WO2017078430A1 - Insulation composition having excellent original form recovery and mechanical properties, and cable having insulation layer formed therefrom - Google Patents

Insulation composition having excellent original form recovery and mechanical properties, and cable having insulation layer formed therefrom Download PDF

Info

Publication number
WO2017078430A1
WO2017078430A1 PCT/KR2016/012597 KR2016012597W WO2017078430A1 WO 2017078430 A1 WO2017078430 A1 WO 2017078430A1 KR 2016012597 W KR2016012597 W KR 2016012597W WO 2017078430 A1 WO2017078430 A1 WO 2017078430A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation
composition
cable
weight
conductor
Prior art date
Application number
PCT/KR2016/012597
Other languages
French (fr)
Korean (ko)
Inventor
고창모
김종완
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority claimed from KR1020160145611A external-priority patent/KR20170053581A/en
Publication of WO2017078430A1 publication Critical patent/WO2017078430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to a cable having an insulating composition excellent in circular recovery and mechanical properties and an insulating layer formed therefrom. Specifically, the present invention not only suppresses deformation under the conditions of high temperature and high pressure during chemical crosslinking of the sheath layer, but also has excellent circular recovery after deformation, and also has excellent mechanical properties in conflict with this, and further excellent in water resistance.
  • FIG. 1 schematically illustrates a cross-sectional structure of one embodiment of a typical cable
  • FIG. 2 schematically illustrates a cross-sectional structure of another embodiment of a typical cable.
  • the cable comprises a conductor (10, 10 ') through which a current flows, an insulating layer (20, 20') surrounding the conductor (10, 10 '), and the cable from external pressure or impact. It may include a sheath layer (30, 30 ') and the like.
  • the sheath layer (30, 30 ') must have a certain level or more of mechanical properties to protect the cable from external pressure or impact, and on the insulating layer (20, 20') to implement such mechanical properties It is usually crosslinked after extrusion.
  • the cross-linking method of the sheath layer 30, 30 ' is irradiation crosslinking to crosslink the resin by ultraviolet irradiation, silane crosslinking (water crosslinking) to crosslink the resin in water using a silane compound, and organic peroxide under high temperature and high pressure. Chemical crosslinking to crosslink the resin using a crosslinking agent.
  • irradiation crosslinking has a problem in that crosslinking does not proceed uniformly to the inside of the sheath layers 30 and 30 'due to the low transmittance of the irradiation beam when the sheath layers 30 and 30' are thick.
  • the silane crosslinking (water crosslinking) takes a long time, and when the crosslinking reaction proceeds in water, side reactions may occur due to moisture absorption of the sheath layers 30 and 30 ', and a silane graft reaction to the resin may occur. If the silane graft reaction is too difficult to control the scorch occurs, or if the silane graft reaction is less than the standard cross-linking degree often occurs, it may be difficult to apply the mass production.
  • the chemical crosslinking method is widely applicable and relatively easy to manufacture the raw material, while the deformation of the insulating layer (20, 20 ') under the conditions of high temperature and high pressure for the crosslinking reaction, that is 150 ⁇ 230 °C and 6 ⁇ 20 bar This may occur, resulting in poor withstand voltage.
  • the deformation may be more severe due to mutual crushing of the insulating layers 20' surrounding each conductor 10 '.
  • a resin having a low strain at high temperature and high pressure and excellent circular recovery after deformation as a basic resin for forming the insulating layers 20 and 20 ', but has a low temperature and high pressure strain and a circular recoverability.
  • This superior resin cannot be applied to an insulating layer that typically requires a tensile strength of 10 MPa and a high tensile strength of 12.5 MPa.
  • an additive is added to improve the tensile strength of the insulating layers 20 and 20 ', the water resistance of the insulating layers 20 and 20' may be greatly reduced.
  • the high temperature and high strain rate is excellent and the circular recovery is excellent, and also has the excellent mechanical properties that can be applied to the insulating layer which requires a high tensile strength of the product specification of 12.5 MPa, further improved insulation composition and insulation formed therefrom There is an urgent need for cables with layers.
  • An object of the present invention is to provide an insulation composition having a low high temperature and high strain rate and excellent circular recovery and a cable having an insulation layer formed therefrom.
  • an object of the present invention is to provide a cable having an insulating composition and an insulating layer formed therefrom, which has an elasticity for achieving low high temperature and high strain rate and excellent circular recovery, and which has excellent mechanical properties in conflict with it.
  • An insulation composition for forming the insulation layer of a cable comprising at least one conductor and an insulation layer surrounding each conductor, the insulation composition comprising an olefin-based copolymer as a base resin, wherein the insulation layer formed from the insulation composition is The resulting high temperature and high strain is less than 95%, providing an insulating composition.
  • a is the initial (insulation outer diameter-conductor outer diameter)
  • b is pressurizing the cable at 160 °C for 1 hour to compress the insulating layer so that the outer diameter of each of the insulating layer to (conductor outer diameter + c), and the cable is cooled to room temperature while maintaining the pressure, It is the minimum value of (insulated outer diameter-outer diameter of conductor) measured under the condition that pressure is removed.
  • c is the pressure (insulation outer diameter-conductor outer diameter) at the time of pressing the insulating layer formed from the said insulating composition on the said conditions.
  • c is an insulation composition, characterized in that 0.5a to 0.8a.
  • the insulation layer provides an insulation composition, characterized in that the tensile strength is 12.5 MPa or more.
  • two conductors having a cross-sectional area of 0.75 mm2 are united so that a specified value is obtained by applying a 60 Hz sinusoidal alternating voltage to a conductor sock end of a cable specimen having a total conductor diameter of 1.107 mm and an insulating layer formed from the insulating composition and having a thickness of 0.5 mm. It provides an insulating composition, characterized in that the breakdown does not occur for a specified time of 5 minutes after slowly rising to 1.5 kV.
  • the olefin copolymer has a melting point of 50 to 100 ° C. and a melt index of 1 to 8 g / min.
  • the olefin copolymer provides an insulation composition, characterized in that it comprises a copolymer of ethylene and other ⁇ -olefins.
  • the olefin copolymer provides an insulating composition, characterized in that it comprises an ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, or a combination thereof.
  • the base resin based on 100 parts by weight of the base resin, characterized in that it further comprises 30 to 250 parts by weight of one or more fillers selected from the group consisting of clay, talc, calcium carbonate, magnesium hydroxide, aluminum hydroxide, silica and zinc borate. , To provide an insulation composition.
  • the filler provides an insulating composition, characterized in that the surface is hydrophobically modified by at least one selected from the group consisting of alkyl silanes, vinyl silanes and fatty acids.
  • the cable specimens were based on the initial tan ⁇ of the insulation layer.
  • the increase rate of tan ⁇ of the insulating layer after immersion in a 75 ° C. water bath for 14 days was 50% or less, and the cable specimen was immersed in water at a specified temperature of 90 ⁇ 1 ° C., so that the insulating layer temperature became constant.
  • an insulation composition characterized in that the high temperature insulation resistance measured after charging for 1 minute by applying a DC voltage is 1.3 M ⁇ -km or more.
  • the filler provides an insulation composition, characterized in that the particle size (D 50 ) is 0.6 to 6 ⁇ m.
  • the base resin based on 100 parts by weight of the base resin, characterized in that it further comprises 0.3 to 3 parts by weight of a silane coupling agent having a viscosity of 1 to 20 cps at 25 °C, provides an insulation composition.
  • the content of the silane coupling agent is 1/10 or more of the filler content, provides an insulation composition.
  • the base resin based on 100 parts by weight of the base resin, characterized in that it further comprises 60 parts by weight or less of one or more processing oils selected from the group consisting of alkyl ester oil, paraffin oil and paraffin wax, provides an insulation composition.
  • dicumyl peroxide based on 100 parts by weight of the base resin, dicumyl peroxide, benzoyl peroxide, aryl peroxide, t- butyl cumyl peroxide, di (t- butyl peroxy isopropyl) benzene, 2,5-dimethyl-2, It further comprises 1 to 10 parts by weight of at least one crosslinking agent selected from the group consisting of 5-di (t-butyl peroxy) hexane and di-t-butyl peroxide, an insulation composition is provided.
  • phenol-based, zinc-based, quinone-based, sulfur-based or phosphorus-based antioxidant based on 100 parts by weight of the base resin, phenol-based, zinc-based, quinone-based, sulfur-based or phosphorus-based antioxidant, characterized in that it further comprises 1 to 10 parts by weight.
  • At least one conductor At least one conductor; An insulation layer surrounding each of the conductors and formed from the insulation composition; And a sheath layer surrounding the insulation layer as a whole.
  • the insulating composition according to the present invention is formed from a resin having low high temperature high pressure strain and excellent circular recoverability, the strain of the insulating layer is minimized even under conditions of high temperature and high pressure during chemical crosslinking of the sheath layer, and is insulated by circular recovery after deformation. It shows an excellent effect that the strength is maintained.
  • the insulating composition according to the present invention exhibits an excellent effect of improving the mechanical properties while maintaining the high temperature and high strain rate and circular recovery of the insulating layer by including a specific additive in addition to the resin in a specific blending ratio.
  • the insulating composition according to the present invention exhibits an excellent effect that the water resistance is not lowered by an additive for improving mechanical properties.
  • Figure 1 schematically shows a cross-sectional structure of one embodiment of a typical cable.
  • Figure 2 schematically shows the cross-sectional structure of another embodiment of a typical cable.
  • the present invention relates to an insulating composition for forming an insulating layer of a cable.
  • the insulation composition may include an olefin resin as a basic resin.
  • the olefin resin is preferably a copolymer of ethylene with other ⁇ -olefins, such as ethylene-propylene copolymers, ethylene-butene copolymers, ethylene-hexene copolymers, ethylene-octene copolymers, or their Combinations.
  • the copolymer of ethylene and an ⁇ -olefin may have a melting point of 50 to 100 ° C. and a melt index of 1 to 8 g / min.
  • the cable having one or more conductors and an insulation layer formed from the insulation composition respectively surrounding the conductors may have a high temperature and high strain rate of the insulation layer defined by Equation 1 below.
  • a is the initial (insulation outer diameter-conductor outer diameter)
