WO2017074047A1 - Light-transmissive substrate and manufacturing method therefor - Google Patents

Light-transmissive substrate and manufacturing method therefor Download PDF

Info

Publication number
WO2017074047A1
WO2017074047A1 PCT/KR2016/012136 KR2016012136W WO2017074047A1 WO 2017074047 A1 WO2017074047 A1 WO 2017074047A1 KR 2016012136 W KR2016012136 W KR 2016012136W WO 2017074047 A1 WO2017074047 A1 WO 2017074047A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
light
layer
substrate
Prior art date
Application number
PCT/KR2016/012136
Other languages
French (fr)
Korean (ko)
Inventor
유영조
손윤상
최윤수
박태헌
김다은
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Publication of WO2017074047A1 publication Critical patent/WO2017074047A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices

Definitions

  • the present invention relates to a light transmissive substrate and a method of manufacturing the same.
  • the present invention also relates to a display device, a lighting device, and the like to which a translucent substrate is applied.
  • the light transmissive substrate is a substrate including a transparent conductive layer having both electrical conductivity and light transparency.
  • the light transmissive substrate provided in the light emitting device is configured to minimize the loss of generated light.
  • an organic light-emitting diode OLED
  • Such translucent substrates include liquid crystal displays, electrochromic displays (ECDs), organic electroluminescent devices, solar cells, plasma display panels, flexible displays, electronic papers, It can be applied to display devices such as touch panels, lighting devices, or solar cells.
  • the light transmissive substrate includes a base substrate and a light transmissive electrode that performs an electrode function of a light emitting element attached to the substrate.
  • the translucent electrode is mainly formed in a thin film form using a conductive material such as tin-doped indium oxide (ITO) on a base substrate made of plastic, but recently, carbon that can replace ITO containing indium, which is an unstable supply and demand, is used.
  • ITO tin-doped indium oxide
  • CNT nanotubes
  • metal nanostructures etc.
  • the present invention provides a light extraction substrate including a transparent conductive layer having a structure that improves the light extraction efficiency, and an organic light emitting device using the same, without affecting the transmittance and electrical conductivity, and the light extraction substrate with improved light extraction efficiency It is to provide an organic light emitting device.
  • the present invention is a light transmissive substrate comprising a transparent conductive layer, the light transmissive substrate comprising: a base polymer layer made of a light transmissive material; And a first transparent conductive layer provided on the base polymer layer, wherein the first transparent conductive layer is formed with a plurality of zones which are divided by a crack, thereby forming a light-transmissive substrate having refraction of light incident from the crack. to provide.
  • the thickness (t) of the crack measured in the horizontal direction of the first transparent conductive layer provides a light transmissive substrate having a thickness of 100 nm to 20 ⁇ m.
  • the shortest length l of the area fractionated by the crack measured in the horizontal direction of the first transparent conductive layer provides a light transmissive substrate having a thickness of 100 ⁇ m to 2 mm.
  • the first transparent conductive layer has a thickness of 5nm to 100nm to provide a transparent substrate.
  • the first transparent conductive layer has an inclination to the side, the inclination angle between the horizontal surface of the first transparent conductive layer side and the base polymer layer provides a transparent substrate of 45 ° ⁇ 20 °.
  • the first transparent conductive layer provides a transparent substrate formed of any one or more layers selected from the group consisting of a transparent conductive oxide layer, a transparent conductive nitride layer, a transparent conductive sulfide layer, and a mixed layer thereof.
  • the light transmissive substrate further includes a second transparent conductive layer provided on the base polymer layer, the second transparent conductive layer including a conductor and a coating polymer covering the conductor, wherein the first transparent conductive layer is the second transparent layer.
  • a light transmissive substrate provided on a conductive layer.
  • the conductor of the second transparent conductive layer provides a light transmissive substrate including a metal nanowire, a metal mesh pattern or a conductive polymer.
  • the conductor is 60% or more in the A region. It provides a translucent substrate.
  • the metal nanowires are silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), titanium (Ti)
  • a light transmissive substrate formed of any one material selected from the group consisting of chromium (Cr), aluminum (Al), palladium (Pd), and combinations thereof is provided.
  • the metal mesh pattern provides a light-transmissive substrate that is a pattern formed in a cross shape using silver (Ag), copper (Cu), aluminum (Al), or an alloy thereof.
  • the conductor of the second transparent conductive layer further includes a metal particle, the metal particle provides a light-transmitting substrate that is distributed at least 50% in the A region.
  • the present invention also provides a light-transmissive substrate manufacturing step of manufacturing a light-transmissive substrate comprising a base polymer layer, a second transparent conductive layer and a first transparent conductive layer; It provides a method of manufacturing a light-transmitting substrate comprising a; crack forming step of forming a crack by applying a physical external force to the light-transmitting substrate.
  • the crack forming step provides a method of manufacturing a light transmissive substrate which is a step of forming a crack by applying a physical external force by bending the manufactured light transmissive substrate.
  • the crack forming step is to adjust the strength and position of the bending to provide a method of manufacturing a light-transmitting substrate that is formed so that the crack (crack) increases as the distribution toward the edge (edge) region of the first transparent conductive layer. do.
  • the light-transmissive substrate manufacturing step the first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a second transparent conductive layer on the first transparent conductive layer; Forming a base polymer layer on the second transparent conductive layer; And a fourth step of separating the release layer and the first transparent conductive layer; preparing a light-transmissive substrate comprising a base polymer layer, a second transparent conductive layer, and a first transparent conductive layer. It provides a manufacturing method.
  • the present invention provides a lighting device comprising the light-transmitting substrate.
  • the present invention in another aspect, the present invention.
  • an organic light emitting layer provided between the light transmissive substrate and the reflective electrode.
  • the light transmissive substrate of the present invention comprises a plurality of zones fractionated by cracks, and includes a first transparent conductive layer in which refraction of light incident from the cracks is generated, without affecting the transmittance and electrical conductivity,
  • the improved light-transmissive substrate and an organic light emitting device including the same can be provided.
  • the light emitted to the side of the translucent substrate including the same or absorbed by the inner material and disappears hits the inclined surface of the edge and then causes total reflection to proceed toward the side or the top of the substrate to extract light. It can provide the effect that the efficiency is improved.
  • the light extraction efficiency can be increased.
  • the metal nanowires and the metal particles as the conductor of the second transparent conductive layer, the light extraction efficiency can be further increased by scattering the light.
  • the metal particles are provided with protrusions on the outer surface to have a wider range of wavelengths. It can scatter light.
  • FIG. 1 is a structural diagram of a first transparent conductive layer according to an embodiment of the present invention.
  • Figure 2 shows the schematic structure of the light extraction by the crack according to an embodiment of the present invention.
  • FIG 3 is a structural diagram of a second transparent conductive layer according to an embodiment of the present invention.
  • FIG. 4 shows a light transmissive substrate according to an embodiment of the present invention.
  • Figure 5 shows a light-transmissive substrate manufacturing step according to an embodiment of the present invention.
  • FIG. 6 shows a light extraction simulation structure of a crack structure according to an embodiment of the present invention.
  • FIG. 7 shows a light extraction efficiency measurement region of the organic light emitting device according to the embodiment of the present invention.
  • Figure 8 shows the light extraction simulation results of the crack structure according to an embodiment of the present invention.
  • FIG 9 shows the inclined structure of the first transparent conductive layer according to the embodiment of the present invention.
  • FIG. 10 shows a light extraction simulation result by the inclined structure according to an embodiment of the present invention.
  • Example 11 shows an optical microscope image of a light transmissive substrate prepared according to Example 1 of the present invention.
  • FIG. 12 shows a graph of sheet resistance measurement of the light transmissive substrate according to the embodiment of the present invention.
  • FIG. 13 shows transmittance measurement data and haze measurement data according to generation time of the light extraction layer of the light-transmissive substrate prepared in Example 1.
  • the light transmissive substrate 100 includes a base polymer layer 50 and a first transparent conductive layer 20 provided on the base polymer layer 50, and the first transparent material of the present invention.
  • the conductive layer 20 is divided into a plurality of zones 22 with the crack 21 as an interface, and when the generated light is incident on the light transmissive substrate, the crack 21 of the first transparent conductive layer 20 is caused.
  • a substrate in which refraction occurs it is a translucent substrate 100 which improves light extraction efficiency without affecting the transmittance and electrical conductivity.
  • a crack 21 present in at least one region of the first transparent conductive layer 20 is continuously or discontinuously empty in the first transparent conductive layer 20 as shown in FIG. 1. It means a gap, the first transparent conductive layer 20 is divided into a plurality of zones 22 with the crack 21 as an interface, the gap caused by the crack in the thickness direction of the first transparent conductive layer 20 It may or may not penetrate. That is, the first transparent conductive layer 20 is divided into several zones by the crack 21, and the size of each zone 22 is the shortest length l measured in the horizontal direction of the first transparent conductive layer 20. You can indicate the size through.
  • Figure 2 shows the schematic structure of the light extraction enhancement structure due to cracks.
  • the internal light loss reaches 60%, while in the transparent conductive layer containing cracks according to the present invention shown in FIG. Due to this has the effect of increasing the internal light extraction efficiency.
  • the translucent substrate 100 has a crack having a low refractive index (1 to 1.4) while the generated light passes through the first transparent conductive layer 20 having a relatively high refractive index (1.5 to 2.5). 21) to be totally reflected when contacted at an angle of more than the critical angle, and to increase the light extraction efficiency by forming a path through which the light can escape through the crack (21).
