WO2017090209A1 - 顕微鏡、観察方法、及び制御プログラム - Google Patents

顕微鏡、観察方法、及び制御プログラム Download PDF

Info

Publication number
WO2017090209A1
WO2017090209A1 PCT/JP2015/083509 JP2015083509W WO2017090209A1 WO 2017090209 A1 WO2017090209 A1 WO 2017090209A1 JP 2015083509 W JP2015083509 W JP 2015083509W WO 2017090209 A1 WO2017090209 A1 WO 2017090209A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
sample
incident angle
stage
observation
Prior art date
Application number
PCT/JP2015/083509
Other languages
English (en)
French (fr)
Inventor
千枝子 中田
久美子 松爲
亘 友杉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2015/083509 priority Critical patent/WO2017090209A1/ja
Priority to EP15909326.9A priority patent/EP3382441A4/en
Priority to JP2017552256A priority patent/JP6540823B2/ja
Publication of WO2017090209A1 publication Critical patent/WO2017090209A1/ja
Priority to US15/991,534 priority patent/US10823675B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/12Condensers affording bright-field illumination
    • G02B21/125Condensers affording bright-field illumination affording both dark- and bright-field illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to a microscope, an observation method, and a control program.
  • Patent Document 1 A microscope that illuminates a sample obliquely is known (for example, Patent Document 1).
  • At least one of the illumination optical system that irradiates the sample with illumination light obliquely and the observation optical system that includes the objective lens, the stage that holds the sample, and the objective lens is used as the objective.
  • a microscope is provided.
  • a stage on which a sample is placed, an illumination optical system that irradiates illumination light obliquely to the sample, an observation optical system having an objective lens, and a sample are held.
  • a control unit that moves at least one of the stage and the objective lens in the same direction as the optical axis of the objective lens, an imaging device that images the sample via the objective lens, and imaging for each observation position in the optical axis direction of the objective lens
  • a storage unit that stores conditions, and the imaging condition includes information on an incident angle of illumination light to the sample, and the control unit is configured to move at least one of the stage and the objective lens based on the imaging condition.
  • a microscope is provided that changes the incident angle of illumination light to a sample.
  • an illumination optical system that irradiates illumination light obliquely with respect to the sample and an observation optical system having an objective lens, and at least a stage that holds the sample and an objective lens
  • One of the observation methods uses a microscope that can move in the same direction as the optical axis of the objective lens, and includes changing the incident angle of the illumination light with respect to the sample when moving at least one of the stage and the objective lens.
  • an illumination optical system that irradiates illumination light obliquely on the sample and an observation optical system having an objective lens, and at least a stage that holds the sample and an objective lens
  • a control program that causes a computer to execute control of a microscope that can move in the same direction as the optical axis of the objective lens, and the control is performed on the sample of illumination light when moving at least one of the stage and the objective lens.
  • a control program is provided that includes changing the incident angle.
  • FIG. 1 is a diagram showing a microscope 1 according to the present embodiment.
  • the microscope 1 is a microscope that can obliquely illuminate a sample S to be observed and observe an image of the sample S.
  • the microscope 1 is configured to be able to change the irradiation angle of the illumination light with respect to the sample S, for example.
  • the microscope 1 is described as being a fluorescence microscope, but the microscope 1 may be a microscope other than the fluorescence microscope.
  • the microscope 1 can observe the inside of the sample S, and can generate, for example, an image (eg, Z-stack) in which cross sections in the thickness direction of the sample S are stacked.
  • the microscope 1 may be capable of observing only one cross section in the thickness direction of the sample S.
  • the microscope 1 includes a stage 2, a light source device 3, an illumination optical system 4, a first observation optical system 5, an imaging unit 6, an angle adjustment unit 7, and a control device 8.
  • the control device 8 includes a control unit 9 that comprehensively controls each unit of the microscope 1.
  • Stage 2 holds the sample S to be observed.
  • the stage 2 can place the sample S on the upper surface thereof, for example.
  • the X direction and the Y direction are directions parallel to the upper surface of the stage 2
  • the Z direction is a direction perpendicular to the upper surface of the stage 2.
  • the stage 2 may have a mechanism that can move in the X direction, the Y direction, and the Z direction, for example.
  • the light source device 3 includes a light source 11, a shutter 12, an acoustooptic device 13, and a lens 14.
  • the light source 11 includes, for example, a light emitting element such as a laser diode (LD) or a light emitting diode (LED).
  • LD laser diode
  • LED light emitting diode
  • the microscope 1 is used for fluorescence observation, the light source 11 emits illumination light L including excitation light that excites a fluorescent substance contained in the sample S.
  • the shutter 12 is controlled by the control unit 9 and can switch between a state in which the illumination light L from the light source 11 passes and a state in which the illumination light L is blocked.
  • the acoustooptic device 13 is provided on the light exit side of the shutter 12.
  • the acoustooptic device 13 is, for example, an acoustooptic filter.
  • the acoustooptic device 13 is controlled by the control unit 9 and can adjust the light intensity of the illumination light L.
  • the acoustooptic element 13 is controlled by the control unit 9, and a state where the illumination light L passes through the acoustooptic element 13 (hereinafter referred to as a light passing state) and a state or intensity blocked by the acoustooptic element 13 are reduced.
  • the state hereinafter referred to as a light shielding state
  • the lens 14 is a coupler, for example, and condenses the illumination light L from the acoustooptic device 13 on the light guide member 16.
  • the microscope 1 may not include at least a part of the light source device 3.
  • the light source device 3 is unitized, and may be provided in the microscope 1 so as to be replaceable (attachable and removable).
  • the light source device 3 may be attached to the microscope 1 when observing with the microscope 1.
  • the illumination optical system 4 can irradiate the sample S with the illumination light L from the light source device 3 obliquely.
  • the illumination optical system 4 includes a light guide member 16, a lens 17, a lens 18, a filter 19, a dichroic mirror 20, and an objective lens 21.
  • the optical axis of the illumination optical system 4 is denoted by reference numeral 4a.
  • the light guide member 16 is an optical fiber, for example, and guides the illumination light L to the lens 17.
  • the lens 17 is a collimator, for example, and converts the illumination light L into parallel light.
  • the lens 18 condenses the illumination light L on the pupil plane (rear focal plane) of the objective lens 21 or a position in the vicinity thereof.
  • the vicinity of the pupil plane (rear focal plane) is within a range of ⁇ 10 mm from the pupil plane (rear focal plane), for example.
  • the filter 19 has a characteristic that light in a wavelength band including a wavelength of excitation light that excites a fluorescent substance contained in the sample S (hereinafter referred to as excitation wavelength) is transmitted, for example.
  • the wavelength characteristic of the filter 19 is set so that at least a part of light having a wavelength other than the excitation wavelength is blocked.
  • the dichroic mirror 20 has a characteristic that the illumination light L is reflected and light (for example, fluorescence) in a predetermined wavelength band among the light from the sample S is transmitted.
  • the light from the filter 19 is reflected by the dichroic mirror 20 and enters the objective lens 21. At the time of observation, a part of the sample S is disposed on the front focal plane of the objective lens 21.
  • the illumination optical system 4 mentioned above is an example, and can be changed suitably.
  • a part of the illumination optical system 4 described above may be omitted or included in the light source device 3.
  • the illumination optical system 4 may include at least a part of the light source device 3.
  • the illumination optical system 4 may include an aperture stop, a field stop, and the like.
  • the optical element closest to the sample S in the illumination optical system 4 is the objective lens 21 in FIG. 1, but may be a prism, a mirror, or the like.
  • the first observation optical system 5 forms an image with light from the sample S.
  • the first observation optical system 5 forms an image of fluorescence from the fluorescent material included in the sample S.
  • the first observation optical system 5 includes an objective lens 21, a dichroic mirror 20, a filter 24, a lens 25, an optical path switching member 26, a lens 27, and a lens 28.
  • the first observation optical system 5 shares the objective lens 21 and the dichroic mirror 20 with the illumination optical system 4.
  • the optical axis 21 a of the objective lens 21 is coaxial with the optical axis 4 a of the illumination optical system 4 and coaxial with the optical axis 5 a of the first observation optical system 5.
  • the optical axis 21a of the objective lens 21 is in the Z direction.
  • Fluorescence from the sample S enters the filter 24 through the objective lens 21 and the dichroic mirror 20.
  • the filter 24 has a characteristic that light in a predetermined wavelength band out of the light from the sample S is selectively transmitted. This predetermined wavelength band is set so as to include the wavelength of fluorescence from the sample S (hereinafter referred to as fluorescence wavelength).
  • the filter 24 blocks illumination light, external light, stray light, and the like reflected from the sample S.
  • the filter 24 is unitized with, for example, the filter 19 and the dichroic mirror 20, and the filter unit 29 is provided in a replaceable manner.
  • the filter unit 29 may be exchanged according to, for example, the wavelength of the illumination light L emitted from the light source device 3, the wavelength of the fluorescence emitted from the sample S, or a single unit corresponding to a plurality of excitation wavelengths and fluorescence wavelengths.
  • the one using one filter unit may be used.
  • the light that has passed through the filter 24 enters the optical path switching member 26 through the lens 25.
  • the light emitted from the lens 25 enters the optical path switching member 26.
  • the optical path switching member 26 is a prism, for example, and is provided so as to be insertable into and removable from the optical path of the first observation optical system 5.
  • the optical path switching member 26 is inserted into and removed from the optical path of the first observation optical system 5 by, for example, a drive unit (not shown) controlled by the control unit 9.
  • the optical path switching member 26 guides the fluorescence from the sample S to the optical path toward the imaging unit 6 by internal reflection when inserted in the optical path of the first observation optical system 5.
  • Fluorescence from the sample S passes through the optical path switching member 26 and then enters the imaging unit 6 through the lens 27 and the lens 28.
  • the objective lens 21 and the lens 25 form a primary image (eg, intermediate image) of the sample S, for example.
  • the lens 27 and the lens 28 form a secondary image (eg, final image) of the sample S.
  • the first observation optical system 5 described above is an example and can be changed as appropriate. For example, a part of the first observation optical system 5 described above may be omitted. Further, the first observation optical system 5 may include an aperture stop, a field stop, and the like. The first observation optical system 5 may be provided independently of the illumination optical system 4, and may be provided on the opposite side of the objective lens 21 with respect to the sample S, for example.
  • the microscope 1 includes a second observation optical system 30 used for setting an observation range.
  • the second observation optical system 30 includes an objective lens 21, a dichroic mirror 20, a filter 24, a lens 25, a mirror 31, a lens 32, a mirror 33, a lens 34, a lens 35, in order from the sample S toward the observer's viewpoint Vp.
  • a mirror 36 and a lens 37 are provided.
  • the second observation optical system 30 shares the configuration from the objective lens 21 to the lens 25 with the first observation optical system 5. After passing through the lens 25, the light from the sample S enters the mirror 31 in a state where the optical path switching member 26 is retracted from the optical path of the first observation optical system 5.
  • the light reflected by the mirror 31 is incident on the mirror 33 via the lens 32, is reflected by the mirror 33, and then enters the mirror 36 via the lens 34 and the lens 35.
  • the light reflected by the mirror 36 enters the viewpoint Vp through the lens 37.
  • the second observation optical system 30 forms an intermediate image of the sample S in the optical path between the lens 35 and the lens 37.
  • the lens 37 is an eyepiece, for example, and the observer can set an observation range by observing the intermediate image.
  • the imaging unit 6 captures an image formed by the first observation optical system 5.
  • the imaging unit 6 includes an imaging element 40 and a control unit 41.
  • the image sensor 40 is, for example, a CMOS image sensor, but may be a CCD image sensor or the like.
  • the image sensor 40 has, for example, a structure in which a plurality of pixels arranged two-dimensionally and a photoelectric conversion element such as a photodiode is arranged in each pixel.
  • the imaging element 40 reads out the electric charge accumulated in the photoelectric conversion element by a readout circuit.
  • the image sensor 40 converts the read charges into digital data, and outputs data in a digital format (eg, image data) in which pixel positions and gradation values are associated with each other.
  • the control unit 41 operates the image sensor 40 based on a control signal input from the control unit 9 of the control device 8, and outputs captured image data to the control device 8. Further, the control unit 41 outputs a charge accumulation period and a charge read period to the control
  • the microscope 1 includes an input / output device 42 and a storage device 43.
  • the input / output device 42 is communicably connected to the control device 8 by wire or wireless.
  • the input / output device 42 includes a display device 44 (display unit, output unit) and an input device 45 (input unit).
  • the display device 44 is, for example, a liquid crystal display.
  • the display device 44 displays various images such as an image indicating various settings of the microscope 1, an image captured by the imaging unit 6, and an image generated from the captured image.
  • the control unit 9 controls the display device 44 to display various images on the display device 44. For example, the control unit 9 supplies the image data generated by the image processing unit 56 to the display device 44 and causes the display device 44 to display the image.
  • the input device 45 is an input unit that can be operated by the user, such as a keyboard, a mouse, or a trackball.
  • the input device 45 receives, for example, input of various information such as observation conditions and operation commands for each part of the microscope 1 from the user.
  • the input device 45 supplies information input to the own device to the control device 8.
  • the input / output device 42 is not limited to the above configuration, and may be a touch panel in which a display unit and an input unit are integrated, for example, or may include another output unit (eg, a printer) instead of the display device 44. Good.
  • the microscope 1 can change the observation position on the sample S in the direction of the optical axis 4 a of the illumination optical system 4.
  • the observation position on the sample S is set at or near the position of the front focal plane of the objective lens 21.
  • the observation position on the sample S can be changed, for example, by relatively moving the sample S and the objective lens 21 in the direction of the optical axis 21a of the objective lens 21 (the optical axis 4a of the illumination optical system 4).
  • the observation position on the sample S can be changed by moving the stage 2 on which the sample S is placed in the direction of the optical axis 21 a of the objective lens 21.
  • the observation position in the sample S may be changed by moving the objective lens 21 in the direction of the optical axis. That is, to change the observation position in the sample S, the stage 2 may be moved, the objective lens 21 may be moved, or both of them may be moved.
  • the angle adjusting unit 7 adjusts the angle of the illumination light L emitted from the illumination optical system 4 according to the observation position of the sample S in the direction of the optical axis 4a of the illumination optical system 4.
  • the angle adjustment unit 7 includes, for example, a holding member 51 and a drive unit 52.
  • the holding member 51 holds the end portion of the light guide member 16 on the light emission side.
  • the drive unit 52 can move the holding member 51 in a direction perpendicular to the optical axis 4 a of the illumination optical system 4.
  • the holding member 51 is provided on the pupil conjugate plane of the objective lens 21 or in the vicinity thereof.
  • the control device 8 collectively controls each part of the microscope 1.
  • the control device 8 includes a control unit 9, a calculation unit 55, and an image processing unit 56.
  • the control unit 9 controls the drive unit 52 and moves the holding member 51 by the drive unit 52. Thereby, the incident angle (for example, angle of the illumination light L and the optical axis 4a) of the illumination light L with respect to the sample S is adjusted.
  • the holding member 51 may be moved manually.
  • control unit 9 sends the light source device to the acoustooptic device 13 based on a signal (imaging timing information) indicating the charge accumulation period and the charge read period supplied from the control unit 41 of the imaging unit 6, for example.
  • 3 is supplied with a control signal for switching between a light-transmitting state through which light from 3 passes and a light-blocking state in which light from the light source device 3 is blocked.
  • the acoustooptic device 13 switches between a light transmission state and a light shielding state based on this control signal.
  • control unit 41 controls the acoustooptic device 13 to switch between the light shielding state and the light passing state based on a signal indicating the charge accumulation period and the charge readout period (information on imaging timing).
  • a signal may be supplied to control the acousto-optic element 13.
  • control unit 9 controls the imaging unit 6 to cause the imaging device 40 to perform imaging.
  • the control unit 9 acquires the imaging result (data of the captured image) from the imaging unit 6.
  • the image processing unit 56 performs image processing using the imaging result of the imaging unit 6. For example, the control unit 9 changes the observation position on the sample S by changing the position of the stage 2 in the direction of the optical axis 21 a of the objective lens 21. Further, the control unit 9 causes the imaging device 40 to perform imaging for each observation position, and obtains captured images at a plurality of observation positions in the direction of the optical axis 21 a of the objective lens 21.
  • the image processing unit 56 can generate a three-dimensional image of the sample S using, for example, a plurality of acquired captured images.
  • FIG. 2 is a diagram illustrating adjustment of the incident angle of the illumination light L with respect to the sample S by the angle adjustment unit 7.
  • the angle adjustment unit 7 adjusts the incident angle of the illumination light L with respect to the sample S.
  • the incident angle of the illumination light L with respect to the sample S is an angle formed by the optical axis 21a of the objective lens 21 (the optical axis 4a of the illumination optical system 4) and the direction in which the illumination light L is incident on the sample S. ( ⁇ 1, ⁇ 2, etc. in FIG. 2).
  • the incident angle of the illumination light L with respect to the sample S ⁇ 1, ⁇ 2, etc. in FIG.
  • a light source image that can be generally regarded as a point light source is formed on the light emitting side end 16 a of the light guide member 16.
  • the end 16a of the light guide member 16 is disposed by the holding member 51 at the position of the pupil conjugate plane PU2 optically conjugate with the pupil plane PU1 of the objective lens 21 or in the vicinity of the pupil conjugate plane PU2.
  • the holding member 51 is disposed at the position Q1 on the pupil conjugate plane PU2.
  • the illumination light L emitted from the light guide member 16 enters the incident position P1 on the pupil plane PU1 of the objective lens 21, and then enters the sample S at an angle ⁇ 1.
