WO2017090155A1 - 電力制御装置、および電力制御システム - Google Patents

電力制御装置、および電力制御システム Download PDF

Info

Publication number
WO2017090155A1
WO2017090155A1 PCT/JP2015/083233 JP2015083233W WO2017090155A1 WO 2017090155 A1 WO2017090155 A1 WO 2017090155A1 JP 2015083233 W JP2015083233 W JP 2015083233W WO 2017090155 A1 WO2017090155 A1 WO 2017090155A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
maximum current
secondary battery
power control
battery cell
Prior art date
Application number
PCT/JP2015/083233
Other languages
English (en)
French (fr)
Inventor
そのか 池田
小杉 伸一郎
関野 正宏
黒田 和人
山崎 修
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2017511806A priority Critical patent/JP6313522B2/ja
Priority to CN201580047260.7A priority patent/CN107005077B/zh
Priority to PCT/JP2015/083233 priority patent/WO2017090155A1/ja
Priority to EP15902469.4A priority patent/EP3382850A4/en
Priority to US15/455,962 priority patent/US10525835B2/en
Publication of WO2017090155A1 publication Critical patent/WO2017090155A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • Embodiments described herein relate generally to a power control apparatus and a power control system.
  • the charge state range is defined by electric capacity and set in a wide range, before reaching the upper and lower limit electric capacity, the upper and lower limit values of the closed circuit voltage of the battery are reached and the device stops, In some cases, the usable energy range is greatly limited. As described above, in the conventional technique, there is a case where the voltage limitation of the secondary battery cannot be performed accurately.
  • the problem to be solved by the present invention is to provide a power control device and a power control system that can more accurately limit the voltage of the secondary battery.
  • the power control apparatus of the embodiment has an acquisition unit and a determination unit.
  • An acquisition part acquires the information regarding the voltage at the time of charge of the secondary battery which can be charged / discharged.
  • the determination unit tends to decrease as the difference between the upper limit voltage and the voltage of the secondary battery decreases based on the information acquired by the acquisition unit, and is limited by the upper limit current to charge the secondary battery. Determine the maximum current at the time.
  • FIG. 1 The figure which shows an example of a structure of the electric power control system.
  • FIG. The figure which illustrated transition of voltage Vc and maximum current Acellmax of battery cell 21 at the time of charge.
  • FIG. 1 The figure which shows an example of a structure of the electric power control system.
  • the flowchart which shows an example of the flow of the process performed at the time of charge of the battery cell 21 by the maximum electric current determination part 56 of 2nd Embodiment.
  • the flowchart which shows an example of the flow of the process performed at the time of discharge of the battery cell 21 by the maximum current determination part 56 of 2nd Embodiment.
  • the flowchart which shows the other example of the flow of the process performed at the time of discharge of the battery cell 21 by the maximum electric current determination part 56 of 2nd Embodiment. 1 is a diagram illustrating an example of a configuration of a mobile system 100 that uses a power control system 1.
  • FIG. The figure which shows an example of a structure of the stationary electrical storage system 200 using the electric power control system.
  • FIG. 1 is a diagram illustrating an example of a configuration of a power control system 1 according to the first embodiment.
  • the power control system 1 may include battery units 10-1, 10-2,..., 10-n (n is an arbitrary natural number), a power control device 50, an input device 70, and a control target 80.
  • the present invention is not limited to this.
  • the battery unit 10 when it is not distinguished which battery unit, it is simply expressed as the battery unit 10.
  • the plurality of battery units 10 are connected to the control target 80 in parallel by the power line PL and supply power to the control target 80. Since each battery unit 10 has the same configuration (there may be some differences), in the figure, only the configuration of the battery unit 10-1 is shown in detail on behalf of a plurality of battery units. It is described.
  • the battery unit 10 includes a plurality of battery modules 20 connected in series, a current sensor 30, and a BMU (Battery Management Unit) 40. Each component in the battery unit 10 is connected by an intra-unit communication line CL1. In the intra-unit communication line CL1, for example, communication based on CAN (Controller Area Network) is performed.
  • CAN Controller Area Network
  • FIG. 2 is a diagram illustrating an example of the configuration of the battery module 20.
  • the battery module 20 is an assembled battery (battery) to which a plurality of battery cells 21 are connected.
  • the battery unit 10 and the battery unit 10 connected in parallel are also assembled batteries (batteries).
  • a set of two battery cells 21 connected in parallel is connected in series. Not only this but the connection mode of the battery cell in the battery module 20 may be determined arbitrarily.
  • Battery cell 21 is a rechargeable secondary battery such as a lithium ion battery, a lead storage battery, a sodium sulfur battery, a redox flow battery, or a nickel metal hydride battery.
  • the battery cell 21 may be one using lithium titanate as a negative electrode material. 1 and 2, the configuration for charging the battery cell 21 is not shown.
  • the battery module 20 further includes a CMU (Cell Monitoring Unit) 22, a plurality of voltage sensors 23, and a plurality of temperature sensors 24.
  • the CMU 22 includes a processor such as a CPU (Central Processing Unit), various storage devices, a CAN controller, and other communication interfaces.
  • CPU Central Processing Unit
  • the voltage sensor 23 measures the voltage of a set of battery cells 21 connected in parallel, for example. Further, an arbitrary number of temperature sensors 24 are attached to arbitrary locations in the battery module 20. The detection results of the voltage sensor 23 and the temperature sensor 24 are output to the CMU 22. The CMU 22 outputs the detection results of the voltage sensor 23 and the temperature sensor 24 to the BMU 40.
  • the BMU 40 is connected to the plurality of CMUs 22 by the intra-unit communication line CL1, and is connected to the power control device 50 by the communication line CL2.
  • the BMU 40 includes a processor such as a CPU, various storage devices, a CAN controller, and a communication interface corresponding to the communication line CL2. Note that the communication line CL2 may be omitted, and wireless communication may be performed between the BMU 40 and the power control device 50.
  • the detection result of the current sensor 30 that detects the current flowing through the battery module 20 of the battery unit 10 is input to the BMU 40.
  • the power control device 50 includes a processor such as a CPU, various storage devices, a communication interface corresponding to the communication line CL2, and the like.
  • the power control device 50 controls the control target 80 based on information input from the plurality of BMUs 40 and operation information input from the input device 70.
  • FIG. 3 is a diagram illustrating an example of a control-related configuration in the power control system 1.
  • Information such as the voltage for each battery cell 21, the voltage of the battery module 20, and the temperature of the battery module 20 is provided from the CMU 22 to the BMU 40.
  • the CMU 22 calculates the voltage of the battery module 20 by adding the voltage for each battery cell 21.
  • the voltage of the battery module 20 may be calculated by adding the voltage for each battery cell 21 on the BMU 40 side.
  • the BMU 40 calculates the SOC (State Of Charge) of each battery module 20 based on the detection result of the current sensor 30 (see FIG. 1). Note that the SOC of each battery module 20 (or the SOC of each battery cell 21) may be calculated by the CMU 22 based on the detection result of the voltage sensor 23 or the like.
  • the BMU 40 outputs the voltage for each battery cell 21 input from the CMU 22, information about the voltage of the battery module 20, the temperature of the battery module 20, and the calculated SOC to the power control apparatus 50.
  • the power control device 50 includes a processor such as a CPU, various storage devices, a communication interface corresponding to communication with the communication line CL2 and the control target 80, and the like.
  • the power control device 50 includes an acquisition unit 52, a maximum current determination unit 56, a control amount determination unit 58, and a storage unit 60 as functional configurations.
  • One or both of the maximum current determination unit 56 and the control amount determination unit 58 are realized by a processor such as a CPU executing a program stored in the storage unit 60.
  • These functional units may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), and FPGA (Field-Programmable Gate Array).
  • the acquisition unit 52 includes a communication interface, and outputs information acquired from the BMU 40 to the maximum current determination unit 56 or causes the storage unit 60 to store the information.
  • the maximum current determination unit 56 determines the maximum when the battery cell 21 is charged or discharged based on a comparison between the voltage of the battery cell 21 obtained from the information acquired by the acquisition unit 52 and the upper limit voltage VcMAX or the lower limit voltage VcMIN. Determine the current.
  • the upper limit voltage VcMAX and the lower limit voltage VcMIN are predetermined values based on the viewpoint of suppressing the deterioration of the battery cell 21.
  • the upper limit voltage VcMAX is set in advance based on the maximum usable voltage of the battery cell 21.
  • the upper limit voltage VcMAX is preferably set to a value lower than the maximum usable voltage of the battery cell 21 with a control margin, but the upper limit voltage VcMAX matches the maximum usable voltage of the battery cell 21. You may let them.
  • the lower limit voltage VcMIN is set in advance based on the minimum usable voltage of the battery cell 21.
  • the lower limit voltage VcMIN is preferably set to a value higher than the minimum usable voltage of the battery cell 21 with a control margin, but the lower limit voltage VcMIN matches the minimum usable voltage of the battery cell 21. You may let them.
  • the control amount determination unit 58 determines the control amount to be given to the control target 80 based on the operation information input from the input device 70 and the maximum current determined by the maximum current determination unit 56.
  • the input device 70 may include a lever switch, a dial switch, various keys, a touch panel, and the like.
  • the controlled object 80 may include a DC-AC converter that has a plurality of transistors and converts direct current into alternating current by switching control of the transistors.
  • the control amount given to the controlled object 80 is, for example, a duty ratio in switching control.
  • the control amount given to the control target 80 may include a command value such as an i-axis current or a q-axis current.
  • the control target 80 may include a generator that generates electric power and supplies it to the battery unit 10, and a device that discards a part of the power supplied to the generator as heat (a device that limits the amount of power generation). Good.
  • the function of the control amount determination unit 58 may be a function of a control device that is separate from the power control device 50.
  • the power control device 50 outputs the maximum current determined by the maximum current determination unit 56 to the separate control device.
  • the input device 70 is omitted from the configuration shown in FIGS. 1 and 3, and the control amount determination unit 58 controls the control amount to be given to the control target 80 based on the maximum current and other information determined by the maximum current determination unit 56. May be determined.
  • the storage unit 60 is realized by various storage devices such as ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), and other flash memory devices.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • other flash memory devices In addition to the program executed by the processor of the power control device 50, the storage unit 60 stores various types of information generated in the process of the conversion table 62, the maximum current determination unit 56 and the control amount determination unit 58.
  • FIG. 4 is a diagram schematically showing the processing content during charging by the maximum current determination unit 56.
  • the maximum current determination unit 56 first obtains a difference ⁇ V by subtracting the maximum value of the voltage Vc of the battery cell 21 from the upper limit voltage VcMAX of the battery cell 21.
  • the upper limit voltage VcMAX is a predetermined value from the viewpoint of efficiently using the battery cell 21 while suppressing the deterioration of the battery cell 21.
  • the maximum current determination unit 56 treats the voltage at zero current converted from the SOC of the battery cell 21 using the conversion table 62 as the voltage Vc of the battery cell 21.
  • the conversion table 62 is a table that defines the relationship between the SOC obtained in advance and the voltage at zero current.
  • the upper limit current Alim is a predetermined value from the viewpoint of suppressing the deterioration of the battery cell 21.
  • the upper limit current Alim is set in advance based on the maximum charge / discharge current (specifically maximum current A *) in the specification of the battery module 20 or the battery cell 21.