  • b is pressurizing the cable at 160 °C for 1 hour to compress the insulating layer so that the outer diameter of each of the insulating layer to (conductor outer diameter + c), and the cable is cooled to room temperature while maintaining the pressure, It is the minimum value of (insulated outer diameter-outer diameter of conductor) measured under the condition that pressure is removed.
  • c is a pressure (insulation outer diameter-conductor outer diameter) when the insulating layer formed from the insulating composition is pressed under the above conditions, and c is, for example, 0.5a to 0.8a, and is typically 0.75a.
  • the insulating composition may be formed of the insulating layer formed from the insulating composition when chemically crosslinking the sheath layer at a high temperature of 150 to 230 ° C. and a high pressure of 6 to 20 bar when the high temperature and high pressure strain of the insulating layer defined by Equation 1 is less than 95%.
  • the deformation is suppressed and the circular recovery property after deformation is excellent to maintain the insulation strength of the insulating layer.
  • the insulation composition may further include a filler, a silane coupling agent, a processing oil, a crosslinking agent, an antioxidant, and the like in addition to the basic resin.
  • the filler may further improve the mechanical properties and extrudability of the insulation composition, for example, selected from the group consisting of clay, talc, calcium carbonate, magnesium hydroxide, aluminum hydroxide, silica, zinc borate, etc. It may include more than one species, and the surface may be modified hydrophobicly by alkyl silane, vinyl silane, fatty acid, etc. to improve compatibility with the base resin.
  • the cable specimens were based on the initial tan ⁇ of the insulation layer.
  • the increase rate of tan ⁇ of the insulating layer after immersion in a 75 ° C. water bath for 14 days was 50% or less, and the cable specimen was immersed in water at a specified temperature of 90 ⁇ 1 ° C., so that the insulating layer temperature became constant.
  • the high temperature insulation resistance measured after charging for 1 minute by applying a DC voltage is 1.3 M ⁇ -km or more can be achieved excellent water resistance.
  • the surface of the filler is not modified to be hydrophobic and the compatibility with the base resin is lowered, the tensile strength, electrical properties, circular recovery of the insulating layer may be lowered, and further, the water resistance of the insulating layer may be lowered.
  • the filler is adjusted to a particle diameter (D 50 ) of 0.6 to 6 ⁇ m or less can be suppressed from agglomeration in the resin, thereby improving the surface roughness during the extrusion of the cable.
  • the filler may be included in an amount of 30 to 250 parts by weight based on 100 parts by weight of the base resin. If the content of the filler is less than 30 parts by weight, the surface roughness of the appearance may be reduced during cable extrusion, whereas if it is more than 250 parts by weight, mechanical properties such as elongation of the insulating layer may be lowered and flexibility may be reduced.
  • the silane coupling agent performs a function of further improving the compatibility of the filler and the base resin, and may have, for example, both functional groups such as vinyl and alkyl and functional groups of silane.
  • the silane coupling agent may have a viscosity of 1 to 20 cps at 25 °C to smoothly perform the function of further improving the compatibility of the filler and the base resin.
  • the content of the silane coupling agent may be 0.3 to 3 parts by weight based on 100 parts by weight of the base resin, and preferably about 1/10 or more of the filler content.
  • the content of the silane coupling agent is less than 0.3 parts by weight, the compatibility of the filler and the base resin may be insufficient, whereas when the content of the silane coupling agent is more than 3 parts by weight, the elongation rate, flexibility, and the like of the insulating layer may be reduced.
  • the processing oil further functions to further improve the extrudability of the cable and to improve the compatibility of the base resin with the additive.
  • the processed oil may include, for example, alkyl ester oil, paraffin oil, paraffin wax, or a combination thereof, and may be included in an amount of 60 parts by weight or less based on 100 parts by weight of the base resin. When the content of the processing oil exceeds 60 parts by weight, the mechanical strength of the insulating layer may be lowered.
  • the crosslinking agent may be added for crosslinking of the base resin included in the insulating composition and may improve mechanical properties of the insulating layer through crosslinking of the base resin.
  • the crosslinking agent is, for example, dicumyl peroxide, benzoyl peroxide, aryl peroxide, t-butyl cumyl peroxide, di (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t Organic peroxide-based crosslinking agents such as -butyl peroxy) hexane, di-t-butyl peroxide, or a combination thereof, and may be included in an amount of 1 to 10 parts by weight based on 100 parts by weight of the base resin.
  • the content of the crosslinking agent When the content of the crosslinking agent is less than 1 part by weight, the mechanical strength of the insulating layer may be insufficient, whereas when the content of the crosslinking agent is greater than 10 parts by weight, the extrudeability such as scorch is generated by early crosslinking during extrusion of the insulating layer. Deterioration or cross-linking by-products may lower the electrical properties of the insulating layer.
  • the antioxidant is added to prevent deterioration due to oxidation of the insulating layer, for example, phenol-based, zinc-based, quinone-based, sulfur-based, phosphorus-based, etc. may be used, 100 parts by weight of the base resin It may be included in 1 to 10 parts by weight as a standard.
  • the insulating composition according to the present invention includes a filler, a silane coupling agent, a processing oil, a crosslinking agent, an antioxidant, and the like in addition to the base resin to maintain the high temperature and high strain rate and circular recovery of the base resin. It shows an excellent effect that can achieve the desired tensile strength of 12.5 MPa or more of the formed insulating layer.
  • the present invention consists of a conductive material capable of flowing current, for example, a metal such as copper or aluminum to provide a current flow path, an insulating layer surrounding the conductor and formed by the above-described insulating composition, the insulating layer
  • the present invention relates to a cable including a sheath layer for enclosing the shield and protecting the cable from external shock or pressure.
  • Each insulation composition was prepared after kneading in an open roll at 80 ° C. with the components and blending ratios as shown in Table 1 below, and extruded onto a conductor to be crosslinked by pressurized heating at 170 ° C. for 20 minutes to IEC-60811-1-1.
  • a cable specimen (conductor: 0.75 sq two total outer diameters of 1.107 mm; insulation layer: thickness 0.5 mm) was prepared.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Resin a 70 30 70 70 90 Resin b 30 70 30 70 Resin c 30 30 10 100 Filler a 60 60 60 60 60 60 60 Filler b 60 Silane coupling agent One One One One One One One One One One Processing oil 5 5 5 5 5 5 5 5 5 5 5 Antioxidant 6 6 6 6 6 6 6 Crosslinking agent 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
  • Resin a Ethylene copolymer (ethylene content: 40-71 wt%)
  • Resin b ethylene-propylene copolymer
  • Resin c ethylene homopolymer
  • Filler a calcined clay (aluminosilicate) surface treated with vinylsilane (particle diameter (D 50 ) ⁇ 2.2 ⁇ m)
  • Filler b calcined clay (aluminosilicate) without surface treatment (particle diameter (D 50 ) ⁇ 2.2 ⁇ m)
  • Processing oil paraffin oil
  • Antioxidants zinc oxide (ZnO) and trimellitatequinoline (TMQ)
  • the tensile strength and elongation of the insulation specimens separated from the cable specimens of each of the Examples and Comparative Examples were measured at a tensile rate of 250 mm / min at room temperature (about 25 ° C).
  • This test method was developed by devising a method of measuring the strain due to heating pressure on an insulated cable by modifying the compressive permanent shrinkage test method specified in Clause 11 of KS M 6518 Physical Test Method of Vulcanized Rubber. The high temperature, high pressure strain of the specimen was evaluated.
  • the initial (insulation outer diameter-outer diameter of the conductor) of each of the cable specimens of Examples and Comparative Examples was measured, and using a press at 160 ° C. so that the cable outer diameter was ⁇ initial (insulation outer diameter-outer diameter of the conductor) * 0.75 ⁇ .
  • the press is cooled to room temperature and left to stand for at least 1 hour while maintaining pressurization to completely cool the specimen, and remove the specimen from the press to remove the pressurization and then remove the minimum value of (insulated outer diameter-conductor outer diameter).
  • the high temperature high pressure strain according to the above formula (1) was calculated.
  • f is the frequency of the measurement power supply
  • R is the scale ( ⁇ ) of the inductive variable resistor when the bridge is in equilibrium.
  • dielectric tangent tantan may be expressed as an absolute value.
  • the cables of Examples 1 and 2 according to the present invention are both less than 95% of the high temperature and high pressure strain of the insulating layer, so that deformation is suppressed even under high temperature and high pressure environments applied during chemical crosslinking of the sheath layer. It is excellent in the original recovery after deformation and can maintain the dielectric strength during chemical crosslinking of the sheath layer. The shape of the insulating layer was maintained, and the results of the breakdown voltage test were also good.
  • the tensile strength of the insulating layer is 12.5 MPa or more can be used as a cable that requires a high tensile strength of the product specification of 12.5 MPa, and even after immersion, the tan ⁇ increase rate is low and the high temperature insulation resistance value is high, so that the insulating layer has excellent water resistance. Confirmed.
  • Comparative Example 1 since the surface of the filler is not hydrophobically modified, the compatibility with the base resin is lowered, the tensile strength of the insulating layer is lowered, the tan ⁇ is significantly increased after immersion, and the high temperature insulation resistance is considerably decreased, so that the insulating layer has high water resistance. It was confirmed that this was greatly reduced.
  • Comparative Examples 2 to 5 including the ethylene homopolymer as the base resin, was almost completely deformed at high temperature and pressure, it was confirmed that the high temperature and high pressure strain significantly decreased.
  • the circular shape of the insulating layer was not maintained on the cable and was deformed into a completely crushed shape, so that the electrical insulation of the inner conductor was not maintained.
  • the result of the withstand voltage test was bad and the resistance value was nearly 0 at the time of the high temperature insulation resistance test. It became.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to an insulation composition having excellent original form recovery and mechanical properties, and a cable having an insulation layer formed therefrom. Particularly, the present invention relates to: an insulation composition, which suppresses deformation under high-temperature and high-voltage conditions during chemical crosslinking of a sheath layer, has excellent original form recovery after deformation and simultaneously has excellent mechanical properties, which are in a trade off relation with the original form recovery, and, additionally, has excellent water resistance; and a cable having an insulation layer formed therefrom.

Description

원형회복성 및 기계적 특성이 우수한 절연 조성물 및 이로부터 형성된 절연층을 갖는 케이블Cable having an insulating composition excellent in circular recovery and mechanical properties and an insulating layer formed therefrom
본 발명은 원형회복성 및 기계적 특성이 우수한 절연 조성물 및 이로부터 형성된 절연층을 갖는 케이블에 관한 것이다. 구체적으로, 본 발명은 시스층의 화학가교시 고온 및 고압의 조건하에서 변형이 억제될 뿐만 아니라 변형 후 원형회복성이 우수한 동시에, 이와 상충관계에 있는 기계적 특성 역시 우수하며, 추가로 내수성이 우수한 절연 조성물 및 이로부터 형성된 절연층을 갖는 케이블에 관한 것이다.The present invention relates to a cable having an insulating composition excellent in circular recovery and mechanical properties and an insulating layer formed therefrom. Specifically, the present invention not only suppresses deformation under the conditions of high temperature and high pressure during chemical crosslinking of the sheath layer, but also has excellent circular recovery after deformation, and also has excellent mechanical properties in conflict with this, and further excellent in water resistance. A cable having a composition and an insulating layer formed therefrom.
도 1은 일반적인 케이블의 하나의 실시예에 관한 단면 구조를 개략적으로 도시한 것이고, 도 2는 일반적인 케이블의 또 다른 실시예에 관한 단면 구조를 개략적으로 도시한 것이다.FIG. 1 schematically illustrates a cross-sectional structure of one embodiment of a typical cable, and FIG. 2 schematically illustrates a cross-sectional structure of another embodiment of a typical cable.
도 1 및 2에 도시된 바와 같이, 케이블은 전류가 흐르는 도체(10,10'), 상기 도체(10,10')를 각각 감싸는 절연층(20,20'), 외부의 압력이나 충격으로부터 케이블을 보호하는 시스층(30,30') 등을 포함할 수 있다.As shown in Figs. 1 and 2, the cable comprises a conductor (10, 10 ') through which a current flows, an insulating layer (20, 20') surrounding the conductor (10, 10 '), and the cable from external pressure or impact. It may include a sheath layer (30, 30 ') and the like.
또한, 상기 시스층(30,30')은 외부의 압력이나 충격으로부터 케이블을 보호하기 위해 일정 수준 이상의 기계적 특성을 보유해야 하고, 이러한 기계적 특성의 구현을 위해 상기 절연층(20,20') 위에 압출 후 통상 가교된다.In addition, the sheath layer (30, 30 ') must have a certain level or more of mechanical properties to protect the cable from external pressure or impact, and on the insulating layer (20, 20') to implement such mechanical properties It is usually crosslinked after extrusion.
상기 시스층(30,30')의 가교방식은 자외선 조사에 의해 수지를 가교하는 조사가교, 실란 화합물을 이용해 수중에서 수지를 가교하는 실란가교(수가교), 고온 및 고압의 조건하에서 유기과산화물 등의 가교제를 이용해 수지를 가교하는 화학가교 등이 있다.The cross-linking method of the sheath layer 30, 30 'is irradiation crosslinking to crosslink the resin by ultraviolet irradiation, silane crosslinking (water crosslinking) to crosslink the resin in water using a silane compound, and organic peroxide under high temperature and high pressure. Chemical crosslinking to crosslink the resin using a crosslinking agent.
다만, 조사가교는 시스층(30,30')의 두께가 두꺼운 경우 조사빔의 낮은 투과율로 인해 시스층(30,30') 내부까지 균일하게 가교가 진행되지 않는 문제가 있다. 또한, 실란가교(수가교)는 장시간이 소요되고, 수중에서 가교반응이 진행될 때 시스층(30,30')의 수분흡습에 의한 부반응이 일어날 수 있으며, 수지에 대한 실란 그라프트(graft) 반응의 조절이 어려워 실란 그라프트 반응이 과도한 경우 스코치(scorch)가 발생하거나 실란 그라프트 반응이 기준 미달인 경우 가교도가 저하되는 문제가 종종 발생해 양산 적용시 어려움이 발생할 수 있다.However, irradiation crosslinking has a problem in that crosslinking does not proceed uniformly to the inside of the sheath layers 30 and 30 'due to the low transmittance of the irradiation beam when the sheath layers 30 and 30' are thick. In addition, the silane crosslinking (water crosslinking) takes a long time, and when the crosslinking reaction proceeds in water, side reactions may occur due to moisture absorption of the sheath layers 30 and 30 ', and a silane graft reaction to the resin may occur. If the silane graft reaction is too difficult to control the scorch occurs, or if the silane graft reaction is less than the standard cross-linking degree often occurs, it may be difficult to apply the mass production.
한편, 화학가교 방식은 광범위하게 적용 가능하고, 비교적 원료제조가 간편한 반면, 가교 반응을 위한 고온 및 고압, 즉 150~230℃ 및 6~20 bar의 조건 하에서 절연층(20,20')의 변형이 발생하여 내전압이 불량하게 될 수 있다. 특히, 도 2에 도시된 바와 같이 도체(10')가 복수개인 경우, 각각의 도체(10')를 감싸는 각각의 절연층(20')들의 상호 눌림 현상으로 변형이 더욱 심각할 수 있다.On the other hand, the chemical crosslinking method is widely applicable and relatively easy to manufacture the raw material, while the deformation of the insulating layer (20, 20 ') under the conditions of high temperature and high pressure for the crosslinking reaction, that is 150 ~ 230 ℃ and 6 ~ 20 bar This may occur, resulting in poor withstand voltage. In particular, when there are a plurality of conductors 10 'as shown in FIG. 2, the deformation may be more severe due to mutual crushing of the insulating layers 20' surrounding each conductor 10 '.
따라서, 상기 절연층(20,20')을 형성하는 기본 수지로서 고온 및 고압에서의 변형율이 낮고 변형 후 원형회복성이 우수한 수지를 채택하는 것을 고려해 볼 수 있으나, 고온고압변형율이 낮고 원형회복성이 우수한 수지는 통상 인장강도가 10 MPa 수준으로 제품스팩 12.5 MPa 수준의 높은 인장강도가 요구되는 절연층에는 적용될 수 없다. 또한, 절연층(20,20')의 인장강도를 향상시키기 위해 첨가제를 첨가하는 경우 상기 절연층(20,20')의 내수성이 크게 저하될 수 있다.Therefore, it may be considered to adopt a resin having a low strain at high temperature and high pressure and excellent circular recovery after deformation as a basic resin for forming the insulating layers 20 and 20 ', but has a low temperature and high pressure strain and a circular recoverability. This superior resin cannot be applied to an insulating layer that typically requires a tensile strength of 10 MPa and a high tensile strength of 12.5 MPa. In addition, when an additive is added to improve the tensile strength of the insulating layers 20 and 20 ', the water resistance of the insulating layers 20 and 20' may be greatly reduced.
그러므로, 고온고압변형율이 낮고 원형회복성이 우수한 동시에, 제품스팩 12.5 MPa 수준의 높은 인장강도가 요구되는 절연층에도 적용될 수 있는 우수한 기계적 특성을 가지며, 추가로 내수성이 향상된 절연 조성물 및 이로부터 형성된 절연층을 갖는 케이블이 절실히 요구되고 있는 실정이다.Therefore, the high temperature and high strain rate is excellent and the circular recovery is excellent, and also has the excellent mechanical properties that can be applied to the insulating layer which requires a high tensile strength of the product specification of 12.5 MPa, further improved insulation composition and insulation formed therefrom There is an urgent need for cables with layers.
본 발명은 고온고압변형율이 낮고 원형회복성이 우수한 절연 조성물 및 이로부터 형성된 절연층을 갖는 케이블을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an insulation composition having a low high temperature and high strain rate and excellent circular recovery and a cable having an insulation layer formed therefrom.
또한, 본 발명은 낮은 고온고압변형율 및 우수한 원형회복성을 구현하기 위한 탄성을 갖는 동시에 이와 상충관계에 있는 기계적 특성이 우수한 절연 조성물 및 이로부터 형성된 절연층을 갖는 케이블을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a cable having an insulating composition and an insulating layer formed therefrom, which has an elasticity for achieving low high temperature and high strain rate and excellent circular recovery, and which has excellent mechanical properties in conflict with it.
나아가, 본 발명은 우수한 기계적 특성을 나타내는 동시에 내수성이 향상된 절연 조성물 및 이로부터 형성된 절연층을 갖는 케이블을 제공하는 것을 목적으로 한다.Furthermore, it is an object of the present invention to provide a cable having an insulating composition and an insulating layer formed therefrom that exhibit excellent mechanical properties and improve water resistance.
상기 과제를 해결하기 위해, 본 발명은,In order to solve the above problems, the present invention,
하나 이상의 도체 및 상기 도체를 각각 감싸는 절연층을 포함하는 케이블의 상기 절연층을 형성하는 절연 조성물로서, 기본 수지로서 올레핀계 공중합체를 포함하고, 상기 절연 조성물로부터 형성된 절연층은 아래 수학식 1에 따른 고온고압변형율이 95% 미만인, 절연 조성물을 제공한다.An insulation composition for forming the insulation layer of a cable comprising at least one conductor and an insulation layer surrounding each conductor, the insulation composition comprising an olefin-based copolymer as a base resin, wherein the insulation layer formed from the insulation composition is The resulting high temperature and high strain is less than 95%, providing an insulating composition.
[수학식 1][Equation 1]
절연층의 고온고압변형율(%)=[(a-b)/(a-c)]*100High Temperature High Pressure Strain of the Insulation Layer (%) = [(a-b) / (a-c)] * 100
상기 수학식 1에서,In Equation 1,
a는 초기의 (절연외경-도체외경)이고,a is the initial (insulation outer diameter-conductor outer diameter),
b는 상기 케이블을 160℃에서 1시간 동안 가압하여 상기 절연층 각각의 외경이 (도체외경+c)가 되도록 상기 절연층을 압축하고, 가압을 유지한 상태로 상기 케이블을 상온으로 냉각한 뒤, 가압을 제거한 상태에서 측정한 (절연외경-도체외경)의 최소값이며,b is pressurizing the cable at 160 ℃ for 1 hour to compress the insulating layer so that the outer diameter of each of the insulating layer to (conductor outer diameter + c), and the cable is cooled to room temperature while maintaining the pressure, It is the minimum value of (insulated outer diameter-outer diameter of conductor) measured under the condition that pressure is removed.
c는 상기 절연 조성물로부터 형성된 절연층을 상기 조건으로 가압시 (절연외경-도체외경)이다.c is the pressure (insulation outer diameter-conductor outer diameter) at the time of pressing the insulating layer formed from the said insulating composition on the said conditions.
여기서, 상기 c는 0.5a 내지 0.8a인 것을 특징으로 하는, 절연 조성물을 제공한다.Here, c is an insulation composition, characterized in that 0.5a to 0.8a.
또한, 상기 절연층은 인장강도가 12.5 MPa 이상인 것을 특징으로 하는, 절연 조성물을 제공한다.In addition, the insulation layer provides an insulation composition, characterized in that the tensile strength is 12.5 MPa or more.
나아가, 단면적이 0.75 ㎟인 도체 2개가 연합되어 도체 전체직경이 1.107 mm이고 상기 절연 조성물로부터 형성되고 두께가 0.5 mm인 절연층을 갖는 케이블 시편의 도체 양말단에 60Hz 정현파의 교류전압을 인가하여 규정치인 1.5 kV까지 서서히 상승시킨 후 규정시간인 5분 동안 절연파괴가 일어나지 않는 것을 특징으로 하는, 절연 조성물을 제공한다.Furthermore, two conductors having a cross-sectional area of 0.75 mm2 are united so that a specified value is obtained by applying a 60 Hz sinusoidal alternating voltage to a conductor sock end of a cable specimen having a total conductor diameter of 1.107 mm and an insulating layer formed from the insulating composition and having a thickness of 0.5 mm. It provides an insulating composition, characterized in that the breakdown does not occur for a specified time of 5 minutes after slowly rising to 1.5 kV.
그리고, 상기 올레핀계 공중합체는 융점이 50 내지 100℃이고, 용융지수가 1 내지 8 g/min인 것을 특징으로 하는, 절연 조성물을 제공한다.The olefin copolymer has a melting point of 50 to 100 ° C. and a melt index of 1 to 8 g / min.
또한, 상기 올레핀계 공중합체는 에틸렌과 다른 α-올레핀과의 공중합체를 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.In addition, the olefin copolymer provides an insulation composition, characterized in that it comprises a copolymer of ethylene and other α-olefins.
여기서, 상기 올레핀계 공중합체는 에틸렌-프로필렌 공중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체, 에틸렌-옥텐 공중합체, 또는 이들의 조합을 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.Here, the olefin copolymer provides an insulating composition, characterized in that it comprises an ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-octene copolymer, or a combination thereof.
한편, 상기 기본 수지 100 중량부를 기준으로, 클레이, 활석, 탄산칼슘, 수산화마그네슘, 수산화알루미늄, 실리카 및 징크보레이트로 이루어진 그룹으로부터 선택된 1종 이상의 충진제 30 내지 250 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.On the other hand, based on 100 parts by weight of the base resin, characterized in that it further comprises 30 to 250 parts by weight of one or more fillers selected from the group consisting of clay, talc, calcium carbonate, magnesium hydroxide, aluminum hydroxide, silica and zinc borate. , To provide an insulation composition.
여기서, 상기 충진제는 알킬 실란, 비닐 실란 및 지방산으로 이루어진 그룹으로부터 선택된 1종 이상에 의해 소수성으로 표면이 개질된 것을 특징으로 하는, 절연 조성물을 제공한다.Here, the filler provides an insulating composition, characterized in that the surface is hydrophobically modified by at least one selected from the group consisting of alkyl silanes, vinyl silanes and fatty acids.
그리고, 단면적이 0.75 ㎟인 도체 2개가 연합되어 도체 전체직경이 1.107 mm이고 상기 절연 조성물로부터 형성되고 두께가 0.5 mm인 절연층을 갖는 케이블 시편에서 상기 절연층의 초기 tanδ를 기준으로 상기 케이블 시편을 75℃ 수조에서 14일간 침수 후의 측정한 절연층의 tanδ의 증가율이 50% 이하이고, 상기 케이블 시편을 규정온도 90±1℃의 수중에 담그어 절연층 온도가 일정하게 되었을 때 도체 양말단에 100V 이상의 직류전압을 가하여 1분간 충전한 후 측정한 고온 절연저항이 1.3 MΩ-km 이상인 것을 특징으로 하는, 절연 조성물을 제공한다.In addition, in the cable specimen having two conductors having a cross-sectional area of 0.75 mm 2 and having an overall conductor diameter of 1.107 mm and an insulation layer formed from the insulation composition and having a thickness of 0.5 mm, the cable specimens were based on the initial tan δ of the insulation layer. The increase rate of tanδ of the insulating layer after immersion in a 75 ° C. water bath for 14 days was 50% or less, and the cable specimen was immersed in water at a specified temperature of 90 ± 1 ° C., so that the insulating layer temperature became constant. Provided with an insulation composition, characterized in that the high temperature insulation resistance measured after charging for 1 minute by applying a DC voltage is 1.3 MΩ-km or more.
또한, 상기 충진제는 입경(D50)이 0.6 내지 6 ㎛인 것을 특징으로 하는, 절연 조성물을 제공한다.In addition, the filler provides an insulation composition, characterized in that the particle size (D 50 ) is 0.6 to 6 ㎛.
나아가, 상기 기본 수지 100 중량부를 기준으로, 25℃에서 1 내지 20 cps의 점도를 갖는 실란커플링제 0.3 내지 3 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.Furthermore, based on 100 parts by weight of the base resin, characterized in that it further comprises 0.3 to 3 parts by weight of a silane coupling agent having a viscosity of 1 to 20 cps at 25 ℃, provides an insulation composition.
여기서, 상기 실란커플링제의 함량이 상기 충진제 함량의 1/10 이상인 것을 특징으로 하는, 절연 조성물을 제공한다.Here, the content of the silane coupling agent is 1/10 or more of the filler content, provides an insulation composition.
한편, 상기 기본 수지 100 중량부를 기준으로, 알킬에스테르계 오일, 파라핀오일 및 파라핀왁스로 이루어진 그룹으로부터 선택된 1종 이상의 가공유 60 중량부 이하를 추가로 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.On the other hand, based on 100 parts by weight of the base resin, characterized in that it further comprises 60 parts by weight or less of one or more processing oils selected from the group consisting of alkyl ester oil, paraffin oil and paraffin wax, provides an insulation composition.
그리고, 상기 기본 수지 100 중량부를 기준으로, 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 아루일퍼옥사이드, t-부틸큐밀퍼옥사이드, 디(t-부틸퍼옥시이소프로필)벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상의 가교제 1 내지 10 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.And, based on 100 parts by weight of the base resin, dicumyl peroxide, benzoyl peroxide, aryl peroxide, t- butyl cumyl peroxide, di (t- butyl peroxy isopropyl) benzene, 2,5-dimethyl-2, It further comprises 1 to 10 parts by weight of at least one crosslinking agent selected from the group consisting of 5-di (t-butyl peroxy) hexane and di-t-butyl peroxide, an insulation composition is provided.
또한, 상기 기본 수지 100 중량부를 기준으로, 페놀계, 아연계, 퀴논계, 유황계 또는 인계 산화방지제 1 내지 10 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.In addition, based on 100 parts by weight of the base resin, phenol-based, zinc-based, quinone-based, sulfur-based or phosphorus-based antioxidant, characterized in that it further comprises 1 to 10 parts by weight.
한편, 하나 이상의 도체; 상기 도체를 각각 감싸고 상기 절연 조성물로부터 형성된 절연층; 및 상기 절연층을 전체적으로 감싸는 시스층을 포함하는, 케이블을 제공한다.Meanwhile, at least one conductor; An insulation layer surrounding each of the conductors and formed from the insulation composition; And a sheath layer surrounding the insulation layer as a whole.
본 발명에 따른 절연 조성물은 낮은 고온고압변형율 및 우수한 원형회복성을 갖는 수지로부터 형성되기 때문에 시스층의 화학가교시 고온 및 고압의 조건하에서도 절연층의 변형율이 최소화되고 변형 후 원형회복에 의해 절연내력이 유지되는 우수한 효과를 나타낸다.Since the insulating composition according to the present invention is formed from a resin having low high temperature high pressure strain and excellent circular recoverability, the strain of the insulating layer is minimized even under conditions of high temperature and high pressure during chemical crosslinking of the sheath layer, and is insulated by circular recovery after deformation. It shows an excellent effect that the strength is maintained.
또한, 본 발명에 따른 절연 조성물은 수지 이외에 특정 첨가제를 특정 배합비로 포함함으로써 절연층의 고온고압변형율 및 원형회복성을 유지하는 동시에 기계적 특성이 향상되는 우수한 효과를 나타낸다.In addition, the insulating composition according to the present invention exhibits an excellent effect of improving the mechanical properties while maintaining the high temperature and high strain rate and circular recovery of the insulating layer by including a specific additive in addition to the resin in a specific blending ratio.
나아가, 본 발명에 따른 절연 조성물은 기계적 특성을 향상시키기 위한 첨가제에 의해 내수성이 저하되지 않는 우수한 효과를 나타낸다.Furthermore, the insulating composition according to the present invention exhibits an excellent effect that the water resistance is not lowered by an additive for improving mechanical properties.
도 1은 일반적인 케이블의 하나의 실시예에 관한 단면 구조를 개략적으로 도시한 것이다.Figure 1 schematically shows a cross-sectional structure of one embodiment of a typical cable.
도 2는 일반적인 케이블의 또 다른 실시예에 관한 단면 구조를 개략적으로 도시한 것이다.Figure 2 schematically shows the cross-sectional structure of another embodiment of a typical cable.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명 되어지는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공 되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed contents can be thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. Like numbers refer to like elements throughout.
본 발명은 케이블의 절연층을 형성하는 절연 조성물에 관한 것이다.The present invention relates to an insulating composition for forming an insulating layer of a cable.
상기 절연 조성물은 올레핀계 수지를 기본 수지로 포함할 수 있다. 상기 올레핀계 수지는 바람직하게는 에틸렌과 다른 α-올레핀과의 공중합체, 예를 들어, 에틸렌-프로필렌 공중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체, 에틸렌-옥텐 공중합체, 또는 이들의 조합을 포함할 수 있다. 여기서, 에틸렌과 α-올레핀의 공중합체는 융점이 50 내지 100℃이고, 용융지수가 1 내지 8 g/min일 수 있다.The insulation composition may include an olefin resin as a basic resin. The olefin resin is preferably a copolymer of ethylene with other α-olefins, such as ethylene-propylene copolymers, ethylene-butene copolymers, ethylene-hexene copolymers, ethylene-octene copolymers, or their Combinations. Here, the copolymer of ethylene and an α-olefin may have a melting point of 50 to 100 ° C. and a melt index of 1 to 8 g / min.
하나 이상의 도체 및 상기 도체를 각각 감싸고 상기 절연 조성물로부터 형성된 절연층을 갖는 케이블은 아래 수학식 1로 정의된 절연층의 고온고압변형율이 95% 미만일 수 있다.The cable having one or more conductors and an insulation layer formed from the insulation composition respectively surrounding the conductors may have a high temperature and high strain rate of the insulation layer defined by Equation 1 below.
[수학식 1][Equation 1]
절연층의 고온고압변형율(%)=[(a-b)/(a-c)]*100High Temperature High Pressure Strain of the Insulation Layer (%) = [(a-b) / (a-c)] * 100
상기 수학식 1에서,In Equation 1,
a는 초기의 (절연외경-도체외경)이고,a is the initial (insulation outer diameter-conductor outer diameter),
b는 상기 케이블을 160℃에서 1시간 동안 가압하여 상기 절연층 각각의 외경이 (도체외경+c)가 되도록 상기 절연층을 압축하고, 가압을 유지한 상태로 상기 케이블을 상온으로 냉각한 뒤, 가압을 제거한 상태에서 측정한 (절연외경-도체외경)의 최소값이며,b is pressurizing the cable at 160 ℃ for 1 hour to compress the insulating layer so that the outer diameter of each of the insulating layer to (conductor outer diameter + c), and the cable is cooled to room temperature while maintaining the pressure, It is the minimum value of (insulated outer diameter-outer diameter of conductor) measured under the condition that pressure is removed.
c는 상기 절연 조성물로부터 형성된 절연층을 상기 조건으로 가압시 (절연외경-도체외경)이고, c는 예를 들어, 0.5a 내지 0.8a이며, 통상적으로 0.75a이다.c is a pressure (insulation outer diameter-conductor outer diameter) when the insulating layer formed from the insulating composition is pressed under the above conditions, and c is, for example, 0.5a to 0.8a, and is typically 0.75a.
상기 절연 조성물은 상기 수학식 1로 정의된 절연층의 고온고압변형율이 95% 미만인 경우 시스층을 150 내지 230℃의 고온 및 6 내지 20 bar의 고압에서 화학가교시 상기 절연 조성물로부터 형성된 절연층의 변형이 억제되고 변형 후 원형회복성이 우수하여 상기 절연층의 절연내력이 유지되는 우수한 효과를 나타낸다.The insulating composition may be formed of the insulating layer formed from the insulating composition when chemically crosslinking the sheath layer at a high temperature of 150 to 230 ° C. and a high pressure of 6 to 20 bar when the high temperature and high pressure strain of the insulating layer defined by Equation 1 is less than 95%. The deformation is suppressed and the circular recovery property after deformation is excellent to maintain the insulation strength of the insulating layer.