  • the sample S is placed on a transparent member 2 a such as a cover glass, and the transparent member 2 a is supported by the stage 2.
  • the space between the lower surface of the transparent member 2a and the end surface of the objective lens 21 is filled with the immersion liquid LQ.
  • the refractive index of the immersion liquid LQ is substantially the same as the refractive index of the transparent member 2a, for example.
  • the angle between the illumination light L incident on the sample S at an angle ⁇ 1 and refracted at the interface Sa between the sample S and the transparent member 2a and the optical axis 21a of the objective lens 21 (the optical axis 4a of the illumination optical system 4) is defined. It is represented by ⁇ 1.
  • the driving unit 52 moves the holding member 51 holding the end 16a of the light guide member 16 to a position Q2 closer to the optical axis 4a than the position Q1 when the angle of the illumination light L is reduced.
  • the incident position of the illumination light L on the pupil plane PU1 of the objective lens 21 changes to the incident position P2 closer to the optical axis 4a than the incident position P1, and the angle of the illumination light changes to ⁇ 2 smaller than ⁇ 1.
  • the angle between the illumination light L incident on the sample S at the angle ⁇ 2 and refracted at the interface Sa and the optical axis 4a is represented by ⁇ 2. Since ⁇ 2 is smaller than ⁇ 1, ⁇ 2 is smaller than ⁇ 1.
  • FIG. 3 is a diagram showing the illumination field of the illumination optical system and the field of view of the observation optical system.
  • the observation position on the sample S is assumed to be the same position as the front focal plane of the objective lens 21.
  • the illumination light L is collected on the pupil plane PU1 of the objective lens 21 is illustrated, but the illumination light L does not necessarily need to be collected on the pupil plane PU1 of the objective lens 21.
  • the illumination light L may be condensed near the pupil plane PU1.
  • the front focal plane FP1 of the objective lens 21 is set at the same position as the interface Sa between the sample S and the transparent member 2a.
  • the illumination light L collected at the incident position P1 on the pupil plane PU1 of the objective lens 21 becomes parallel light, illuminates the sample S, and forms an illumination field LF1 at the interface Sa between the sample S and the transparent member 2a.
  • the illumination field LF1 is formed around the optical axis 21a (optical axis 4a) of the objective lens 21, for example.
  • the visual field VF eg, the observation range on the sample S of the first observation optical system 5 (see FIG. 1) is formed around the optical axis 21a (optical axis 4a) of the objective lens 21, for example.
  • the illumination field LF is formed, for example, in a region where the entire visual field VF is accommodated.
  • FIG. 3B shows a state in which, for example, the stage 2 is brought close to the objective lens 21 from the state of FIG. 3B, the front focal plane FP2 of the objective lens 21 is located away from the interface Sa between the sample S and the transparent member 2a in the direction of the optical axis 21a (optical axis 4a) of the objective lens 21 (of the sample S).
  • the illumination light L condensed on the pupil plane PU1 of the objective lens 21 becomes parallel light and forms an illumination field LF2 on the front focal plane FP2.
  • the illumination light L incident on the sample S has a ⁇ 1 angle with the optical axis 21a (optical axis 4a) of the objective lens 21 due to refraction at the interface Sa between the sample S and the transparent member 2a.
  • the illumination field LF2 moves by a movement amount ⁇ X in the + X direction compared to the illumination field LF1.
  • the movement amount ⁇ X is an amount that depends on the distance ⁇ Z between the interface Sa between the sample S and the transparent member 2a and the front focal plane FP2, the angle ⁇ 1, and the like. As the distance ⁇ Z increases or the angle ⁇ 1 increases, the movement amount ⁇ X increases. As the movement amount ⁇ X increases, the overlapping area between the illumination field LF2 and the visual field VF decreases, and it becomes difficult to obtain an image of the sample S satisfactorily. Therefore, the angle adjustment unit 7 illustrated in FIG.
  • the 2 is configured to change the illumination light L according to the observation position of the sample S in the direction of the optical axis 21a (optical axis 4a) of the objective lens 21 (the front focal plane of the objective lens 21). The incident angle with respect to the sample S is adjusted.
  • the front focal plane FP2 of the objective lens 21 is set at the same position as in FIG.
  • the angle adjusting unit 7 (see FIG. 2), for example, makes the incident position (condensing position) of the illumination light L on the pupil plane PU1 of the objective lens 21 incident according to the position of the front focal plane FP2 of the objective lens 21. Adjust to position P3.
  • the incident position P3 is set to a position closer to the optical axis 21a (optical axis 4a) of the objective lens 21 than the incident position P1 in FIG.
  • the illumination light L collected at the incident position P3 becomes parallel light and travels toward the sample S.
  • the angle ⁇ 3 of the illumination light L toward the sample S is smaller than the angle ⁇ 1 in FIG. 3B, and the illumination light refracted at the interface Sa between the sample S and the transparent member 2a.
  • the angle L (the angle between the illumination light L refracted at the interface Sa and the optical axis 21a (optical axis 4a) of the objective lens 21) ⁇ 3 is smaller than the angle ⁇ 1 in FIG. Therefore, the illumination field LF3 moves in the ⁇ X direction as compared with the illumination field LF2 in FIG. Thereby, the overlapping area of the illumination field LF3 and the visual field VF is increased as compared with FIG. 3B, and an image of the sample S can be obtained satisfactorily.
  • the angle adjustment unit 7 illustrated in FIG. 2 is, for example, an observation position (front focal plane FP2 of the objective lens 21) from the interface Sa between the sample S and the transparent member 2a in the direction of the optical axis 21a (optical axis 4a) of the objective lens 21.
  • the incident position P is adjusted according to the distance ⁇ Z.
  • the angle adjusting unit 7 sets the incident position P of the illumination light L to the objective lens 21 as the front focal plane FP2 of the objective lens 21 is farther from the interface Sa between the sample S and the transparent member 2a (as ⁇ Z is larger). Is moved in a direction approaching the optical axis 21a (optical axis 4a).
  • the stage 2 when the stage 2 is moved in the direction approaching the objective lens 21 along the optical axis 21a of the objective lens 21, the deep part of the sample S (here, away from the interface Sa in a direction in which the distance increases) is the observation position. It becomes.
  • the incident angle of the illumination light L with respect to the sample S if the incident angle of the illumination light L with respect to the sample S remains constant, the overlapping area between the illumination field and the field of view decreases, so that the stage 2 is moved along the optical axis and controlled.
  • the unit 9 controls the driving unit 52 of the angle adjusting unit 7, and moves the holding member 51 by the driving unit 52 so that the incident position P approaches the optical axis 21 a (optical axis 4 a) of the objective lens 21.
  • the control unit 9 controls the drive unit 52 of the angle adjustment unit 7, and the incident position P of the objective lens 21 is controlled by the drive unit 52.
  • the holding member 51 is moved so as to approach the optical axis 21a (optical axis 4a).
  • the calculation unit 55 shown in FIG. 1 calculates the target value of the incident position (for example, the incident position P3 in FIG. 3) with respect to the position of the front focal plane FP of the objective lens 21 on the sample S.
  • the control unit 9 controls the angle adjustment unit 7 based on the calculation result of the calculation unit 55.
  • the calculation unit 55 calculates a target value of the incident position of the illumination light L on the pupil plane PU1 based on information input via the input device 45.
  • FIG. 4A is a diagram illustrating a relationship between an observation position and an incident angle calculated by the calculation unit 55 according to the present embodiment.
  • the calculation unit 55 uses, for example, two or more sets of the observation position specified by the user (the position of the front focal plane FP in the sample S of the objective lens 21) and the incident position P of the illumination light L as another observation position.
  • the target value of the incident position P of the corresponding illumination light L is calculated.
  • the horizontal axis is an observation position (unit: ⁇ m) in which the inside of the sample S is positive with the interface Sa between the sample S and the transparent member 2a as a reference (0 ⁇ m).
  • the vertical axis is a value indicating the incident position P of the illumination light L on the pupil plane PU1, and its unit is an arbitrary unit (au).
  • a symbol U1 indicates a target value (about 0.897) of the incident position P corresponding to the first observation position (for example, about 0 ⁇ m) designated by the user.
  • Symbol U2 indicates a target value of the incident position P (eg, about 0.841) corresponding to the second observation position (eg, about 4.5 ⁇ m) designated by the user.
  • the calculation unit 55 calculates a target value of the incident position P with respect to the third observation position between the first observation position and the second observation position by interpolating between the plot U1 and the plot U2, for example. Specifically, in FIG. 4, the calculation unit 55 linearly interpolates U3 to U12 using linear interpolation.
  • the user specifies U1 and U2 and interpolates between U1 and U2. However, for example, the user specifies U5 and U10 to specify U1 to U4, U6 to U9, and U11. ⁇ U12 may be calculated. Note that the number of observation positions is appropriately set according to observation conditions and the like.
  • FIG. 4B is a diagram illustrating another example of the operation of the calculation unit 55 according to the present embodiment.
  • the calculation unit 55 calculates the incident position P of the illumination light L on the pupil plane PU1 by a non-linear interpolation method.
  • the calculation unit 55 interpolates a section between the plots U1 and U2 so that the plots U1 and U2 are end points and the plurality of plots U1 to U12 are arranged on a downwardly convex curve.
  • the calculation unit 55 calculates a plurality of plots U3 to U12 using an interpolation method (for example, ⁇ interpolation) in which the target value of the incident position is expressed in a function form including the index of the observation position.
  • an interpolation method for example, ⁇ interpolation
  • the interpolation method used by the calculation unit 55 is not limited to the above-described example, and may be an interpolation method having a polygonal distribution.
  • the control unit 9 may output to the input / output device 42 a plurality of methods for calculating information related to the incident angle according to the position of the objective lens 21 in a selectable manner. For example, the control unit 9 displays a plurality of interpolation method candidates (eg, linear interpolation, ⁇ interpolation, etc.) on the display device 44, and the user operates the input device 45 to select the interpolation method to be used. May be selectable.
  • interpolation method candidates eg, linear interpolation, ⁇ interpolation, etc.
  • the calculation unit 55 calculates information on the incident angle according to the position of the objective lens 21 based on the calculation method input from the input / output device 42, and the control unit 9 uses the information calculated by the calculation unit 55. Based on this, the incident angle may be changed.
  • the control unit 9 outputs a plurality of methods for calculating information related to the incident angle according to the position of the stage 2 to the input / output device 42 so that the information can be selected. Based on the above, information regarding the incident angle according to the position of the stage 2 may be calculated, and the control unit 9 may change the incident angle based on the information calculated by the calculation unit 55.
  • the horizontal axis is the observation position where the inside of the sample S is positive with the interface Sa between the sample S and the transparent member 2a as a reference (0 ⁇ m), but the position of the stage 2 or the objective lens 21 It is good also as a position.
  • the user designates the first observation position and the target value of the incident position P, and the second observation position and the target value of the incident position P.
  • the calculation unit 55 determines the stage 2 corresponding to the first observation position.
  • the position (first stage position) and the position of the stage 2 (second stage position) corresponding to the second observation position are acquired, the first stage position and the target value of the incident position P, the second stage position and the incident thereof.
  • the target value of the position P may be associated.
  • the calculation unit 55 calculates a target value of the incident position P corresponding to the position of the stage 2.
  • the horizontal axis may be the absolute coordinate position of the stage 2 or may be based on the first stage position.
  • the user designates the first observation position and the target value of the incident position P, and the second observation position and the target value of the incident position P.
  • the calculation unit 55 corresponds to the first observation position.
  • the position of the objective lens 21 (first objective lens position) and the position of the objective lens 21 corresponding to the second observation position (second objective lens position) are acquired, and the target value of the first objective lens position and its incident position P is obtained.
  • the second objective lens position and the target value of the incident position P may be associated with each other.
  • the calculation unit 55 calculates a target value of the incident position P corresponding to the position of the objective lens 21.
  • the horizontal axis may be the absolute coordinate position of the objective lens 21 or may be based on the first objective lens position.
  • the control unit 9 controls the angle adjustment unit 7 based on the calculation result of the calculation unit 55. In this case, the control unit 9 controls the angle adjustment unit 7 using the position of the holding member 51 corresponding to the incident position P stored in the storage device 43 in advance.
  • the vertical axis is the incident position P of the illumination light L on the pupil plane PU1, but it may be the position of the holding member 51.
  • the user designates the first observation position and the position of the holding member 51, the second observation position and the position of the holding member 51, and the calculating unit 55 determines the position of the holding member 51 according to the observation position. Is calculated. In this case, it is not necessary to store the position of the holding member 51 corresponding to the incident position P in advance in the storage device 43.
  • the control unit 9 may change the incident angle based on information on the incident angle corresponding to the position of the objective lens 21 (hereinafter referred to as first reference information).
  • the first reference information may be information related to the incident angle associated with the absolute position information of the objective lens 21, for example.
  • the absolute position information is, for example, information on the position of the objective lens 21 with respect to a predetermined reference position, such as coordinates in the direction (Z direction) of the optical axis 21a of the objective lens 21.
  • the reference position is determined by the control unit 9 when the microscope 1 is turned on.
  • a function e.g., a formula, a numerical value table
  • the first reference information may be information regarding the incident angle associated with the movement amount of the objective lens 21.
  • a function e.g., a formula, a numerical table
  • the first reference information may be information regarding the incident angle associated with the relative position information of the objective lens 21 with respect to the stage 2.
  • the relative position information is, for example, information on the difference between the coordinates of the stage 2 and the coordinates of the objective lens 21 in the direction of the optical axis 21a of the objective lens 21 (Z direction).
  • a function e.g., a mathematical expression or a numerical table
  • the control unit 9 may change the incident angle based on information on the incident angle according to the position of the stage 2 (hereinafter referred to as second reference information).
  • the second reference information may be information related to the incident angle associated with the absolute position information of the stage 2, for example.
  • the absolute position information is, for example, information on the position of the stage 2 with respect to a predetermined reference position, and is the coordinates of the stage 2 in the direction of the optical axis 21a of the objective lens 21 (Z direction).
  • the reference position is determined by the control unit 9 when the microscope 1 is turned on.
  • a function e.g., a formula, a numerical table
  • the second reference information may be information regarding the incident angle associated with the moving amount of the stage 2.
  • a function e.g., a formula, a numerical table
  • the second reference information may be information related to the incident angle associated with the relative position information of the stage 2 with respect to the objective lens 21.
  • the relative position information is, for example, information on the difference between the coordinates of the stage 2 and the coordinates of the objective lens 21 in the direction of the optical axis 21a of the objective lens 21 (Z direction).
  • a function e.g., a mathematical expression or a numerical table
  • FIG. 5 is a flowchart illustrating an example of the observation method according to the embodiment.
  • the user sets observation conditions using the input device 45.
  • the observation conditions are, for example, the first observation position (lower limit of the observation position) and the incident position at that time, the second observation position (upper limit of the observation position) and the incident position at that time, and observation in the optical axis direction of the objective lens 21. Such as the number of positions.
  • the user moves the holding member 51 to change the incident position to determine the optimum incident position at the first observation position and the second observation position based on the contrast, light intensity, and the like of a plurality of images captured. decide.
  • the above observation conditions may be stored in the storage unit 43 in advance, for example.
  • step S2 the calculation unit 55 calculates the relationship between the observation position and the incident position.
  • the calculation unit 55 uses the first observation position, the second observation position, and the number of observation positions in the optical axis direction of the objective lens 21 defined in the observation condition, and the first observation position, the second observation position, and the like.
  • the observation position between is calculated.
  • the calculation unit 55 uses the incident position in the case of the first observation position and the incident position in the case of the second observation position, and calculates the incident position at each observation position therebetween. To do.
  • step S3 the microscope 1 starts an operation related to observation, for example, according to a user instruction.
  • step S4 the control unit 41 controls the stage 2 and moves the stage 2 to a position corresponding to the first observation position.
  • step S5 the control unit 41 moves the holding member 51 using the relationship between the observation position and the incident angle.
  • step S ⁇ b> 6 the control unit 41 causes the imaging unit 6 to capture an image formed by the first observation optical system 5 in a state where the illumination light is irradiated from the illumination optical system 4 to the sample S, and acquires an image.
  • step S ⁇ b> 7 the control unit 41 determines whether image acquisition has been completed for all observation positions.
  • step S7 When it is determined that a part of the observation position set as the observation condition in step S1 is not completed (step S7; No), the control unit 41 positions the stage 2 in accordance with the next observation position in step S8. The process from step S5 to step S7 is repeated. In addition, when the control unit 41 determines that acquisition of images for all observation positions is completed (step S7; Yes), the series of processing ends.
  • step S2 the calculation unit 55 calculates the relationship between the observation position and the incident position, but the relationship between the observation position and the incident position may be stored in the storage device 43 in advance. In this case, step S2 is omitted.
  • FIG. 6 is a diagram illustrating a relationship between an observation position and an incident angle calculated by the calculation unit 55 according to the second embodiment.
  • the user does not need to specify a set of the observation position (the position of the front focal plane FP in the sample S of the objective lens 21) and the incident position P of the illumination light L.
  • the calculation unit 55 calculates the relationship between the observation position and the target value of the incident position P as indicated by reference numeral D1 in FIG. 6 based on a predetermined observation condition.
  • the above observation conditions include, for example, the refractive index between the sample S and the objective lens 21 (eg, the refractive index of the transparent member, the refractive index of the immersion liquid), the refractive index of the sample S, the type of the objective lens, and the environmental temperature. And the thickness of the cover glass 2a.
  • the observation position the position of the front focal plane FP in the sample S of the objective lens 21
  • the incident position P of the illumination light L the incident angle P is changed at the observation position, and a plurality of images are acquired.
  • the trouble can be saved.
  • calculation unit 55 calculates, for example, an area close to the interface Sa between the sample S and the transparent member 2a as indicated by reference numeral D2 in FIG. 6 in consideration of the influence of the aberration, the evanescent field, and the like. May be.
  • the user designates a set (symbol U1, U2, etc.) of the observation position (the position of the front focal plane FP in the sample S of the objective lens 21) and the incident position P of the illumination light L.
  • the calculation unit 55 calculates the relationship between the observation position and the incident position P by designating the observation position (the position of the front focal plane FP in the sample S of the objective lens 21).
  • the control unit 9 controls the driving unit 52 to move the holding member 51, and the sample S illuminated at a different incident position P at the designated observation position.
  • the imaging unit 6 is caused to capture a plurality of images.
  • the calculation unit 55 determines the target value of the incident position P corresponding to the first observation position input by the user, based on the information regarding the light from the sample S detected each time the incident position P is changed. For example, the calculation unit 55 sets the incident position P having the highest light intensity or contrast from the sample S as the target value of the incident position P at the first observation position. Similarly, the calculation unit 55 calculates the target value of the incident position P at the second observation position. Further, the calculation unit 55 similarly relates to light from the sample S that is detected every time the incident position P is changed for observation positions other than the first observation position and the second observation position (eg, U3 to U12). Based on the information, a target value of the incident position P may be calculated.
  • the relationship between the observation position and the incident position P can be calculated with higher accuracy than when linear interpolation is performed on U3 to U12 from U1 and U2.
  • the user needs to specify the target value of the incident position P corresponding to the observation position.
  • the calculation unit 55 performs the incident corresponding to the observation position specified by the user. Since the position P is calculated, the user's trouble can be saved.
  • FIG. 7 is a diagram showing the microscope 1 according to the present embodiment.
  • the microscope according to the present embodiment is a microscope using a single-molecule localization microscopy method such as STORM or PALM.
  • the microscope according to the embodiment can be used for both fluorescence observation of a sample labeled with one type of fluorescent substance and fluorescence observation of a sample labeled with two or more types of fluorescent substances.
  • the microscope according to the embodiment has, for example, a mode for generating a two-dimensional super-resolution image and a mode for generating a three-dimensional super-resolution image, and can switch between the two modes. It may have only one of the two modes.
  • a mode in which there are two types of fluorescent dyes (eg, reporter dyes) used for labeling, but the number of fluorescent dyes (eg, reporter dyes) may be one or more than three. .
  • the sample may include living cells (live cells), may include cells fixed using a tissue fixing solution such as a formaldehyde solution, or may be tissue.
  • the fluorescent substance may be a fluorescent dye such as a cyanine dye or a fluorescent protein.
  • the fluorescent dye includes a reporter dye that emits fluorescence when receiving excitation light in an activated state (hereinafter referred to as an activated state).
  • the fluorescent dye may include an activator dye that receives activation light and activates the reporter dye. If the fluorescent dye does not contain an activator dye, the reporter dye receives an activation light and becomes activated.
  • Fluorescent dyes include, for example, a dye pair in which two kinds of cyanine dyes are combined (eg, Cy3-Cy5 dye pair (Cy3, Cy5 is a registered trademark), Cy2-Cy5 dye pair (Cy2, Cy5 is a registered trademark) , Cy3-Alexa® Fluor647 dye pair (Cy3, Alexa® Fluor is a registered trademark)) and one type of dye (eg, Alexa® Fluor647 (Alexa® Fluor is a registered trademark)).
  • the fluorescent protein include PA-GFP and Dronpa.
  • the illumination optical system 4 irradiates the sample S with excitation light having two types of wavelengths according to the fluorescent material (eg, reporter dye).
  • the light source device 3 includes an activation light source 11a, an excitation light source 11b, an excitation light source 11c, a shutter 12a, a shutter 12b, a shutter 12c, a mirror 61, a dichroic mirror 62, and a dichroic mirror 63.
  • the activation light source 11a emits activation light L0 that activates a part of the fluorescent substance contained in the sample S as illumination light.
  • the fluorescent material contains a reporter dye and does not contain an activator dye.
  • the reporter dye of the fluorescent substance is in an activated state capable of emitting fluorescence when irradiated with the activation light L0.
  • the wavelength of the activation light L0 is, for example, 405 nm.
  • the fluorescent material may include a reporter dye and an activator dye. In this case, the activator dye activates the reporter dye when it receives the activation light L0.
  • the fluorescent substance may be a fluorescent protein such as PA-GFP or Dronpa.
  • the shutter 12a is disposed on the light emission side of the activation light source 11a. The shutter 12a is controlled by the control unit 9, and can switch between a state in which the activation light L0 from the activation light source 11a passes and a state in which the activation light L0 is blocked.
  • the excitation light source 11b emits first excitation light L1 having a first wavelength as illumination light.
  • the shutter 12b is disposed on the light emission side of the excitation light source 11b.
  • the shutter 12b is controlled by the control unit 9, and can switch between a state in which the first excitation light L1 from the excitation light source 11b passes and a state in which the first excitation light L1 is blocked.
  • the excitation light source 11c generates second excitation light L2 having a second wavelength different from the first wavelength as illumination light.
  • the second wavelength is shorter than the first wavelength.
  • the first wavelength is 647 nm and the second wavelength is 561 nm.
  • the shutter 12c is disposed on the light emission side of the excitation light source 11c.
  • the shutter 12c is controlled by the control unit 9, and can switch between a state in which the second excitation light L2 from the excitation light source 11c is allowed to pass and a state in which the second excitation light L2 is blocked.
  • the mirror 61 is disposed on the light emission side of the shutter 12c.
  • the second excitation light L2 that has passed through the shutter 12c is reflected by the mirror 61 and enters the dichroic mirror 62.
  • the dichroic mirror 62 is disposed on the light emission side of the shutter 12b.
  • the dichroic mirror 62 has a characteristic of transmitting the second excitation light L2 and reflecting the first excitation light L1.
  • the first excitation light L1 reflected by the dichroic mirror 62 and the second excitation light L2 transmitted through the dichroic mirror 62 enter the dichroic mirror 63 through the same optical path.
  • the dichroic mirror 63 is disposed on the light emission side of the shutter 12a.
  • the dichroic mirror 63 has a characteristic of reflecting the first excitation light L1 and the second excitation light L2, and has a characteristic of transmitting the activation light L0.
  • the first excitation light L1 and the second excitation light L2 are irradiated to the sample S through the same optical path as the activation light L0.
  • the angle adjusting unit 7 may adjust the incident angle of the illumination light according to the wavelength of the illumination light, for example.
  • the incident angle may be an optimum incident angle for the activation light L0, the optimum incident angle for the first excitation light L1, the optimum incident angle for the second excitation light L2, or the minimum of these.
  • An angle between the angle and the maximum angle may be the incident angle.
  • the angle of incidence is set to be optimal for the wavelength of the first excitation light L1
  • the second excitation light L2 is irradiated
  • the activation light L0 does not necessarily need to be obliquely illuminated.
  • the image processing unit 56 performs image processing such as obtaining the position of the center of gravity of each image using the imaging result of the imaging unit 6.
  • the control unit 9 causes the imaging unit 6 to capture images in a plurality of frame periods, and the image processing unit 56 generates one image using at least a part of the imaging results obtained in the plurality of frame periods.
  • the image processing unit 56 calculates, for each of the plurality of captured images, the barycentric position of the fluorescence image (point image) included in each image.
  • the image processing unit 56 calculates the position of the center of gravity by performing Gaussian fitting on the distribution of pixel values in the region corresponding to the point image in the captured image.
  • the image processing unit 56 represents the barycentric position of the fluorescent image as a bright spot, and uses (merges) at least a part of the plurality of bright spots corresponding to the plurality of fluorescent images included in the plurality of captured images. ) Generate one image (eg, super-resolution image).
  • the first observation optical system 5 includes an astigmatism optical system (for example, a cylindrical lens 65).
  • the cylindrical lens 65 acts on at least part of the fluorescence from the sample S and generates astigmatism with respect to at least part of the fluorescence. That is, an astigmatism optical system such as the cylindrical lens 65 generates astigmatism by generating astigmatism with respect to at least a part of the fluorescence.
  • the cylindrical lens 65 is detachably provided in the optical path between the sample S and the imaging unit 6 (for example, the imaging device 40).
  • the image processing unit 56 uses astigmatism to determine the position of the fluorescent material in the depth direction of the sample S (the optical axis 21a of the objective lens 21, that is, the optical axis 5a direction of the first observation optical system 5). calculate.
  • the image processing unit 56 can calculate the position of the fluorescent material in the sample S, for example, by performing elliptical Gaussian fitting.
  • the cylindrical lens 65 is detachably provided.
  • FIG. 8 is a diagram illustrating an example of an illumination and imaging sequence according to the present embodiment.
  • FIG. 9 is a diagram conceptually illustrating an example of an image generated by the image processing unit 56.
  • the control unit 9 moves the stage 2 along the optical axis 21a of the objective lens 21 and sets it to a predetermined observation position (Z 0 in FIG. 8).
  • the control unit 9 controls the drive unit 52 of the angle adjustment unit 7 using the relationship between the observation position and the incident position P shown in FIGS. 4 and 6 and the like, and the incident position in the first image generation period T1.
  • the holding member 51 is moved so that becomes P 0-1 , and the holding member 51 is moved so that the incident position becomes P 0-2 in the second image generation period T2.
  • the control unit 9 executes an imaging sequence as follows at a predetermined observation position (Z 0 in FIG. 9).
  • the controller 9 irradiates the first excitation light (first excitation light L1) and does not irradiate the second excitation light (second excitation light L2) in the image generation period T1.
  • the control unit 9 also emits the activation light L0 during the image generation period T1.
  • the control unit 9 causes the imaging unit 6 to capture an image in each of the plurality of frame periods Tf of the image generation period T1 (first imaging process in the drawing; ON).
  • the control unit 9 irradiates the second excitation light and does not irradiate the first excitation light in the image generation period T2 next to the image generation period T1.
  • the control unit 9 also emits the activation light L0 during the image generation period T2.
  • control unit 9 causes the imaging unit 6 to capture an image in each of the plurality of frame periods Tf of the image generation period T2 (second imaging process in the drawing; ON).
  • the intensity of the activation light L0 is adjusted according to the fluorescent material, for example.
  • the intensity of the activation light L0 is set to be stronger when irradiating the second excitation light than when irradiating the first excitation light.
  • the control unit 9 controls the acoustooptic device 13 to adjust the intensity of the activation light.
  • the image processing unit 56 generates the first image Pa 0 using at least a part of the imaging results (eg, captured images) obtained by the plurality of first imaging processes in the image generation period T1. Further, the image processing unit 56 generates the second image Pb 0 by using at least a part of the imaging results (eg, captured images) obtained by the plurality of second imaging processes in the image generation period T2. Two types of fluorescent substances (eg, reporter dyes) are labeled on different organs and the like in the sample S, and images of organs and the like that are different between the first image Pa 0 and the second image Pb 0 are obtained. .
  • the image processing unit 56 may be, for example, by combining the first image Pa 0 and the second image Pb 0, to generate an image Pt 0 of one as shown in FIG. 9 (C).
  • the image processing unit 56 may generate one image Pt 0 without using the first image Pa 0 and the second image Pb 0 .
  • the image processing unit 56 at least a portion of the imaging result obtained by the plurality of first imaging process, using at least a portion of the imaging result obtained by the second imaging processing, the image Pt 0 of one It may be generated.
  • the image processing unit 56 may not generate an image Pt 0.
  • the control unit 9 moves the stage 2 along the optical axis 21a of the objective lens 21 and sets it to the next observation position (Z 1 in FIG. 8).
  • the control unit 9 controls the drive unit 52 of the angle adjustment unit 7 using the relationship between the observation position and the incident position P shown in FIGS. 4 and 6 and the like, and the incident position in the first image generation period T1.
  • the holding member 51 is moved so that becomes P 1-1
  • the holding member 51 is moved so that the incident position becomes P 1-2 in the second image generation period T2.
  • the control unit 9 executes the above-described imaging sequence to obtain the first image Pa 1 , the second image Pb 1 , and the image Pt 1 .
  • the first images Pa 0 to Pa n and the second images Pb 0 to Pb n images Pt 0 to Pt n are obtained at the observation positions Z 0 to Z n, respectively.
  • the image processing unit 56 using the first image Pa 0 ⁇ Pa n, it is possible to generate a three-dimensional picture Pa. Further, as shown in FIG. 9B, the image processing unit 56 can generate a three-dimensional image image Pb using the second images Pb 0 to Pb n . The image processing unit 56 can generate a three-dimensional image (eg, the three-dimensional image Pt in FIG. 9C) by, for example, synthesizing the three-dimensional image image Pa and the three-dimensional image image Pb. Further, as shown in FIG.
  • the image processing unit 56 can generate the image Pt 0 using the first image Pa 0 and the second image Pb 0 , and similarly, the image Pt 1 ⁇ Pt n can be generated.
  • the image processing unit 56 can also generate a three-dimensional image image Pt using the images Pt 0 to Pt n . Note that each of the first images Pa 0 to P n and the second images Pb 0 to Pb n is a three-dimensional image. However, when the cylindrical lens 65 is retracted from the optical path in FIG. Become.
  • the incident angle of the excitation light (first excitation light and second excitation light) to the sample is optimally set at each of the observation positions Z 0 to Z n , a highly accurate image can be obtained. it can.
  • single-molecule Localization Microscopy such as STORM and PALM that can generate high-resolution images
  • the incident angle of the illumination light to the sample is changed. Changing is particularly useful. If the incident angle of the illumination light with respect to the sample is not changed, the resolution may be reduced.
  • Single-molecule Localization In microscopy for example, it is possible to suppress the distortion of the light intensity distribution corresponding to the fluorescence image. Therefore, for example, the position of the center of gravity of the fluorescence image can be obtained with high accuracy, and a cross-sectional image of a thick sample can be obtained with high resolution.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the configuration of the microscope 1 is the same as that in FIG. 1, but the operation of the control unit 9 is different from that in the first embodiment.
  • the control unit 9 causes the imaging unit 6 to capture a plurality of images at a plurality of different incident angles when moving at least one of the stage 2 and the objective lens 21.
  • the control unit 9 causes the imaging unit 6 to capture one or more images with respect to one incident angle in a state where the stage 2 and the objective lens 21 are arranged at the first relative position.
  • the imaging unit 6 is caused to capture one or more images for each incident angle.
  • the control unit 9 may determine the incident angle corresponding to the first relative position based on a plurality of images having different incident angles. For example, the control unit 9 may adopt an incident angle corresponding to an image having the highest luminance value among a plurality of images having different incident angles as the incident angle at the first relative position.
  • the image processing unit 56 may select an image used for image processing from a plurality of images having different incident angles. For example, the image processing unit 56 selects an image whose luminance value falls within a predetermined range from a plurality of images having different incident angles, and performs image processing (for example, the first image shown in FIG. 8 using only the selected image). 1 process of generating the image Pa 0) may be performed.
  • the control unit 9 captures one or more images with respect to one incident angle in a state where the stage 2 and the objective lens 21 are arranged at a second relative position different from the first relative position. 6, and one or more images may be captured by the imaging unit 6 for each of a plurality of incident angles.
  • the image processing unit 56 selects an image whose luminance value falls within a predetermined range from a plurality of images having different incident angles, and performs image processing (for example, the first image shown in FIG. 8 using only the selected image).
  • image generation processing Pa 1) may be performed.
  • the control part 9 may determine the incident angle corresponding to a 2nd relative position similarly to a 1st relative position also regarding a 2nd relative position.
  • the calculation unit 55 uses the incident angle for the first relative position and the incident angle for the second relative position to calculate the third relative position between the first relative position and the second relative position. The incident angle for the relative position may be calculated.
  • the control unit 9 includes, for example, a computer system.
  • the control unit 9 reads a program stored in the storage device 43 and executes various processes according to the program.
  • This program includes, for example, an illumination optical system that irradiates illumination light obliquely on a sample, and an observation optical system having an objective lens, and at least one of a stage that holds the sample and an objective lens is used as the objective lens.
  • This is a control program that causes a computer to control a microscope that can move in the same direction as the optical axis of the lens. The control changes the incident angle of the illumination light with respect to the sample when moving at least one of the stage and the objective lens. including.
  • This program may be provided by being recorded on a computer-readable storage medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Studio Devices (AREA)

Abstract

【課題】試料に対して斜方から照明する顕微鏡において、厚みのある試料の断面画像を良好に取得することが可能な顕微鏡を提供する。 【解決手段】顕微鏡(1)は、試料(S)に対して斜方から照明光(L)を照射する照明光学系(4)と、対物レンズ(21)を有する観察光学系(5、30)と、試料を保持するステージ(2)および対物レンズの少なくとも一方を、対物レンズの光軸(21a)と同じ方向に移動させる制御部(9)と、を備える顕微鏡であって、制御部は、ステージおよび対物レンズの少なくとも一方を移動させる場合に、照明光の試料に対する入射角度を変化させる。

Description

顕微鏡、観察方法、及び制御プログラム
 本発明は、顕微鏡、観察方法、及び制御プログラムに関する。
 試料に対して斜方から照明する顕微鏡が知られている(例えば特許文献1)。
特開平9-159922号公報
 試料に対して斜方から照明する顕微鏡において、厚みのある試料の断面画像を良好に取得することが望まれている。
 本発明の第1の態様に従えば、試料に対して斜方から照明光を照射する照明光学系と対物レンズを有する観察光学系と、試料を保持するステージおよび対物レンズの少なくとも一方を、対物レンズの光軸と同じ方向に移動させる制御部と、を備える顕微鏡であって、制御部は、ステージおよび対物レンズの少なくとも一方を移動させる場合に、照明光の試料に対する入射角度を変化させることを特徴とする、顕微鏡が提供される。
 本発明の第2の態様に従えば、試料が載置されるステージと、試料に対して斜方から照明光を照射する照明光学系と、対物レンズを有する観察光学系と、試料を保持するステージおよび対物レンズの少なくとも一方を、対物レンズの光軸と同じ方向に移動させる制御部と、対物レンズを介して試料の撮像を行う撮像装置と、対物レンズの光軸方向における観察位置毎の撮像条件を記憶する記憶部と、を備え、撮像条件は、照明光の試料への入射角度に関する情報を含み、制御部は、ステージおよび対物レンズの少なくとも一方を移動させる場合に、撮像条件に基づいて、照明光の試料に対する入射角度を変化させることを特徴とする、顕微鏡が提供される。
 本発明の第3の態様に従えば、試料に対して斜方から照明光を照射する照明光学系と、対物レンズを有する観察光学系と、を備え、試料を保持するステージおよび対物レンズの少なくとも一方を、対物レンズの光軸と同じ方向に移動可能な顕微鏡を用いる観察方法であって、ステージおよび対物レンズの少なくとも一方を移動させる場合に、照明光の試料に対する入射角度を変化させることを含むことを特徴とする、観察方法が提供される。
 本発明の第4の態様に従えば、試料に対して斜方から照明光を照射する照明光学系と、対物レンズを有する観察光学系と、を備え、試料を保持するステージおよび対物レンズの少なくとも一方を、対物レンズの光軸と同じ方向に移動可能な顕微鏡の制御をコンピュータに実行させる制御プログラムであって、制御は、ステージおよび対物レンズの少なくとも一方を移動させる場合に、照明光の試料に対する入射角度を変化させることを含むことを特徴とする、制御プログラムが提供される。
第1実施形態に係る顕微鏡を示す図である。 角度調整部による照明光の試料に対する入射角度の調整を示す図である。 照明光学系の照野と観察光学系の視野とを示す図である。 第1実施形態に係る算出部が算出する観察位置と入射角度との関係を示す図である。 実施形態に係る観察方法の一例を示すフローチャートである。 第2実施形態に係る算出部が算出する観察位置と入射角度との関係を示す図である。 第4実施形態に係る顕微鏡1を示す図である。 第4実施形態に係る照明と撮像のシーケンスの一例を示す図である。 画像処理部が生成する画像の例を概念的に示す図である。
[第1実施形態]
 第1実施形態について説明する。図1は、本実施形態に係る顕微鏡1を示す図である。顕微鏡1は、観察対象の試料Sを斜方照明し、試料Sの像を観察可能な顕微鏡である。顕微鏡1は、例えば、試料Sに対する照明光の照射角度を変更可能に構成されている。ここでは、顕微鏡1が蛍光顕微鏡であるものとして説明するが、顕微鏡1は、蛍光顕微鏡以外の顕微鏡でもよい。顕微鏡1は、試料Sの内部を観察可能であり、例えば試料Sの厚み方向の断面を積み重ねた画像(例、Z-stack)を生成可能である。顕微鏡1は、試料Sの厚み方向の1つの断面のみを観察可能なものでもよい。
 顕微鏡1は、ステージ2、光源装置3と、照明光学系4と、第1の観察光学系5と、撮像部6と、角度調整部7と、制御装置8とを備える。制御装置8は、顕微鏡1の各部を包括的に制御する制御部9を備える。
 ステージ2は、観察対象の試料Sを保持する。ステージ2は、例えば、その上面に試料Sを載置可能である。図1などに示すXYZ直交座標系において、X方向およびY方向は、ステージ2の上面に平行な方向であり、Z方向はステージ2の上面に垂直な方向である。ステージ2は、例えば、X方向、Y方向、Z方向に移動可能な機構を有してもよい。
 光源装置3は、光源11、シャッタ12、音響光学素子13、及びレンズ14を備える。光源11は、例えば、レーザダイオード(LD)、発光ダイオード(LED)などの発光素子を含む。顕微鏡1が蛍光観察に用いられる場合、光源11は、試料Sに含まれる蛍光物質を励起させる励起光を含む照明光Lを射出する。シャッタ12は、制御部9により制御され、光源11からの照明光Lを通す状態と、照明光Lを遮る状態とを切り替え可能である。音響光学素子13は、シャッタ12の光出射側に設けられる。音響光学素子13は、例えば音響光学フィルタなどである。音響光学素子13は、制御部9に制御され、照明光Lの光強度を調整可能である。また、音響光学素子13は、制御部9に制御され、照明光Lが音響光学素子13を通る状態(以下、通光状態という)と、音響光学素子13により遮られる状態または強度が低減される状態(以下、遮光状態という)とを切り替え可能である。レンズ14は、例えばカプラであり、音響光学素子13からの照明光Lを導光部材16に集光する。
 なお、顕微鏡1は、光源装置3の少なくとも一部を備えなくてもよい。例えば、光源装置3は、ユニット化されており、顕微鏡1に交換可能(取り付け可能、取り外し可能)に設けられていてもよい。例えば、光源装置3は、顕微鏡1による観察時などに、顕微鏡1に取り付けられてもよい。
 照明光学系4は、光源装置3からの照明光Lを、試料Sに対して斜方から照射可能である。照明光学系4は、導光部材16、レンズ17、レンズ18、フィルタ19、ダイクロイックミラー20、及び対物レンズ21を備える。図1などにおいて、照明光学系4の光軸を符号4aで表す。
 導光部材16は、例えば光ファイバであり、照明光Lをレンズ17へ導く。レンズ17は、例えばコリメータであり、照明光Lを平行光に変換する。レンズ18は、例えば、照明光Lを対物レンズ21の瞳面(後側焦点面)又はその近傍の位置に集光する。ここで、瞳面(後側焦点面)の近傍とは、例えば、瞳面(後側焦点面)から±10mmの範囲内である。フィルタ19は、例えば、試料Sに含まれる蛍光物質を励起させる励起光の波長(以下、励起波長という)を含む波長帯の光が透過する特性を有する。フィルタ19の波長特性は、励起波長以外の波長の光の少なくとも一部が遮られるように設定される。ダイクロイックミラー20は、照明光Lが反射し、試料Sからの光のうち所定の波長帯の光(例、蛍光)が透過する特性を有する。フィルタ19からの光は、ダイクロイックミラー20で反射し、対物レンズ21に入射する。観察時において、試料Sの一部は、対物レンズ21の前側焦点面に配置される。
 なお、上述した照明光学系4は一例であり、適宜、変更可能である。例えば、上述した照明光学系4の一部は、省略されてもよいし、光源装置3に含まれてもよい。また、照明光学系4は、光源装置3の少なくとも一部を含んでいてもよい。また、照明光学系4は、開口絞り、視野絞りなどを備えてもよい。また、照明光学系4のうち最も試料Sに近い光学要素は、図1において対物レンズ21であるが、プリズム、ミラーなどでもよい。
 第1の観察光学系5は、試料Sからの光により像を形成する。例えば、第1の観察光学系5は、試料Sに含まれる蛍光物質からの蛍光の像を形成する。第1の観察光学系5は、対物レンズ21、ダイクロイックミラー20、フィルタ24、レンズ25、光路切替部材26、レンズ27、及びレンズ28を備える。第1の観察光学系5は、対物レンズ21およびダイクロイックミラー20を照明光学系4と共用している。対物レンズ21の光軸21aは、照明光学系4の光軸4aと同軸であり、第1の観察光学系5の光軸5aと同軸である。図1に示す例では、対物レンズ21の光軸21aは、Z方向である。
 試料Sからの蛍光は、対物レンズ21およびダイクロイックミラー20を通ってフィルタ24に入射する。フィルタ24は、試料Sからの光のうち所定の波長帯の光が選択的に透過する特性を有する。この所定の波長帯は、試料Sからの蛍光の波長(以下、蛍光波長という)を含むように設定される。フィルタ24は、例えば、試料Sで反射した照明光、外光、迷光などを遮断する。フィルタ24は、例えば、フィルタ19およびダイクロイックミラー20とユニット化され、このフィルタユニット29は、交換可能に設けられる。フィルタユニット29は、例えば、光源装置3から射出される照明光Lの波長、試料Sから放射される蛍光の波長などに応じて交換可能でもよいし、複数の励起波長、蛍光波長に対応した単一のフィルタユニットを利用したものでもよい。
 フィルタ24を通った光は、レンズ25を介して光路切替部材26に入射する。レンズ25から射出された光は、光路切替部材26に入射する。光路切替部材26は、例えばプリズムであり、第1の観察光学系5の光路に挿脱可能に設けられる。光路切替部材26は、例えば、制御部9により制御される駆動部(図示せず)によって、第1の観察光学系5の光路に挿脱される。光路切替部材26は、第1の観察光学系5の光路に挿入された状態において、試料Sからの蛍光を内面反射によって撮像部6へ向かう光路へ導く。試料Sからの蛍光は、光路切替部材26を経由した後、レンズ27およびレンズ28を介して、撮像部6へ入射する。第1の観察光学系5において、対物レンズ21およびレンズ25は、例えば、試料Sの一次像(例、中間像)を形成する。また、第1の観察光学系5において、レンズ27およびレンズ28は、試料Sの二次像(例、最終像)を形成する。
 なお、上述した第1の観察光学系5は一例であり、適宜、変更可能である。例えば、上述した第1の観察光学系5の一部は、省略されてもよい。また、第1の観察光学系5は、開口絞り、視野絞りなどを備えてもよい。また、第1の観察光学系5は、照明光学系4と独立に設けられてもよく、例えば、試料Sに対して対物レンズ21の反対側に設けられてもよい。
 本実施形態に係る顕微鏡1は、観察範囲の設定などに利用される第2の観察光学系30を備える。第2の観察光学系30は、試料Sから観察者の視点Vpに向かう順に、対物レンズ21、ダイクロイックミラー20、フィルタ24、レンズ25、ミラー31、レンズ32、ミラー33、レンズ34、レンズ35、ミラー36、及びレンズ37を備える。第2の観察光学系30は、対物レンズ21からレンズ25までの構成を第1の観察光学系5と共用している。試料Sからの光は、レンズ25を通った後に、光路切替部材26が第1の観察光学系5の光路から退避した状態において、ミラー31に入射する。ミラー31で反射した光は、レンズ32を介してミラー33に入射し、ミラー33で反射した後に、レンズ34およびレンズ35を介してミラー36に入射する。ミラー36で反射した光は、レンズ37を介して、視点Vpに入射する。第2の観察光学系30は、例えば、レンズ35とレンズ37との間の光路に試料Sの中間像を形成する。レンズ37は、例えば接眼レンズであり、観察者は、中間像を観察することにより観察範囲の設定などを行うことができる。
 撮像部6は、第1の観察光学系5が形成した像を撮像する。撮像部6は、撮像素子40および制御部41を備える。撮像素子40は、例えばCMOSイメージセンサであるが、CCDイメージセンサなどでもよい。撮像素子40は、例えば、二次元的に配列された複数の画素を有し、各画素にフォトダイオードなどの光電変換素子が配置された構造である。撮像素子40は、例えば、光電変換素子に蓄積された電荷を、読出回路によって読み出す。撮像素子40は、読み出された電荷をデジタルデータに変換し、画素の位置と階調値とを関連付けたデジタル形式のデータ(例、画像のデータ)を出力する。制御部41は、制御装置8の制御部9から入力される制御信号に基づいて撮像素子40を動作させ、撮像画像のデータを制御装置8に出力する。また、制御部41は、電荷の蓄積期間と電荷の読み出し期間を制御装置8に出力する。
 顕微鏡1は、入出力装置42および記憶装置43を備える。入出力装置42は、制御装置8と有線または無線により通信可能に接続される。入出力装置42は、表示装置44(表示部、出力部)および入力装置45(入力部)を備える。表示装置44は、例えば、液晶ディスプレイなどである。表示装置44は、例えば、顕微鏡1の各種設定を示す画像、撮像部6による撮像画像、撮像画像から生成された画像などの各種画像を表示する。制御部9は、表示装置44を制御し、表示装置44に各種画像を表示させる。例えば、制御部9は、画像処理部56が生成した画像のデータを表示装置44に供給し、この画像を表示装置44に表示させる。入力装置45は、例えば、キーボード、マウス、トラックボールなどのユーザが操作可能な入力部である。入力装置45は、例えばユーザから、観察条件、顕微鏡1の各部に対する動作指令などの各種情報の入力を受け付ける。入力装置45は、自装置に入力された情報を制御装置8に供給する。入出力装置42は、上記の構成に限定されず、例えば表示部および入力部が一体化されたタッチパネルなどでもよいし、表示装置44の代わりに他の出力部(例、プリンタ)を備えてもよい。
 本実施形態において、顕微鏡1は、照明光学系4の光軸4aの方向において、試料Sにおける観察位置を変更可能である。試料Sにおける観察位置は、対物レンズ21の前側焦点面の位置またはその近傍に設定される。試料Sにおける観察位置は、例えば、対物レンズ21の光軸21a(照明光学系4の光軸4a)の方向において試料Sと対物レンズ21とを相対移動することにより、変更可能である。例えば、試料Sが載置されたステージ2を対物レンズ21の光軸21aの方向に移動させることで、試料Sにおける観察位置を変更可能である。なお、試料Sにおける観察位置の変更は、対物レンズ21を光軸の方向に移動させることにより行ってもよい。つまり、試料Sにおける観察位置の変更は、ステージ2を動かしてもよいし、対物レンズ21を動かしてもよいし、それら両方を動かしてもよい。
 角度調整部7は、照明光学系4の光軸4aの方向における試料Sの観察位置に応じて、照明光学系4から照射される照明光Lの角度を調整する。角度調整部7は、例えば、保持部材51および駆動部52を備える。保持部材51は導光部材16の光出射側の端部を保持する。駆動部52は、保持部材51を照明光学系4の光軸4aと垂直の方向に移動させることができる。なお、保持部材51は、対物レンズ21の瞳共役面または、その近傍に設けられている。角度調整部7については、後に図2および図3などを参照してより詳しく説明する。
 制御装置8は、顕微鏡1の各部を総括して制御する。制御装置8は、制御部9、算出部55、及び画像処理部56を備える。制御部9は、駆動部52を制御し、駆動部52によって保持部材51を移動させる。これにより、試料Sに対する照明光Lの入射角(例、照明光Lと光軸4aとの角度)が調整される。なお、駆動部52が保持部材51を移動させる代わりに、手動により保持部材51を移動してもよい。
 また、制御部9は、例えば、撮像部6の制御部41から供給される電荷の蓄積期間と電荷の読み出し期間を示す信号(撮像タイミングの情報)に基づいて、音響光学素子13に、光源装置3からの光を通す通光状態と、光源装置3からの光を遮る遮光状態とを切り替える制御信号を供給する。音響光学素子13は、この制御信号に基づいて、通光状態と遮光状態とを切り替える。なお、制御部9の代わりに制御部41は、電荷の蓄積期間と電荷の読み出し期間を示す信号(撮像タイミングの情報)に基づいて、音響光学素子13に遮光状態と通光状態とを切り替える制御信号を供給し、音響光学素子13を制御してもよい。
 また、制御部9は、撮像部6を制御し、撮像素子40に撮像を実行させる。制御部9は、撮像部6から撮像結果(撮像画像のデータ)を取得する。画像処理部56は、撮像部6の撮像結果を用いて画像処理を行う。例えば、制御部9は、対物レンズ21の光軸21aの方向におけるステージ2の位置を変更することで、試料Sにおける観察位置を変更する。また、制御部9は、各観察位置について撮像素子40に撮像を実行させ、対物レンズ21の光軸21aの方向の複数の観察位置において、撮像画像を取得させる。画像処理部56は、例えば、取得した複数の撮像画像を用いて、試料Sの三次元的な画像を生成可能である。
 次に、角度調整部7について説明する。図2は、角度調整部7による照明光Lの試料Sに対する入射角度の調整を示す図である。角度調整部7は、照明光Lの試料Sに対する入射角度を調整する。ここで、照明光Lの試料Sに対する入射角度とは、対物レンズ21の光軸21a(照明光学系4の光軸4a)と、照明光Lが試料Sに対して入射する方向とがなす角(図2のα1、α2等)である。また、照明光Lの試料Sに対する入射角度(図2のα1、α2等)が変化すると、対物レンズ21の光軸(照明光学系4の光軸4a)と試料Sを照明する(通過する)照明光Lとの角度(図2のβ1、β2等)も変化する。ここでは、角度調整部7が照明光Lの試料Sに対する入射角度を小さくする例(α1からα2)を説明するが、大きくしてもよい。
 導光部材16の光出射側の端16aには、概ね点光源とみなすことができる光源像が形成される。導光部材16の端16aは、保持部材51によって、対物レンズ21の瞳面PU1と光学に共役な瞳共役面PU2の位置、または瞳共役面PU2の近傍に配置される。ここでは、照明光Lの角度を調整する前において、保持部材51は、瞳共役面PU2上の位置Q1に配置されているものとする。導光部材16から出射した照明光Lは、対物レンズ21の瞳面PU1上の入射位置P1に入射した後、試料Sに対して角度α1で入射する。ここでは、試料Sがカバーガラスなどの透明部材2a上に載置され、透明部材2aがステージ2に支持されている。透明部材2aの下面と対物レンズ21の端面との間の空間は、浸液LQで満たされている。浸液LQの屈折率は、例えば透明部材2aの屈折率とほぼ同じである。試料Sの屈折率と、試料Sが載置されている透明部材2aの屈折率が異なる場合、図2に示すように、照明光Lは、試料Sと透明部材2aとの界面Saで屈折する。ここでは、角度α1で試料Sに入射して試料Sと透明部材2aとの界面Saで屈折した照明光Lと対物レンズ21の光軸21a(照明光学系4の光軸4a)との角度をβ1で表す。
 駆動部52は、照明光Lの角度を小さくする際に、導光部材16の端16aを保持した保持部材51を、位置Q1よりも光軸4aに近い位置Q2に移動させる。これにより、対物レンズ21の瞳面PU1上の照明光Lの入射位置は、入射位置P1よりも光軸4aに近い入射位置P2へ変化し、照明光の角度がα1よりも小さいα2へ変化する。ここでは、角度α2で試料Sに入射して界面Saで屈折した照明光Lと光軸4aとの角度をβ2で表す。α2がα1よりも小さいので、β2はβ1よりも小さくなる。
 図3は、照明光学系の照野と観察光学系の視野とを示す図である。ここでは、試料Sにおける観察位置は、対物レンズ21の前側焦点面と同じ位置であるものとする。なお、以下、説明の便宜上、対物レンズ21の瞳面PU1上に照明光Lが集光する場合を例示するが、必ずしも対物レンズ21の瞳面PU1上に照明光Lが集光する必要はない。例えば、照明光Lは瞳面PU1上の近傍に集光してもよい。図3(A)において、対物レンズ21の前側焦点面FP1は、試料Sと透明部材2aとの界面Saと同じ位置に設定されている。対物レンズ21の瞳面PU1上の入射位置P1に集光した照明光Lは、平行光となり、試料Sを照明し、試料Sと透明部材2aとの界面Saに照野LF1を形成する。照野LF1は、例えば、対物レンズ21の光軸21a(光軸4a)を中心に形成される。第1の観察光学系5(図1参照)の視野VF(例、試料S上の観察範囲)は、例えば、対物レンズ21の光軸21a(光軸4a)を中心に形成される。照野LFは、例えば、視野VFの全体が収まる領域に形成される。
 図3(B)は、図3(A)の状態から例えばステージ2を対物レンズ21に近づけた様子を示している。図3(B)において、対物レンズ21の前側焦点面FP2は、対物レンズ21の光軸21a(光軸4a)の方向において試料Sと透明部材2aとの界面Saから離れた位置(試料Sの内部)に設定されている。対物レンズ21の瞳面PU1上で集光した照明光Lは、平行光となり、前側焦点面FP2上に照野LF2を形成する。試料Sに入射した照明光Lは、試料Sと透明部材2aとの界面Saでの屈折により対物レンズ21の光軸21a(光軸4a)との角度がβ1になっており、試料Sと透明部材2aとの界面Saと前側焦点面FP2とにギャップ(ΔZ)があることから、照野LF2は、照野LF1と比較して+X方向に移動量ΔXだけ移動する。移動量ΔXは、試料Sと透明部材2aとの界面Saと前側焦点面FP2との距離ΔZ、及び角度β1などに依存する量である。距離ΔZが大きくなるほど、あるいは角度β1が大きくなるほど、移動量ΔXが大きくなる。移動量ΔXが大きくなるにつれて、照野LF2と視野VFとの重なり面積が小さくなり、試料Sの像を良好に取得することが難しくなる。そこで、図2に示した角度調整部7は、対物レンズ21の光軸21a(光軸4a)の方向における試料Sの観察位置(対物レンズ21の前側焦点面)に応じて、照明光Lの試料Sに対する入射角度を調整する。
 図3(C)において、対物レンズ21の前側焦点面FP2は、図3(B)と同じ位置に設定されている。角度調整部7(図2参照)は、例えば、対物レンズ21の前側焦点面FP2の位置に応じて、対物レンズ21の瞳面PU1上の照明光Lの入射位置(集光位置)を、入射位置P3に調整する。入射位置P3は、図3(B)の入射位置P1よりも対物レンズ21の光軸21a(光軸4a)に近い位置に設定される。入射位置P3において集光した照明光Lは、平行光となって、試料Sに向かう。試料Sに向かう照明光Lの角度α3(照明光Lの試料Sに対する入射角度)は、図3(B)の角度α1よりも小さく、試料Sと透明部材2aとの界面Saで屈折した照明光Lの角度(界面Saで屈折した照明光Lと対物レンズ21の光軸21a(光軸4a)との角度)β3は、図3(B)の角度β1よりも小さい。そのため、照野LF3は、図3(B)の照野LF2と比較して-X方向に移動する。これにより、照野LF3と視野VFとの重なり面積が図3(B)と比較して増加し、試料Sの像を良好に取得することができる。
 図2に示した角度調整部7は、例えば、対物レンズ21の光軸21a(光軸4a)の方向における試料Sと透明部材2aとの界面Saから観察位置(対物レンズ21の前側焦点面FP2)までの距離ΔZに応じて、入射位置Pを調整する。例えば、角度調整部7は、対物レンズ21の前側焦点面FP2が試料Sと透明部材2aとの界面Saから離れているほど(ΔZが大きいほど)、照明光Lの入射位置Pを対物レンズ21の光軸21a(光軸4a)に近づく方向に移動させる。つまり、ステージ2を対物レンズ21の光軸21aに沿って対物レンズ21に近づく方向に動かすと、試料Sの深い(ここでは、界面Saからの距離が大きくなる方向に離れた)部分が観察位置となる。この場合、上述したように、照明光Lの試料Sに対する入射角度が一定のままであると、照野と視野との重なり面積が小さくなるため、ステージ2を光軸に沿って動かすとともに、制御部9は、角度調整部7の駆動部52を制御し、駆動部52によって、入射位置Pが対物レンズ21の光軸21a(光軸4a)に近づくように保持部材51を移動させる。また、対物レンズ21を光軸に沿ってステージ2に近づく方向に動かしても同様に、試料Sの深い部分が観察位置となる。この場合にも、同様に、対物レンズ21を光軸に沿って動かすとともに、制御部9は、角度調整部7の駆動部52を制御し、駆動部52によって、入射位置Pが対物レンズ21の光軸21a(光軸4a)に近づくように保持部材51を移動させる。
 本実施形態において、図1に示した算出部55は、対物レンズ21の前側焦点面FPの試料Sにおける位置に対して入射位置(例、図3の入射位置P3)の目標値を算出する。制御部9は、算出部55の算出結果に基づいて角度調整部7を制御する。算出部55は、例えば、入力装置45を介して入力された情報に基づいて、瞳面PU1上の照明光Lの入射位置の目標値を算出する。
 図4(A)は、本実施形態に係る算出部55が算出する観察位置と入射角度との関係を示す図である。算出部55は、例えばユーザーが指定した観察位置(対物レンズ21の試料Sにおける前側焦点面FPの位置)と照明光Lの入射位置Pとの組を2組以上用いて、他の観察位置に応じた照明光Lの入射位置Pの目標値を算出する。図4(A)において、横軸は、試料Sと透明部材2aとの界面Saを基準(0μm)として試料Sの内部を正とする観察位置(単位はμm)である。図4(A)において、縦軸は、瞳面PU1上の照明光Lの入射位置Pを示す値であり、その単位は任意単位(a.u.)である。ここでは、保持部材51の可動範囲で規格化した例を示す。符号U1は、ユーザが指定した第1観察位置(例、約0μm)に対応する入射位置Pの目標値(約0.897)を示す。符号U2は、ユーザが指定した第2の観察位置(例、約4.5μm)に対応する入射位置P(例、約0.841)の目標値を示す。算出部55は、例えば、プロットU1とプロットU2との間を補間することによって、第1観察位置と第2観察位置との間の第3観察位置に対する入射位置Pの目標値を算出する。具体的には、図4において算出部55は、線形補間を用いて、U3~U12を線形補間する。また、上記では、ユーザは、U1とU2を指定して、U1とU2との間を補間したが、例えば、ユーザは、U5とU10とを指定して、U1~U4、U6~U9およびU11~U12を算出してもよい。なお、観察位置の数は、観察条件などに応じて適宜設定される。
 図4(B)は、本実施形態に係る算出部55の動作の他の例を示す図である。本例において、算出部55は、非線形な補間法によって、瞳面PU1上の照明光Lの入射位置Pを算出する。例えば、算出部55は、プロットU1、U2が端点となり、かつ複数のプロットU1~U12が下に凸の曲線上に配置されるように、プロットU1、U2の間の区間を補間する。例えば、算出部55は、入射位置の目標値が観察位置の指数を含む関数形で表される補間法(例、γ補間)を用いて、複数のプロットU3~U12を算出する。なお、算出部55が用いる補間法は、上述の例に限定されず、折れ線状の分布となる補間法などでもよい。制御部9は、対物レンズ21の位置に応じた入射角度に関する情報の複数の算出方法を選択可能に入出力装置42に出力してもよい。例えば、制御部9は、補間法の複数の候補を(例、線形補間、γ補間等)表示装置44に表示させ、ユーザは、入力装置45を操作することにより、用いる補間法を複数の候補から選択可能でもよい。また、算出部55は、入出力装置42から入力された算出方法に基づいて、対物レンズ21の位置に応じた入射角度に関する情報を算出し、制御部9は、算出部55が算出した情報に基づいて、入射角度を変化させてもよい。また、制御部9は、ステージ2の位置に応じた入射角度に関する情報の複数の算出方法を選択可能に入出力装置42に出力し、算出部55は、入出力装置42から入力された算出方法に基づいて、ステージ2の位置に応じた入射角度に関する情報を算出し、制御部9は、算出部55が算出した情報に基づいて、入射角度を変化させてもよい。
 なお、上記図4では、横軸は、試料Sと透明部材2aとの界面Saを基準(0μm)として試料Sの内部を正とする観察位置としたが、ステージ2の位置又は対物レンズ21の位置としてもよい。ユーザは、第1観察位置とその入射位置Pの目標値と、第2観察位置とその入射位置Pの目標値とを指定するが、算出部55は、第1観察位置に対応するステージ2の位置(第1ステージ位置)および第2観察位置に対応するステージ2の位置(第2ステージ位置)を取得して、第1ステージ位置とその入射位置Pの目標値、第2ステージ位置とその入射位置Pの目標値とを関連づけてもよい。この場合、算出部55は、ステージ2の位置に応じた入射位置Pの目標値を算出する。このとき、上記図4において、横軸はステージ2の絶対座標位置でもよいし、第1ステージ位置を基準としてもよい。同様に、ユーザは、第1観察位置とその入射位置Pの目標値と、第2観察位置とその入射位置Pの目標値とを指定するが、算出部55は、第1観察位置に対応する対物レンズ21の位置(第1対物レンズ位置)および第2観察位置に対応する対物レンズ21の位置(第2対物レンズ位置)を取得して、第1対物レンズ位置とその入射位置Pの目標値、第2対物レンズ位置とその入射位置Pの目標値とを関連づけてもよい。この場合、算出部55は、対物レンズ21の位置に応じた入射位置Pの目標値を算出する。このとき、上記図4において、横軸は対物レンズ21の絶対座標位置でもよいし、第1対物レンズ位置を基準としてもよい。
 制御部9は、算出部55の算出結果に基づいて角度調整部7を制御する。この場合、制御部9は、予め記憶装置43に記憶された入射位置Pに対応する保持部材51の位置を用いて、角度調整部7を制御する。
 なお、上記図4では、縦軸は、瞳面PU1上の照明光Lの入射位置Pとしたが、保持部材51の位置としてもよい。この場合、ユーザは、第1観察位置とその保持部材51の位置と、第2観察位置とその保持部材51の位置とを指定し、算出部55は、観察位置に応じた保持部材51の位置を算出する。この場合、入射位置Pに対応する保持部材51の位置を予め記憶装置43記憶しておく必要はない。
 なお、制御部9は、対物レンズ21の位置に応じた入射角度に関する情報(以下、第1の参照情報という)に基づいて、入射角度を変化させてもよい。第1の参照情報は、例えば、対物レンズ21の絶対位置情報に関連づけられた入射角度に関する情報でもよい。絶対位置情報は、例えば、予め定められた基準位置に対する対物レンズ21の位置の情報であり、対物レンズ21の光軸21aの方向(Z方向)の座標などである。例えば、基準位置は顕微鏡1の電源を入れた時等に制御部9によって定められるものである。この場合、第1の参照情報として、例えば、対物レンズ21の絶対位置と入射角度との関係を示す関数(例、数式、数値テーブル)を用いることができる。また、第1の参照情報は、対物レンズ21の移動量に関連づけられた入射角度に関する情報でもよい。この場合、第1の参照情報として、例えば、対物レンズ21の移動量と入射角度との関係を示す関数(例、数式、数値テーブル)を用いることができる。また、第1の参照情報は、ステージ2に対する対物レンズ21の相対位置情報に関連づけられた入射角度に関する情報でもよい。この相対位置情報は、例えば、対物レンズ21の光軸21aの方向(Z方向)における、ステージ2の座標と対物レンズ21の座標との差の情報である。この場合、第1の参照情報として、例えば、ステージ2の位置を基準とする対物レンズ21の絶対位置と入射角度との関係を示す関数(例、数式、数値テーブル)を用いることができる。
 なお、制御部9は、ステージ2の位置に応じた入射角度に関する情報(以下、第2の参照情報という)に基づいて、入射角度を変化させてもよい。第2の参照情報は、例えば、ステージ2の絶対位置情報に関連づけられた入射角度に関する情報でもよい。絶対位置情報は、例えば、予め定められた基準位置に対するステージ2の位置の情報であり、対物レンズ21の光軸21aの方向(Z方向)におけるステージ2の座標などである。例えば、基準位置は顕微鏡1の電源を入れた時等に制御部9によって定められるものである。この場合、第2の参照情報として、例えば、ステージ2の絶対位置と入射角度との関係を示す関数(例、数式、数値テーブル)を用いることができる。また、第2の参照情報は、ステージ2の移動量に関連づけられた入射角度に関する情報でもよい。この場合、第2の参照情報として、例えば、ステージ2の移動量と入射角度との関係を示す関数(例、数式、数値テーブル)を用いることができる。また、第2の参照情報は、対物レンズ21に対するステージ2の相対位置情報に関連づけられた入射角度に関する情報でもよい。この相対位置情報は、例えば、対物レンズ21の光軸21aの方向(Z方向)における、ステージ2の座標と対物レンズ21の座標との差の情報である。この場合、第2の参照情報として、例えば、対物レンズ21の位置を基準とするステージ2の絶対位置と入射角度との関係を示す関数(例、数式、数値テーブル)を用いることができる。
 以下、上述の顕微鏡1の構成に基づき、実施形態に係る観察方法を説明する。図5は、実施形態に係る観察方法の一例を示すフローチャートである。まず、ステップS1で、ユーザは、入力装置45を用いて観察条件を設定する。観察条件は、例えば、第1観察位置(観察位置の下限)およびその際の入射位置、第2観察位置(観察位置の上限)およびその際の入射位置、並びに対物レンズ21の光軸方向における観察位置の数などである。ここで、ユーザは、保持部材51を移動させて入射位置を変更して撮像された複数の画像のコントラスト、光強度等に基づいて、第1観察位置および第2観察位置における最適な入射位置を決定する。上記の観察条件は、例えば、予め記憶部43に記憶されていてもよい。
 ステップS2において、算出部55は、観察位置と入射位置の関係を算出する。例えば、算出部55は、観察条件に定められた第1観察位置、第2観察位置、及び対物レンズ21の光軸方向における観察位置の数を用いて、第1観察位置と第2観察位置との間の観察位置を算出する。また、算出部55は、例えば図4に示したように、第1観察位置の場合の入射位置と、第2観察位置の場合の入射位置を用いて、その間の各観察位置における入射位置を算出する。
 ステップS3において、顕微鏡1は、例えばユーザの指令により、観察に関する動作を開始する。ステップS4において、制御部41は、ステージ2を制御し、ステージ2を第1観察位置に応じた位置に移動させる。ステップS5において、制御部41は、観察位置と入射角度との関係を用いて、保持部材51を移動させる。ステップS6において、制御部41は、照明光学系4から照明光が試料Sに照射された状態で、第1の観察光学系5が形成した像を撮像部6に撮像させ、画像を取得させる。ステップS7において、制御部41は、全ての観察位置に対して画像の取得が完了したか否かを判定する。制御部41は、ステップS1において観察条件に設定された観察位置の一部が完了していないと判定した場合(ステップS7;No)、ステップS8において、ステージ2を次の観察位置に応じた位置へ移動させ、ステップS5からステップS7の処理を繰り返し行う。また、制御部41は、全ての観察位置に対する画像の取得が完了したと判定した場合(ステップS7;Yes)、一連の処理を終了する。上記では、ステップS2において、算出部55は、観察位置と入射位置の関係を算出したが、観察位置と入射位置の関係は、予め記憶装置43に記憶しておいてもよい。この場合、ステップS2は省略される。
[第2実施形態]
 第2実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。本実施形態において、顕微鏡1の構成は図1と同様であるが、算出部55の動作が第1実施形態と異なる。
 図6は、第2実施形態に係る算出部55が算出する観察位置と入射角度との関係を示す図である。第2実施形態では、第1実施形態と異なり、ユーザは、観察位置(対物レンズ21の試料Sにおける前側焦点面FPの位置)と照明光Lの入射位置Pとの組を指定する必要がなく、算出部55は、予め決められた観察条件に基づいて、観察位置と入射位置Pの目標値との関係を、図6の符号D1に示すように算出する。上記の観察条件は、例えば、試料Sと対物レンズ21との間の屈折率(例:透明部材の屈折率、浸液の屈折率)、試料Sの屈折率、対物レンズの種類、環境の温度、カバーガラス2aの厚さなどを含む。ユーザは、観察位置(対物レンズ21の試料Sにおける前側焦点面FPの位置)と照明光Lの入射位置Pを指定する場合、その観察位置で入射角度Pを変化させ、画像を複数枚取得して、最適な入射位置Pを決定する必要があるが、第2実施形態では、その手間を省くことができる。なお、算出部55は、例えば、収差、エバネッセント場の影響などを考慮して、例えば、試料Sと透明部材2aとの界面Saに近い領域については、図6の符号D2に示すように算出してもよい。
[第3実施形態]
 第3実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。本実施形態において、顕微鏡1の構成は図1と同様であるが、算出部55の動作が第1実施形態と異なる。
 第1実施形態では、ユーザは、観察位置(対物レンズ21の試料Sにおける前側焦点面FPの位置)と照明光Lの入射位置Pとの組(符号U1、U2等)を指定したが、本実施形態では、入射位置Pを指定する必要がない。言い換えると、ユーザは、観察位置(対物レンズ21の試料Sにおける前側焦点面FPの位置)を指定することにより、算出部55は、観察位置と入射位置Pとの関係を算出する。例えば、ユーザにより第1観察位置が指定されると、制御部9は、駆動部52を制御し、保持部材51を移動させ、指定された観察位置において、異なる入射位置Pで照明された試料Sの複数の画像を撮像部6に撮像させる。、算出部55は、入射位置Pを変化させる毎に検出される試料Sからの光に関する情報に基づいて、ユーザにより入力された第1観察位置に対応する入射位置Pの目標値を決定する。例えば、算出部55は、試料Sからの光の強度またはコントラストが最も大きい入射位置Pを、第1観察位置における入射位置Pの目標値とする。算出部55は、同様に、第2観察位置における入射位置Pの目標値を算出する。さらに、算出部55は、第1観察位置および第2観察位置以外の観察位置(例:U3~U12等)についても同様に、入射位置Pを変化させる毎に検出される試料Sからの光に関する情報に基づいて、入射位置Pの目標値を算出してもよい。この場合、U1とU2からU3~U12を線形補間する場合に比べ、より精度よく観察位置と入射位置Pとの関係を算出することができる。第1実施形態では、ユーザは、観察位置に対応する入射位置Pの目標値を指定する必要があったが、第3実施形態では、算出部55が、ユーザが指定した観察位置に対応する入射位置Pを算出するため、ユーザの手間を省くことができる。
[第4実施形態]
 第4実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図7は、本実施形態に係る顕微鏡1を示す図である。本実施形態に係る顕微鏡は、例えば、STORM、PALM等のSingle-molecule Localization Microscopy法を利用した顕微鏡である。実施形態に係る顕微鏡は、1種類の蛍光物質で標識(ラベル)された試料の蛍光観察、及び2種類以上の蛍光物質で標識された試料の蛍光観察のいずれにも利用できる。また、実施形態に係る顕微鏡は、例えば、2次元の超解像画像を生成するモード、及び3次元の超解像画像を生成するモードを有し、2つのモードを切り替え可能であるが、2つのモードの片方のみを有するものでもよい。本実施形態では、標識に用いられる蛍光色素(例、レポータ色素)が2種類である形態について説明するが、蛍光色素(例、レポータ色素)の数は1種類でもよいし、3種類以上でもよい。
 試料は、生きた細胞(ライブセル)を含むものでもよいし、ホルムアルデヒド溶液等の組織固定液を用いて固定された細胞を含むものでもよく、組織等でもよい。蛍光物質は、シアニン(cyanine)染料等の蛍光色素でもよいし、蛍光タンパク質でもよい。蛍光色素は、活性化された状態(以下、活性化状態という)で励起光を受けた場合に蛍光を発するレポータ色素を含む。また、蛍光色素は、活性化光を受けてレポータ色素を活性化状態にするアクティベータ色素を含む場合がある。蛍光色素がアクティベータ色素を含まない場合、レポータ色素は、活性化光を受けて活性化状態になる。蛍光色素は、例えば、2種類のシアニン(cyanine)染料を結合させた染料対(例、Cy3-Cy5染料対(Cy3、Cy5は登録商標)、Cy2-Cy5染料対(Cy2、Cy5は登録商標)、Cy3-Alexa Fluor647染料対(Cy3、Alexa Fluorは登録商標))、1種類の染料(例、Alexa Fluor647(Alexa Fluorは登録商標))である。蛍光タンパク質は、例えばPA-GFP、Dronpaなどである。
 本実施形態において、照明光学系4は、蛍光物質(例、レポータ色素)に応じた2種類の波長の励起光を試料Sに照射する。光源装置3は、活性化光源11a、励起光源11b、励起光源11c、シャッタ12a、シャッタ12b、シャッタ12c、ミラー61、ダイクロイックミラー62、及びダイクロイックミラー63を備える。