  • the upper limit current Alim is preferably set to a value smaller than the maximum current A * in terms of specifications with a control margin, but the upper limit current Alim and the maximum current A * in terms of specifications may be matched.
  • FIG. 5 is a diagram illustrating the transition of the voltage Vc and the maximum current Acellmax of the battery cell 21 during charging.
  • the current is an absolute value that does not consider the direction.
  • the maximum current Acellmax remains constant at the upper limit current Alim, and the difference ⁇ V between the voltage Vc and the upper limit voltage VcMAX.
  • the difference ⁇ V tends to decrease as the difference ⁇ V decreases.
  • the increase in the voltage Vc slows down, and changes asymptotically to the upper limit voltage VcMAX.
  • the power control device 50 of the embodiment it is possible to accurately limit the voltage of the battery cell 21.
  • FIG. 6 is a diagram schematically showing the processing contents at the time of discharging by the maximum current determining unit 56.
  • the maximum current determination unit 56 first obtains a difference ⁇ V by subtracting the lower limit voltage VcMIN of the battery cell 21 from the minimum value of the voltage Vc of the battery cell 21.
  • the lower limit voltage VcMIN is a predetermined value from the viewpoint of efficiently using the battery cell 21 while suppressing the deterioration of the battery cell 21.
  • the maximum current determination unit 56 multiplies the difference ⁇ V by a gain K. Then, the multiplication result K ⁇ V is limited by the upper limit current Alim, and the maximum current Acellmax per battery cell 21 is calculated. As a result, the voltage Vc and the maximum current Acellmax of the battery cell 21 during charging change as shown in FIG. 7, for example.
  • FIG. 7 is a diagram illustrating the transition of the voltage Vc and the maximum current Acellmax of the battery cell 21 during discharge.
  • the current is an absolute value that does not consider the direction.
  • the maximum current Acellmax is constant at the upper limit current Alim when the difference ⁇ V between the voltage Vc and the lower limit voltage VcMIN is sufficiently large, and the difference ⁇ V between the voltage Vc and the lower limit voltage VcMIN.
  • the difference ⁇ V tends to decrease as the difference ⁇ V decreases.
  • the decrease in the voltage Vc slows down and changes asymptotically to the lower limit voltage VcMIN.
  • the power control device 50 of the embodiment it is possible to accurately limit the voltage of the battery cell 21.
  • the maximum current determination unit 56 multiplies the maximum current Acellmax allowed per battery cell 21 by the module parallel number np_cell to calculate the maximum current Acellmod allowed per battery module 20.
  • the module parallel number np_cell is the parallel number of the battery cells 21 in the battery module 20. In the example of FIG. 2, the module parallel number np_cell is 2.
  • the maximum current determination unit 56 calculates the system maximum current Amax by multiplying the maximum current Acellmod allowed per battery module 20 by the system parallel number np_mod.
  • the system maximum current Amax is the sum of the maximum currents that the battery units 10 are allowed to charge / discharge in the power control system 1 and is the maximum current supplied to the controlled object 80 by the power line PL.
  • the system parallel number np_mod is the system parallel number, that is, the parallel number of the battery modules 20. In the example of FIG. 1, the system parallel number np_mod is n.
  • the control amount determination unit 58 sets the control amount to be given to the control target 80 based on the operation information input from the input device 70 with the system maximum current Amax as the upper limit value. For example, the control amount determination unit 58 first determines a primary command value of the power generation amount to be given to the controlled object 80 based on the operation information input from the input device 70, and the primary command value corresponds to the system maximum current Amax. If the power generation amount is not exceeded, the primary command value is given to the control object 80 as a control amount, and if the primary command value exceeds the power generation amount corresponding to the system maximum current Amax, the power generation amount corresponding to the system maximum current Amax. Is given to the controlled object 80 as a controlled variable.
  • a common gain K may be used for charging and discharging, but a different gain K may be used for charging and discharging.
  • the gain K may be determined based on the voltage / current characteristics of the battery cell 21.
  • FIG. 8 is a diagram for explaining the relationship between the voltage / current characteristics of the battery cell 21 and the gain K.
  • the vertical axis represents the voltage Vc of the battery cell 21, and the horizontal axis represents the integrated value of the charge / discharge current (may be considered as SOC).
  • the slope G1 of the characteristic curve at the intersection P1 between the curve (hereinafter referred to as the characteristic curve) indicating the voltage / current characteristics of the battery cell 21 and the upper limit voltage VcMAX, and the characteristic curve at the intersection P2 between the characteristic curve and the lower limit voltage VcMIN.
  • the slope G2 is compared. If the slope G1 is larger than the slope G2, the gain K during charging is larger than the gain K during discharging. If the slope G1 is smaller than the slope G2, the gain K during charging is set at the time of discharging. It is preferable to make it smaller than the gain K.
  • the upper limit current Alim during charging may be different from the upper limit current Alim during discharging.
  • a maximum current determining unit 56 that determines the maximum current Acellmax during charging of the battery cell 21 with a tendency to decrease as the difference between the upper limit voltage VcMAX and the voltage Vc of the battery cell 21 decreases and is limited by the upper limit current Alim; In the system in which a relatively large current flows, the voltage of the battery cell 21 can be more accurately limited.
  • a maximum current determining unit 56 that determines the maximum current Acellmax during discharging of the battery cell 21 with a tendency to decrease as the difference between the lower limit voltage VcMIN and the voltage Vc of the battery cell 21 decreases and is limited by the upper limit current Alim; In the system in which a relatively large current flows, the voltage of the battery cell 21 can be more accurately limited.
  • the system maximum current Amax is calculated based on the maximum value or the minimum value of the voltage Vc of the battery cell 21, there is an individual difference for each battery cell 21.
  • the control on the safe side according to the progress state of can be performed.
  • the power control device 50 according to the second embodiment differs from the first embodiment in the processing content of the maximum current determination unit 56 and is common in other respects. Accordingly, FIGS. 1 to 3 are used for the configuration, and descriptions of common portions are omitted.
  • the maximum current determination unit 56 of the second embodiment charges the battery cell 21 based on a comparison between the voltage of the battery cell 21 obtained from the information acquired by the acquisition unit 52 and the upper limit voltage VcMAX or the lower limit voltage VcMIN. Determine the maximum current during discharge or discharge.
  • the voltage at the time of zero current converted from the SOC of the battery cell 21 using the conversion table 62 is handled as the voltage Vc of the battery cell 21.
  • the maximum current determination unit 56 of the second embodiment determines the maximum current Acellmax when the battery cell 21 is repeatedly charged in a predetermined cycle, and the difference between the upper limit voltage VcMAX and the voltage Vc of the battery cell 21 is the first predetermined voltage V1. If it is less than the maximum current Acellmax at the time of charging the battery cell 21, the value obtained by subtracting the step voltage ⁇ from the previously determined maximum current Acellmax is determined.
  • the maximum current determination unit 56 of the second embodiment repeatedly determines the maximum current Acellmax at the time of discharging the battery cell 21 at a predetermined cycle, and the difference between the voltage Vc of the battery cell 21 and the lower limit voltage VcMIN is the second predetermined voltage. When it is less than V2, the maximum current Acellmax at the time of charging the battery cell 21 is determined by subtracting the step voltage ⁇ from the previously determined maximum current Acellmax.
  • FIG. 9 is a flowchart illustrating an example of a flow of processing executed when the battery cell 21 is charged by the maximum current determination unit 56 of the second embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle.
  • the maximum current determination unit 56 selects the maximum value of the battery cell 21 (step S100).
  • the maximum current determination unit 56 calculates a difference ⁇ V by subtracting the maximum value of the voltage Vc of the battery cell 21 from the upper limit voltage VcMAX of the battery cell 21 (step S102).
  • the upper limit voltage VcMAX is a predetermined value from the viewpoint of efficiently using the battery cell 21 while suppressing the deterioration of the battery cell 21.
  • the maximum current determination unit 56 determines whether or not the difference ⁇ V is less than the first predetermined voltage V1 (step S104). When the difference ⁇ V is not less than the first predetermined voltage V1, the maximum current determination unit 56 determines the maximum current Acellmax per battery cell 21 as the upper limit current Alim (step S106).
  • the maximum current determination unit 56 steps the maximum current Acellmax per battery cell 21 from the maximum current Acellmax determined when one routine of this flowchart was executed last time. It is determined by subtracting the voltage ⁇ (step S108). However, when the value obtained by subtracting the step voltage ⁇ becomes a negative value, the maximum current determining unit 56 determines the maximum current Acellmax to be zero (or a relatively small predetermined value).
  • FIG. 10 is a diagram illustrating the transition of the voltage Vc and the maximum current Acellmax of the battery cell 21 at the time of charging, which is generated as a result of performing the processing shown in FIG.
  • the current is an absolute value that does not consider the direction.
  • the maximum current Acellmax per battery cell 21 is maintained at the upper limit current Alim.
  • the maximum current Acellmax per battery cell 21 is determined so as to decrease by step voltage ⁇ every control cycle and approach zero.
  • the increase in the voltage Vc slows down and gradually changes to the upper limit voltage VcMAX.
  • the power control device 50 of the embodiment it is possible to accurately limit the voltage of the battery cell 21.
  • FIG. 11 is a flowchart illustrating an example of a flow of processing executed when the battery cell 21 is discharged by the maximum current determination unit 56 of the second embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle.
  • the maximum current determination unit 56 selects the minimum value of the battery cell 21 (step S200).
  • the maximum current determination unit 56 obtains a difference ⁇ V by subtracting the lower limit voltage VcMIN of the battery cell 21 from the minimum value of the voltage Vc of the battery cell 21 (step S202).
  • the lower limit voltage VcMIN is a predetermined value from the viewpoint of efficiently using the battery cell 21 while suppressing the deterioration of the battery cell 21.
  • the maximum current determination unit 56 determines whether or not the difference ⁇ V is less than the second predetermined voltage V2 (step S204). When the difference ⁇ V is not less than the second predetermined voltage V2, the maximum current determination unit 56 determines the maximum current Acellmax per battery cell 21 as the upper limit current Alim (step S206).
  • the first predetermined voltage V1 and the second predetermined voltage V2 may be the same value or different values.
  • the maximum current determination unit 56 sets the maximum current Acellmax per battery cell 21 from the maximum current Acellmax determined when one routine of this flowchart was executed last time. It is determined by subtracting the voltage ⁇ (step S208). However, when the value obtained by subtracting the step voltage ⁇ becomes a negative value, the maximum current determining unit 56 determines the maximum current Acellmax to be zero (or a relatively small predetermined value).
  • FIG. 12 is a diagram illustrating the transition of the voltage Vc and the maximum current Acellmax of the battery cell 21 at the time of discharging, which is generated as a result of performing the processing shown in FIG.
  • the current is an absolute value that does not consider the direction.
  • the maximum current Acellmax per battery cell 21 is maintained at the upper limit current Alim.
  • the maximum current Acellmax per battery cell 21 is determined to decrease by the step voltage ⁇ every control cycle and approach zero.
  • the decrease in the voltage Vc slows down and gradually changes to the lower limit voltage VcMIN.
  • the power control device 50 of the embodiment it is possible to accurately limit the voltage of the battery cell 21.
  • the maximum current determination unit 56 multiplies the maximum current Acellmax allowed per battery cell 21 by the module parallel number np_cell to calculate the maximum current Acellmod allowed per battery module 20.
  • the module parallel number np_cell is the parallel number of the battery cells 21 in the battery module 20. In the example of FIG. 2, the module parallel number np_cell is 2.
  • the maximum current determination unit 56 calculates the system maximum current Amax by multiplying the maximum current Acellmod allowed per battery module 20 by the system parallel number np_mod.
  • the system maximum current Amax is the sum of the maximum currents that the battery units 10 are allowed to charge / discharge in the power control system 1 and is the maximum current supplied to the controlled object 80 by the power line PL.
  • the system parallel number np_mod is the system parallel number, that is, the parallel number of the battery modules 20. In the example of FIG. 1, the system parallel number np_mod is n.
  • the control amount determination unit 58 sets the control amount to be given to the control target 80 based on the operation information input from the input device 70 with the system maximum current Amax as the upper limit value. For example, the control amount determination unit 58 first determines a primary command value of the power generation amount to be given to the controlled object 80 based on the operation information input from the input device 70, and the primary command value corresponds to the system maximum current Amax. If the power generation amount is not exceeded, the primary command value is given to the control object 80 as a control amount, and if the primary command value exceeds the power generation amount corresponding to the system maximum current Amax, the power generation amount corresponding to the system maximum current Amax. Is given to the controlled object 80 as a controlled variable.
  • a common step voltage ⁇ may be used during charging and discharging, but a different step voltage ⁇ may be used during charging and discharging.
  • the step voltage ⁇ may be determined based on the voltage / current characteristics of the battery cell 21. This will be described with reference to FIG. Similar to the first embodiment, the curve G1 of the characteristic curve and the lower limit voltage VcMIN of the characteristic curve and the lower limit voltage VcMIN at the intersection P1 between the curve (hereinafter, characteristic curve) indicating the voltage / current characteristic of the battery cell 21 and the upper limit voltage VcMAX The slope G2 of the characteristic curve at the intersection P2 is compared.
  • the step voltage ⁇ during charging is made larger than the step voltage ⁇ during discharging, and if the slope G1 is smaller than the slope G2, charging is performed.
  • the step voltage ⁇ at the time may be smaller than the step voltage ⁇ at the time of discharge.
  • the first predetermined voltage V1 is greater than the second predetermined voltage V2
  • the first predetermined voltage V1 is greater than the second predetermined voltage V2. It is better to make it smaller. By so doing, it is possible to limit the maximum current Acellmax earlier on the steep side, and more appropriately prevent overcharge and overdischarge.
  • the upper limit current Alim during charging may be different from the upper limit current Alim during discharging.
  • the maximum current Acellmax per battery cell 21 is determined as the upper limit current Alim, that is, when the difference ⁇ V is equal to or greater than the first predetermined voltage V1.
  • the maximum current Acellmax per battery cell 21 may be returned step by step to make it approach the upper limit current Alim. As a result, the current control can be made more gradual.
  • the flow of processing in this case will be described.
  • FIG. 13 is a flowchart showing another example of the flow of processing executed when the battery cell 21 is charged by the maximum current determination unit 56 of the second embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle.
  • the maximum current determination unit 56 selects the maximum value of the battery cell 21 (step S300).
  • the maximum current determination unit 56 subtracts the maximum value of the voltage Vc of the battery cell 21 from the upper limit voltage VcMAX of the battery cell 21 to obtain a difference ⁇ V (step S302).
  • the maximum current determination unit 56 determines whether or not the difference ⁇ V is less than the first predetermined voltage V1 (step S304). When the difference ⁇ V is not less than the first predetermined voltage V1, the maximum current determination unit 56 returns the maximum current Acellmax per battery cell 21 to the maximum current Acellmax determined when one routine of this flowchart was executed last time. The voltage ⁇ is added and determined (step S306). However, if the value obtained by adding the step voltage ⁇ exceeds the upper limit current Alim, the maximum current determination unit 56 determines the maximum current Acellmax as the upper limit current Alim.
  • the maximum current determination unit 56 steps the maximum current Acellmax per battery cell 21 from the maximum current Acellmax determined when one routine of this flowchart was executed last time. It is determined by subtracting the voltage ⁇ (step S308). However, when the value obtained by subtracting the step voltage ⁇ becomes a negative value, the maximum current determining unit 56 determines the maximum current Acellmax to be zero (or a relatively small predetermined value).
  • FIG. 14 is a flowchart showing another example of the flow of processing executed when the battery cell 21 is discharged by the maximum current determination unit 56 of the second embodiment. The processing of this flowchart is repeatedly executed at a predetermined cycle.
  • the maximum current determination unit 56 selects the minimum value of the battery cell 21 (step S400). Next, the maximum current determination unit 56 subtracts the lower limit voltage VcMIN of the battery cell 21 from the minimum value of the voltage Vc of the battery cell 21 to obtain the difference ⁇ V (step S402).
  • the maximum current determination unit 56 determines whether or not the difference ⁇ V is less than the second predetermined voltage V2 (step S404). When the difference ⁇ V is not less than the second predetermined voltage V2, the maximum current determination unit 56 returns the maximum current Acellmax per battery cell 21 to the maximum current Acellmax determined when one routine of this flowchart was executed last time. The voltage ⁇ is added and determined (step S406). However, if the value obtained by adding the step voltage ⁇ exceeds the upper limit current Alim, the maximum current determination unit 56 determines the maximum current Acellmax as the upper limit current Alim.
  • the maximum current determination unit 56 sets the maximum current Acellmax per battery cell 21 from the maximum current Acellmax determined when one routine of this flowchart was executed last time. It is determined by subtracting the voltage ⁇ (step S408). However, when the value obtained by subtracting the step voltage ⁇ becomes a negative value, the maximum current determining unit 56 determines the maximum current Acellmax to be zero (or a relatively small predetermined value).
  • the voltage of the battery cell 21 can be more accurately limited in a system in which a relatively large current flows, as in the first embodiment.
  • the power control device 50 of the second embodiment since the maximum current Acellmax is decreased for each step voltage ⁇ , it is possible to prevent the value of the determined maximum current Acellmax from oscillating.
  • the system maximum current Amax is calculated based on the maximum value or the minimum value of the voltage Vc of the battery cell 21, there is an individual difference for each battery cell 21.
  • the control on the safe side according to the progress state of can be performed.
  • the power control device 50 determines the maximum current Acellmax of the battery cell 21 so that the voltage of the battery cell 21 does not exceed the upper limit voltage VcMAX at the time of charging, and the battery cell 21 at the time of discharging. Both the determination of the maximum current Acellmax of the battery cell 21 is executed so that the voltage does not fall below the lower limit voltage VcMIN, but only one of them may be executed.
  • the power control system 1 may include only one battery unit 10, for example.
  • the power control device 50 may be integrated into the BMU 40.
  • FIG. 15 is a diagram illustrating an example of a configuration of the mobile system 100 using the power control system 1.
  • the mobile system 100 is, for example, a system that drives a hybrid railway vehicle (hereinafter referred to as a vehicle).
  • Mobile system 100 includes power control system 1, and further includes an engine 110, a generator 120, an AC-DC converter 130, and wheels 140.
  • a plurality of battery units are represented as the battery unit 10 as a representative.
  • Engine 110 outputs power by burning fuel such as gasoline.
  • the generator 120 generates power using the power output from the engine 110.
  • the AC-DC converter 130 converts the two-phase or three-phase alternating current output from the generator 120 into direct current and outputs the direct current.
  • the power line PL extending from the battery unit 10 is integrated with the output side power line of the AC-DC converter 130 via the DC link circuit and connected to the power converter 81.
  • a power conversion device 81, a motor 82, and a mechanical brake 83 are shown as the control target 80 of the power control device 50.
  • the power converter 81 converts the input direct current into alternating current and outputs it to the motor 82, or converts the electric power regenerated by the motor 82 into direct current and provides it to the battery unit 10.
  • the motor 82 drives the vehicle by rotationally driving the wheels 140, or performs regeneration to generate electric power when the vehicle is decelerated.
  • the mechanical brake 83 is a device that decelerates the vehicle by mechanical action.
  • the mobile system 100 includes a master controller that can input a notch instruction and a brake instruction as the input device 70.
  • the power control device 50 calculates the power to be output to the wheels 140 based on the notch instruction that is the operation information input from the master controller 70, and uses the power that can be output from the engine 110 from this. By subtracting, the electric power discharged from the battery unit 10 is calculated. Then, the power control device 50 calculates the current flowing from the battery unit 10 based on the power discharged from the battery unit 10, and determines whether or not the calculated current exceeds the system maximum current Amax described above. When the calculated current exceeds system maximum current Amax, power control device 50 outputs an instruction to limit the duty ratio applied to power conversion device 81 or increase the power output from engine 110 to an engine control device (not shown). To do.
  • the power control device 50 calculates power that can be regenerated by acting on the wheels 140 based on a brake instruction that is operation information input from the master controller 70, and based on the power that can be regenerated. Then, the power that can be charged in the battery unit 10 is calculated. Then, the power control device 50 calculates the current flowing into the battery unit 10 based on the power that can be charged in the battery unit 10, and determines whether the calculated current exceeds the system maximum current Amax described above. . When the calculated current exceeds the system maximum current Amax, the power control device 50 performs control such as operating the mechanical brake 83 to limit the power generated by the motor 82.
  • FIG. 16 is a diagram illustrating an example of a configuration of a stationary power storage system 200 using the power control system 1.
  • the generator 210 is a solar panel (PV) or a fuel cell (FC).
  • Converter 220 is an AC-DC converter when generator 210 generates alternating current, and is a DC-DC converter when generator 210 generates direct current.
  • the control target 80 is, for example, a PCS (Power Conditioning System).
  • the PCS is connected to the system power SP and the load L via the transformer T. As a result, the power generated by the generator 210 is supplied to the system power SP while being stored in the battery unit 10.
  • the power control apparatus 50 controls the control target 80 so that the current flowing out from the battery unit 10 does not exceed the system maximum current Amax.
  • the power control apparatus 50 performs control so that the duty ratio given to the PCS does not exceed the duty ratio corresponding to the system maximum current Amax.
  • the generator 210 and the converter 220 may be included in the control target in this case, and the power control device 50 includes the generator 210 and the converter 220 so that the current flowing into the battery unit 10 does not exceed the system maximum current Amax. May be controlled.
  • the acquisition unit 52 that acquires information about the voltage at the time of charging of the chargeable / dischargeable battery cell 21, and the upper limit voltage VcMAX based on the information acquired by the acquisition unit 52
  • a maximum current determining unit 56 that determines the maximum current Acellmax during charging of the battery cell 21, which tends to decrease as the difference from the voltage Vc of the battery cell 21 decreases and is limited by the upper limit current Alim. In a system in which a relatively large current flows, the voltage of the battery cell 21 can be more accurately limited.
  • the acquisition unit 52 that acquires information about the voltage at the time of discharging the chargeable / dischargeable battery cell 21, and the lower limit voltage VcMIN and the battery based on the information acquired by the acquisition unit 52
  • a maximum current determining unit 56 that determines the maximum current Acellmax at the time of discharging of the battery cell 21 with a tendency to decrease as the difference from the voltage Vc of the cell 21 decreases and is limited by the upper limit current Alim, In a system in which a relatively large current flows, the voltage of the battery cell 21 can be more accurately limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

