプロピレンの質量比を種々変えること以外は、本発明品と同様の方法でプリプレグシートを作製した。これにより、炭素繊維と熱可塑性樹脂繊維の質量比による厚さ膨張率への影響を検討した。図11にその結果を示す。図11より、炭素繊維と熱可塑性樹脂繊維の質量比が20/80~80/20の範囲において、厚さ膨張率は250%以下の値を示し、本発明品と同様に、プレ成型処理後の膨張を抑えることが可能であることがわかった。
 本発明のプリプレグシートは成型時に加熱しても厚み方向への膨張が抑えられることから、該プリプレグシートの金型へのスムーズなインサートを可能にして、航空宇宙用途、自動車用途、スポーツ用途等の所望の成型品を得ることができる。
 1 プリプレグシート
 2 炭素繊維束
 3 炭素繊維
 4 熱可塑性樹脂繊維
 5 不織布
 6 赤外線加熱炉
 7 ベルトプレス
 

Claims (7)

  1.  炭素繊維と熱可塑性樹脂繊維を含む不織布からなる成型体の中間体であるプリプレグシートであって、
     前記熱可塑性樹脂繊維の融点~該融点+100℃の温度で90秒加熱した場合の厚さ膨張率が250%以下であることを特徴とするプリプレグシート。
  2.  ニードルパンチ痕が5個/cm以下である請求項1に記載のプリプレグシート。
  3.  前記プリプレグシートの断面において、前記炭素繊維の一部と他部が厚み方向に1mm以上変位しているものの本数が100本/cm以下である請求項1または2に記載のプリプレグシート。
  4.  目付重量が100~1500g/m、厚みが0.5~6.0mmである請求項1~3のいずれかに記載のプリプレグシート。
  5.  前記炭素繊維の平均繊維長が15~100mm、前記熱可塑性樹脂繊維の平均繊維長が25~100mmである請求項1~4のいずれかに記載のプリプレグシート。
  6.  前記熱可塑性樹脂繊維は、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、及びポリエーテルイミドから選択される請求項1~5のいずれかに記載のプリプレグシート。
  7.  前記炭素繊維と前記熱可塑性樹脂繊維が、20/80~80/20の質量比で混合されたものである、請求項1~6のいずれかに記載のプリプレグシート。
     
PCT/JP2016/085069 2015-11-27 2016-11-25 プリプレグシート WO2017090758A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16868701T PL3381974T3 (pl) 2015-11-27 2016-11-25 Arkusz prepregu
ES16868701T ES2908779T3 (es) 2015-11-27 2016-11-25 Hoja preimpregnada
EP16868701.0A EP3381974B1 (en) 2015-11-27 2016-11-25 Prepreg sheet
US15/774,661 US10697097B2 (en) 2015-11-27 2016-11-25 Prepreg sheet
CN201680068287.9A CN108350202B (zh) 2015-11-27 2016-11-25 预浸片

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015232227A JP6788340B2 (ja) 2015-11-27 2015-11-27 プリプレグシート
JP2015-232227 2015-11-27
JP2016-226768 2016-11-22
JP2016226768 2016-11-22

Publications (1)

Publication Number Publication Date
WO2017090758A1 true WO2017090758A1 (ja) 2017-06-01

Family

ID=58764119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085069 WO2017090758A1 (ja) 2015-11-27 2016-11-25 プリプレグシート

Country Status (7)

