WO2015093195A1 - スチレン系樹脂押出発泡体およびその製造方法 - Google Patents

スチレン系樹脂押出発泡体およびその製造方法 Download PDF

Info

Publication number
WO2015093195A1
WO2015093195A1 PCT/JP2014/080090 JP2014080090W WO2015093195A1 WO 2015093195 A1 WO2015093195 A1 WO 2015093195A1 JP 2014080090 W JP2014080090 W JP 2014080090W WO 2015093195 A1 WO2015093195 A1 WO 2015093195A1
Authority
WO
WIPO (PCT)
Prior art keywords
foaming agent
styrene resin
extruded foam
mol
weight
Prior art date
Application number
PCT/JP2014/080090
Other languages
English (en)
French (fr)
Inventor
武紀 菊地
亘 角
清水 浩司
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US15/025,415 priority Critical patent/US10017618B2/en
Priority to JP2015552316A priority patent/JP5892300B2/ja
Publication of WO2015093195A1 publication Critical patent/WO2015093195A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/147Halogen containing compounds containing carbon and halogen atoms only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • C08J2203/164Perhalogenated unsaturated hydrocarbons, e.g. F2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the present invention relates to a styrene resin extruded foam and a method for producing the same.
  • Styrenic resin extruded foam is generally produced by heating and melting a styrene resin composition using an extruder or the like, then adding a foaming agent under high pressure conditions, cooling to a predetermined resin temperature, Manufactured continuously by extruding into a zone.
  • the styrene resin extruded foam is used as, for example, a heat insulating material of a structure because of good workability and heat insulating properties.
  • demands for energy saving of houses, buildings, and the like have increased, and technical development of highly heat-insulating foams more than before has been desired.
  • chlorofluorocarbons such as dichlorodifluoromethane have been widely used as physical foaming agents used in the production of styrene resin extruded foams.
  • CFC chlorofluorocarbon
  • HCFC hydrogen atom-containing chlorofluorocarbon
  • HFC fluorinated hydrocarbon
  • Patent Document 1 discloses a polystyrene resin foam that uses a fluorocarbon foaming agent having an ozone depletion coefficient of 0, has excellent heat insulation performance over a long period of time, and can be suitably used for a heat insulating material for a house or the like.
  • a foaming agent formed by mixing trifluoroethane, which is one type of HFC, and methyl chloride is pressed into a polystyrene resin and extruded and foamed. Density 2 ⁇ 10 ⁇ 2 to 4.5 ⁇ 10
  • a process for producing a foam of -2 g / cm 3 is disclosed.
  • HFC has a problem of a large global warming potential.
  • polystyrene resin extrusion that uses environment-friendly fluorinated olefins (also referred to as hydrofluoroolefins or HFOs), which have an ozone depletion coefficient of 0 (zero) and a low global warming potential, as an alternative blowing agent for HFC.
  • environment-friendly fluorinated olefins also referred to as hydrofluoroolefins or HFOs
  • HFOs hydrofluoroolefins
  • the present inventors use a specific amount of a mixed foaming agent of HFO and a specific organic foaming agent as a physical foaming agent in the production of a styrene resin extruded foam.
  • the present invention has been completed.
  • the present invention is as follows.
  • An apparent density of 20 kg / m including 0.5 to 8.0 parts by weight of a flame retardant obtained by extrusion foaming using a styrene resin and a foaming agent with respect to 100 parts by weight of the styrene resin. 3 to 45 kg / m 3 or less, and a styrene resin extruded foam having a closed cell ratio of 90% or more, wherein the foaming agent contains at least a hydrofluoroolefin and another organic foaming agent, (I) The amount of the hydrofluoroolefin is 0.030 mol or more and 0.125 mol or less with respect to 100 g of the styrene resin.
  • an organic foaming agent having a polystyrene permeability of 0.5 ⁇ 10 ⁇ 10 cc ⁇ cm / cm 2 ⁇ s ⁇ cmHg or more (Iii) The other organic foaming agent does not include an organic foaming agent having a polystyrene permeability of less than 0.5 ⁇ 10 ⁇ 10 cc ⁇ cm / cm 2 ⁇ s ⁇ cmHg, (Iv)
  • the total amount of the hydrofluoroolefin and the other organic foaming agent is 0.105 mol or more and 0.300 mol or less with respect to 100 g of the styrene resin.
  • a styrenic resin composition containing 0 parts by weight or less is heated and melted, and then a foaming agent is added under high pressure conditions, cooled to a predetermined resin temperature, and then extruded into a low pressure region to form an extruded foam.
  • a method for producing a styrene resin extruded foam having an apparent density of 20 kg / m 3 or more and 45 kg / m 3 or less and a closed cell ratio of 90% or more Using at least hydrofluoroolefin and other organic blowing agent as the blowing agent, (I) The amount of the hydrofluoroolefin is 0.030 mol or more and 0.125 mol or less with respect to 100 g of the styrene resin, (Ii) As the other organic foaming agent, an organic foaming agent having a polystyrene permeability of 0.5 ⁇ 10 ⁇ 10 cc ⁇ cm / cm 2 ⁇ s ⁇ cmHg or more is used.
  • an organic foaming agent having a polystyrene transmittance of less than 0.5 ⁇ 10 ⁇ 10 cc ⁇ cm / cm 2 ⁇ s ⁇ cmHg is not used.
  • the total blending amount of the hydrofluoroolefin and the other organic foaming agent is 0.105 mol or more and 0.300 mol or less with respect to 100 g of the styrene resin. A method for producing a styrene-based resin extruded foam.
  • styrene-based resin extruded foam that is lightweight, has excellent heat insulation and flame retardancy, has an ozone layer depletion coefficient of zero, and has a low global warming coefficient. be able to.
  • Styrene resin extruded foam of the present invention comprises the following 8.0 parts by weight or more 0.5 part by weight per 100 parts by weight styrene resin flame retardant, an apparent density of 20 kg / m 3 or more 45 kg / m 3 or less, The closed cell ratio is 90% or more.
  • This styrene resin extruded foam is obtained by melting a styrene resin composition containing a specific amount of a flame retardant and an appropriate amount of other additives as necessary using an extruder or the like and then containing a specific HFO. A specific amount of the mixed foaming agent is added under high-pressure conditions, and after cooling to a predetermined resin temperature, it is continuously produced by extruding it into a low-pressure region.
  • the styrene resin used in the present invention is not particularly limited, and the single weight of a styrene monomer such as styrene, methyl styrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromo styrene, chloro styrene, vinyl toluene, and vinyl xylene.
  • a styrene monomer such as styrene, methyl styrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromo styrene, chloro styrene, vinyl toluene, and vinyl xylene.
  • a copolymer comprising a combination or a combination of two or more monomers, the styrene monomer and divinylbenzene, butadiene, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, acrylonitrile, maleic anhydride, And a copolymer obtained by copolymerizing one or more monomers such as itaconic anhydride.
  • Monomers such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, maleic anhydride, and itaconic anhydride to be copolymerized with styrenic monomers are the compression strength of the styrene resin extrusion foam produced The amount can be used so as not to deteriorate the physical properties.
  • the styrene resin used in the present invention is not limited to the homopolymer or copolymer of the styrene monomer, but the homopolymer or copolymer of the styrene monomer and the other single monomer.
  • the styrene resin used in the present invention may be a styrene resin having a branched structure for the purpose of adjusting the melt flow rate (hereinafter referred to as MFR), the melt viscosity at the time of molding, the melt tension, and the like. .
  • the styrenic resin in the present invention one having an MFR of 0.1 to 50 g / 10 min is excellent in molding processability at the time of extrusion foam molding, the discharge amount at the molding process, and the obtained styrene series It is easy to adjust the thickness, width, apparent density or closed cell ratio of the extruded resin foam to the desired value, and foamability (foam thickness and width, apparent density, closed cell ratio, surface properties, etc. are adjusted to the desired situation.
  • the MFR of the styrenic resin is more preferably 0.3 to 30 g / 10 min, particularly 0.5 to 25 g / 10 min from the viewpoint of the balance of molding processability and mechanical strength with respect to foamability, toughness and the like. preferable.
  • MFR is measured according to JIS K7210 (1999) Method A and test condition H.
  • a polystyrene resin is particularly suitable from the viewpoint of economy and workability.
  • a styrene-acrylonitrile copolymer (meth) acrylic acid copolymer polystyrene, or maleic anhydride modified polystyrene.
  • rubber-reinforced polystyrene when higher impact resistance is required for the extruded foam, it is preferable to use rubber-reinforced polystyrene.
  • These styrenic resins may be used alone, or two or more different styrenic resins such as copolymerization component, molecular weight, molecular weight distribution, branched structure, and MFR may be mixed and used.
  • a mixed foaming agent of hydrofluoroolefin and a specific organic foaming agent is used as the foaming agent.
  • hydrofluoroolefin examples include tetrafluoropropene, specifically, trans-1,3,3,3-tetrafluoropropene (trans-HFO-1234ze), cis-1,3,3,3-tetrafluoropropene ( Cis-HFO-1234ze), 2,3,3,3-tetrafluoropropene (HFO-1234yf) and the like. These hydrofluoroolefins may be used alone or in combination of two or more.
  • Hydrofluoroolefin is an environmentally friendly foaming agent that has a zero or extremely low ozone depletion potential, a very low global warming potential. Moreover, since the hydrofluoroolefin has a low thermal conductivity in the gaseous state and is flame retardant, it imparts excellent heat insulation and flame retardancy when used as a foaming agent for styrene-based resin foams. be able to.
  • HFO has a relatively high solubility in polystyrene resin and high compatibility with polystyrene resin, that is, it is easy to dissipate from the foam in HFO.
  • HFO which can be added and has excellent foaming ability as a foaming agent was preferably used, and an extruded foam having a high foaming ratio was obtained.
  • tetrafluoropropene which is HFO having low solubility in polystyrene resin and low compatibility with polystyrene resin
  • a foam with a high expansion ratio is used.
  • spot holes portions where the foam surface is locally greatly recessed
  • a foam with a high expansion ratio can be obtained by using a specific mixed physical foaming agent, even when HFO having a relatively low solubility in polystyrene resin is used. It was possible to obtain a polystyrene resin foam excellent in long-term heat insulation and good appearance.
  • the blending amount of hydrofluoroolefin is 0.030 mol or more and 0.125 mol or less with respect to 100 g of styrene resin.
  • the blending amount of the hydrofluoroolefin is less than 0.030 mol with respect to 100 g of the styrene resin, the effect of improving the heat insulating property by the hydrofluoroolefin cannot be expected.
  • the amount of the hydrofluoroolefin exceeds 0.125 mol with respect to 100 g of the styrene resin, it is separated from the resin melt at the time of extrusion foaming to generate spot holes on the foam surface, or the closed cell ratio May decrease.
  • the blending amount of the hydrofluoroolefin is preferably 0.035 mol or more and 0.115 mol or less, more preferably 0.040 mol or more and 0.105 mol or less, more preferably 0.005 mol or less with respect to 100 g of the styrene resin. It is 045 mol or more and 0.090 mol or less.
  • organic blowing agents include saturated hydrocarbons having 3 to 5 carbon atoms such as propane, normal butane, isobutane (2-methylpropane) and cyclopentane, ethers such as dimethyl ether, ethyl ether, diethyl ether and methyl ethyl ether, chloride Alkyl chlorides such as methyl and ethyl chloride, alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, aryl alcohol, crotyl alcohol, propargyl alcohol, and ketones And esters.
  • saturated hydrocarbons having 3 to 5 carbon atoms such as propane, normal butane, isobutane (2-methylpropane) and cyclopentane
  • ethers such as dimethyl ether, ethyl ether, diethyl ether and methyl ethyl ether
  • the other organic foaming agent used in combination with the hydrofluoroolefin in the present invention is required to have a polystyrene permeability of 0.5 ⁇ 10 ⁇ 10 cc ⁇ cm / cm 2 ⁇ s ⁇ cmHg or more.
  • the polystyrene transmittance is more preferably 1.0 ⁇ 10 ⁇ 10 cc ⁇ cm / cm 2 ⁇ s ⁇ cmHg or more.
  • the organic foaming agent as described above has a high plasticizing effect on the styrene resin, and foams a styrene resin melt containing a styrene resin, a foaming agent, a flame retardant, and other various additives with an appropriate viscosity. It is necessary to obtain the desired extruded foam.
  • excellent processing when producing extruded foam by selecting an organic foaming agent that has high polystyrene permeability as described above and quickly dissipates after forming the extruded foam. And foamability can be obtained, and excellent flame retardancy can be imparted to the extruded foam.
  • organic blowing agents used in combination with hydrofluoroolefin in the present invention are not particularly limited as long as the polystyrene transmittance is 0.5 ⁇ 10 ⁇ 10 cc ⁇ cm / cm 2 ⁇ s ⁇ cmHg or more, but ethers And alkyl chloride are preferred because of the high plasticizing effect of the styrene-based resin and high polystyrene permeability.
  • ethers And alkyl chloride are preferred because of the high plasticizing effect of the styrene-based resin and high polystyrene permeability.
  • dimethyl ether, methyl chloride and ethyl chloride are more preferable, and dimethyl ether is particularly preferable because of its high polystyrene permeability and low environmental load.
  • These organic foaming agents can be used alone or in admixture of two or more.
  • permeability of the foaming agent in this invention is based on JISK7126A method.
  • a polystyrene resin film having a thickness of 50 to 100 ⁇ m prepared by heating and melting press of a polystyrene resin (manufactured by PS Japan Co., Ltd., product name “G9401”) is gas chromatograph (manufactured by Yanaco Measurement Co., Ltd., G2700T). It can be measured by fixing to a provided differential pressure type gas permeation apparatus (GTR-31A, manufactured by GTR-Tech Co., Ltd.) and measuring the permeation amount by the differential pressure method at a temperature of 23 ° C. ⁇ 2 ° C. and a dry condition.
  • GTR-31A differential pressure type gas permeation apparatus
  • the total amount of the hydrofluoroolefin and the other organic foaming agent is preferably 0.105 mol or more and 0.300 mol or less with respect to 100 g of the styrene resin, and 0.115 mol or more and 0.200 mol or less with respect to 100 g of the styrene resin. Is more preferable.
  • the total amount of the mixed foaming agent is less than 0.105 mol with respect to 100 g of the styrene resin, the styrene resin melt containing the styrene resin, the foaming agent, the flame retardant, and other various additives is foamed.
  • the viscosity is not adequate to obtain the desired extruded foam, and only extruded foam with a closed cell ratio below 90% and / or high apparent density is obtained. If the total blending amount of the mixed foaming agent is more than 0.300 mol with respect to 100 g of the styrenic resin, the foam may be defective due to an excessive amount of foaming agent.
  • inorganic foaming agents such as carbon dioxide and water can be used as necessary in combination with the above-mentioned hydroolefin and other organic foaming agents. These can be used individually or in mixture of 2 or more types. By using these inorganic foaming agents, a good plasticizing effect and a foaming aid effect can be obtained, the extrusion pressure can be reduced, and a stable extruded foam can be produced.
  • water-absorbing substances used in the present invention include polyacrylate polymers, starch-acrylic acid graft copolymers, polyvinyl alcohol polymers, vinyl alcohol-acrylate copolymers, ethylene-
  • water-absorbing polymers such as vinyl alcohol copolymers, acrylonitrile-methyl methacrylate-butadiene copolymers, polyethylene oxide copolymers and derivatives thereof, anhydrous silica (silicon oxide) having silanol groups on the surface
  • AEROSIL manufactured by Nippon Aerosil Co., Ltd.
  • the addition amount of the water-absorbing substance is appropriately adjusted depending on the addition amount of water and the like, but is preferably 0.01 to 5 parts by weight, preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the styrene resin. Part is more preferred.
  • the pressure at the time of adding or injecting the foaming agent is not particularly limited as long as it is higher than the internal pressure of an extruder or the like.
  • a flame retardance can be provided to the styrene resin extrusion foam obtained by including a flame retardant 0.5 parts by weight or more and 8.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. . If the content of the flame retardant is less than 0.5 parts by weight, good properties as a foam such as flame retardancy tend to be difficult to obtain. On the other hand, if the content exceeds 8.0 parts by weight, the foam is produced. The stability and surface properties of the time may be impaired.
  • the content of the flame retardant is not limited to the type of the foaming agent content, the apparent density of the foam, an additive having a flame retardant synergistic effect, or the like so that the flame retardancy specified in JIS A9511 measuring method A can be obtained. It is more preferable to adjust appropriately according to content etc.
  • a brominated flame retardant is preferably used as the flame retardant.
  • the brominated flame retardant in the present invention include hexabromocyclododecane, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether, tetrabromobisphenol A-bis (2,3 -Dibromopropyl) ether, tris (2,3-dibromopropyl) isocyanurate and aliphatic bromine-containing polymers such as brominated styrene-butadiene block copolymers. These may be used alone or in combination of two or more.
  • a mixed brominated flame retardant composed of tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether and tetrabromobisphenol A-bis (2,3-dibromopropyl) ether, hexabromocyclo Dodecane and brominated styrene-butadiene block copolymer are desirably used because they have good extrusion operation and do not adversely affect the heat resistance of the foam. These substances may be used alone or as a mixture.
  • the content of the brominated flame retardant in the present invention is preferably 0.5 parts by weight or more and 6.0 parts by weight or less with respect to 100 parts by weight of the styrene resin, and 1.0 weight with respect to 100 parts by weight of the styrene resin. Part to 5.0 parts by weight, more preferably 1.5 parts to 5.0 parts by weight. If the brominated flame retardant content is less than 0.5 parts by weight, good properties as a foam such as flame retardancy tend to be difficult to obtain, whereas if it exceeds 6.0 parts by weight, foaming It may impair the stability and surface properties during body production.
  • a radical generator can be used in combination for the purpose of improving the flame retardancy of the styrene resin extruded foam.
  • Peroxides such as dicumyl peroxide are also used.
  • the amount is 0.05 to 0.5 parts by weight based on 100 parts by weight of the styrene resin.
  • a phosphorus flame retardant such as phosphate ester and phosphine oxide can be used in combination as long as the thermal stability performance is not impaired.
  • phosphate esters include triphenyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (2-ethylhexyl) phosphate, tris (Butoxyethyl) phosphate, condensed phosphate ester and the like can be mentioned, and triphenyl phosphate and tris (tributylbromoneopentyl) phosphate are particularly preferable.
  • triphenylphosphine oxide is preferable. These phosphate esters and phosphine oxides may be used alone or in combination of two or more. A preferable addition amount of the phosphorus flame retardant is 0.1 to 2 parts by weight with respect to 100 parts by weight of the styrene resin.
  • a resin and / or a flame retardant stabilizer can be used as necessary.
  • specific examples of the stabilizer include epoxy compounds such as bisphenol A diglycidyl ether type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin; pentaerythritol, dipenta A partial ester which is a reaction product of a polyhydric alcohol such as erythritol or tripentaerythritol and a monovalent carboxylic acid such as acetic acid or propionic acid, or a divalent carboxylic acid such as adipic acid or glutamic acid, Polyhydric alcohol ester which is a mixture of compounds having one or more hydroxyl groups in the molecule and may contain a small amount of the starting polyhydric alcohol; triethylene glycol bis-3- (3-tert-butyl-4-hydroxy -5-methylphenyl) propionate, penta Rititol tetrakis [3- (3 ′,
  • the styrene resin extruded foam according to the present invention is an extruded foam from the viewpoint of heat insulation and lightness considering that it functions as, for example, a heat insulating material for buildings, a cold storage or a cold car.
  • the apparent density is preferably 20 kg / m 3 or more and 45 kg / m 3 or less, more preferably 25 kg / m 3 or more and 40 kg / m 3 or less.
  • the closed cell ratio of the polystyrene resin extruded foam of the present invention is preferably 90% or more, and more preferably 95% or more.
  • the closed cell ratio is too low, the hydrofluorofluoroolefin used as the foaming agent tends to dissipate from the extruded foam at an early stage, and the long-term heat insulation may be deteriorated.
  • the closed cell ratio (%) of the extruded foam is determined according to ASTM-D2856-70, Procedure C, an air-comparing hydrometer (for example, an air-comparing hydrometer, model 1000, manufactured by Tokyo Science Co., Ltd.). ) To measure.
  • the closed cell ratio of the extruded foam in the present invention is a sample cut into a size of 25 mm in length, 25 mm in width, and 20 mm in thickness from a total of three locations near the center and both ends in the width direction.
  • the closed cell rate is measured by the following formula (1), and the arithmetic average value of the 3 closed cell rates is defined as the closed cell rate of the extruded foam.
  • Closed cell ratio (%) (Vx ⁇ W / ⁇ ) ⁇ 100 / (VA ⁇ W / ⁇ ) (1)
  • Vx the true volume of the sample measured with the above air-comparing hydrometer (cm 3 ; the sum of the volume of the resin constituting the sample of the extruded foam and the total volume of bubbles in the closed cell portion in the sample)
  • VA apparent volume of the sample calculated from the outer dimensions of the sample (cm 3 )
  • W Total weight of sample (g)
  • Density of styrenic resin constituting the extruded foam (g / cm 3 )
  • the average cell diameter (D T ) in the thickness direction of the polystyrene resin extruded foam of the present invention is preferably 0.5 mm or less, and preferably 0.05 to 0.3 mm from the viewpoint of heat insulation. More preferred.
  • the average cell diameter in the thickness direction (D T : mm) is drawn on a total of three microscopic magnified photographs of the center and both ends of the vertical cross section in the width direction. From the length of the straight line and the number of bubbles crossing the straight line, the average diameter of the bubbles existing on each straight line (length of the straight line / number of bubbles crossing the straight line) is obtained, and the average of the three obtained points The arithmetic average value of the diameters is defined as the average cell diameter in the thickness direction (D T : mm).
  • the average cell diameter in the width direction (D W : mm) is a position at which the extruded foam is divided into two equal parts in the thickness direction on the microscopic magnified photograph of the center and both ends of the cross section in the width direction.
  • a straight line having a length obtained by multiplying 3 mm by the enlargement ratio is drawn in the width direction, and the average diameter of bubbles existing on each straight line is calculated from the number of bubbles intersecting the straight line and the equation [3 mm / (crossing the straight line). Number of bubbles to be obtained-1)], and the arithmetic average value of the three average diameters obtained is defined as the average bubble diameter in the width direction (D W : mm).
  • the average cell diameter in the extrusion direction (D L : mm) is a position that bisects the width direction of the extruded foam, and the 1 m interval of the vertical cross section in the extrusion direction obtained by cutting the extruded foam in the extrusion direction. Open a three-microscopic magnified photograph. At the position where the extruded foam is bisected in the thickness direction, a straight line with a length of 3 mm multiplied by the enlargement factor is drawn in the extrusion direction and intersects the straight line and the straight line.
  • the average diameter of the bubbles existing on each straight line is determined by the formula [3 mm / (number of bubbles crossing the straight line-1)], and the arithmetic average value of the average diameters of the three obtained positions is calculated.
  • the average cell diameter in the extrusion direction (D L : mm) is used.
  • the average cell diameter in the horizontal direction of the extruded foam (D H: mm) is the arithmetic mean value of D W and D L.
  • the cell deformation rate is preferably 0.7 to 2.0.
  • the bubble deformation rate is a value (D T / mm) obtained by dividing the average cell diameter in the thickness direction (D T : mm) obtained by the above measurement method by the average cell diameter in the horizontal direction (D H : mm) of the extruded foam. D H ), the smaller the bubble deformation rate is, the flatter the bubble, and the larger the value, the longer the length.
  • the bubble deformation rate is more preferably 0.8 to 1.5, and still more preferably 0.8 to 1.2.
  • the bubble deformation rate is within the above range, a polystyrene resin extruded foam having excellent mechanical strength and further high heat insulating properties is obtained.
  • the polystyrene-based resin extruded foam of the present invention preferably has a thermal conductivity (A) of not more than 0.0290 W / (m ⁇ K) after the lapse of 100 days from the production, and is 0.0280 W / (m ⁇ K). More preferably, it is as follows.
  • the styrene-based resin extruded foam of the present invention has a high closed cell ratio and effectively prevents dissipation of the hydrofluorofluoroolefin from the foam. The rate is kept low and heat insulation is excellent.
  • the thermal conductivity is measured by a method based on the accelerated test described in ISO 11561.
  • the extruded foam immediately after production was cut out from the thickness direction and the center in the width direction, and a test piece having a molding skin of 10 mm in thickness, 200 mm in length and 200 mm in width did not exist, and the test piece was standard temperature defined in JIS K 7100. state tertiary (23 °C ⁇ 5 °C), and standard humidity conditions tertiary (50 +20, -. 10% R.H) standing under the conditions of. 100 days after production, the thermal conductivity is measured under the temperature condition of an average temperature of 23 ° C. by using the test piece according to JIS A 1412-2: 1999.
  • graphite may be added as a heat ray radiation inhibitor to improve heat insulation.
  • the heat ray radiation inhibitor refers to a substance having a characteristic of reflecting, scattering, and absorbing light in the near infrared or infrared region (for example, a wavelength region of about 800 to 3000 nm). By adding a heat ray radiation inhibitor, a foam having high heat insulation can be obtained.
  • white particles such as titanium oxide, barium sulfate, zinc oxide, aluminum oxide, and antimony oxide can be used in combination with graphite. These may be used alone or in combination of two or more. Among these, titanium oxide and barium sulfate are preferable, and titanium oxide is more preferable because the effect of suppressing radiation is large.
  • the content of the heat ray radiation inhibitor in the present invention is preferably 1.0 part by weight or more and 6.0 parts by weight or less, and 2.0 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferred.
  • the content of the heat ray radiation inhibitor is less than 1.0 part by weight, it is difficult to obtain an improvement in heat insulation.
  • the content exceeds 6.0 parts by weight, the extrusion stability and formability are inferior, and the combustibility is impaired. Tend to.
  • silica for example, silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, calcium carbonate, etc.
  • Processing aids such as inorganic compounds, sodium stearate, calcium stearate, magnesium stearate, barium stearate, liquid paraffin, olefin waxes, stearylamide compounds, phenolic antioxidants, phosphorus stabilizers, nitrogenous stabilizers
  • Additives such as sulfur stabilizers, light-resistant stabilizers such as benzotriazoles and hindered amines, flame retardants other than those mentioned above, antistatic agents, and coloring agents such as pigments may be contained in the styrene resin.
  • the mixture is supplied to an extruder, heated and melted, and further added with a foaming agent and mixed.
  • the timing for adding various additives to the styrenic resin and the kneading time are not particularly limited.
  • a styrene resin, a flame retardant, other additives, etc. are supplied to a heating and melting means such as an extruder, and the foaming agent is subjected to high pressure conditions at an arbitrary stage. Is added to a styrenic resin to form a fluidized gel, cooled to a temperature suitable for extrusion foaming, and then extruded and foamed through a die into a low pressure region to form a foam.
  • the heating temperature may be at or above the temperature at which the styrene resin used melts, but is preferably a temperature at which molecular degradation of the resin due to the influence of additives or the like is suppressed as much as possible, for example, about 150 to 260 ° C.
  • the melt-kneading time varies depending on the amount of styrene-based resin extruded per unit time and the type of extruder used as the melt-kneading means, so it cannot be uniquely defined.
  • the styrene-based resin and the blowing agent or additive are uniform. The time required for the dispersion and mixing is appropriately set.
  • melt-kneading means examples include a screw-type extruder, but are not particularly limited as long as they are used for ordinary extrusion foaming.
  • an extrusion foam obtained by opening from a high-pressure region to a low-pressure region through a slit die having an opening used for extrusion molding having a straight slit shape is used as a slit die.
  • a method of forming a plate-like foam having a large cross-sectional area using a molding die placed in close contact with or in contact with a molding roll placed adjacent to the downstream side of the molding die is used.
  • the thickness of the styrene-based resin extruded foam according to the present invention is not particularly limited, but for example, heat insulation, bending strength, and compressive strength in consideration of functioning as a heat insulator for a building, a cold storage, or a cold car. In view of the above, it is preferably 10 mm or more and 150 mm or less, more preferably 15 mm or more and 120 mm or less, and particularly preferably 20 mm or more and 100 mm or less.
  • an environmentally friendly styrene resin extruded foam that is lightweight, has excellent heat insulation and flame retardancy, has a zero ozone layer depletion coefficient, and has a low global warming coefficient. it can.
  • the raw materials used in the examples and comparative examples are as follows.
  • Base resin / styrene resin A [manufactured by PS Japan, G9401; MFR 2.2 g / 10 min]
  • Styrenic resin B [manufactured by PS Japan, 680; MFR 7.0 g / 10 min]
  • Flame retardants A mixed brominated flame retardant of tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether and tetrabromobisphenol A-bis (2,3-dibromopropyl) ether [Daiichi Kogyo ( Co., Ltd., GR-125P] -Brominated styrene-butadiene block polymer [Chemchula, EMERALD INNOVATION # 3000] -Hexabromocyclododecane [Albemarle, HP900]
  • the apparent density, independent foaming rate, average bubble diameter, bubble deformation rate, HFO-1234ze residual amount with respect to 100 g of styrene resin in the foam, thermal conductivity, JIS flammability were measured according to the following methods. evaluated.
  • the sealed container was heated at 170 ° C. for 10 minutes, and the foaming agent in the foam was taken out into the sealed container.
  • the airtight container returns to room temperature, helium is introduced into the airtight container to return to atmospheric pressure, and then a mixed gas containing 40 ⁇ L of HFO-1234ze is taken out by a microsyringe. Evaluation was performed under measurement conditions.
  • Thermal conductivity (W / mK) The thermal conductivity of the foam was measured by the method described above. The criteria for pass / fail are as follows. Condition: Thermal conductivity is 0.0280 W / mK or less. Fail: Thermal conductivity is greater than 0.0280 W / mK.
  • JIS Flammability According to JIS A 9511 (Measurement Method A), five test pieces each having a thickness of 10 mm, a length of 200 mm, and a width of 25 mm were used and evaluated according to the following criteria. Measurements were made after manufacturing a styrene-based resin extruded foam, and cut into a test piece having the above dimensions, and the standard temperature state class 3 (23 ° C. ⁇ 5 ° C.) and standard humidity state class 3 (50 +20, -10 % RH), and one week after production. ⁇ (Pass): Satisfies the standard that the flame disappears within 3 seconds, there is no residue, and the combustion limit indicator line is not combusted. X (failed): The above criteria are not satisfied.
  • Example 1 [Preparation of resin mixture]
  • tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether and tetrabromobisphenol A- are used as a flame retardant with respect to 100 parts by weight of styrene resin A [PS940, G9401].
  • the obtained resin mixture was fed to a single screw extruder (first extruder) having a diameter of 65 mm, a single screw extruder (second extruder) having a diameter of 90 mm, and an extruder in which a cooling machine was connected in series with about 50 kg / hr. Supplied with.
  • the resin mixture supplied to the first extruder was heated to a resin temperature of 240 ° C.
  • the foaming agent (4.0 parts by weight of HFO-1234ze (100 parts by weight of styrene resin) (0 0.035 mol) and 4.7 parts by weight (0.102 mol) of dimethyl ether were pressed into the resin near the tip of the first extruder, and then in a second extruder and a cooler connected to the first extruder. After the resin temperature was cooled to 125 ° C., the foam was extruded and foamed into the atmosphere at a foaming pressure of 8.0 MPa from a base having a rectangular cross section (slit die) having a thickness of 1.2 mm ⁇ width of 50 mm provided at the tip of the cooler.
  • An extruded foam plate having a cross-sectional shape having a thickness of 21 mm and a width of 250 mm was obtained using a molding die placed in close contact with the die and a molding roll placed downstream thereof.
  • the evaluation results of the obtained foam are shown in Table 2.
  • Example 2 As shown in Table 2, a foam was obtained in the same manner as in Example 1 except that the types and addition amounts of various compounding agents and the production conditions were changed. Table 2 shows the physical properties of the obtained foam.
  • a styrene resin containing a predetermined amount of flame retardant and mixed foaming agent was used.
  • extrusion foam molding it is easy to obtain a styrene resin extruded foam that is lightweight, has excellent heat insulation and flame retardancy, has a zero ozone layer depletion coefficient, has a low global warming potential, and is environmentally friendly. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 スチレン系樹脂及び発泡剤を用いて押出発泡して得られ、難燃剤をスチレン系樹脂100 重量部に対して0.5 重量部以上8.0 重量部以下含み、見掛け密度20kg/m3 以上45kg/m3 以下、独立気泡率が90%以上であるスチレン系樹脂押出発泡体であって、発泡剤が少なくともHFOと他の有機発泡剤を含み、(i)HFOの配合量がスチレン系樹脂100g に対して0.030mol 以上0.125mol 以下であり、(ii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg 以上の有機発泡剤を含み、(iii)他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg 未満の有機発泡剤を含まず、(iv)HFOと他の有機発泡剤の配合量の合計がスチレン系樹脂100g に対して0.105mol 以上0.300mol 以下であるスチレン系樹脂押出発泡体。

Description

スチレン系樹脂押出発泡体およびその製造方法
 本発明は、スチレン系樹脂押出発泡体およびその製造方法に関する。
 スチレン系樹脂押出発泡体は、一般に、押出機などを用いてスチレン系樹脂組成物を加熱溶融し、ついで発泡剤を高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出すことにより連続的に製造される。
 スチレン系樹脂押出発泡体は、良好な施工性や断熱性から、例えば構造物の断熱材として用いられる。近年、住宅、建築物などの省エネルギー化の要求が高まり、従来以上の高断熱性発泡体の技術開発が望まれている。
 従来、スチレン系樹脂押出発泡体の製造に使用される物理発泡剤として、ジクロロジフルオロメタン等の塩化フッ化炭化水素(以下、CFCという。)が広く使用されていた。しかし、CFCはオゾン層を破壊する危険性が大きいことから、オゾン破壊係数の小さい水素原子含有塩化フッ化炭化水素(以下、HCFCという。)がCFCに替わって使用されてきた。しかしながら、HCFCもオゾン破壊係数が0(ゼロ)でないことから、オゾン層を破壊する危険性が全くないわけではない。そこで近年においては、オゾン層破壊係数が0(ゼロ)であり、分子中に塩素原子を持たないフッ化炭化水素(以下、HFCという。)が発泡剤として使用されるようになった。
 例えば、特許文献1には、オゾン破壊係数が0であるフロン系発泡剤を用い、長期間にわたってすぐれた断熱性能を有し、住宅家屋用断熱材などに好適に使用しうるポリスチレン系樹脂発泡体を製造する方法として、HFCの1種であるトリフルオロエタンと塩化メチルとを混合してなる発泡剤をポリスチレン系樹脂に圧入して押出発泡する、密度2×10-2~4.5×10-2g/cm3である発泡体の製法が開示されている。しかし、HFCは地球温暖化係数が大きいという問題があった。
 そこで、オゾン破壊係数が0(ゼロ)であるとともに、地球温暖化係数も小さい環境にやさしいフッ素化されたオレフィン(ハイドロフルオロオレフィン、HFOともいう。)をHFCの代替発泡剤として使用するポリスチレン樹脂押出発泡断熱板の製造法が提案されている(例えば特許文献2~5参照。)。しかし、これらの従来技術では、ハイドロフルオロオレフィンを使用するメリット(低熱伝導率、難燃性)を十分に発揮して、優れた断熱性、及び難燃性を有するスチレン系樹脂押出発泡体を得られるには至っておらず、未だ課題を有するものであった。
特開平08-269224号公報 特開2012-007094号公報 特表2008-546892号公報 特開2013-194101号公報 特表2010-522808号公報
 本発明の課題は、軽量で、且つ、優れた断熱性および難燃性を有し、オゾン層破壊係数がゼロであり、また地球温暖化係数も小さく環境に優しいスチレン系樹脂押出発泡体を容易に得ることにある。
 本発明者らは、前記課題を解決するために鋭意検討した結果、スチレン系樹脂押出発泡体の製造に、物理発泡剤としてHFOと特定の有機発泡剤との混合発泡剤を特定量使用することにより、本発明を完成するに至った。
 すなわち本発明は、以下のとおりである。
[1]スチレン系樹脂及び発泡剤を用いて押出発泡して得られる、難燃剤をスチレン系樹脂100重量部に対して0.5重量部以上8.0重量部以下含む、見掛け密度20kg/m3以上45kg/m3以下、独立気泡率が90%以上であるスチレン系樹脂押出発泡体であって、前記発泡剤が少なくともハイドロフルオロオレフィンと他の有機発泡剤を含み、
(i)前記ハイドロフルオロオレフィンの配合量が、スチレン系樹脂100gに対して0.030mol以上0.125mol以下である、
(ii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg以上の有機発泡剤を含む、
(iii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg未満の有機発泡剤を含まない、
(iv)ハイドロフルオロオレフィンと他の有機発泡剤の配合量の合計が、スチレン系樹脂100gに対して0.105mol以上0.300mol以下である、
 ことを特徴とするスチレン系樹脂押出発泡体。
[2]前記ハイドロフルオロオレフィンの配合量が、スチレン系樹脂100gに対して0.040mol以上0.105mol以下である[1]に記載のスチレン系樹脂押出発泡体。
[3]前記ハイドロフルオロオレフィンがテトラフルオロプロペンである[1]または[2]に記載のスチレン系樹脂押出発泡体。
[4]前記他の有機発泡剤がジメチルエーテル、塩化メチル及び塩化エチルから選択される1種又は2種以上を含む混合物である[1]~[3]のいずれかに記載のスチレン系樹脂押出発泡体。
[5]前記他の有機発泡剤がジメチルエーテルである[1]~[4]のいずれかに記載のスチレン系樹脂押出発泡体。
[6]前記難燃剤として、臭素系難燃剤をスチレン系樹脂100重量部に対して0.5重量部以上6.0重量部以下含む[1]~[5]のいずれかに記載のスチレン系樹脂押出発泡体。
[7]スチレン系樹脂及び発泡剤を用いて押出発泡してスチレン系樹脂押出発泡体を製造する方法であって、難燃剤をスチレン系樹脂100重量部に対して0.5重量部以上8.0重量部以下含むスチレン系樹脂組成物を加熱溶融し、ついで発泡剤を高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出して押出発泡体を成形してなり、見掛け密度20kg/m3以上45kg/m3以下、独立気泡率が90%以上であるスチレン系樹脂押出発泡体を製造する方法であって、
 前記発泡剤として少なくともハイドロフルオロオレフィンと他の有機発泡剤を用い、
(i)前記ハイドロフルオロオレフィンの配合量を、スチレン系樹脂100gに対して0.030mol以上0.125mol以下とする、
(ii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg以上の有機発泡剤を使用する、
(iii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg未満の有機発泡剤を使用しない、
(iv)ハイドロフルオロオレフィンと他の有機発泡剤の配合量の合計を、スチレン系樹脂100gに対して0.105mol以上0.300mol以下とする、
 ことを特徴とするスチレン系樹脂押出発泡体の製造方法。
 本発明により、軽量で、且つ、優れた断熱性および難燃性を有し、オゾン層破壊係数がゼロであり、また地球温暖化係数も小さく環境に優しいスチレン系樹脂押出発泡体を容易に得ることができる。
 以下、本発明の実施形態を説明する。なお、本実施の形態は本発明の一部にすぎず、本発明の要旨を変更しない範囲で本実施形態を適宜変更できることはいうまでもない。
 本発明のスチレン系樹脂押出発泡体は、難燃剤をスチレン系樹脂100重量部に対して0.5重量部以上8.0重量部以下含み、見掛け密度20kg/m3以上45kg/m3以下、独立気泡率が90%以上である。このスチレン系樹脂押出発泡体は、特定量の難燃剤及び必要に応じてその他の添加剤を適量含有するスチレン系樹脂組成物を、押出機などを用いて加熱溶融し、ついでHFOを含む特定の混合発泡剤を特定量、高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出すことにより連続的に製造される。
 本発明で用いるスチレン系樹脂としては、特に限定はなく、スチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ビニルトルエン、ビニルキシレン等のスチレン系単量体の単独重合体または2種以上の単量体の組み合わせからなる共重合体や、前記スチレン系単量体とジビニルベンゼン、ブタジエン、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリロニトリル、無水マレイン酸、無水イタコン酸などの単量体の1種または2種以上とを共重合させた共重合体などが挙げられる。スチレン系単量体と共重合させるアクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、無水マレイン酸、無水イタコン酸などの単量体は、製造されるスチレン系樹脂押出発泡体の圧縮強度等の物性を低下させない程度の量を用いることができる。また、本発明で用いるスチレン系樹脂は、前記スチレン系単量体の単独重合体または共重合体に限られず、前記スチレン系単量体の単独重合体または共重合体と、前記他の単量体の単独重合体または共重合体とのブレンド物であってもよく、ジエン系ゴム強化ポリスチレンやアクリル系ゴム強化ポリスチレンをブレンドすることもできる。更に、本発明で用いるスチレン系樹脂は、メルトフローレート(以下、MFRという。)、成形加工時の溶融粘度、溶融張力などを調整する目的で、分岐構造を有するスチレン系樹脂であってもよい。
 本発明におけるスチレン系樹脂としては、MFRが0.1~50g/10分のものを用いることが、押出発泡成形する際の成形加工性に優れ、成形加工時の吐出量、得られたスチレン系樹脂押出発泡体の厚みや幅、見掛け密度または独立気泡率を所望の値に調整しやすく、発泡性(発泡体の厚みや幅、見掛け密度、独立気泡率、表面性などを所望の状況に調整しやすいほど、発泡性が良い)、外観などに優れた熱可塑性樹脂発泡体が得られると共に、圧縮強度、曲げ強度または曲げたわみ量といった機械的強度や、靱性などの特性のバランスがとれた、スチレン系樹脂押出発泡体が得られる点から、好ましい。更に、スチレン系樹脂のMFRは、成形加工性および発泡性に対する機械的強度、靱性などのバランスの点から、0.3~30g/10分が更に好ましく、0.5~25g/10分が特に好ましい。なお、本発明において、MFRは、JIS K7210(1999年)のA法、試験条件Hにより測定される。
 本発明においては、前記したスチレン系樹脂のなかでも、経済性・加工性の面からポリスチレン樹脂が特に好適である。また、押出発泡体に、より高い耐熱性が要求される場合には、スチレン-アクリロニトリル共重合体、(メタ)アクリル酸共重合ポリスチレン、無水マレイン酸変性ポリスチレンを用いることが好ましい。また、押出発泡体に、より高い耐衝撃性が求められる場合には、ゴム強化ポリスチレンを用いることが好ましい。これらスチレン系樹脂は、単独で使用してもよく、また、共重合成分、分子量や分子量分布、分岐構造、MFRなどの異なるスチレン系樹脂を2種以上混合して使用してもよい。
 本発明では、発泡剤としてハイドロフルオロオレフィンと特定の有機発泡剤との混合発泡剤を用いる。
 ハイドロフルオロオレフィンとしては、例えばテトラフルオロプロペン、具体的にはトランス-1,3,3,3-テトラフルオロプロペン(トランス-HFO-1234ze)、シス-1,3,3,3-テトラフルオロプロペン(シス-HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)等が挙げられる。これらのハイドロフルオロオレフィンは、単独で用いてもよいし、2種以上を併用してもよい。
 ハイドロフルオロオレフィンは、オゾン層破壊係数がゼロか極めて小さいものであり、地球温暖化係数が非常に小さく、環境に優しい発泡剤である。しかも、ハイドロフルオロオレフィンは、気体状態の熱伝導率が低く、かつ難燃性であることから、スチレン系樹脂押発泡体の発泡剤として用いることにより、優れた断熱性および難燃性を付与することができる。
 なお、従来、発泡剤としては、ポリスチレン系樹脂に対する溶解度が比較的高く、ポリスチレン系樹脂との相溶性が高いHFO、すなわち、HFOの中でも発泡体中から逸散し易い反面、ポリスチレン系樹脂に多く添加でき、発泡剤としての発泡能力に優れるHFOが好ましく用いられ、発泡倍率の高い、押出発泡体が得られていた。
 その一方で、ポリスチレン系樹脂に対する溶解度が低く、ポリスチレン系樹脂との相溶性が低いHFOであるテトラフルオロプロペン(1234ze,1234yf)等を発泡剤として用いた場合には、高発泡倍率の発泡体を得るためにテトラフルオロプロペンを多量に添加すると、押出発泡時にテトラフルオロプロペンが樹脂溶融物から分離して、発泡体表面に局所的に大きく凹んだ箇所(以下、スポット孔ということがある。)が発生し、断熱板の外観が悪化するおそれがある。また、高厚みの発泡体を製造する場合には、独立気泡率が低下して長期断熱性が低下するおそれがあった。
 しかし、本発明においては、ポリスチレン系樹脂に対する溶解度が比較的低いHFOを用いた場合であっても、特定の混合物理発泡剤を用いることによって、高発泡倍率の発泡体を得ることができ、更に、長期断熱性に優れた、外観良好なポリスチレン系樹脂発泡体を得ることを可能とした。
 本発明の混合発泡剤において、ハイドロフルオロオレフィンの配合量は、スチレン系樹脂100gに対して0.030mol以上0.125mol以下である。ハイドロフルオロオレフィンの配合量がスチレン系樹脂100gに対して0.030molより少ない場合には、ハイドロフルオロオレフィンによる断熱性の向上効果が期待できない。一方、ハイドロフルオロオレフィンの配合量がスチレン系樹脂100gに対して0.125molを超える場合には、押出発泡時に樹脂溶融物から分離して、発泡体表面にスポット孔が発生したり、独立気泡率が低下してしまうおそれがある。ハイドロフルオロオレフィンの配合量は、好ましくは、スチレン系樹脂100gに対して0.035mol以上0.115mol以下であり、より好ましくは、0.040mol以上0.105mol以下であり、更に好ましくは、0.045mol以上0.090mol以下である。
 有機発泡剤としては、プロパン、ノルマルブタン、イソブタン(2-メチルプロパン)、シクロペンタンなどの炭素数3~5の飽和炭化水素、ジメチルエーテル、エチルエーテル、ジエチルエーテル、メチルエチルエーテルなどのエーテル類、塩化メチル、塩化エチルなどの塩化アルキル、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、アリールアルコール、クロチルアルコール、プロパギルアルコールなどのアルコール類、及び、ケトン類、エステル類などが挙げられる。これらの中で、本発明においてハイドロフルオロオレフィンと併用する他の有機発泡剤は、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg以上であることが必要である。更に、ポリスチレン透過率が1.0×10-10cc・cm/cm2・s・cmHg以上であるとより好ましい。
 前記のような有機発泡剤は、スチレン系樹脂の可塑化効果が高く、スチレン系樹脂、発泡剤、難燃剤、その他種々の添加剤を含む、スチレン系樹脂溶融物を、適正な粘度として発泡し、所望の押出発泡体を得るために必要である。一方、燃焼性に悪影響を与えるため、前記したようにポリスチレン透過率が高く、押出発泡体とした後に速やかに散逸する有機発泡剤を選択することで、押出発泡体を製造する際に優れた加工性、発泡性が得られ、且つ、押出発泡体に優れた難燃性を付与することができる。
 本発明においてハイドロフルオロオレフィンと併用する他の有機発泡剤は、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg以上であれば、特に制限はないが、エーテル類や塩化アルキルが、スチレン系樹脂の可塑化効果が高く、且つ、ポリスチレン透過率が高いため好ましい。それらの内、ジメチルエーテル、塩化メチル及び塩化エチルがより好ましく、なかでもジメチルエーテルが、ポリスチレン透過率が高く、環境への負荷も少ないことから特に好ましい。これらの有機発泡剤は、単独または2種以上を混合して使用することができる。
 尚、本発明における発泡剤のポリスチレン透過率は、JIS K 7126A法による。例えば、ポリスチレン樹脂(PSジャパン(株)社製、製品名「G9401」)を加熱・溶融プレスして作製した50~100μm厚みのポリスチレン樹脂フィルムを、ガスクロマトグラフ(株式会社ヤナコ計測製、G2700T)を備えた差圧式ガス透過装置(GTRテック株式会社製、GTR-31A)に固定し、差圧法にて温度23℃±2℃、dryの条件で透過量を測定することにより測定することができる。このようにして測定した発泡剤のポリスチレン透過率の一例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 前記ハイドロフルオロオレフィンと他の有機発泡剤の配合量の合計は、スチレン系樹脂100gに対して0.105mol以上0.300mol以下が好ましく、スチレン系樹脂100gに対して0.115mol以上0.200mol以下がより好ましい。混合発泡剤の配合量の合計がスチレン系樹脂100gに対して0.105molより少ないと、スチレン系樹脂、発泡剤、難燃剤、その他種々の添加剤等を含む、スチレン系樹脂溶融物が、発泡時に所望の押出発泡体を得るために適正な粘度とならず、独立気泡率が90%より低い、及び/又は見掛け密度の高い押出発泡体しか得られない。混合発泡剤の配合量の合計がスチレン系樹脂100gに対して0.300molより多いと、過剰な発泡剤量の為、発泡体中にボイドなどの不良を生じる場合がある。
 また、本発明においては、前記したハイドロオレフィン、他の有機発泡剤と併用して、必要に応じて二酸化炭素や水などの無機発泡剤を使用することができる。これらは単独または2種以上を混合して使用することができる。これらの無機発泡剤を用いることで、良好な可塑化効果や発泡助剤効果が得られ、押出圧力を低減し、安定した押出発泡体の製造が可能となる。
 本発明においては、他の発泡剤として水やアルコール類を用いる場合には、安定して押出発泡成形を行うために、吸水性物質を添加することが好ましい。本発明に用いられる吸水性物質の具体例としては、ポリアクリル酸塩系重合体、澱粉-アクリル酸グラフト共重合体、ポリビニルアルコール系重合体、ビニルアルコール-アクリル酸塩系共重合体、エチレン-ビニルアルコール系共重合体、アクリロニトリル-メタクリル酸メチル-ブタジエン系共重合体、ポリエチレンオキサイド系共重合体およびこれらの誘導体などの吸水性高分子の他、表面にシラノール基を有する無水シリカ(酸化ケイ素)[例えば、日本アエロジル(株)製AEROSILなどが市販されている。]などのように表面に水酸基を有する粒子径1000nm以下の微粉末;スメクタイト、膨潤性フッ素雲母などの吸水性あるいは水膨潤性の層状珪酸塩並びにこれらの有機化処理品;ゼオライト、活性炭、アルミナ、シリカゲル、多孔質ガラス、活性白土、けい藻土、ベントナイトなどの多孔性物質等があげられる。吸水性物質の添加量は、水の添加量などによって、適宜調整されるものであるが、スチレン系樹脂100重量部に対して、0.01~5重量部が好ましく、0.1~3重量部がより好ましい。
 発泡剤を添加または注入する際の圧力は、特に制限するものではなく、押出機などの内圧力よりも高い圧力であればよい。
 本発明では、スチレン系樹脂100重量部に対して難燃剤を0.5重量部以上8.0重量部以下含むことにより、得られるスチレン系樹脂押出発泡体に難燃性を付与することができる。難燃剤の含有量が0.5重量部未満では、難燃性などの発泡体としての良好な諸特性が得られがたい傾向があり、一方、8.0重量部を超えると、発泡体製造時の安定性、表面性などを損なう場合がある。但し、難燃剤の含有量は、JIS A9511 測定方法Aに規定される難燃性が得られるように、発泡剤含有量、発泡体の見掛け密度、難燃相乗効果を有する添加剤などの種類あるいは含有量などに合わせて、適宜調整されることがより好ましい。
 難燃剤としては、臭素系難燃剤が好ましく用いられる。本発明における臭素系難燃剤の具体的な例としては、ヘキサブロモシクロドデカン、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピル)エーテル、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピル)エーテル、トリス(2,3-ジブロモプロピル)イソシアヌレートや、臭素化スチレン-ブタジエンブロックコポリマーのような脂肪族臭素含有ポリマーが挙げられる。これらは、単独で用いても、2種以上を混合して用いても良い。
 これらのうち、テトラブロモビスフェノールA-ビス(2、3-ジブロモ-2-メチルプロピル)エーテル及びテトラブロモビスフェノールA-ビス(2、3-ジブロモプロピル)エーテルからなる混合臭素系難燃剤、ヘキサブロモシクロドデカン、臭素化スチレン-ブタジエンブロックコポリマーが、押出運転が良好であり、発泡体の耐熱性に悪影響を及ぼさない等の理由から、望ましく用いられる。これらの物質はそれ単体で用いても、または混合物として用いても良い。
 本発明における臭素系難燃剤の含有量は、スチレン系樹脂100重量部に対して0.5重量部以上6.0重量部以下が好ましく、スチレン系樹脂100重量部に対して、1.0重量部以上5.0重量部以下がより好ましく、1.5重量部以上5.0重量部以下が更に好ましい。臭素系難燃剤の含有量が0.5重量部未満では、難燃性などの発泡体としての良好な諸特性が得られがたい傾向があり、一方、6.0重量部を超えると、発泡体製造時の安定性、表面性などを損なう場合がある。
 本発明においては、スチレン系樹脂押出発泡体の難燃性能を向上させる目的で、ラジカル発生剤を併用することができる。具体的には、2,3-ジメチル-2,3-ジフェニルブタン、ポリ-1,4-ジイソプロピルベンゼン、2,3-ジエチル-2,3-ジフェニルブタン、3,4-ジメチル-3,4-ジフェニルヘキサン、3,4-ジエチル-3,4-ジフェニルヘキサン、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-4-エチル-1-ペンテン等が挙げられる。ジクミルパーオキサイドの様な過酸化物も用いられる。その中でも、樹脂加工温度条件にて、安定なものが好ましく、具体的には2,3-ジメチル-2,3-ジフェニルブタン及びポリ-1,4-ジイソプロピルベンゼンが好ましく、好ましい添加量としては、スチレン系樹脂100重量部に対して、0.05~0.5重量部である。
 更に、難燃性能を向上させる目的で、熱安定性能を損なわない範囲で、リン酸エステル及びホスフィンオキシドのようなリン系難燃剤を併用することができる。リン酸エステルとしては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、または縮合リン酸エステル等が挙げられ、特にトリフェニルホスフェート、トリス(トリブチルブロモネオペンチル)ホスフェートが好ましい。又、ホスフィンオキシド型のリン系難燃剤としては、トリフェニルホスフィンオキシドが好ましい。これらリン酸エステル及びホスフィンオキシドは、単独または2種以上併用しても良い。リン系難燃剤の好ましい添加量としては、スチレン系樹脂100重量部に対して0.1~2重量部である。
 本発明においては、必要に応じて樹脂、及び/又は、難燃剤の安定剤を使用することが出来る。特に限定されるものではないが、安定剤の具体的な例としては、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂のようなエポキシ化合物;ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール等の多価アルコールと、酢酸、プロピオン酸等の一価のカルボン酸、または、アジピン酸、グルタミン酸等の二価のカルボン酸との反応物である部分エステルであって、その分子中に一個以上の水酸基を持つ化合物の混合物であり、原料の多価アルコールを少量含有することもある、多価アルコールエステル;トリエチレングリコールビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリトリトールテトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート、ペンタエリトリトールテトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]のようなフェノール系安定剤;3,9-ビス(2,4-ジ-tert-ブチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、及びテトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト)のようなホスファイト系安定剤;などが発泡体の難燃性能を低下させることなく、かつ、発泡体の熱安定性を向上させることから、好適に用いられる。
 「見掛け密度」
 また、本発明に係るスチレン系樹脂押出発泡体は、例えば建築用断熱材や保冷庫用又は保冷車用の断熱材として機能することを考慮した断熱性および、軽量性の観点から、押出発泡体の見掛け密度が20kg/m3以上45kg/m3以下であることが好ましく、より好ましくは25kg/m3以上40kg/m3以下である。
 「独立気泡率」
 本発明のポリスチレン系樹脂押出発泡体の独立気泡率は90%以上が好ましく、95%以上がより好ましい。独立気泡率が低すぎる場合には、発泡剤として使用したハイロドフルオロオレフィンが押出発泡体から早期に逸散しやすく、長期断熱性が低下するおそれがある。本発明において、押出発泡体の独立気泡率(%)は、ASTM-D2856-70の手順Cに従って、空気比較式比重計(例えば、東京サイエンス(株)製、空気比較式比重計、型式1000型)を使用して測定する。
 本発明における押出発泡体の独立気泡率は、押出発泡体の中央部および幅方向両端部付近の計3箇所から縦25mm×横25mm×厚み20mmの大きさに切り出したサンプルを試料とし、各試料について下記式(1)により独立気泡率を測定し、3箇所の独立気泡率の算術平均値を、押出発泡体の独立気泡率とする。
 独立気泡率(%)=(Vx-W/ρ)×100/(VA-W/ρ)・・・(1)
 ただし、
 Vx:上記空気比較式比重計により測定したサンプルの真の体積(cm3;押出発泡体のサンプルを構成する樹脂の容積と、サンプル内の独立気泡部分の気泡全容積との和。)
 VA:サンプルの外寸法から算出したサンプルの見かけ上の体積(cm3
 W:サンプルの全重量(g)
 ρ:押出発泡体を構成するスチレン系樹脂の密度(g/cm3
 「平均気泡径」
 また、本発明のポリスチレン系樹脂押出発泡体の厚み方向の平均気泡径(DT)は、断熱性の観点から0.5mm以下であることが好ましく、0.05~0.3mmであることがより好ましい。
 厚み方向の平均気泡径(DT:mm)は、幅方向垂直断面の中央部及び両端部の計3箇所の顕微鏡拡大写真上に、厚み方向に押出発泡体の全厚みにわたる直線を引き、各直線の長さと、該直線と交差する気泡の数から、各直線上に存在する気泡の平均径(直線の長さ/該直線と交差する気泡の数)を求め、求められた3箇所の平均径の算術平均値を厚み方向の平均気泡径(DT:mm)とする。
 幅方向の平均気泡径(DW:mm)は、幅方向垂直断面の、中央部及び両端部の計3箇所の顕微鏡拡大写真上における、押出発泡体を厚み方向に二等分する位置に、3mmに拡大率を乗じた長さの直線を幅方向に引き、該直線と該直線と交差する気泡の数から、各直線上に存在する気泡の平均径を式[3mm/(該直線と交差する気泡の数-1)]にて求め、求められた3箇所の平均径の算術平均値を幅方向の平均気泡径(DW:mm)とする。
 押出方向の平均気泡径(DL:mm)は、押出発泡体の幅方向を二等分する位置で、押出発泡体を押出方向に切断して得られた押出方向垂直断面の、1m間隔をあけて3箇所の顕微鏡拡大写真上において、押出発泡体を厚み方向に二等分する位置に、3mmに拡大率を乗じた長さの直線を押出方向に引き、該直線と該直線と交差する気泡の数から、各直線上に存在する気泡の平均径を式[3mm/(該直線と交差する気泡の数-1)]にて求め、求められた3箇所の平均径の算術平均値を押出方向の平均気泡径(DL:mm)とする。また、押出発泡体の水平方向の平均気泡径(DH:mm)は、DWとDLの相加平均値とする。
 「気泡変形率」
 更に本発明のポリスチレン系樹脂押出発泡体においては、気泡変形率が0.7~2.0であることが好ましい。気泡変形率とは、上記測定方法により求められた厚み方向の平均気泡径(DT:mm)を押出発泡体の水平方向の平均気泡径(DH:mm)で割った値(DT/DH)であり、該気泡変形率が1よりも小さいほど気泡は扁平であり、1よりも大きいほど縦長である。気泡変形率が小さすぎる場合は、気泡が扁平なので圧縮強度が低下する傾向にあり、扁平な気泡は球形に戻ろうとする傾向が強いので、押出発泡体の寸法安定性も低下する傾向にある。気泡変形率が大きすぎる場合は、厚み方向における気泡数が少なくなるので、気泡形状による断熱性向上効果が小さくなる。したがって、上記気泡変形率は、0.8~1.5であることがより好ましく、0.8~1.2であることが更に好ましい。気泡変形率が上記範囲内にあることにより、機械的強度に優れ、かつ更に高い断熱性を有するポリスチレン系樹脂押出発泡体となる。
 「熱伝導率」
 本発明のポリスチレン系樹脂押出発泡体の、製造後100日経過後の熱伝導率(A)は、0.0290W/(m・K)以下であることが望ましく、0.0280W/(m・K)以下であることが更に好ましい。本発明のスチレン系樹脂押出発泡体は、独立気泡率が高く、発泡体からのハイロドフルオロオレフィンの逸散が効果的に防止されることから、製造後100日経過後であっても、熱伝導率が低く維持され、断熱性に優れる。
 本発明において熱伝導率は、ISO 11561に記載の促進試験に準拠した方法により測定する。製造直後の押出発泡体を厚み方向、及び幅方向中央部から厚さ10mm×長さ200mm×幅200mmの成形表皮が存在しない試験片を切り出し、該試験片をJIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置する。製造後100日後に該試験片を用いてJIS A 1412-2:1999に準拠する方法で、平均温度23℃の温度条件にて熱伝導率を測定する。
 前記のように、スチレン系樹脂押出発泡体の製造から100日後の熱伝導率を0.0280W/(m・K)以下とするには、ハイドロフルオロオレフィンの配合量、押出発泡体の見掛け密度、独立気泡率、平均気泡径、気泡変形率を本発明に規定する範囲内に調整すれば良い。
 本発明においては、断熱性向上のため、熱線輻射抑制剤としてグラファイトを添加してもよい。前記熱線輻射抑制剤とは、近赤外または赤外領域(例えば、800~3000nm程度の波長域)の光を反射・散乱・吸収する特性を有する物質をいう。熱線輻射抑制剤を添加することにより、高い断熱性を有する発泡体が得られる。本発明で使用することができる熱線輻射抑制剤としては、グラファイトの他に、酸化チタン、硫酸バリウム、酸化亜鉛、酸化アルミニウム、酸化アンチモンなどの白色系粒子を併用することが出来る。これらは、単独で使用しても良く、2種以上を併用しても良い。これらの中でも、線輻射抑制効果が大きい点から、酸化チタンや硫酸バリウムが好ましく、酸化チタンがより好ましい。
 本発明における熱線輻射抑制剤の含有量は、スチレン系樹脂100重量部に対して、1.0重量部以上6.0重量部以下が好ましく、2.0重量部以上5.0重量部以下がより好ましい。熱線輻射抑制剤の含有量が1.0重量部未満では、断熱性向上が得られ難く、一方、6.0重量部超では、押出安定性・成形性が劣ったり、燃焼性が損なわれたりする傾向がある。
 本発明においては、更に、必要に応じて、本発明の効果を阻害しない範囲で、例えば、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、酸化チタン、炭酸カルシウムなどの無機化合物、ステアリン酸ナトリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物などの加工助剤、フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類、ヒンダードアミン類などの耐光性安定剤、前記以外の難燃剤、帯電防止剤、顔料などの着色剤などの添加剤がスチレン系樹脂に含有されてもよい。
 スチレン系樹脂に各種添加剤を添加する手順として、例えば、スチレン系樹脂に対して各種添加剤を添加して混合した後、押出機に供給して加熱溶融し、更に発泡剤を添加して混合する手順が挙げられるが、各種添加剤をスチレン系樹脂に添加するタイミングや混練時間は特に限定されない。
 本発明のスチレン系樹脂押出発泡体の製造方法としては、スチレン系樹脂、難燃剤、その他の添加剤等を押出機等の加熱溶融手段に供給し、任意の段階で高圧条件下にて発泡剤をスチレン系樹脂に添加し、流動ゲルとなし、押出発泡に適する温度に冷却した後、ダイを通して該流動ゲルを低圧領域に押出発泡して、発泡体を形成する。
 加熱温度は、使用されるスチレン系樹脂が溶融する温度以上であればよいが、添加剤などの影響による樹脂の分子劣化ができる限り抑制される温度、例えば150~260℃程度が好ましい。溶融混練時間は、単位時間当たりのスチレン系樹脂の押出量や溶融混練手段として用いる押出機の種類により異なるので一義的に規定することはできず、スチレン系樹脂と発泡剤や添加剤とが均一に分散混合されるに要する時間として適宜設定される。
 溶融混練手段としては、例えばスクリュー型の押出機などが挙げられるが、通常の押出発泡に用いられるものであれば特に制限されない。
 本発明の発泡成形方法は、例えば、押出成形用に使用される開口部が直線のスリット形状を有するスリットダイを通じて、高圧領域から低圧領域へ開放して得られた押出発泡体を、スリットダイと密着又は接して設置された成形金型、及び該成形金型の下流側に隣接して設置された成形ロールなどを用いて、断面積の大きい板状発泡体を成形する方法が用いられる。成形金型の流動面形状調整および金型温度調整によって、所望の発泡体の断面形状、発泡体の表面性、発泡体品質が得られる。
 本発明に係るスチレン系樹脂押出発泡体における厚みは特に限定はないが、例えば建築用断熱材や保冷庫用又は保冷車用の断熱材として機能することを考慮した断熱性、曲げ強度及び圧縮強度の観点から、10mm以上150mm以下であることが好ましく、より好ましくは15mm以上120mm以下であり、特に好ましくは20mm以上100mm以下である。
 かくして、本発明により、軽量、且つ、優れた断熱性および難燃性を有し、オゾン層破壊係数がゼロ、地球温暖化係数も小さく環境に優しいスチレン系樹脂押出発泡体を容易に得ることができる。
 以下、本発明の実施例について説明する。なお、本発明が以下の実施例に限定されないことは勿論である。
 実施例および比較例において使用した原料は、次の通りである。
○基材樹脂
・スチレン系樹脂A [PSジャパン(株)製、G9401;MFR2.2g/10分]
・スチレン系樹脂B [PSジャパン(株)製、680;MFR7.0g/10分]
○難燃剤
・テトラブロモビスフェノールA-ビス(2、3-ジブロモ-2-メチルプロピル)エーテル及びテトラブロモビスフェノールA-ビス(2、3-ジブロモプロピル)エーテル の混合臭素系難燃剤[第一工業(株)製、GR-125P]
・臭素化スチレン-ブタジエンブロックポリマー [ケムチュラ製、EMERALD INNOVATION #3000]
・ヘキサブロモシクロドデカン [アルベマール(株)製、HP900]
○難燃助剤
・トリス(トリブロモネオペンチル)ホスフェート [大八化学工業(株)製、CR-900]
・トリフェニルホスフィンオキシド [住友商事ケミカル]
○ラジカル発生剤
・ポリ-1,4-ジイソプロピルベンゼン [UNITED INITIATORS製、CCPIB]
○安定剤
・ビスフェノール-A-グリシジルエーテル [(株)ADEKA製、EP-13]
・クレゾールノボラック型エポキシ樹脂 [ハンツマンジャパン製、ECN-1280]
・ジペンタエリスリトール-アジピン酸反応混合物 [味の素ファインテクノ(株)製、プレンライザーST210]
・ペンタエリトリトールテトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート] [ケムチュラ製、ANOX20]
・3,9-ビス(2,4-ジ-tert-ブチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン [ケムチュラ製、Ultranox626]
・トリエチレングリコールビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート [Songwon Japan(株)製、ソンノックス2450FF]
○その他添加剤
・ステアリン酸カルシウム [堺化学工業(株)製、SC-P]
・ベントナイト [(株)ホージュン製、ベンゲルブライトK11]
・シリカ [エボニックデグサジャパン(株)製、カープレックスBS-304F]
○発泡剤
・HFO-1234ze [ハネウェルジャパン(株)製]
・ジメチルエーテル [岩谷産業(株)製]
・塩化メチル [旭硝子(株)製]
・塩化エチル [日本特殊化学工業(株)製]
・イソブタン [三井化学(株)製]
・ノルマルブタン [岩谷産業(株)製]
・水 [大阪府摂津市水道水]。
 実施例および比較例について、以下の手法に従って見掛け密度、独立起泡率、平均気泡径、気泡変形率、発泡体中のスチレン系樹脂100gに対するHFO-1234ze残存量、熱伝導率、JIS燃焼性を評価した。
(1)見掛け密度(kg/m3
 得られたスチレン系樹脂押出発泡体の重量を測定すると共に、長さ寸法、幅寸法、厚み寸法を測定した。
 測定された重量および各寸法から、以下の式に基づいて発泡体の見掛け密度を求め、単位をkg/m3に換算した。
 見掛け密度(g/cm3)=発泡体重量(g)/発泡体体積(cm3
(2)独立気泡率(%)
 得られたスチレン系樹脂押出発泡体から、厚さ20mm×長さ25mm×幅25mmの成形表皮が存在しない試験片を切り出し、ASTM-D2856-70の手順Cに準じて評価した。
(3)平均気泡径(mm)
 前述の通り評価した。
(4)気泡変形率
 前述の通り評価した。
(5)押出発泡体中のスチレン系樹脂100gに対するHFO-1234ze残存量
 得られたスチレン系樹脂押出発泡体をJIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置し、製造から28日後にHFO-1234ze残存量を以下の設備、手順にて評価した。
 a)使用機器;ガスクロマトグラフ GC-2014 [(株)島津製作所製]
 b)使用カラム;G-Column G-950 25UM [化学物質評価研究機構製]
 c)測定条件;
 ・注入口温度:65℃
 ・カラム温度:80℃
 ・検出器温度:100℃
 ・キャリーガス:高純度ヘリウム
 ・キャリーガス流量:30mL/分
 ・検出器:TCD
 ・電流:120mA
 約130ccの密閉可能なガラス容器(以下、「密閉容器」と言う)に、発泡体から切り出した見掛け密度により異なるが約1.2gの試験片を入れ、真空ポンプにより密閉容器内の空気抜きを行った。その後、密閉容器を170℃で10分間加熱し、発泡体中の発泡剤を密閉容器内に取り出した。密閉容器が常温に戻った後、密閉容器内にヘリウムを導入して大気圧に戻した後、マイクロシリンジにより40μLのHFO-1234zeを含む混合気体を取り出し、上記a)~c)の使用機器、測定条件にて評価した。
(6)熱伝導率(W/mK)
 発泡体の熱伝導率は、前述の方法で測定した。合否の基準は以下のとおり。
 合 格:熱伝導率が0.0280W/mK以下。
 不合格:熱伝導率が0.0280W/mKより大きい。
(7)JIS燃焼性
 JIS A 9511(測定方法A)に準じて、厚さ10mm×長さ200mm×幅25mmの試験片を5本用い、以下の基準で評価した。測定は、スチレン系樹脂押出発泡体の製造後、前記寸法の試験片に切削し、JIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、-10%R.H.)の条件下に静置し、製造から1週間後に行った。
 ○(合格):3秒以内に炎が消えて、残じんがなく、燃焼限界指示線を超えて燃焼しないとの基準を満たす。
 ×(不合格):上記基準を満たさない。
(実施例1)
[樹脂混合物の作製]
 スチレン系樹脂A[PSジャパン(株)製、G9401]100重量部に対して、難燃剤として、テトラブロモビスフェノールA-ビス(2、3-ジブロモ-2-メチルプロピル)エーテル及びテトラブロモビスフェノールA-ビス(2、3-ジブロモプロピル)エーテルの混合臭素系難燃剤[第一工業(株)製、GR-125P]3.0重量部、難燃剤助剤としてトリフェニルホスフィンオキシド[住友商事ケミカル]1.0重量部、安定剤として、ビスフェノール-A-グリシジルエーテル[(株)ADEKA製、EP-13]0.10重量部、トリエチレングリコールビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート[Songwon Japan(株)製、ソンノックス2450FF]0.20重量部、滑剤としてステアリン酸カルシウム[堺化学工業(株)製、SC-P]0.10重量部をドライブレンドした。
[押出発泡体の作製]
 得られた樹脂混合物を口径65mmの単軸押出機(第一押出機)と口径90mmの単軸押出機(第二押出機)、及び冷却機を直列に連結した押出機へ、約50kg/hrで供給した。
 第一押出機に供給した樹脂混合物を、樹脂温度240℃に加熱して溶融ないし可塑化、混練し、発泡剤(スチレン系樹脂100重量部に対して、HFO-1234ze 4.0重量部(0.035mol)およびジメチルエーテル 4.7重量部(0.102mol)を第一押出機の先端付近で樹脂中に圧入した。その後、第一押出機に連結された第二押出機及び冷却機中にて、樹脂温度を125℃に冷却し、冷却機先端に設けた厚さ1.2mm×幅50mmの長方形断面の口金(スリットダイ)より、発泡圧力8.0MPaにて大気中へ押出発泡させた後、口金に密着させて設置した成形金型とその下流側に設置した成形ロールにより、厚さ21mm×幅250mmである断面形状の押出発泡板を得た。
 得られた発泡体の評価結果を表2に示す。
 (実施例2~12)
 表2に示すように、各種配合剤の種類・添加量及び製造条件を変更した以外は、実施例1と同様の操作により、発泡体を得た。得られた発泡体の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (比較例1~7)
 表3に示すように、各種配合剤の種類・添加量及び製造条件を変更した以外は、実施例1と同様の操作により、発泡体を得た。得られた発泡体の物性を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示した実施例1~12と表3に示した比較例1~7との対比から明らかなように、本発明に従い、所定量の難燃剤と混合発泡剤を含有するスチレン系樹脂を押出発泡成形することで、軽量で、且つ、優れた断熱性および難燃性を有し、オゾン層破壊係数がゼロ、地球温暖化係数も小さく環境に優しいスチレン系樹脂押出発泡体を容易に得ることができる。

Claims (7)

  1.  スチレン系樹脂及び発泡剤を用いて押出発泡して得られる、難燃剤をスチレン系樹脂100重量部に対して0.5重量部以上8.0重量部以下含む、見掛け密度20kg/m3以上45kg/m3以下、独立気泡率が90%以上であるスチレン系樹脂押出発泡体であって、前記発泡剤が少なくともハイドロフルオロオレフィンと他の有機発泡剤を含み、
    (i)前記ハイドロフルオロオレフィンの配合量が、スチレン系樹脂100gに対して0.030mol以上0.125mol以下である、
    (ii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg以上の有機発泡剤を含む、
    (iii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg未満の有機発泡剤を含まない、
    (iv)ハイドロフルオロオレフィンと他の有機発泡剤の配合量の合計が、スチレン系樹脂100gに対して0.105mol以上0.300mol以下である、
     ことを特徴とするスチレン系樹脂押出発泡体。
  2.  前記ハイドロフルオロオレフィンの配合量が、スチレン系樹脂100gに対して0.040mol以上0.105mol以下である請求項1に記載のスチレン系樹脂押出発泡体。
  3.  前記ハイドロフルオロオレフィンがテトラフルオロプロペンである請求項1または2に記載のスチレン系樹脂押出発泡体。
  4.  前記他の有機発泡剤がジメチルエーテル、塩化メチル及び塩化エチルから選択される1種又は2種以上を含む混合物である請求項1~3のいずれかに記載のスチレン系樹脂押出発泡体。
  5.  前記他の有機発泡剤がジメチルエーテルである請求項1~4のいずれかに記載のスチレン系樹脂押出発泡体。
  6.  前記難燃剤として、臭素系難燃剤をスチレン系樹脂100重量部に対して0.5重量部以上6.0重量部以下含む請求項1~5のいずれかに記載のスチレン系樹脂押出発泡体。
  7.  スチレン系樹脂及び発泡剤を用いて押出発泡してスチレン系樹脂押出発泡体を製造する方法であって、難燃剤をスチレン系樹脂100重量部に対して0.5重量部以上8.0重量部以下含むスチレン系樹脂組成物を加熱溶融し、ついで発泡剤を高圧条件下にて添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出して押出発泡体を成形してなり、見掛け密度20kg/m3以上45kg/m3以下、独立気泡率が90%以上であるスチレン系樹脂押出発泡体を製造する方法であって、
     前記発泡剤として少なくともハイドロフルオロオレフィンと他の有機発泡剤を用い、
    (i)前記ハイドロフルオロオレフィンの配合量を、スチレン系樹脂100gに対して0.030mol以上0.125mol以下とする、
    (ii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg以上の有機発泡剤を使用する、
    (iii)前記他の有機発泡剤として、ポリスチレン透過率が0.5×10-10cc・cm/cm2・s・cmHg未満の有機発泡剤を使用しない、
    (iv)ハイドロフルオロオレフィンと他の有機発泡剤の配合量の合計を、スチレン系樹脂100gに対して0.105mol以上0.300mol以下とする、
     ことを特徴とするスチレン系樹脂押出発泡体の製造方法。
PCT/JP2014/080090 2013-12-20 2014-11-13 スチレン系樹脂押出発泡体およびその製造方法 WO2015093195A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/025,415 US10017618B2 (en) 2013-12-20 2014-11-13 Extruded polystyrene foam and method for producing same
JP2015552316A JP5892300B2 (ja) 2013-12-20 2014-11-13 スチレン系樹脂押出発泡体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-263998 2013-12-20
JP2013263998 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093195A1 true WO2015093195A1 (ja) 2015-06-25

Family

ID=53402551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080090 WO2015093195A1 (ja) 2013-12-20 2014-11-13 スチレン系樹脂押出発泡体およびその製造方法

Country Status (3)

Country Link
US (1) US10017618B2 (ja)
JP (1) JP5892300B2 (ja)
WO (1) WO2015093195A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078025A1 (ja) * 2015-11-05 2017-05-11 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
WO2017141888A1 (ja) * 2016-02-16 2017-08-24 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
WO2018117224A1 (ja) * 2016-12-21 2018-06-28 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
KR20180077230A (ko) 2015-10-30 2018-07-06 가부시키가이샤 가네카 스티렌계 수지 압출 발포체 및 그 제조 방법
WO2018163905A1 (ja) 2017-03-07 2018-09-13 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
JP2018150474A (ja) * 2017-03-14 2018-09-27 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
JP2018150450A (ja) * 2017-03-13 2018-09-27 株式会社カネカ スチレン系樹脂押出発泡体の製造方法
JP2018184562A (ja) * 2017-04-27 2018-11-22 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
JP2018184563A (ja) * 2017-04-27 2018-11-22 株式会社カネカ スチレン系樹脂押出発泡体の製造方法
KR20180126442A (ko) 2015-11-20 2018-11-27 가부시키가이샤 가네카 스티렌계 수지 압출 발포체 및 그 제조 방법
RU2786430C2 (ru) * 2016-07-08 2022-12-21 ВЕРСАЛИС С.п.А. Вспениваемые композиции, содержащие винилароматические полимеры, имеющие самогасящие свойства и улучшенную обрабатываемость

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201832940A (zh) * 2016-11-30 2018-09-16 美商Lbp製造有限公司 隔熱積層以及用於製造該隔熱積層的方法
US20230226801A1 (en) * 2020-01-16 2023-07-20 Asahi Kasei Construction Materials Corporation Phenolic resin foam laminate board and composite board
CN114479185B (zh) * 2022-02-15 2023-07-04 天津格亚德新材料科技有限公司 一种阻燃剂、阻燃型泡沫板及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508023A (ja) * 1997-01-22 2000-06-27 インペリアル・ケミカル・インダストリーズ・ピーエルシー 独立気泡の重合体フォーム
JP2002508419A (ja) * 1997-12-18 2002-03-19 ザ ダウ ケミカル カンパニー Hfcー134と低溶解性の補助発泡剤とを含むフォーム及びこのようなフォームの製造法
JP2002144409A (ja) * 2000-11-16 2002-05-21 Jsp Corp ポリスチレン系樹脂押出発泡板及びその製造方法
JP2005008739A (ja) * 2003-06-18 2005-01-13 Jsp Corp ポリスチレン系樹脂押出発泡板の製造方法及びポリスチレン系樹脂押出発泡板
JP2005023243A (ja) * 2003-07-04 2005-01-27 Kaneka Corp スチレン系樹脂発泡体及びその製造方法
JP2006131702A (ja) * 2004-11-04 2006-05-25 Kaneka Corp スチレン系樹脂発泡体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269224A (ja) 1995-03-31 1996-10-15 Kanegafuchi Chem Ind Co Ltd ポリスチレン系樹脂発泡体の製法
JP3574297B2 (ja) * 1997-07-11 2004-10-06 鐘淵化学工業株式会社 ポリスチレン系樹脂発泡体の製造方法および該方法により製造されたポリスチレン系樹脂発泡体
JP4914000B2 (ja) * 2004-11-12 2012-04-11 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡板
TWI626262B (zh) 2005-06-24 2018-06-11 哈尼威爾國際公司 發泡體及其產品
US8198340B2 (en) * 2007-03-27 2012-06-12 Dow Global Technologies Llc Quality polymer foam from fluorinated alkene blowing agents
US8772364B2 (en) * 2007-03-29 2014-07-08 Arkema Inc. Blowing agent compositions of hydrofluoroolefins and hydrochlorofluoroolefins
JP5676158B2 (ja) 2010-06-25 2015-02-25 株式会社ジェイエスピー 熱可塑性樹脂押出発泡断熱板
JP5937386B2 (ja) 2012-03-16 2016-06-22 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡断熱板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508023A (ja) * 1997-01-22 2000-06-27 インペリアル・ケミカル・インダストリーズ・ピーエルシー 独立気泡の重合体フォーム
JP2002508419A (ja) * 1997-12-18 2002-03-19 ザ ダウ ケミカル カンパニー Hfcー134と低溶解性の補助発泡剤とを含むフォーム及びこのようなフォームの製造法
JP2002144409A (ja) * 2000-11-16 2002-05-21 Jsp Corp ポリスチレン系樹脂押出発泡板及びその製造方法
JP2005008739A (ja) * 2003-06-18 2005-01-13 Jsp Corp ポリスチレン系樹脂押出発泡板の製造方法及びポリスチレン系樹脂押出発泡板
JP2005023243A (ja) * 2003-07-04 2005-01-27 Kaneka Corp スチレン系樹脂発泡体及びその製造方法
JP2006131702A (ja) * 2004-11-04 2006-05-25 Kaneka Corp スチレン系樹脂発泡体

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180077230A (ko) 2015-10-30 2018-07-06 가부시키가이샤 가네카 스티렌계 수지 압출 발포체 및 그 제조 방법
WO2017078025A1 (ja) * 2015-11-05 2017-05-11 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
JPWO2017078025A1 (ja) * 2015-11-05 2018-08-16 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
KR20180074778A (ko) 2015-11-05 2018-07-03 가부시키가이샤 가네카 스티렌계 수지 압출 발포체 및 그 제조 방법
KR20180126442A (ko) 2015-11-20 2018-11-27 가부시키가이샤 가네카 스티렌계 수지 압출 발포체 및 그 제조 방법
KR20180109084A (ko) 2016-02-16 2018-10-05 가부시키가이샤 가네카 스티렌계 수지 압출 발포체 및 그의 제조 방법
WO2017141888A1 (ja) * 2016-02-16 2017-08-24 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
RU2786430C2 (ru) * 2016-07-08 2022-12-21 ВЕРСАЛИС С.п.А. Вспениваемые композиции, содержащие винилароматические полимеры, имеющие самогасящие свойства и улучшенную обрабатываемость
WO2018117224A1 (ja) * 2016-12-21 2018-06-28 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
WO2018163905A1 (ja) 2017-03-07 2018-09-13 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
KR20190122780A (ko) 2017-03-07 2019-10-30 가부시키가이샤 가네카 스티렌계 수지 압출 발포체 및 그의 제조 방법
US11312834B2 (en) 2017-03-07 2022-04-26 Kaneka Corporation Styrene resin extruded foam body and method for producing same
JP2018150450A (ja) * 2017-03-13 2018-09-27 株式会社カネカ スチレン系樹脂押出発泡体の製造方法
JP7057068B2 (ja) 2017-03-14 2022-04-19 株式会社カネカ スチレン系樹脂押出発泡体を含む断熱材およびその製造方法
JP2018150474A (ja) * 2017-03-14 2018-09-27 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
JP2018184563A (ja) * 2017-04-27 2018-11-22 株式会社カネカ スチレン系樹脂押出発泡体の製造方法
JP7045802B2 (ja) 2017-04-27 2022-04-01 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
JP7042038B2 (ja) 2017-04-27 2022-03-25 株式会社カネカ スチレン系樹脂押出発泡体の製造方法
JP2018184562A (ja) * 2017-04-27 2018-11-22 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法

Also Published As

Publication number Publication date
JPWO2015093195A1 (ja) 2017-03-16
JP5892300B2 (ja) 2016-03-23
US20160208067A1 (en) 2016-07-21
US10017618B2 (en) 2018-07-10

Similar Documents

Publication Publication Date Title
JP5892300B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6588428B2 (ja) スチレン系樹脂押出発泡体の製造方法
JP6650466B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6722753B2 (ja) スチレン系樹脂押出発泡体及びその製造方法
JP7057068B2 (ja) スチレン系樹脂押出発泡体を含む断熱材およびその製造方法
US11312834B2 (en) Styrene resin extruded foam body and method for producing same
JP2015113416A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7080714B2 (ja) スチレン系樹脂押出発泡体
JP6181522B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
WO2018117224A1 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7011422B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6609636B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP6639517B2 (ja) スチレン系樹脂押出発泡体およびその製造方法
JP7479175B2 (ja) スチレン系樹脂押出発泡体の製造方法
JP2022145216A (ja) スチレン系樹脂押出発泡体の製造方法
JP2023062653A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2018100352A (ja) スチレン系樹脂押出発泡体およびその製造方法
JP2018184562A (ja) スチレン系樹脂押出発泡体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552316

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025415

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871218

Country of ref document: EP

Kind code of ref document: A1