実施形態の電力制御装置は、取得部と、決定部とを持つ。取得部は、充放電可能な二次電池の充電時における電圧に関する情報を取得する。決定部は、前記取得部により取得された情報に基づいて、上限電圧と前記二次電池の電圧との差分が小さくなるほど小さくなる傾向で、且つ上限電流で制限して、前記二次電池の充電時における最大電流を決定する。

Description

電力制御装置、および電力制御システム
 本発明の実施形態は、電力制御装置、および電力制御システムに関する。
 近年、機関車、バス、建機などのエンジンとのハイブリッド用途や定置型産業機器における電力変動抑制用途への二次電池の適用の動きが活発になってきている。これらの用途では、大電流の入出力と、広範囲にエネルギーを使用可能な充電状態範囲が求められている。従来の技術では、貯蔵や走行に使用できるエネルギー容量を無駄なく使用するために、二次電池の持つエネルギーの使用可能な充電状態範囲の上下限を、電気容量で規定して制御することが多かった。しかしながら、充電状態範囲を電気容量で規定し、且つ広範囲に設定した場合、上下限の電気容量に到達する前に、電池の閉回路電圧の上下限値に到達して機器が停止してしまい、使用できるエネルギー範囲が大きく制限されてしまう場合があった。このように、従来の技術では、二次電池の電圧制限を正確に行うことができない場合があった。
特開2015-177601号公報
 本発明が解決しようとする課題は、より正確に二次電池の電圧制限を行うことが可能な電力制御装置、および電力制御システムを提供することである。
 実施形態の電力制御装置は、取得部と、決定部とを持つ。取得部は、充放電可能な二次電池の充電時における電圧に関する情報を取得する。決定部は、前記取得部により取得された情報に基づいて、上限電圧と前記二次電池の電圧との差分が小さくなるほど小さくなる傾向で、且つ上限電流で制限して、前記二次電池の充電時における最大電流を決定する。
電力制御システム1の構成の一例を示す図。 電池モジュール20の構成の一例を示す図。 電力制御システム1における制御関係の構成の一例を示す図。 最大電流決定部56による充電時の処理内容を模式的に示す図。 充電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図。 最大電流決定部56による放電時の処理内容を模式的に示す図。 放電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図。 電池セル21の電圧/電流特性とゲインKとの関係を説明するための図。 第2の実施形態の最大電流決定部56により電池セル21の充電時に実行される処理の流れの一例を示すフローチャート。 図9に示す処理を行った結果として生じる、充電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図。 第2の実施形態の最大電流決定部56により電池セル21の放電時に実行される処理の流れの一例を示すフローチャート。 図11に示す処理を行った結果として生じる、放電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図。 第2の実施形態の最大電流決定部56により電池セル21の充電時に実行される処理の流れの他の例を示すフローチャート。 第2の実施形態の最大電流決定部56により電池セル21の放電時に実行される処理の流れの他の例を示すフローチャート。 電力制御システム1を利用した移動体システム100の構成の一例を示す図。 電力制御システム1を利用した定置型蓄電システム200の構成の一例を示す図。
 以下、実施形態の電力制御装置、および電力制御システムを、図面を参照して説明する。
 (第1の実施形態)
 図1は、第1の実施形態の電力制御システム1の構成の一例を示す図である。電力制御システム1は、電池ユニット10-1、10-2、…、10-n(nは任意の自然数)と、電力制御装置50と、入力装置70と、制御対象80とを含んでよいが、これに限定されない。以下、いずれの電池ユニットであるかを区別しないときは、単に電池ユニット10と表記する。
 複数の電池ユニット10は、制御対象80に対して、電力線PLによって並列に接続され、制御対象80に電力を供給する。それぞれの電池ユニット10は、同様の構成を有しているため(一部に相違点があってもよい)、図では複数の電池ユニットを代表して電池ユニット10-1の構成についてのみ詳細に記載している。電池ユニット10は、直列に接続された複数の電池モジュール20と、電流センサ30と、BMU(Battery Management Unit)40とを含む。電池ユニット10内の各構成要素は、ユニット内通信線CL1で接続されている。ユニット内通信線CL1では、例えば、CAN(Controller Area Network)に基づいた通信が行われる。
 図2は、電池モジュール20の構成の一例を示す図である。電池モジュール20は、複数の電池セル21が接続された組電池(電池)である。また、電池ユニット10、および電池ユニット10が並列に接続されたものも同様に、組電池(電池)である。電池モジュール20では、例えば、並列に接続された二つの電池セル21の組が、直列に接続されている。これに限らず、電池モジュール20内の電池セルの接続態様は、任意に定めてよい。
 電池セル21は、リチウムイオン電池、鉛蓄電池、ナトリウム硫黄電池、レドックスフロー電池、ニッケル水素電池等の充放電可能な二次電池である。リチウムイオン電池である場合、電池セル21は、チタン酸リチウムを負極材料として用いたものであってよい。なお、図1および図2では、電池セル21を充電するための構成について図示を省略している。
 電池モジュール20は、更に、CMU(Cell Monitoring Unit)22と、複数の電圧センサ23と、複数の温度センサ24とを含む。CMU22は、CPU(Central Processing Unit)などのプロセッサ、各種記憶装置、CANコントローラその他の通信インターフェースなどを備える。
 電圧センサ23は、例えば、並列に接続された電池セル21の組の電圧を測定する。また、温度センサ24は、電池モジュール20内の任意の箇所に、任意の個数、取り付けられる。電圧センサ23および温度センサ24の検出結果は、CMU22に出力される。CMU22は、電圧センサ23および温度センサ24の検出結果をBMU40に出力する。
 図1に戻り、BMU40は、ユニット内通信線CL1によって複数のCMU22に接続されると共に、通信線CL2によって電力制御装置50に接続される。BMU40は、CPUなどのプロセッサ、各種記憶装置、CANコントローラ並びに通信線CL2に対応した通信インターフェースなどを備える。なお、通信線CL2を省略し、BMU40と電力制御装置50との間で無線通信が行われてもよい。BMU40には、電池ユニット10の電池モジュール20を流れる電流を検出する電流センサ30の検出結果が入力される。
 電力制御装置50は、CPUなどのプロセッサ、各種記憶装置、通信線CL2に対応した通信インターフェースなどを備える。電力制御装置50は、複数のBMU40から入力された情報、および入力装置70から入力された操作情報に基づいて、制御対象80を制御する。
 図3は、電力制御システム1における制御関係の構成の一例を示す図である。CMU22からBMU40には、電池セル21ごとの電圧、電池モジュール20の電圧、電池モジュール20の温度などの情報が提供される。CMU22は、電池セル21ごとの電圧を加算して電池モジュール20の電圧を算出する。これに代えて、BMU40の側で電池セル21ごとの電圧を加算して電池モジュール20の電圧を算出してもよい。
 BMU40は、電流センサ30(図1参照)の検出結果に基づいて、各電池モジュール20のSOC(State Of Charge;充電率)を算出する。なお、各電池モジュール20のSOC(または各電池セル21のSOC)は、電圧センサ23の検出結果などに基づいてCMU22が算出してもよい。BMU40は、CMU22から入力された電池セル21ごとの電圧、電池モジュール20の電圧、電池モジュール20の温度などの情報、並びに算出したSOCを電力制御装置50に出力する。
 電力制御装置50は、CPUなどのプロセッサ、各種記憶装置、通信線CL2および制御対象80との通信に対応した通信インターフェースなどを備える。電力制御装置50は、機能構成として、取得部52と、最大電流決定部56と、制御量決定部58と、記憶部60とを備える。最大電流決定部56、および制御量決定部58のうち一方または双方は、記憶部60に記憶されたプログラムをCPU等のプロセッサが実行することにより実現される。また、これらの機能部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよい。
 取得部52は、通信インターフェースを含み、BMU40から取得した情報を最大電流決定部56に出力したり、記憶部60に記憶させたりする。
 最大電流決定部56は、取得部52により取得された情報から得られる電池セル21の電圧と、上限電圧VcMAXまたは下限電圧VcMINとの比較に基づいて、電池セル21の充電時または放電時における最大電流を決定する。上限電圧VcMAXおよび下限電圧VcMINは、電池セル21の劣化を抑制する観点に基づいて、予め定められた値である。上限電圧VcMAXは、電池セル21の使用可能最大電圧に基づいて、予め設定されている。上限電圧VcMAXは、制御上の余裕を持たせて、電池セル21の使用可能最大電圧よりも低い値に設定されると好適であるが、上限電圧VcMAXを電池セル21の使用可能最大電圧と一致させてもよい。また、下限電圧VcMINは、電池セル21の使用可能最小電圧に基づいて、予め設定されている。下限電圧VcMINは、制御上の余裕を持たせて、電池セル21の使用可能最小電圧よりも高い値に設定されると好適であるが、下限電圧VcMINを電池セル21の使用可能最小電圧と一致させてもよい。
 制御量決定部58は、入力装置70から入力された操作情報、および最大電流決定部56により決定された最大電流に基づいて、制御対象80に与える制御量を決定する。入力装置70は、レバースイッチやダイヤルスイッチ、各種キー、タッチパネルなどを含んでよい。
 制御対象80は、複数のトランジスタを有し、トランジスタをスイッチング制御することで直流を交流に変換するDC-AC変換器を含んでよい。この場合、制御対象80に与える制御量とは、例えばスイッチング制御におけるデューティ比である。また、制御対象80がかご型誘導電動機に電力供給するものである場合、制御対象80に与える制御量とは、i軸電流やq軸電流などの指令値を含んでもよい。更に、制御対象80は、電力を発電して電池ユニット10に供給する発電機、並びに発電機に供給される動力の一部を熱として破棄する装置(発電量を制限する装置)などを含んでもよい。
 なお、制御量決定部58の機能は、電力制御装置50とは別体の制御装置の機能であってもよい。この場合、電力制御装置50は、最大電流決定部56により決定された最大電流を、上記別体の制御装置に出力する。また、図1および図3に示す構成から入力装置70を省略し、制御量決定部58は、最大電流決定部56により決定された最大電流その他の情報に基づいて、制御対象80に与える制御量を決定してもよい。
 記憶部60は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)その他のフラッシュメモリ装置などの各種記憶装置によって実現される。記憶部60には、電力制御装置50のプロセッサが実行するプログラムの他、換算テーブル62、並びに最大電流決定部56や制御量決定部58の処理の過程において生じる各種情報が記憶される。
 以下、最大電流決定部56による処理の内容について説明する。図4は、最大電流決定部56による充電時の処理内容を模式的に示す図である。充電時において、最大電流決定部56は、まず、電池セル21の上限電圧VcMAXから、電池セル21の電圧Vcの最大値を差し引いて差分ΔVを求める。上限電圧VcMAXは、電池セル21の劣化を抑制しつつ効率よく電池セル21を使用する観点から、予め定められた値である。
 ここで、最大電流決定部56は、電池セル21のSOCから換算テーブル62を用いて換算したゼロ電流時の電圧を、電池セル21の電圧Vcとして扱う。換算テーブル62は、予め得られたSOCとゼロ電流時の電圧との関係を規定したテーブルである。
 次に、最大電流決定部56は、差分ΔVに対してゲインKを乗算する。そして、乗算結果KΔVを上限電流Alimで制限して、電池セル21あたりの最大電流Acellmaxを算出する。この結果、充電時における電池セル21の電圧Vcおよび最大電流Acellmaxは、例えば図5に示すような推移をすることになる。上限電流Alimは、電池セル21の劣化を抑制する観点から、予め定められた値である。上限電流Alimは、電池モジュール20または電池セル21の仕様における最大充放電電流(仕様上最大電流A*)に基づいて、予め設定されている。上限電流Alimは、制御上の余裕を持たせて、仕様上最大電流A*よりも小さい値に設定すると好適であるが、上限電流Alimと仕様上最大電流A*とを一致させてもよい。