Country Link
US (1) US10697097B2 (ja)
EP (1) EP3381974B1 (ja)
CN (1) CN108350202B (ja)
ES (1) ES2908779T3 (ja)
PL (1) PL3381974T3 (ja)
PT (1) PT3381974T (ja)
WO (1) WO2017090758A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715385B (zh) 2016-09-14 2021-04-27 三菱化学株式会社 层叠基材及其制造方法
JP7019534B2 (ja) * 2018-08-22 2022-02-15 三菱製紙株式会社 炭素繊維不織布複合体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118655A (ja) * 1987-10-31 1989-05-11 Kobe Steel Ltd 炭素繊維強化複合材料用不織布の製造方法
JP2002212311A (ja) * 2001-01-15 2002-07-31 Japan Vilene Co Ltd 炭素繊維強化スタンパブルシート、その製造方法、及びその成形品
JP2014065831A (ja) * 2012-09-26 2014-04-17 Teijin Ltd 繊維強化プラスチックおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373267A (en) 1976-12-10 1978-06-29 Toho Beslon Co Molding of blended fiber mat and composite material
JPS621969A (ja) 1985-06-25 1987-01-07 松下電工株式会社 床下地材の構造
JPH10314519A (ja) 1997-05-22 1998-12-02 Unitika Ltd 炭素繊維からなる不織布の製造方法
JP4895370B2 (ja) 2006-09-27 2012-03-14 高安株式会社 炭素繊維不織布及びその製造方法
DE102010008370A1 (de) 2010-02-17 2011-08-18 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., 07407 Verfahren zur Herstellung eines plattenförmigen Halbzeugs aus Faserverbundwerkstoff
JP6003010B2 (ja) 2010-11-18 2016-10-05 三菱レイヨン株式会社 電磁波遮蔽用複合材料、電子機器用筐体及びバッテリーケース
CN103562278B (zh) * 2011-05-31 2016-10-05 东丽株式会社 碳纤维增强塑料及其制造方法
JP6087545B2 (ja) 2012-09-05 2017-03-01 帝人株式会社 繊維強化プラスチック成形用基材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118655A (ja) * 1987-10-31 1989-05-11 Kobe Steel Ltd 炭素繊維強化複合材料用不織布の製造方法
JP2002212311A (ja) * 2001-01-15 2002-07-31 Japan Vilene Co Ltd 炭素繊維強化スタンパブルシート、その製造方法、及びその成形品
JP2014065831A (ja) * 2012-09-26 2014-04-17 Teijin Ltd 繊維強化プラスチックおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3381974A4 *

Also Published As

Publication number Publication date
PT3381974T (pt) 2022-03-15
CN108350202B (zh) 2020-12-15
CN108350202A (zh) 2018-07-31
PL3381974T3 (pl) 2022-04-11
ES2908779T3 (es) 2022-05-03
US10697097B2 (en) 2020-06-30
EP3381974A4 (en) 2019-09-11
EP3381974A1 (en) 2018-10-03
EP3381974B1 (en) 2021-12-22
US20180327946A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP5780968B2 (ja) 繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体
JP6965957B2 (ja) 積層基材およびその製造方法並びに炭素繊維強化樹脂基材
JP2013208725A (ja) 炭素繊維強化熱可塑性樹脂積層体及びその製造法
JP5749343B2 (ja) アンダーカット部を有する複合成形体の製造方法
JP2013189634A (ja) 繊維強化複合材料およびその製造方法
JP6788340B2 (ja) プリプレグシート
WO2017090758A1 (ja) プリプレグシート
JP5911755B2 (ja) 繊維強化樹脂ペレットの製造方法及び繊維強化樹脂成形体の製造方法
WO2020218233A1 (ja) 繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具
WO2016084824A1 (ja) 炭素繊維マット、プリフォーム、シート材料および成形品
JP3675380B2 (ja) ガラス繊維強化スタンパブルシート用ガラス繊維複合マット及びその製造方法、ガラス繊維強化スタンパブルシート及びその製造方法並びに成形品
JP6906937B2 (ja) プリプレグシート
WO2016043258A1 (ja) 繊維強化熱可塑性樹脂複合材の製造方法、繊維強化熱可塑性樹脂テープの製造方法、プレス成形材料の製造方法、成形品の製造補法、一方向性プリプレグ、および成形品
JP6184668B2 (ja) 炭素繊維不織布の製造方法および炭素繊維不織布
JP2014234427A (ja) 繊維強化樹脂用繊維集合体、繊維強化樹脂シート及び繊維強化樹脂成形体
JP2014069403A (ja) スタンパブルシート状物を用いたプレス成型品の製造方法
JP6046425B2 (ja) 繊維強化プラスチック成形用基材および耐衝撃性繊維強化プラスチック
JP3223851U (ja) 積層熱成形品
JP6458589B2 (ja) シート材料、一体化成形品および一体化成形品の製造方法
JP7251201B2 (ja) 発泡成型品補強用不織布
JP2016188452A (ja) 熱成型品用不織布
JP2014062144A (ja) 繊維強化プラスチック
JP6523859B2 (ja) 切断体の製造方法、及び繊維強化樹脂の切断方法
JP2022150396A (ja) 炭素繊維強化樹脂複合体及びその製造方法
JP2021194809A (ja) 繊維ボード、成形体、それらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15774661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE