WO2017078025A1 - スチレン系樹脂押出発泡体およびその製造方法 - Google Patents

スチレン系樹脂押出発泡体およびその製造方法 Download PDF

Info

Publication number
WO2017078025A1
WO2017078025A1 PCT/JP2016/082484 JP2016082484W WO2017078025A1 WO 2017078025 A1 WO2017078025 A1 WO 2017078025A1 JP 2016082484 W JP2016082484 W JP 2016082484W WO 2017078025 A1 WO2017078025 A1 WO 2017078025A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
extruded foam
styrene resin
resin
Prior art date
Application number
PCT/JP2016/082484
Other languages
English (en)
French (fr)
Inventor
武紀 菊地
栗原 俊二
清水 浩司
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020187015048A priority Critical patent/KR102129039B1/ko
Priority to JP2017548779A priority patent/JP6639517B2/ja
Publication of WO2017078025A1 publication Critical patent/WO2017078025A1/ja
Priority to US15/969,999 priority patent/US20180251620A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0052Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/145Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/202Ternary blends of expanding agents of physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a styrene resin extruded foam obtained by extrusion foaming using a styrene resin and a foaming agent, and a method for producing the same.
  • Styrenic resin extruded foam is generally produced by heating and melting a styrene resin composition using an extruder or the like, then adding a foaming agent under high pressure conditions, cooling to a predetermined resin temperature, Manufactured continuously by extruding into a zone.
  • the styrene resin extruded foam is used as, for example, a heat insulating material of a structure because of good workability and heat insulating properties.
  • demands for energy saving of houses, buildings, and the like have increased, and technical development of highly heat-insulating foams more than before has been desired.
  • Proposed methods for producing highly heat-insulating foams include a method of controlling the bubble diameter of an extruded foam within a predetermined range, a method of adding a heat radiation inhibitor, and a method of using a foaming agent with low thermal conductivity. Has been.
  • Patent Document 1 proposes a production method in which fine bubbles having an average cell diameter in the thickness direction of an extruded foam of 0.05 to 0.18 mm are formed and the bubble deformation rate of the extruded foam is controlled.
  • Patent Document 2 proposes a production method in which graphite or titanium oxide is added in a predetermined range as a heat ray radiation inhibitor.
  • Patent Document 7 there is a description that a glycerin fatty acid ester may be used as a plasticizer in a conventional technique using a hydrofluoroolefin for an expandable resin particle.
  • Patent Documents 1 to 7 are not sufficient for the purpose of obtaining a styrene resin extruded foam having excellent heat insulation and sufficient thickness suitable for use.
  • An object of the present invention is to easily obtain an extruded foam of a styrene resin having excellent heat insulation and having a sufficient thickness suitable for use.
  • the present inventors have completed the present invention by using a polyhydric alcohol fatty acid ester as a thickening improver in the production of a styrene resin extruded foam. It came to.
  • one embodiment of the present invention has the following configuration.
  • Patent Documents 1 to 7 described above have the following problems. Specifically, in the technique described in Patent Document 1, first, when the average bubble diameter is in a fine range, the distance between the bubble walls of the foam is shortened. There is a problem that the movable range is narrow, deformation is difficult, and it is not easy to increase the thickness of the extruded foam.
  • the hydrofluoroolefin used in these conventional techniques has low solubility in styrene resin, and quick separation from styrene resin during extrusion foaming,
  • the separated hydrofluoroolefin becomes a nucleation point and the bubble diameter becomes finer, and the resin is cooled and solidified by the latent heat of vaporization of the hydrofluoroolefin (the elongation of the resin becomes worse), which is the same as the technique described in Patent Document 1.
  • Patent Document 7 uses glycerin fatty acid ester as a plasticizer, and the purpose and effect of using glycerin fatty acid ester are different from those of the present invention.
  • the present inventor has completed the present invention in order to solve such problems. Embodiments of the present invention will be described below.
  • the extruded styrenic resin foam according to an embodiment of the present invention contains hydrofluoroolefin, and 0.05 to 5.0 parts by weight of polyhydric alcohol fatty acid ester with respect to 100 parts by weight of styrene resin. Contains up to parts. Further, if necessary, a styrenic resin composition containing an appropriate amount of other additives is heated and melted using an extruder or the like, and then a foaming agent is added under high-pressure conditions and cooled to a predetermined resin temperature. This is continuously produced by extruding it into a low pressure region.
  • polyhydric alcohol fatty acid ester (1-1. Component) (1-1-1. Polyhydric alcohol fatty acid ester)
  • the use of a polyhydric alcohol fatty acid ester as an extrudate foam thickness-improving agent deteriorates when hydrofluoroolefin is used as a foaming agent. Can be improved.
  • a desired amount of the polyhydric alcohol fatty acid ester by using a desired amount of the polyhydric alcohol fatty acid ester, a sufficient thickness can be obtained in the extruded foam when extrusion foaming and imparting a shape to the extruded foam.
  • the thickening property improvement effect of polyhydric alcohol fatty acid ester it estimates as follows.
  • the dispersibility and the solubility with respect to the resin melt of the hydrofluoroolefin used as a foaming agent improve because a styrene resin extrusion foam contains a polyhydric alcohol fatty acid ester.
  • the dispersibility and solubility of the hydrofluoroolefin in the resin melt are improved, the vaporization amount or vaporization rate of the hydrofluoroolefin immediately after foaming of the extruded foam can be suppressed.
  • the extruded foam and / or the resin melt has sufficient plasticity for imparting the shape of the extruded foam and the resin melt.
  • the content of the polyhydric alcohol fatty acid ester used in an embodiment of the present invention is preferably 0.05 parts by weight or more and 5.0 parts by weight or less, and 0.1 parts by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the styrenic resin. 0.0 parts by weight or less is more preferable, and 0.5 parts by weight or more and less than 2.0 parts by weight is particularly preferable.
  • the content of the polyhydric alcohol fatty acid ester is less than 0.05 parts by weight, the effect of increasing the thickness of the extruded foam tends to be insufficient.
  • the content of the polyhydric alcohol fatty acid ester exceeds 5.0 parts by weight, the content of the polyhydric alcohol fatty acid ester is excessive, so that the extrudability, foamability, and molding stability at the time of production may be impaired. There is a risk of deteriorating various properties such as heat resistance of the foam.
  • the addition amount of the polyhydric alcohol fatty acid ester is 100 parts by weight of the styrenic resin. It may be 0.05 parts by weight or more and 5.0 parts by weight or less.
  • polyhydric alcohol fatty acid ester used in an embodiment of the present invention examples include higher fatty acids having 10 to 24 carbon atoms, ethylene glycol, glycerin, 1,2,4-butanetriol, diglycerin, pentaerythritol, and sorbitol. , Esters with polyhydric alcohols such as erythritol and hexanetriol. These polyhydric alcohol fatty acid esters may be used alone or in combination of two or more.
  • esters of higher fatty acids having 10 to 24 carbon atoms and glycerin are preferable, and mono-, di-, tri-, or tetra-fatty acid esters of glycerin are easy to obtain, price, etc. This is particularly desirable from the point of view.
  • glycerin fatty acid ester examples include lauric acid monoglyceride, lauric acid diglyceride, lauric acid triglyceride, palmitic acid monoglyceride, palmitic acid diglyceride, palmitic acid triglyceride, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, and stearic acid tetraglyceride. It is preferable to use at least one selected from the group consisting of
  • the melting point of the glycerin fatty acid ester used in an embodiment of the present invention is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, and particularly preferably 110 ° C.
  • the melting point of the glycerin fatty acid ester is 150 ° C. or lower, for example, excellent handling properties in a dry blending process at the time of manufacturing an extruded foam, and being present as a liquid at the time of extrusion foam molding, a styrene system at the time of extrusion foam molding Since a plasticizing effect can also be imparted to the resin, a sufficient effect of increasing the thickness of the styrene resin extruded foam can be exhibited.
  • the melting point exceeds 150 ° C., it exists as a solid during extrusion foam molding and cannot impart a plasticizing effect to the styrene resin at the time of extrusion foam molding. It may not be possible.
  • the styrenic resin used in one embodiment of the present invention is not particularly limited.
  • Styrene such as styrene, methylstyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, vinyltoluene, and vinylxylene
  • Monomers such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, maleic anhydride, and itaconic anhydride to be copolymerized with styrenic monomers are the compression strength of the styrene resin extrusion foam produced The amount can be used so as not to deteriorate the physical properties.
  • the styrene resin used in one embodiment of the present invention is not limited to the homopolymer or copolymer of the styrene monomer, and the homopolymer or copolymer of the styrene monomer, It may be a blend of another monomer with a homopolymer or copolymer.
  • the styrene resin used in an embodiment of the present invention may be a blend of the styrene monomer homopolymer or copolymer and diene rubber reinforced polystyrene or acrylic rubber reinforced polystyrene. Good.
  • the styrene resin used in one embodiment of the present invention is a styrene resin having a branched structure for the purpose of adjusting the melt flow rate (hereinafter referred to as MFR), the melt viscosity at the time of molding, the melt tension, and the like. There may be.
  • styrenic resin in one embodiment of the present invention a resin having an MFR of 0.1 to 50 g / 10 min is used.
  • the molding processability at the time of extrusion foam molding is excellent.
  • Molding The point of easy adjustment of the discharge amount during processing, the thickness, width, apparent density, and closed cell ratio of the obtained styrene resin extruded foam to desired values, (iii) foamability (foam thickness, width, It is easy to adjust the apparent density, closed cell ratio, surface properties, etc. to a desired situation), (iv) a styrene resin extruded foam having excellent appearance, etc., and (v) characteristics.
  • the MFR of the styrenic resin is more preferably 0.3 to 30 g / 10 minutes, and preferably 0.5 to 25 g / 10 minutes from the viewpoint of the balance between moldability and foamability, mechanical strength and toughness. Particularly preferred.
  • MFR is measured according to method A of JIS K7210 (1999) and test condition H.
  • a polystyrene resin is particularly suitable from the viewpoint of economy and workability.
  • a styrene-acrylonitrile copolymer (meth) acrylic acid copolymer polystyrene, or maleic anhydride modified polystyrene.
  • rubber-reinforced polystyrene when higher impact resistance is required for the extruded foam, it is preferable to use rubber-reinforced polystyrene.
  • styrenic resins may be used alone, or two or more different styrenic resins such as copolymerization component, molecular weight and molecular weight distribution, branched structure, and / or MFR may be mixed and used. .
  • hydrofluoroolefin is used as a foaming agent in order to improve the heat insulation of the extruded foam.
  • the hydrofluoroolefin used in one embodiment of the present invention is not particularly limited, but tetrafluoropropene is preferable from the viewpoint of low gas thermal conductivity and safety. Specifically, trans-1,3,3,3-tetrafluoropropene (trans-HFO-1234ze), cis-1,3,3,3-tetrafluoropropene (cis-HFO-1234ze), 2,3, 3,3-tetrafluoropropene (trans-HFO-1234yf) and the like. These hydrofluoroolefins may be used alone or in combination of two or more.
  • the addition amount of the hydrofluoroolefin according to an embodiment of the present invention is preferably 3.0 parts by weight or more and 14.0 parts by weight or less, and preferably 4.0 parts by weight or more and 13.0 parts by weight with respect to 100 parts by weight of the styrenic resin. Is more preferably 4.5 parts by weight or more and 12.0 parts by weight or less.
  • the amount of hydrofluoroolefin added is less than 3.0 parts by weight with respect to 100 parts by weight of the styrene resin, the effect of improving the heat insulation by the hydrofluoroolefin cannot be expected so much.
  • the hydrofluoroolefin when the addition amount of hydrofluoroolefin exceeds 14.0 parts by weight with respect to 100 parts by weight of the styrenic resin, the hydrofluoroolefin is separated from the resin melt at the time of extrusion foaming, and on the surface of the extruded foam. There is a possibility that spot holes (a trace in which a local lump of hydrofluoroolefin is released to the outside air through the surface of the extruded foam) or a closed cell ratio is lowered to impair heat insulation.
  • Hydrofluoroolefin is an environmentally friendly foaming agent that has a zero or extremely low ozone depletion potential, a very low global warming potential. Moreover, since hydrofluoroolefin has a low thermal conductivity in the gaseous state and is flame retardant, it has excellent heat insulating properties for styrene resin extruded foam when used as a foaming agent for styrene resin extruded foam. And flame retardancy can be imparted.
  • the hydrofluoroolefin when a hydrofluoroolefin having low solubility in a styrenic resin such as tetrafluoropropene is used, the hydrofluoroolefin is separated from the resin melt and / or vaporized as the amount of addition increases. By doing so, the hydrofluoroolefin becomes a nucleation point, (i) the foam bubbles are refined, (ii) the foaming agent remaining in the resin is reduced, and the plasticizing effect on the resin melt (Iii) cooling and solidification of the resin melt due to the latent heat of vaporization of the foaming agent, and as a result, it tends to be difficult to increase the thickness of the extruded foam.
  • a saturated hydrocarbon having 3 to 5 carbon atoms can be used as a blowing agent used in an embodiment of the present invention. These foaming agents may be used alone or in combination of two or more. Further, a saturated hydrocarbon having 3 to 5 carbon atoms and a hydrofluoroolefin may be used in combination.
  • Examples of the saturated hydrocarbon having 3 to 5 carbon atoms used in one embodiment of the present invention include propane, n-butane, i-butane, n-pentane, i-pentane, neopentane and the like.