 図5は、充電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図である。図中、電流は向きを考慮しない絶対値である。図示するように、充電時において、最大電流Acellmaxは、電圧Vcと上限電圧VcMAXとの差分ΔVが十分に大きい場合は、上限電流Alimで一定に推移し、電圧Vcと上限電圧VcMAXとの差分ΔVが小さくなると、差分ΔVが小さくなるのに応じて小さくなる傾向を示す。この結果、電圧Vcの上昇は鈍化し、上限電圧VcMAXに漸近して推移することになる。このように、実施形態の電力制御装置50によれば、正確に電池セル21の電圧制限を行うことができる。
 一方、図6は、最大電流決定部56による放電時の処理内容を模式的に示す図である。放電時において、最大電流決定部56は、まず、電池セル21の電圧Vcの最小値から電池セル21の下限電圧VcMINを差し引いて差分ΔVを求める。下限電圧VcMINは、電池セル21の劣化を抑制しつつ効率よく電池セル21を使用する観点から、予め定められた値である。
 次に、最大電流決定部56は、差分ΔVに対してゲインKを乗算する。そして、乗算結果KΔVを上限電流Alimで制限して、電池セル21あたりの最大電流Acellmaxを算出する。この結果、充電時における電池セル21の電圧Vcおよび最大電流Acellmaxは、例えば図7に示すような推移をすることになる。
 図7は、放電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図である。図中、電流は向きを考慮しない絶対値である。図示するように、放電時において、最大電流Acellmaxは、電圧Vcと下限電圧VcMINとの差分ΔVが十分に大きい場合は、上限電流Alimで一定に推移し、電圧Vcと下限電圧VcMINとの差分ΔVが小さくなると、差分ΔVが小さくなるのに応じて小さくなる傾向を示す。この結果、電圧Vcの低下は鈍化し、下限電圧VcMINに漸近して推移することになる。このように、実施形態の電力制御装置50によれば、正確に電池セル21の電圧制限を行うことができる。
 更に、最大電流決定部56は、電池セル21あたりに許容される最大電流Acellmaxに、モジュール並列数np_cellを乗算し、電池モジュール20あたりに許容される最大電流Acellmodを算出する。モジュール並列数np_cellは、電池モジュール20における電池セル21の並列数である。図2の例では、モジュール並列数np_cellは2である。
 また、最大電流決定部56は、電池モジュール20あたりに許容される最大電流Acellmodに、システム並列数np_modを乗算し、システム最大電流Amaxを算出する。システム最大電流Amaxは、電力制御システム1において各電池ユニット10が充放電を許容される最大電流の総和であり、電力線PLによって制御対象80に供給される最大電流である。システム並列数np_modは、システム並列数、すなわち電池モジュール20の並列数である。図1の例では、システム並列数np_modはnである。
 制御量決定部58は、入力装置70から入力された操作情報に基づいて、制御対象80に与える制御量を、システム最大電流Amaxを上限値として設定する。例えば、制御量決定部58は、まず、入力装置70から入力された操作情報に基づいて制御対象80に与える発電量の一次指令値を決定し、一次指令値が、システム最大電流Amaxに対応する発電量を超えていなければ、一次指令値を制御量として制御対象80に与え、一次指令値が、システム最大電流Amaxに対応する発電量を超えていれば、システム最大電流Amaxに対応する発電量を制御量として制御対象80に与える。
 第1の実施形態において、充電時と放電時で共通するゲインKを用いてもよいが、充電時と放電時で異なるゲインKを用いてもよい。この場合、電池セル21の電圧/電流特性に基づいて、ゲインKを決定するとよい。図8は、電池セル21の電圧/電流特性とゲインKとの関係を説明するための図である。図中、縦軸は電池セル21の電圧Vcであり、横軸は充放電電流の積算値である(SOCと考えてもよい)。この場合、電池セル21の電圧/電流特性を示す曲線(以下、特性曲線)と上限電圧VcMAXとの交点P1における特性曲線の傾きG1と、特性曲線と下限電圧VcMINとの交点P2における特性曲線の傾きG2とを比較し、傾きG1が傾きG2よりも大きければ充電時のゲインKを放電時のゲインKよりも大きくし、傾きG1が傾きG2よりも小さければ充電時のゲインKを放電時のゲインKよりも小さくするとよい。これによって、電池セル21に対して設定された上限電圧VcMAXおよび下限電圧VcMINの位置に応じた制御を行うことができ、より適切に過充電や過放電を防止することができる。特性曲線の傾きが大きいということは、その時点で充電電流または放電電流を急速に減衰させる必要があるため、ゲインKを予め大きくしておく必要があるからである。また、第1の実施形態において、充電時の上限電流Alimと、放電時の上限電流Alimとを異ならせてもよい。
 以上説明した第1の実施形態の電力制御装置50によれば、充放電可能な電池セル21の充電時における電圧に関する情報を取得する取得部52と、取得部52により取得された情報に基づいて、上限電圧VcMAXと電池セル21の電圧Vcとの差分が小さくなるほど小さくなる傾向で、且つ上限電流Alimで制限して、電池セル21の充電時における最大電流Acellmaxを決定する最大電流決定部56と、を備えることにより、比較的大電流が流れるシステムにおいて、より正確に電池セル21の電圧制限を行うことができる。
 また、第1の実施形態の電力制御装置50によれば、充放電可能な電池セル21の放電時における電圧に関する情報を取得する取得部52と、取得部52により取得された情報に基づいて、下限電圧VcMINと電池セル21の電圧Vcとの差分が小さくなるほど小さくなる傾向で、且つ上限電流Alimで制限して、電池セル21の放電時における最大電流Acellmaxを決定する最大電流決定部56と、を備えることにより、比較的大電流が流れるシステムにおいて、より正確に電池セル21の電圧制限を行うことができる。
 また、第1の実施形態の電力制御装置50によれば、電池セル21の電圧Vcの最大値または最小値に基づいてシステム最大電流Amaxを算出するため、電池セル21ごとに個体差がある劣化の進行状態に応じた安全側の制御を行うことができる。
 (第2の実施形態)
 以下、第2の実施形態について説明する。第2の実施形態の電力制御装置50は、最大電流決定部56の処理内容が第1の実施形態と相違し、その他の点では共通する。従って、構成については図1~3を援用すると共に、共通部分についての説明を省略する。
 第2の実施形態の最大電流決定部56は、取得部52により取得された情報から得られる電池セル21の電圧と、上限電圧VcMAXまたは下限電圧VcMINとの比較に基づいて、電池セル21の充電時または放電時における最大電流を決定する。なお、第2の実施形態においても第1の実施形態と同様に、電池セル21のSOCから換算テーブル62を用いて換算したゼロ電流時の電圧を、電池セル21の電圧Vcとして扱う。
 第2の実施形態の最大電流決定部56は、所定周期で繰り返し電池セル21の充電時における最大電流Acellmaxを決定し、上限電圧VcMAXと電池セル21の電圧Vcとの差分が第1所定電圧V1未満である場合に、前回決定した最大電流Acellmaxからステップ電圧αを差し引いた値に、電池セル21の充電時における最大電流Acellmaxを決定する。
 また、第2の実施形態の最大電流決定部56は、所定周期で繰り返し電池セル21の放電時における最大電流Acellmaxを決定し、電池セル21の電圧Vcと下限電圧VcMINの差分が第2所定電圧V2未満である場合に、前回決定した最大電流Acellmaxからステップ電圧αを差し引いた値に、電池セル21の充電時における最大電流Acellmaxを決定する。
 図9は、第2の実施形態の最大電流決定部56により電池セル21の充電時に実行される処理の流れの一例を示すフローチャートである。本フローチャートの処理は、所定周期で繰り返し実行される。
 まず、最大電流決定部56は、電池セル21の最大値を選択する(ステップS100)。次に、最大電流決定部56は、電池セル21の上限電圧VcMAXから、電池セル21の電圧Vcの最大値を差し引いて差分ΔVを求める(ステップS102)。上限電圧VcMAXは、電池セル21の劣化を抑制しつつ効率よく電池セル21を使用する観点から、予め定められた値である。
 次に、最大電流決定部56は、差分ΔVが第1所定電圧V1未満であるか否かを判定する(ステップS104)。差分ΔVが第1所定電圧V1未満でない場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、上限電流Alimに決定する(ステップS106)。
 一方、差分ΔVが第1所定電圧V1未満である場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、前回このフローチャートの1ルーチンを実行した際に決定した最大電流Acellmaxからステップ電圧αを差し引いて決定する(ステップS108)。但し、最大電流決定部56は、ステップ電圧αを差し引いた値が負の値になった場合は、最大電流Acellmaxをゼロ(または比較的小さい所定値)に決定する。
 図10は、図9に示す処理を行った結果として生じる、充電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図である。図中、電流は向きを考慮しない絶対値である。図示するように、差分ΔVが第1所定電圧V1以上である間は、電池セル21あたりの最大電流Acellmaxは上限電流Alimに維持される。差分ΔVが第1所定電圧V1未満になると、電池セル21あたりの最大電流Acellmaxは制御周期ごとにステップ電圧αずつ低下し、ゼロに近づくように決定される。この結果、この結果、電圧Vcの上昇は鈍化し、上限電圧VcMAXに漸近して推移することになる。このように、実施形態の電力制御装置50によれば、正確に電池セル21の電圧制限を行うことができる。
 図11は、第2の実施形態の最大電流決定部56により電池セル21の放電時に実行される処理の流れの一例を示すフローチャートである。本フローチャートの処理は、所定周期で繰り返し実行される。
 まず、最大電流決定部56は、電池セル21の最小値を選択する(ステップS200)。次に、最大電流決定部56は、電池セル21の電圧Vcの最小値から、電池セル21の下限電圧VcMINを差し引いて差分ΔVを求める(ステップS202)。下限電圧VcMINは、電池セル21の劣化を抑制しつつ効率よく電池セル21を使用する観点から、予め定められた値である。
 次に、最大電流決定部56は、差分ΔVが第2所定電圧V2未満であるか否かを判定する(ステップS204)。差分ΔVが第2所定電圧V2未満でない場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、上限電流Alimに決定する(ステップS206)。ここで、第1所定電圧V1と第2所定電圧V2は、同じ値であってもよいし、異なる値であってもよい。
 一方、差分ΔVが第2所定電圧V2未満である場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、前回このフローチャートの1ルーチンを実行した際に決定した最大電流Acellmaxからステップ電圧αを差し引いて決定する(ステップS208)。但し、最大電流決定部56は、ステップ電圧αを差し引いた値が負の値になった場合は、最大電流Acellmaxをゼロ(または比較的小さい所定値)に決定する。
 図12は、図11に示す処理を行った結果として生じる、放電時における電池セル21の電圧Vcおよび最大電流Acellmaxの推移を例示した図である。図中、電流は向きを考慮しない絶対値である。図示するように、差分ΔVが第2所定電圧V2以上である間は、電池セル21あたりの最大電流Acellmaxは上限電流Alimに維持される。差分ΔVが第2所定電圧V2未満になると、電池セル21あたりの最大電流Acellmaxは制御周期ごとにステップ電圧αずつ低下し、ゼロに近づくように決定される。この結果、この結果、電圧Vcの低下は鈍化し、下限電圧VcMINに漸近して推移することになる。このように、実施形態の電力制御装置50によれば、正確に電池セル21の電圧制限を行うことができる。
 更に、最大電流決定部56は、電池セル21あたりに許容される最大電流Acellmaxに、モジュール並列数np_cellを乗算し、電池モジュール20あたりに許容される最大電流Acellmodを算出する。モジュール並列数np_cellは、電池モジュール20における電池セル21の並列数である。図2の例では、モジュール並列数np_cellは2である。
 また、最大電流決定部56は、電池モジュール20あたりに許容される最大電流Acellmodに、システム並列数np_modを乗算し、システム最大電流Amaxを算出する。システム最大電流Amaxは、電力制御システム1において各電池ユニット10が充放電を許容される最大電流の総和であり、電力線PLによって制御対象80に供給される最大電流である。システム並列数np_modは、システム並列数、すなわち電池モジュール20の並列数である。図1の例では、システム並列数np_modはnである。