이로써, 단면적이 0.75 ㎟인 도체 2개가 연합되어 도체 전체직경이 1.107 mm이고 상기 절연 조성물로부터 형성되고 두께가 0.5 mm인 절연층을 갖는 케이블 시편의 도체 양말단에 60Hz의 정현파에 가까운 파형을 가진 규정의 교류전압을 인가하여 규정치인 1.5 kV까지 서서히 상승시킨 후 규정시간인 5분 동안 절연파괴가 일어나지 않는 내전압 특성이 구현될 수 있다.Thus, two conductors having a cross-sectional area of 0.75 mm 2 are fed together so that the total conductor diameter is 1.107 mm, and a wave form close to the sinusoidal wave of 60 Hz at the end of the conductor of the cable specimen having an insulation layer formed from the insulating composition and having a thickness of 0.5 mm. After applying the AC voltage of slowly rising to the specified value of 1.5 kV, the breakdown voltage characteristic without insulation breakdown can be implemented for a specified time of 5 minutes.
상기 절연 조성물은 상기 기본 수지 이외에 충진제, 실란커플링제, 가공유, 가교제, 산화방지제 등을 추가로 포함할 수 있다.The insulation composition may further include a filler, a silane coupling agent, a processing oil, a crosslinking agent, an antioxidant, and the like in addition to the basic resin.
여기서, 상기 충진제는 상기 절연 조성물의 기계적 특성 및 압출성을 추가로 향상시킬 수 있고, 예를 들어, 클레이, 활석, 탄산칼슘, 수산화마그네슘, 수산화알루미늄, 실리카, 징크보레이트 등으로 이루어진 그룹으로부터 선택된 1종 이상을 포함할 수 있으며, 상기 기본 수지와의 상용성을 향상시키기 위해 알킬 실란, 비닐 실란, 지방산 등에 의해 소수성으로 표면이 개질될 수 있다.Here, the filler may further improve the mechanical properties and extrudability of the insulation composition, for example, selected from the group consisting of clay, talc, calcium carbonate, magnesium hydroxide, aluminum hydroxide, silica, zinc borate, etc. It may include more than one species, and the surface may be modified hydrophobicly by alkyl silane, vinyl silane, fatty acid, etc. to improve compatibility with the base resin.
이로써, 단면적이 0.75 ㎟인 도체 2개가 연합되어 도체 전체직경이 1.107 mm이고 상기 절연 조성물로부터 형성되고 두께가 0.5 mm인 절연층을 갖는 케이블 시편에서 상기 절연층의 초기 tanδ를 기준으로 상기 케이블 시편을 75℃ 수조에서 14일간 침수 후의 측정한 절연층의 tanδ의 증가율이 50% 이하이고, 상기 케이블 시편을 규정온도 90±1℃의 수중에 담그어 절연층 온도가 일정하게 되었을 때 도체 양말단에 100V 이상의 직류전압을 가하여 1분간 충전한 후 측정한 고온 절연저항이 1.3 MΩ-km 이상으로 우수한 내수성이 구현될 수 있다.Thus, in a cable specimen having two conductors having a cross-sectional area of 0.75 mm 2 and having an overall conductor diameter of 1.107 mm and an insulation layer formed from the insulation composition and having a thickness of 0.5 mm, the cable specimens were based on the initial tan δ of the insulation layer. The increase rate of tanδ of the insulating layer after immersion in a 75 ° C. water bath for 14 days was 50% or less, and the cable specimen was immersed in water at a specified temperature of 90 ± 1 ° C., so that the insulating layer temperature became constant. The high temperature insulation resistance measured after charging for 1 minute by applying a DC voltage is 1.3 MΩ-km or more can be achieved excellent water resistance.
상기 충진제의 표면이 소수성으로 개질되지 않아 기본 수지와의 상용성이 저하되는 경우 절연층의 인장강도, 전기적 특성, 원형회복성 등이 저하될 수 있고, 나아가 절연층의 내수성이 저하될 수 있다.If the surface of the filler is not modified to be hydrophobic and the compatibility with the base resin is lowered, the tensile strength, electrical properties, circular recovery of the insulating layer may be lowered, and further, the water resistance of the insulating layer may be lowered.
또한, 상기 충진제는 입경(D50)이 0.6 내지 6 ㎛ 이하로 조절됨으로써 상기 수지 내에서의 응집이 억제될 수 있고, 이로써 케이블의 압출시 표면조도가 향상될 수 있다.In addition, the filler is adjusted to a particle diameter (D 50 ) of 0.6 to 6 ㎛ or less can be suppressed from agglomeration in the resin, thereby improving the surface roughness during the extrusion of the cable.
상기 충진제는 기본 수지 100 중량부를 기준으로, 30 내지 250 중량부의 함량으로 포함될 수 있다. 상기 충진제의 함량이 30 중량부 미만인 경우 케이블 압출시 외관의 표면조도가 저하될 수 있는 반면, 250 중량부 초과인 경우 절연층의 신장율 등 기계적 특성이 저하되고 유연성도 저하될 수 있다.The filler may be included in an amount of 30 to 250 parts by weight based on 100 parts by weight of the base resin. If the content of the filler is less than 30 parts by weight, the surface roughness of the appearance may be reduced during cable extrusion, whereas if it is more than 250 parts by weight, mechanical properties such as elongation of the insulating layer may be lowered and flexibility may be reduced.
상기 실란커플링제는 상기 충진제와 상기 기본 수지의 상용성을 추가적으로 향상시키는 기능을 수행하고, 예를 들어, 비닐, 알킬 등의 작용기와 실란의 작용기를 모두 가질 수 있다. 또한, 상기 실란커플링제는 상기 충진제와 상기 기본 수지의 상용성을 추가적으로 향상시키는 기능을 원활히 수행하기 위해 25℃에서 1 내지 20 cps의 점도를 가질 수 있다.The silane coupling agent performs a function of further improving the compatibility of the filler and the base resin, and may have, for example, both functional groups such as vinyl and alkyl and functional groups of silane. In addition, the silane coupling agent may have a viscosity of 1 to 20 cps at 25 ℃ to smoothly perform the function of further improving the compatibility of the filler and the base resin.
상기 실란커플링제의 함량은 기본 수지 100 중량부를 기준으로, 0.3 내지 3 중량부이고, 바람직하게는 상기 충진제 함량의 약 1/10 이상일 수 있다. 상기 실란커플링제의 함량이 0.3 중량부 미만인 경우 상기 충진제와 상기 기본 수지의 상용성이 불충분할 수 있는 반면, 3 중량부 초과인 경우 절연층의 신장율, 유연성 등이 저하될 수 있다.The content of the silane coupling agent may be 0.3 to 3 parts by weight based on 100 parts by weight of the base resin, and preferably about 1/10 or more of the filler content. When the content of the silane coupling agent is less than 0.3 parts by weight, the compatibility of the filler and the base resin may be insufficient, whereas when the content of the silane coupling agent is more than 3 parts by weight, the elongation rate, flexibility, and the like of the insulating layer may be reduced.
상기 가공유는 케이블의 압출성을 추가로 향상시키고 상기 기본 수지와 첨가제와의 상용성을 향상시키는 기능을 수행한다. 상기 가공유는 예를 들어 알킬에스테르계 오일, 파라핀오일, 파라핀왁스, 또는 이들의 조합을 포함할 수 있고, 상기 기본 수지 100 중량부를 기준으로 60 중량부 이하로 포함될 수 있다. 상기 가공유의 함량이 60 중량부를 초과하는 경우 상기 절연층의 기계적 강도가 저하될 수 있다.The processing oil further functions to further improve the extrudability of the cable and to improve the compatibility of the base resin with the additive. The processed oil may include, for example, alkyl ester oil, paraffin oil, paraffin wax, or a combination thereof, and may be included in an amount of 60 parts by weight or less based on 100 parts by weight of the base resin. When the content of the processing oil exceeds 60 parts by weight, the mechanical strength of the insulating layer may be lowered.
상기 가교제는 상기 절연 조성물에 포함된 기본 수지의 가교를 위해 첨가되고 상기 기본 수지의 가교를 통해 절연층의 기계적 특성을 향상시킬 수 있다. 상기 가교제는 예를 들어 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 아루일퍼옥사이드, t-부틸큐밀퍼옥사이드, 디(t-부틸퍼옥시이소프로필)벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산, 디-t-부틸 퍼옥사이드, 또는 이들의 조합 등의 유기과산화물계 가교제를 포함할 수 있고, 상기 기본 수지 100 중량부를 기준으로 1 내지 10 중량부로 포함될 수 있다.The crosslinking agent may be added for crosslinking of the base resin included in the insulating composition and may improve mechanical properties of the insulating layer through crosslinking of the base resin. The crosslinking agent is, for example, dicumyl peroxide, benzoyl peroxide, aryl peroxide, t-butyl cumyl peroxide, di (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (t Organic peroxide-based crosslinking agents such as -butyl peroxy) hexane, di-t-butyl peroxide, or a combination thereof, and may be included in an amount of 1 to 10 parts by weight based on 100 parts by weight of the base resin.
상기 가교제의 함량이 1 중량부 미만인 경우 상기 절연층의 기계적 강도가 불충분할 수 있는 반면, 10 중량부 초과인 경우 상기 절연층의 압출시 조기가교에 의한 스코치(scorch)가 발생하는 등 압출성이 저하되거나 가교 부산물에 의해 상기 절연층의 전기적 특성이 저하될 수 있다.When the content of the crosslinking agent is less than 1 part by weight, the mechanical strength of the insulating layer may be insufficient, whereas when the content of the crosslinking agent is greater than 10 parts by weight, the extrudeability such as scorch is generated by early crosslinking during extrusion of the insulating layer. Deterioration or cross-linking by-products may lower the electrical properties of the insulating layer.
상기 산화방지제는 상기 절연층의 산화에 의한 열화를 방지하기 위해 첨가되고, 예를 들어, 페놀계, 아연계, 퀴논계, 유황계, 인계 등의 산화방지제를 사용할 수 있으며, 기본 수지 100 중량부를 기준으로 1 내지 10 중량부로 포함될 수 있다.The antioxidant is added to prevent deterioration due to oxidation of the insulating layer, for example, phenol-based, zinc-based, quinone-based, sulfur-based, phosphorus-based, etc. may be used, 100 parts by weight of the base resin It may be included in 1 to 10 parts by weight as a standard.
또한, 본 발명에 따른 절연 조성물은 상기 기본 수지 이외에 충진제, 실란커플링제, 가공유, 가교제, 산화방지제 등을 상기의 함량으로 포함함으로써 상기 기본 수지의 고온고압변형율 및 원형회복성을 유지하는 동시에 이로부터 형성된 절연층의 목적한 12.5 MPa 이상의 인장강도를 구현할 수 있는 우수한 효과를 나타낸다.In addition, the insulating composition according to the present invention includes a filler, a silane coupling agent, a processing oil, a crosslinking agent, an antioxidant, and the like in addition to the base resin to maintain the high temperature and high strain rate and circular recovery of the base resin. It shows an excellent effect that can achieve the desired tensile strength of 12.5 MPa or more of the formed insulating layer.
본 발명은 전류가 흐를 수 있는 전도성 소재, 예를 들어, 구리, 알루미늄 등의 금속으로 이루어져 있어 전류 흐름 경로를 제공하는 도체, 상기 도체를 감싸고 앞서 기술한 절연 조성물에 의해 형성된 절연층, 상기 절연층을 감싸고 외부의 충격이나 압력으로부터 케이블을 보호하는 시스층 등을 포함하는 케이블에 관한 것이다.The present invention consists of a conductive material capable of flowing current, for example, a metal such as copper or aluminum to provide a current flow path, an insulating layer surrounding the conductor and formed by the above-described insulating composition, the insulating layer The present invention relates to a cable including a sheath layer for enclosing the shield and protecting the cable from external shock or pressure.
[실시예]EXAMPLE
1. 제조예1. Preparation
아래 표 1에 나타난 바와 같은 구성성분 및 배합비로 80℃의 오픈롤에서 혼련 후 각각의 절연 조성물을 제조하고 도체 위에 압출 후 170℃에서 20분간 가압가열하여 가교함으로써 규격 IEC-60811-1-1에 준하여 케이블 시편(도체 : 0.75sq 2개 전체외경 1.107 mm; 절연층 : 두께 0.5 mm)을 제조하였다.Each insulation composition was prepared after kneading in an open roll at 80 ° C. with the components and blending ratios as shown in Table 1 below, and extruded onto a conductor to be crosslinked by pressurized heating at 170 ° C. for 20 minutes to IEC-60811-1-1. A cable specimen (conductor: 0.75 sq two total outer diameters of 1.107 mm; insulation layer: thickness 0.5 mm) was prepared.
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5
수지 aResin a 7070 3030 7070 7070 9090
수지 b Resin b 3030 7070 3030 7070
수지 c Resin c 3030 3030 1010 100100
충진제 aFiller a 6060 6060 6060 6060 6060 6060
충진제 bFiller b 6060
실란커플링제Silane coupling agent 1One 1One 1One 1One 1One 1One 1One
가공유Processing oil 55 55 55 55 55 55 55
산화방지제Antioxidant 66 66 66 66 66 66 66
가교제Crosslinking agent 33 33 33 33 33 33 33
- 수지 a : 에틸렌 공중합체(에틸렌 함량 : 40~71 wt%)Resin a: Ethylene copolymer (ethylene content: 40-71 wt%)
- 수지 b : 에틸렌-프로필렌 공중합체Resin b: ethylene-propylene copolymer
- 수지 c : 에틸렌 단독중합체Resin c: ethylene homopolymer
- 충진제 a : 비닐실란으로 표면처리한 하소 클레이(알루미노실리케이트)(입자경(D50) < 2.2㎛)Filler a: calcined clay (aluminosilicate) surface treated with vinylsilane (particle diameter (D 50 ) <2.2 μm)
- 충진제 b : 표면처리하지 않은 하소 클레이(알루미노실리케이트)(입자경(D50) < 2.2㎛)Filler b: calcined clay (aluminosilicate) without surface treatment (particle diameter (D 50 ) <2.2 μm)
- 가공유 : 파라핀오일Processing oil: paraffin oil
- 산화방지제 : 산화아연(ZnO) 및 트리멜리테이트퀴놀린(TMQ)Antioxidants: zinc oxide (ZnO) and trimellitatequinoline (TMQ)
- 가교제 : 디큐밀퍼옥사이드-Crosslinking agent: Dicumyl peroxide
2. 물성 평가2. Property evaluation
(1) 인장강도 및 신장율 평가(1) Evaluation of tensile strength and elongation
규격 IEC 60811-1-1에 준하여 상온(약 25℃)에서 인장속도 250 mm/min으로 실시예 및 비교예 각각의 케이블 시편으로부터 분리한 절연 시편에 대한 인장강도 및 신장율을 측정하였다.In accordance with the standard IEC 60811-1-1, the tensile strength and elongation of the insulation specimens separated from the cable specimens of each of the Examples and Comparative Examples were measured at a tensile rate of 250 mm / min at room temperature (about 25 ° C).
(2) 고온고압변형율 평가(2) Evaluation of high temperature and high pressure strain
KS M 6518 가황고무 물리시험방법의 11절에 명시된 압축영구줄음율 시험방법을 변형하여 절연케이블 상에서 가열가압에 의한 변형율을 측정하는 방법을 고안하여 개발한 시험방법으로 실시예 및 비교예 각각의 케이블 시편의 고온고압변형율을 평가하였다.This test method was developed by devising a method of measuring the strain due to heating pressure on an insulated cable by modifying the compressive permanent shrinkage test method specified in Clause 11 of KS M 6518 Physical Test Method of Vulcanized Rubber. The high temperature, high pressure strain of the specimen was evaluated.
구체적으로, 실시예 및 비교예 각각의 케이블 시편의 초기(절연외경-도체외경)을 측정하고, 케이블 외경이 {초기(절연외경-도체외경)*0.75}이 되도록 프레스를 이용하여 160℃에서 1시간 동안 가압한 후, 프레스를 상온까지 냉각 후 가압을 유지한 상태에서 1시간 이상 방치하여 시편을 완전히 냉각시키고, 프레스로부터 시편을 분리하여 가압을 제거한 상태에서 (절연외경-도체외경)의 최소값을 측정함으로써, 상기 수학식 1에 따른 고온고압변형율을 계산했다.Specifically, the initial (insulation outer diameter-outer diameter of the conductor) of each of the cable specimens of Examples and Comparative Examples was measured, and using a press at 160 ° C. so that the cable outer diameter was {initial (insulation outer diameter-outer diameter of the conductor) * 0.75}. After pressurizing for a period of time, the press is cooled to room temperature and left to stand for at least 1 hour while maintaining pressurization to completely cool the specimen, and remove the specimen from the press to remove the pressurization and then remove the minimum value of (insulated outer diameter-conductor outer diameter). By measuring, the high temperature high pressure strain according to the above formula (1) was calculated.
(3) 내전압 평가(3) withstand voltage evaluation
규격 IEC 60092-350에 따라 공기중에서 도체 양말단에 60Hz의 정현파에 가까운 파형을 가진 규정의 교류전압을 인가하여 규정치인 1.5 kV까지 서서히 상승시켜 규정시간인 5분 동안 이것에 견디는가를 조사한다.In accordance with IEC 60092-350, apply a regulated AC voltage with a waveform close to the sine wave of 60 Hz in the end of the conductor in air and gradually raise it to the specified value of 1.5 kV and check whether it can withstand this for 5 minutes.
(4) 유전손실(tanδ) 평가(4) Evaluation of dielectric loss (tanδ)
완성품에서 적당한 길이의 케이블 시편을 취하여 도체 양말단에 주파수 60Hz의 정현파에 가까운 파형을 가진 규정의 교류전압을 가하여 도 3에 표시된 쉐링 브리지법에 의하여 또는 이에 준하는 방법으로 측정하고 아래 수학식 2에 의하여 산출한다.Take the cable specimen of suitable length from the finished product, apply the specified AC voltage with the waveform close to the sine wave of frequency 60Hz to the end of the conductor and measure it by the Shering Bridge method shown in Fig. 3 or equivalent method. Calculate.
[수학식 2][Equation 2]
tanδ(%)=2πf×C×R×100tanδ (%) = 2πf × C × R × 100
상식 수학식 2에서,In Common Equation 2,
f는 측정전원의 주파수이고,f is the frequency of the measurement power supply,
C는 브리지가 평형일 때 가변 콘덴서의 눈금(F)이고,C is the scale (F) of the variable capacitor when the bridge is in equilibrium,
R은 브리지가 평형일 때의 무유도 가변저항기의 눈금(Ω)이다.R is the scale (Ω) of the inductive variable resistor when the bridge is in equilibrium.
단, 유전정접(tanδ)은 절대값으로 표시할 수 있다.However, the dielectric tangent tantan may be expressed as an absolute value.
실시예 및 비교예 각각의 케이블 시편의 초기 tanδ 및 75℃ 수조에서 14일간 침수 후의 tanδ를 측정하고, tanδ 증가율(%)을 계산했다.EXAMPLES AND COMPARATIVE EXAMPLE Tanδ after immersion for 14 days in an initial tanδ and 75 ° C. water bath of each cable specimen was measured, and the tanδ increase rate (%) was calculated.
(5) 고온 절연저항 평가(5) Evaluation of high temperature insulation resistance
적당한 길이의 케이블 시편을 채취하여 규정온도 90±1℃의 수중에 담그어 절연체 온도가 일정하게 되었을 때 도체 양말단에 100V 이상의 직류전압을 가하여 1분간 충전한 후 도 4의 고절연 저항계에 의하여 절연저항을 측정한다. 또한, 흡수현상에 의하면 1분간 값에 문제가 있는 경우는 1분 이상 5분까지 충전하여 측정할 수 있으며, 이 경우 충전시간을 기록하여야 한다.Take a cable specimen of proper length and immerse it in water at the specified temperature of 90 ± 1 ℃, and when the insulator temperature is constant, charge it for 1 minute by applying a DC voltage of 100V or more to the conductor sock end. Measure In addition, according to the absorption phenomenon, if there is a problem in the value for 1 minute can be measured by charging for more than 1 minute to 5 minutes, in which case the charging time should be recorded.
참고로, 케이블 사이즈별 90℃의 고온 절연저항 및 내전압 요구 규격은 아래 표에 나타난 바와 같다.For reference, the high temperature insulation resistance and withstand voltage requirements of 90 ° C. for each cable size are shown in the table below.
Figure PCTKR2016012597-appb-I000001
Figure PCTKR2016012597-appb-I000001
상기 물성의 평가 결과는 아래 표 2에 나타난 바와 같다.Evaluation results of the physical properties are as shown in Table 2 below.
평가항목Evaluation item 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5
인장시험Tensile test 인장강도(MPa)Tensile Strength (MPa) 14.314.3 16.216.2 12.012.0 15.315.3 18.518.5 13.213.2 20.520.5
신장율(%)Elongation (%) 320320 420420 400400 360360 480480 470470 580580
고온고압변형율(%)High Temperature High Pressure Strain (%) 5252 7878 6868 100100 100100 9595 100100
내전압(4.5kV/5분)Withstand voltage (4.5kV / 5 minutes) 양호Good 양호Good 양호Good 불량Bad 불량Bad 불량Bad 불량Bad
tanδ증가율(%)tanδ growth rate (%) 2828 2828 8282 3131 3535 2929 3232
고온절연저항(MΩ-km)High Temperature Insulation Resistance (MΩ-km) 121.6121.6 85.085.0 23.823.8 0.190.19 0.050.05 7.57.5 0.210.21
상기 표 2에 나타난 바와 같이, 본 발명에 따른 실시예 1 및 2의 케이블은 절연층의 고온고압변형율이 모두 95% 미만이므로 시스층의 화학가교시 적용되는 고온 및 고압의 환경하에서도 변형이 억제되고 변형 후 원상회복성이 우수하여 시스층의 화학가교시 절연내력을 유지할 수 있다. 절연층의 형상이 유지되어 내전압 시험 결과 또한 양호했다. 뿐만 아니라, 절연층의 인장강도가 12.5 MPa 이상으로 제품스팩 12.5 MPa 수준의 높은 인장강도가 요구되는 케이블로 사용될 수 있으며, 침수후에도 tanδ 증가율이 낮고 고온절연저항 값이 높아 절연층의 내수성이 우수한 것으로 확인되었다.As shown in Table 2, the cables of Examples 1 and 2 according to the present invention are both less than 95% of the high temperature and high pressure strain of the insulating layer, so that deformation is suppressed even under high temperature and high pressure environments applied during chemical crosslinking of the sheath layer. It is excellent in the original recovery after deformation and can maintain the dielectric strength during chemical crosslinking of the sheath layer. The shape of the insulating layer was maintained, and the results of the breakdown voltage test were also good. In addition, the tensile strength of the insulating layer is 12.5 MPa or more can be used as a cable that requires a high tensile strength of the product specification of 12.5 MPa, and even after immersion, the tanδ increase rate is low and the high temperature insulation resistance value is high, so that the insulating layer has excellent water resistance. Confirmed.
반면, 비교예 1은 충진제의 표면을 소수성으로 개질하지 않아 기본 수지와의 상용성이 저하되면서 절연층의 인장강도가 저하되고, 침수 후 tanδ가 크게 증가하고 고온절연저항이 상당히 떨어져 절연층의 내수성이 크게 저하된 것으로 확인되었다.On the other hand, in Comparative Example 1, since the surface of the filler is not hydrophobically modified, the compatibility with the base resin is lowered, the tensile strength of the insulating layer is lowered, the tanδ is significantly increased after immersion, and the high temperature insulation resistance is considerably decreased, so that the insulating layer has high water resistance. It was confirmed that this was greatly reduced.
또한, 비교예 2 내지 5는 기본 수지로서 에틸렌 단독중합체를 포함하여 높은 온도와 압력에서 거의 완전히 변형되어 고온고압변형율이 크게 저하된 것으로 확인되었다. 케이블상에서 절연층의 원형이 유지되지 않고 완전히 찌그러진 형태로 변형되어 내부 도체의 전기적 절연성이 유지되지 않았다. 비교예 2 내지 5의 특성 평가 결과로서 내전압 시험결과가 불량이고 고온절연저항 시험시 저항값이 거의 0에 가까운 값을 나타내는 것을 통해 전기적 절연체로서 기본적인 케이블에서의 역할을 더 이상 수행할 수 없는 것으로 확인되었다.In addition, Comparative Examples 2 to 5, including the ethylene homopolymer as the base resin, was almost completely deformed at high temperature and pressure, it was confirmed that the high temperature and high pressure strain significantly decreased. The circular shape of the insulating layer was not maintained on the cable and was deformed into a completely crushed shape, so that the electrical insulation of the inner conductor was not maintained. As a result of evaluating the characteristics of Comparative Examples 2 to 5, the result of the withstand voltage test was bad and the resistance value was nearly 0 at the time of the high temperature insulation resistance test. It became.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art to various modifications and changes to the present invention without departing from the spirit and scope of the invention described in the claims described below You can do it. Therefore, it should be seen that all modifications included in the technical scope of the present invention are basically included in the scope of the claims of the present invention.

Claims (17)

  1. 하나 이상의 도체 및 상기 도체를 각각 감싸는 절연층을 포함하는 케이블의 상기 절연층을 형성하는 절연 조성물로서,An insulation composition for forming said insulation layer of a cable comprising at least one conductor and an insulation layer surrounding each conductor, wherein:
    기본 수지로서 올레핀계 공중합체를 포함하고,Including an olefin copolymer as the base resin,
    상기 절연 조성물로부터 형성된 절연층은 아래 수학식 1에 따른 고온고압변형율이 95% 미만인, 절연 조성물.The insulating layer formed from the insulating composition is an insulating composition of less than 95% high temperature high pressure strain according to Equation 1 below.
    [수학식 1][Equation 1]
    절연층의 고온고압변형율(%)=[(a-b)/(a-c)]*100High Temperature High Pressure Strain of the Insulation Layer (%) = [(a-b) / (a-c)] * 100
    상기 수학식 1에서,In Equation 1,
    a는 초기의 (절연외경-도체외경)이고,a is the initial (insulation outer diameter-conductor outer diameter),
    b는 상기 케이블을 160℃에서 1시간 동안 가압하여 상기 절연층 각각의 외경이 (도체외경+c)가 되도록 상기 절연층을 압축하고, 가압을 유지한 상태로 상기 케이블을 상온으로 냉각한 뒤, 가압을 제거한 상태에서 측정한 (절연외경-도체외경)의 최소값이며,b is pressurizing the cable at 160 ℃ for 1 hour to compress the insulating layer so that the outer diameter of each of the insulating layer to (conductor outer diameter + c), and the cable is cooled to room temperature while maintaining the pressure, It is the minimum value of (insulated outer diameter-outer diameter of conductor) measured under the condition that pressure is removed.
    c는 상기 절연 조성물로부터 형성된 절연층을 상기 조건으로 가압시 (절연외경-도체외경)이다.c is the pressure (insulation outer diameter-conductor outer diameter) at the time of pressing the insulating layer formed from the said insulating composition on the said conditions.
  2. 제1항에 있어서,The method of claim 1,
    상기 c는 0.5a 내지 0.8a인 것을 특징으로 하는, 절연 조성물.C is 0.5a to 0.8a, characterized in that the insulating composition.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 절연층은 인장강도가 12.5 MPa 이상인 것을 특징으로 하는, 절연 조성물.The insulating layer is characterized in that the tensile strength of 12.5 MPa or more.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    단면적이 0.75 ㎟인 도체 2개가 연합되어 도체 전체직경이 1.107 mm이고 상기 절연 조성물로부터 형성되고 두께가 0.5 mm인 절연층을 갖는 케이블 시편의 도체 양말단에 60Hz 정현파의 교류전압을 인가하여 규정치인 1.5 kV까지 서서히 상승시킨 후 규정시간인 5분 동안 절연파괴가 일어나지 않는 것을 특징으로 하는, 절연 조성물.Two conductors with a cross-sectional area of 0.75 mm2 are united so that a specified value of 1.5 is obtained by applying a 60 Hz sinusoidal alternating voltage to a conductor sock end of a cable specimen having a conductor diameter of 1.107 mm and formed from the insulation composition and having an insulation layer having a thickness of 0.5 mm. Insulation composition, characterized in that the breakdown does not occur for a specified time 5 minutes after slowly rising to kV.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 올레핀계 공중합체는 융점이 50 내지 100℃이고, 용융지수가 1 내지 8 g/min인 것을 특징으로 하는, 절연 조성물.The olefin copolymer has a melting point of 50 to 100 ℃, the melt index, characterized in that 1 to 8 g / min, insulation composition.
  6. 제5항에 있어서,The method of claim 5,
    상기 올레핀계 공중합체는 에틸렌과 다른 α-올레핀과의 공중합체를 포함하는 것을 특징으로 하는, 절연 조성물.The olefin-based copolymer, characterized in that it comprises a copolymer of ethylene and other α-olefins.
  7. 제6항에 있어서,The method of claim 6,
    상기 올레핀계 공중합체는 에틸렌-프로필렌 공중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체, 에틸렌-옥텐 공중합체, 또는 이들의 조합을 포함하는 것을 특징으로 하는, 절연 조성물.The olefin copolymer comprises an ethylene-propylene copolymer, an ethylene-butene copolymer, an ethylene-hexene copolymer, an ethylene-octene copolymer, or a combination thereof.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 기본 수지 100 중량부를 기준으로, 클레이, 활석, 탄산칼슘, 수산화마그네슘, 수산화알루미늄, 실리카 및 징크보레이트로 이루어진 그룹으로부터 선택된 1종 이상의 충진제 30 내지 250 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물.On the basis of 100 parts by weight of the base resin, the insulation further comprises 30 to 250 parts by weight of at least one filler selected from the group consisting of clay, talc, calcium carbonate, magnesium hydroxide, aluminum hydroxide, silica and zinc borate. Composition.
  9. 제8항에 있어서,The method of claim 8,
    상기 충진제는 알킬 실란, 비닐 실란 및 지방산으로 이루어진 그룹으로부터 선택된 1종 이상에 의해 소수성으로 표면이 개질된 것을 특징으로 하는, 절연 조성물.The filler is characterized in that the surface is hydrophobically modified by at least one selected from the group consisting of alkyl silanes, vinyl silanes and fatty acids.
  10. 제9항에 있어서,The method of claim 9,
    단면적이 0.75 ㎟인 도체 2개가 연합되어 도체 전체직경이 1.107 mm이고 상기 절연 조성물로부터 형성되고 두께가 0.5 mm인 절연층을 갖는 케이블 시편에서 상기 절연층의 초기 tanδ를 기준으로 상기 케이블 시편을 75℃ 수조에서 14일간 침수 후의 측정한 절연층의 tanδ의 증가율이 50% 이하이고, 상기 케이블 시편을 규정온도 90±1℃의 수중에 담그어 절연층 온도가 일정하게 되었을 때 도체 양말단에 100V 이상의 직류전압을 가하여 1분간 충전한 후 측정한 고온 절연저항이 1.3 MΩ-km 이상인 것을 특징으로 하는, 절연 조성물.In a cable specimen having two conductors having a cross-sectional area of 0.75 mm 2 and having an overall conductor diameter of 1.107 mm and an insulation layer formed from the insulation composition and having a thickness of 0.5 mm, the cable specimen was 75 ° C. based on the initial tan δ of the insulation layer. When the increase rate of tan δ of the insulating layer measured after immersion in a water bath for 14 days is 50% or less, and the cable specimen is immersed in water at a specified temperature of 90 ± 1 ° C., the insulating layer temperature becomes constant. After the charge for 1 minute to add a high temperature insulation resistance of 1.3 MΩ-km or more, characterized in that the insulating composition.
  11. 제9항에 있어서,The method of claim 9,
    상기 충진제는 입경(D50)이 0.6 내지 6 ㎛인 것을 특징으로 하는, 절연 조성물.The filler is an insulating composition, characterized in that the particle size (D 50 ) is 0.6 to 6 ㎛.
  12. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 기본 수지 100 중량부를 기준으로, 25℃에서 1 내지 20 cps의 점도를 갖는 실란커플링제 0.3 내지 3 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물.Based on 100 parts by weight of the base resin, characterized in that it further comprises 0.3 to 3 parts by weight of a silane coupling agent having a viscosity of 1 to 20 cps at 25 ℃.
  13. 제12항에 있어서,The method of claim 12,
    상기 실란커플링제의 함량이 상기 충진제 함량의 1/10 이상인 것을 특징으로 하는, 절연 조성물.Insulation composition, characterized in that the content of the silane coupling agent is 1/10 or more of the filler content.
  14. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 기본 수지 100 중량부를 기준으로, 알킬에스테르계 오일, 파라핀오일 및 파라핀왁스로 이루어진 그룹으로부터 선택된 1종 이상의 가공유 60 중량부 이하를 추가로 포함하는 것을 특징으로 하는, 절연 조성물.On the basis of 100 parts by weight of the base resin, characterized in that it further comprises 60 parts by weight or less of at least one processing oil selected from the group consisting of alkyl ester oil, paraffin oil and paraffin wax ,.
  15. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 기본 수지 100 중량부를 기준으로, 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 아루일퍼옥사이드, t-부틸큐밀퍼옥사이드, 디(t-부틸퍼옥시이소프로필)벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상의 가교제 1 내지 10 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물.Based on 100 parts by weight of the basic resin, dicumyl peroxide, benzoyl peroxide, aryl peroxide, t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5- Insulation composition, characterized in that it further comprises 1 to 10 parts by weight of at least one crosslinker selected from the group consisting of di (t-butyl peroxy) hexane and di-t-butyl peroxide.
  16. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 기본 수지 100 중량부를 기준으로, 페놀계, 아연계, 퀴논계, 유황계 또는 인계 산화방지제 1 내지 10 중량부를 추가로 포함하는 것을 특징으로 하는, 절연 조성물.Based on 100 parts by weight of the base resin, characterized in that it further comprises 1 to 10 parts by weight of a phenolic, zinc-based, quinone-based, sulfur-based or phosphorus-based antioxidant, insulation composition.
  17. 하나 이상의 도체;One or more conductors;
    상기 도체를 각각 감싸고 제1항 또는 제2항의 절연 조성물로부터 형성된 절연층; 및An insulation layer surrounding each of the conductors and formed from the insulation composition of claim 1; And
    상기 절연층을 전체적으로 감싸는 시스층을 포함하는, 케이블.And a sheath layer covering the insulation layer as a whole.
PCT/KR2016/012597 2015-11-06 2016-11-03 Insulation composition having excellent original form recovery and mechanical properties, and cable having insulation layer formed therefrom WO2017078430A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0155579 2015-11-06
KR20150155579 2015-11-06
KR1020160145611A KR20170053581A (en) 2015-11-06 2016-11-03 Cable comprising an insulating layer having an excellent elasticity and mechanical property
KR10-2016-0145611 2016-11-03