  • propane, n-butane, i-butane, or a mixture thereof is preferable from the viewpoint of foamability.
  • n-butane, i-butane hereinafter sometimes referred to as “isobutane” or a mixture thereof is preferred, and i-butane is particularly preferred.
  • the amount of the hydrofluoroolefin and / or the saturated hydrocarbon having 3 to 5 carbon atoms may be limited. If the amount added is outside the desired range, the extrusion foamability may not be sufficient.
  • a plasticizing effect and / or an auxiliary foaming effect at the time of foam production can be obtained, the extrusion pressure is reduced, and the foam can be stably produced. Is possible.
  • foaming agents examples include ethers such as dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methyl furan, tetrahydrofuran, tetrahydropyran; dimethyl ketone, methyl ethyl ketone Diethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, methyl-i-butyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, ethyl-n-propyl ketone, ethyl-n-butyl ketone, etc.
  • ethers such as dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diiso
  • Ketones saturated alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, and t-butyl alcohol
  • Carboxylic acid esters such as formic acid methyl ester, formic acid ethyl ester, formic acid propyl ester, formic acid butyl ester, formic acid amyl ester, propionic acid methyl ester, propionic acid ethyl ester; organics such as alkyl halides such as methyl chloride and ethyl chloride
  • a foaming agent, an inorganic foaming agent such as water or carbon dioxide, a chemical foaming agent such as an azo compound or tetrazole, or the like can be used. These other blowing agents may be used alone or in combination of two or more.
  • saturated alcohols having 1 to 4 carbon atoms dimethyl ether, diethyl ether, methyl ethyl ether, methyl chloride, ethyl chloride and the like are preferable from the viewpoint of foamability and foam moldability.
  • dimethyl ether is particularly preferable from the viewpoint of the plasticizing effect, and water is particularly preferable from the viewpoint of the cost and the effect of improving heat insulation by controlling the bubble diameter.
  • the amount of the foaming agent added is preferably 2 to 20 parts by weight, more preferably 2 to 15 parts by weight with respect to 100 parts by weight of the styrene resin as the whole foaming agent. If the addition amount of the foaming agent is less than 2 parts by weight, the foaming ratio is low, and characteristics such as light weight and heat insulation as a resin foam may be difficult to be exhibited. Due to the amount of the agent, defects such as voids may occur in the foam.
  • water and / or alcohols when water and / or alcohols are used as other foaming agents, it is preferable to add a water-absorbing substance in order to stably perform extrusion foaming.
  • water-absorbing substances used in one embodiment of the present invention include polyacrylate polymers, starch-acrylic acid graft copolymers, polyvinyl alcohol polymers, vinyl alcohol-acrylate copolymers.
  • anhydrous silica having silanol groups on the surface (Silicon oxide) [For example, AEROSIL manufactured by Nippon Aerosil Co., Ltd. is commercially available] etc.
  • the addition amount of the water-absorbing substance is appropriately adjusted depending on the addition amount of water and / or alcohols, and is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the styrenic resin. 0.1 to 3 parts by weight is more preferable.
  • the pressure when adding or injecting a foaming agent is not particularly limited, and may be a pressure higher than the internal pressure of an extruder or the like. That's fine.
  • a styrene resin extruded foam in a styrene resin extruded foam, a styrene resin obtained by containing a flame retardant in an amount of 0.5 to 8.0 parts by weight with respect to 100 parts by weight of a styrene resin. Flame resistance can be imparted to the extruded foam. If the content of the flame retardant is less than 0.5 parts by weight, good properties as a foam such as flame retardancy tend to be difficult to obtain. On the other hand, if the content exceeds 8.0 parts by weight, the foam is produced. The stability and surface properties of the time may be impaired.
  • the content of the flame retardant is the kind of additive such as the foaming agent content, the apparent density of the foam, and the flame retardant synergistic effect so that the flame retardancy specified in JIS A9521 measurement method A can be obtained. It is more preferable to adjust appropriately according to content etc.
  • a brominated flame retardant is preferably used as the flame retardant.
  • brominated flame retardants in one embodiment of the present invention include hexabromocyclododecane, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether, tetrabromobisphenol A-bis.
  • Aliphatic bromine containing polymers such as (2,3-dibromopropyl) ether, tris (2,3-dibromopropyl) isocyanurate, and brominated styrene-butadiene block copolymers. These may be used alone or in combination of two or more.
  • mixed brominated flame retardants composed of tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether and tetrabromobisphenol A-bis (2,3-dibromopropyl) ether, brominated Styrene-butadiene block copolymer and hexabromocyclododecane are desirably used because they have good extrusion operation and do not adversely affect the heat resistance of the foam. These substances may be used alone or as a mixture.
  • the content of the brominated flame retardant in the styrene resin extruded foam according to an embodiment of the present invention is preferably 0.5 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. 1.0 to 5.0 parts by weight is more preferable with respect to 100 parts by weight of the resin, and 1.5 to 5.0 parts by weight is even more preferable. If the brominated flame retardant content is less than 0.5 parts by weight, good properties such as flame retardancy tend to be difficult to obtain. On the other hand, if the content exceeds 5.0 parts by weight, It may impair the stability and surface properties during body production.
  • a radical generator can be used in combination for the purpose of improving the flame retardancy of the styrene resin extruded foam.
  • the radical generator include 2,3-dimethyl-2,3-diphenylbutane, poly-1,4-diisopropylbenzene, 2,3-diethyl-2,3-diphenylbutane, 3,4- Dimethyl-3,4-diphenylhexane, 3,4-diethyl-3,4-diphenylhexane, 2,4-diphenyl-4-methyl-1-pentene, 2,4-diphenyl-4-ethyl-1-pentene, etc. Is mentioned.
  • Peroxides such as dicumyl peroxide are also used. Among them, those that are stable under the resin processing temperature conditions are preferable, specifically 2,3-dimethyl-2,3-diphenylbutane and poly-1,4-diisopropylbenzene are preferable.
  • a preferred addition amount is 0.05 to 0.5 parts by weight with respect to 100 parts by weight of the styrene resin.
  • a phosphorus flame retardant such as phosphate ester and phosphine oxide can be used in combination as long as the thermal stability performance is not impaired.
  • phosphate esters include triphenyl phosphate, tris (tributylbromoneopentyl) phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, Examples thereof include tris (2-ethylhexyl) phosphate, tris (butoxyethyl) phosphate, condensed phosphate ester, and the like, and triphenyl phosphate or tris (tributylbromoneopentyl) phosphate is particularly preferable.
  • triphenylphosphine oxide is preferable. These phosphate esters and phosphine oxides may be used alone or in combination of two or more. A preferable addition amount of the phosphorus flame retardant is 0.1 to 2 parts by weight with respect to 100 parts by weight of the styrene resin.
  • a resin and / or a flame retardant stabilizer can be used as necessary.
  • specific examples of the stabilizer include (i) epoxy compounds such as (i) bisphenol A diglycidyl ether type epoxy resin, cresol novolac type epoxy resin, and phenol novolac type epoxy resin, ii) A reaction product of a polyhydric alcohol such as pentaerythritol, dipentaerythritol or tripentaerythritol and a monovalent carboxylic acid such as acetic acid or propionic acid, or a divalent carboxylic acid such as adipic acid or glutamic acid.
  • a polyhydric alcohol ester which is a mixture of esters having one or more hydroxyl groups in the molecule and may contain a small amount of a raw polyhydric alcohol; (iii) triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylpheny ) Propionate, pentaerythritol tetrakis [3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate], and octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Phenolic stabilizers such as propionate, (iv) 3,9-bis (2,4-di-tert-butylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5 ] Undecane, 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,
  • the styrene-based resin extruded foam according to an embodiment of the present invention may contain graphite as a heat ray radiation inhibitor for improving heat insulation.
  • the graphite used in the embodiment of the present invention include scale-like graphite, earthy graphite, spherical graphite, and artificial graphite. Among these, it is preferable to use the one whose main component is scale-like graphite from the viewpoint of a high heat ray radiation suppressing effect.
  • the graphite preferably has a fixed carbon content of 80% or more, and more preferably 85% or more.
  • the foam which has high heat insulation is obtained by making fixed carbon content into the said range.
  • the dispersed particle diameter of graphite is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the specific surface area of graphite is increased, and the probability of collision with heat radiation is increased, so that the effect of suppressing heat radiation is enhanced.
  • a particle having a primary particle diameter of 15 ⁇ m or less may be selected.
  • the dispersed particle diameter is an arithmetic average value based on the number of particles of each particle dispersed in the foam, and the particle diameter is measured by enlarging the foam cross section with a microscope or the like.
  • the primary particle size means a volume average particle size (d50).
  • the graphite content is preferably 1.0 part by weight or more and 5.0 parts by weight or less, and 1.5 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferred.
  • the content is less than 1.0 part by weight, a sufficient heat ray radiation suppressing effect cannot be obtained. If the content exceeds 5.0 parts by weight, the effect of suppressing heat radiation corresponding to the content cannot be obtained, and there is no cost merit.
  • the content of the white particles in an embodiment of the present invention is preferably 1.0 part by weight or more and 3.0 parts by weight or less, and 1.5 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferred are parts by weight or less.
  • the white particles have a smaller heat ray radiation suppressing effect than graphite, and if the white particle content is less than 1.0 part by weight, even if the white particles are contained, there is almost no heat ray radiation suppressing effect. When the content of the white particles exceeds 3.0 parts by weight, the heat ray radiation suppressing effect corresponding to the content cannot be obtained, while the flame retardancy of the foam tends to deteriorate.
  • the total content of the heat ray radiation inhibitor is preferably 1.0 part by weight or more and 6.0 parts by weight or less, and 2.0 parts by weight or more and 5.5 parts by weight or less with respect to 100 parts by weight of the styrene resin. 0 parts by weight or less is more preferable. If the total content of the heat ray radiation inhibitor is less than 1.0 part by weight, it is difficult to obtain heat insulation, whereas the nucleation point increases as the content of the solid additive such as the heat ray radiation inhibitor increases. However, it is difficult to increase the thickness of the extruded foam because the foam bubbles become finer or the elongation of the resin itself deteriorates. However, the total content of the heat ray radiation inhibitor is 6.0. If the content exceeds part by weight, it is likely that the thickness of the extruded foam is particularly inferior, and further, the extrusion stability tends to be impaired, and the flame retardancy tends to be impaired.
  • Inorganic compounds such as calcium, sodium stearate, calcium stearate, magnesium stearate, barium stearate, liquid paraffin, olefin wax, stearyl amide compound and other processing aids, phenolic antioxidants, phosphorus stabilizers, nitrogen System stabilizers, sulfur stabilizers, light-resistant stabilizers such as benzotriazoles and hindered amines, cell diameter regulators such as talc, flame retardants other than those mentioned above, antistatic agents, colorants such as pigments, plasticizers, etc.
  • An additive may be contained in the styrenic resin.
  • a method and procedure for blending various additives into the styrene resin for example, a method of adding various additives to the styrene resin and mixing them by dry blending, melting from a supply unit provided in the middle of the extruder
  • a method for adding various additives to the styrenic resin, a masterbatch containing various additives at a high concentration in the styrenic resin using an extruder, kneader, Banbury mixer, roll, etc. in advance examples thereof include a method of mixing a styrene resin by dry blending, or a method of supplying various additives to an extruder by a supply facility different from the styrene resin.
  • the thermal conductivity of the styrene-based resin extruded foam according to one embodiment of the present invention is not particularly limited, but for example, it has been considered that it functions as a heat insulating material for a building, or a heat insulating material for a cold storage or a cold car. From the viewpoint of heat insulation, the thermal conductivity after one week of production measured at an average temperature of 23 ° C. is preferably 0.0285 W / mK or less, more preferably 0.0245 W / mK or less, and 0.0225 W. / MK or less is particularly preferable.
  • the apparent density of the styrene-based resin extruded foam according to one embodiment of the present invention is, for example, heat insulating properties and light weight considering that it functions as a heat insulating material for buildings, or a heat insulating material for a cold storage or a cold car. In view of the above, it is preferably 20 kg / m 3 or more and 60 kg / m 3 or less, more preferably 25 kg / m 3 or more and 45 kg / m 3 or less.
  • the closed cell ratio of the styrene resin extruded foam according to an embodiment of the present invention is preferably 80% or more, and more preferably 90% or more. When the closed cell ratio is less than 80%, the foaming agent is dissipated from the extruded foam at an early stage, and the heat insulating property is lowered.
  • the average cell diameter in the thickness direction of the styrene resin extruded foam according to an embodiment of the present invention is preferably 0.05 mm or more and 0.5 mm or less, more preferably 0.05 mm or more and 0.4 mm or less, and 0.05 mm or more. 0.3 mm or less is particularly preferable.
  • the smaller the average cell diameter the shorter the distance between the cell walls of the foam, so the range of movement of the foam in the extruded foam is narrow when shaping the extruded foam during extrusion foaming, making deformation difficult It tends to be difficult to increase the thickness of the extruded foam.
  • the average cell diameter in the thickness direction of the styrene-based resin extruded foam is smaller than 0.05 mm, the tendency to make it particularly difficult to obtain the thickness of the extruded foam becomes remarkable.
  • the average cell diameter in the thickness direction of the styrene resin extruded foam is more than 0.5 mm, sufficient heat insulation may not be obtained.
  • the average cell diameter of the styrene resin extruded foam according to one embodiment of the present invention was evaluated as described below using a microscope [manufactured by KEYENCE, DIGITAL MICROSCOPE VHX-900].
  • the microscope from the extrusion direction and the width direction was observed with the microscope from the extrusion direction and the width direction, and a 100 times magnified photograph was taken.
  • Three straight lines of 2 mm are arbitrarily drawn in the thickness direction of the enlarged photograph (three for each observation location and each observation direction), and the number of bubbles a in contact with the straight line is measured. From the measured number a of bubbles, the average bubble diameter A in the thickness direction for each observation location was determined by the following equation (3).
  • the average value of three locations (each in two directions) was defined as the average cell diameter A (average value) in the thickness direction of the styrene resin extruded foam.
  • Average bubble diameter A (mm) in the thickness direction for each observation location 2 ⁇ 3 / number of bubbles a (3).
  • the average value at three locations was defined as the average cell diameter B (average value) in the extrusion direction of the styrene resin extruded foam.
  • Average bubble diameter B (mm) in the extrusion direction for each observation location 2 ⁇ 3 / number of bubbles b (4).
  • the microscope from the direction of extrusion was observed with the microscope from the direction of extrusion, and a 100 times magnified photograph was taken.
  • Three straight lines of 2 mm are arbitrarily drawn in the width direction of the enlarged photograph (three at each observation point), and the number c of bubbles in contact with the straight line is measured. From the measured number c of bubbles, the average bubble diameter C in the width direction for each observation location was determined by the following equation (5).
  • the average value at three locations was defined as the average cell diameter C (average value) in the width direction of the styrene resin extruded foam.
  • Average bubble diameter C (mm) in the width direction for each observation location 2 ⁇ 3 / number of bubbles c (5).
  • the cell deformation rate of the styrene resin extruded foam according to an embodiment of the present invention is preferably 0.7 or more and 2.0 or less, more preferably 0.8 or more and 1.5 or less, and 0.8 or more and 1.2 or less. The following is more preferable.
  • the bubble deformation rate is smaller than 0.7, the compressive strength becomes low, and the extruded foam may not be able to ensure the strength suitable for the application. Further, since the bubbles try to return to a spherical shape, there is a tendency that the dimension (shape) maintainability of the extruded foam is inferior.
  • the bubble deformation rate is more than 2.0, the number of bubbles in the thickness direction of the extruded foam is reduced, so that the effect of improving the heat insulation property by the bubble shape is reduced.
  • the bubble deformation rate of the styrene resin extruded foam according to an embodiment of the present invention can be obtained from the above-described average bubble diameter by the following formula (6).
  • Bubble deformation rate (no unit) A (average value) / ⁇ [B (average value) + C (average value)] / 2 ⁇ (6).
  • the thickness of the styrene-based resin extruded foam according to an embodiment of the present invention is, for example, thermal insulation, bending strength, and compressive strength in consideration of functioning as a thermal insulation for a building, or a thermal insulation for a cold box or a cold car.
  • it is preferably 10 mm or more and 150 mm or less, more preferably 20 mm or more and 130 mm or less, and particularly preferably 30 mm or more and 120 mm or less.
  • both surfaces of the plane perpendicular to the thickness direction are on one side in the thickness direction. Although it may be cut to a depth of about 5 mm to obtain the product thickness, unless otherwise stated, the thickness in the styrene resin extruded foam according to one embodiment of the present invention gives the shape by extrusion foam molding. It is the thickness which is not cut as it is.
  • the shape of the styrene-based resin extruded foam according to an embodiment of the present invention is, for example, a heat insulating material for buildings, or a heat insulating material for a cold storage or a cold car, for example, an extrusion direction, a width direction, and a thickness. It must be plate-shaped with no undulations in any direction.
  • a heat insulating material for buildings or a heat insulating material for a cold storage or a cold car, for example, an extrusion direction, a width direction, and a thickness. It must be plate-shaped with no undulations in any direction.
  • hydrofluoroolefin when hydrofluoroolefin is used, when a heat ray radiation inhibitor is used, or when the average cell system is refined as a styrene-based extruded foam, the elongation of the resin itself deteriorates.
  • the movable range of bubbles in the extruded foam is narrow and deformation is difficult, so it can be shaped when trying to adjust the thickness by extrusion foam molding.
  • one or more of the extrusion direction, the width direction, and the thickness direction of the extruded foam is wavy and does not have a plate shape.
  • a styrene resin, a polyhydric alcohol fatty acid ester, and a flame retardant, a stabilizer, a heat ray radiation inhibitor, or others as needed are added to a heating and melting part such as an extruder.
  • hydrofluoroolefin and, if necessary, other blowing agent can be added to the styrene resin under high pressure conditions at any stage.
  • a mixture of styrenic resin, polyhydric alcohol fatty acid ester, hydrofluoroolefin, and other additives and / or other foaming agents is made into a fluid gel, cooled to a temperature suitable for extrusion foaming, and then passed through a die.
  • the fluidized gel is extruded and foamed into the low pressure region to form a foam.
  • the heating temperature in the heating and melting part may be equal to or higher than the temperature at which the styrene-based resin used melts, but the temperature at which molecular degradation of the resin due to the influence of additives and the like is suppressed as much as possible, for example, 150 ° C to 260 ° C The degree is preferred.
  • the melt kneading time in the heating and melting part is uniquely defined because it varies depending on the amount of styrene resin extruded per unit time and / or the type of the extruder used as the heating and melting part and used as the melt kneading part. The time required for uniformly dispersing and mixing the styrenic resin, the foaming agent, and the additive is appropriately set.
  • melt-kneading unit examples include a screw type extruder, but are not particularly limited as long as they are used for ordinary extrusion foaming.
  • the foam molding method according to an embodiment of the present invention is an extruded foam obtained by opening from a high-pressure region to a low-pressure region through a slit die in which an opening used for extrusion molding has a linear slit shape, for example.
  • a plate-like foam having a large cross-sectional area using a molding die placed in close contact with or in contact with a slit die, and a molding roll placed adjacent to the downstream side of the molding die Is used.
  • the method for producing a styrene resin extruded foam according to an embodiment of the present invention may have the following configuration.
  • the apparent density of the styrene-based resin extruded foam is 20 kg / m 3 or more and 60 kg / m 3 or less, and the closed cell ratio is 80% or more, [1] to [7] The manufacturing method of the styrene resin extruded foam as described in any one.
  • the styrene resin extruded foam according to an embodiment of the present invention may have the following configuration.
  • the apparent density of the styrene-based resin extruded foam is 20 kg / m 3 or more and 60 kg / m 3 or less, and the closed cell ratio is 80% or more, [1] to [7] The styrene resin extruded foam according to any one of the above.
  • the raw materials used in the examples and comparative examples are as follows.
  • Base resin / styrene resin A [manufactured by PS Japan, G9401; MFR 2.2 g / 10 min]
  • Styrene resin B [manufactured by PS Japan Co., Ltd., 680; MFR 7.0 g / 10 min].
  • V1 (cm 3 ) is the true volume of the test piece measured using an air-comparing hydrometer [Tokyo Science Co., Ltd., air-comparing hydrometer, model 1000 type] Is removed.)
  • V2 (cm 3) is, caliper [Mitutoyo Corporation Ltd., M-type standard caliper N30] is the apparent volume calculated from the outer dimensions of the measured specimen using.
  • W (g) is the total weight of the test piece.
  • (rho) (g / cm ⁇ 3 >) is the density of the styrene resin which comprises an extrusion foam, and was 1.05 (g / cm ⁇ 3 >).
  • the sealed container was heated at 170 ° C. for 10 minutes, and the foaming agent in the foam was taken out into the sealed container.
  • the airtight container returns to room temperature, helium is introduced into the airtight container to return to atmospheric pressure, and then a mixed gas containing 40 ⁇ L of HFO-1234ze is taken out by a microsyringe. Evaluation was performed under measurement conditions.
  • JIS combustibility In accordance with JIS A 9521, a test piece having a thickness of 10 mm, a length of 200 mm, and a width of 25 mm was used, and evaluation was performed according to the following criteria. Measurements were made after manufacturing a styrene-based resin extruded foam, and cut into a test piece having the above dimensions, and the standard temperature state class 3 (23 ° C. ⁇ 5 ° C.) and standard humidity state class 3 (50 +20, ⁇ 10 % RH), and one week after production. ⁇ : Satisfies the criteria that the flame disappears within 3 seconds, there is no residue, and the combustion limit indicator line is not exceeded. X: The above criteria are not satisfied.
  • the strand-shaped resin extruded at a discharge rate of 250 kg / hr through a die having a small hole attached to the tip by being supplied to the ruder was cooled and solidified in a 30 ° C. water tank, and then cut to obtain a master batch.
  • the strand-shaped resin extruded at a discharge rate of 250 kg / hr through a die having a small hole attached to the tip by being supplied to the ruder was cooled and solidified in a 30 ° C. water tank, and then cut to obtain a master batch.
  • the strand-shaped resin extruded at a discharge rate of 250 kg / hr through a die having a small hole attached to the tip by being supplied to the ruder was cooled and solidified in a 30 ° C. water tank, and then cut to obtain a master batch.
  • the strand-shaped resin extruded at a discharge rate of 250 kg / hr through a die having a small hole attached to the tip by being supplied to the ruder was cooled and solidified in a 30 ° C. water tank, and then cut to obtain a master batch.
  • Example 1 [Preparation of resin mixture] Tetrabromobisphenol A-bis (2,3-dibromo) as a flame retardant with respect to 100 parts by weight of styrene resin A [manufactured by PS Japan Co., Ltd., G9401] as a base resin and 100 parts by weight of styrene resin A -2-Methylpropyl) ether and tetrabromobisphenol A-bis (2,3-dibromopropyl) ether mixed brominated flame retardant [Daiichi Kogyo Seiyaku Co., Ltd., GR-125P] 3.0 parts by weight , 1.0 part by weight of triphenylphosphine oxide [Sumitomo Corporation Chemical] as a flame retardant aid, 0.50 part by weight of talc [manufactured by Hayashi Kasei Co., Ltd., Talcan Powder PK-Z] as a stabilizer, as a stabilizer Bisphenol-A
  • the obtained resin mixture was fed to an extruder having a 150 mm diameter single screw extruder (first extruder), a 200 mm diameter single screw extruder (second extruder), and an extruder connected in series with a cooling machine of about 950 kg / Supplied in hr.
  • the resin mixture supplied to the first extruder was heated to a resin temperature of 240 ° C. to be melted or plasticized, kneaded, and foaming agent (2.5 parts by weight of HFO-1234ze with respect to 100 parts by weight of the base resin, 1 part of isobutane).
  • foaming agent 2.5 parts by weight of HFO-1234ze with respect to 100 parts by weight of the base resin, 1 part of isobutane.
  • 0.6 parts by weight, 2.8 parts by weight of dimethyl ether, and 0.9 parts by weight of water (tap water) were pressed into the resin near the tip of the first extruder.
  • the resin temperature is cooled to 120 ° C., and a die having a rectangular cross section (slit die) having a thickness of 6 mm and a width of 400 mm provided at the tip of the cooler.
  • a cross-sectional shape having a thickness of 60 mm ⁇ width of 1000 mm is formed by a molding die placed in close contact with the die and a molding roll placed downstream thereof.
  • An extruded foam plate was obtained and cut with a cutter into a thickness of 50 mm, a width of 910 mm, and a length of 1820 mm.
  • the evaluation results of the obtained foam are shown in Table 1.
  • Examples 2 to 19 As shown in Tables 1 and 2, extruded foams were obtained in the same manner as in Example 1, except that the types of blending, addition amounts, and / or production conditions were changed. The physical properties of the obtained extruded foam are shown in Tables 1 and 2. As described above, graphite and titanium oxide were added in advance in the form of a styrene-based resin master batch at the time of preparing the resin mixture. When the master batch was used, the base resin was 100 parts by weight in total with the base resin contained in the master batch.
  • Comparative Example 4 when the amount of polyhydric alcohol fatty acid ester used is less than a specific range, the effect of improving the thickness out is not observed. On the contrary, as can be seen from Comparative Example 5, when the amount of the polyhydric alcohol fatty acid ester exceeds a specific range, foaming stability and molding stability are deteriorated.
  • the thermal conductivity is 0.028 W / mK or less, and excellent heat insulation properties can be used. It can be seen that a styrene resin extruded foam having a suitable and sufficient thickness can be easily obtained.
  • Examples 1 to 19 are Examples 6 to 19, and more preferred examples are Examples 11 to 19.
  • the present invention is a styrene resin extruded foam having excellent heat insulation and sufficient thickness suitable for use
  • the styrene resin extruded foam can be used as a house or a structure. It can be suitably used as a heat insulating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明の課題は、優れた断熱性を有し、且つ、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることにある。ハイドロフルオロオレフィンを含有し、且つ、多価アルコール脂肪酸エステルをスチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下含有することを特徴とする、スチレン系樹脂押出発泡体により達成できる。さらには、前記ハイドロフルオロオレフィンの添加量がスチレン系樹脂100重量部に対して3.0重量部以上14.0重量部以下であることが好ましい。