 制御量決定部58は、入力装置70から入力された操作情報に基づいて、制御対象80に与える制御量を、システム最大電流Amaxを上限値として設定する。例えば、制御量決定部58は、まず、入力装置70から入力された操作情報に基づいて制御対象80に与える発電量の一次指令値を決定し、一次指令値が、システム最大電流Amaxに対応する発電量を超えていなければ、一次指令値を制御量として制御対象80に与え、一次指令値が、システム最大電流Amaxに対応する発電量を超えていれば、システム最大電流Amaxに対応する発電量を制御量として制御対象80に与える。
 第2の実施形態において、充電時と放電時で共通するステップ電圧αを用いてもよいが、充電時と放電時で異なるステップ電圧αを用いてもよい。この場合、電池セル21の電圧/電流特性に基づいて、ステップ電圧αを決定するとよい。図8を参照し、これについて説明する。第1の実施形態と同様に、電池セル21の電圧/電流特性を示す曲線(以下、特性曲線)と上限電圧VcMAXとの交点P1における特性曲線の傾きG1と、特性曲線と下限電圧VcMINとの交点P2における特性曲線の傾きG2とを比較し、傾きG1が傾きG2よりも大きければ充電時のステップ電圧αを放電時のステップ電圧αよりも大きくし、傾きG1が傾きG2よりも小さければ充電時のステップ電圧αを放電時のステップ電圧αよりも小さくするとよい。これによって、電池セル21に対して設定された上限電圧VcMAXおよび下限電圧VcMINの位置に応じた制御を行うことができ、より適切に過充電や過放電を防止することができる。特性曲線の傾きが大きいということは、その時点で充電電流または放電電流を急速に減衰させる必要があるため、ステップ電圧αを予め大きくしておく必要があるからである。
 同様に、傾きG1が傾きG2よりも大きければ第1所定電圧V1を第2所定電圧V2よりも大きくし、傾きG1が傾きG2よりも小さければ第1所定電圧V1を第2所定電圧V2よりも小さくするとよい。こうすれば、傾きが急峻な側で最大電流Acellmaxの制限をより早く実施することができ、より適切に過充電や過放電を防止することができる。また、第2の実施形態において、充電時の上限電流Alimと、放電時の上限電流Alimとを異ならせてもよい。
 また、第2の実施形態において、差分ΔVが第1所定電圧V1未満でない場合に、電池セル21あたりの最大電流Acellmaxを上限電流Alimに決定する、すなわち差分ΔVが第1所定電圧V1以上となると直ちに上限電流Alimに戻すものとして説明したが、これに代えて、電池セル21あたりの最大電流Acellmaxをステップ電圧βずつ戻して上限電流Alimに近づけるようにしてもよい。これによって電流制御を、より緩やかなものにすることができる。以下、この場合の処理の流れについて説明する。
 図13は、第2の実施形態の最大電流決定部56により電池セル21の充電時に実行される処理の流れの他の例を示すフローチャートである。本フローチャートの処理は、所定周期で繰り返し実行される。
 まず、最大電流決定部56は、電池セル21の最大値を選択する(ステップS300)。次に、最大電流決定部56は、電池セル21の上限電圧VcMAXから、電池セル21の電圧Vcの最大値を差し引いて差分ΔVを求める(ステップS302)。
 次に、最大電流決定部56は、差分ΔVが第1所定電圧V1未満であるか否かを判定する(ステップS304)。差分ΔVが第1所定電圧V1未満でない場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、前回このフローチャートの1ルーチンを実行した際に決定した最大電流Acellmaxに戻し時のステップ電圧βを加算して決定する(ステップS306)。但し、最大電流決定部56は、ステップ電圧βを加算した値が上限電流Alimを超える場合は、最大電流Acellmaxを上限電流Alimに決定する。
 一方、差分ΔVが第1所定電圧V1未満である場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、前回このフローチャートの1ルーチンを実行した際に決定した最大電流Acellmaxからステップ電圧αを差し引いて決定する(ステップS308)。但し、最大電流決定部56は、ステップ電圧αを差し引いた値が負の値になった場合は、最大電流Acellmaxをゼロ(または比較的小さい所定値)に決定する。
 図14は、第2の実施形態の最大電流決定部56により電池セル21の放電時に実行される処理の流れの他の例を示すフローチャートである。本フローチャートの処理は、所定周期で繰り返し実行される。
 まず、最大電流決定部56は、電池セル21の最小値を選択する(ステップS400)。次に、最大電流決定部56は、電池セル21の電圧Vcの最小値から、電池セル21の下限電圧VcMINを差し引いて差分ΔVを求める(ステップS402)。
 次に、最大電流決定部56は、差分ΔVが第2所定電圧V2未満であるか否かを判定する(ステップS404)。差分ΔVが第2所定電圧V2未満でない場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、前回このフローチャートの1ルーチンを実行した際に決定した最大電流Acellmaxに戻し時のステップ電圧βを加算して決定する(ステップS406)。但し、最大電流決定部56は、ステップ電圧βを加算した値が上限電流Alimを超える場合は、最大電流Acellmaxを上限電流Alimに決定する。
 一方、差分ΔVが第2所定電圧V2未満である場合、最大電流決定部56は、電池セル21あたりの最大電流Acellmaxを、前回このフローチャートの1ルーチンを実行した際に決定した最大電流Acellmaxからステップ電圧αを差し引いて決定する(ステップS408)。但し、最大電流決定部56は、ステップ電圧αを差し引いた値が負の値になった場合は、最大電流Acellmaxをゼロ(または比較的小さい所定値)に決定する。
 以上説明した第2の実施形態の電力制御装置50によれば、第1の実施形態と同様、比較的大電流が流れるシステムにおいて、より正確に電池セル21の電圧制限を行うことができる。
 また、第2の実施形態の電力制御装置50によれば、ステップ電圧αごとに最大電流Acellmaxを低下させるため、決定される最大電流Acellmaxの値が発振するのを防止することができる。
 また、第2の実施形態の電力制御装置50によれば、電池セル21の電圧Vcの最大値または最小値に基づいてシステム最大電流Amaxを算出するため、電池セル21ごとに個体差がある劣化の進行状態に応じた安全側の制御を行うことができる。
 (共通変形例)
 上記各実施形態において、電力制御装置50は、充電時において電池セル21の電圧が上限電圧VcMAXを超えないように、電池セル21の最大電流Acellmaxを決定することと、放電時において電池セル21の電圧が下限電圧VcMINを下回らないように、電池セル21の最大電流Acellmaxを決定することとの双方を実行するものとしたが、これらの一方のみを実行してもよい。
 また、図1および図2に示す電池の接続構成は、あくまで一例であり、例えば、電力制御システム1は、一つの電池ユニット10のみ備えてもよい。また、電力制御装置50は、BMU40に統合されてもよい。
 (適用例)
 以下、電力制御システム1の適用例について説明する。図15は、電力制御システム1を利用した移動体システム100の構成の一例を示す図である。移動体システム100は、例えば、ハイブリッド鉄道車両(以下、車両)を駆動するシステムである。移動体システム100は、電力制御システム1を含み、更に、エンジン110と、発電機120と、AC-DCコンバータ130と、車輪140とを備える。なお、図15および後述する図16では、複数の電池ユニットを代表して電池ユニット10として表している。
 エンジン110は、ガソリンなどの燃料を燃焼させることによって動力を出力する。発電機120は、エンジン110により出力された動力を用いて発電する。AC-DCコンバータ130は、発電機120により出力された二相または三相の交流を直流に変換して出力する。
 電池ユニット10から延出する電力線PLは、直流リンク回路を介してAC-DCコンバータ130の出力側電力線と統合され、電力変換装置81に接続される。図9の例では、電力制御装置50の制御対象80として、電力変換装置81と、モータ82と、機械ブレーキ83とを示している。
 電力変換装置81は、入力された直流を交流に変換してモータ82に出力したり、モータ82が回生した電力を直流に変換して電池ユニット10に提供したりする。モータ82は、車輪140を回転駆動することで車両を走行駆動したり、車両の減速時に回生を行って発電したりする。機械ブレーキ83は、機械的な作用によって車両を減速させる装置である。
 また、移動体システム100は、入力装置70として、ノッチ指示やブレーキ指示を入力可能なマスターコントローラを備える。
 電力制御装置50は、電池ユニット10の放電時には、マスターコントローラ70から入力される操作情報であるノッチ指示に基づいて、車輪140に出力すべき動力を算出し、これからエンジン110の出力可能な動力を差し引くことで、電池ユニット10が放電する電力を算出する。そして、電力制御装置50は、電池ユニット10が放電する電力に基づいて電池ユニット10から流れる電流を算出し、算出した電流が、上記説明したシステム最大電流Amaxを超えるか否かを判定する。電力制御装置50は、算出した電流がシステム最大電流Amaxを超える場合に、電力変換装置81に与えるデューティ比を制限したり、エンジン110の出力する動力を増加する指示を図示しないエンジン制御装置に出力したりする。
 電力制御装置50は、電池ユニット10の充電時には、マスターコントローラ70から入力される操作情報であるブレーキ指示に基づいて、車輪140に作用し回生可能な動力を算出し、回生可能な動力に基づいて、電池ユニット10に充電可能な電力を算出する。そして、電力制御装置50は、電池ユニット10に充電可能な電力に基づいて電池ユニット10に流入する電流を算出し、算出した電流が、上記説明したシステム最大電流Amaxを超えるか否かを判定する。電力制御装置50は、算出した電流がシステム最大電流Amaxを超える場合に、機械ブレーキ83を作動させてモータ82の発電する電力を制限するなどの制御を行う。
 電力制御システム1の適用例として、ハイブリッド鉄道車両を例示したが、これに限定されず、電力制御システム1は、太陽光パネル(PV)や燃料電池(FC)などの発電機と、系統電力とに接続される定置型の蓄電システムにも適用することができる。図16は、電力制御システム1を利用した定置型蓄電システム200の構成の一例を示す図である。
 発電機210は、太陽光パネル(PV)や燃料電池(FC)などである。コンバータ220は、発電機210が交流を発電する場合、AC-DCコンバータであり、発電機210が直流を発電する場合、DC-DCコンバータである。制御対象80は、例えば、PCS(Power Conditioning System)である。PCSは、変圧器Tを介して系統電力SPおよび負荷Lに接続される。これによって、発電機210の発電した電力が、電池ユニット10に蓄えられながら、系統電力SPの側に供給される。
 この場合において、電力制御装置50は、電池ユニット10から流出する電流が、システム最大電流Amaxを超えないように制御対象80を制御する。例えば、電力制御装置50は、PCSに与えるデューティ比が、システム最大電流Amaxに対応するデューティ比を超えないように制御する。また、この場合の制御対象には発電機210とコンバータ220が含まれてよく、電力制御装置50は、電池ユニット10に流入する電流がシステム最大電流Amaxを超えないように発電機210およびコンバータ220を制御してもよい。
 以上説明した少なくともひとつの実施形態によれば、充放電可能な電池セル21の充電時における電圧に関する情報を取得する取得部52と、取得部52により取得された情報に基づいて、上限電圧VcMAXと電池セル21の電圧Vcとの差分が小さくなるほど小さくなる傾向で、且つ上限電流Alimで制限して、電池セル21の充電時における最大電流Acellmaxを決定する最大電流決定部56と、を備えることにより、比較的大電流が流れるシステムにおいて、より正確に電池セル21の電圧制限を行うことができる。
 また、少なくともひとつの実施形態によれば、充放電可能な電池セル21の放電時における電圧に関する情報を取得する取得部52と、取得部52により取得された情報に基づいて、下限電圧VcMINと電池セル21の電圧Vcとの差分が小さくなるほど小さくなる傾向で、且つ上限電流Alimで制限して、電池セル21の放電時における最大電流Acellmaxを決定する最大電流決定部56と、を備えることにより、比較的大電流が流れるシステムにおいて、より正確に電池セル21の電圧制限を行うことができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (8)