Publications (1)

Publication Number Publication Date
WO2017078430A1 true WO2017078430A1 (en) 2017-05-11

Family

ID=58662280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012597 WO2017078430A1 (en) 2015-11-06 2016-11-03 Insulation composition having excellent original form recovery and mechanical properties, and cable having insulation layer formed therefrom

Country Status (1)

Country Link
WO (1) WO2017078430A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860700178A (en) * 1984-05-03 1986-03-31 Insulator composition for cables
KR100286531B1 (en) * 1998-06-23 2001-04-16 권문구 High pressure heat resistant power distribution line
KR20050110407A (en) * 2004-05-18 2005-11-23 엘에스전선 주식회사 Resin composition resistant to thermal deformation and cut-through and the insulation material and the cable using thereit
KR20050117068A (en) * 2004-06-09 2005-12-14 엘에스전선 주식회사 Flame retartant composition having drip-free and low smoke properties on combustion and the cable using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860700178A (en) * 1984-05-03 1986-03-31 Insulator composition for cables
KR100286531B1 (en) * 1998-06-23 2001-04-16 권문구 High pressure heat resistant power distribution line
KR20050110407A (en) * 2004-05-18 2005-11-23 엘에스전선 주식회사 Resin composition resistant to thermal deformation and cut-through and the insulation material and the cable using thereit
KR20050117068A (en) * 2004-06-09 2005-12-14 엘에스전선 주식회사 Flame retartant composition having drip-free and low smoke properties on combustion and the cable using thereof

Similar Documents

Publication Publication Date Title
WO2012060662A2 (en) Insulating composition and electric cable comprising same
EP2417194A2 (en) Uncrosslinked polyethylene composition for power cable
WO2017160009A1 (en) Insulation composition having low dielectric constant, and cable including insulation layer formed therefrom
WO2020009334A1 (en) Power cable
WO2013147466A1 (en) Non-crosslinked polyethylene composition for power cable
KR102664628B1 (en) Semiconductive shielding composition
US11763963B2 (en) Power cable
KR20190000063A (en) Halogen-free insulating composition with excellent low-teperature resistance and oil resistance and cable having a dielectric layer formed from the same
KR101496967B1 (en) Composition for silicone containing thermoplastic elastomer, insulater prepared using the same, and electrical wire and cable thereof
WO2018093074A1 (en) Power cable
KR102202851B1 (en) Flexible elastic rubber compounds with improved dielectric and tear strength for cold shrink splices and preparation method thereof
KR102220221B1 (en) In­situ compatibilization of silicone rubber/polyolefin elastomer blends by forming ionomers for cold shrink splice and preparation method thereof
WO2017078430A1 (en) Insulation composition having excellent original form recovery and mechanical properties, and cable having insulation layer formed therefrom
WO2018151420A1 (en) Insulation composition for high-voltage cable, and cable comprising insulation layer formed therefrom
WO2020009336A1 (en) Power cable
WO2018151421A1 (en) Polymer composition for high-voltage cable, and cable comprising insulation layer and sheath layer which are formed therefrom
KR20140105346A (en) Composition for fluorine containing thermoplastic elastomer, insulator prepared using the same, and electrical wire and cable thereof
KR20170053581A (en) Cable comprising an insulating layer having an excellent elasticity and mechanical property
KR20200078402A (en) Cable comprising an easily peelable semi-conductive layer
WO2018004210A1 (en) Power cable
WO2016104888A1 (en) Halogen-free insulating composition having excellent oil resistance and cold resistance, and wire including insulating layer formed therefrom
EP2742512A1 (en) Lead-free cable containing bismuth compound
WO2023090635A1 (en) Epdm rubber composition and connection structure for power cable comprising same
WO2021150042A1 (en) Insulating composition for vehicle cables, and vehicle cable manufactured using same
KR20160076953A (en) Halogen-free insulating composition with excellent oil resistance and low-teperature resistance and cable having a dielectric layer formed from the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862446

Country of ref document: EP

Kind code of ref document: A1