Description

スチレン系樹脂押出発泡体およびその製造方法
 本発明は、スチレン系樹脂及び発泡剤を用いて押出発泡して得られる、スチレン系樹脂押出発泡体およびその製造方法に関する。
 スチレン系樹脂押出発泡体は、一般に、押出機などを用いてスチレン系樹脂組成物を加熱溶融し、ついで発泡剤を高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出すことにより連続的に製造される。
 スチレン系樹脂押出発泡体は、良好な施工性や断熱性から、例えば構造物の断熱材として用いられる。近年、住宅、建築物などの省エネルギー化の要求が高まり、従来以上の高断熱性発泡体の技術開発が望まれている。
 高断熱性発泡体を製造する手法としては、押出発泡体の気泡径を所定の範囲に制御する方法や、熱線輻射抑制剤を添加する方法、熱伝導率の低い発泡剤を使用する方法が提案されている。
 例えば、特許文献1には、押出発泡体の厚み方向の平均気泡径が0.05~0.18mmの微細気泡とし、更に押出発泡体の気泡変形率を制御する製造方法が提案されている。
 また、特許文献2には、熱線輻射抑制剤として、グラファイトや酸化チタンを所定の範囲で添加する製造方法が提案されている。
 更に、オゾン破壊係数が0(ゼロ)であるとともに、地球温暖化係数も小さい環境に優しいフッ素化されたオレフィン(ハイドロフルオロオレフィン、HFOともいう。)を使用するスチレン系樹脂押出発泡体の製造方法が提案されている(例えば、特許文献3~6参照。)。
 他方、特許文献7のように、発泡性樹脂粒子にハイドロフルオロオレフィンを使用する従来技術において、可塑剤としてグリセリン脂肪酸エステルを用いても良いとの記載がある。
特開2004-59595 特開2013-221110 特表2008-546892 特開2013-194101 特表2010-522808 WO15/093195 特開2012-188634
 しかしながら、上記特許文献1~7に記載の技術は、優れた断熱性を有し、且つ、使用に適した十分な厚みのスチレン系樹脂押出発泡体を得るという目的において、十分ではなかった。
 本発明の課題は、優れた断熱性を有し、且つ、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることにある。
 本発明者らは、前記課題を解決するために鋭意検討した結果、スチレン系樹脂押出発泡体の製造に、厚み出し性改善剤として多価アルコール脂肪酸エステルを使用することにより、本発明を完成するに至った。
 すなわち本発明の一実施形態は以下の構成である。
[1]ハイドロフルオロオレフィンを含有し、且つ、多価アルコール脂肪酸エステルをスチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下含有することを特徴とする、スチレン系樹脂押出発泡体。
 本発明により、優れた断熱性を有し、且つ、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることができる。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態及び/又は実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態及び/又は実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 本発明者らが鋭意検討した結果、上述した特許文献1~7には以下の問題点があることを見出した。具体的には、まず、特許文献1に記載の技術では、平均気泡径を微細な範囲とした場合、発泡体の気泡壁間距離が短くなるために、押出発泡して形状付与する際の気泡の可動域が狭く、変形が困難であり、押出発泡体に厚みを出すことが容易でなくなるという問題があった。
 次に、特許文献2に記載の技術では、固体の添加剤を大量に使用した場合、造核点が増えるために発泡体の気泡が微細化し、特許文献1に記載の技術と同様の問題があった。その上、樹脂自体の伸びが悪化し、押出発泡体に厚みを出すことが、より難しくなる問題があった。
 また、特許文献3~6に記載の技術では、これらの従来技術で使用するハイドロフルオロオレフィンは、スチレン系樹脂への溶解性が低く、押出発泡する際のスチレン系樹脂との分離が早いため、分離したハイドロフルオロオレフィンが造核点となり気泡径が微細化する上、ハイドロフルオロオレフィンの気化潜熱により樹脂が冷却及び固化(樹脂の伸びが悪くなる)されて、特許文献1に記載の技術と同様の問題があった。
 なお、特許文献7に記載の技術は、可塑剤としてグリセリン脂肪酸エステルを用いたものであり、本発明とはグリセリン脂肪酸エステルを用いる目的も効果も異なる。
 以上のように、高断熱性発泡体を製造するための従来技術は、いずれも押出発泡体を押出発泡して成形加工する際の発泡体の気泡の変形を阻害し、及び/又は、樹脂自体の伸びを悪化させ、押出発泡体の厚みを出すことに問題があった。従って、高断熱性発泡体を製造するための従来技術は、優れた断熱性を有し、且つ十分な厚みを有するスチレン系樹脂押出発泡体を容易に得るには至っておらず、未だ課題を有するものであった。
 本発明者は、このような課題を解決すべく、本発明を完成させた。以下に本発明の実施形態について説明する。
 〔1.スチレン系樹脂押出発泡体〕
 本発明の一実施形態に係るスチレン系樹脂押出発泡体は、ハイドロフルオロオレフィンを含有し、且つ、多価アルコール脂肪酸エステルをスチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下含有する。さらに必要に応じてその他の添加剤を適量含有するスチレン系樹脂組成物を、押出機などを用いて加熱溶融し、ついで発泡剤を高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出すことにより連続的に製造される。
 (1-1.成分)
 (1-1-1.多価アルコール脂肪酸エステル)
 本発明の一実施形態では、発泡剤としてハイドロフルオロオレフィンを使用した際に悪化する押出発泡体の厚み出し性改善剤として、多価アルコール脂肪酸エステルを使用することで、押出発泡体の厚み出し性を改善できる。言い換えれば、所望の量の多価アルコール脂肪酸エステルを使用することで、押出発泡して押出発泡体に形状付与する際、押出発泡体に十分な厚みを出すことが可能となる。多価アルコール脂肪酸エステルの厚み出し性改善効果については次のように推測される。すなわち、スチレン系樹脂押出発泡体が多価アルコール脂肪酸エステルを含有することで、発泡剤として用いるハイドロフルオロオレフィンの樹脂溶融物に対する分散性、及び溶解性が向上する。樹脂溶融物に対するハイドロフルオロオレフィンの分散性、及び溶解性が向上すると、押出発泡体の発泡直後のハイドロフルオロオレフィンの気化量、もしくは気化速度が抑えられる。これにより、続く成形のタイミングで、樹脂溶融物に残存しているハイドロフルオロオレフィンによる、樹脂溶融物に対する可塑化効果の維持、及び、ハイドロフルオロオレフィンの気化潜熱による樹脂溶融物の冷却固化の抑制、ができるために、押出発泡体、及び/又は樹脂溶融物が、押出発泡体及び樹脂溶融物の形状付与に対して、十分な可塑性を有するものと考えている。
 本発明の一実施形態で用いる前記多価アルコール脂肪酸エステルの含有量は、スチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下が好ましく、0.1重量部以上3.0重量部以下がより好ましく、0.5重量部以上2.0重量部未満が特に好ましい。多価アルコール脂肪酸エステルの含有量が0.05重量部未満では、押出発泡体の厚み出し効果が十分でない傾向がある。一方、多価アルコール脂肪酸エステルの含有量が5.0重量部超えでは、多価アルコール脂肪酸エステルの含有量が過剰なため、製造時の押出性、発泡性、及び成形安定性を損ねたり、押出発泡体の耐熱性などの諸特性を悪化させるおそれがある。
 尚、本発明の一実施形態において多価アルコール脂肪酸エステルを前記含有量とするためには、前記スチレン系樹脂組成物において、多価アルコール脂肪酸エステルの添加量をスチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下とすれば良い。
 本発明の一実施形態で用いる前記多価アルコール脂肪酸エステルとしては、例えば、炭素数10~24の高級脂肪酸と、エチレングリコール、グリセリン、1,2,4-ブタントリオール、ジグリセリン、ペンタエリスリトール、ソルビトール、エリスリトール、ヘキサントリオールなどの多価アルコールとのエステルが挙げられる。これらの多価アルコール脂肪酸エステルは、単独で使用しても、2種以上を併用しても良い。
 これらの中でも、炭素数10~24の高級脂肪酸とグリセリンとのエステル、言い換えれば、グリセリン脂肪酸エステルが望ましく、グリセリンのモノ、ジ、トリ、または、テトラ脂肪酸エステルが、入手の容易性、価格などの点から特に望ましい。
 前記グリセリン脂肪酸エステルとしては、例えば、ラウリン酸モノグリセリド、ラウリン酸ジグリセリド、ラウリン酸トリグリセリド、パルチミン酸モノグリセリド、パルチミン酸ジグリセリド、パルチミン酸トリグリセリド、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸テトラグリセリドからなる群から選ばれる少なくとも1種を使用することが好ましい。
 本発明の一実施形態で用いる前記グリセリン脂肪酸エステルの融点は150℃以下であることが好ましく、130℃以下であることがより好ましく、110℃であることが特に好ましい。グリセリン脂肪酸エステルの融点が150℃以下の場合、例えば、押出発泡体製造時のドライブレンド工程などでのハンドリング性優れ、且つ、押出発泡成形時に液体として存在することで、押出発泡成形時のスチレン系樹脂に可塑化効果も付与できるため、十分なスチレン系樹脂押出発泡体の厚み出し効果を発揮できる。一方、融点が150℃超えの場合、押出発泡成形時に固体として存在し、押出発泡成形時のスチレン系樹脂に可塑化効果を付与できず、十分なスチレン系樹脂押出発泡体の厚み出し効果が発揮できないおそれがある。
 (1-1-2.スチレン系樹脂)
 本発明の一実施形態で用いるスチレン系樹脂としては、特に限定はなく、(i)スチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ビニルトルエン、ビニルキシレン等のスチレン系単量体の単独重合体または2種以上の単量体の組み合わせからなる共重合体や、(ii)前記スチレン系単量体と、ジビニルベンゼン、ブタジエン、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリロニトリル、無水マレイン酸、無水イタコン酸などの単量体の1種または2種以上と、を共重合させた共重合体などが挙げられる。スチレン系単量体と共重合させるアクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、無水マレイン酸、無水イタコン酸などの単量体は、製造されるスチレン系樹脂押出発泡体の圧縮強度等の物性を低下させない程度の量を用いることができる。また、本発明の一実施形態に用いるスチレン系樹脂は、前記スチレン系単量体の単独重合体または共重合体に限られず、前記スチレン系単量体の単独重合体または共重合体と、前記他の単量体の単独重合体または共重合体とのブレンド物であってもよい。例えば、本発明の一実施形態に用いるスチレン系樹脂は、前記スチレン系単量体の単独重合体もしくは共重合体と、ジエン系ゴム強化ポリスチレンまたはアクリル系ゴム強化ポリスチレンとのブレンド物であってもよい。更に、本発明の一実施形態で用いるスチレン系樹脂は、メルトフローレート(以下、MFRという。)、成形加工時の溶融粘度、溶融張力などを調整する目的で、分岐構造を有するスチレン系樹脂であってもよい。
 本発明の一実施形態におけるスチレン系樹脂としては、MFRが0.1~50g/10分のものを用いることが、(i)押出発泡成形する際の成形加工性に優れる点、(ii)成形加工時の吐出量、得られたスチレン系樹脂押出発泡体の厚み、幅、見掛け密度、及び独立気泡率を所望の値に調整しやすい点、(iii)発泡性(発泡体の厚み、幅、見掛け密度、独立気泡率、及び、表面性などを所望の状況に調整しやすいこと)に優れる点、(iv)外観などに優れたスチレン系樹脂押出発泡体が得られる点、並びに(v)特性(例えば、圧縮強度、曲げ強度または曲げたわみ量といった機械的強度や、靱性など)のバランスがとれた、スチレン系樹脂押出発泡体が得られる点から、好ましい。更に、スチレン系樹脂のMFRは、成形加工性および発泡性と、機械的強度及び靱性とのバランスの点から、0.3~30g/10分が更に好ましく、0.5~25g/10分が特に好ましい。なお、本発明の一実施形態において、MFRは、JIS K7210(1999年)のA法、及び、試験条件Hにより測定される。
 本発明の一実施形態においては、前述したスチレン系樹脂のなかでも、経済性及び加工性の面からポリスチレン樹脂が特に好適である。また、押出発泡体に、より高い耐熱性が要求される場合には、スチレン-アクリロニトリル共重合体、(メタ)アクリル酸共重合ポリスチレン、無水マレイン酸変性ポリスチレンを用いることが好ましい。また、押出発泡体に、より高い耐衝撃性が求められる場合には、ゴム強化ポリスチレンを用いることが好ましい。これらスチレン系樹脂は、単独で使用してもよく、また、共重合成分、分子量や分子量分布、分岐構造、及び/又はMFRなどの異なるスチレン系樹脂を2種以上混合して使用してもよい。
 (1-1-3.発泡剤)
 本発明の一実施形態では、押出発泡体の断熱性を向上させるため、発泡剤としてハイドロフルオロオレフィンを使用する。
 本発明の一実施形態で用いるハイドロフルオロオレフィンとしては、特に制限はないが、テトラフルオロプロペンが、低い気体の熱伝導率や安全性の観点から好ましい。具体的にはトランス-1,3,3,3-テトラフルオロプロペン(トランス-HFO-1234ze)、シス-1,3,3,3-テトラフルオロプロペン(シス-HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(トランス-HFO-1234yf)などが挙げられる。これらのハイドロフルオロオレフィンは、単独で用いてもよいし、2種以上を併用してもよい。
 本発明の一実施形態に係るハイドロフルオロオレフィンの添加量は、スチレン系樹脂100重量部に対して3.0重量部以上14.0重量部以下が好ましく、4.0重量部以上13.0重量部以下がより好ましく、4.5重量部以上12.0重量部以下が特に好ましい。ハイドロフルオロオレフィンの添加量がスチレン系樹脂100重量部に対して3.0重量部より少ない場合には、ハイドロフルオロオレフィンによる断熱性の向上効果があまり期待できない。一方、ハイドロフルオロオレフィンの添加量がスチレン系樹脂100重量部に対して14.0重量部を超える場合には、押出発泡時にハイドロフルオロオレフィンが樹脂溶融物から分離して、押出発泡体の表面にスポット孔(ハイドロフルオロオレフィンの局所的塊が、押出発泡体表面を突き破って外気へ放出された痕。)が発生したり、独立気泡率が低下して断熱性を損なうおそれがある。
 ハイドロフルオロオレフィンは、オゾン層破壊係数がゼロか極めて小さいものであり、地球温暖化係数が非常に小さく、環境に優しい発泡剤である。しかも、ハイドロフルオロオレフィンは、気体状態の熱伝導率が低く、且つ難燃性であることから、スチレン系樹脂押出発泡体の発泡剤として用いることにより、スチレン系樹脂押出発泡体に優れた断熱性、及び難燃性を付与することができる。