  1.  充放電可能な二次電池の充電時における電圧に関する情報を取得する取得部と、
     前記取得部により取得された情報に基づいて、上限電圧と前記二次電池の電圧との差分が小さくなるほど小さくなる傾向で、且つ上限電流で制限して、前記二次電池の充電時における最大電流を決定する決定部と、
     を備える電力制御装置。
  2.  前記決定部は、前記上限電圧と前記二次電池の電圧との差分にゲインを乗算し、前記乗算した結果を前記上限電流で制限して、前記二次電池の充電時における最大電流を決定する、
     請求項1記載の電力制御装置。
  3.  前記決定部は、所定周期で繰り返し前記二次電池の充電時における最大電流を決定し、前記上限電圧と前記二次電池の電圧との差分が第1所定電圧未満である場合に、前回決定した最大電流からステップ電圧を差し引いた値に、前記二次電池の充電時における最大電流を決定する、
     請求項1記載の電力制御装置。
  4.  充放電可能な二次電池の放電時における電圧に関する情報を取得する取得部と、
     前記取得部により取得された情報に基づいて、前記二次電池の電圧と下限電圧との差分が小さくなるほど小さくなる傾向で、且つ上限電流で制限して、前記二次電池の放電時における最大電流を決定する決定部と、
     を備える電力制御装置。
  5.  前記決定部は、前記二次電池の電圧と前記下限電圧との差分にゲインを乗算し、前記乗算した結果を前記上限電流で制限して、前記二次電池の放電時における最大電流を決定する、
     請求項4記載の電力制御装置。
  6.  前記決定部は、所定周期で繰り返し前記二次電池の放電時における最大電流を決定し、前記二次電池の電圧と前記下限電圧との差分が第2所定電圧未満である場合に、前回決定した最大電流からステップ電圧を差し引いた値に、前記二次電池の放電時における最大電流を決定する、
     請求項4記載の電力制御装置。
  7.  前記取得部は、前記二次電池の充電率を、前記電圧に関する情報として取得し、
     前記決定部は、前記二次電池の充電率から換算した電圧を前記二次電池の電圧として扱う、
     請求項1または4記載の電力制御装置。
  8.  請求項1または4記載の電力制御装置と、
     一または複数の前記二次電池と、
     を備える電力制御システム。
PCT/JP2015/083233 2015-11-26 2015-11-26 電力制御装置、および電力制御システム WO2017090155A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017511806A JP6313522B2 (ja) 2015-11-26 2015-11-26 電力制御装置、および電力制御システム
CN201580047260.7A CN107005077B (zh) 2015-11-26 2015-11-26 电力控制装置以及电力控制***
PCT/JP2015/083233 WO2017090155A1 (ja) 2015-11-26 2015-11-26 電力制御装置、および電力制御システム
EP15902469.4A EP3382850A4 (en) 2015-11-26 2015-11-26 POWER CONTROL DEVICE AND POWER CONTROL SYSTEM
US15/455,962 US10525835B2 (en) 2015-11-26 2017-03-10 Power control apparatus and power control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083233 WO2017090155A1 (ja) 2015-11-26 2015-11-26 電力制御装置、および電力制御システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/455,962 Continuation US10525835B2 (en) 2015-11-26 2017-03-10 Power control apparatus and power control system