 活性化光源11aは、照明光として、試料Sに含まれる蛍光物質の一部を活性化する活性化光L0を発する。ここでは、蛍光物質がレポータ色素を含み、アクティベータ色素を含まないものとする。蛍光物質のレポータ色素は、活性化光L0が照射されることで、蛍光を発することが可能な活性化状態となる。活性化光L0の波長は、例えば、405nmである。蛍光物質は、レポータ色素およびアクティベータ色素を含むものでもよく、この場合、アクティベータ色素は、活性化光L0を受けた場合にレポータ色素を活性状態にする。なお、蛍光物質は、例えばPA-GFP、Dronpaなどの蛍光タンパク質でもよい。シャッタ12aは、活性化光源11aの光出射側に配置される。シャッタ12aは、制御部9により制御され、活性化光源11aからの活性化光L0を通す状態と、活性化光L0を遮る状態とを切り替え可能である。
 励起光源11bは、照明光として、第1波長の第1励起光L1を発する。シャッタ12bは、励起光源11bの光出射側に配置される。シャッタ12bは、制御部9により制御され、励起光源11bからの第1励起光L1を通す状態と、第1励起光L1を遮る状態とを切り替え可能である。励起光源11cは、照明光として、第1波長と異なる第2波長の第2励起光L2を発生する。ここでは、第2波長は、第1波長よりも短波長であるとする。例えば、第1波長は647nmであり、第2波長は561nmである。シャッタ12cは、励起光源11cの光出射側に配置される。シャッタ12cは、制御部9により制御され、励起光源11cからの第2励起光L2を通す状態と、第2励起光L2を遮る状態とを切り替え可能である。
 ミラー61は、シャッタ12cの光出射側に配置される。シャッタ12cを通った第2励起光L2は、ミラー61で反射してダイクロイックミラー62に入射する。ダイクロイックミラー62は、シャッタ12bの光出射側に配置される。ダイクロイックミラー62は、第2励起光L2が透過し、第1励起光L1が反射する特性を有する。ダイクロイックミラー62で反射した第1励起光L1、及びダイクロイックミラー62を透過した第2励起光L2は、同じ光路を通ってダイクロイックミラー63に入射する。ダイクロイックミラー63は、シャッタ12aの光出射側に配置される。ダイクロイックミラー63は、第1励起光L1および第2励起光L2が反射する特性を有し、活性化光L0が透過する特性を有する。第1励起光L1および第2励起光L2は、活性化光L0と同じ光路を通って、試料Sに照射される。
 角度調整部7は、例えば、照明光の波長に応じて照明光の入射角度を調整してもよい。例えば、活性化光L0に最適な入射角度としてもよいし、第1励起光L1に最適な入射角度としてもよいし、第2励起光L2に最適な入射角度でもよいし、これらのうちの最小角度と最大角度との間の角度を、入射角度としてもよい。第1励起光L1が照射される場合に、第1励起光L1の波長に最適な入射角度になるように設定し、第2励起光L2が照射される場合には、第2励起光L2の波長に最適な入射角度に再設定してもよい。なお、活性化光L0は、必ずしも斜光照明する必要はない。
 画像処理部56は、撮像部6の撮像結果を用いて、個々の像の重心位置を求めるなどの画像処理を行う。制御部9は、撮像部6に複数のフレーム期間で撮像させ、画像処理部56は、複数のフレーム期間で得られた撮像結果の少なくとも一部を用いて1枚の画像を生成する。例えば、画像処理部56は、複数の撮像画像のそれぞれについて、各画像に含まれる蛍光の像(点像)の重心位置を算出する。例えば、画像処理部56は、撮像画像において点像に対応する領域の画素値の分布に対してガウシアンフィッティングを行うことにより、重心位置を算出する。画像処理部56は、例えば、蛍光の像の重心位置を輝点で表し、複数の撮像画像に含まれる複数の蛍光の像に応じた複数の輝点の少なくとも一部を用いて(マージして)1枚の画像(例、超解像画像)を生成する。
 第1の観察光学系5は、非点収差光学系(例、シリンドリカルレンズ65)を備える。シリンドリカルレンズ65は、試料Sからの蛍光の少なくとも一部に作用し、蛍光の少なくとも一部に対して非点収差を発生させる。すなわち、シリンドリカルレンズ65などの非点収差光学系は、蛍光の少なくとも一部に対して非点収差を発生させて、非点隔差を発生させる。シリンドリカルレンズ65は、試料Sと撮像部6(例、撮像素子40)との間の光路に挿脱可能に設けられる。画像処理部56は、例えば、非点収差を用いて、試料Sの深さ方向(対物レンズ21の光軸21a、すなわち第1の観察光学系5の光軸5a方向)における蛍光物質の位置を算出する。画像処理部56は、例えば、楕円ガウシアンフィッティングを行うことにより、試料Sにおける蛍光物質の位置を算出することができる。なお、図7に示されるように、シリンドリカルレンズ65は、挿脱可能に設けられている。
 図8は、本実施形態に係る照明と撮像のシーケンスの一例を示す図である。図9は、画像処理部56が生成する画像の例を概念的に示す図である。なお、以下、図4、図6等に示される観察位置と入射位置Pとの関係は、算出部55により予め算出されているものとして説明する。制御部9は、ステージ2を対物レンズ21の光軸21aに沿って動かして所定の観察位置(図8のZ)に設定する。また、制御部9は、図4、図6等に示される観察位置と入射位置Pとの関係を用いて、角度調整部7の駆動部52を制御し、第1画像生成期間T1において入射位置がP0-1になるように保持部材51を移動させ、第2画像生成期間T2において入射位置がP0-2になるように保持部材51を移動させる。制御部9は、所定の観察位置(図9のZ)において、以下の通り、撮像シーケンスを実行する。
 制御部9は、画像生成期間T1において、第1励起光(第1励起光L1)を照射させ、第2励起光(第2励起光L2)を照射させない。また、制御部9は、画像生成期間T1において、活性化光L0も照射させる。また、制御部9は、画像生成期間T1の複数のフレーム期間Tfのそれぞれにおいて、撮像部6に撮像させる(図中の第1撮像処理;ON)。制御部9は、画像生成期間T1の次の画像生成期間T2において、第2励起光を照射させ、第1励起光を照射させない。また、制御部9は、画像生成期間T2において、活性化光L0も照射させる。また、制御部9は、画像生成期間T2の複数のフレーム期間Tfのそれぞれにおいて、撮像部6に撮像させる(図中の第2撮像処理;ON)。活性化光L0の強度は、例えば、蛍光物質に応じて調整される。例えば、活性化光L0の強度は、第2励起光の照射時に、第1励起光の照射時よりも強く設定される。例えば、制御部9は、音響光学素子13を制御し、活性化光の強度を調整する。
 画像処理部56は、画像生成期間T1における複数の第1撮像処理により得られる撮像結果(例、撮像画像)の少なくとも一部を用いて、第1の画像Paを生成する。また、画像処理部56は、画像生成期間T2における複数の第2撮像処理により得られる撮像結果(例、撮像画像)の少なくとも一部を用いて、第2の画像Pbを生成する。2種類の蛍光物質(例、レポータ色素)は、試料Sにおいて異なる小器官などに標識されており、第1の画像Paと第2の画像Pbとで異なる小器官などの画像が得られる。画像処理部56は、例えば、第1の画像Paおよび第2の画像Pbを合成して、図9(C)に示すように1枚の画像Ptを生成することができる。
 なお、画像処理部56は、第1の画像Paおよび第2の画像Pbを用いずに、1枚の画像Ptを生成してもよい。例えば、画像処理部56は、複数の第1撮像処理により得られる撮像結果の少なくとも一部と、第2撮像処理により得られる撮像結果の少なくとも一部とを用いて、1枚の画像Ptを生成してもよい。また、画像処理部56は、画像Ptを生成しなくてもよい。
 次に、制御部9は、ステージ2を対物レンズ21の光軸21aに沿って動かして次の観察位置(図8のZ)に設定する。また、制御部9は、図4、図6等に示される観察位置と入射位置Pとの関係を用いて、角度調整部7の駆動部52を制御し、第1画像生成期間T1において入射位置がP1-1になるように保持部材51を移動させ、第2画像生成期間T2において入射位置がP1-2になるように保持部材51を移動させる。制御部9は、この観察位置においても、上述した撮像シーケンスを実行し、第1の画像Pa、第2の画像Pb、画像Pt1が得られる。このように、図8に示すように、観察位置Z~Zそれぞれにおいて、第1の画像Pa~Pa、第2の画像Pb~Pb画像Pt0~Pt nが得られる。
 例えば、画像処理部56は、図9(A)に示すように、第1の画像Pa0~Panを用いて、3次元画像画像Paを生成可能である。また、画像処理部56は、図9(B)に示すように、第2の画像Pb0~Pb nを用いて、3次元画像画像Pbを生成可能である。画像処理部56は、例えば3次元画像画像Paと3次元画像画像Pbとを合成することで、3次元画像(例、図9(C)の3次元画像Pt)を生成可能である。また、画像処理部56は、図9(C)に示すように、第1の画像Pa0および第2の画像Pb0を用いて、画像Pt0を生成可能であり、同様にして画像Pt~Ptを生成可能である。画像処理部56は、画像Pt~Ptを用いて3次元画像画像Ptを生成することもできる。なお、第1の画像Pa0~Panおよび第2の画像Pb0~Pb nそれぞれは、3次元画像であるが、図7においてシリンドリカルレンズ65を光路から退避させた場合は、2次元画像となる。
 本実施形態では、観察位置Z0~Znそれぞれにおいて、励起光(第1励起光、第2励起光)の試料への入射角度が最適に設定されるため、高精度の画像を得ることができる。 
 なお、本実施形態では、ステージ2を動作させて、それぞれの観察位置Z0~Znにおいて、画像生成期間T1および画像生成期間T2を実行したが、それぞれの観察位置Z0~Znにおいて、画像生成期間T1のみを実行してもよい。この場合、再度、ステージ2を動作させて、それぞれの観察位置Z0~Znにおいて、画像生成期間T2のみを実行すればよい。
 高解像度の画像が生成可能である、STORM、PALM等のSingle-molecule Localization Microscopyにおいて、照明光の試料に対する入射角度ステージおよび対物レンズの少なくとも一方を移動させる場合に、照明光の試料に対する入射角度を変化させることは、特に有用である。照明光の試料に対する入射角度を変化させない場合、解像度が低下してしまう可能性があるが、本実施形態のように、照明光の試料に対する入射角度を適切に変化させることにより、Single-molecule Localization Microscopyにおいて、例えば、蛍光の像に相当する光強度の分布が歪むことを抑制することができる。したがって、例えば蛍光の像の重心位置を高精度に求めることができ、厚みのある試料の断面画像についても高解像度で取得することができる。
[第5実施形態]
 第5実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。本実施形態において、顕微鏡1の構成は図1と同様であるが、制御部9の動作が第1実施形態と異なる。本実施形態において、制御部9は、ステージ2および対物レンズ21の少なくとも一方を移動させる場合に、異なる複数の入射角度で撮像部6に複数の画像を撮像させる。例えば、制御部9は、ステージ2と対物レンズ21とが第1の相対位置で配置された状態で、1つの入射角度に対して1または2以上の画像を撮像部6に撮像させ、複数の入射角度のそれぞれに対しても1または2以上の画像を撮像部6に撮像させる。制御部9は、入射角度が異なる複数の画像に基づいて、第1の相対位置に対応する入射角度を決定してもよい。例えば、制御部9は、入射角度が異なる複数の画像のうち、輝度値が最も高い画像に対応する入射角度を、第1の相対位置における入射角度として採用してもよい。また、画像処理部56は、入射角度が異なる複数の画像から、画像処理に用いる画像を選択してもよい。例えば、画像処理部56は、入射角度が異なる複数の画像のうち、輝度値が所定の範囲内に収まる画像を選択し、選択した画像のみを用いて画像処理(例、図8に示した第1の画像Paの生成処理)を行ってもよい。
 また、制御部9は、ステージ2と対物レンズ21とが第1の相対位置と異なる第2の相対位置で配置された状態で、1つの入射角度に対して1または2以上の画像を撮像部6に撮像させ、複数の入射角度のそれぞれに対しても1または2以上の画像を撮像部6に撮像させてもよい。画像処理部56は、入射角度が異なる複数の画像のうち、輝度値が所定の範囲内に収まる画像を選択し、選択した画像のみを用いて画像処理(例、図8に示した第1の画像Paの生成処理)を行ってもよい。また、制御部9は、第2の相対位置に関しても第1の相対位置と同様に、第2の相対位置に対応する入射角度を決定してもよい。また、算出部55は、第1の相対位置用の入射角度と、第2の相対位置用の入射角度とを用いて、第1の相対位置と第2の相対位置との間の第3の相対位置用の入射角度を算出してもよい。
 上述の実施形態において、制御部9は、例えばコンピュータシステムを含む。制御部9は、記憶装置43に記憶されているプログラムを読み出し、このプログラムに従って各種の処理を実行する。このプログラムは、例えば、試料に対して斜方から照明光を照射する照明光学系と、対物レンズを有する観察光学系と、を備え、試料を保持するステージおよび対物レンズの少なくとも一方を、対物レンズの光軸と同じ方向に移動可能な顕微鏡の制御をコンピュータに実行させる制御プログラムであって制御は、ステージおよび対物レンズの少なくとも一方を移動させる場合に、照明光の試料に対する入射角度を変化させることを含む。このプログラムは、コンピュータ読み取り可能な記憶媒体に記録されて提供されてもよい。
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。
1・・・顕微鏡、4・・・照明光学系、4a・・・光軸、5・・・結像光学系、7・・・角度調整部、9・・・制御部、16・・・導光部材、21・・・対物レンズ、45・・・入力装置、52・・・駆動部、55・・・算出部、FP1・・・焦点面、FP2・・・焦点面、L・・・照明光、LF1・・・照野、LF2・・・照野、LF3・・・照野、PU1・・・瞳面、PU2・・・瞳共役面、S・・・試料

Claims (19)

  1.  試料に対して斜方から照明光を照射する照明光学系と、
     対物レンズを有する観察光学系と、
     前記試料を保持するステージおよび前記対物レンズの少なくとも一方を、前記対物レンズの光軸と同じ方向に移動させる制御部と、
     前記観察光学系において形成された像を撮像する撮像部と、を備える顕微鏡であって、
     前記制御部は、前記ステージおよび前記対物レンズの少なくとも一方を移動させる場合に、前記照明光の前記試料に対する入射角度を変化させることを特徴とする、顕微鏡。
  2.  前記制御部は、前記照明光の波長に応じて、前記入射角度を変化させることを特徴とする、請求項1に記載の顕微鏡。
  3.  前記照明光学系は、前記対物レンズを含み、前記対物レンズを介して、前記照明光を前記試料に入射させることを特徴とする、請求項1または請求項2に記載の顕微鏡。
  4.  前記制御部は、
     前記対物レンズの光軸の方向において前記対物レンズと前記試料との距離が小さくなるように前記ステージおよび前記対物レンズの少なくとも一方を移動する場合に、前記入射角度が小さくなるように変化させる、請求項3に記載の顕微鏡。
  5.  前記制御部は、前記照明光の前記対物レンズの瞳面における入射位置を調整することにより、前記入射角度を変化させることを特徴とする、請求項4に記載の顕微鏡。
  6.  前記制御部は、前記入射位置を、前記対物レンズの光軸と直交する面内において変化させることを特徴とする、請求項5に記載の顕微鏡
  7.  前記制御部は、前記対物レンズの位置に応じた前記入射角度に関する情報に基づいて、前記入射角度を変化させることを特徴とする、請求項3から請求項6のいずれか1項に記載の顕微鏡。
  8.  入出力装置を備え、
     前記制御部は、前記対物レンズの位置に応じた前記入射角度に関する情報の複数の算出方法を選択可能に前記入出力装置に出力し、
     前記入出力装置から入力された前記算出方法に基づいて、前記対物レンズの位置に応じた前記入射角度に関する情報を算出し、算出した情報に基づいて、前記入射角度を変化させることを特徴とする、請求項7に記載の顕微鏡。
  9.  前記制御部は、
     予め決められた前記対物レンズの第1の位置に対応する第1の入射角度に関する情報と、前記第1の位置とは異なる第2の位置に対応する第2の入射角度に関する情報とに基づいて、前記対物レンズの位置に応じた前記入射角度に関する情報を決定し、前記決定した情報に基づいて、前記入射角度を変化させることを特徴とする、請求項6又は請求項7に記載の顕微鏡。
  10.  前記制御部は、前記ステージの位置に応じた前記入射角度に関する情報に基づいて、前記照明光の入射角度を変化させることを特徴とする、請求項3から請求項6のいずれか1項に記載の顕微鏡。
  11.  入出力装置を備え、
     前記制御部は、前記ステージの位置に応じた前記入射角度に関する情報の複数の算出方法を選択可能に前記入出力装置に出力し、
     前記入出力装置から入力された前記算出方法に基づいて、前記ステージの位置に応じた前記入射角度に関する情報を算出し、算出した情報に基づいて、前記入射角度を変化させることを特徴とする、請求項10に記載の顕微鏡。
  12.  前記制御部は、
     予め決められた前記ステージの第1の位置に対応する第1の入射角度に関する情報と、前記第1の位置とは異なる第2の位置に対応する第2の入射角度に関する情報とに基づいて、前記ステージの位置に応じた前記入射角度に関する情報を決定し、前記決定した情報に基づいて、前記入射角度を変化させることを特徴とする、請求項10又は請求項11に記載の顕微鏡。
  13.  前記制御部は、前記ステージおよび前記対物レンズの少なくとも一方を移動させる場合に、異なる複数の入射角度で前記撮像部に複数の画像を撮像させることを特徴とする、請求項1から請求項6のいずれか1項に記載の顕微鏡。
  14.  前記照明光学系は、前記照明光を導光する導光部材を有し、
     前記制御部は、前記導光部材の位置を移動させることにより、前記入射位置を変化させることを特徴とする、請求項1から請求項13のいずれか1項に記載の顕微鏡。
  15.  前記試料に対する入射角度に関する情報は、前記導光部材の位置に関する情報を含むことを特徴とする、請求項14に記載の顕微鏡。
  16.  前記照明光は、前記試料に含まれる蛍光物質の一部を活性化する活性化光と、前記活性化された蛍光物質の少なくとも一部を励起する励起光とを含み、
     前記制御部は、前記ステージおよび前記対物レンズの少なくとも一方を移動させる場合に、前記励起光の前記試料に対する入射角度を変化させることを特徴とする、請求項1から請求項15のいずれか1項に記載の顕微鏡。
  17.  試料が載置されるステージと、
     試料に対して斜方から照明光を照射する照明光学系と、
     対物レンズを有する観察光学系と、
     前記試料を保持するステージおよび前記対物レンズの少なくとも一方を、前記対物レンズの光軸と同じ方向に移動させる制御部と、
     前記対物レンズを介して前記試料の撮像を行う撮像装置と、
     前記対物レンズの光軸方向における観察位置毎の撮像条件を記憶する記憶部と、を備え、
     前記撮像条件は、前記照明光の試料への入射角度に関する情報を含み、
     前記制御部は、前記ステージおよび前記対物レンズの少なくとも一方を移動させる場合に、前記撮像条件に基づいて、前記照明光の前記試料に対する入射角度を変化させることを特徴とする、顕微鏡。
  18.  試料に対して斜方から照明光を照射する照明光学系と、対物レンズを有する観察光学系と、を備え、前記試料を保持するステージおよび前記対物レンズの少なくとも一方を、前記対物レンズの光軸と同じ方向に移動可能な顕微鏡を用いる観察方法であって、
     前記ステージおよび前記対物レンズの少なくとも一方を移動させる場合に、前記照明光の前記試料に対する入射角度を変化させることを含むことを特徴とする、観察方法。
  19.  試料に対して斜方から照明光を照射する照明光学系と、対物レンズを有する観察光学系と、を備え、前記試料を保持するステージおよび前記対物レンズの少なくとも一方を、前記対物レンズの光軸と同じ方向に移動可能な顕微鏡の制御をコンピュータに実行させる制御プログラムであって、
     前記制御は、前記ステージおよび前記対物レンズの少なくとも一方を移動させる場合に、前記照明光の前記試料に対する入射角度を変化させることを含むことを特徴とする、制御プログラム。
PCT/JP2015/083509 2015-11-27 2015-11-27 顕微鏡、観察方法、及び制御プログラム WO2017090209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/083509 WO2017090209A1 (ja) 2015-11-27 2015-11-27 顕微鏡、観察方法、及び制御プログラム
EP15909326.9A EP3382441A4 (en) 2015-11-27 2015-11-27 MICROSCOPE, CONSIDERATION PROCEDURE AND CONTROL PROGRAM
JP2017552256A JP6540823B2 (ja) 2015-11-27 2015-11-27 顕微鏡、観察方法、及び制御プログラム
US15/991,534 US10823675B2 (en) 2015-11-27 2018-05-29 Microscope, observation method, and a storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083509 WO2017090209A1 (ja) 2015-11-27 2015-11-27 顕微鏡、観察方法、及び制御プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/991,534 Continuation US10823675B2 (en) 2015-11-27 2018-05-29 Microscope, observation method, and a storage medium

Publications (1)

Publication Number Publication Date
WO2017090209A1 true WO2017090209A1 (ja) 2017-06-01

Family

ID=58764091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083509 WO2017090209A1 (ja) 2015-11-27 2015-11-27 顕微鏡、観察方法、及び制御プログラム

Country Status (4)

Country Link
US (1) US10823675B2 (ja)
EP (1) EP3382441A4 (ja)
JP (1) JP6540823B2 (ja)
WO (1) WO2017090209A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343435B2 (en) 2019-12-26 2022-05-24 Waymo Llc Microlensing for real-time sensing of stray light
DE112021001887T5 (de) * 2020-03-27 2023-01-05 Sony Group Corporation Mikroskopsystem, bildgebungsverfahren und bildgebungsvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159922A (ja) 1995-12-13 1997-06-20 Kagaku Gijutsu Shinko Jigyodan 光照射切り替え方法
JP2006189741A (ja) * 2004-02-09 2006-07-20 Olympus Corp 全反射蛍光顕微鏡
JP2011118069A (ja) * 2009-12-02 2011-06-16 Nikon Corp 顕微鏡用照明装置および顕微鏡

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172212B2 (ja) 2002-06-20 2008-10-29 株式会社ニコン 顕微鏡標本の照明方法とこれを用いた照明装置を有する顕微鏡
US7369308B2 (en) * 2004-02-09 2008-05-06 Olympus Corporation Total internal reflection fluorescence microscope
JP4766591B2 (ja) * 2005-03-09 2011-09-07 大学共同利用機関法人情報・システム研究機構 顕微鏡
JP2007072391A (ja) * 2005-09-09 2007-03-22 Olympus Corp レーザ顕微鏡
US9134521B2 (en) * 2008-07-30 2015-09-15 The Regents Of The University Of California Multidirectional selective plane illumination microscopy
WO2010108042A2 (en) * 2009-03-18 2010-09-23 University Of Utah Research Foundation Non-coherent light microscopy
DE102012102983A1 (de) * 2012-04-05 2013-10-10 Carl Zeiss Microscopy Gmbh Verfahren und Vorrichtung zum Bestimmen eines kritischen Winkels eines Anregungslichtstrahls
JP5962968B2 (ja) * 2012-04-13 2016-08-03 株式会社ニコン 顕微鏡の調整方法及び顕微鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159922A (ja) 1995-12-13 1997-06-20 Kagaku Gijutsu Shinko Jigyodan 光照射切り替え方法
JP2006189741A (ja) * 2004-02-09 2006-07-20 Olympus Corp 全反射蛍光顕微鏡
JP2011118069A (ja) * 2009-12-02 2011-06-16 Nikon Corp 顕微鏡用照明装置および顕微鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382441A4

Also Published As

Publication number Publication date
US20180306721A1 (en) 2018-10-25
US10823675B2 (en) 2020-11-03
EP3382441A1 (en) 2018-10-03
JP6540823B2 (ja) 2019-07-10
JPWO2017090209A1 (ja) 2018-09-13
EP3382441A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6282706B2 (ja) 物体の2次元または3次元の位置調整のための高解像度顕微鏡および方法
Sanderson et al. Fluorescence microscopy
JP6375254B2 (ja) 蛍光観察用ユニットおよび蛍光観察装置
JP5381984B2 (ja) 顕微鏡装置および顕微鏡装置制御プログラム
US20140300958A1 (en) Arrangement for use in the illumination of a specimen in spim microscopy
US20120113506A1 (en) Novel Multi-Point Scan Architecture
US20070051869A1 (en) Scanning microscope and method for examining a sample by using scanning microscopy
US10983327B2 (en) Light sheet microscope
JP6178656B2 (ja) 補償光学素子の設定方法及び顕微鏡
JP2010085826A (ja) レーザ顕微鏡装置
JP2006201465A5 (ja)
US10725278B2 (en) Microscope, observation method, and storage medium
JP2017215546A (ja) 共焦点顕微鏡
US10823675B2 (en) Microscope, observation method, and a storage medium
US11906431B2 (en) Microscope apparatus
JP2013156286A (ja) 撮像装置
JP6127818B2 (ja) 補償光学素子の設定方法及び顕微鏡
JP6928757B2 (ja) 光学顕微鏡における画像処理のためのシステムおよび方法
US20180017773A1 (en) Microscope device, observation method, and storage medium
JP6708289B2 (ja) 顕微鏡、観察方法、及び制御プログラム
JP2006510932A (ja) コヒーレンス顕微鏡
JP5307374B2 (ja) フォーカス調整ユニットおよび光走査型顕微鏡
CN107209359B (zh) 图像取得装置以及图像取得方法
US9696532B2 (en) Scanning laser microscope
JP2008185636A (ja) 全反射顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015909326

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015909326

Country of ref document: EP

Effective date: 20180627