 一方、前記のテトラフルオロプロペンのようなスチレン系樹脂に対する溶解性が低いハイドロフルオロオレフィンを使用した場合には、添加量の増量に伴ってハイドロフルオロオレフィンが樹脂溶融物から分離、及び/又は、気化することにより、ハイドロフルオロオレフィンが造核点となって、(i)発泡体の気泡が微細化すること、(ii)樹脂に残存している発泡剤が減少して樹脂溶融物に対する可塑化効果が低下すること、(iii)発泡剤の気化潜熱による樹脂溶融物の冷却及び固化が生じること、を招き、その結果、押出発泡体の厚みを出すことが難しくなる傾向にある。特に、前記したようにハイドロフルオロオレフィンの添加量がスチレン系樹脂100重量部に対して14.0重量部を超える場合には、押出発泡体表面におけるスポット孔の発生も伴って、厚み出し性の悪化がより顕著なものとなる。
 また、本発明の一実施形態で用いる発泡剤として、炭素数3~5の飽和炭化水素を使用することができる。これらの発泡剤は、単独で使用してもよく、2種以上を併用してもよい。また、炭素数3~5の飽和炭化水素とハイドロフルオロオレフィンとを併用してもよい。
 本発明の一実施形態で用いる炭素数3~5の飽和炭化水素としては、例えば、プロパン、n-ブタン、i-ブタン、n-ペンタン、i-ペンタン、ネオペンタンなどが挙げられる。これらの炭素数3~5の飽和炭化水素のなかでは、発泡性の点から、プロパン、n-ブタン、i-ブタン、あるいは、これらの混合物が好ましい。また、発泡体の断熱性能の点から、n-ブタン、i-ブタン(以下、「イソブタン」と呼ぶこともある)、あるいは、これらの混合物が好ましく、特に好ましくはi-ブタンである。
 目的とする発泡倍率、難燃性等の発泡体の諸特性いかんによっては、前記ハイドロフルオロオレフィン、及び/又は前記炭素数3~5の飽和炭化水素の添加量などが制限される場合があり、該添加量が所望の範囲外の場合には、押出発泡成形性などが充分でない場合がある。
 本発明の一実施形態では、さらに、他の発泡剤を用いることにより、発泡体製造時の可塑化効果及び/又は助発泡効果が得られ、押出圧力を低減し、安定的に発泡体の製造が可能となる。
 他の発泡剤としては、例えば、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピランなどのエーテル類;ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、メチル-i-ブチルケトン、メチル-n-アミルケトン、メチル-n-ヘキシルケトン、エチル-n-プロピルケトン、エチル-n-ブチルケトンなどのケトン類;メタノール、エタノール、プロピルアルコール、i-プロピルアルコール、ブチルアルコール、i-ブチルアルコール、t-ブチルアルコールなどの炭素数1~4の飽和アルコール類;蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステルなどのカルボン酸エステル類;塩化メチル、塩化エチルなどのハロゲン化アルキルなどの有機発泡剤、水、二酸化炭素などの無機発泡剤、アゾ化合物、テトラゾールなどの化学発泡剤などを用いることができる。これら他の発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。 
 他の発泡剤の中では、発泡性、及び発泡体成形性などの点からは、炭素数1~4の飽和アルコール、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、塩化メチル、塩化エチルなどが好ましく、発泡剤の燃焼性、発泡体の難燃性あるいは後述する断熱性等の点からは、水、二酸化炭素が好ましい。これらの中では、可塑化効果の点からジメチルエーテルが、コスト、及び、気泡径の制御による断熱性向上効果の点から水が特に好ましい。
 本発明の一実施形態における発泡剤の添加量は、発泡剤全体として、スチレン系樹脂100重量部に対して、2~20重量部が好ましく、2~15重量部がより好ましい。発泡剤の添加量が2重量部より少ないと、発泡倍率が低く、樹脂発泡体としての軽量性、及び断熱性などの特性が発揮されにくい場合があり、20重量部より多いと、過剰な発泡剤量の為、発泡体中にボイドなどの不良を生じる場合がある。
 本発明の一実施形態においては、他の発泡剤として水、及び/又はアルコール類を用いる場合には、安定して押出発泡成形を行うために、吸水性物質を添加することが好ましい。本発明の一実施形態において用いられる吸水性物質の具体例としては、ポリアクリル酸塩系重合体、澱粉-アクリル酸グラフト共重合体、ポリビニルアルコール系重合体、ビニルアルコール-アクリル酸塩系共重合体、エチレン-ビニルアルコール系共重合体、アクリロニトリル-メタクリル酸メチル-ブタジエン系共重合体、ポリエチレンオキサイド系共重合体およびこれらの誘導体などの吸水性高分子の他、表面にシラノール基を有する無水シリカ(酸化ケイ素)[例えば、日本アエロジル(株)製AEROSILなどが市販されている]などのように表面に水酸基を有する粒子径1000nm以下の微粉末;スメクタイト、膨潤性フッ素雲母などの吸水性あるいは水膨潤性の層状珪酸塩並びにこれらの有機化処理品;ゼオライト、活性炭、アルミナ、シリカゲル、多孔質ガラス、活性白土、けい藻土、ベントナイトなどの多孔性物質等があげられる。吸水性物質の添加量は、水、及び/又はアルコール類の添加量などによって、適宜調整されるものであるが、スチレン系樹脂100重量部に対して、0.01~5重量部が好ましく、0.1~3重量部がより好ましい。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法において、発泡剤を添加または注入する際の圧力は、特に制限するものではなく、押出機などの内圧力よりも高い圧力であればよい。 
 (1-1-4.難燃剤)
 本発明の一実施形態では、スチレン系樹脂押出発泡体において、スチレン系樹脂100重量部に対して難燃剤を0.5重量部以上8.0重量部以下含有させることにより、得られるスチレン系樹脂押出発泡体に難燃性を付与することができる。難燃剤の含有量が0.5重量部未満では、難燃性などの発泡体としての良好な諸特性が得られがたい傾向があり、一方、8.0重量部を超えると、発泡体製造時の安定性、表面性などを損なう場合がある。但し、難燃剤の含有量は、JIS A9521測定方法Aに規定される難燃性が得られるように、発泡剤含有量、発泡体の見掛け密度、難燃相乗効果を有する添加剤などの種類あるいは含有量などに応じて、適宜調整されることがより好ましい。
 難燃剤としては、臭素系難燃剤が好ましく用いられる。本発明の一実施形態における臭素系難燃剤の具体的な例としては、ヘキサブロモシクロドデカン、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピル)エーテル、トリス(2,3-ジブロモプロピル)イソシアヌレート、及び臭素化スチレン-ブタジエンブロックコポリマーのような脂肪族臭素含有ポリマーが挙げられる。これらは、単独で用いても、2種以上を混合して用いても良い。
 これらのうち、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル、及びテトラブロモビスフェノールA-ビス(2,3-ジブロモプロピル)エーテルからなる混合臭素系難燃剤、臭素化スチレン-ブタジエンブロックコポリマー、及びヘキサブロモシクロドデカンが、押出運転が良好であり、発泡体の耐熱性に悪影響を及ぼさない等の理由から、望ましく用いられる。これらの物質はそれ単体で用いても、または混合物として用いても良い。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体における臭素系難燃剤の含有量は、スチレン系樹脂100重量部に対して、0.5重量部以上5.0重量部以下が好ましく、スチレン系樹脂100重量部に対して1.0重量部以上5.0重量部以下がより好ましく、1.5重量部以上5.0重量部以下が更に好ましい。臭素系難燃剤の含有量が0.5重量部未満では、難燃性などの発泡体としての良好な諸特性が得られがたい傾向があり、一方、5.0重量部を超えると、発泡体製造時の安定性、表面性などを損なう場合がある。
 本発明の一実施形態においては、スチレン系樹脂押出発泡体の難燃性能を向上させる目的で、ラジカル発生剤を併用することができる。前記ラジカル発生剤は、具体的には、2,3-ジメチル-2,3-ジフェニルブタン、ポリ-1,4-ジイソプロピルベンゼン、2,3-ジエチル-2,3-ジフェニルブタン、3,4-ジメチル-3,4-ジフェニルヘキサン、3,4-ジエチル-3,4-ジフェニルヘキサン、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-4-エチル-1-ペンテン等が挙げられる。ジクミルパーオキサイドの様な過酸化物も用いられる。その中でも、樹脂加工温度条件にて、安定なものが好ましく、具体的には2,3-ジメチル-2,3-ジフェニルブタン、及びポリ-1,4-ジイソプロピルベンゼンが好ましく、前記ラジカル発生剤の好ましい添加量としては、スチレン系樹脂100重量部に対して、0.05~0.5重量部である。
 更に、難燃性能を向上させる目的で、言い換えれば難燃助剤として、熱安定性能を損なわない範囲で、リン酸エステル及びホスフィンオキシドのようなリン系難燃剤を併用することができる。リン酸エステルとしては、トリフェニルホスフェート、トリス(トリブチルブロモネオペンチル)ホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、または縮合リン酸エステル等が挙げられ、特にトリフェニルホフェート、又はトリス(トリブチルブロモネオペンチル)ホスフェートが好ましい。又、ホスフィンオキシド型のリン系難燃剤としては、トリフェニルホスフィンオキシドが好ましい。これらリン酸エステル及びホスフィンオキシドは単独または2種以上併用しても良い。リン系難燃剤の好ましい添加量としては、スチレン系樹脂100重量部に対して0.1~2重量部である。
 (1-1-5.安定剤)
 本発明の一実施形態においては、必要に応じて樹脂、及び/又は、難燃剤の安定剤を使用することが出来る。特に限定されるものでは無いが、安定剤の具体的な例としては、(i)ビスフェノールAジグリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂のようなエポキシ化合物、(ii)ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール等の多価アルコールと、酢酸、プロピオン酸等の一価のカルボン酸、又は、アジピン酸、グルタミン酸等の二価のカルボン酸との反応物であるエステルであって、その分子中に一個以上の水酸基を持つエステルの混合物であり、原料の多価アルコールを少量含有することもある、多価アルコールエステル、(iii)トリエチレングリコール-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリトリトールテトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]、及びオクタデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナートのようなフェノール系安定剤、(iv)3,9-ビス(2,4-ジ-tert-ブチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、及びテトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト)のようなホスファイト系安定剤、などが発泡体の難燃性能を低下させることなく、かつ、発泡体の熱安定性を向上させることから、好適に用いられる。
 (1-1-6.熱線輻射抑制剤)
 本発明の一実施形態に係るスチレン系樹脂押出発泡体は、断熱性向上のため、熱線輻射抑制剤としてグラファイトを含有してもよい。本発明の一実施形態で使用するグラファイトは、例えば、鱗(片)状黒鉛、土状黒鉛、球状黒鉛、人造黒鉛などが挙げられる。これらの中でも、熱線輻射抑制効果が高い点から、主成分が鱗(片)状黒鉛のものを用いることが好ましい。グラファイトは、固定炭素分が80%以上のものが好ましく、85%以上のものがより好ましい。固定炭素分を上記範囲とすることで高い断熱性を有する発泡体が得られる。
 グラファイトの分散粒子径は15μm以下が好ましく、10μm以下がより好ましい。粒径を上記範囲とすることで、グラファイトの比表面積が大きくなり、熱線輻射との衝突確率が高くなるため、熱線輻射抑制効果が高くなる。分散粒径を前記範囲とするためには、一次粒径が15μm以下のものを選択すればよい。
 尚、前記分散粒径とは、発泡体中に分散しているそれぞれの粒子の粒子径の個数基準の算術平均値であり、粒子径は発泡体断面を顕微鏡などにより拡大して計測される。前記一次粒径とは体積平均粒径(d50)を意味する。
 本発明の一実施形態におけるグラファイトの含有量は、スチレン系樹脂100重量部に対して1.0重量部以上5.0重量部以下が好ましく、1.5重量部以上3.0重量部以下がより好ましい。含有量が1.0重量部未満では、十分な熱線輻射抑制効果が得られない。含有量が5.0重量部超では、含有量相応の熱線輻射抑制効果が得られずコストメリットが無い。
 本発明の一実施形態における白色系粒子の含有量としては、スチレン系樹脂100重量部に対して、1.0重量部以上3.0重量部以下が好ましく、1.5重量部以上2.5重量部以下がより好ましい。白色系粒子は、グラファイトと比較して熱線輻射抑制効果が小さく、白色系粒子の含有量が1.0重量部未満では、上記白色系粒子を含有しても熱線輻射抑制効果は殆どない。白色系粒子の含有量が3.0重量部超では、含有量相応の熱線輻射抑制効果が得られない、一方で、発泡体の難燃性が悪化する傾向がある。
 本発明の一実施形態における熱線輻射抑制剤の合計含有量は、スチレン系樹脂100重量部に対して、1.0重量部以上6.0重量部以下が好ましく、2.0重量部以上5.0重量部以下がより好ましい。熱線輻射抑制剤の合計含有量が1.0重量部未満では、断熱性が得られがたく、一方、熱線輻射抑制剤のような固体添加剤の含有量が増すほど、造核点が増えるために発泡体の気泡が微細化したり、樹脂自体の伸びが悪化したりすることで、押出発泡体の厚みを出すことが難しくなる傾向にあるが、熱線輻射抑制剤の合計含有量が6.0重量部超では、特に押出発泡体の厚みを出すことが劣る傾向があり、更に、押出安定性を損なう傾向、及び難燃性が損なわれる傾向がある。
 (1-1-7.添加剤)
 本発明の一実施形態においては、さらに、必要に応じて、本発明の一実施形態に係る効果を阻害しない範囲で、例えば、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、炭酸カルシウムなどの無機化合物、ステアリン酸ナトリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物などの加工助剤、フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類、ヒンダードアミン類などの耐光性安定剤、タルクなどの気泡径調整剤、前記以外の難燃剤、帯電防止剤、顔料などの着色剤、可塑剤などの添加剤がスチレン系樹脂に含有されてもよい。
 スチレン系樹脂に各種添加剤を配合する方法、手順としては、例えば、スチレン系樹脂に対して各種添加剤を添加してドライブレンドにより混合する方法、押出機の途中に設けた供給部より溶融したスチレン系樹脂に各種添加剤を添加する方法、あらかじめ押出機、ニーダー、バンバリーミキサー、ロールなどを用いてスチレン系樹脂へ高濃度の各種添加剤を含有させたマスターバッチを作製し、当該マスターバッチとスチレン系樹脂とをドライブレンドにより混合する方法、又は、スチレン系樹脂とは別の供給設備により各種添加剤を押出機に供給する方法、などが挙げられる。例えば、スチレン系樹脂に対して各種添加剤を添加して混合した後、押出機に供給して加熱溶融し、更に発泡剤を添加して混合する手順が挙げられるが、各種添加剤又は発泡剤をスチレン系樹脂に添加するタイミング及び混練時間は特に限定されない。
 (1-2.物性)
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の熱伝導率は特に限定はないが、例えば建築用断熱材、又は、保冷庫用若しくは保冷車用の断熱材として機能することを考慮した断熱性の観点から、平均温度23℃で測定した製造1週間後の熱伝導率が0.0285W/mK以下であることが好ましく、0.0245W/mK以下であることがより好ましく、0.0225W/mK以下であることが特に好ましい。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の見掛け密度は、例えば建築用断熱材、又は、保冷庫用若しくは保冷車用の断熱材として機能することを考慮した断熱性および、軽量性の観点から、20kg/m以上60kg/m以下であることが好ましく、より好ましくは25kg/m以上45kg/m以下である。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の独立気泡率は、80%以上が好ましく、90%以上がより好ましい。独立気泡率が80%未満では、発泡剤が押出発泡体から早期に散逸し、断熱性が低下する。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の厚み方向の平均気泡径は、0.05mm以上0.5mm以下が好ましく、0.05mm以上0.4mm以下がより好ましく、0.05mm以上0.3mm以下が特に好ましい。一般に、平均気泡径が小さいほど、発泡体の気泡壁間距離が短くなるために、押出発泡の際に押出発泡体に形状付与する際の押出発泡体の気泡の可動域が狭く、変形が困難であり、押出発泡体の厚みを出すことが難しくなる傾向にある。スチレン系樹脂押出発泡体の厚み方向の平均気泡径が0.05mmより小さいと、特に押出発泡体の厚みを出すことが難しくなる傾向が顕著なものとなる。一方、スチレン系樹脂押出発泡体の厚み方向の平均気泡径が0.5mm超えの場合、十分な断熱性が得られないおそれがある。
 尚、本発明の一実施形態に係るスチレン系樹脂押出発泡体の平均気泡径は、マイクロスコープ[(株)KEYENCE製、DIGITAL MICROSCOPE VHX-900]を用いて、次に記載の通り評価した。
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所の厚み方向中央部の幅方向垂直断面を押出方向と幅方向から前記マイクロスコープにて観察し、100倍の拡大写真を撮影した。前記拡大写真の厚み方向に任意に2mmの直線を3本引き(各観察箇所、各観察方向につき3本。)、その直線に接する気泡の個数aを測定し。測定した気泡の個数aから、次式(3)により観察箇所毎の厚み方向の平均気泡径Aを求めた。3箇所(各箇所2方向ずつ)の平均値をスチレン系樹脂押出発泡体の厚み方向の平均気泡径A(平均値)とした。
 観察箇所毎の厚み方向の平均気泡径A(mm)=2×3/気泡の個数a
                              ・・・(3)。
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所の厚み方向中央部の押出方向垂直断面を幅方向から前記マイクロスコープにて観察し、100倍の拡大写真を撮影した。前記拡大写真の押出方向に任意に2mmの直線を3本引き(各観察箇所につき3本。)、その直線に接する気泡の個数bを測定し。測定した気泡の個数bから、次式(4)により観察箇所毎の押出方向の平均気泡径Bを求めた。3箇所の平均値をスチレン系樹脂押出発泡体の押出方向の平均気泡径B(平均値)とした。
 観察箇所毎の押出方向の平均気泡径B(mm)=2×3/気泡の個数b
                              ・・・(4)。
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所の厚み方向中央部の幅方向垂直断面を押出方向から前記マイクロスコープにて観察し、100倍の拡大写真を撮影した。前記拡大写真の幅方向に任意に2mmの直線を3本引き(各観察箇所につき3本。)、その直線に接する気泡の個数cを測定し。測定した気泡の個数cから、次式(5)により観察箇所毎の幅方向の平均気泡径Cを求めた。3箇所の平均値をスチレン系樹脂押出発泡体の幅方向の平均気泡径C(平均値)とした。
 観察箇所毎の幅方向の平均気泡径C(mm)=2×3/気泡の個数c
                              ・・・(5)。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の気泡変形率は、0.7以上2.0以下が好ましく、0.8以上1.5以下がより好ましく、0.8以上1.2以下が更に好ましい。気泡変形率が0.7よりも小さい場合、圧縮強度が低くなり、押出発泡体において、用途に適した強度を確保できないおそれがある。また、気泡が球状に戻ろうとするため、押出発泡体の寸法(形状)維持性に劣る傾向がある。一方、気泡変形率が2.0超えの場合、押出発泡体の厚み方向における気泡数が少なくなるため、気泡形状による断熱性向上効果が小さくなる。
 尚、本発明の一実施形態に係るスチレン系樹脂押出発泡体の気泡変形率は、前記した平均気泡径から、次式(6)により求めることができる。
 気泡変形率(単位なし)=A(平均値)/{〔B(平均値)+C(平均値)〕/2}・・・(6)。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体における厚みは、例えば建築用断熱材、又は保冷庫用若しくは保冷車用の断熱材として機能することを考慮した断熱性、曲げ強度及び圧縮強度の観点から、10mm以上150mm以下であることが好ましく、より好ましくは20mm以上130mm以下であり、特に好ましくは30mm以上120mm以下である。
 尚、スチレン系樹脂押出発泡体では、本発明の実施例、及び比較例に記載したように、押出発泡成形して形状を付与した後に、厚み方向と垂直な平面の両表面を厚み方向に片側5mm程度の深さでカットして製品厚みとする場合があるが、別途記載がない限り、本発明の一実施形態に係るスチレン系樹脂押出発泡体における厚みとは押出発泡成形して形状を付与したままのカットしていない厚みのことである。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の形状は、例えば建築用断熱材、又は保冷庫用若しくは保冷車用の断熱材として好適に使用するために、押出方向、幅方向、厚み方向のいずれの方向にも波打ちがなく板状である必要がある。前記したように、例えばハイドロフルオロオレフィンを用いた場合、熱線輻射抑制剤を使用した場合、又は、スチレン系押出発泡体として平均気泡系が微細化した場合などには、樹脂自体の伸びが悪化したり、押出発泡して形状付与する際の押出発泡体の気泡の可動域が狭く、変形が困難であったりすることによって、押出発泡成形して前記厚みへの調整を試みた際に形状付与できず、押出発泡体の押出方向、幅方向、厚み方向のいずれか一方向以上が波打ちしており板状とならない場合がある。
 かくして、本発明の一実施形態により、優れた断熱性を有し、且つ、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得ることができる。
 〔2.スチレン系樹脂押出発泡体の製造方法〕
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法は、前記した〔1.スチレン系樹脂押出発泡体〕に記載のスチレン系樹脂押出発泡体を製造するために用いられる製造方法である。本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法で使用される構成のうち、〔1.スチレン系樹脂押出発泡体〕にて既に説明した構成については、ここではその説明を省略する。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法としては、スチレン系樹脂、多価アルコール脂肪酸エステル、及び、必要に応じて、難燃剤、安定剤、熱線輻射抑制剤、又はその他の添加剤等を押出機等の加熱溶融部に供給する。このとき、任意の段階で高圧条件下にてハイドロフルオロオレフィン、及び必要に応じてその他の発泡剤をスチレン系樹脂に添加することができる。そして、スチレン系樹脂、多価アルコール脂肪酸エステル、ハイドロフルオロオレフィン、並びにその他の添加剤及び/又はその他の発泡剤、の混合物を流動ゲルとなし、押出発泡に適する温度に冷却した後、ダイを通して該流動ゲルを低圧領域に押出発泡して、発泡体を形成する。
 前記加熱溶融部における加熱温度は、使用されるスチレン系樹脂が溶融する温度以上であればよいが、添加剤などの影響による樹脂の分子劣化ができる限り抑制される温度、例えば150℃~260℃程度が好ましい。加熱溶融部における溶融混練時間は、単位時間当たりのスチレン系樹脂の押出量、及び/又は、加熱溶融部として用い、且つ、溶融混練部として用いられる押出機の種類により異なるので一義的に規定することはできず、スチレン系樹脂と発泡剤及び添加剤とが均一に分散混合されるに要する時間として適宜設定される。
 溶融混練部としては、例えばスクリュー型の押出機などが挙げられるが、通常の押出発泡に用いられるものであれば特に制限されない。
 本発明の一実施形態に係る発泡成形方法は、例えば、押出成形用に使用される開口部が直線のスリット形状を有するスリットダイを通じて、高圧領域から低圧領域へ開放して得られた押出発泡体を、スリットダイと密着又は接して設置された成形金型、及び該成形金型の下流側に隣接して設置された成形ロールなどを用いて、断面積の大きい板状発泡体を成形する方法が用いられる。成形金型の流動面形状調整および金型温度調整によって、所望の発泡体の断面形状、発泡体の表面性、発泡体品質が得られる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。更に、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体の製造方法は、以下の様な構成であってもよい。
 [1]ハイドロフルオロオレフィンを含有し、且つ、多価アルコール脂肪酸エステルをスチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下含有する、スチレン系樹脂組成物を発泡させる工程を含んでいることを特徴とする、スチレン系樹脂押出発泡体の製造方法。
 [2]前記ハイドロフルオロオレフィンの添加量が前記スチレン系樹脂100重量部に対して3.0重量部以上14.0重量部以下であることを特徴とする、[1]に記載のスチレン系樹脂押出発泡体の製造方法。
 [3]前記スチレン系樹脂100重量部に対してグラファイトを1.0重量部以上5.0重量部以下含有することを特徴とする、[1]または[2]に記載のスチレン系樹脂押出発泡体の製造方法。
 [4]前記多価アルコール脂肪酸エステルがグリセリン脂肪酸エステルであることを特徴とする、[1]~[3]のいずれか1つに記載のスチレン系樹脂押出発泡体の製造方法。
 [5]前記グリセリン脂肪酸エステルの融点が150℃以下であることを特徴とする、[4]に記載のスチレン系樹脂押出発泡体の製造方法。
 [6]前記ハイドロフルオロオレフィンがテトラフルオロプロペンであることを特徴とする、[1]~[5]のいずれか1つに記載のスチレン系樹脂押出発泡体の製造方法。
 [7]前記スチレン系樹脂押出発泡体の厚みが10mm以上150mm以下であることを特徴とする、[1]~[6]のいずれか1つに記載のスチレン系樹脂押出発泡体の製造方法。
 [8]前記スチレン系樹脂押出発泡体の見掛け密度が20kg/m以上60kg/m以下、且つ、独立気泡率が80%以上であることを特徴とする、[1]~[7]のいずれか1つに記載のスチレン系樹脂押出発泡体の製造方法。
 [9]前記スチレン系樹脂100重量部に対して臭素系難燃剤を0.5重量部以上5.0重量部以下含有することを特徴とする、[1]~[8]のいずれか1つに記載のスチレン系樹脂押出発泡体の製造方法。
 本発明の一実施形態に係るスチレン系樹脂押出発泡体は、以下の様な構成であってもよい。
 [1]ハイドロフルオロオレフィンを含有し、且つ、多価アルコール脂肪酸エステルをスチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下含有することを特徴とする、スチレン系樹脂押出発泡体。
 [2]前記ハイドロフルオロオレフィンの添加量が前記スチレン系樹脂100重量部に対して3.0重量部以上14.0重量部以下であることを特徴とする、[1]に記載のスチレン系樹脂押出発泡体。
 [3]グラファイトを前記スチレン系樹脂100重量部に対して1.0重量部以上5.0重量部以下含有することを特徴とする、[1]または[2]に記載のスチレン系樹脂押出発泡体。
 [4]前記多価アルコール脂肪酸エステルがグリセリン脂肪酸エステルであることを特徴とする、[1]~[3]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [5]前記グリセリン脂肪酸エステルの融点が150℃以下であることを特徴とする、[4]に記載のスチレン系樹脂押出発泡体。
 [6]前記ハイドロフルオロオレフィンがテトラフルオロプロペンであることを特徴とする、[1]~[5]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [7]前記スチレン系樹脂押出発泡体の厚みが10mm以上150mm以下であることを特徴とする、[1]~[6]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [8]前記スチレン系樹脂押出発泡体の見掛け密度が20kg/m以上60kg/m以下、且つ、独立気泡率が80%以上であることを特徴とする、[1]~[7]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [9]臭素系難燃剤を前記スチレン系樹脂100重量部に対して0.5重量部以上5.0重量部以下含有することを特徴とする、[1]~[8]のいずれか1つに記載のスチレン系樹脂押出発泡体。
 [10][1]~[9]のいずれか1つに記載のスチレン系樹脂押出発泡体の製造方法。
 以下、本発明の実施例について説明する。なお、本発明が以下の実施例に限定されないことは勿論である。
 実施例および比較例において使用した原料は、次の通りである。
 ○基材樹脂
・スチレン系樹脂A [PSジャパン(株)製、G9401;MFR2.2g/10分]
・スチレン系樹脂B [PSジャパン(株)製、680;MFR7.0g/10分]。
 ○熱線輻射抑制剤
・グラファイト [(株)丸豊鋳材製作所製、M-885;鱗(片)状黒鉛、一次粒径5.5μm、固定炭素分89%]
・酸化チタン [堺化学工業(株)製、R-7E;一次粒径0.23μm]。
 ○難燃剤
・テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル、及びテトラブロモビスフェノールA-ビス(2,3-ジブロモプロピル)エーテルの混合臭素系難燃剤[第一工業製薬(株)製、GR-125P]
・臭素化スチレン-ブタジエンブロックポリマー [ケムチュラ製、EMERALD INNOVATION #3000]。
 ○難燃助剤
・トリフェニルホスフィンオキシド [住友商事ケミカル]。
 ○ラジカル発生剤
・ポリ-1,4-ジイソプロピルベンゼン [UNITED INITIATORS製、CCPIB]。
 ○安定剤
・ビスフェノール-A-グリシジルエーテル [(株)ADEKA製、EP-13]。
・クレゾールノボラック型エポキシ樹脂 [ハンツマンジャパン製、ECN-1280]
・ジペンタエリスリトール-アジピン酸反応混合物 [味の素ファインテクノ(株)製、プレンライザーST210]
・ペンタエリトリトールテトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート] [ケムチュラ製、ANOX20]
・3,9-ビス(2,4-ジ-tert-ブチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン [ケムチュラ製、Ultranox626]
・トリエチレングリコール-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート [Songwon Japan(株)製、ソンノックス2450FF]。
 ○その他添加剤 
・タルク [林化成(株)製、タルカンパウダーPK-Z]
・ステアリン酸カルシウム [堺化学工業(株)製、SC-P]
・ベントナイト [(株)ホージュン製、ベンゲルブライトK11]
・シリカ [エボニックデグサジャパン(株)製、カープレックスBS-304F]
・エチレンビスステアリン酸アミド [日油(株)製、アルフローH-50S]。
 ○可塑剤
・アジピン酸ジイソブチル [大八化学工業(株)製、DIBA]。
 ○厚み出し性改善剤
・ステアリン酸モノグリセリド [理研ビタミン(株)製、リケマールS-100P、融点67℃]
・ステアリン酸ジグリセリド [理研ビタミン(株)製、ポエムDS-100A、融点55℃]
・ステアリン酸テトラグリセリド [理研ビタミン(株)製、ポエムJ-4081V、融点69℃]。
 ○発泡剤
・HFO-1234ze [ハネウェルジャパン(株)製]
・ジメチルエーテル [岩谷産業(株)製]
・イソブタン [三井化学(株)製]
・塩化エチル [日本特殊化学工業(株)製]
・水 [大阪府摂津市水道水]。
 実施例および比較例について、以下の手法に従ってスチレン系樹脂押出発泡体の厚み(カット前)、見掛け密度、独立気泡率、平均気泡径、気泡変形率、押出発泡体中のスチレン系樹脂100gに対するHFO-1234ze残存量、熱伝導率、JIS燃焼性、発泡体形状を評価した。
 (1)スチレン系樹脂押出発泡体の厚み(カット前)
 ノギス[(株)ミツトヨ製、M型標準ノギスN30]を用いて、幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の厚み、計3点を測定した。3点の平均値をスチレン系樹脂押出発泡体の厚みとした。
 (2)見掛け密度(kg/m
得られたスチレン系樹脂押出発泡体の重量を測定すると共に、長さ寸法、幅寸法、厚み寸法を測定した。
 測定された重量および各寸法から、以下の式(7)に基づいて発泡体密度を求め、単位をkg/mに換算した。
見掛け密度(g/cm)=発泡体重量(g)/発泡体体積(cm)・・・(7)。
 (3)独立気泡率
 得られたスチレン系樹脂押出発泡体の幅方向中央部、及び幅方向の一端から逆端方向に150mmの場所(幅方向両端について同じ場所)の計3箇所から厚さ40mm×長さ(押出方向)25mm×幅25mmに切り出した試験片を用い、ASTM-D2856-70の手順Cに従って測定し、以下の計算式(8)にて各試験片の独立気泡率を求め、3箇所の平均値をスチレン系樹脂押出発泡体の独立気泡率とした。
独立気泡率(%)=(V1-W/ρ)×100/(V2-W/ρ)・・・(8)。
 ここで、V1(cm)は空気比較式比重計[東京サイエンス(株)製、空気比較式比重計、型式1000型]を用いて測定した試験片の真の体積(独立気泡でない部分の容積が除かれる。)である。V2(cm)は、ノギス[(株)ミツトヨ製、M型標準ノギスN30]を用いて測定した試験片の外側寸法より算出した見掛けの体積である。W(g)は試験片の全重量である。また、ρ(g/cm)は押出し発泡体を構成するスチレン系樹脂の密度であり、1.05(g/cm)とした。
 (4)厚み方向の平均気泡径と気泡変形率
 得られたスチレン系樹脂押出発泡体について、前述の通り評価した。
 (5)押出発泡体中のスチレン系樹脂100gに対するHFO-1234ze残存量
 得られたスチレン系樹脂押出発泡体をJIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置し、製造直後(製造から2時間以内)、及び製造から1週間後のHFO-1234ze残存量を以下の設備、手順にて評価した。
a)使用機器;ガスクロマトグラフ GC-2014 [(株)島津製作所製]
b)使用カラム;G-Column G-950 25UM [化学物質評価研究機構製]
c)測定条件;
・注入口温度:65℃
・カラム温度:80℃
・検出器温度:100℃
・キャリーガス:高純度ヘリウム
・キャリーガス流量:30mL/分
・検出器:TCD
・電流:120mA
 約130ccの密閉可能なガラス容器(以下、「密閉容器」と言う)に、発泡体から切り出した見掛け密度により異なるが約1.2gの試験片を入れ、真空ポンプにより密閉容器内の空気抜きを行った。その後、密閉容器を170℃で10分間加熱し、発泡体中の発泡剤を密閉容器内に取り出した。密閉容器が常温に戻った後、密閉容器内にヘリウムを導入して大気圧に戻した後、マイクロシリンジにより40μLのHFO-1234zeを含む混合気体を取り出し、上記a)~c)の使用機器、測定条件にて評価した。
 (6)熱伝導率
 JIS A 9521に準じて、厚さ製品厚み×長さ(押出方向)300mm×幅300mmに切り出した試験片を用い、熱伝導率測定装置[英弘精機(株)、HC-074]にて平均温度23℃での熱伝導率を測定した。測定は、スチレン系樹脂押出発泡体の製造後、前記寸法の試験片に切削し、JIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置し、製造から1週間後に行った。
 (7)JIS燃焼性
 JIS A 9521に準じて、厚さ10mm×長さ200mm×幅25mmの試験片を用い、以下の基準で評価した。測定は、スチレン系樹脂押出発泡体の製造後、前記寸法の試験片に切削し、JIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置し、製造から1週間後に行った。 
○:3秒以内に炎が消えて、残じんがなく、燃焼限界指示線を超えて燃焼しないとの基準を満たす。
×:上記基準を満たさない。
 (8)発泡体形状
 成形ロール以降カット以前の押出発泡体を目視し、下記の評価基準によって評価した。
○:押出発泡体の押出方向、幅方向、厚み方向のいずれの方向にも波打ちがなく板状である。
×:押出発泡体の押出方向、幅方向、厚み方向のいずれか一方向以上が波打ちしており板状でない。
 実施例および比較例について、グラファイト、酸化チタンは以下の手法に従って作製したマスターバッチにより添加した。
 [グラファイトマスターバッチAの作製]
 バンバリーミキサーに、基材樹脂であるスチレン系樹脂A[PSジャパン(株)製、G9401]100重量部、並びに、スチレン系樹脂A100重量部に対して、グラファイト[(株)丸豊鋳材製作所製、M-885]102重量部、及びエチレンビスステアリン酸アミド[日油(株)製、アルフローH-50S]2.0重量部を投入して、5kgf/cmの荷重をかけた状態で加熱冷却を行わずに20分間溶融混練した。この際、樹脂温度を測定したところ190℃であった。ルーダーに供給して先端に取り付けられた***を有するダイスを通して吐出量250kg/hrで押し出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチを得た。
 [グラファイトマスターバッチBの作製]
 バンバリーミキサーに、基材樹脂であるスチレン系樹脂B[PSジャパン(株)製、680]100重量部、並びに、スチレン系樹脂B100重量部に対して、グラファイト[(株)丸豊鋳材製作所製、M-885]102重量部、及びエチレンビスステアリン酸アミド[日油(株)製、アルフローH-50S]2.0重量部を投入して、5kgf/cmの荷重をかけた状態で加熱冷却を行わずに20分間溶融混練した。この際、樹脂温度を測定したところ180℃であった。ルーダーに供給して先端に取り付けられた***を有するダイスを通して吐出量250kg/hrで押し出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチを得た。
 [酸化チタンマスターバッチAの作製]
 バンバリーミキサーに、基材樹脂であるスチレン系樹脂A[PSジャパン(株)製、G9401]100重量部、並びに、スチレン系樹脂A100重量部に対して、酸化チタン[堺化学工業(株)製、R-7E]154重量部、及びエチレンビスステアリン酸アミド[日油(株)製、アルフローH-50S]2.6重量部を投入して、5kgf/cmの荷重をかけた状態で加熱冷却を行わずに20分間溶融混練した。この際、樹脂温度を測定したところ190℃であった。ルーダーに供給して先端に取り付けられた***を有するダイスを通して吐出量250kg/hrで押し出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチを得た。
 [酸化チタンマスターバッチBの作製]
 バンバリーミキサーに、基材樹脂であるスチレン系樹脂B[PSジャパン(株)製、680]100重量部、並びに、スチレン系樹脂B100重量部に対して、酸化チタン[堺化学工業(株)製、R-7E]154重量部、及びエチレンビスステアリン酸アミド[日油(株)製、アルフローH-50S]2.6重量部を投入して、5kgf/cmの荷重をかけた状態で加熱冷却を行わずに20分間溶融混練した。この際、樹脂温度を測定したところ180℃であった。ルーダーに供給して先端に取り付けられた***を有するダイスを通して吐出量250kg/hrで押し出されたストランド状の樹脂を30℃の水槽で冷却固化させた後、切断してマスターバッチを得た。
 (実施例1)
 [樹脂混合物の作製]
 基材樹脂であるスチレン系樹脂A[PSジャパン(株)製、G9401]100重量部、並びに、スチレン系樹脂A100重量部に対して、難燃剤としてテトラブロモビスフェノールA-ビス(2、3-ジブロモ-2-メチルプロピル)エーテルと、テトラブロモビスフェノールA-ビス(2、3-ジブロモプロピル)エーテルとの混合臭素系難燃剤[第一工業製薬(株)製、GR-125P]3.0重量部、難燃剤助剤としてトリフェニルホスフィンオキシド [住友商事ケミカル]1.0重量部、気泡径調整剤としてタルク[林化成(株)製、タルカンパウダーPK-Z]0.50重量部、安定剤としてビスフェノール-A-グリシジルエーテル[(株)ADEKA製、EP-13]0.20重量部、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート[Songwon Japan(株)製、ソンノックス2450FF]0.20重量部、ジペンタエリスリトール-アジピン酸反応混合物[味の素ファインテクノ製、プレンライザーST210]0.10重量部、滑剤としてステアリン酸カルシウム[堺化学工業(株)製、SC-P]0.20重量部、吸水媒体としてベントナイト[(株)ホージュン製、ベンゲルブライトK11]0.40重量部、シリカ[エボニックデグサジャパン(株)製、カープレックスBS-304F]0.40重量部、及び、厚み出し性改善剤としてステアリン酸モノグリセリド[理研ビタミン(株)製、リケマールS-100P]0.50重量部をドライブレンドした。
 [押出発泡体の作製]
 得られた樹脂混合物を、口径150mmの単軸押出機(第一押出機)、口径200mmの単軸押出機(第二押出機)、及び冷却機を直列に連結した押出機へ、約950kg/hrで供給した。
 第一押出機に供給した樹脂混合物を、樹脂温度240℃に加熱して溶融ないし可塑化、混練し、発泡剤(基材樹脂100重量部に対して、HFO-1234ze2.5重量部、イソブタン1.6重量部、ジメチルエーテル2.8重量部、及び水(水道水)0.9重量部)を第一押出機の先端付近で樹脂中に圧入した。その後、第一押出機に連結された第二押出機及び冷却機中にて、樹脂温度を120℃に冷却し、冷却機先端に設けた厚さ6mm×幅400mmの長方形断面の口金(スリットダイ)より、発泡圧力3.0MPaにて大気中へ押出発泡させた後、口金に密着させて設置した成形金型とその下流側に設置した成形ロールにより、厚み60mm×幅1000mmである断面形状の押出発泡板を得、カッターにて厚み50mm×幅910mm×長さ1820mmにカットした。得られた発泡体の評価結果を表1に示す。
 (実施例2~19)
 表1、表2に示すように、各種配合の種類、添加量、及び/又は製造条件を変更した以外は、実施例1と同様の操作により、押出発泡体を得た。得られた押出発泡体の物性を表1、表2に示す。尚、グラファイト、酸化チタンは、前記したようにあらかじめスチレン系樹脂のマスターバッチの形態として、樹脂混合物の作製時に投入した。マスターバッチを使用した場合、基材樹脂はマスターバッチ中に含まれる基材樹脂と合計して100重量部とした。
 (比較例1~6) 
 表3に示すように、各種配合の種類、添加量、及び/又は製造条件を変更した以外は、実施例1と同様の操作により、押出発泡体を得た。得られた押出発泡体の物性を表3に示す。尚、グラファイト、酸化チタンは、前記したようにあらかじめスチレン系樹脂のマスターバッチの形態として、樹脂混合物の作製時に投入した。マスターバッチを使用した場合、基材樹脂はマスターバッチ中に含まれる基材樹脂と合計して100重量部とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1~3からわかるように、ハイドロフルオロオレフィン使用量の増加により、更には熱線輻射抑制剤の添加により、押出発泡体の厚み出し性が悪化する。実施例1~5と比較例2との比較、実施例8と比較例1との比較、及び、実施例9~14と比較例3~4との比較から明らかなように、多価アルコール脂肪酸エステルを使用することで、押出発泡体の厚み出し性を改善することができる。
 また、比較例4からわかるように、多価アルコール脂肪酸エステルの使用量が特定の範囲より少ないと、厚み出し改善効果は見られない。反対に、比較例5からわかるように、多価アルコール脂肪酸エステルの使用量が特定の範囲を超えると、発泡安定性や成形安定性が悪化する。
 更に、比較例6からわかるように、一般的な可塑剤であるアジピン酸エステルを添加しても厚み出し改善効果は見られない。
 総じて、実施例1~19からわかるように、多価アルコール脂肪酸エステルを特定の範囲で使用することで、熱伝導率が0.028W/mK以下と優れた断熱性を有し、且つ、使用に適した十分な厚みのスチレン系樹脂押出発泡体を容易に得られることがわかる。
 熱伝導率によって表される断熱性の観点から、実施例1~19のうち好ましい実施例は実施例6~19であり、より好ましい実施例は実施例11~19である。
 本発明は、優れた断熱性を有し、且つ、使用に適した十分な厚みを有しているスチレン系樹脂押出発泡体であるため、当該スチレン系樹脂押出発泡体を、住宅、又は構造物の断熱材として好適に用いることができる。

Claims (10)

  1.  ハイドロフルオロオレフィンを含有し、且つ、多価アルコール脂肪酸エステルをスチレン系樹脂100重量部に対して0.05重量部以上5.0重量部以下含有することを特徴とする、スチレン系樹脂押出発泡体。
  2.  前記ハイドロフルオロオレフィンの添加量が前記スチレン系樹脂100重量部に対して3.0重量部以上14.0重量部以下であることを特徴とする、請求項1に記載のスチレン系樹脂押出発泡体。
  3.  前記スチレン系樹脂100重量部に対してグラファイトを1.0重量部以上5.0重量部以下含有することを特徴とする、請求項1または2に記載のスチレン系樹脂押出発泡体。
  4.  前記多価アルコール脂肪酸エステルがグリセリン脂肪酸エステルであることを特徴とする、請求項1~3のいずれか1項に記載のスチレン系樹脂押出発泡体。
  5.  前記グリセリン脂肪酸エステルの融点が150℃以下であることを特徴とする、請求項4に記載のスチレン系樹脂押出発泡体。
  6.  前記ハイドロフルオロオレフィンがテトラフルオロプロペンであることを特徴とする、請求項1~5のいずれか1項に記載のスチレン系樹脂押出発泡体。
  7.  厚みが10mm以上150mm以下であることを特徴とする、請求項1~6のいずれか1項に記載のスチレン系樹脂押出発泡体。
  8.  見掛け密度が20kg/m以上60kg/m以下、且つ、独立気泡率が80%以上であることを特徴とする、請求項1~7のいずれか1項に記載のスチレン系樹脂押出発泡体。
  9.  前記スチレン系樹脂100重量部に対して臭素系難燃剤を0.5重量部以上5.0重量部以下含有することを特徴とする、請求項1~8のいずれか1項に記載のスチレン系樹脂押出発泡体。
  10.  請求項1~9のいずれか1項に記載のスチレン系樹脂押出発泡体の製造方法。
PCT/JP2016/082484 2015-11-05 2016-11-01 スチレン系樹脂押出発泡体およびその製造方法 WO2017078025A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187015048A KR102129039B1 (ko) 2015-11-05 2016-11-01 스티렌계 수지 압출 발포체 및 그 제조 방법
JP2017548779A JP6639517B2 (ja) 2015-11-05 2016-11-01 スチレン系樹脂押出発泡体およびその製造方法
US15/969,999 US20180251620A1 (en) 2015-11-05 2018-05-03 Styrene resin extruded foam and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-217836 2015-11-05
JP2015217836 2015-11-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/969,999 Continuation US20180251620A1 (en) 2015-11-05 2018-05-03 Styrene resin extruded foam and method for producing same

Publications (1)

Publication Number Publication Date
WO2017078025A1 true WO2017078025A1 (ja) 2017-05-11

Family

ID=58662051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082484 WO2017078025A1 (ja) 2015-11-05 2016-11-01 スチレン系樹脂押出発泡体およびその製造方法

Country Status (4)

Country Link
US (1) US20180251620A1 (ja)
JP (1) JP6639517B2 (ja)
KR (1) KR102129039B1 (ja)
WO (1) WO2017078025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164733A (ja) * 2019-03-29 2020-10-08 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188543A (ja) * 2011-03-10 2012-10-04 Sekisui Plastics Co Ltd 樹脂粒子、発泡性樹脂粒子、その製造方法、発泡粒子及び発泡成形体
JP2013064139A (ja) * 2005-06-24 2013-04-11 Honeywell Internatl Inc フッ素置換されたオレフィンを含む起泡剤及び組成物、並びに起泡方法
US20150166752A1 (en) * 2013-12-16 2015-06-18 Clariant International, Ltd. Polymeric Foam
WO2015093195A1 (ja) * 2013-12-20 2015-06-25 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08863B2 (ja) * 1990-12-27 1996-01-10 積水化成品工業株式会社 ポリスチレン系樹脂発泡体の製造方法
US6274640B1 (en) * 2000-08-17 2001-08-14 Owens Corning Fiberglas Technology, Inc. Extruded foam product with 134a and alcohol blowing agent
JP4535667B2 (ja) 2001-06-18 2010-09-01 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡板及びその製造方法
RU2466157C2 (ru) 2007-03-27 2012-11-10 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Высококачественная полимерная пена из фторированных алкеновых пенообразователей
TWI439503B (zh) * 2009-10-27 2014-06-01 Sekisui Plastics 發泡性聚苯乙烯類樹脂粒子及其製造方法、聚苯乙烯類預先發泡粒子、聚苯乙烯類樹脂發泡成形體、建材用隔熱材、堆土用材料及車輛內部裝璜材料
US8323787B2 (en) * 2010-01-29 2012-12-04 Owens Corning Intellectual Capital, Llc Additive blend for enhancing water vapor permeability and increasing cell size in thermoplastic foams
JP2012188634A (ja) 2011-03-14 2012-10-04 Sekisui Plastics Co Ltd ポリスチレン系発泡性樹脂粒子、ポリスチレン系発泡樹脂粒子及びポリスチレン系発泡樹脂成形体
JP5937386B2 (ja) 2012-03-16 2016-06-22 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡断熱板の製造方法
JP2013221110A (ja) 2012-04-18 2013-10-28 Kaneka Corp スチレン系樹脂押出発泡体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064139A (ja) * 2005-06-24 2013-04-11 Honeywell Internatl Inc フッ素置換されたオレフィンを含む起泡剤及び組成物、並びに起泡方法
JP2012188543A (ja) * 2011-03-10 2012-10-04 Sekisui Plastics Co Ltd 樹脂粒子、発泡性樹脂粒子、その製造方法、発泡粒子及び発泡成形体
US20150166752A1 (en) * 2013-12-16 2015-06-18 Clariant International, Ltd. Polymeric Foam
WO2015093195A1 (ja) * 2013-12-20 2015-06-25 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164733A (ja) * 2019-03-29 2020-10-08 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
JP7335715B2 (ja) 2019-03-29 2023-08-30 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法

Also Published As

Publication number Publication date
KR20180074778A (ko) 2018-07-03
KR102129039B1 (ko) 2020-07-01
JPWO2017078025A1 (ja) 2018-08-16
JP6639517B2 (ja) 2020-02-05
US20180251620A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP5892300B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6650466B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6588428B2 (ja) スチレン系樹脂押出発泡体の製造方法
JP6722753B2 (ja) スチレン系樹脂押出発泡体及びその製造方法
JP7057068B2 (ja) スチレン系樹脂押出発泡体を含む断熱材およびその製造方法
JP7011422B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7129344B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7080714B2 (ja) スチレン系樹脂押出発泡体
JP6181522B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
WO2018163905A1 (ja) スチレン系樹脂押出発泡体及びその製造方法
JP6609636B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6639517B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7042038B2 (ja) スチレン系樹脂押出発泡体の製造方法
JP7479175B2 (ja) スチレン系樹脂押出発泡体の製造方法
JP7045802B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2018100352A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2022145216A (ja) スチレン系樹脂押出発泡体の製造方法
JP2018150450A (ja) スチレン系樹脂押出発泡体の製造方法
JP2023062653A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2022064639A (ja) スチレン系樹脂押出発泡体、及びその製造方法
JP2020164732A (ja) スチレン系樹脂押出発泡体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187015048

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16862085

Country of ref document: EP

Kind code of ref document: A1