Publications (1)

Publication Number Publication Date
WO2017090155A1 true WO2017090155A1 (ja) 2017-06-01

Family

ID=58764172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083233 WO2017090155A1 (ja) 2015-11-26 2015-11-26 電力制御装置、および電力制御システム

Country Status (5)

Country Link
US (1) US10525835B2 (ja)
EP (1) EP3382850A4 (ja)
JP (1) JP6313522B2 (ja)
CN (1) CN107005077B (ja)
WO (1) WO2017090155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500840A (ja) * 2017-10-23 2021-01-07 ベニング・シーエムエス・テクノロジー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング エネルギー貯蔵器の充放電方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108032862B (zh) * 2017-12-08 2020-01-17 中车株洲电力机车有限公司 一种内燃动车组混合供电动力***及供电方法
US11095135B2 (en) * 2018-10-25 2021-08-17 Dell Products L.P. Information handling system battery charge management in a dynamic discharge environment
CN112440744B (zh) * 2019-08-29 2022-05-17 北京新能源汽车股份有限公司 一种蓄电池电量管理的控制方法、整车控制器及管理***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041883A (ja) * 2008-08-07 2010-02-18 Panasonic Corp 蓄電システム
JP2011177011A (ja) * 2010-01-29 2011-09-08 Sanyo Electric Co Ltd 充電状態調整装置、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置ならびに充電状態調整処理プログラム
JP2012249410A (ja) * 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
JP2015177601A (ja) 2014-03-13 2015-10-05 株式会社東芝 充電制御装置及び充電制御装置の制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075863B2 (ja) 2004-06-07 2008-04-16 株式会社デンソー 電動トルク使用型車両
JP2006129588A (ja) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd 二次電池の電力制御方法及び電源装置
JP4527047B2 (ja) * 2005-12-02 2010-08-18 パナソニックEvエナジー株式会社 二次電池用の制御装置及び二次電池の出力制御方法
JP4961830B2 (ja) * 2006-05-15 2012-06-27 トヨタ自動車株式会社 蓄電装置の充放電制御装置および充放電制御方法ならびに電動車両
JP5163542B2 (ja) * 2009-03-03 2013-03-13 日産自動車株式会社 二次電池の入出力可能電力推定装置
EP2273322B1 (fr) 2009-07-10 2012-05-23 Chopard Technologies SA Procédé d'assemblage d'une piece sur un organe de pivotement
JP5268853B2 (ja) * 2009-10-08 2013-08-21 株式会社日立製作所 ハイブリッド走行制御システム
JP5496612B2 (ja) * 2009-11-11 2014-05-21 三洋電機株式会社 電池の充放電可能電流演算方法及び電源装置並びにこれを備える車両
JP5446836B2 (ja) 2009-12-22 2014-03-19 トヨタ自動車株式会社 電源装置および車両
JP5174111B2 (ja) 2010-09-27 2013-04-03 三菱重工業株式会社 電池システム
WO2014151976A2 (en) * 2013-03-14 2014-09-25 Evgentech, Inc. Pulse battery charger methods and systems for improved charging of lithium ion batteries
JP6225588B2 (ja) 2013-09-17 2017-11-08 ソニー株式会社 蓄電装置および蓄電装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041883A (ja) * 2008-08-07 2010-02-18 Panasonic Corp 蓄電システム
JP2011177011A (ja) * 2010-01-29 2011-09-08 Sanyo Electric Co Ltd 充電状態調整装置、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置ならびに充電状態調整処理プログラム
JP2012249410A (ja) * 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
JP2015177601A (ja) 2014-03-13 2015-10-05 株式会社東芝 充電制御装置及び充電制御装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382850A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500840A (ja) * 2017-10-23 2021-01-07 ベニング・シーエムエス・テクノロジー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング エネルギー貯蔵器の充放電方法
JP7102516B2 (ja) 2017-10-23 2022-07-19 ベニング・シーエムエス・テクノロジー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング エネルギー貯蔵器の充放電方法

Also Published As

Publication number Publication date
EP3382850A4 (en) 2019-08-07
CN107005077B (zh) 2020-05-05
CN107005077A (zh) 2017-08-01
JP6313522B2 (ja) 2018-04-18
US20170182907A1 (en) 2017-06-29
JPWO2017090155A1 (ja) 2017-11-24
EP3382850A1 (en) 2018-10-03
US10525835B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
JP6313521B2 (ja) 電力制御装置、および電力制御システム
CA2935019A1 (en) Temperature control apparatus for electricity storage device
JP6496496B2 (ja) 電力貯蔵システムおよびその制御方法
JP6439866B2 (ja) 蓄電装置及び接続制御方法
CN103548235A (zh) 充放电控制装置及充放电控制方法
JP6313522B2 (ja) 電力制御装置、および電力制御システム
JP5376045B2 (ja) 電池パック
JP5887260B2 (ja) 蓄電池の残量管理装置
US20160297309A1 (en) Vehicle power management device
Huang et al. Distributed battery energy storage system architecture with energy sharing control for charge balancing
JP5503957B2 (ja) 車両用電源装置
US10576835B2 (en) Energy storage device, transport apparatus, and control method
US10618419B2 (en) Energy storage arrangement comprising multiple energy stores
Abdelgadir et al. Energy management optimization for an extended range electric vehicle
JP2017070077A (ja) 蓄電装置、輸送機器及び制御方法
KR20190071459A (ko) 배터리 충전 시스템 및 이를 이용한 배터리 모듈의 최대용량 충전 제어방법
Machado et al. Semi-active hybrid topology with three-level DC-DC converter for electric vehicle application
Tashakor et al. An improved modular charge equalization structure for series cascaded battery
JP6485871B2 (ja) 燃料電池システム
JP6335860B2 (ja) 駆動装置及びその制御方法、並びに、輸送機器
JP5849517B2 (ja) 電源システム
JP2018191380A (ja) 蓄電池の残量管理装置
Lorencetti et al. Modularized bidirectional step-up DC-DCD converter with predictive battery equalization method
Lu A COMPARATIVE ANALYSIS OF SINGLE SWITCHED CAPACITOR AND SWITCHED SHUNTING RESISTOR BATTERY CELL BALANCING METHODS
Ahmed et al. Power system and controller design for hybrid fuel cell vehicles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017511806

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015902469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015902469

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE