WO2023090635A1 - Epdm rubber composition and connection structure for power cable comprising same - Google Patents

Epdm rubber composition and connection structure for power cable comprising same Download PDF

Info

Publication number
WO2023090635A1
WO2023090635A1 PCT/KR2022/014924 KR2022014924W WO2023090635A1 WO 2023090635 A1 WO2023090635 A1 WO 2023090635A1 KR 2022014924 W KR2022014924 W KR 2022014924W WO 2023090635 A1 WO2023090635 A1 WO 2023090635A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
carbon black
parts
rubber composition
connection structure
Prior art date
Application number
PCT/KR2022/014924
Other languages
French (fr)
Korean (ko)
Inventor
김현주
조수환
정우석
Original Assignee
대한전선 주식회사
주식회사 화승소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210160427A external-priority patent/KR102681222B1/en
Application filed by 대한전선 주식회사, 주식회사 화승소재 filed Critical 대한전선 주식회사
Publication of WO2023090635A1 publication Critical patent/WO2023090635A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present specification relates to an ethylene-propylene-diene monomer (EPDM) rubber composition and a connection structure for a power cable including the same.
  • EPDM ethylene-propylene-diene monomer
  • a transmission cable is a wire that supplies power to a consumer and is formed of an inner conductor composed of a plurality of strands and a synthetic resin insulation layer surrounding the inner conductor.
  • Transmission cables are classified into direct current (DC) transmission cables and alternating current (AC) transmission cables according to the type of power to be supplied.
  • DC direct current
  • AC alternating current
  • direct current transmission cables have the advantage of transmitting large amounts of power over long distances due to low power loss, and can be used as an alternative to increasing power demand because they have the advantage of being able to transmit power without restrictions in grid connection, unlike alternating current, which cannot be linked even between different frequencies. there is.
  • the transmission cables are connected to each other through a junction box, and the performance and long-term reliability of the junction box may be determined by the mechanical and electrical performance of the insulator. Therefore, it is important to control and improve the properties of materials constituting the insulating part.
  • junction boxes can be largely classified into PJ (Pre-fabricated Joint) and PMJ (Pre-Molded Joint) depending on their shape and connection method.
  • the PJ junction box is a method of connecting cables by means of a rubber stress cone, an epoxy unit, and a separate compression ring.
  • the importance of elasticity and mechanical performance of the material is relatively low, but the structure is complicated and the price is high because there are many components. It is expensive, and high construction technology is required for installation.
  • the PMJ junction box has the advantage of being simple in structure due to integrated factory production and easy to install without advanced construction technology, but since the cable is connected by the mechanical performance of the material itself, it is necessary to develop
  • a conventional PMJ type junction box When connecting a pair of power transmission cables, a conventional PMJ type junction box uses silicone rubber as an insulation part.
  • the PMJ junction box manufactured using silicone rubber has excellent compression recovery characteristics, but when DC voltage is continuously applied, space charges are accumulated inside the insulator, distorting the electric field, and eventually causing insulation breakdown of the junction box. Therefore, it is not desirable to apply it to direct current transmission.
  • a technique for adjusting the volume resistivity value by adding a polar additive or nano-sized inorganic particles to silicone rubber to form an internal insulating layer of a junction box has been proposed.
  • polar additives or nanoparticles may act as impurities, but the proposed technology lacks consideration for this problem.
  • the description of the present specification is to solve the problems of the prior art described above, and one object of the present specification is to provide a rubber composition having excellent mechanical and electrical properties, including an EPDM rubber having controlled properties and a filler suitable therefor.
  • Another object of the present specification is to provide a connection structure for a power cable including an insulator made of a rubber composition.
  • an insulating polymer including EPDM rubber; a filler including carbon black, a silicon compound, and a calcium compound, and further including at least one selected from the group consisting of a magnesium compound, an aluminum compound, a titanium compound, and clay; plasticizer; cross-linking agent; accelerant; antioxidants; and other additives.
  • the filler based on 100 parts by weight of the polymer, 30 to 70 parts by weight of the filler; 10 to 40 parts by weight of the plasticizer; 2 to 4 parts by weight of the crosslinking agent; 3 to 10 parts by weight of the accelerator; 6 to 8 parts by weight of the antioxidant; and 1 to 10 parts by weight of the other additives.
  • the carbon black is HPC (hard processing channel) carbon black, MPC (medium processing channel) carbon black, EPC (easy processing channel) carbon black, CC (conductive channel) carbon black, SAF (Super Abrasion Furnace) carbon black, ISAF (Intermediate SAF) carbon black, HAF (High Abrasion Furnace) carbon black, FEF (Fast Extrusion Furnace) carbon black, GPE (General Purpose Furnace) carbon black, SRF ( It may be at least one selected from the group consisting of carbon black for Semi Reinforcing Furnace, carbon black for CF (Conductive Furnace), carbon black for FT (Fine Thermal), and carbon black for MT (Medium Thermal).
  • the plasticizer may be at least one selected from the group consisting of paraffinic oil, naphthenic oil, and aromatic oil.
  • the crosslinking agent is dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, isopropylcumyl t-butyl peroxide, t-butylcumyl peroxide, di- t-butyl peroxide, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane-3, 1, It may be at least one selected from the group consisting of 1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, isopropylcumyl cumyl peroxide, and di(isopropylcumyl) peroxide.
  • the accelerator may be at least one selected from the group consisting of a vinyl compound, an acryl compound, an allyl compound, and an amino compound.
  • the antioxidant may be at least one selected from the group consisting of amine-based, phenol-based, quinoline-based, metal-based, phosphite-based, and imidazole-based.
  • the other additives may be at least one selected from the group consisting of a moisture absorbent, a dispersing agent, and a releasing agent.
  • connection structure for a power cable including an insulator
  • the insulator is made of the rubber composition
  • a connection structure for a power cable is provided.
  • connection structure for the power cable is a junction box for DC transmission cable (DC PMJ), a junction box for DC transmission cable (DC PJ), an intermediate junction box for AC transmission cable (AC PMJ), an AC One selected from the group consisting of a junction box (AC PJ) for transmission cables, a DC stress relief cone of termination connection structure for DC transmission cables, and an AC stress relief cone of termination connection structure for AC transmission cables.
  • DC PMJ junction box for DC transmission cable
  • DC PJ junction box for DC transmission cable
  • AC PMJ intermediate junction box for AC transmission cable
  • the rubber composition according to one aspect of the present specification may have excellent processability and excellent mechanical and electrical properties of a final product manufactured therefrom.
  • FIG. 1 shows an example of a junction box structure for DC transmission cables
  • FIG. 2 shows an example of a structure of a stress cone.
  • a rubber composition according to one aspect of the present specification includes an insulating polymer including EPDM rubber; one or more fillers including carbon black, silicon compounds and calcium compounds, and selected from the group consisting of magnesium compounds, aluminum compounds, titanium compounds, and clay; plasticizer; cross-linking agent; accelerant; antioxidants; and other additives.
  • an insulating polymer including EPDM rubber including EPDM rubber; one or more fillers including carbon black, silicon compounds and calcium compounds, and selected from the group consisting of magnesium compounds, aluminum compounds, titanium compounds, and clay; plasticizer; cross-linking agent; accelerant; antioxidants; and other additives.
  • Silicone rubber used in the manufacture of conventional connection structures has an excellent compression set, but has a disadvantage in that space charges are easily accumulated due to the material properties showing electronegativity, resulting in a high possibility of dielectric breakdown.
  • EPDM rubber has excellent space charge characteristics compared to silicone rubber, but it has been difficult to use in the manufacture of interconnected structures in the past due to its lack of permanent compression set.
  • the EPDM rubber may refer to a polymer obtained by copolymerizing ethylene, olefin, and a non-conjugated diene-based monomer, that is, an EP-based rubber and a copolymer having a structure similar thereto.
  • an EP-based rubber and a copolymer having a structure similar thereto if one of the various EPDM rubbers is expressed as a chemical formula, it can be expressed as Formula 1 below.
  • EPDM rubber In general, EPDM rubber is known to have excellent ozone resistance, heat resistance, oxidation resistance, and resistance to polar solvents by including an unsaturated group in its side chain. In addition, since it has excellent water resistance, cold resistance and low temperature characteristics, it has the advantage of being flexible at low temperature and having great rebound elasticity in a wide temperature range.
  • EPDM rubber has disadvantages in that it has insufficient processability due to a slow crosslinking rate, lack of permanent compression set, and easily swells due to a similar solubility index to non-polar solvents such as mineral oil and insulating oil.
  • the rubber composition of the present specification may improve the above-mentioned disadvantages by controlling the properties of the filler and controlling the interaction with other components, and impart properties necessary for manufacturing a connection structure for a power cable to the EPDM rubber composition.
  • an intermediate junction box can be easily manufactured in a PMJ method.
  • the EPDM rubber Since the EPDM rubber has excellent heat resistance, weather resistance, ozone resistance and elasticity, it may be suitable for manufacturing an insulation part of a connection structure for a power cable.
  • the properties of these EPDM rubbers can be controlled by varying the ratio of the type of each monomer and the chain derived therefrom.
  • the ratio of the ethylene-derived chain may be 53 to 65% by weight, for example, 53% by weight, 54% by weight, 55% by weight, 56% by weight, 57% by weight, 58% by weight, 59% by weight, 60% by weight %, 61% by weight, 62% by weight, 63% by weight, 64% by weight, 65% by weight or a value between these two values, but is not limited thereto. If the ratio of the ethylene monomer-derived chain exceeds 65% by weight, the linear chain ratio increases, resulting in high compression set, high hardness, and reduced flexibility at low temperatures. In addition, hardness may increase and flexibility at low temperatures may decrease. On the other hand, if the ratio of the ethylene-derived chain is less than 53% by weight, crosslinking points with the crosslinking agent may be insufficient, resulting in a decrease in crosslinking density and deterioration in mechanical properties.
  • the olefin monomer may be at least one selected from the group consisting of propylene, isobutylene, 1-butene, 1-pentene, 1-hexene and 1-octene.
  • the ratio of the chain derived from the olefin monomer may be 35 to 45% by weight, for example, 35% by weight, 36% by weight, 37% by weight, 38% by weight, 39% by weight, 40% by weight, 41% by weight, 42% by weight Weight%, 43% by weight, 44% by weight, 45% by weight or may be a value between two of these, but is not limited thereto.
  • the ratio of the chain derived from the olefin monomer exceeds 45% by weight, the crosslinking density may decrease due to insufficient crosslinking points, and the tensile strength may decrease. If the ratio of the chain derived from the olefin monomer is less than 35% by weight, mechanical strength and heat resistance may be deteriorated.
  • the non-conjugated diene monomers include 1,4-pentadiene, 1,4-hexadiene, cyclopentadiene, cyclohexadiene, 5-ethylidene-2-norbornene, 5-butylidene-2-norbornene, 3,7-dimethyl-1,6-octadiene, 5,7-dimethyl-1,6-octadiene, 7-methyl-1,6-octadiene, 5-methyl-1,4-hexadiene, 6- Methyl-1,5-heptadiene, 5-(1,5-dimethyl-4-hexenyl)-2-norbornene, 5-(3,5-dimethyl-4-hexenyl)2-norbornene, 5- (5-methyl-4-hexenyl)-2-norbornene, 5-(4-methyl-3-pentenyl)-2-norbornene, 5-(3-methyl-2-butenyl)-2-n
  • the non-conjugated diene-based monomer may act as a cross-linking point by imparting an unsaturated group to EPDM rubber, and may determine cross-linking characteristics.
  • 5-ethylidene-2-norbornene, dicyclopentadiene, and 1,4-hexadiene among the non-conjugated diene monomers as examples, 5-ethylidene-2-norbornene has a relatively fast crosslinking rate, Clopentadiene has the opposite properties and 1,4-hexadiene may have intermediate crosslinking properties.
  • the content of the chain derived from the non-conjugated diene monomer may be 6% by weight or less, for example, 6% by weight, 5.5% by weight, 5% by weight, 4.5% by weight, 4% by weight, 3.5% by weight, 3% by weight, 2.5% by weight, 2% by weight, 1.5% by weight, 1% by weight, 0.5% by weight, 0.1% by weight or a value between these two values, but is not limited thereto.
  • the radical of the cross-linking agent reacts first at the highly reactive non-conjugated diene-based monomer-derived site, thereby reducing the cross-linking density and reducing elasticity. there is.
  • shape restoration is disadvantageous due to an increase in permanent compression set, which is important in the cable junction box PMJ (Pre-Molded Joint).
  • the rubber composition may include a specific filler in order to improve EPDM rubber's lack of mechanical properties such as compression set and processability, and to maintain space charge characteristics. Depending on the characteristics of the filler, it is possible to impart characteristics suitable for manufacturing an insulation part of a connection structure for a power cable.
  • the characteristics of these fillers may vary depending on physical factors such as filler particle size and particle size distribution, particle shape, and specific surface area, and chemical factors such as composition, crystal structure, and combination of compounds.
  • physical factors such as filler particle size and particle size distribution, particle shape, and specific surface area
  • chemical factors such as composition, crystal structure, and combination of compounds.
  • a filler having a small average particle diameter it has a relatively high specific surface area, so the contact area with the polymer increases, and as a result, reinforcing properties can be increased.
  • the cohesive force due to a physical bond such as a hydrogen bond or a van der Waals bond increases depending on the shape of the particle, reinforcing property may be increased.
  • a component with strong chemical activity is present on the surface of the filler, a chemical reaction may be accelerated and reinforcing properties may be increased.
  • the smoothness of the surface of the final product made of the rubber composition may decrease and space charges may accumulate, so the dispersibility of the filler may also be one of the important factors.
  • the insulating polymer including the EPDM rubber includes carbon black, a silicon compound, and a calcium compound as fillers, and further includes one or more fillers selected from the group consisting of magnesium compounds, aluminum compounds, titanium compounds, and clays according to characteristics to be realized. can do. Through this, physical properties such as permanent compression set and processability and electrical properties such as dielectric strength can be implemented at a level required for a connection structure for power cables.
  • the filler may be a separate component or a mineral in which each component is combined in one filler.
  • the filler may be a single component such as aluminum oxide (Al 2 O 3 ) or silicon oxide (SiO 2 ) or a complex mineral such as zeolite containing an aluminum compound and a silicon compound as main components.
  • the carbon black is black fine carbon powder, and may be a component having an average particle diameter of 1 to 500 nm. It can be produced through combustion or thermal decomposition of organic compounds, and various physical properties can be imparted to the rubber composition according to the characteristics of carbon black particles.
  • carbon black includes HPC (Hard Processing Channel) carbon black, MPC (Medium Processing Channel) carbon black, EPC (Easy Processing Channel) carbon black, CC (Conductive Channel) carbon black, SAF (Super Abrasion) Furnace) carbon black, ISAF (Intermediate SAF) carbon black, HAF (High Abrasion Furnace) carbon black, FEF (Fast Extrusion Furnace) carbon black, GPE (General Purpose Furnace) carbon black, SRF (Semi Reinforcing Furnace) ), carbon black for CF (Conductive Furnace), carbon black for FT (Fine Thermal), and carbon black for MT (Medium Thermal).
  • HPC Hard Processing Channel
  • MPC Medium Processing Channel
  • EPC Erasy Processing Channel
  • CC Conductive Channel
  • SAF Super Abrasion Furnace
  • ISAF Intermediate SAF
  • HAF High Abrasion Furnace
  • FEF Fest Extrusion Furnace
  • GPE General Purpose Fur
  • the properties and content of the carbon black may vary depending on the characteristics of the final product made of the rubber composition. For example, when manufacturing the insulation of a connection structure for a power cable, 5 parts by weight or less of carbon black is used based on 100 parts by weight of an insulating polymer to prevent deterioration of electrical properties, adjust color, and impart reinforcing properties. . Alternatively, dielectric breakdown can be prevented by mitigating the electric field using conductive carbon black, if necessary.
  • the silicon compound may be, for example, silicon oxide or silicon carbide.
  • Silicon oxide has low electron mobility and excellent heat resistance and strength, so it can impart insulating properties to rubber compositions and improve mechanical strength.
  • Silicon carbide has excellent heat resistance, thermal shock resistance, abrasion resistance, chemical stability, moisture resistance, low thermal expansion coefficient, high thermal conductivity, high Young's modulus, low specific gravity and excellent thermal and mechanical properties, so it can be used as a reinforcing filler. .
  • the silicon carbide is excessively added, the electrical properties of the final product may be deteriorated, so that it may be used in combination with other fillers.
  • the calcium compound may be, for example, calcium carbonate.
  • Calcium carbonate is widely used as a rubber extender, but mechanical properties of the rubber composition may deteriorate when an excessive amount is added. This can be improved by mixing with a filler with excellent mechanical properties.
  • the magnesium compound may be, for example, a magnesium oxide component.
  • Magnesium oxide is chemically stable and excellent in dimensional stability, water resistance, thermal conductivity, and electrical insulation, so it can suppress space charge while imparting mechanical properties of a required level to a rubber composition.
  • magnesium oxide having a resistivity of about 1 ⁇ 10 17 ⁇ cm may be used.
  • the mechanism of action is not precisely known, the organic dipole polarization due to the difference in dielectric constant between the magnesium oxide and the EPDM rubber acts as a deep trap site and can suppress space charge accumulation.
  • the magnesium compound may be magnesium carbonate.
  • Magnesium carbonate is excellent in insulation, low specific gravity, heat stability, and hygroscopicity, and when used as a rubber filler, it can improve the strength of rubber and have an excellent heat release rate.
  • the magnesium carbonate is basic and can improve dispersibility by neutralizing weakly acidic EPDM rubber. When the magnesium carbonate is used alone, reinforcing properties may be somewhat insufficient, but this can be improved by mixing with other fillers.
  • the aluminum compound may be, for example, aluminum oxide.
  • Aluminum oxide can be used that has a flexural strength of 300 to 600 MPa, a compressive strength of 2,000 to 4,000 MPa, and a hardness of 15 to 19 GPa.
  • the aluminum oxide has excellent reinforcing properties, thermal conductivity, electrical insulation properties, heat resistance, corrosion resistance, wear resistance, low density, and chemical stability, while being inexpensive.
  • the aluminum oxide may have a resistivity of about 1 ⁇ 10 14 to 1 ⁇ 10 15 ⁇ cm. Since the relative permittivity of the rubber composition can be increased when aluminum oxide is added as a filler, it is possible to manufacture an insulating part with improved compression set characteristics by adding an appropriate amount.
  • the titanium compound may be titanium oxide. Titanium oxide is an electrical insulator and is known to be a very stable material physically and chemically. Titanium oxide has a uniform particle size and may have excellent dispersibility and coloring power. Since the relative permittivity of the rubber composition may be increased when the titanium oxide is included as a filler, it is possible to manufacture an insulating part having improved compression set characteristics by adding an appropriate amount.
  • the clay may include kaolin-based clay, soft clay, hard clay, calcined clay, and pyrophyllite clay, but is not limited thereto.
  • Kaolin-based clay having small particles can be applied as hard clay having excellent reinforcing properties.
  • Soft clay may be included as a non-reinforcing filler.
  • Clay can easily improve the mechanical properties and surface properties of the rubber composition, but the electrical properties of the rubber composition may be deteriorated when an excessive amount is added.
  • the kaolin-based clay is a natural hydrous aluminum silicate mineral, and may have a chemical composition of Al 2 SiO 2 (OH) 4 , has pyrophyllite as a main component, and may include sericite and quartz, which are kaolin minerals.
  • the amount of clay added in the rubber composition is excessively high, the amount of space charge accumulation may increase. This may be because interfacial polarization occurs due to differences in electrical conductivity and dielectric constant between the EPDM rubber and the filler, and as a result, charges are accumulated at the polymer/filler interface. Therefore, when using the clay, it may be important to control the content.
  • the content of the clay may be 1 to 35 parts by weight based on 100 parts by weight of the polymer.
  • the rubber composition used in the manufacture of the insulating part may contain a plastic filler capable of improving compression characteristics and space charge characteristics while being easy to mix with EPDM rubber.
  • the filler of the rubber composition made of the insulating part is magnesium oxide, aluminum oxide, titanium oxide, silicon oxide, silicon carbide, calcium carbonate, magnesium carbonate, clay, carbon black for FEF, carbon black for HAF, and carbon black for SRF. It may be one or more selected from the group consisting of, but is not limited thereto.
  • the rubber composition can realize physical properties required for a connection structure for a power cable by adjusting the content of the filler in the EPDM rubber.
  • the content of the filler may be 30 to 70 parts by weight.
  • the content of the filler with respect to 100 parts by weight of the polymer is 30 parts by weight, 32 parts by weight, 34 parts by weight, 36 parts by weight, 38 parts by weight, 40 parts by weight, 42 parts by weight, 44 parts by weight, 46 parts by weight 48 parts, 50 parts, 52 parts, 54 parts, 56 parts, 58 parts, 60 parts, 62 parts, 64 parts, 66 parts, 68 parts, 70 parts, or It may be a value between two of these values, but is not limited thereto.
  • Shore hardness which is a physical property measured by an impact hardness tester that measures the repulsive force when a hammer or the like collides, may vary.
  • the shore hardness Hs may exceed 70. That is, since the elongation rate of the final product is lowered due to excessive hardening, a problem in that the product is ruptured by an external force during production or assembly work may occur. If the content of the filler is less than 30 parts by weight, the shore hardness Hs is less than 50, making it difficult to maintain the shape when used as a connecting material, and it may be difficult to manufacture a final product due to poor formability due to reduced mechanical properties such as tensile strength.
  • the silicon compound may be included more than the aluminum compound or the calcium compound.
  • it may contain more silicon compounds than the sum of aluminum compounds and calcium compounds.
  • the content of the aluminum compound and the silicone compound satisfies the range of 35 to 55% by weight based on the total filler content, and the sum of these is 40 to 60% by weight based on the total content of the rubber polymer. can be satisfied. If these conditions are satisfied, the permanent compression set of the final product may be excellent.
  • a magnesium compound When a magnesium compound is further included as the filler, 50% by weight or more of the calcium compound may be included based on 100% by weight of the filler. For example, 1 to 5 wt% of a magnesium compound and 15 to 25 wt% of a calcium compound may be included based on 100 wt% of the polymer. If these conditions are satisfied, the accumulation of space charges can be suppressed and dielectric strength can be excellent.
  • the rubber composition may further include a plasticizer, a crosslinking agent, an accelerator, an anticorrosive agent, and other additives in addition to the insulating polymer and the filler.
  • Processability of the rubber composition may be considered as an important factor in manufacturing the junction box of the PMJ method.
  • processability may vary depending on the flowability of the rubber composition.
  • the flowability of the junction box can be expressed as fringe viscosity (ML1+4, 125°C).
  • the rubber composition may have a pattern viscosity of 15 to 30, for example, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 , 30 or a range between two of these values, but is not limited thereto.
  • the texture viscosity of the rubber composition satisfies the above range, it can be used for injection molding products having an outer diameter of 120 or more and a length of 500 mm or more.
  • the pattern viscosity of the rubber composition is less than 15, mechanical properties and compression set may decrease, resulting in deterioration in elasticity, and as a result, the product may be easily ruptured. If the rubber composition has a pattern viscosity of more than 30, flowability during injection molding is insufficient, which may cause defects during operation or excessive cooling time may be required.
  • the flowability of such a rubber composition can be determined by the interaction between the properties of the EPDM rubber itself and the plasticizer mixed in the rubber composition. For example, an excessively high proportion of linear chains in EPDM rubber may increase viscosity. Conversely, if the ratio of linear chains is excessively low, mechanical properties may deteriorate.
  • the plasticizer included in the rubber composition may improve dispersibility of the filler in the EPDM rubber matrix. As long as the insulating properties of the rubber composition are not impaired, the type of plasticizer suitable for conventional EPDM rubber compositions may be used. For example, a plasticizer having high viscosity may be included in a rubber composition made of an insulating part.
  • the plasticizer may be at least one selected from the group consisting of paraffinic oil, naphthenic oil and aromatic oil, but is not limited thereto. Paraffinic oil or naphthenic oil is generally known to have excellent compatibility with EPDM rubber.
  • the content of the plasticizer may be 10 to 40 parts by weight based on 100 parts by weight of the polymer.
  • the content of the plasticizer is 10 parts by weight, 12 parts by weight, 14 parts by weight, 16 parts by weight, 18 parts by weight, 20 parts by weight, 22 parts by weight, 24 parts by weight, 26 parts by weight Part by weight, 28 parts by weight, 30 parts by weight, 32 parts by weight, 34 parts by weight, 36 parts by weight, 38 parts by weight, 40 parts by weight or a range between the two values thereof, but is not limited thereto.
  • the plasticizer is out of the above range, dispersibility or insulation properties may be deteriorated when blended with the polymer.
  • the crosslinking agent may induce the formation of a three-dimensional network structure between EPDM rubbers in the rubber composition. If this network structure is not decomposed by heat applied during the manufacturing process, there is no risk of scorch, which is an unintentional crosslinking phenomenon, and it does not adversely affect the durability and space charge characteristics of the final product, a crosslinking agent suitable for conventional EPDM rubber can be used. there is. For example, when a crosslinking agent containing a metal-based component is used, space charge characteristics of the final product may be impaired, so care may be required in terms of usage and usage.
  • the crosslinking rate and crosslinking density may vary depending on the ratio of the crosslinking agent and the non-conjugated diene-based monomer in the EPDM rubber.
  • the crosslinking agent can be classified into a sulfur-based crosslinking agent and a peroxide crosslinking agent.
  • the sulfur-based crosslinking agent is generally called vulcanization, and has the advantage of providing high tensile strength and tear strength, thus providing excellent mechanical properties and being moldable even at low temperature and pressure.
  • the sulfur-based crosslinking agent may be at least one selected from the group consisting of tetramethylthiuram monosulfide, zinc dimethyl-dithiocarbamate, and zinc di-n-butyl dithiocarbamate, but is not limited thereto.
  • the peroxide crosslinking is a crosslinking method including a peroxide-based crosslinking agent and has electrical and thermal stability, so it can be suitably used for electrical insulating materials in which stability against deterioration after molding is absolutely important.
  • the peroxide-based crosslinking agent may be a peroxide (peroxide)-based, for example, dicumyl peroxide, 1,4-bis [(t-butylperoxy) isopropyl] benzene, isopropylcumyl t-butyl peroxide , t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane, 2,5-bis(t-butylperoxy)-2 In the group consisting of ,5-dimethylhexane-3, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, isoprop
  • the content of the crosslinking agent may be 2 to 4 parts by weight based on 100 parts by weight of the polymer.
  • the content of the crosslinking agent with respect to 100 parts by weight of the polymer is 2 parts by weight, 2.2 parts by weight, 2.4 parts by weight, 2.6 parts by weight, 2.8 parts by weight, 3.0 parts by weight, 3.2 parts by weight, 3.4 parts by weight, 3.6 parts by weight. It may be part, 3.8 parts by weight, 4 parts by weight or a range between two of these values, but is not limited thereto.
  • the content of the crosslinking agent is less than 2 parts by weight with respect to 100 parts by weight of the polymer, the physical properties and elasticity of the junction box, which is the final product of the present specification, may be lowered as the crosslinking density is lowered. If the content of the crosslinking agent exceeds 4 parts by weight, the intermediate junction box, which is the final product, may be overcured, resulting in a decrease in durability or an excessive load on the molding machine, resulting in poor appearance of the final product.
  • the crosslinking reaction of the crosslinking agent may be initiated by an accelerator.
  • an accelerator a conventional cross-linking aid may be used as long as it does not impair the properties required for the junction box described above.
  • conventional crosslinking aids those that are excellent in heat aging resistance, improve compressive recovery properties and have little scorch property and are suitable for long-term crosslinking can be selected.
  • the accelerator may be selected from the group consisting of vinyl compounds, acrylic compounds, allyl compounds and amino compounds, specifically acrylates, methacrylates, vinyl ethers, triallyl It may be at least one selected from the group consisting of cyanurate (TAC: Triallyl Cyanurate) and triallyl isocyanurate (TAIC: Triallyl Isocyanurate), but is not limited thereto.
  • TAC Triallyl Cyanurate
  • TAIC Triallyl Isocyanurate
  • the accelerator content may be 3 to 10 parts by weight based on 100 parts by weight of the polymer.
  • the content of the accelerator is 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by weight, 9 parts by weight, 10 parts by weight or two of these. It may be a range between the values, but is not limited thereto.
  • the rubber composition may include an antioxidant to maintain physical properties for a long period of time.
  • Antioxidants that can prevent hardening, softening, tackiness, cracking, or loss of elasticity of rubber products due to long-term deterioration can be used.
  • the antioxidant may include one that has little effect on the progress of the crosslinking reaction of the crosslinking agent and has an effect of improving heat aging resistance.
  • the antioxidant may be at least one selected from the group consisting of amine-based, phenol-based, quinoline-based, metal-based, phosphite-based, and imidazole-based.
  • the antioxidant may include a non-metal-based antioxidant and a metal-based antioxidant at the same time.
  • the non-metallic antioxidant and the metal-based antioxidant may be included in a weight ratio of 2 to 3:4 to 6, respectively.
  • the antioxidant is included in such a ratio, it is possible to suppress deterioration of mechanical properties and delay in crosslinking while having resistance to aging.
  • the antioxidant is 4,4-bis-alpha-dimethylbenzyl-phenylamine (4,4-Bis (alpha-dimethylbenzyl) diphenyl amine), 2,6-bis-alpha-methylbenzyl-4-methyl Phenol (2,6 Bis(alpha-methylbenzyl)-4-methylphenol), alkylated diphenylamine, octylated diphenyl amine, 2-mercaptotoluimidazole (2- mercaptotolylimidazole) and zincated 2-mercaptotoluimidazole (Zn(2-mercaptotolylimidazole) 2).
  • the content of the antioxidant may be 6 to 8 parts by weight based on 100 parts by weight of the polymer.
  • the content of the antioxidant with respect to 100 parts by weight of the polymer is 6 parts by weight, 6.2 parts by weight, 6.4 parts by weight, 6.6 parts by weight, 6.8 parts by weight, 7.0 parts by weight, 7.2 parts by weight, 7.4 parts by weight, 7.6 parts by weight. It may be parts by weight, 7.8 parts by weight, 8.0 parts by weight or a range between two values thereof, but is not limited thereto.
  • the content of the antioxidant is less than 6 parts by weight based on 100 parts by weight of the polymer, resistance to aging may be lowered.
  • the content of the antioxidant is greater than 8 parts by weight, mechanical property degradation or crosslinking delay may occur.
  • the rubber composition may further include various other additives as long as they do not degrade properties required for interconnection boxes.
  • a moisture absorbent or a water-dispersing agent may be further included to improve long-term stability by absorbing moisture during storage and molding.
  • the rubber composition may further include a dispersant for improving the dispersibility of each component as other additives.
  • the rubber composition may further include a release agent to facilitate separation of the mold after molding with other additives.
  • the moisture absorbent may be one selected from magnesium oxide (MgO), calcium oxide (CaO), and mixtures thereof.
  • the release agent or dispersant may be one or more selected from the group consisting of fatty acid esters, fatty acid metal salts, fatty alcohols, fatty acid amides, and organosilicon, respectively.
  • the physical properties and dispersibility of the rubber composition may be improved by firstly adding a silane coupling agent and secondarily adding the release agent or dispersing agent.
  • the release agent or dispersant may function as an internal lubricant to improve flowability and surface properties of the rubber composition, or prevent reagglomeration of compounded rubber to suppress an increase in viscosity.
  • the content of the other additives may be 1 to 10 parts by weight based on 100 parts by weight of the polymer.
  • the content of the other additives with respect to 100 parts by weight of the polymer is 1 part by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by weight, 9 parts by weight It may be parts by weight, 10 parts by weight, or a range between two of these values, but is not limited thereto.
  • the rubber composition When the rubber composition is applied as an insulating part, it may have a dielectric breakdown strength of 20 kV/mm or more of alternating current and 70 kV/mm or more of direct current.
  • the dielectric breakdown strength may be measured by a method according to an embodiment of the present specification.
  • a connection structure for a power cable according to another aspect of the present specification includes an insulator, and the insulator may be made of the rubber composition described above.
  • connection structure for the power cable includes a direct current pre-molded joint (DC PMJ), a direct current pre-fabricated joint (DC PJ), and an AC power transmission cable.
  • DC PMJ direct current pre-molded joint
  • DC PJ direct current pre-fabricated joint
  • AC stress Relief cone Alternative Current Pre-Molded Joint
  • AC PJ Alternative Current Pre-fabricated Joint
  • DC Stress Relief cone DC Stress Relief cone
  • the rubber composition may be used as a connection structure for various types of power cables by combining EPDM rubber and a specific filler.
  • connection structure is made of the rubber composition, compression strength and compression recovery characteristics are excellent, and space charge accumulation during long-term operation can be suppressed.
  • FIG. 1 and 2 show an example of a connection structure for such a power cable.
  • FIG. 1 shows the form of a junction box (DC PMJ, 100) for a DC transmission cable, and includes an insulation part 110, an external semi-conductive part 120, a high-voltage electrode 130, and a shielding electrode 140. ) and the like.
  • FIG. 2 shows the shape of the stress cone 200, and may include structures such as an insulating part 210 and a semiconducting part 220. Among these structures, the insulating portion may be made of the rubber composition.
  • Example 1 rubber composition
  • EPDM rubber, filler, plasticizer, accelerator, antioxidant and other additives listed in Table 1 were kneaded in CMB (Carbon Master Batch) at the composition ratio shown in Table 1 below.
  • FMB Full Master Batch
  • kneading of the crosslinking agent in the composition ratio shown in Table 1 below, followed by extrusion strainer filtering to remove foreign matter including metal, and adopting a roll-type vinyl packaging method to inject secondary foreign matter Insulation rubber composition was prepared by preventing.
  • Example 2 Example 3
  • Example 4 Example 5
  • EPDM rubber 100 100 100 100 100 100 filler carbon black 1.5 4 4 1.5 4 Al-based 22.5 22.5 - - - Si based 27.5 27.5 7.5 7.5 1.5 Mg-based - - 4 4 - Ca-based 1.5 1.5 17.5 17.5 32.5 Ti-based 1.5 1.5 - 7.5 - Pb-based - - - - 4 plasticizer 15 15 12 12 15 cross-linking agent 3 3 2 2 2 2 2 accelerant 3 3 3 5 5 antioxidant 8 8 7 7 7 Other Additives 6 6 8 3 3
  • Carbon Black HAF, FEF Al-based: aluminum oxide Si-based: silicon carbide Mg-based: magnesium oxide
  • Ca-based calcium carbonate Ti system: titanium oxide
  • Pb-based pyrophyllite clay
  • a circular sheet with a diameter of 10 cm and a thickness of 1.0 mm is placed between electrodes in a temperature controllable chamber, and a voltage of 500 V/mm is applied for more than 30 minutes to read the resistance value when it is stabilized.
  • the room temperature test is performed under an atmospheric humidity of 25 ° C, and the high-temperature test is performed under an atmospheric humidity of 90 ° C.
  • a sheet with a thickness of 0.3 mm is placed between electrodes in a temperature controllable chamber, and a voltage of 10 to 30 kV/mm is applied for more than 1 hour to evaluate the charge accumulation behavior.
  • the room temperature test is performed at 25°C, and the high temperature test is performed at 70°C.
  • AC and DC dielectric breakdown test In the case of AC and Impulse dielectric breakdown test, the thickness is 0.5 ⁇ 1.0mm, in the case of DC dielectric breakdown test, the thickness is 0.3mm. After being bitten between the spherical electrodes in a water tank filled with cP silicone oil, the voltage at the time of dielectric breakdown is measured by gradually increasing the voltage starting from a low voltage. The average value of the values measured more than 10 times for the same material is the dielectric strength of the material.
  • a test piece is manufactured under the same conditions as the sheet production conditions using a mold that can produce a cylindrical test piece with a diameter of 9.5 mm and a thickness of 12.0 mm.
  • heat treatment is performed in an oven at 70 ° C for 22 hours.
  • take out the compression device remove the compression force, take out the test piece, cool it at room temperature for 30 minutes, measure the thickness, and calculate the permanent compression set according to the following formula.
  • the average value obtained by evaluating three or more test pieces for the same material is taken as the permanent compression set for that material. (spacer thickness: 9.52mm)
  • -Tensile strength (elongation) Using a sheet with a thickness of 1.0 mm, it is measured by cutting it with a dumbbell-type No. 4 specimen specified in KS M6518. It continues until specimen fracture at a tensile speed of 200 mm/min, and the average value measured 5 times for each material is taken as the tensile strength-elongation value for that material.
  • KS M6518 dumbbell-type No. 4 specimen specified in KS M6518. It continues until specimen fracture at a tensile speed of 200 mm/min, and the average value measured 5 times for each material is taken as the tensile strength-elongation value for that material.
  • measure the tensile strength and elongation after 1 day of sheet production to relieve thermal and mechanical stress.
  • measure tensile strength and elongation after deteriorating in an oven at 100°C for 96 hours take it out, and cool for 1 day at room temperature. .
  • Example 2 Example 3 Comparative Example 1 Comparative Example 2 normal temperature resistivity ⁇ cm 1.8 ⁇ 10 17 2.7 ⁇ 10 17 3.1 ⁇ 10 17 8.2 ⁇ 10 16 2.6 ⁇ 10 17 high temperature resistivity ⁇ cm 1.7 ⁇ 10 17 4.3 ⁇ 10 16 6.7 ⁇ 10 16 3.3 ⁇ 10 16 1.3 ⁇ 10 16 room temperature AC kV/mm 41 36 36 38 39 high temperature AC kV/mm 41 37 35 37 35 room temperature DC kV/mm 91 95 129 82 78 high temperature DC kV/mm 89 91 116 66 62 room temperature impulse kV/mm 71 58 64 58 63 room temperature permittivity - 2.42 2.33 2.88 1.72 2.92 high temperature permittivity - 2.41 2.27 2.85 1.66 2.87 room temperature dielectric loss tangent - 0.004 0.004 0.005 0.008 0.005 high temperature dielectric loss tangent - 0.006 0.015 0.010 0.021 0.008 permanent compression set % 13 12 25 24 24 Shore A -
  • Example 3 the specimens of Examples 1 and 2 prepared by including Al-, Si-, and Ti-based fillers in the insulating polymer (EPDM) had excellent dielectric strength and mechanical properties such as permanent compression set and tensile strength. This was remarkably excellent.
  • Example 3 using the Ca-based filler it can be confirmed that the dielectric strength is remarkably excellent from the DC dielectric breakdown test results at room temperature and high temperature. Therefore, they can be easily used as an insulator by overcoming the electric field distortion problem through the accumulation of space charges.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Disclosed is a rubber composition and a connection structure for a power cable manufactured therefrom, the rubber composition comprising: an insulating polymer including an EPDM rubber; a filler including carbon black, a silicon compound, and a calcium compound, and further including at least one selected from the group consisting of a magnesium compound, an aluminum compound, a titanium compound, and clay; a plasticizer; a cross-linking agent; an accelerant; an antioxidant; and other additives.

Description

EPDM 고무 조성물 및 이를 포함하는 전력 케이블용 접속구조EPDM rubber composition and connection structure for power cable including the same
본 명세서는 에틸렌-프로필렌-디엔 모노머(Ethylene-Propylene-Diene Monomer; EPDM) 고무 조성물 및 이를 포함하는 전력 케이블용 접속구조에 관한 것이다.The present specification relates to an ethylene-propylene-diene monomer (EPDM) rubber composition and a connection structure for a power cable including the same.
송전 케이블은 수요처에 전력을 공급하는 전선으로서, 복수개의 가닥으로 구성된 내부 도체와 이를 둘러싼 합성수지 절연층으로 형성된다. 송전 케이블은 공급하는 전력 종류에 따라 직류(Direct Current; DC) 송전 케이블과 교류(Alternating Current; AC) 송전 케이블로 구분된다. 그 중 직류 송전 케이블은 전력 손실이 적어 대용량 장거리 송전에 이점을 가지며, 서로 다른 주파수 간에도 연계가 불가능한 교류와는 달리 계통 연계에 제한이 없이 송전이 가능한 장점이 있어 전력 수요 증가의 대안으로 활용될 수 있다.A transmission cable is a wire that supplies power to a consumer and is formed of an inner conductor composed of a plurality of strands and a synthetic resin insulation layer surrounding the inner conductor. Transmission cables are classified into direct current (DC) transmission cables and alternating current (AC) transmission cables according to the type of power to be supplied. Among them, direct current transmission cables have the advantage of transmitting large amounts of power over long distances due to low power loss, and can be used as an alternative to increasing power demand because they have the advantage of being able to transmit power without restrictions in grid connection, unlike alternating current, which cannot be linked even between different frequencies. there is.
상기 송전 케이블은 중간접속함(Joint)을 통해 서로 연결되는데, 중간접속함의 성능과 장기 신뢰성은 절연부의 기계적, 전기적 성능에 의해 결정될 수 있다. 따라서 절연부를 구성하는 재료의 특성을 제어하고, 향상시키는 것이 중요하다.The transmission cables are connected to each other through a junction box, and the performance and long-term reliability of the junction box may be determined by the mechanical and electrical performance of the insulator. Therefore, it is important to control and improve the properties of materials constituting the insulating part.
중간접속함은 그 형태와 접속 방법에 따라 크게 PJ(Pre-fabricated Joint)와 PMJ(Pre-Molded Joint)로 구분될 수 있다. PJ 중간접속함은 고무 스트레스콘과 에폭시 유니트, 별도의 압축 링에 의해 케이블을 연결하는 방식으로 재료의 탄성과 기계적 성능의 중요성이 상대적으로 낮은 편이나, 구성 부품이 많아 구조가 복잡하고, 가격이 비싸며, 설치 시 높은 시공 기술이 요구된다. 반면 PMJ 중간접속함은 공장 일체형 생산으로 구조가 간단하고, 고도의 시공 기술이 없어도 설치가 용이하다는 장점이 있지만, 재료 자체의 기계적 성능에 의해 케이블을 연결하게 되므로 우수한 특성을 갖는 재료를 발굴하고, 개발하는 것이 필요하다.Junction boxes can be largely classified into PJ (Pre-fabricated Joint) and PMJ (Pre-Molded Joint) depending on their shape and connection method. The PJ junction box is a method of connecting cables by means of a rubber stress cone, an epoxy unit, and a separate compression ring. The importance of elasticity and mechanical performance of the material is relatively low, but the structure is complicated and the price is high because there are many components. It is expensive, and high construction technology is required for installation. On the other hand, the PMJ junction box has the advantage of being simple in structure due to integrated factory production and easy to install without advanced construction technology, but since the cable is connected by the mechanical performance of the material itself, it is necessary to develop
한 쌍의 송전 케이블을 연결할 때 종래의 PMJ 방식 중간접속함은 절연부를 실리콘 고무로 이용하였다. 실리콘 고무를 이용하여 제작된 PMJ 중간접속함은 우수한 압축회복특성을 가지나, 직류 전압이 지속적으로 인가될 경우 절연부 내부에 공간전하가 축적되어 전계를 왜곡시키고, 결국에는 중간접속함의 절연파괴를 야기하므로 직류 송전에 적용하는 것이 바람직하지 않다.When connecting a pair of power transmission cables, a conventional PMJ type junction box uses silicone rubber as an insulation part. The PMJ junction box manufactured using silicone rubber has excellent compression recovery characteristics, but when DC voltage is continuously applied, space charges are accumulated inside the insulator, distorting the electric field, and eventually causing insulation breakdown of the junction box. Therefore, it is not desirable to apply it to direct current transmission.
절연부재로 극성의 액상 실리콘 고무(Liquid Silicone Rubber; LSR)를 사용함으로써 절연부재를 통해 공간전하를 이동시켜 공간전하의 축적을 억제하는 기술이 제안된 바 있다. 또한 극성의 절연부재와 비극성의 절연부재를 함께 구비하여 DC 및 임펄스 절연파괴를 모두 방지하는 기술도 제안된 바 있다. 그러나 이러한 제안기술에서는 DC 전력 시스템에 중요한 기계적, 전기적 특성인 영구압축줄음율, 체적저항 등에 대한 고려가 부족하였다.A technique for suppressing the accumulation of space charges by moving space charges through the insulating member by using polar liquid silicone rubber (LSR) as an insulating member has been proposed. In addition, a technique for preventing both DC and impulse dielectric breakdown by including a polar insulating member and a non-polar insulating member has also been proposed. However, these proposed technologies lacked consideration of permanent compression set, volume resistance, etc., which are important mechanical and electrical characteristics for DC power systems.
실리콘 고무에 극성 첨가물 또는 나노 크기의 무기 입자를 첨가한 것으로 중간접속함의 내부 절연층을 형성하여 체적고유저항 값을 조절하는 기술이 제안된 바 있다. 다만 전선 접속구조 재료용 액상 실리콘 고무에는 별도의 필러를 적용하지 않는 것이 일반적이므로, 극성 첨가물이나 나노 입자가 불순물로 작용할 수 있으나 제안기술에서는 이러한 문제점에 대한 고려가 부족하였다.A technique for adjusting the volume resistivity value by adding a polar additive or nano-sized inorganic particles to silicone rubber to form an internal insulating layer of a junction box has been proposed. However, since it is common not to apply a separate filler to liquid silicone rubber for wire connection structure materials, polar additives or nanoparticles may act as impurities, but the proposed technology lacks consideration for this problem.
본 명세서의 기재사항은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 명세서의 일 목적은 특성이 제어된 EPDM 고무와 그에 적합한 충진제를 포함하여 기계적, 전기적 특성이 우수한 고무 조성물을 제공하는 것이다.The description of the present specification is to solve the problems of the prior art described above, and one object of the present specification is to provide a rubber composition having excellent mechanical and electrical properties, including an EPDM rubber having controlled properties and a filler suitable therefor.
본 명세서의 다른 일 목적은 고무 조성물을 포함하여 제조된 절연부를 포함하는 전력 케이블용 접속구조를 제공하는 것이다.Another object of the present specification is to provide a connection structure for a power cable including an insulator made of a rubber composition.
일 측면에 따르면 EPDM 고무를 포함하는 절연성 중합체; 카본블랙, 실리콘 화합물 및 칼슘 화합물을 포함하고, 마그네슘 화합물, 알루미늄 화합물, 티타늄 화합물 및 클레이로 이루어진 군에서 선택된 하나 이상을 더 포함하는 충진제; 가소제; 가교제; 촉진제; 산화방지제; 및 기타 첨가제를 포함하는, 고무 조성물이 제공된다.According to one aspect, an insulating polymer including EPDM rubber; a filler including carbon black, a silicon compound, and a calcium compound, and further including at least one selected from the group consisting of a magnesium compound, an aluminum compound, a titanium compound, and clay; plasticizer; cross-linking agent; accelerant; antioxidants; and other additives.
일 실시예에 있어서, 상기 중합체 100중량부에 대하여, 상기 충진제 30~70중량부; 상기 가소제 10~40중량부; 상기 가교제 2~4중량부; 상기 촉진제 3~10중량부; 상기 산화방지제 6~8중량부; 및 상기 기타 첨가제1~10중량부를 포함할 수 있다.In one embodiment, based on 100 parts by weight of the polymer, 30 to 70 parts by weight of the filler; 10 to 40 parts by weight of the plasticizer; 2 to 4 parts by weight of the crosslinking agent; 3 to 10 parts by weight of the accelerator; 6 to 8 parts by weight of the antioxidant; and 1 to 10 parts by weight of the other additives.
일 실시예에 있어서, 상기 카본블랙은 HPC(Hard Processing Channel)용 카본블랙, MPC(Medium Processing Channel)용 카본블랙, EPC(Easy Processing Channel)용 카본블랙, CC(Conductive Channel)용 카본블랙, SAF(Super Abrasion Furnace)용 카본블랙, ISAF(Intermediate SAF)용 카본블랙, HAF(High Abrasion Furnace)용 카본블랙, FEF(Fast Extrusion Furnace)용 카본블랙, GPE(General Purpose Furnace)용 카본블랙, SRF(Semi Reinforcing Furnace)용 카본블랙, CF(Conductive Furnace)용 카본블랙, FT(Fine Thermal)용 카본블랙 및 MT(Medium Thermal)용 카본블랙으로 이루어진 군에서 선택된 하나 이상일 수 있다.In one embodiment, the carbon black is HPC (hard processing channel) carbon black, MPC (medium processing channel) carbon black, EPC (easy processing channel) carbon black, CC (conductive channel) carbon black, SAF (Super Abrasion Furnace) carbon black, ISAF (Intermediate SAF) carbon black, HAF (High Abrasion Furnace) carbon black, FEF (Fast Extrusion Furnace) carbon black, GPE (General Purpose Furnace) carbon black, SRF ( It may be at least one selected from the group consisting of carbon black for Semi Reinforcing Furnace, carbon black for CF (Conductive Furnace), carbon black for FT (Fine Thermal), and carbon black for MT (Medium Thermal).
일 실시예에 있어서, 상기 가소제는 파라핀계 오일, 나프텐계 오일 및 아로마틱계 오일로 이루어진 군에서 선택된 하나 이상일 수 있다.In one embodiment, the plasticizer may be at least one selected from the group consisting of paraffinic oil, naphthenic oil, and aromatic oil.
일 실시예에 있어서, 상기 가교제는 디큐밀 퍼옥사이드, 1, 4-비스[(t-부틸퍼옥시)이소프로필]벤젠, 이소프로필큐밀 t-부틸 퍼옥사이드, t-부틸 큐밀 퍼옥사이드, 디-t-부틸 퍼옥사이드, 2,5-비스(t-부틸퍼옥시)-2,5-디메틸헥산, 2,5-비스(t-부틸퍼옥시)-2,5-디메틸헥산-3, 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산, 이소프로필큐밀 큐밀 퍼옥사이드 및 디(이소프로필큐밀) 퍼옥사이드로 이루어진 군에서 선택된 하나 이상일 수 있다.In one embodiment, the crosslinking agent is dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, isopropylcumyl t-butyl peroxide, t-butylcumyl peroxide, di- t-butyl peroxide, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane-3, 1, It may be at least one selected from the group consisting of 1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, isopropylcumyl cumyl peroxide, and di(isopropylcumyl) peroxide.
일 실시예에 있어서, 상기 촉진제는 비닐 화합물, 아크릴 화합물, 알릴 화합물 및 아미노 화합물로 이루어진 군에서 선택된 하나 이상일 수 있다.In one embodiment, the accelerator may be at least one selected from the group consisting of a vinyl compound, an acryl compound, an allyl compound, and an amino compound.
일 실시예에 있어서, 상기 산화방지제는 아민계, 페놀계, 퀴놀린계, 금속계, 포스파이트계 및 이미다졸계로 이루어진 군에서 선택된 하나 이상일 수 있다.In one embodiment, the antioxidant may be at least one selected from the group consisting of amine-based, phenol-based, quinoline-based, metal-based, phosphite-based, and imidazole-based.
일 실시예에 있어서, 상기 기타 첨가제는 흡습제, 분산제 및 이형제로 이루어진 군에서 선택된 하나 이상일 수 있다.In one embodiment, the other additives may be at least one selected from the group consisting of a moisture absorbent, a dispersing agent, and a releasing agent.
다른 일측면에 따르면, 절연부를 포함하는 전력 케이블용 접속구조에 있어서, 상기 절연부가 상기 고무 조성물로 제조된, 전력 케이블용 접속구조가 제공된다.According to another aspect, in the connection structure for a power cable including an insulator, the insulator is made of the rubber composition, a connection structure for a power cable is provided.
일 실시예에 있어서, 상기 전력 케이블용 접속구조는 직류 송전 케이블용 중간접속함(DC PMJ), 직류 송전 케이블용 중간접속함(DC PJ), 교류 송전 케이블용 중간접속함(AC PMJ), 교류 송전 케이블용 중간접속함(AC PJ), 직류 송전 케이블용 종단접속구조의 스트레스콘(DC Stress relief cone), 교류 송전 케이블용 종단접속구조의 스트레스콘(AC Stress relief cone)으로 이루어진 군에서 선택된 하나일 수 있다.In one embodiment, the connection structure for the power cable is a junction box for DC transmission cable (DC PMJ), a junction box for DC transmission cable (DC PJ), an intermediate junction box for AC transmission cable (AC PMJ), an AC One selected from the group consisting of a junction box (AC PJ) for transmission cables, a DC stress relief cone of termination connection structure for DC transmission cables, and an AC stress relief cone of termination connection structure for AC transmission cables. can be
본 명세서의 일 측면에 따른 고무 조성물은 가공성이 우수하고, 이로부터 제조된 최종 제품의 기계적, 전기적 특성이 우수할 수 있다.The rubber composition according to one aspect of the present specification may have excellent processability and excellent mechanical and electrical properties of a final product manufactured therefrom.
본 명세서의 일 측면의 효과는 상기한 효과로 한정되는 것은 아니며, 본 명세서의 상세한 설명 또는 청구범위에 기재된 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.Effects of one aspect of the present specification are not limited to the above effects, and should be understood to include all effects that can be inferred from the configuration described in the detailed description or claims of this specification.
도 1은 직류 송전 케이블용 중간접속함 구조의 일 예시를 도시한 것이고;1 shows an example of a junction box structure for DC transmission cables;
도 2는 스트레스콘의 구조의 일 예시를 도시한 것이다.2 shows an example of a structure of a stress cone.
이하에서는 첨부한 도면을 참조하여 본 명세서의 일 측면을 설명하기로 한다. 그러나 본 명세서의 기재사항은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 명세서의 일 측면을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, one aspect of the present specification will be described with reference to the accompanying drawings. However, the descriptions in this specification may be implemented in many different forms, and thus are not limited to the embodiments described herein. And in order to clearly explain one aspect of the present specification in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected" to another part, this includes not only the case where it is "directly connected" but also the case where it is "indirectly connected" with another member interposed therebetween. . In addition, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 수치적 값의 범위가 기재되었을 때, 이의 구체적인 범위가 달리 기술되지 않는 한 그 값은 유효 숫자에 대한 화학에서의 표준규칙에 따라 제공된 유효 숫자의 정밀도를 갖는다. 예를 들어, 10은 5.0 내지 14.9의 범위를 포함하며, 숫자 10.0은 9.50 내지 10.49의 범위를 포함한다.When ranges of numerical values are set forth herein, unless the specific range is stated otherwise, the values have the precision of significant digits provided in accordance with the standard rules in chemistry for significant digits. For example, 10 includes the range 5.0 to 14.9, and the number 10.0 includes the range 9.50 to 10.49.
고무 조성물rubber composition
본 명세서의 일 측면에 따른 고무 조성물은 EPDM 고무를 포함하는 절연성 중합체; 카본블랙, 실리콘 화합물 및 칼슘 화합물을 포함하고, 마그네슘 화합물, 알루미늄 화합물 티타늄 화합물 및 클레이로 이루어진 군에서 선택된 하나 이상의 충진제; 가소제; 가교제; 촉진제; 산화방지제; 및 기타 첨가제를 포함할 수 있다.A rubber composition according to one aspect of the present specification includes an insulating polymer including EPDM rubber; one or more fillers including carbon black, silicon compounds and calcium compounds, and selected from the group consisting of magnesium compounds, aluminum compounds, titanium compounds, and clay; plasticizer; cross-linking agent; accelerant; antioxidants; and other additives.
종래의 접속구조 제조에 사용된 실리콘 고무는 영구압축줄음율은 우수하나, 전기음성도를 나타내는 재료 특성 상 공간전하가 쉽게 축적되어 절연파괴 가능성이 높은 단점이 있다. EPDM 고무는 공간전하 특성은 실리콘 고무 대비 우수하나, 영구압축줄음율이 부족하여 종래에는 중간접속구조 제조에 사용되기 어려웠다.Silicone rubber used in the manufacture of conventional connection structures has an excellent compression set, but has a disadvantage in that space charges are easily accumulated due to the material properties showing electronegativity, resulting in a high possibility of dielectric breakdown. EPDM rubber has excellent space charge characteristics compared to silicone rubber, but it has been difficult to use in the manufacture of interconnected structures in the past due to its lack of permanent compression set.
본 명세서에서 EPDM 고무는 에틸렌, 올레핀 및 비공액 디엔계 단량체를 공중합한 중합체, 즉 EP계 고무와 그와 유사한 구조의 공중합체를 의미할 수 있다. 예를 들어, 다양한 EPDM 고무 중 하나를 화학식으로 표현하면 아래 화학식 1과 같이 표현될 수 있다.In the present specification, the EPDM rubber may refer to a polymer obtained by copolymerizing ethylene, olefin, and a non-conjugated diene-based monomer, that is, an EP-based rubber and a copolymer having a structure similar thereto. For example, if one of the various EPDM rubbers is expressed as a chemical formula, it can be expressed as Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2022014924-appb-img-000001
Figure PCTKR2022014924-appb-img-000001
일반적으로 EPDM 고무는 측쇄에 불포화기를 포함하여 내오존성, 내열성, 내산화성, 극성 용매에 대한 저항성이 우수하다고 알려져 있다. 또한 우수한 내수성, 내한성 및 저온 특성을 가지므로 저온에서 유연하고, 넓은 온도 범위에서 반발 탄성이 큰 장점이 있다. 다만, EPDM 고무는 느린 가교속도로 인하여 가공성이 미흡하고, 영구압축줄음율이 부족하며, 광유, 절연유 등의 비극성 용매와 용해도지수가 유사하여 쉽게 팽윤되는 단점이 있다.In general, EPDM rubber is known to have excellent ozone resistance, heat resistance, oxidation resistance, and resistance to polar solvents by including an unsaturated group in its side chain. In addition, since it has excellent water resistance, cold resistance and low temperature characteristics, it has the advantage of being flexible at low temperature and having great rebound elasticity in a wide temperature range. However, EPDM rubber has disadvantages in that it has insufficient processability due to a slow crosslinking rate, lack of permanent compression set, and easily swells due to a similar solubility index to non-polar solvents such as mineral oil and insulating oil.
본 명세서의 고무 조성물은 충진제의 특성을 조절하고, 그 외 성분과의 상호작용을 제어함으로써 전술한 단점을 개선하고, 전력 케이블용 접속구조의 제조 시 필요한 특성을 EPDM 고무 조성물에 부여한 것일 수 있다. 예를 들어, 상기 고무 조성물을 이용하면 PMJ 방식으로 용이하게 중간접속함을 제조할 수 있다.The rubber composition of the present specification may improve the above-mentioned disadvantages by controlling the properties of the filler and controlling the interaction with other components, and impart properties necessary for manufacturing a connection structure for a power cable to the EPDM rubber composition. For example, by using the rubber composition, an intermediate junction box can be easily manufactured in a PMJ method.
상기 EPDM 고무는 우수한 내열성, 내후성, 내오존성 및 탄성을 가지므로 전력 케이블용 접속구조의 절연부 제조에 적합할 수 있다. 이러한 EPDM 고무의 특성은 각 단량체의 종류와 그로부터 유래한 사슬의 비율을 달리하여 조절할 수 있다.Since the EPDM rubber has excellent heat resistance, weather resistance, ozone resistance and elasticity, it may be suitable for manufacturing an insulation part of a connection structure for a power cable. The properties of these EPDM rubbers can be controlled by varying the ratio of the type of each monomer and the chain derived therefrom.
상기 에틸렌 유래 사슬의 비율은 53~65중량%일 수 있고, 예를 들어, 53중량%, 54중량%, 55중량%, 56중량%, 57중량%, 58중량%, 59중량%, 60중량%, 61중량%, 62중량%, 63중량%, 64중량%, 65중량% 또는 이들 중 두 값의 사이 값일 수 있으나, 이에 한정되는 것은 아니다. 상기 에틸렌 단량체 유래 사슬의 비율이 65중량% 초과이면 선형 사슬 비율이 증가해 압축 변형이 크게 되고, 경도가 높아지며, 저온에서의 유연성이 감소할 수 있다. 또한 경도가 높아지고, 저온에서의 유연성이 감소할 수 있다. 반면 상기 에틸렌 유래 사슬의 비율이 53중량% 미만이면 가교제와의 가교점이 부족해져 가교 밀도가 감소하고, 기계적 물성이 저하될 수 있다.The ratio of the ethylene-derived chain may be 53 to 65% by weight, for example, 53% by weight, 54% by weight, 55% by weight, 56% by weight, 57% by weight, 58% by weight, 59% by weight, 60% by weight %, 61% by weight, 62% by weight, 63% by weight, 64% by weight, 65% by weight or a value between these two values, but is not limited thereto. If the ratio of the ethylene monomer-derived chain exceeds 65% by weight, the linear chain ratio increases, resulting in high compression set, high hardness, and reduced flexibility at low temperatures. In addition, hardness may increase and flexibility at low temperatures may decrease. On the other hand, if the ratio of the ethylene-derived chain is less than 53% by weight, crosslinking points with the crosslinking agent may be insufficient, resulting in a decrease in crosslinking density and deterioration in mechanical properties.
상기 올레핀 단량체는 프로필렌, 이소부틸렌, 1-부텐, 1-펜텐, 1-헥센 및 1-옥텐으로 이루어진 군에서 선택된 하나 이상일 수 있다. 상기 올레핀 단량체 유래 사슬의 비율은 35~45중량%일 수 있고, 예를 들어, 35중량%, 36중량%, 37중량%, 38중량%, 39중량%, 40중량%, 41중량%, 42중량%, 43중량%, 44중량%, 45중량% 또는 이들 중 두 값의 사이 값일 수 있으나, 이에 한정되는 것은 아니다. 상기 올레핀 단량체 유래 사슬의 비율이 45중량% 초과이면 가교점이 부족해져 가교밀도가 감소하고, 인장강도가 저하될 수 있다. 상기 올레핀 단량체 유래 사슬의 비율이 35중량% 미만이면 기계적 강도와 내열성이 저하될 수 있다.The olefin monomer may be at least one selected from the group consisting of propylene, isobutylene, 1-butene, 1-pentene, 1-hexene and 1-octene. The ratio of the chain derived from the olefin monomer may be 35 to 45% by weight, for example, 35% by weight, 36% by weight, 37% by weight, 38% by weight, 39% by weight, 40% by weight, 41% by weight, 42% by weight Weight%, 43% by weight, 44% by weight, 45% by weight or may be a value between two of these, but is not limited thereto. If the ratio of the chain derived from the olefin monomer exceeds 45% by weight, the crosslinking density may decrease due to insufficient crosslinking points, and the tensile strength may decrease. If the ratio of the chain derived from the olefin monomer is less than 35% by weight, mechanical strength and heat resistance may be deteriorated.
상기 비공액 디엔계 단량체는 1,4-펜타디엔, 1,4-헥사디엔, 사이클로펜타디엔, 사이클로헥사디엔, 5-에틸리덴-2-노르보넨, 5-부틸리덴-2-노르보넨, 3,7-디메틸-1,6-옥타디엔, 5,7-디메틸-1,6-옥타디엔, 7-메틸-1,6-옥타디엔, 5-메틸-1,4-헥사디엔, 6-메틸-1,5-헵타디엔, 5-(1,5-디메틸-4-헥세닐)-2-노르보넨, 5-(3,5-디메틸-4-헥세닐)2-노르보넨, 5-(5-메틸-4-헥세닐)-2-노르보넨, 5-(4-메틸-3-펜테닐)-2-노르보넨, 5-(3-메틸-2-부테닐)-2-노르보넨, 디시클로펜타디엔 및 5-비닐-2-노르보넨으로 이루어진 군에서 선택된 하나 이상일 수 있다. 상기 비공액 디엔계 단량체는 EPDM 고무에 불포화기를 부여하여 가교점으로 작용할 수 있고, 가교특성을 결정할 수 있다. 상기 비공액 디엔계 단량체 중 5-에틸리덴-2-노르보넨, 디시클로펜타디엔, 1,4-헥사디엔을 예로 들면, 5-에틸리덴-2-노르보넨은 상대적으로 가교속도가 빠르고, 디시클로펜타디엔은 그 반대 특성을 가지며 1,4-헥사디엔은 이들의 중간 정도의 가교특성을 가질 수 있다.The non-conjugated diene monomers include 1,4-pentadiene, 1,4-hexadiene, cyclopentadiene, cyclohexadiene, 5-ethylidene-2-norbornene, 5-butylidene-2-norbornene, 3,7-dimethyl-1,6-octadiene, 5,7-dimethyl-1,6-octadiene, 7-methyl-1,6-octadiene, 5-methyl-1,4-hexadiene, 6- Methyl-1,5-heptadiene, 5-(1,5-dimethyl-4-hexenyl)-2-norbornene, 5-(3,5-dimethyl-4-hexenyl)2-norbornene, 5- (5-methyl-4-hexenyl)-2-norbornene, 5-(4-methyl-3-pentenyl)-2-norbornene, 5-(3-methyl-2-butenyl)-2-nor It may be at least one selected from the group consisting of bonene, dicyclopentadiene and 5-vinyl-2-norbornene. The non-conjugated diene-based monomer may act as a cross-linking point by imparting an unsaturated group to EPDM rubber, and may determine cross-linking characteristics. Taking 5-ethylidene-2-norbornene, dicyclopentadiene, and 1,4-hexadiene among the non-conjugated diene monomers as examples, 5-ethylidene-2-norbornene has a relatively fast crosslinking rate, Clopentadiene has the opposite properties and 1,4-hexadiene may have intermediate crosslinking properties.
상기 비공액 디엔계 단량체 유래 사슬의 함량은 6중량% 이하일 수 있고, 예를 들어, 6중량%, 5.5중량%, 5중량%, 4.5중량%, 4중량%, 3.5중량%, 3중량%, 2.5중량%, 2중량%, 1.5중량%, 1중량%, 0.5중량%, 0.1중량% 또는 이들 중 두 값의 사이 값일 수 있으나, 이에 한정되는 것은 아니다. 상기 비공액 디엔계 단량체 유래 사슬의 함량이 6중량% 초과이면, 반응성이 높은 비공액 디엔계 단량체 유래 부위에 가교제의 라디칼이 먼저 반응을 하게 되고, 이로 인해 가교밀도가 감소하여 탄성이 저하될 수 있다. 그 결과 케이블용 중간접속함 PMJ(Pre-Molded Joint)에서 중요한 영구압축줄음율 상승으로 형상 복원이 불리해지는 문제점이 발생할 수 있다.The content of the chain derived from the non-conjugated diene monomer may be 6% by weight or less, for example, 6% by weight, 5.5% by weight, 5% by weight, 4.5% by weight, 4% by weight, 3.5% by weight, 3% by weight, 2.5% by weight, 2% by weight, 1.5% by weight, 1% by weight, 0.5% by weight, 0.1% by weight or a value between these two values, but is not limited thereto. When the content of the non-conjugated diene monomer-derived chain exceeds 6% by weight, the radical of the cross-linking agent reacts first at the highly reactive non-conjugated diene-based monomer-derived site, thereby reducing the cross-linking density and reducing elasticity. there is. As a result, there may be a problem in that shape restoration is disadvantageous due to an increase in permanent compression set, which is important in the cable junction box PMJ (Pre-Molded Joint).
상기 고무 조성물은 EPDM 고무가 영구압축줄음율, 가공성 등의 기계적 물성이 부족한 점을 개선하며 공간전하 특성을 유지하기 위하여 특정한 충진제를 포함할 수 있다. 상기 충진제의 특성에 따라 전력 케이블용 접속구조의 절연부 제조에 적합한 특성을 부여할 수 있다. The rubber composition may include a specific filler in order to improve EPDM rubber's lack of mechanical properties such as compression set and processability, and to maintain space charge characteristics. Depending on the characteristics of the filler, it is possible to impart characteristics suitable for manufacturing an insulation part of a connection structure for a power cable.
이러한 충진제의 특성은 충진제 입경 및 입경 분포, 입자 형상, 비표면적 등의 물리적 요인과 화합물의 조성, 결정구조, 화합물 간의 조합에 의한 화학적 요인에 따라 달라질 수 있다. 예를 들어, 평균 입경이 작은 충진제를 사용하면 상대적으로 높은 비표면적을 가지므로 중합체와 접촉면적이 증가하고, 그 결과 보강성이 증대될 수 있다. 다른 예로 입자의 형상에 따라 수소 결합, 반데르발스 결합 등의 물리적 결합에 의한 응집력이 증가하면 보강성이 증대될 수 있다. 또다른 예로 충진제 표면에 화학적 활성이 강한 성분이 존재하면 화학적 반응을 촉진하여 보강성이 증대될 수 있다. 또한, 충진제의 입도가 과도하게 크거나 과응집이 발생하면 고무 조성물로 제조한 최종 제품 표면의 평활성이 감소하여 공간전하가 축적될 수 있으므로, 충진제의 분산성 또한 중요한 요소 중 하나일 수 있다.The characteristics of these fillers may vary depending on physical factors such as filler particle size and particle size distribution, particle shape, and specific surface area, and chemical factors such as composition, crystal structure, and combination of compounds. For example, when a filler having a small average particle diameter is used, it has a relatively high specific surface area, so the contact area with the polymer increases, and as a result, reinforcing properties can be increased. As another example, if the cohesive force due to a physical bond such as a hydrogen bond or a van der Waals bond increases depending on the shape of the particle, reinforcing property may be increased. As another example, if a component with strong chemical activity is present on the surface of the filler, a chemical reaction may be accelerated and reinforcing properties may be increased. In addition, if the particle size of the filler is excessively large or if excessive agglomeration occurs, the smoothness of the surface of the final product made of the rubber composition may decrease and space charges may accumulate, so the dispersibility of the filler may also be one of the important factors.
상기 EPDM 고무를 포함하는 절연성 중합체는 카본블랙, 실리콘 화합물 및 칼슘 화합물을 충진제로 포함하고, 구현하고자 하는 특성에 따라 마그네슘 화합물, 알루미늄 화합물, 티타늄 화합물 및 클레이로 이루어진 군에서 선택된 하나 이상의 충진제를 더 포함할 수 있다. 그를 통해 영구압축줄음율, 가공성 등의 물리적 특성과 절연내력 등의 전기적 특성을 전력 케이블용 접속구조에 필요한 수준으로 구현할 수 있다. 또한 상기 충진제는 각각 별도의 성분이거나, 하나의 충진제에 각 성분이 조합된 광물일 수 있다. 일 예시로, 상기 충진제는 산화알루미늄(Al2O3), 산화규소(SiO2) 등의 단일 성분이거나 알루미늄 화합물과 실리콘 화합물을 주성분으로 하는 제올라이트 등의 복합 광물일 수 있다.The insulating polymer including the EPDM rubber includes carbon black, a silicon compound, and a calcium compound as fillers, and further includes one or more fillers selected from the group consisting of magnesium compounds, aluminum compounds, titanium compounds, and clays according to characteristics to be realized. can do. Through this, physical properties such as permanent compression set and processability and electrical properties such as dielectric strength can be implemented at a level required for a connection structure for power cables. In addition, the filler may be a separate component or a mineral in which each component is combined in one filler. As an example, the filler may be a single component such as aluminum oxide (Al 2 O 3 ) or silicon oxide (SiO 2 ) or a complex mineral such as zeolite containing an aluminum compound and a silicon compound as main components.
상기 카본블랙은 흑색의 미세한 탄소분말로, 일반적으로 1~500 nm의 평균 입경을 가지는 성분일 수 있다. 유기 화합물의 연소 내지 열분해를 통해 제조될 수 있고, 카본블랙 입자의 특성에 따라 고무 조성물에 다양한 물성을 부여할 수 있다.The carbon black is black fine carbon powder, and may be a component having an average particle diameter of 1 to 500 nm. It can be produced through combustion or thermal decomposition of organic compounds, and various physical properties can be imparted to the rubber composition according to the characteristics of carbon black particles.
예를 들어, 카본블랙은 HPC(Hard Processing Channel)용 카본블랙, MPC(Medium Processing Channel)용 카본블랙, EPC(Easy Processing Channel)용 카본블랙, CC(Conductive Channel)용 카본블랙, SAF(Super Abrasion Furnace)용 카본블랙, ISAF(Intermediate SAF)용 카본블랙, HAF(High Abrasion Furnace)용 카본블랙, FEF(Fast Extrusion Furnace)용 카본블랙, GPE(General Purpose Furnace)용 카본블랙, SRF(Semi Reinforcing Furnace)용 카본블랙, CF(Conductive Furnace)용 카본블랙, FT(Fine Thermal)용 카본블랙 및 MT(Medium Thermal)용 카본블랙으로 이루어진 군에서 선택된 하나 이상일 수 있다.For example, carbon black includes HPC (Hard Processing Channel) carbon black, MPC (Medium Processing Channel) carbon black, EPC (Easy Processing Channel) carbon black, CC (Conductive Channel) carbon black, SAF (Super Abrasion) Furnace) carbon black, ISAF (Intermediate SAF) carbon black, HAF (High Abrasion Furnace) carbon black, FEF (Fast Extrusion Furnace) carbon black, GPE (General Purpose Furnace) carbon black, SRF (Semi Reinforcing Furnace) ), carbon black for CF (Conductive Furnace), carbon black for FT (Fine Thermal), and carbon black for MT (Medium Thermal).
고무 조성물로 제조되는 최종 제품의 특성에 따라 상기 카본블랙의 특성과 함량을 달리할 수 있다. 예를 들어, 전력 케이블용 접속구조의 절연부 제조 시 절연성 중합체 100중량부를 기준으로 5중량부 이하의 카본블랙을 사용하여 전기적 특성의 저하를 방지하며 색상을 조절하고, 보강성을 부여할 수 있다. 또는 필요에 따라 도전성 카본블랙을 이용하여 전계를 완화함으로써 절연파괴를 방지할 수 있다.The properties and content of the carbon black may vary depending on the characteristics of the final product made of the rubber composition. For example, when manufacturing the insulation of a connection structure for a power cable, 5 parts by weight or less of carbon black is used based on 100 parts by weight of an insulating polymer to prevent deterioration of electrical properties, adjust color, and impart reinforcing properties. . Alternatively, dielectric breakdown can be prevented by mitigating the electric field using conductive carbon black, if necessary.
상기 실리콘 화합물은, 예를 들어, 산화규소 또는 탄화규소일 수 있다. 산화규소는 낮은 전자이동성을 가지며, 내열성과 강도가 우수하여 고무 조성물에 절연 특성을 부여하며 기계적 강도를 개선할 수 있다. 탄화규소는 내열성, 열충격성, 내마모성, 화학적 안정성, 내습성이 우수하며, 낮은 열팽창계수를 가지면서 열전도율이 높고, 영률이 높으면서도 저비중으로 열적 및 기계적 특성이 우수하여 보강성 충진제로 사용될 수 있다. 다만, 상기 탄화규소를 과도하게 많이 첨가하면 최종 제품의 전기적 특성을 저하시킬 수 있어 다른 충진제와 혼합 사용할 수 있다.The silicon compound may be, for example, silicon oxide or silicon carbide. Silicon oxide has low electron mobility and excellent heat resistance and strength, so it can impart insulating properties to rubber compositions and improve mechanical strength. Silicon carbide has excellent heat resistance, thermal shock resistance, abrasion resistance, chemical stability, moisture resistance, low thermal expansion coefficient, high thermal conductivity, high Young's modulus, low specific gravity and excellent thermal and mechanical properties, so it can be used as a reinforcing filler. . However, if the silicon carbide is excessively added, the electrical properties of the final product may be deteriorated, so that it may be used in combination with other fillers.
상기 칼슘 화합물은, 예를 들어, 탄산칼슘일 수 있다. 탄산칼슘은 고무 증량제의 용도로 널리 사용되고 있으나, 과량 첨가 시 고무 조성물의 기계적 특성이 저하될 수 있다. 기계적 특성이 우수한 충진제와 혼합 사용하여 이를 개선할 수 있다.The calcium compound may be, for example, calcium carbonate. Calcium carbonate is widely used as a rubber extender, but mechanical properties of the rubber composition may deteriorate when an excessive amount is added. This can be improved by mixing with a filler with excellent mechanical properties.
상기 마그네슘 화합물은 예를 들어, 산화마그네슘 성분일 수 있다. 산화마그네슘은 화학적으로 안정적이고, 치수안정성, 내수성, 열전도성, 및 전기절연성이 우수하여 고무 조성물에 필요한 수준의 기계적 물성을 부여하면서 공간전하를 억제할 수 있다. 예를 들어, 산화마그네슘은 비저항이 약 1×1017 Ω·cm인 것을 사용할 수 있다. 그 작용기작이 정확히 알려진 것은 아니나, 상기 산화마그네슘과 EPDM 고무 간의 비유전율 차이에 의한 유기 쌍극자 분극이 깊은 트랩 사이트로 작용하여 공간전하 축적을 억제할 수 있다.The magnesium compound may be, for example, a magnesium oxide component. Magnesium oxide is chemically stable and excellent in dimensional stability, water resistance, thermal conductivity, and electrical insulation, so it can suppress space charge while imparting mechanical properties of a required level to a rubber composition. For example, magnesium oxide having a resistivity of about 1×10 17 Ω·cm may be used. Although the mechanism of action is not precisely known, the organic dipole polarization due to the difference in dielectric constant between the magnesium oxide and the EPDM rubber acts as a deep trap site and can suppress space charge accumulation.
다른 일 예로 상기 마그네슘 화합물은 탄산마그네슘일 수 있다. 탄산마그네슘은 절연성, 저비중, 열안정성, 흡습성이 우수하며, 고무 충진제로 사용 시 고무의 강도를 개선하고, 열 방출 속도가 우수할 수 있다. 상기 탄산마그네슘은 염기성으로 약산성을 띠는 EPDM 고무를 중화시켜 분산성을 개선할 수 있다. 상기 탄산마그네슘의 단독 사용시 보강성이 다소 미흡할 수 있으나, 다른 충진제와 혼합 사용하여 이를 개선할 수 있다.As another example, the magnesium compound may be magnesium carbonate. Magnesium carbonate is excellent in insulation, low specific gravity, heat stability, and hygroscopicity, and when used as a rubber filler, it can improve the strength of rubber and have an excellent heat release rate. The magnesium carbonate is basic and can improve dispersibility by neutralizing weakly acidic EPDM rubber. When the magnesium carbonate is used alone, reinforcing properties may be somewhat insufficient, but this can be improved by mixing with other fillers.
상기 알루미늄 화합물은, 예를 들어, 산화알루미늄일 수 있다. 산화알루미늄은 굴곡강도 300~600 MPa, 압축강도 2,000~4,000 MPa, 경도 15~19 GPa인 것을 사용할 수 있다. 상기 산화알루미늄은 보강성, 열전도도, 전기절연성, 내열성, 내부식성, 내마모성, 저밀도, 화학적 안정성이 우수하면서도 저렴한 장점이 있다. 예를 들어, 상기 산화알루미늄은 비저항이 약 1×1014~1×1015 Ω·cm인 것을 사용할 수 있다. 충진제로 산화알루미늄 첨가 시 고무 조성물의 비유전율을 증가시킬 수 있으므로 적정량을 첨가하여 영구압축줄음 특성이 개선된 절연부를 제조할 수 있다.The aluminum compound may be, for example, aluminum oxide. Aluminum oxide can be used that has a flexural strength of 300 to 600 MPa, a compressive strength of 2,000 to 4,000 MPa, and a hardness of 15 to 19 GPa. The aluminum oxide has excellent reinforcing properties, thermal conductivity, electrical insulation properties, heat resistance, corrosion resistance, wear resistance, low density, and chemical stability, while being inexpensive. For example, the aluminum oxide may have a resistivity of about 1×10 14 to 1×10 15 Ω·cm. Since the relative permittivity of the rubber composition can be increased when aluminum oxide is added as a filler, it is possible to manufacture an insulating part with improved compression set characteristics by adding an appropriate amount.
상기 티타늄 화합물은 산화티타늄일 수 있다. 산화티타늄은 전기 절연체이며, 물리화학적으로 매우 안정된 물질로 알려져 있다. 산화티타늄은 균일한 입도를 가져 분산성과 착색력이 우수할 수 있다. 상기 산화티타늄을 충진제로 포함하면 고무 조성물의 비유전율이 증가할 수 있으므로, 적정량을 첨가하여 영구압축줄음 특성이 개선된 절연부를 제조할 수 있다.The titanium compound may be titanium oxide. Titanium oxide is an electrical insulator and is known to be a very stable material physically and chemically. Titanium oxide has a uniform particle size and may have excellent dispersibility and coloring power. Since the relative permittivity of the rubber composition may be increased when the titanium oxide is included as a filler, it is possible to manufacture an insulating part having improved compression set characteristics by adding an appropriate amount.
상기 클레이는 카올린계 클레이, 소프트 클레이, 하드 클레이, 소성 클레이 납석 클레이를 포함할 수 있으나 이에 한정되는 것은 아니다. 입자가 작은 카올린계 클레이는 보강성이 우수한 하드 클레이로서 적용될 수 있다. 소프트 클레이는 비보강성 충진제로 포함될 수 있다. 상기 클레이를 표면처리하여 고분자와 상용성을 개선하여 사용하면 유전 특성, 전기적 안정성 및 내수성 등에 효과적일 수 있다. 클레이는 고무 조성물의 기계적 특성과 표면 특성을 용이하게 개선할 수 있으나, 과량 첨가하면 고무 조성물의 전기적 특성이 저하될 수 있다.The clay may include kaolin-based clay, soft clay, hard clay, calcined clay, and pyrophyllite clay, but is not limited thereto. Kaolin-based clay having small particles can be applied as hard clay having excellent reinforcing properties. Soft clay may be included as a non-reinforcing filler. When the clay is surface-treated to improve compatibility with polymers, dielectric properties, electrical stability, and water resistance may be effective. Clay can easily improve the mechanical properties and surface properties of the rubber composition, but the electrical properties of the rubber composition may be deteriorated when an excessive amount is added.
상기 카올린계 클레이는 천연함수규산알루미늄 광물로, 화학조성은 Al2SiO2(OH)4일 수 있으며, 엽납석을 주성분으로 하고, 카올린 광물인 세리사이트 및 석영을 포함할 수 있다.The kaolin-based clay is a natural hydrous aluminum silicate mineral, and may have a chemical composition of Al 2 SiO 2 (OH) 4 , has pyrophyllite as a main component, and may include sericite and quartz, which are kaolin minerals.
상기 고무 조성물 내 클레이 첨가량이 과도하게 높으면 공간전하 축적량이 증가할 수 있다. 이는 EPDM 고무와 충진제 간의 전기전도도의 및 유전상수의 차이에 의하여 계면 분극 현상이 발생하고, 그 결과 중합체/충진제 계면에 전하가 축적되기 때문일 수 있다. 따라서 상기 클레이의 사용 시 함량 제어가 중요할 수 있다. 예를 들어, 상기 클레이 함량은 상기 중합체 100중량부 기준으로 1~35중량부 일 수 있다.If the amount of clay added in the rubber composition is excessively high, the amount of space charge accumulation may increase. This may be because interfacial polarization occurs due to differences in electrical conductivity and dielectric constant between the EPDM rubber and the filler, and as a result, charges are accumulated at the polymer/filler interface. Therefore, when using the clay, it may be important to control the content. For example, the content of the clay may be 1 to 35 parts by weight based on 100 parts by weight of the polymer.
절연부의 제조에 사용되는 고무 조성물의 경우 EPDM 고무와의 배합이 용이하면서도 압축 특성, 공간전하 특성을 향상시킬 수 있는 소성 충진제를 포함할 수 있다. 예를 들어, 절연부로 제조되는 고무 조성물의 충진제는 산화마그네슘, 산화알루미늄, 산화티타늄, 산화규소, 탄화규소, 탄산칼슘, 탄산마그네슘, 클레이, FEF용 카본블랙, HAF용 카본블랙 및 SRF용 카본블랙으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.In the case of the rubber composition used in the manufacture of the insulating part, it may contain a plastic filler capable of improving compression characteristics and space charge characteristics while being easy to mix with EPDM rubber. For example, the filler of the rubber composition made of the insulating part is magnesium oxide, aluminum oxide, titanium oxide, silicon oxide, silicon carbide, calcium carbonate, magnesium carbonate, clay, carbon black for FEF, carbon black for HAF, and carbon black for SRF. It may be one or more selected from the group consisting of, but is not limited thereto.
전술한 충진제의 종류를 변경하는 것 외에도 상기 고무 조성물은 상기 EPDM 고무에 대한 충진제의 함량을 조절하여 전력 케이블용 접속구조에 필요한 물성을 구현할 수 있다.In addition to changing the type of the above-mentioned filler, the rubber composition can realize physical properties required for a connection structure for a power cable by adjusting the content of the filler in the EPDM rubber.
상기 중합체 100중량부에 대하여, 상기 충진제의 함량은 30~70중량부일 수 있다. 예를 들어, 상기 중합체 100중량부에 대하여 상기 충진제의 함량은 30중량부, 32중량부, 34중량부, 36중량부, 38중량부, 40중량부, 42중량부, 44중량부, 46중량부, 48중량부, 50중량부, 52중량부, 54중량부, 56중량부, 58중량부, 60중량부, 62중량부, 64중량부, 66중량부, 68중량부, 70중량부 또는 이들 중 두 값의 사이 값일 수 있으나 이에 한정되는 것은 아니다. 상기 충진제의 함량에 따라 해머 등을 충돌시켰을 때의 반발력을 측정하는 충격경도 시험기로 측정되는 물성인 쇼어 경도가 달라질 수 있다.Based on 100 parts by weight of the polymer, the content of the filler may be 30 to 70 parts by weight. For example, the content of the filler with respect to 100 parts by weight of the polymer is 30 parts by weight, 32 parts by weight, 34 parts by weight, 36 parts by weight, 38 parts by weight, 40 parts by weight, 42 parts by weight, 44 parts by weight, 46 parts by weight 48 parts, 50 parts, 52 parts, 54 parts, 56 parts, 58 parts, 60 parts, 62 parts, 64 parts, 66 parts, 68 parts, 70 parts, or It may be a value between two of these values, but is not limited thereto. Depending on the content of the filler, Shore hardness, which is a physical property measured by an impact hardness tester that measures the repulsive force when a hammer or the like collides, may vary.
예를 들어, 상기 중합체 100중량부에 대하여 상기 충진제의 함량이 70중량부 초과이면, 쇼어 경도 Hs가 70을 초과할 수 있다. 즉, 과도하게 단단해져 최종 제품의 신장률이 낮아지므로 생산이나 조립 작업 중 외력에 의해 제품이 파열되는 문제가 발생할 수 있다. 상기 충진제 함량이 30중량부 미만이면 쇼어 경도 Hs가 50 미만이 되어 접속재로 사용 시 형상 유지가 어렵고, 인장 강도 등의 기계적 물성이 저하되어 성형성이 열등하여 최종 제품의 제조가 어려울 수 있다.For example, when the content of the filler is greater than 70 parts by weight based on 100 parts by weight of the polymer, the shore hardness Hs may exceed 70. That is, since the elongation rate of the final product is lowered due to excessive hardening, a problem in that the product is ruptured by an external force during production or assembly work may occur. If the content of the filler is less than 30 parts by weight, the shore hardness Hs is less than 50, making it difficult to maintain the shape when used as a connecting material, and it may be difficult to manufacture a final product due to poor formability due to reduced mechanical properties such as tensile strength.
상기 충진제로 알루미늄 화합물을 더 포함하는 경우, 실리콘 화합물을 알루미늄 화합물 또는 칼슘 화합물보다 많이 포함할 수 있다. 예를 들어, 알루미늄 화합물과 칼슘 화합물 총합보다 실리콘 화합물을 더 많이 포함할 수 있다. 또한 알루미늄 화합물을 포함하는 경우, 알루미늄 화합물 및 실리콘 화합물의 함량은 각각 전체 충진제 함량을 기준으로 35~55중량%의 범위를 만족하고, 고무 중합체 함량 총합을 기준으로 이들의 합이 40~60중량%를 만족할 수 있다. 이러한 조건을 만족하면 최종 제품의 영구압축줄음율이 우수할 수 있다.When an aluminum compound is further included as the filler, the silicon compound may be included more than the aluminum compound or the calcium compound. For example, it may contain more silicon compounds than the sum of aluminum compounds and calcium compounds. In addition, when the aluminum compound is included, the content of the aluminum compound and the silicone compound satisfies the range of 35 to 55% by weight based on the total filler content, and the sum of these is 40 to 60% by weight based on the total content of the rubber polymer. can be satisfied. If these conditions are satisfied, the permanent compression set of the final product may be excellent.
상기 충진제로 마그네슘 화합물을 더 포함하면, 충진제 100중량%를 기준으로 칼슘 화합물이 50중량% 이상 포함될 수 있다. 예를 들어, 중합체 100중량%를 기준으로 마그네슘 화합물 1~5중량%와 칼슘 화합물 15~25중량%를 포함할 수 있다. 이러한 조건을 만족하면 공간전하의 축적을 억제하여 절연내력이 우수할 수 있다.When a magnesium compound is further included as the filler, 50% by weight or more of the calcium compound may be included based on 100% by weight of the filler. For example, 1 to 5 wt% of a magnesium compound and 15 to 25 wt% of a calcium compound may be included based on 100 wt% of the polymer. If these conditions are satisfied, the accumulation of space charges can be suppressed and dielectric strength can be excellent.
상기 고무 조성물은 절연성 중합체와 충진제 외 가소제, 가교제, 촉진제, 산호방지제 및 기타 첨가제를 더 포함할 수 있다.The rubber composition may further include a plasticizer, a crosslinking agent, an accelerator, an anticorrosive agent, and other additives in addition to the insulating polymer and the filler.
PMJ 방식의 중간접속함 제조 시 고무 조성물의 가공성이 중요한 요소로 고려될 수 있다. 예를 들어, 사출성형으로 중간접속함의 제조 시 고무 조성물의 흐름성에 따라 가공성이 달라질 수 있다. 상기 중간접속함의 흐름성은 무늬점도(ML1+4, 125°C)로 표현될 수 있다. 일 예로, 상기 고무 조성물은 무늬점도가 15~30일 수 있고, 예를 들어, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 고무 조성물의 무늬점도가 상기 범위를 만족하면 외부 직경이 Φ120 이상, 길이 500mm 이상의 제품의 사출성형에 사용될 수 있다. 상기 고무 조성물의 무늬점도가 15미만이면 기계적 물성, 영구압축줄음율이 저하되어 탄성이 저하될 수 있고, 그 결과 제품이 쉽게 파열될 수 있다. 상기 고무 조성물의 무늬점도가 30초과이면 사출성형 시 흐름성이 미흡하여 작업 시 불량의 원인이 되거나, 냉각 시 시간이 과도하게 소요될 수 있다.Processability of the rubber composition may be considered as an important factor in manufacturing the junction box of the PMJ method. For example, when manufacturing a junction box by injection molding, processability may vary depending on the flowability of the rubber composition. The flowability of the junction box can be expressed as fringe viscosity (ML1+4, 125°C). For example, the rubber composition may have a pattern viscosity of 15 to 30, for example, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 , 30 or a range between two of these values, but is not limited thereto. When the texture viscosity of the rubber composition satisfies the above range, it can be used for injection molding products having an outer diameter of 120 or more and a length of 500 mm or more. If the pattern viscosity of the rubber composition is less than 15, mechanical properties and compression set may decrease, resulting in deterioration in elasticity, and as a result, the product may be easily ruptured. If the rubber composition has a pattern viscosity of more than 30, flowability during injection molding is insufficient, which may cause defects during operation or excessive cooling time may be required.
이와 같은 고무 조성물의 흐름성은 EPDM 고무 자체의 특성과 고무 조성물에 혼합되는 가소제 간의 상호작용에 의하여 정해질 수 있다. 예를 들어, EPDM 고무 중 선형 사슬의 비율이 과도하게 높으면 점도가 증가할 수 있다. 반대로 선형 사슬의 비율이 과도하게 낮으면 기계적 물성이 저하될 수 있다.The flowability of such a rubber composition can be determined by the interaction between the properties of the EPDM rubber itself and the plasticizer mixed in the rubber composition. For example, an excessively high proportion of linear chains in EPDM rubber may increase viscosity. Conversely, if the ratio of linear chains is excessively low, mechanical properties may deteriorate.
상기 고무 조성물이 포함하는 가소제는 EPDM 고무 매트릭스 내부에서 상기 충진제의 분산성을 개선할 수 있다. 고무 조성물의 절연 특성을 저해하지 않는다면 가소제의 종류는 통상적인 EPDM 고무 조성물에 적합한 것을 사용할 수 있다. 예를 들어, 절연부로 제조되는 고무 조성물에는 점도가 높은 가소제를 포함할 수 있다.The plasticizer included in the rubber composition may improve dispersibility of the filler in the EPDM rubber matrix. As long as the insulating properties of the rubber composition are not impaired, the type of plasticizer suitable for conventional EPDM rubber compositions may be used. For example, a plasticizer having high viscosity may be included in a rubber composition made of an insulating part.
상기 가소제는 파라핀계 오일, 나프텐계 오일 및 아로마틱계 오일로 이루어진 군에서 선택된 하나 이상일 수 있으나 이에 한정되는 것은 아니다. 파라핀계 오일 또는 나프텐계 오일은 일반적으로 EPDM 고무와 상용성이 우수하다고 알려져 있다.The plasticizer may be at least one selected from the group consisting of paraffinic oil, naphthenic oil and aromatic oil, but is not limited thereto. Paraffinic oil or naphthenic oil is generally known to have excellent compatibility with EPDM rubber.
상기 중합체 100중량부에 대하여 상기 가소제의 함량은 10~40중량부일 수 있다. 예를 들어, 상기 중합체 100중량부에 대하여, 상기 가소제의 함량은 10중량부, 12중량부, 14중량부, 16중량부, 18중량부, 20중량부, 22중량부, 24중량부, 26중량부, 28중량부, 30중량부, 32중량부, 34중량부, 36중량부, 38중량부, 40중량부 또는 이들 중 두 값의 사이 범위일 수 있으나, 이에 한정되는 것은 아니다. 상기 가소제가 상기 범위를 벗어나는 경우, 중합체와의 배합 시 분산성이 저하되거나, 절연 특성이 저하될 수 있다.The content of the plasticizer may be 10 to 40 parts by weight based on 100 parts by weight of the polymer. For example, with respect to 100 parts by weight of the polymer, the content of the plasticizer is 10 parts by weight, 12 parts by weight, 14 parts by weight, 16 parts by weight, 18 parts by weight, 20 parts by weight, 22 parts by weight, 24 parts by weight, 26 parts by weight Part by weight, 28 parts by weight, 30 parts by weight, 32 parts by weight, 34 parts by weight, 36 parts by weight, 38 parts by weight, 40 parts by weight or a range between the two values thereof, but is not limited thereto. When the plasticizer is out of the above range, dispersibility or insulation properties may be deteriorated when blended with the polymer.
상기 고무 조성물의 기계적 물성과 가공성은 가교제의 특성에 따라 달라질 수 있다. 가교제는 상기 고무 조성물에서 EPDM 고무 간의 3차원 망상 구조가 형성되도록 유도할 수 있다. 이러한 망상 구조가 제조 공정 중에 가해진 열에 의하여 분해되지 않고, 비의도적인 가교 현상인 스코치의 위험이 없으며, 최종 제품의 내구성과 공간전하 특성에 악영향을 주는 것이 아니라면 통상적인 EPDM 고무에 적합한 가교제를 사용할 수 있다. 예를 들어, 금속계 성분을 포함하는 가교제를 사용하는 경우 최종 제품의 공간전하 특성을 저해할 수 있으므로 사용량과 사용양태에 유의가 필요할 수 있다.Mechanical properties and processability of the rubber composition may vary depending on the characteristics of the crosslinking agent. The crosslinking agent may induce the formation of a three-dimensional network structure between EPDM rubbers in the rubber composition. If this network structure is not decomposed by heat applied during the manufacturing process, there is no risk of scorch, which is an unintentional crosslinking phenomenon, and it does not adversely affect the durability and space charge characteristics of the final product, a crosslinking agent suitable for conventional EPDM rubber can be used. there is. For example, when a crosslinking agent containing a metal-based component is used, space charge characteristics of the final product may be impaired, so care may be required in terms of usage and usage.
상기 가교제와 상기 EPDM 고무 내 비공액 디엔계 단량체의 비율에 따라 가교속도 및 가교밀도가 달라질 수 있다. 일반적으로 가교제는 황계 가교제와 과산화물 가교제로 구분될 수 있다. 상기 황계 가교제는 일반적으로 가황이라 불리며, 높은 인장강도 및 인열강도를 부여하여 기계적 물성이 우수하고, 낮은 온도와 압력에서도 성형이 가능한 장점이 있다. 상기 황계 가교제는 테트라메틸티우람 모노술피드, 디메틸-디티오카르바민산 아연 및 디-n-부틸·디티오카르바민산 아연으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.The crosslinking rate and crosslinking density may vary depending on the ratio of the crosslinking agent and the non-conjugated diene-based monomer in the EPDM rubber. In general, the crosslinking agent can be classified into a sulfur-based crosslinking agent and a peroxide crosslinking agent. The sulfur-based crosslinking agent is generally called vulcanization, and has the advantage of providing high tensile strength and tear strength, thus providing excellent mechanical properties and being moldable even at low temperature and pressure. The sulfur-based crosslinking agent may be at least one selected from the group consisting of tetramethylthiuram monosulfide, zinc dimethyl-dithiocarbamate, and zinc di-n-butyl dithiocarbamate, but is not limited thereto.
상기 과산화물 가교는 과산화물계 가교제를 포함하는 가교방식으로, 전기적 및 열적 안정성을 가지고 있으므로 성형 후 열화에 대한 안정성이 절대적으로 중요한 전기절연재료에 적합하게 사용될 수 있다. 상기 과산화물계 가교제는 과산화물(퍼옥사이드)계 일 수 있으며, 예를 들어, 디큐밀 퍼옥사이드, 1, 4-비스[(t-부틸퍼옥시)이소프로필]벤젠, 이소프로필큐밀 t-부틸 퍼옥사이드, t-부틸 큐밀 퍼옥사이드, 디-t-부틸 퍼옥사이드, 2,5-비스(t-부틸퍼옥시)-2,5-디메틸헥산, 2,5-비스(t-부틸퍼옥시)-2,5-디메틸헥산-3, 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산, 이소프로필큐밀 큐밀 퍼옥사이드 및 디(이소프로필큐밀) 퍼옥사이드로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니다. The peroxide crosslinking is a crosslinking method including a peroxide-based crosslinking agent and has electrical and thermal stability, so it can be suitably used for electrical insulating materials in which stability against deterioration after molding is absolutely important. The peroxide-based crosslinking agent may be a peroxide (peroxide)-based, for example, dicumyl peroxide, 1,4-bis [(t-butylperoxy) isopropyl] benzene, isopropylcumyl t-butyl peroxide , t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane, 2,5-bis(t-butylperoxy)-2 In the group consisting of ,5-dimethylhexane-3, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, isopropylcumyl cumyl peroxide and di(isopropylcumyl) peroxide It may be one or more selected, but is not limited thereto.
상기 중합체 100중량부에 대하여 상기 가교제의 함량은 2~4중량부일 수 있다. 예를 들어, 상기 중합체 100중량부에 대하여 상기 가교제의 함량은 2중량부, 2.2중량부, 2.4중량부, 2.6중량부, 2.8중량부, 3.0중량부, 3.2중량부, 3.4중량부, 3.6중량부, 3.8중량부, 4중량부 또는 이들 중 두 값의 사이 범위일 수 있으나, 이에 한정되는 것은 아니다. 상기 중합체 100중량부에 대하여 상기 가교제의 함량이 2중량부 미만이면 가교 밀도가 낮아짐에 따라 본 명세서의 최종 생성물인 중간접속함의 물성 및 탄성이 저하될 수 있다. 상기 가교제 함량이 4중량부를 초과하면 최종 제품인 중간접속함이 과경화되어 내구성이 저하되거나 성형기에 과도한 부하가 발생하여 최종 제품의 외관이 불량할 수 있다.The content of the crosslinking agent may be 2 to 4 parts by weight based on 100 parts by weight of the polymer. For example, the content of the crosslinking agent with respect to 100 parts by weight of the polymer is 2 parts by weight, 2.2 parts by weight, 2.4 parts by weight, 2.6 parts by weight, 2.8 parts by weight, 3.0 parts by weight, 3.2 parts by weight, 3.4 parts by weight, 3.6 parts by weight. It may be part, 3.8 parts by weight, 4 parts by weight or a range between two of these values, but is not limited thereto. If the content of the crosslinking agent is less than 2 parts by weight with respect to 100 parts by weight of the polymer, the physical properties and elasticity of the junction box, which is the final product of the present specification, may be lowered as the crosslinking density is lowered. If the content of the crosslinking agent exceeds 4 parts by weight, the intermediate junction box, which is the final product, may be overcured, resulting in a decrease in durability or an excessive load on the molding machine, resulting in poor appearance of the final product.
상기 가교제의 가교반응은 촉진제에 의하여 개시될 수 있다. 상기 촉진제는 전술한 중간접속함에 필요한 특성을 저해하지 않는다면 통상의 가교조제를 사용할 수 있다. 통상의 가교조제 중에서 내열노화성이 우수하고, 압축회복 특성의 향상 효과와 스코치성이 적어 장시간 가교에 적합한 것을 선택할 수 있다. 예를 들어, 상기 촉진제는 비닐 화합물, 아크릴 화합물, 알릴 화합물 및 아미노 화합물로 이루어진 군에서 선택될 수 있으며, 구체적으로 아크릴레이트(Acrylates), 메타아크릴레이트(Methacrylates), 비닐에테르(Vinylesters), 트리알릴 시아누레이트(TAC: Triallyl Cyanurate) 및 트리알릴 이소시아누레이트(TAIC: Triallyl Isocyanurate)로 이루어진 군에서 선택된 하나 이상일 수 있으나 이에 한정되는 것은 아니다.The crosslinking reaction of the crosslinking agent may be initiated by an accelerator. As the accelerator, a conventional cross-linking aid may be used as long as it does not impair the properties required for the junction box described above. Among conventional crosslinking aids, those that are excellent in heat aging resistance, improve compressive recovery properties and have little scorch property and are suitable for long-term crosslinking can be selected. For example, the accelerator may be selected from the group consisting of vinyl compounds, acrylic compounds, allyl compounds and amino compounds, specifically acrylates, methacrylates, vinyl ethers, triallyl It may be at least one selected from the group consisting of cyanurate (TAC: Triallyl Cyanurate) and triallyl isocyanurate (TAIC: Triallyl Isocyanurate), but is not limited thereto.
상기 중합체 100중량부에 대하여 상기 촉진제 함량은 3~10중량부일 수 있다. 예를 들어, 상기 중합체 100중량부에 대하여 상기 촉진제이 함량은 3중량부, 4중량부, 5중량부, 6중량부, 7중량부, 8중량부, 9중량부, 10중량부 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다.The accelerator content may be 3 to 10 parts by weight based on 100 parts by weight of the polymer. For example, with respect to 100 parts by weight of the polymer, the content of the accelerator is 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by weight, 9 parts by weight, 10 parts by weight or two of these. It may be a range between the values, but is not limited thereto.
상기 고무 조성물은 장기간 물성 유지를 위하여 산화방지제를 포함할 수 있다. 산화방지제는 장기간 열화에 의하여 고무 제품이 경화, 연화, 점착화되거나, 균열 발생하거나 탄성이 상실되는 현상을 방지할 수 있는 것은 통상의 것을 사용할 수 있다. 상기 산화방지제는 상기 가교제의 가교반응 진행에 영향이 적고, 내열노화성의 개선효과가 있는 것을 포함할 수 있다. 예를 들어, 상기 산화방지제는 아민계, 페놀계, 퀴놀린계, 금속계, 포스파이트계 및 이미다졸계로 이루어진 군에서 선택된 하나 이상일 수 있다. 일 예시로, 상기 산화방지제는 비금속계 산화방지제와 금속계 산화방지제를 동시에 포함할 수 있다. 비금속계 산화방지제와 금속계 산화방지제는 각각 2~3 : 4~6의 중량비로 포함될 수 있다. 이러한 비율로 산화방지제를 포함하면 노화에 대한 저항성을 가지면서도 기계적 물성 저하 및 가교 지연 현상을 억제할 수 있다.The rubber composition may include an antioxidant to maintain physical properties for a long period of time. Antioxidants that can prevent hardening, softening, tackiness, cracking, or loss of elasticity of rubber products due to long-term deterioration can be used. The antioxidant may include one that has little effect on the progress of the crosslinking reaction of the crosslinking agent and has an effect of improving heat aging resistance. For example, the antioxidant may be at least one selected from the group consisting of amine-based, phenol-based, quinoline-based, metal-based, phosphite-based, and imidazole-based. As an example, the antioxidant may include a non-metal-based antioxidant and a metal-based antioxidant at the same time. The non-metallic antioxidant and the metal-based antioxidant may be included in a weight ratio of 2 to 3:4 to 6, respectively. When the antioxidant is included in such a ratio, it is possible to suppress deterioration of mechanical properties and delay in crosslinking while having resistance to aging.
일 예시로, 상기 산화방지제는 4,4-비스-알파-디메틸벤질-페닐아민(4,4-Bis(alpha-dimethylbenzyl)diphenyl amine), 2,6-비스-알파-메틸벤질-4-메틸페놀(2,6 Bis(alpha-methylbenzyl)-4-methylphenol), 알킬레이티드 디페닐아민(alkylated diphenylamine), 옥틸레이티드 디페닐아민(octylated diphenyl amine), 2-머캅토톨루 이미다졸(2-mercaptotolylimidazole) 및 아연화 2-머캅토톨루이미다졸(Zn(2-mercaptotolylimidazole) 2)로 이루어진 군에서 선택된 하나 이상일 수 있다.As an example, the antioxidant is 4,4-bis-alpha-dimethylbenzyl-phenylamine (4,4-Bis (alpha-dimethylbenzyl) diphenyl amine), 2,6-bis-alpha-methylbenzyl-4-methyl Phenol (2,6 Bis(alpha-methylbenzyl)-4-methylphenol), alkylated diphenylamine, octylated diphenyl amine, 2-mercaptotoluimidazole (2- mercaptotolylimidazole) and zincated 2-mercaptotoluimidazole (Zn(2-mercaptotolylimidazole) 2).
상기 중합체 100중량부에 대하여 상기 산화방지제의 함량은 6~8중량부일 수 있다. 예를 들어, 상기 중합체 100중량부에 대하여 상기 산화방지제의 함량은 6중량부, 6.2중량부, 6.4중량부, 6.6중량부, 6.8중량부, 7.0중량부, 7.2중량부, 7.4중량부, 7.6중량부, 7.8중량부, 8.0중량부 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다. 상기 중합체 100중량부에 대하여 상기 산화방지제의 함량이 6중량부 미만이면 노화에 대한 저항성이 저하될 수 있다. 상기 산화방지제의 함량이 8중량부 초과이면 기계적 물성 저하 내지 가교 지연 현상이 발생할 수 있다.The content of the antioxidant may be 6 to 8 parts by weight based on 100 parts by weight of the polymer. For example, the content of the antioxidant with respect to 100 parts by weight of the polymer is 6 parts by weight, 6.2 parts by weight, 6.4 parts by weight, 6.6 parts by weight, 6.8 parts by weight, 7.0 parts by weight, 7.2 parts by weight, 7.4 parts by weight, 7.6 parts by weight. It may be parts by weight, 7.8 parts by weight, 8.0 parts by weight or a range between two values thereof, but is not limited thereto. If the content of the antioxidant is less than 6 parts by weight based on 100 parts by weight of the polymer, resistance to aging may be lowered. If the content of the antioxidant is greater than 8 parts by weight, mechanical property degradation or crosslinking delay may occur.
상기 고무 조성물은 중간접속함에 필요한 특성을 저하시키지 않는 것이라면 다양한 기타 첨가제를 더 포함할 수 있다. 예를 들어, 보관, 성형 중에 수분을 흡수하여 장기간 안정성을 개선하기 위한 흡습제 내지 수산제를 더 포함할 수 있다. 상기 고무 조성물은 기타 첨가제로 각 성분의 분산성을 개선하는 분산제를 더 포함할 수 있다. 상기 고무 조성물은 기타 첨가제로 성형 후 주형의 분리가 용이하도록 이형제를 더 포함할 수 있다.The rubber composition may further include various other additives as long as they do not degrade properties required for interconnection boxes. For example, a moisture absorbent or a water-dispersing agent may be further included to improve long-term stability by absorbing moisture during storage and molding. The rubber composition may further include a dispersant for improving the dispersibility of each component as other additives. The rubber composition may further include a release agent to facilitate separation of the mold after molding with other additives.
상기 흡습제 내지 수산제는 형상, 치수 내지 밀도 조정을 용이하게 하면서 전술한 중간접속함에 필요한 특성을 유지할 수 있다면 통상의 것을 사용할 수 있다. 예를 들어, 상기 흡습제는 산화마그네슘(MgO), 산화칼슘(CaO) 및 이들의 혼합물 중에서 선택된 하나일 수 있다.Conventional ones may be used as long as the moisture absorbent or oxalic agent can maintain the properties necessary for the above-described interconnect box while facilitating adjustment of shape, size, or density. For example, the moisture absorbent may be one selected from magnesium oxide (MgO), calcium oxide (CaO), and mixtures thereof.
상기 이형제 내지 분산제는 각각 지방산 에스테르, 지방산 금속염, 지방산 알코올, 지방산 아마이드 및 유기실리콘으로 이루어진 군에서 선택된 하나 이상일 수 있다. 예를 들어, 기타 첨가제로 실란 커플링제를 1차로 첨가하고, 상기 이형제 내지 분산제를 2차로 첨가하여 고무 조성물의 물성과 분산성을 개선할 수 있다. 상기 이형제 내지 분산제는 내부 활제로 기능하여 고무 조성물의 흐름성 및 표면 특성을 개선하거나, 배합 고무의 재응집을 방지하여 점도 상승을 억제할 수 있다.The release agent or dispersant may be one or more selected from the group consisting of fatty acid esters, fatty acid metal salts, fatty alcohols, fatty acid amides, and organosilicon, respectively. For example, as other additives, the physical properties and dispersibility of the rubber composition may be improved by firstly adding a silane coupling agent and secondarily adding the release agent or dispersing agent. The release agent or dispersant may function as an internal lubricant to improve flowability and surface properties of the rubber composition, or prevent reagglomeration of compounded rubber to suppress an increase in viscosity.
상기 중합체 100중량부에 대하여 상기 기타 첨가제의 함량은 1~10중량부일 수 있다. 예를 들어, 상기 중합체 100중량부에 대하여 상기 기타 첨가제의 함량은 1중량부, 2중량부, 3중량부, 4중량부, 5중량부, 6중량부, 7중량부, 8중량부, 9중량부, 10중량부 또는 이들 중 두 값의 사이 범위일 수 있으나 이에 한정되는 것은 아니다.The content of the other additives may be 1 to 10 parts by weight based on 100 parts by weight of the polymer. For example, the content of the other additives with respect to 100 parts by weight of the polymer is 1 part by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight, 7 parts by weight, 8 parts by weight, 9 parts by weight It may be parts by weight, 10 parts by weight, or a range between two of these values, but is not limited thereto.
상기 고무 조성물이 절연부로 적용되는 경우 교류 20 kV/mm이상, 직류 70 kV/mm이상의 절연파괴강도를 가질 수 있다. 상기 절연파괴강도는 본 명세서의 실시예에 따른 방법으로 측정될 수 있다.When the rubber composition is applied as an insulating part, it may have a dielectric breakdown strength of 20 kV/mm or more of alternating current and 70 kV/mm or more of direct current. The dielectric breakdown strength may be measured by a method according to an embodiment of the present specification.
전력 케이블용 접속구조Connection structure for power cable
본 명세서의 다른 일 측면에 따른 전력 케이블용 접속구조는 절연부를 포함하는 것으로, 상기 절연부가 전술한 고무 조성물로 제조된 것일 수 있다.A connection structure for a power cable according to another aspect of the present specification includes an insulator, and the insulator may be made of the rubber composition described above.
일 예시로 상기 전력 케이블용 접속구조는 직류 송전 케이블용 중간접속함(Direct Current Pre-Molded Joint; DC PMJ), 직류 송전 케이블용 중간접속함(Direct Current Pre-fabricated Joint; DC PJ), 교류 송전 케이블용 중간접속함(Alternative Current Pre-Molded Joint; AC PMJ), 교류 송전 케이블용 중간접속함(Alternative Current Pre-fabricated Joint; AC PJ), 직류 송전 케이블용 종단접속구조의 스트레스콘(DC Stress relief cone), 교류 송전 케이블용 종단접속구조의 스트레스콘(AC Stress relief cone)으로 이루어진 군에서 선택된 하나일 수 있으나, 이에 한정되는 것은 아니다.As an example, the connection structure for the power cable includes a direct current pre-molded joint (DC PMJ), a direct current pre-fabricated joint (DC PJ), and an AC power transmission cable. Alternative Current Pre-Molded Joint (AC PMJ), Alternative Current Pre-fabricated Joint (AC PJ), DC Stress Relief cone), and may be one selected from the group consisting of an AC stress relief cone of a termination connection structure for an AC power transmission cable, but is not limited thereto.
상기 고무 조성물은 EPDM 고무를 포함하면서 특정한 충진제를 조합하여 다양한 종류의 전력 케이블용 접속구조로 사용될 수 있다. 접속구조를 상기 고무 조성물로 제조함에 따라 압축강도, 압축회복특성이 우수하면서도 장시간 가동 시의 공간전하 축적이 억제될 수 있다.The rubber composition may be used as a connection structure for various types of power cables by combining EPDM rubber and a specific filler. As the connection structure is made of the rubber composition, compression strength and compression recovery characteristics are excellent, and space charge accumulation during long-term operation can be suppressed.
도 1 및 도 2는 이러한 전력 케이블용 접속구조의 예시를 도시한 것이다. 예를 들어, 도 1은 직류 송전 케이블용 중간접속함(DC PMJ, 100)의 형태를 도시한 것으로, 절연부(110), 외부 반도전부(120), 고압전극(130), 차폐전극(140) 등의 구조를 포함할 수 있다. 도 2는 스트레스콘(200)의 형태를 도시한 것으로, 절연부(210)와 반도전부(220) 등의 구조를 포함할 수 있다. 이러한 구조 중 절연부를 상기 고무 조성물로 제조할 수 있다.1 and 2 show an example of a connection structure for such a power cable. For example, FIG. 1 shows the form of a junction box (DC PMJ, 100) for a DC transmission cable, and includes an insulation part 110, an external semi-conductive part 120, a high-voltage electrode 130, and a shielding electrode 140. ) and the like. FIG. 2 shows the shape of the stress cone 200, and may include structures such as an insulating part 210 and a semiconducting part 220. Among these structures, the insulating portion may be made of the rubber composition.
이하, 본 명세서의 실시예에 관하여 더욱 상세히 설명하기로 한다. 다만, 이하의 실험 결과는 상기 실시예 중 대표적인 실험 결과만을 기재한 것이며, 실시예 등에 의해 본 명세서의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 아래에서 명시적으로 제시하지 않은 본 명세서의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.Hereinafter, the embodiments of the present specification will be described in more detail. However, the following experimental results are only representative experimental results among the above examples, and cannot be interpreted as the scope and contents of the present specification are reduced or limited by the examples. Each effect of the various embodiments of the present specification that is not explicitly presented below is to be described in detail in the corresponding section.
실시예 1 - 고무 조성물Example 1 - rubber composition
각 실시예를 하기 표 1에 기재된 EPDM 고무, 충진제, 가소제, 촉진제, 산화방지제 및 기타 첨가제를 하기 표 1에 기재된 조성비로 CMB(Carbon Master Batch) 혼련을 실시하였다. 그 후, 가교제를 하기 표 1에 기재된 조성비로 FMB(Full Master Batch) 혼련한 후, 압출 스트레이너 필터링을 실시하여 금속을 포함한 이물을 제거하고, 롤 형식의 비닐 포장 방식을 채택해 2차 이물 투입을 예방하여 절연부 고무 조성물을 제조하였다.For each example, EPDM rubber, filler, plasticizer, accelerator, antioxidant and other additives listed in Table 1 were kneaded in CMB (Carbon Master Batch) at the composition ratio shown in Table 1 below. After that, FMB (Full Master Batch) kneading of the crosslinking agent in the composition ratio shown in Table 1 below, followed by extrusion strainer filtering to remove foreign matter including metal, and adopting a roll-type vinyl packaging method to inject secondary foreign matter Insulation rubber composition was prepared by preventing.
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5
EPDM 고무 EPDM rubber 100100 100100 100100 100100 100100
충진제filler 카본블랙carbon black 1.51.5 44 44 1.51.5 44
Al계Al-based 22.522.5 22.522.5 -- -- --
Si계Si based 27.527.5 27.527.5 7.57.5 7.57.5 1.51.5
Mg계Mg-based -- -- 44 44 --
Ca계Ca-based 1.51.5 1.51.5 17.517.5 17.517.5 32.532.5
Ti계Ti-based 1.51.5 1.51.5 -- 7.57.5 --
Pb계Pb-based -- -- -- -- 44
가소제plasticizer 1515 1515 1212 1212 1515
가교제cross-linking agent 33 33 22 22 22
촉진제accelerant 33 33 33 55 55
산화방지제antioxidant 88 88 77 77 77
기타 첨가제Other Additives 66 66 88 33 33
카본블랙: HAF, FEF
Al계: 산화알루미늄
Si계: 탄화규소
Mg계: 산화마그네슘
Ca계: 탄산칼슘
Ti계: 산화티타늄
Pb계: 납석클레이
Carbon Black: HAF, FEF
Al-based: aluminum oxide
Si-based: silicon carbide
Mg-based: magnesium oxide
Ca-based: calcium carbonate
Ti system: titanium oxide
Pb-based: pyrophyllite clay
[함량(중량부)][Amount (parts by weight)]
실험예 1Experimental Example 1
상기 실시예 및 비교예의 고무 조성물을 시트로 제작하여 전기적 특성 및 기계적 특성에 대하여 각각 하기 방법에 따라 항목 테스트를 수행하였고, 그 결과를 하기의 표 2 및 3에 나타내었다.The rubber compositions of Examples and Comparative Examples were made into sheets, and electrical and mechanical properties were tested according to the following methods, respectively, and the results are shown in Tables 2 and 3 below.
- 시트 제작 방법- How to make a sheet
고무 조성물의 밀도(1.12 ~ 1.14 g/mL)를 고려하여 적당량을 계량 후, 몰드와 함께 170℃에 맞춰진 프레스기에 넣어 40bar의 압력을 가한다. 20분 후 프레스기에서 꺼내어 상온에서 냉각함으로써 특정 두께를 갖는 EPDM 시트를 얻을 수 있다. 각 평가 항목별로 요구되는 시편의 두께는 하기 표 2와 같다.After weighing an appropriate amount in consideration of the density (1.12 to 1.14 g/mL) of the rubber composition, put the mold together with a press set at 170° C. and apply a pressure of 40 bar. An EPDM sheet having a specific thickness can be obtained by taking it out of the press after 20 minutes and cooling it at room temperature. The thickness of the specimen required for each evaluation item is shown in Table 2 below.
구분division 시편의 두께thickness of specimen
상온/고온 인장, 신율, 체적저항, 유전율Normal/high temperature tensile, elongation, volume resistivity, permittivity 1.0mm1.0mm
상온/고온 DC, 전계효과계수(공간전하)Normal/high temperature DC, field effect coefficient (space charge) 0.5 ~ 1.0mm0.5 to 1.0 mm
상온/고온 DC, 전계효과계수(공간전하)Normal/high temperature DC, field effect coefficient (space charge) 0.3mm0.3mm
경도(shore A), 영구압축줄음율Hardness (shore A), permanent compression set 12.0mm12.0mm
-체적저항: 지름 10cm의 원형, 두께 1.0mm의 시트를 온도 제어가 가능한 챔버 내 전극 사이에 넣고, 500V/mm의 전압을 30분 이상 인가하여 안정화되었을 때의 저항 값을 읽는다. 상온 시험은 25℃의 대기습도 하에서 수행하며, 고온 시험은 90℃의 대기 습도 하에서 수행한다.-Volume resistance: A circular sheet with a diameter of 10 cm and a thickness of 1.0 mm is placed between electrodes in a temperature controllable chamber, and a voltage of 500 V/mm is applied for more than 30 minutes to read the resistance value when it is stabilized. The room temperature test is performed under an atmospheric humidity of 25 ° C, and the high-temperature test is performed under an atmospheric humidity of 90 ° C.
-전계효과계수(공간전하): 두께 0.3mm의 시트를 온도 제어가 가능한 챔버 내 전극 사이에 넣고, 10~30kV/mm의 전압을 1시간 이상 인가하여 전하 축적에 대한 거동을 평가한다. 상온 시험은 25℃에서 수행하며, 고온 시험은 70℃에서 수행한다.-Field effect coefficient (space charge): A sheet with a thickness of 0.3 mm is placed between electrodes in a temperature controllable chamber, and a voltage of 10 to 30 kV/mm is applied for more than 1 hour to evaluate the charge accumulation behavior. The room temperature test is performed at 25°C, and the high temperature test is performed at 70°C.
-절연파괴시험(AC, DC, Impulse): AC와 Impulse 절연파괴시험의 경우에는 두께 0.5 ~ 1.0mm, DC 절연파괴시험의 경우에는 두께 0.3mm의 시트로 평가하며, 각 시트를 25℃ 점도 50 cP의 실리콘 오일로 채운 수조 내 구형 전극 사이에 물린 후 저전압에서부터 시작하여 점차 전압을 높임으로써 절연파괴가 발생하는 시점의 전압을 측정한다. 동일 자재에 대하여 10회 이상 측정한 값의 평균값을 그 자재의 절연내력으로 한다.- Dielectric breakdown test (AC, DC, Impulse): In the case of AC and Impulse dielectric breakdown test, the thickness is 0.5 ~ 1.0mm, in the case of DC dielectric breakdown test, the thickness is 0.3mm. After being bitten between the spherical electrodes in a water tank filled with cP silicone oil, the voltage at the time of dielectric breakdown is measured by gradually increasing the voltage starting from a low voltage. The average value of the values measured more than 10 times for the same material is the dielectric strength of the material.
-유전율 & 유전정접: 규격 ASTM D150, IEC 62631의 2-1에 따라 두께 1.0mm의 시트를 온도 제어가 가능한 챔버 내 전극 사이에 넣고, 60Hz의 주파수로 10회 측정한 평균값을 그 자재에 대한 유전특성으로 한다.-Permittivity & dielectric loss tangent: In accordance with 2-1 of ASTM D150 and IEC 62631, a sheet with a thickness of 1.0mm is placed between electrodes in a temperature-controllable chamber, and the average value measured 10 times at a frequency of 60Hz is the dielectric for the material make it a characteristic
-영구압축줄음율: 규격 KS M6518에 따라 지름 9.5mm, 두께 12.0mm의 원기둥형 시험편을 제작 가능한 형틀을 이용하여 시트 제작 조건과 동일 조건으로 시험편을 제작한다. 강판 재질로 만들어진 압축 장치를 이용하여 시험편을 압축한 후, 70℃ 오븐에서 22시간 동안 열처리한다. 열처리가 끝나면 압축 장치를 꺼내 압축 외력을 제거하여 시험편을 꺼내 실온에서 30분 냉각하고, 두께를 측정하여 하기의 식에 따라 영구압축줄음율을 계산한다. 동일 자재에 대하여 3개 이상의 시험편을 평가한 평균값을 그 자재에 대한 영구압축줄음율로 한다. (스페이서 두께: 9.52mm)-Permanent compression set: According to the standard KS M6518, a test piece is manufactured under the same conditions as the sheet production conditions using a mold that can produce a cylindrical test piece with a diameter of 9.5 mm and a thickness of 12.0 mm. After compressing the test piece using a compression device made of steel plate material, heat treatment is performed in an oven at 70 ° C for 22 hours. After the heat treatment, take out the compression device, remove the compression force, take out the test piece, cool it at room temperature for 30 minutes, measure the thickness, and calculate the permanent compression set according to the following formula. The average value obtained by evaluating three or more test pieces for the same material is taken as the permanent compression set for that material. (spacer thickness: 9.52mm)
[계산식][formula]
Figure PCTKR2022014924-appb-img-000002
Figure PCTKR2022014924-appb-img-000002
-경도(shore A): 상기 영구압축줄음율 시험과 동일한 시편을 이용하여 3회 측정한 평균값을 그 자재에 대한 경도로 한다.-Hardness (shore A): The average value measured three times using the same specimen as in the permanent compression set test is used as the hardness of the material.
-인장강도(신율): 두께 1.0mm 시트를 이용하여 KS M6518에서 규정하는 아령형 4호의 시편으로 컷팅하여 측정한다. 200mm/min의 인장 속도로 시편 파단 시까지 지속하며, 자재마다 5회 측정한 평균값을 그 자재에 대한 인장강도-신율 값으로 한다. 상온 측정 시에는 열적, 기계적 응력 완화를 위하여 시트 제작 1일 후 인장강도와 신율을 측정하고, 고온 측정 시에는 100℃ 오븐에서 96시간 열화 후 꺼내어 상온에서 1일 냉각 후 인장강도와 신율을 측정한다.-Tensile strength (elongation): Using a sheet with a thickness of 1.0 mm, it is measured by cutting it with a dumbbell-type No. 4 specimen specified in KS M6518. It continues until specimen fracture at a tensile speed of 200 mm/min, and the average value measured 5 times for each material is taken as the tensile strength-elongation value for that material. When measuring at room temperature, measure the tensile strength and elongation after 1 day of sheet production to relieve thermal and mechanical stress. When measuring at high temperature, measure tensile strength and elongation after deteriorating in an oven at 100℃ for 96 hours, take it out, and cool for 1 day at room temperature. .
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2
상온 비저항normal temperature resistivity Ω·cmΩ cm 1.8×1017 1.8×10 17 2.7×1017 2.7×10 17 3.1×1017 3.1×10 17 8.2×1016 8.2×10 16 2.6×1017 2.6×10 17
고온 비저항high temperature resistivity Ω·cmΩ cm 1.7×1017 1.7×10 17 4.3×1016 4.3×10 16 6.7×1016 6.7×10 16 3.3×1016 3.3×10 16 1.3×1016 1.3×10 16
상온 ACroom temperature AC kV/mmkV/mm 4141 3636 3636 3838 3939
고온 AChigh temperature AC kV/mmkV/mm 4141 3737 3535 3737 3535
상온 DCroom temperature DC kV/mmkV/mm 9191 9595 129129 8282 7878
고온 DChigh temperature DC kV/mmkV/mm 8989 9191 116116 6666 6262
상온 Impulseroom temperature impulse kV/mmkV/mm 7171 5858 6464 5858 6363
상온 유전율room temperature permittivity -- 2.422.42 2.332.33 2.882.88 1.721.72 2.922.92
고온 유전율high temperature permittivity -- 2.412.41 2.272.27 2.852.85 1.661.66 2.872.87
상온 유전정접room temperature dielectric loss tangent -- 0.0040.004 0.0040.004 0.0050.005 0.0080.008 0.0050.005
고온 유전정접high temperature dielectric loss tangent -- 0.0060.006 0.0150.015 0.0100.010 0.0210.021 0.0080.008
영구압축줄음율permanent compression set %% 1313 1212 2525 2424 2424
Shore AShore A -- 5555 5353 4949 4747 4949
상온인장강도room temperature tensile strength MPaMPa 6.26.2 5.45.4 3.53.5 3.13.1 7.87.8
고온인장강도high temperature tensile strength MPaMPa 6.56.5 5.55.5 3.13.1 2.92.9 7.07.0
상온인장신율room temperature tensile elongation %% 560560 550550 500500 570570 792792
고온인장신율high temperature tensile elongation %% 588588 578578 442442 515515 736736
표 3을 참고하면, 절연성 중합체(EPDM)에 Al계, Si계, Ti계 충진제를 포함하여 제조된 실시예 1, 2의 시편은 절연내력이 우수하면서 영구압축줄음율과 인장강도 등의 기계적 물성이 현저히 우수하였다. Ca계 충진제를 사용한 실시예 3은 상온 및 고온에서의 DC 절연파괴시험 결과로부터 절연내력이 현저히 우수한 것을 확인할 수 있다. 따라서 이들은 공간전하의 축적을 통한 전계 왜곡문제를 극복하여 절연부로서 용이하게 사용할 수 있다.Referring to Table 3, the specimens of Examples 1 and 2 prepared by including Al-, Si-, and Ti-based fillers in the insulating polymer (EPDM) had excellent dielectric strength and mechanical properties such as permanent compression set and tensile strength. This was remarkably excellent. In Example 3 using the Ca-based filler, it can be confirmed that the dielectric strength is remarkably excellent from the DC dielectric breakdown test results at room temperature and high temperature. Therefore, they can be easily used as an insulator by overcoming the electric field distortion problem through the accumulation of space charges.
전술한 본 명세서의 설명은 예시를 위한 것이며, 본 명세서의 일 측면이 속하는 기술분야의 통상의 지식을 가진 자는 본 명세서에 기재된 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present specification is for illustrative purposes, and those skilled in the art to which one aspect of the present specification pertains can easily be modified into other specific forms without changing the technical spirit or essential features described in the present specification. you will be able to understand Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 명세서의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 명세서의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present specification is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present specification.

Claims (10)

  1. EPDM 고무를 포함하는 절연성 중합체;insulating polymers including EPDM rubber;
    카본블랙, 실리콘 화합물 및 칼슘 화합물을 포함하고, 마그네슘 화합물, 알루미늄 화합물, 티타늄 화합물 및 클레이로 이루어진 군에서 선택된 하나 이상을 더 포함하는 충진제;a filler including carbon black, a silicon compound, and a calcium compound, and further including at least one selected from the group consisting of a magnesium compound, an aluminum compound, a titanium compound, and clay;
    가소제;plasticizer;
    가교제;cross-linking agent;
    촉진제;accelerant;
    산화방지제; 및antioxidants; and
    기타 첨가제를 포함하는, 고무 조성물.A rubber composition comprising other additives.
  2. 제1항에 있어서,According to claim 1,
    상기 중합체 100중량부에 대하여,With respect to 100 parts by weight of the polymer,
    상기 충진제 30~70중량부;30 to 70 parts by weight of the filler;
    상기 가소제 10~40중량부;10 to 40 parts by weight of the plasticizer;
    상기 가교제 2~4중량부;2 to 4 parts by weight of the crosslinking agent;
    상기 촉진제 3~10중량부;3 to 10 parts by weight of the accelerator;
    상기 산화방지제 6~8중량부; 및 6 to 8 parts by weight of the antioxidant; and
    상기 기타 첨가제 1~10중량부를 포함하는, 고무 조성물.A rubber composition comprising 1 to 10 parts by weight of the other additives.
  3. 제1항에 있어서,According to claim 1,
    상기 카본블랙은 HPC(Hard Processing Channel)용 카본블랙, MPC(Medium Processing Channel)용 카본블랙, EPC(Easy Processing Channel)용 카본블랙, CC(Conductive Channel)용 카본블랙, SAF(Super Abrasion Furnace)용 카본블랙, ISAF(Intermediate SAF)용 카본블랙, HAF(High Abrasion Furnace)용 카본블랙, FEF(Fast Extrusion Furnace)용 카본블랙, GPE(General Purpose Furnace)용 카본블랙, SRF(Semi Reinforcing Furnace)용 카본블랙, CF(Conductive Furnace)용 카본블랙, FT(Fine Thermal)용 카본블랙 및 MT(Medium Thermal)용 카본블랙으로 이루어진 군에서 선택된 하나 이상인, 고무 조성물.The carbon black is HPC (Hard Processing Channel) carbon black, MPC (Medium Processing Channel) carbon black, EPC (Easy Processing Channel) carbon black, CC (Conductive Channel) carbon black, SAF (Super Abrasion Furnace) carbon black Carbon black, ISAF (Intermediate SAF) carbon black, HAF (High Abrasion Furnace) carbon black, FEF (Fast Extrusion Furnace) carbon black, GPE (General Purpose Furnace) carbon black, SRF (Semi Reinforcing Furnace) carbon black At least one rubber composition selected from the group consisting of black, CF (Conductive Furnace) carbon black, FT (Fine Thermal) carbon black, and MT (Medium Thermal) carbon black.
  4. 제1항에 있어서, According to claim 1,
    상기 가소제는 파라핀계 오일, 나프텐계 오일, 아로마틱계 오일 및 이들의 혼합물로 이루어진 군에서 선택된 하나 이상인, 고무 조성물.The plasticizer is at least one selected from the group consisting of paraffinic oils, naphthenic oils, aromatic oils, and mixtures thereof, rubber composition.
  5. 제1항에 있어서, According to claim 1,
    상기 가교제는 디큐밀 퍼옥사이드, 1, 4-비스[(t-부틸퍼옥시)이소프로필]벤젠, 이소프로필큐밀 t-부틸 퍼옥사이드, t-부틸 큐밀 퍼옥사이드, 디-t-부틸 퍼옥사이드, 2,5-비스(t-부틸퍼옥시)-2,5-디메틸헥산, 2,5-비스(t-부틸퍼옥시)-2,5-디메틸헥산-3, 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산, 이소프로필큐밀 큐밀 퍼옥사이드 및 디(이소프로필큐밀) 퍼옥사이드로 이루어진 군에서 선택된 하나 이상인, 고무 조성물.The crosslinking agent is dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, isopropylcumyl t-butyl peroxide, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane, 2,5-bis(t-butylperoxy)-2,5-dimethylhexane-3, 1,1-bis(t- Butylperoxy) -3,3,5-trimethylcyclohexane, isopropylcumyl cumyl peroxide and di (isopropylcumyl) peroxide, at least one selected from the group consisting of, a rubber composition.
  6. 제1항에 있어서,According to claim 1,
    상기 촉진제는 비닐 화합물, 아크릴 화합물, 알릴 화합물 및 아미노 화합물로 이루어진 군에서 선택된 하나 이상인, 고무 조성물.The accelerator is at least one selected from the group consisting of vinyl compounds, acrylic compounds, allyl compounds and amino compounds, rubber composition.
  7. 제1항에 있어서,According to claim 1,
    상기 산화방지제는 아민계, 페놀계, 퀴놀린계, 금속계, 포스파이트계 및 이미다졸계로 이루어진 군에서 선택된 하나 이상인, 고무 조성물.The antioxidant is at least one selected from the group consisting of amine-based, phenol-based, quinoline-based, metal-based, phosphite-based and imidazole-based, rubber composition.
  8. 제1항에 있어서,According to claim 1,
    상기 기타 첨가제는 흡습제, 분산제 및 이형제로 이루어진 군에서 선택된 하나 이상인, 고무 조성물.The other additive is at least one selected from the group consisting of a moisture absorbent, a dispersing agent and a release agent, the rubber composition.
  9. 절연부를 포함하는 전력 케이블용 접속구조에 있어서,In the connection structure for a power cable including an insulator,
    상기 절연부가 제1항에 따른 고무 조성물로 제조된, 전력 케이블용 접속구조.A connection structure for a power cable, wherein the insulating portion is made of the rubber composition according to claim 1.
  10. 제9항에 있어서,According to claim 9,
    상기 전력 케이블용 접속구조는 직류 송전 케이블용 중간접속함(DC PMJ), 직류 송전 케이블용 중간접속함(DC PJ), 교류 송전 케이블용 중간접속함(AC PMJ), 교류 송전 케이블용 중간접속함(AC PJ), 직류 송전 케이블용 종단접속구조의 스트레스콘, 교류 송전 케이블용 종단접속구조의 스트레스콘으로 이루어진 군에서 선택된 하나인, 전력 케이블용 접속구조.The connection structure for the power cable is a junction box for DC transmission cables (DC PMJ), a junction box for DC transmission cables (DC PJ), an intermediate junction box for AC transmission cables (AC PMJ), a junction box for AC transmission cables (AC PJ), a stress cone of a termination connection structure for a DC transmission cable, and a connection structure for a power cable, which is one selected from the group consisting of a stress cone of a termination connection structure for an AC transmission cable.
PCT/KR2022/014924 2021-11-19 2022-10-04 Epdm rubber composition and connection structure for power cable comprising same WO2023090635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210160427A KR102681222B1 (en) 2021-11-19 Epdm rubber composition and connection structure for power cable comprising the same
KR10-2021-0160427 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090635A1 true WO2023090635A1 (en) 2023-05-25

Family

ID=86397254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014924 WO2023090635A1 (en) 2021-11-19 2022-10-04 Epdm rubber composition and connection structure for power cable comprising same

Country Status (1)

Country Link
WO (1) WO2023090635A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284977A (en) * 1996-04-10 1997-10-31 Furukawa Electric Co Ltd:The Enclosure for power cable connecting part
JP2011174004A (en) * 2010-02-25 2011-09-08 Sumitomo Chemical Co Ltd Rubber composition for electrical insulator, and electrical insulator
JP2015101062A (en) * 2013-11-27 2015-06-04 古河電気工業株式会社 Manufacturing method of rubber molding, rubber molding obtained by manufacturing method and connection article of power cable
KR20160063219A (en) * 2014-11-26 2016-06-03 엘에스전선 주식회사 Joint for High-Voltage Direct Current
JP2016219320A (en) * 2015-05-22 2016-12-22 昭和電線ケーブルシステム株式会社 Protective material for cable connection part and cable connection part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284977A (en) * 1996-04-10 1997-10-31 Furukawa Electric Co Ltd:The Enclosure for power cable connecting part
JP2011174004A (en) * 2010-02-25 2011-09-08 Sumitomo Chemical Co Ltd Rubber composition for electrical insulator, and electrical insulator
JP2015101062A (en) * 2013-11-27 2015-06-04 古河電気工業株式会社 Manufacturing method of rubber molding, rubber molding obtained by manufacturing method and connection article of power cable
KR20160063219A (en) * 2014-11-26 2016-06-03 엘에스전선 주식회사 Joint for High-Voltage Direct Current
JP2016219320A (en) * 2015-05-22 2016-12-22 昭和電線ケーブルシステム株式会社 Protective material for cable connection part and cable connection part

Also Published As

Publication number Publication date
KR20230074352A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
CA2788403C (en) Energy cable
EP3160738B1 (en) Cold shrink article for electrical device
EP3033391B1 (en) Thermoplastic blend formulations for cable insulations
WO2020009334A1 (en) Power cable
WO2019147027A1 (en) Power cable
US20180244907A1 (en) Flexible Elastic Rubber Compounds with Improved Dielectric and Tear Strength for Cold Shrink Splices and Preparation Method Thereof
EP3161073B1 (en) In-situ compatibilization of silicone rubber/polyolefin elastomer blends by forming ionomers for cold shrink splice and preparation method thereof
WO2023090635A1 (en) Epdm rubber composition and connection structure for power cable comprising same
WO2018093074A1 (en) Power cable
EP3542375B1 (en) Electrical field grading material and use thereof in electrical cable accessories
JP2011171004A (en) Electric wire and cable
KR102681222B1 (en) Epdm rubber composition and connection structure for power cable comprising the same
WO2018151421A1 (en) Polymer composition for high-voltage cable, and cable comprising insulation layer and sheath layer which are formed therefrom
US4816337A (en) Electrical conductor insulated with insulating and jacketing material having improved physical properties
JPS59108051A (en) Non-bridged elastomeric thermoplastic composition for use oflow voltage insulator
US4806424A (en) Electrical conductor insulated with insulating and jacketing material having improved resistance to hot fluids and gases
WO2018004210A1 (en) Power cable
WO2022098155A1 (en) Non-crosslinked insulation composition and power cable having insulation layer formed therefrom
WO2015022003A1 (en) Thermoplastic blend formulations for cable insulations
WO2023090625A1 (en) Polypropylene resin composition for insulating layer of power cable with excellent whitening resistance and molded article using same
WO2021210945A1 (en) Insulation composition, and power cable having insulation layer formed therefrom
WO2017078430A1 (en) Insulation composition having excellent original form recovery and mechanical properties, and cable having insulation layer formed therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895844

Country of ref document: EP

Kind code of ref document: A1