  • the thickness t of the crack 21 of the first transparent conductive layer 20 is 100 nm or more and 20 ⁇ m or less.
  • the thickness t of the crack 21 means the width of the crack space measured in the horizontal direction of the first transparent conductive layer 20. If the thickness t of the crack 21 is less than 100 nm, there is a problem in that the effect of light extraction is inferior, and if it is more than 20 ⁇ m, the contact point between the nanowires is reduced, thereby reducing the conductivity. More preferably, they are 100 nm or more and 5 micrometers or less.
  • the size of the plurality of zones 22 divided by the crack 21 of the first transparent conductive layer 20 may be measured as the shortest length l, and the first transparent conductive layer
  • the shortest length l of each zone 22 measured in the horizontal direction of 20 is the length of one side of the first transparent conductive layer 20, preferably 100 ⁇ m or more and 2 mm or less. If the shortest length (l) is less than 100 ⁇ m, there is a problem of deterioration of conductivity due to excessive cracking and driving of the device, and if it exceeds 2 mm, there is a problem of deterioration of light extraction function due to light extraction and cracking.
  • the crack 21 of the first transparent conductive layer 20 may be included in a form in which the distribution increases toward the edge region of the first transparent conductive layer 20.
  • the first transparent conductive layer 20 may have an edge region in which the shortest length l of the divided zone 22 is 100 ⁇ m or more and 2 mm or less.
  • the edge area refers to an area including a side including a circumference or an edge of the first transparent conductive layer 20. In the case where a large number of cracks 21 are present in the edge region, it is possible to prevent light from escaping to the edge region of the first transparent conductive layer 20 while preventing transmittance and electrical conductivity from deteriorating, thereby improving light extraction efficiency.
  • the first transparent conductive layer 20 may be formed to be inclined side. That is, the angle formed between the horizontal surface of the base polymer layer 50 and the side surface of the first transparent conductive layer 20 has an inclination angle ⁇ other than 90 °.
  • the side surface of the first transparent conductive layer 20 Since the side surface of the first transparent conductive layer 20 has an inclination, the light emitted to the side or absorbed by the inner material is totally reflected when it enters the inclined surface, thereby advancing the light toward the upper side of the substrate, thereby improving light extraction efficiency. It is effective to let.
  • the inclination angle between the side surfaces of the first transparent conductive layer 20 and the base polymer layer 50 is 45 ° ⁇ 20 °. Total reflection occurs with respect to the light incident on the side surface at an angle parallel to the horizontal plane of the transparent conductive layer within the above range, thereby resulting in the light extraction efficiency is the most excellent effect.
  • the first transparent conductive layer 20 is not limited as long as it is a transparent and conductive material.
  • the transparent conductive oxide layer, the transparent conductive nitride layer, and the transparent layer have excellent transparency, conductivity, and heat resistance. It is preferable to use a conductive sulfide layer and a mixed layer thereof. It is preferable to form using ITO (Indium Tin Oxide), ZnO (Zinc Oxide), SnO 2 (Tin Oxide) and the like, more preferably doped with F, Al, Ga, In, Si, etc. It is good to form.
  • the thickness of the first transparent conductive layer 20 according to an embodiment of the present invention is 5nm to 100nm. If it is less than 5nm, there is a problem of low electrical conductivity, if it exceeds 100nm there is a problem that the flexibility is lowered.
  • the translucent substrate 100 may further include a second transparent conductive layer 30 provided between the base polymer layer 50 and the first transparent conductive layer 20. That is, the base polymer layer 50, the second transparent conductive layer 30 provided on the base polymer layer 50, and the first transparent conductive layer 20 provided on the second transparent conductive layer 30 are included. do.
  • the second transparent conductive layer 30 includes a conductor 31 connected to the first transparent conductive layer 20 and a coating polymer 32 covering the conductor 31.
  • the second transparent conductive layer 30 has a half adjacent to the first transparent conductive layer 20 is referred to as an A region, and a half adjacent to the base polymer layer 50 is referred to as a B region. 60% or more of the conductors 31 are formed in the A region.
  • the region B means a half adjacent to the light extraction layer 40. More preferably, it may be formed to be distributed in 70% or 80% or more according to the manufacturing characteristics of the second transparent conductive layer 30.
  • the second transparent conductive layer 30 is a layer that can compensate for the permeability and electrical conductivity that may be degraded by the crack 21 of the first transparent conductive layer 20, and the conductor 31 is made of metal.
  • the nanowire 311 may be a metal mesh pattern 312 or the conductive polymer 313.
  • FIG. 4 illustrates a light transmissive substrate 100 including a light extraction enhancement structure due to the crack 21 and a second transparent conductive layer 30 (including metal nanowires and metal particles).
  • the crack 21 may be formed to degrade the electrical conductivity of the first transparent conductive layer 20, but the metal of the second transparent conductive layer 30 formed on the first transparent conductive layer 20 may be reduced.
  • the electrical connection through the nanowire 311 it is possible to maintain the electrical conductivity of the light-transmissive substrate 100.
  • the metal nanowire 311 refers to a nano-sized structure having electrical conductivity.
  • the light extraction efficiency may be improved by the surface magnetic field due to the surface plasmon effect of the metal nanowires.
  • Metal nanowires have an average diameter of 20 nm to 80 nm and a length of 10 ⁇ m to 80 ⁇ m. If it is less than the size range there is a problem that the electrical conductivity is lowered, if it is exceeded there is a problem that the yield is lowered.
  • the second transparent conductive layer 30 may further include, as the conductor 31, metal particles 314 in addition to the metal nanowires 311.
  • the metal particles 314 may further include protrusions on an outer surface thereof.
  • the metal particles 314 have a size of 100 to 1000 nm. If it is less than 100nm, there is a problem that the scattering characteristics are lowered, if it exceeds 1000nm there is a problem of transmittance loss.
  • the metal particles 314 are not limited in shape, such as spherical, elliptical, and amorphous, and have protrusions on their outer surfaces. A plurality of particles may overlap each other and be formed in a multilayer.
  • the size of the protrusion provided on the outer surface of the metal particle 314 is 10 to 300nm. If it is less than 10nm there is a problem of light scattering degradation, if it exceeds 300nm there is a problem of transmittance loss.
  • the metal particles 314 are formed to be distributed at least 50% in the A region of the second transparent conductive layer 30. More preferably, it may be formed to be distributed in 60% or 70% or more according to the manufacturing characteristics of the second transparent conductive layer 30.
  • the metal of the metal nanowires 311 and the metal particles 314 may be any conductive material. More typically, silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), titanium (Ti), chromium And those selected from the group consisting of (Cr), aluminum (Al), palladium (Pd), and combinations thereof.
  • silver (Ag) is used.
  • Silver (Ag) reflects light as a metal and has a low transmittance but reflects light to each other in correspondence with the reflective electrode 300 (for example, aluminum (Al) metal electrode) in the organic light emitting diode 1000. This is because the optical loss inside the device is reduced.
  • the thickness of the second transparent conductive layer 30 including metal nanowires and metal particles having protrusions on the outer surface thereof is 100 nm to 10 ⁇ m. If it is less than 100nm, there is a problem of lowering the conductivity, and if it exceeds 10 ⁇ m, there is a problem of loss of transmittance.
  • the metal particles may have projections on the outer surface to scatter light having a wider band.
  • the metal mesh pattern 312 is formed of a pattern having various line widths and various cross shapes using metal, and the metal mesh pattern 312 is formed of silver (Ag). ), But may be a layer formed in a pattern orthogonal form using copper (Cu), aluminum (Al), alloys, etc., but is not limited thereto, and various line widths and patterns according to the requirements of the appropriate haze value and permeability of the device used It can be formed as.
  • the metal mesh pattern 312 is formed to have a line width of 100 nm to 10 ⁇ m to exhibit a haze value of about 30 to 80% and a transmittance of about 70 to 90%. It is preferable.
  • the conductive polymer 313 is made of polyethylene dioxythiophene / polystyrene sulfonic acid (Poly Ethylene Di Oxy Thiophene / Poly Styrene Sulfonate, PEDOT / PSS), polyimide (Polyimide, PI), polyethylene terephthalate (PET), polytetrafluoroethylene (Poly Tetra Fluoro Ethylene, PTFE) or a layer formed using a UV resin (UV resin) using a polymer or the like.
  • the thickness of the conductive polymer 313 layer is preferably 300nm to 5 ⁇ m. If less than 300nm, there is a problem of lowering device life due to poor moisture permeability, and if it exceeds 5 ⁇ m, there is a problem of lowering light transmittance.
  • the light transmissive substrate 100 may further include a light extraction layer 40 provided between the second transparent conductive layer 30 and the base polymer layer 50.
  • the light extraction layer 40 is capable of light extraction, and can complement the second transparent conductive layer 30 having a function of a conductor mainly in terms of function, and the metal nanowires included in the second transparent conductive layer 30 or Since the metal particles are impregnated or coated by the light extraction layer 40, the problem of deterioration in reliability caused by sulfation and oxidation between the metal nanowires or the metal particles may be solved.
  • the light extraction layer 40 may be a layer coated with an oxide, nitride, or sulfide of a metal, and may be a layer in which scattering particles 41 having an average diameter of 50 to 300 nm are inserted. In addition, they may be a layer coated with oxides, nitrides, sulfides, etc. of the metals in which they are complex, and also scattering particles inserted therein.
  • the light extraction layer 40 may have a protrusion shape or a pattern shape, the thickness is 100nm to 600nm. If it is less than 100nm there is a problem of low light scattering effect, if it is more than 600nm there is a problem of light transmittance reduction. More preferably, it is 100-300 nm.
  • An organic light emitting device 1000 according to an embodiment of the present invention, the light-transmitting substrate 100 according to an embodiment of the present invention; A reflective electrode 300 facing the light transmissive substrate 100; And an organic light emitting layer 200 provided between the light transmissive substrate 100 and the reflective electrode 300.
  • the organic light emitting layer 200 is provided between the transparent substrate 100 and the reflective electrode 300 serving as a transparent electrode, and emits light by electric driving of the transparent substrate 100 and the reflective electrode 300.
  • the organic light emitting layer 200 may include a light emitting layer, and may have a stacked structure further including at least one selected from a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • a material capable of forming the light emitting layer a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, is preferably a material having good quantum efficiency for fluorescence or phosphorescence.
  • the reflective electrode 300 may be formed of an alkali metal, an alkaline earth metal and a metal of the third genus of the periodic table, ie, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, or an alloy thereof. It may be formed as, but is not limited thereto.
  • the organic light emitting device used for the illumination is more important, the light extraction efficiency is more important, using the light-transmitting substrate according to the present invention as a transparent electrode can improve the light extraction efficiency without affecting the transmittance and electrical conductivity, cracks It is to provide an organic light emitting device that can prevent a decrease in electrical conductivity that can be caused by having.
  • the organic light emitting device may include a plurality of mesa structures in a stacked form including cracks in the organic light emitting layer and the reflective electrode layer as well as the transparent conductive layer.
  • Each mesa structure may have a form in which a transparent conductive layer, an organic light emitting layer, and a reflective electrode layer are stacked.
  • Method for manufacturing a light transmissive substrate 100 is a light transmissive substrate 100 including a base polymer layer 50, a second transparent conductive layer 30 and a first transparent conductive layer 20 ) Is a light-transmitting substrate manufacturing step (S10) and a crack forming step (S20) to form a crack (41) by applying a physical external force to the prepared light-transmissive substrate (100).
  • Translucent substrate manufacturing step (S10) is a first step of preparing the release layer 10, step 2-1 to form the first transparent conductive layer 20 on the prepared release layer 10, the first transparent conductive formed Step 2-2 of forming the second transparent conductive layer 30 on the layer 40, the third step of forming the base polymer layer 50 on the formed second transparent conductive layer 30 and the release layer ( 10) and a fourth step of separating the first transparent conductive layer 20.
  • the first transparent conductive layer 20 is formed on the release layer (substrate or buffer layer) 10 and the second transparent conductive layer 30 is formed through the light-transmissive substrate manufacturing step (S10). While forming the conductive layer 20, it is easy to separate from the substrate, and the flexible light-transmissive substrate 100 can be manufactured that can be simplified and reduced in cost.
  • the first step is to prepare a release layer 10 that can be easily separated from the first transparent conductive layer 20, the release layer 10 is composed of the substrate 11 or the buffer layer 12 on the substrate It can be configured as.
  • the substrate may be a Teflon (polytetrafluoroetylene) substrate, Bulk PMMA (Polymethyl methacrylate), etc.
  • Teflon polytetrafluoroetylene
  • Bulk PMMA Polymethyl methacrylate
  • each step is roll-to-roll to Roll) to improve productivity, reliability and economics.
  • Teflon polytetrafluoroetylene
  • the substrate itself may be used as the release layer 10 without having a separate buffer layer 12.
  • the buffer layer 12 is a layer formed using various kinds of carbon compounds and metal oxides, and may be formed using any one or more selected from the group consisting of a first carbon compound, a second carbon compound, and a metal oxide.
  • the first carbon compound includes a carbon compound having a glass transition temperature (Tg) of 200 ° C. or less
  • the second carbon compound includes a carbon compound decomposed by ultraviolet rays
  • the metal oxide includes a metal oxide having low surface tack.
  • the first carbon compound is composed of PC (Polycarbonate), PMMA (Polymethyl methacrylate) PTFE (Polytetrafluoroethylene), Polyvinylchloride (PVC), Polystyrene (PS) and Polyethyl methacrylate (PEMA) among carbon compounds having a glass transition temperature (Tg) of 200 ° C or less. It is preferable to include any one or more selected from the group to be. More preferably, the use of a carbon compound having a glass transition temperature (Tg) of 100 to 150 ° C., PMMA (polymethylmethacrylate), or PTFE (polytetrafluoroethylene) may lower the surface adhesion at the interface forming the buffer layer 12.
  • PC Polycarbonate
  • PMMA Polymethyl methacrylate
  • PTFE Polytetrafluoroethylene
  • PVC Polyvinylchloride
  • PS Polystyrene
  • PEMA Polyethyl methacrylate
  • the buffer layer 12 includes a first carbon compound having a glass transition temperature (Tg) of 200 ° C. or less. It is good to change the nature and shape of the buffer layer 12. If the glass transition temperature exceeds 200 °C there is a problem that a relatively high temperature and time is required during curing. In addition, materials with low glass transition temperature are suitable for process price and yield during roll-to-roll and continuous process.
  • Tg glass transition temperature
  • the second carbon compound preferably includes any one or more selected from the group consisting of metal ion polymers, vinyl-ketone copolymers, and Ethylene-CO copolymers among carbon compounds decomposed by ultraviolet rays.
  • the buffer layer 12 includes a second carbon compound decomposed by ultraviolet light, and thus, the first layer can be easily processed by a simple process. There is an advantage in that the transparent conductive layer 20 can be separated.
  • Metal oxides have the advantage of easy control of surface tension and surface energy by atoms substituted at the interface, and easy control by UV / ozone and plasma treatment methods. Thereby, the adhesiveness and adhesiveness of an interface can be adjusted and the characteristic which can transfer easily a different material is shown.
  • Metal oxides are thermodynamically very stable materials up to 2000 ° C in almost all low-adhesive atmospheres.
  • the buffer layer 12 may form a concave or convex surface pattern on a surface of the buffer layer 12 in contact with the first transparent conductive layer 20.
  • the first transparent conductive layer 20 of the light transmissive substrate 100 finally transferred through the fourth step of the method for manufacturing a light transmissive substrate S10 according to an embodiment of the present invention by adjusting the surface shape when the buffer layer 12 is formed.
  • the surface shape of can be controlled. For example, when a wave pattern is formed in the buffer layer to stack and separate the first transparent conductive layer 20 or the like, the wave pattern is transferred to the first transparent conductive layer 20.
  • the organic light emitting device When the organic light emitting device is manufactured by stacking a light emitting layer and a reflective electrode on a light transmissive substrate 100 including a transparent conductive layer having a concave or convex surface pattern on its surface, the surface roughness is increased to increase the light emitting area. In addition, it can provide an effect of increasing the luminous efficiency by acting as a light extraction. In addition, in the case of manufacturing an organic solar cell by stacking a photoactive layer and a metal electrode on the light-transmissive substrate 100, it is possible to increase the light receiving area of the sunlight and also provide a light collecting role to increase the power generation efficiency. .
  • the thickness of the buffer layer 12 is preferably formed to 100nm to 10 ⁇ m.
  • the buffer layer 12 is formed below 100 nm, chemical corrosion resistance and surface uniformity are unstable, and when the buffer layer 12 is formed above 10 ⁇ m, the surface pattern and curing time are prolonged, thereby causing a process problem. More preferably, it is 400 nm-600 nm.
  • the first step of the light-transmissive substrate manufacturing step (S10) is to spin-coating using a buffer solution or to form a separate sheet of the buffer layer 12 to adhere to form a hydrophilic buffer layer on the substrate
  • the buffer layer 12 may be formed by coating and heat treatment using a buffer solution in a roll-to-roll process, and the surface shape may be adjusted.
  • Step 2-1 of the step of manufacturing a light-transmissive substrate according to an embodiment of the present invention is a step of forming a first transparent conductive layer 20 on the release layer 10, ITO (Indium Tin Oxide), It may be formed using one or more selected from ZnO (Zinc Oxide) and SnO 2 (Tin Oxide) and a solid solution thereof, and using the doped with F, Al, Ga, In, Si, etc.
  • the transparent conductive layer 20 can be formed.
  • the thickness of the first transparent conductive layer 20 is preferably formed in 5nm to 100nm. If the thickness is less than 5nm, there is a problem in that the crystallinity of the thin film is inferior, and if the thickness is formed over 100nm, there is a problem in that surface cracks occur when folding or bending due to a decrease in flexibility. More preferably, it is 5 nm-20 nm.
  • the first transparent conductive layer 20 is formed on the buffer layer 12 by using spin coating
  • the flexible substrate may be formed through deposition on a roll-to-roll process, but is not limited thereto.
  • Transmissive substrate manufacturing step (S10) includes a step 2-2 to form a second transparent conductive layer 30 on the first transparent conductive layer 20 as shown in FIG.
  • the flexible light-transmissive substrate 100 including the first transparent conductive layer 20, the second transparent conductive layer 30, and the base polymer layer 50 may be manufactured.
  • Transmissive substrate manufacturing step (S10) after forming the first transparent conductive layer 20 on the buffer layer 12 by forming a second transparent conductive layer 30, the first transparent conductive layer Since the conductor 31 is connected to the 20, a process of manufacturing the light transmissive substrate 100 having excellent electric conductivity and light scattering effect can be provided.
  • the second to second step of the light-transmissive substrate manufacturing step (S10) is an ink composition comprising a metal nanowire 311 or metal particles 314 on a roll-to-roll process when using a flexible substrate Coating and drying to form a metal nanowire layer, or using a spin coating to form a second transparent conductive layer 30 on the first transparent conductive layer 40, photolithography, etc.
  • the second transparent conductive layer 30 may be formed using, but is not limited thereto.
  • the first transparent conductive layer 20 is formed on the release layer 10 and the second transparent conductive layer 20 is sequentially formed on the light-transmissive substrate manufacturing step S10 according to an embodiment of the present invention.
  • the transparent conductive layer 30 since the metal nanowires 311 and the metal particles 314 of the second transparent conductive layer 30 are located closer to the first transparent conductive layer 20 by gravity. It is possible to provide a light transmissive substrate having improved electrical conductivity and excellent light extraction efficiency.
  • the thickness of the second transparent conductive layer 30 is 40 nm to 150 nm. If it is less than 40nm, there is a problem of lowering the conductivity, and if it exceeds 150nm, there is a problem of loss of transmittance.
  • the metal particles 314 may have projections on the outer surface to scatter light having a wider band.
  • the adhesion to the transparent conductive oxide layer on which the second transparent conductive layer 30 is formed can be improved.
  • Transmissive substrate manufacturing step (S10) further comprises a second to third step of forming a light extraction layer on the second transparent conductive layer, the first transparent conductive layer 20, the second
  • the light transmissive substrate 100 including the transparent conductive layer 30, the light extraction layer 40, and the base polymer layer 50 may be manufactured.
  • the light extraction layer 40 is formed on the second transparent conductive layer 30 by using spin coating.
  • an ink composition including an oxide, a nitride, a sulfide, or a mixture of metals may be applied and heat treated in a roll-to-roll process, but is not limited thereto.
  • the third step of the light-transmissive substrate manufacturing step (S10) is the step of forming a base polymer layer 50 on the first transparent conductive layer 20, the second transparent conductive layer 30
  • a flexible and transparent substrate may be manufactured through a roll to roll process that is more simplified and lower in cost.
  • the base polymer layer 50 may be formed of polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyether sulfone (PES), polyethylene naphthalate (PEN), poly acrylate (PA), polyurethane acrylate (PUA), and PDMS (PDMS). polydimethyl siloxane) and a metal thin film. It is preferable to form using PI which is excellent in chemical resistance, heat resistance, etc.
  • the base polymer layer 50 may have a thickness of 50 ⁇ m to 3 mm. In the case of forming less than 0.7mm, there is a problem in that the bearing capacity is low as the mother substrate, and in the case of forming more than 3mm, flexibility is reduced. More preferably, it is 200 micrometers-1.5 mm.
  • the third step of the light-transmitting substrate manufacturing step (S10) is the laminating (laminating) using a polymer solution or after applying the polymer composition, drying and curing or screen printing (screen printing) To form the base polymer layer 50, or when using a flexible substrate can be formed by applying the polymer composition and heat treatment in a roll-to-roll process, but is not limited thereto.
  • a fourth step of manufacturing a transparent substrate according to an embodiment of the present invention is a step of detaching the release layer 10, between the release layer 10 and the first transparent conductive layer 20. Separating (transferring) to provide a flexible light-transmitting substrate 100 including the first transparent conductive layer 20, the second transparent conductive layer 30 and the base polymer layer (50).
  • the buffer layer 12 when the buffer layer 12 is formed to have a shape on the surface and the first transparent conductive layer 20 is transferred, the buffer layer 12 may be formed on the surface of the first transparent conductive layer 20 like the surface of the buffer layer 12. Since the shape is transferred, the shape of the surface of the manufactured flexible light-transmitting substrate 100 may be controlled.
  • the first transparent conductive layer 20 by selectively changing the properties of the release layer 10 (buffer layer) by irradiation with light through a light source.
  • the buffer layer 12 is a material such as the first carbon compound, the second carbon compound, and the metal oxide mentioned above, that is, the carbon compound having a glass transition temperature of 200 ° C. or less, and the carbon compound decomposed by ultraviolet rays. Because it is formed using a metal oxide, there is an advantage that it can be easily separated (transferred) without undergoing a complicated process or using a lot of energy.
  • a xenon lamp As a light source that can be used for the light irradiation treatment, a xenon lamp, a halogen lamp, a HID lamp, a fluorescent lamp, a gas discharge lamp including a mercury lamp, and the like may be used. Any heat source that can change the temperature can be used without limitation.
  • the use of xenon lamps is good for local energy transfer to form the light extraction layer without damaging the transparent conductive oxide layer and other materials.
  • a fifth step of removing the release layer 10 components remaining in the separated first transparent conductive layer 20 may further include.
  • the buffer layer 12 remaining on the surface of the transparent substrate including the separated first transparent conductive layer 20 may be removed by washing or plasma treatment using chemicals such as acetone and ethanol.
  • a crack 21 is formed in the first transparent conductive layer 20 by applying a physical external force to the transparent substrate 100.
  • the crack forming step S20 may form a crack 21 according to the bending strength and the bending position by applying a physical external force by bending the light transmissive substrate 100.
  • the size of the cracks 21 for each region of the first transparent conductive layer 40 may be differently adjusted by adjusting the bending position and the bending strength.
  • the crack forming step (S20) may be formed such that the distribution increases as the cracks 21 (crack) toward the edge region of the transparent conductive layer by adjusting the bending position and the bending strength. More specifically, the shortest length l of the section fractionated by the crack 21 in the central region formed by increasing the bending strength from the central region to the edge region of the transparent conductive layer is 40 to 300 nm. The cracks 21 can be formed such that the shortest length l of the section fractionated by the cracks 21 is 40 to 100 nm.
  • the crack forming step S20 may be performed after the organic light emitting layer 200 and the reflective electrode layer 300 are formed on the light transmitting substrate 100 manufactured through the light transmitting substrate manufacturing step S10. That is, when the organic light emitting device 1000 is formed by forming the organic light emitting layer 200 and the reflective electrode layer 300 on the transparent conductive layer of the light transmissive substrate 100 and then forming a crack 21 by applying a physical external force, According to the strength of the external force, not only the transparent conductive layer but also the organic light emitting layer 200 or the reflective electrode layer 300 may form a crack 21.
  • the light extraction efficiency of the organic light emitting device having an inclination angle of 45 ° as shown in FIG. 9 is shown to improve the light extraction efficiency of the structure having the inclination at the edge of the organic light emitting device including the first transparent conductive layer. Calculated.
  • the simulation results indicate that the light emitted from the side of the organic light emitting device or absorbed by the internal material disappears after hitting the inclined surface of the edge, causing total reflection to proceed toward the side or the top of the substrate, thereby improving light extraction efficiency.
  • an organic light emitting layer having a light emitting area of 2 ⁇ 2 mm 2 was manufactured by sequentially stacking an organic light emitting layer and a reflective electrode on a light transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, and a base polymer layer. It was.
  • the reflective electrode was formed using aluminum (Al), and the organic light emitting layer was formed of a material commonly used in the field of manufacturing white organic electronic devices, and a method of forming the organic light emitting layer was also used.
  • FIG. 11 shows an optical microscope image of a light transmissive substrate prepared according to Example 1.
  • the electrical conductivity was measured by measuring the surface resistance of the organic light emitting diodes manufactured in Examples and Comparative Examples, using a 4-point probe (device name: MCP-T610, manufacturer: MITSUBISHI CHEMICAL) which is commonly used in measuring surface resistance. It was measured using an ESP type probe having an interval between pins of 5 mm.
  • Example 12 is a light transmissive substrate (Comparative Example 1) containing only the first transparent conductive layer without cracks, a light transmissive substrate (Example 8) containing AgNW as the first transparent conductive layer without cracks and the second transparent conductive layer, and a cracked agent
  • a transparent substrate comprising AgNW as a transparent conductive layer and a second transparent conductive layer (Example 1), a first transparent conductive layer with cracks, and a transparent substrate including an AgNW layer as a second transparent conductive layer and a ZnO light extracting layer ( The sheet resistance measurement graph of Example 9) is shown.
  • the sheet resistance was measured to be about 240 ( ⁇ / ⁇ ), and in Example 8 coated with AgNW, the sheet resistance was reduced to 17 ( ⁇ / ⁇ ), and the crack-containing agent 1 It can be seen that in the case of Example 1 and Example 9 using a transparent conductive layer, the sheet resistance is maintained at a similar level.
  • Transmittance of the organic light emitting diodes manufactured in Examples and Comparative Examples was measured using a UV / Vis spectrometer.
  • FIG. 13 shows transmittance measurement data and haze measurement data according to generation time of the light extraction layer of the light-transmissive substrate prepared in Example 1.
  • FIG. The haze value tends to increase with the generation time of the light extraction layer, and the light extraction efficiency shows the combined effect of the light extraction layer and the crack.

Abstract

The present invention relates to a light-transmissive substrate comprising: a base polymer layer formed of a light-transmissive material; and a first transparent conductive layer provided on the base polymer layer, wherein the first transparent conductive layer has a plurality of partitions partitioned by cracks such that incident light is refracted at the cracks, and the present invention can provide a light-transmissive substrate and an organic light-emitting diode, which have improved light extraction efficiency without affecting transmissivity and electrical conductivity.

Description

투광성 기판 및 이의 제조방법Light transmissive substrate and manufacturing method thereof
본 발명은 투광성 기판 및 이의 제조방법에 관한 것이다. 또한 투광성 기판이 적용되는 디스플레이 장치, 조명 장치 등에 관한 것이다.The present invention relates to a light transmissive substrate and a method of manufacturing the same. The present invention also relates to a display device, a lighting device, and the like to which a translucent substrate is applied.
투광성 기판은 전기 전도성과 광투과성을 동시에 갖춘 투명 전도층을 포함하는 기판으로서, 발광소자에 구비되는 투광성 기판은 발생된 광의 손실을 최소화하도록 구성된다. 예를 들면, 유기발광소자(Organic light-emitting diode, OLED)는 발광성 유기물로 구성된 소자로서 유기 발광층에서 발광된 광은 전극 및 투광성 기판을 거쳐 외부로 나오게 된다. 이러한 투광성 기판은 액정 표시 소자(liquid crystal display), 일렉트로크로믹 디스플레이(ECD), 유기 전계발광소자(electroluminescence), 태양 전지, 플라즈마 디스플레이 패널(plasma display panel), 플렉서블(flexible) 디스플레이, 전자페이퍼, 터치패널 등의 디스플레이 장치, 조명장치, 또는 태양전지 등에 응용될 수 있다. The light transmissive substrate is a substrate including a transparent conductive layer having both electrical conductivity and light transparency. The light transmissive substrate provided in the light emitting device is configured to minimize the loss of generated light. For example, an organic light-emitting diode (OLED) is a device composed of luminescent organic materials, and light emitted from the organic luminescent layer is emitted to the outside via an electrode and a light transmissive substrate. Such translucent substrates include liquid crystal displays, electrochromic displays (ECDs), organic electroluminescent devices, solar cells, plasma display panels, flexible displays, electronic papers, It can be applied to display devices such as touch panels, lighting devices, or solar cells.
투광성 기판은 기저 기판과 기판에 부착되는 발광소자의 전극기능을 수행하는 투광성 전극을 포함하여 구성된다. 투광성 전극은 플라스틱 소재의 기저 기판 상에 ITO(tin-doped indium oxide) 등 전도성 물질을 이용하여 박막 형태로 형성 되는 것이 주 이지만, 최근 수급이 불안정한 재료인 인듐을 포함하는 ITO를 대체할 수 있는 탄소나노튜브(CNT), 금속 나노 구조체 등에 대한 연구 개발이 활발하게 이루어지고 있다. The light transmissive substrate includes a base substrate and a light transmissive electrode that performs an electrode function of a light emitting element attached to the substrate. The translucent electrode is mainly formed in a thin film form using a conductive material such as tin-doped indium oxide (ITO) on a base substrate made of plastic, but recently, carbon that can replace ITO containing indium, which is an unstable supply and demand, is used. Research and development on nanotubes (CNT), metal nanostructures, etc. are being actively made.
한국공개특허 제10-2014-0089670호에 개시된 것과 같이 다른 굴절률을 갖는 투광성 기판을 적층하는 방법으로 투광성 기판에서의 광 손실을 최소화시키기 위한 개발 등이 이루어지고 있다. As disclosed in Korean Patent Application Laid-Open No. 10-2014-0089670, a method for stacking transmissive substrates having different refractive indices has been developed to minimize light loss in the transmissive substrate.
본 발명은 광 추출 효율이 개선되는 구조의 투명 전도층을 포함하는 광추출기판 및 이를 이용한 유기발광소자로서 투과율 및 전기전도성에 영향을 미치지 않으면서도, 광 추출 효율이 개선된 광추출 기판 및 이를 이용하는 유기발광소자를 제공하는 것이다. The present invention provides a light extraction substrate including a transparent conductive layer having a structure that improves the light extraction efficiency, and an organic light emitting device using the same, without affecting the transmittance and electrical conductivity, and the light extraction substrate with improved light extraction efficiency It is to provide an organic light emitting device.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 투명전도층을 포함하는 투광성 기판으로서, 상기 투광성 기판은, 투광성 재료로 이루어진 기저 폴리머층; 상기 기저 폴리머층 상에 구비되는 제1 투명전도층;을 포함하고, 상기 제1 투명전도층에는 균열에 의해 분획되는 복수의 구역이 형성되어, 상기 균열에서 입사되는 광의 굴절이 발생되는 투광성 기판을 제공한다.The present invention is a light transmissive substrate comprising a transparent conductive layer, the light transmissive substrate comprising: a base polymer layer made of a light transmissive material; And a first transparent conductive layer provided on the base polymer layer, wherein the first transparent conductive layer is formed with a plurality of zones which are divided by a crack, thereby forming a light-transmissive substrate having refraction of light incident from the crack. to provide.
또한 상기 제1 투명전도층의 수평방향으로 측정되는 상기 균열의 두께(t)는 100 nm 내지 20 μm 인 투광성 기판을 제공한다.In addition, the thickness (t) of the crack measured in the horizontal direction of the first transparent conductive layer provides a light transmissive substrate having a thickness of 100 nm to 20 μm.
또한 상기 제1 투명전도층의 수평방향으로 측정되는 상기 균열에 의해 분획되는 구역의 최단 길이 (l)는 100μm 내지 2mm인 투광성 기판을 제공한다.In addition, the shortest length l of the area fractionated by the crack measured in the horizontal direction of the first transparent conductive layer provides a light transmissive substrate having a thickness of 100 μm to 2 mm.
또한 상기 제1 투명전도층의 두께는 5nm 내지 100nm인 투광성 기판을 제공한다.In addition, the first transparent conductive layer has a thickness of 5nm to 100nm to provide a transparent substrate.
또한 상기 제1 투명전도층은 측면에 경사를 가지며, 상기 제1 투명전도층 측면과 상기 기저 폴리머층의 수평면이 이루는 경사 각도는 45°±20°인 투광성 기판을 제공한다.In addition, the first transparent conductive layer has an inclination to the side, the inclination angle between the horizontal surface of the first transparent conductive layer side and the base polymer layer provides a transparent substrate of 45 ° ± 20 °.
또한 상기 제1 투명 전도층은 투명 전도성 산화물층, 투명 전도성 질화물층, 투명 전도성 황화물층 및 이들의 혼합층으로 구성되는 군에서 선택되는 어느 하나 이상의 층으로 형성되는 투광성 기판을 제공한다.In addition, the first transparent conductive layer provides a transparent substrate formed of any one or more layers selected from the group consisting of a transparent conductive oxide layer, a transparent conductive nitride layer, a transparent conductive sulfide layer, and a mixed layer thereof.
또한 상기 투광성 기판은, 상기 기저 폴리머층 상에 구비되며, 도전체 및 상기 도전체를 피복하는 피복폴리머를 포함하는 제2 투명전도층을 더 포함하고, 상기 제1 투명전도층은 상기 제2 투명전도층 상에 구비되는 투광성 기판을 제공한다.The light transmissive substrate further includes a second transparent conductive layer provided on the base polymer layer, the second transparent conductive layer including a conductor and a coating polymer covering the conductor, wherein the first transparent conductive layer is the second transparent layer. Provided is a light transmissive substrate provided on a conductive layer.
또한 상기 제2 투명전도층의 상기 도전체는 금속 나노와이어, 메탈 메쉬 패턴 또는 도전성 폴리머를 포함하는 투광성 기판을 제공한다.In addition, the conductor of the second transparent conductive layer provides a light transmissive substrate including a metal nanowire, a metal mesh pattern or a conductive polymer.
또한 상기 제2 투명전도층이 상기 제1 투명전도층에 인접하는 절반을 A 영역이라 하고, 상기 기저 폴리머층에 인접하는 절반을 B 영역이라고 할 때, 상기 도전체는 상기 A 영역에 60% 이상 분포하는 투광성 기판을 제공한다. In addition, when the half of the second transparent conductive layer adjacent to the first transparent conductive layer is referred to as an A region, and the half of the second transparent conductive layer adjacent to the base polymer layer is referred to as a B region, the conductor is 60% or more in the A region. It provides a translucent substrate.
또한 상기 금속 나노와이어는 은(Ag), 금(Au), 구리(Cu), 백금(Pt), 철(Fe), 니켈(Ni), 코발트(Co), 아연(Zn), 티탄(Ti), 크롬(Cr), 알루미늄(Al), 팔라듐(Pd) 및 이들의 조합들로 이루어진 군으로부터 선택되는 어느 하나의 물질로 형성된 투광성 기판을 제공한다.In addition, the metal nanowires are silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), titanium (Ti) A light transmissive substrate formed of any one material selected from the group consisting of chromium (Cr), aluminum (Al), palladium (Pd), and combinations thereof is provided.
또한 상기 메탈 메쉬 패턴은 은(Ag), 구리(Cu), 알루미늄(Al) 또는 이들의 합금을 이용하여 교차형태로 형성된 패턴인 투광성 기판을 제공한다.In addition, the metal mesh pattern provides a light-transmissive substrate that is a pattern formed in a cross shape using silver (Ag), copper (Cu), aluminum (Al), or an alloy thereof.
또한 상기 제2 투명전도층의 상기 도전체는 금속 입자를 더 포함하고, 상기 금속 입자는 상기 A 영역에 50% 이상 분포하는 투광성 기판을 제공한다. In addition, the conductor of the second transparent conductive layer further includes a metal particle, the metal particle provides a light-transmitting substrate that is distributed at least 50% in the A region.
또한 본 발명은 기저 폴리머층, 제2 투명전도층 및 제1 투명전도층을 포함하는 투광성 기판을 제조하는 투광성 기판 제조단계; 상기 투광성 기판에 물리적 외력을 가하여 균열(crack)을 형성하는 균열형성단계;를 포함하는 투광성 기판의 제조방법을 제공한다.The present invention also provides a light-transmissive substrate manufacturing step of manufacturing a light-transmissive substrate comprising a base polymer layer, a second transparent conductive layer and a first transparent conductive layer; It provides a method of manufacturing a light-transmitting substrate comprising a; crack forming step of forming a crack by applying a physical external force to the light-transmitting substrate.
또한 상기 균열형성단계는 상기 제조된 투광성 기판을 굽힘(bending)으로써 물리적 외력을 가하여 균열(crack)을 형성하는 단계인 투광성 기판의 제조방법을 제공한다.In addition, the crack forming step provides a method of manufacturing a light transmissive substrate which is a step of forming a crack by applying a physical external force by bending the manufactured light transmissive substrate.
또한 상기 균열형성단계는 상기 굽힘의 세기 및 위치를 조절하여 상기 균열(crack)이 상기 제1 투명전도층의 가장자리(edge) 영역으로 갈수록 분포가 증가하도록 형성하는 단계인 투광성 기판의 제조방법을 제공한다.In addition, the crack forming step is to adjust the strength and position of the bending to provide a method of manufacturing a light-transmitting substrate that is formed so that the crack (crack) increases as the distribution toward the edge (edge) region of the first transparent conductive layer. do.
또한 상기 투광성 기판 제조단계는, 이형층을 준비하는 제1 단계; 상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계; 상기 제1 투명전도층 상에 제2 투명전도층을 형성하는 제2-2 단계; 상기 제2 투명전도층 상에 기저 폴리머층을 형성하는 제3 단계; 및 상기 이형층과 상기 제1 투명전도층을 분리하는 제4 단계;를 포함하여 기저 폴리머층, 제2 투명전도층 및 제1 투명전도층을 포함하는 투광성 기판을 제조하는 단계인, 투광성 기판의 제조방법을 제공한다. In addition, the light-transmissive substrate manufacturing step, the first step of preparing a release layer; Forming a first transparent conductive layer on the release layer; Forming a second transparent conductive layer on the first transparent conductive layer; Forming a base polymer layer on the second transparent conductive layer; And a fourth step of separating the release layer and the first transparent conductive layer; preparing a light-transmissive substrate comprising a base polymer layer, a second transparent conductive layer, and a first transparent conductive layer. It provides a manufacturing method.
또한 본 발명은 상기 투광성 기판;을 포함하는 조명 장치를 제공한다. In another aspect, the present invention provides a lighting device comprising the light-transmitting substrate.
또한 본 발명은 상기 투광성 기판; 상기 투광성 기판에 대향하는 반사 전극; 및 상기 투광성 기판과 상기 반사 전극 사이에 구비되는 유기발광층;을 포함하는 유기발광소자를 제공한다. In another aspect, the present invention; A reflective electrode opposite the translucent substrate; And an organic light emitting layer provided between the light transmissive substrate and the reflective electrode.
본 발명의 투광성 기판은, 균열에 의해 분획되는 복수의 구역을 포함하며, 균열에서 입사되는 광의 굴절이 발생되는 제1 투명전도층을 포함하여 투과율 및 전기전도성에 영향을 미치지 않으면서도, 광 추출 효율이 개선된 투광성 기판 및 이를 포함하는 유기발광소자를 제공할 수 있다. The light transmissive substrate of the present invention comprises a plurality of zones fractionated by cracks, and includes a first transparent conductive layer in which refraction of light incident from the cracks is generated, without affecting the transmittance and electrical conductivity, The improved light-transmissive substrate and an organic light emitting device including the same can be provided.
또한 제1 투명전도층의 가장자리(edge) 영역으로 갈수록 균열의 분포가 증가하도록 형성함으로써 투과율 및 전기전도성이 저하되는 것을 방지하면서도 제1 투명 전도층의 가장자리 영역을 통해 빠져나가는 빛(광)을 효율적으로 막을 수 있어 광 추출 효율이 더욱 개선된 투광성 기판 및 이를 포함하는 유기발광소자를 제공할 수 있다. In addition, since the distribution of cracks increases toward the edge region of the first transparent conductive layer, light (light) exiting through the edge region of the first transparent conductive layer can be efficiently prevented while preventing transmittance and electrical conductivity from decreasing. It is possible to provide a light-transmitting substrate and an organic light emitting device comprising the same can be prevented to further improve the light extraction efficiency.
또한 제1 투명전도층의 측면에 경사를 줌으로써 이를 포함하는 투광성 기판의 측면으로 방출되거나 내부 물질로 흡수되어 사라질 빛들이 가장자리의 경사면과 부딪힌 후 전반사를 일으켜 기판의 측면이나 상부 방향으로 진행하여 광 추출 효율이 개선되는 효과를 제공할 수 있다. In addition, by inclining the side surface of the first transparent conductive layer, the light emitted to the side of the translucent substrate including the same or absorbed by the inner material and disappears hits the inclined surface of the edge and then causes total reflection to proceed toward the side or the top of the substrate to extract light. It can provide the effect that the efficiency is improved.
또한 제2 투명전도층을 더 포함함으로써 균열로 인하여 저하될 수 있는 제1 투명전도층의 전기전도성을 보완할 수 있으며, 유기발광소자를 이용한 조명의 가장 큰 광손실의 원인인 웨이브가이드 손실(waveguide loss)을 효과적으로 줄여 주어서 광추출 효율을 증가시킬 수 있다. 또한 제2 투명전도층의 도전체로 금속 나노와이어 및 금속입자를 포함하는 경우 빛을 산란시켜 광 추출 효율을 더욱 높일 수 있으며, 특히 금속 입자는 외면에 돌기를 구비하여 더 넓은 영역대를 가지는 파장의 빛을 산란시킬 수 있다.In addition, by further including a second transparent conductive layer can compensate for the electrical conductivity of the first transparent conductive layer that can be lowered due to cracks, waveguide loss (waveguide) which is the cause of the largest light loss of the illumination using the organic light emitting device By effectively reducing the loss, the light extraction efficiency can be increased. In addition, in the case of including the metal nanowires and the metal particles as the conductor of the second transparent conductive layer, the light extraction efficiency can be further increased by scattering the light. In particular, the metal particles are provided with protrusions on the outer surface to have a wider range of wavelengths. It can scatter light.
도 1에 본 발명의 일실시예에 따른 제1 투명전도층의 구조도를 나타내었다.1 is a structural diagram of a first transparent conductive layer according to an embodiment of the present invention.
도 2에 본 발명의 일실시예에 따른 균열에 의한 광추출 향상 구조를 도식화하여 나타내었다.Figure 2 shows the schematic structure of the light extraction by the crack according to an embodiment of the present invention.
도 3에 본 발명의 일실시예에 따른 제2 투명전도층의 구조도를 나타내었다.3 is a structural diagram of a second transparent conductive layer according to an embodiment of the present invention.
도 4에 본 발명의 일실시예에 따른 투광성 기판을 도식화하여 나타내었다.4 shows a light transmissive substrate according to an embodiment of the present invention.
도 5에 본 발명의 일실시예에 따른 투광성 기판 제조단계를 나타내었다. Figure 5 shows a light-transmissive substrate manufacturing step according to an embodiment of the present invention.
도 6에 본 발명의 일실시예에 따른 균열 구조의 광 추출 시뮬레이션 구조를 나타내었다. 6 shows a light extraction simulation structure of a crack structure according to an embodiment of the present invention.
도 7에 본 발명의 일실시예에 따른 유기발광소자의 광 추출 효율 측정 영역을 나타내었다. 7 shows a light extraction efficiency measurement region of the organic light emitting device according to the embodiment of the present invention.
도 8에 본 발명의 일실시예에 따른 균열 구조의 광 추출 시뮬레이션 결과를 나타내었따. Figure 8 shows the light extraction simulation results of the crack structure according to an embodiment of the present invention.
도 9에 본 발명의 일실시예에 따른 제1 투명전도층의 경사 구조를 나타내었다. 9 shows the inclined structure of the first transparent conductive layer according to the embodiment of the present invention.
도 10에 본 발명의 일실시예에 따른 경사 구조에 의한 광 추출 시뮬레이션 결과를 나타내었다. 10 shows a light extraction simulation result by the inclined structure according to an embodiment of the present invention.
도 11에 본 발명의 실시예 1에 따라 제조된 투광성 기판의 광학 현미경 이미지를 나타내었다.11 shows an optical microscope image of a light transmissive substrate prepared according to Example 1 of the present invention.
도 12에 본 발명의 실시예에 따른 투광성 기판의 면저항 측정 그래프를 나타내었다. 12 shows a graph of sheet resistance measurement of the light transmissive substrate according to the embodiment of the present invention.
도 13에 실시예 1에 의해 제조된 투광성 기판의 광추출층의 생성시간에 따른 투과도 측정데이터 및 헤이즈 측정데이터를 나타내었다.FIG. 13 shows transmittance measurement data and haze measurement data according to generation time of the light extraction layer of the light-transmissive substrate prepared in Example 1. FIG.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Prior to describing the present invention in detail below, it is understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the invention, which is limited only by the scope of the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise indicated.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, unless otherwise indicated, the termcomprise, constitutes, and configure means to include the referenced article, step, or group of articles, and step, and any other article It is not intended to exclude a stage or group of things or groups of stages.
또한 본 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Also throughout this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다. On the other hand, various embodiments of the present invention can be combined with any other embodiment unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention and the effects thereof.
본 발명의 일실시예에 따른 투광성 기판(100)은, 기저 폴리머층(50), 기저 폴리머층(50) 상에 구비되는 제1 투명전도층(20)을 포함하고, 본 발명의 제1 투명전도층(20) 은 균열(21)을 경계면으로 하여 복수의 구역(22)으로 분획되어, 발생되는 광이 투광성 기판으로 입사하였을 때, 제1 투명전도층(20)의 균열(21)에 의해 굴절이 일어나는 기판으로서, 투과율 및 전기전도성에 영향을 미치지 않으면서도, 광 추출 효율을 개선시키는 투광성 기판(100)이다.The light transmissive substrate 100 according to the embodiment of the present invention includes a base polymer layer 50 and a first transparent conductive layer 20 provided on the base polymer layer 50, and the first transparent material of the present invention. The conductive layer 20 is divided into a plurality of zones 22 with the crack 21 as an interface, and when the generated light is incident on the light transmissive substrate, the crack 21 of the first transparent conductive layer 20 is caused. As a substrate in which refraction occurs, it is a translucent substrate 100 which improves light extraction efficiency without affecting the transmittance and electrical conductivity.
본 발명의 일실시예에 따른 제1 투명전도층(20)의 적어도 일 영역에 존재하는 균열(21)은 도 1에 나타낸 것과 같이 제1 투명전도층(20) 내의 연속적 또는 비연속적으로 비어 있는 틈을 의미하고, 균열(21)을 경계면으로 하여 제1 투명전도층(20)은 복수의 구역(22)으로 분획되며, 균열에 의해 생긴 틈은 제1 투명전도층(20)의 두께 방향으로 관통하거나 관통하지 않을 수 있다. 즉, 균열(21)에 의하여 제1 투명전도층(20)은 여러 구역으로 분획되며, 각 구역(22)의 크기는 제1 투명전도층(20)의 수평방향으로 측정되는 최단 길이(l)를 통해 그 크기를 나타낼 수 있다. A crack 21 present in at least one region of the first transparent conductive layer 20 according to an embodiment of the present invention is continuously or discontinuously empty in the first transparent conductive layer 20 as shown in FIG. 1. It means a gap, the first transparent conductive layer 20 is divided into a plurality of zones 22 with the crack 21 as an interface, the gap caused by the crack in the thickness direction of the first transparent conductive layer 20 It may or may not penetrate. That is, the first transparent conductive layer 20 is divided into several zones by the crack 21, and the size of each zone 22 is the shortest length l measured in the horizontal direction of the first transparent conductive layer 20. You can indicate the size through.
도 2에 균열에 의한 광추출 향상 구조를 도식화하여 나타내었다. 도 2의 (a)에 나타낸 종래의 투명 전도층의 경우 내부 광손실이 60%에 달하는 반면, 도 2의 (b)에 나타낸 본 발명에 의해 균열을 포함하는 투명 전도층의 경우 균열에 의한 광산란으로 인하여 내부 광추출 효율이 증가하는 효과를 갖는다. Figure 2 shows the schematic structure of the light extraction enhancement structure due to cracks. In the case of the conventional transparent conductive layer shown in (a) of FIG. 2, the internal light loss reaches 60%, while in the transparent conductive layer containing cracks according to the present invention shown in FIG. Due to this has the effect of increasing the internal light extraction efficiency.
일반적인 제1 투명전도층(20)이 유기발광소자(1000)에 사용되는 경우, 유기발광층(200)에서 발생된 빛은 스넬의 법칙(Snell's law)에 따라 내부 전반사의 영향을 받게 되는데, 본 발명의 일실시예에 따른 투광성 기판(100)은 발생된 빛이 상대적으로 고굴절률(1.5 내지 2.5)을 가진 제1 투명전도층(20)을 통과하는 중에 저굴절률(1 내지 1.4)을 가진 균열(21)에 임계각 이상의 각도로 접하는 경우 전반사 되도록 하며, 균열(21)을 통하여 빛이 빠져 나갈 수 있는 경로를 형성하게 함으로써 광 추출 효율을 높일 수 있다. When the general first transparent conductive layer 20 is used for the organic light emitting device 1000, the light generated from the organic light emitting layer 200 is affected by total internal reflection according to Snell's law. The translucent substrate 100 according to the embodiment of the present invention has a crack having a low refractive index (1 to 1.4) while the generated light passes through the first transparent conductive layer 20 having a relatively high refractive index (1.5 to 2.5). 21) to be totally reflected when contacted at an angle of more than the critical angle, and to increase the light extraction efficiency by forming a path through which the light can escape through the crack (21).
본 발명의 일실시예에 따른 제1 투명전도층(20)의 균열(21)의 두께(t)는 100 nm 이상 20 μm 이하 이다. 균열(21)의 두께(t)라 함은 제1 투명전도층(20)의 수평방향으로 측정되는 균열 공간의 폭을 의미한다. 균열(21)의 두께(t)가 100 nm 미만인 경우 광추출의 효과가 떨어지는 문제점이 있고, 20 μm 초과인 경우 나노와이어 간의 접점(contact point)이 줄어들어 전도성이 떨어지는 문제점이 있다. 더욱 바람직하게는 100 nm 이상 5 μm 이하 인 것이 좋다. The thickness t of the crack 21 of the first transparent conductive layer 20 according to an embodiment of the present invention is 100 nm or more and 20 μm or less. The thickness t of the crack 21 means the width of the crack space measured in the horizontal direction of the first transparent conductive layer 20. If the thickness t of the crack 21 is less than 100 nm, there is a problem in that the effect of light extraction is inferior, and if it is more than 20 μm, the contact point between the nanowires is reduced, thereby reducing the conductivity. More preferably, they are 100 nm or more and 5 micrometers or less.
본 발명의 일실시예에 따른 제1 투명전도층(20)의 균열(21)에 의해 분획된 복수의 구역(22)의 크기는 최단 길이(l)로 측정될 수 있으며, 제1 투명전도층(20)의 수평방향으로 측정되는 각 구역(22)의 최단 길이(l)는 제1 투명전도층 (20)의 한변의 길이며, 바람직하게는 100 μm 이상, 2 mm 이하이다. 최단 길이(l)가 100 μm 미만인 경우 과도한 크랙(Crack)에 의한 전도성 저하 및 소자 구동 시 문제점이 있으며, 2mm 초과하는 경우 광추출 및 균열에 의한 광추출 기능의 효율저하 문제점이 있다. The size of the plurality of zones 22 divided by the crack 21 of the first transparent conductive layer 20 according to an embodiment of the present invention may be measured as the shortest length l, and the first transparent conductive layer The shortest length l of each zone 22 measured in the horizontal direction of 20 is the length of one side of the first transparent conductive layer 20, preferably 100 μm or more and 2 mm or less. If the shortest length (l) is less than 100 μm, there is a problem of deterioration of conductivity due to excessive cracking and driving of the device, and if it exceeds 2 mm, there is a problem of deterioration of light extraction function due to light extraction and cracking.
본 발명의 일실시예에 따른 제1 투명전도층(20)의 균열(21)은 제1 투명전도층(20)의 가장자리(edge) 영역으로 갈수록 분포가 증가하는 형태로 포함될 수 있다. 이로 인하여, 제1 투명전도층(20)은 분획된 구역(22)의 최단 길이(l)가 100 μm 이상, 2 mm 이하인 가장자리 영역을 가질 수 있다. 가장자리 영역은 제1 투명전도층(20)의 둘레나 모서리를 포함하는 측면을 포함하는 영역을 의미한다. 가장자리 영역에 균열(21)이 다수 존재하도록 하는 경우, 투과성 및 전기전도성이 저하되는 것을 방지하면서도 제1 투명전도층(20)의 가장자리 영역으로 빠져 나가는 빛을 막을 수 있어 광 추출 효율을 개선시키는 효과를 갖는다.The crack 21 of the first transparent conductive layer 20 according to an embodiment of the present invention may be included in a form in which the distribution increases toward the edge region of the first transparent conductive layer 20. As a result, the first transparent conductive layer 20 may have an edge region in which the shortest length l of the divided zone 22 is 100 μm or more and 2 mm or less. The edge area refers to an area including a side including a circumference or an edge of the first transparent conductive layer 20. In the case where a large number of cracks 21 are present in the edge region, it is possible to prevent light from escaping to the edge region of the first transparent conductive layer 20 while preventing transmittance and electrical conductivity from deteriorating, thereby improving light extraction efficiency. Has
본 발명의 일실시예에 따른 제1 투명전도층(20)은 측면이 경사지게 형성될 수 있다. 즉, 기저 폴리머층(50)의 수평면과 제1 투명전도층(20)의 측면이 이루는 각이 90° 이외의 경사 각도(θ)를 갖는다. The first transparent conductive layer 20 according to the embodiment of the present invention may be formed to be inclined side. That is, the angle formed between the horizontal surface of the base polymer layer 50 and the side surface of the first transparent conductive layer 20 has an inclination angle θ other than 90 °.
제1 투명전도층(20)의 측면이 경사를 가짐으로 인하여 측면으로 방출되거나 내부 물질로 흡수되어 사라질 빛들이 경사면에 입사할 때 전반사 되도록 하여 기판의 상부 방향으로 빛을 진행시켜 광 추출 효율을 향상시키는 효과가 있다. Since the side surface of the first transparent conductive layer 20 has an inclination, the light emitted to the side or absorbed by the inner material is totally reflected when it enters the inclined surface, thereby advancing the light toward the upper side of the substrate, thereby improving light extraction efficiency. It is effective to let.
제1 투명전도층(20) 측면과 기저 폴리머층(50)의 수평면이 이루는 경사 각도는 45°±20°인 것이 바람직하다. 상기 범위 내에서 투명 전도층의 수평면과 평행한 각도로 측면에 입사하는 광에 대하여 전반사가 일어나고, 이로 인한 광추출 효율이 가장 우수한 효과가 있다. It is preferable that the inclination angle between the side surfaces of the first transparent conductive layer 20 and the base polymer layer 50 is 45 ° ± 20 °. Total reflection occurs with respect to the light incident on the side surface at an angle parallel to the horizontal plane of the transparent conductive layer within the above range, thereby resulting in the light extraction efficiency is the most excellent effect.
본 발명의 일실시예에 따른 제1 투명전도층(20)은 투명하고 전도성을 부여할 수 있는 물질이라면 제한이 없으나, 투명성, 전도성 및 내열성 등이 우수한 투명 전도성 산화물층, 투명 전도성 질화물층, 투명 전도성 황화물층 및 이들의 혼합층을 사용하는 것이 좋다. 바람직하게는 ITO(Indium Tin Oxide), ZnO(Zinc Oxide) 및 SnO2(Tin Oxide) 등을 사용하여 형성하는 것이 좋고, 더욱 바람직하게는 F, Al, Ga, In, Si 등이 도핑된 것을 사용하여 형성하는 것이 좋다.The first transparent conductive layer 20 according to an embodiment of the present invention is not limited as long as it is a transparent and conductive material. However, the transparent conductive oxide layer, the transparent conductive nitride layer, and the transparent layer have excellent transparency, conductivity, and heat resistance. It is preferable to use a conductive sulfide layer and a mixed layer thereof. It is preferable to form using ITO (Indium Tin Oxide), ZnO (Zinc Oxide), SnO 2 (Tin Oxide) and the like, more preferably doped with F, Al, Ga, In, Si, etc. It is good to form.
본 발명의 일실시예에 따른 제1 투명전도층(20)의 두께는 5nm 내지 100nm이다. 5nm 미만인 경우 전기전도성이 떨어지는 문제점이 발생하며, 100nm를 초과하는 경우 유연성 저하되는 문제점이 있다. The thickness of the first transparent conductive layer 20 according to an embodiment of the present invention is 5nm to 100nm. If it is less than 5nm, there is a problem of low electrical conductivity, if it exceeds 100nm there is a problem that the flexibility is lowered.
본 발명의 일실시예에 따른 투광성 기판(100)은 기저 폴리머층(50)과 제1 투명전도층(20) 사이에 구비되는 제2 투명전도층(30)을 더 포함할 수 있다. 즉, 기저 폴리머층(50), 기저 폴리머층(50) 상에 구비되는 제2 투명전도층(30) 및 제2 투명전도층(30) 상에 구비되는 제1 투명전도층(20)을 포함한다. 제2 투명전도층(30)은 제1 투명전도층(20)에 연접하는 도전체(31) 및 이를 피복하는 피복폴리머(32)를 포함한다. The translucent substrate 100 according to the embodiment of the present invention may further include a second transparent conductive layer 30 provided between the base polymer layer 50 and the first transparent conductive layer 20. That is, the base polymer layer 50, the second transparent conductive layer 30 provided on the base polymer layer 50, and the first transparent conductive layer 20 provided on the second transparent conductive layer 30 are included. do. The second transparent conductive layer 30 includes a conductor 31 connected to the first transparent conductive layer 20 and a coating polymer 32 covering the conductor 31.
제2 투명전도층(30)은 도 3에 나타낸 것과 같이, 제1 투명전도층(20)에 인접하는 절반을 A 영역이라 하고, 기저 폴리머층(50)에 인접하는 절반을 B 영역이라고 할 때, 도전체(31)의 60% 이상이 A영역에 분포하도록 형성된다. 후술될 설명에 의해 광추출층(40)이 더 포함되는 경우, B 영역은 광추출층(40)에 인접하는 절반을 의미한다. 보다 바람직하게는 제2 투명전도층(30)의 제조 특성에 따라 70% 또는 80% 이상으로 분포하도록 형성하는 것이 좋다. As shown in FIG. 3, when the second transparent conductive layer 30 has a half adjacent to the first transparent conductive layer 20 is referred to as an A region, and a half adjacent to the base polymer layer 50 is referred to as a B region. 60% or more of the conductors 31 are formed in the A region. When the light extraction layer 40 is further included by the description to be described later, the region B means a half adjacent to the light extraction layer 40. More preferably, it may be formed to be distributed in 70% or 80% or more according to the manufacturing characteristics of the second transparent conductive layer 30.
제2 투명전도층(30)은 제1 투명전도층(20)의 균열(21)에 의해 저하될 수 있는 수 있는 투과성 및 전기전도성을 보완할 수 있는 층으로서, 상기 도전체(31)는 금속 나노와이어(311) 이거나 메탈 메쉬 패턴(312) 또는 도전성 폴리머(313)일 수 있다. The second transparent conductive layer 30 is a layer that can compensate for the permeability and electrical conductivity that may be degraded by the crack 21 of the first transparent conductive layer 20, and the conductor 31 is made of metal. The nanowire 311 may be a metal mesh pattern 312 or the conductive polymer 313.
도 4에 균열(21)에 의한 광추출 향상 구조 및 제2 투명전도층(30)(금속 나노와이어 및 금속입자 포함)을 포함하는 투광성 기판(100)을 도식화하여 나타내었다. 도 4에 나타낸 것과 같이 균열(21)이 형성되어 제1 투명전도층(20)의 전기전도성이 떨어질 수 있으나, 제1 투명전도층(20) 상에 형성된 제2 투명전도층(30)의 금속 나노와이어(311)를 통해 전기적 연결을 유지하도록 하여 투광성 기판(100)의 전기전도성을 유지할 수 있도록 한다. 4 illustrates a light transmissive substrate 100 including a light extraction enhancement structure due to the crack 21 and a second transparent conductive layer 30 (including metal nanowires and metal particles). As shown in FIG. 4, the crack 21 may be formed to degrade the electrical conductivity of the first transparent conductive layer 20, but the metal of the second transparent conductive layer 30 formed on the first transparent conductive layer 20 may be reduced. By maintaining the electrical connection through the nanowire 311 it is possible to maintain the electrical conductivity of the light-transmissive substrate 100.
제2 투명전도층(30)의 도전체(31)로서, 금속 나노와이어(311)는 전기적으로 도전성을 갖는 나노 사이즈의 구조체를 의미한다. 금속 나노와이어의 표면플라즈몬 효과에 의한 표면자기장에 의해 광추출 효율이 향상될 수 있다. 금속 나노와이어 평균직경은 20nm 내지 80nm 이며, 길이는 10㎛ 내지 80 ㎛ 이다. 상기 크기 범위에 미만 하는 경우 전기전도도가 저하되는 문제점이 있고, 초과하는 경우 수율이 저하되는 문제점이 있다. As the conductor 31 of the second transparent conductive layer 30, the metal nanowire 311 refers to a nano-sized structure having electrical conductivity. The light extraction efficiency may be improved by the surface magnetic field due to the surface plasmon effect of the metal nanowires. Metal nanowires have an average diameter of 20 nm to 80 nm and a length of 10 μm to 80 μm. If it is less than the size range there is a problem that the electrical conductivity is lowered, if it is exceeded there is a problem that the yield is lowered.
또한 제2 투명전도층(30)은 도전체(31)로서, 금속 나노와이어(311) 이외에 금속 입자(314)를 더 포함할 수 있다. 상기 금속 입자(314)는 외면에 돌기를 더 구비할 수 있다. 금속 입자(314)의 크기는 100 내지 1000nm이다. 100nm 미만인 경우 산란 특성이 저하되는 문제점이 있고, 1000nm 초과하는 경우 투과율 손실의 문제점이 있다. 금속 입자(314)는 구형, 타원형, 무정형 등 그 형태에 제한이 없으며, 외면에 돌기를 구비한다. 복수의 입자가 서로 중첩되어 다층으로 형성되어도 무방하다. 금속 입자(314)의 외면에 구비된 돌기의 크기는 10 내지 300nm이다. 10nm 미만인 경우 광 산란 저하 문제점이 있고, 300nm 초과하는 경우 투과율 손실 문제점이 있다.In addition, the second transparent conductive layer 30 may further include, as the conductor 31, metal particles 314 in addition to the metal nanowires 311. The metal particles 314 may further include protrusions on an outer surface thereof. The metal particles 314 have a size of 100 to 1000 nm. If it is less than 100nm, there is a problem that the scattering characteristics are lowered, if it exceeds 1000nm there is a problem of transmittance loss. The metal particles 314 are not limited in shape, such as spherical, elliptical, and amorphous, and have protrusions on their outer surfaces. A plurality of particles may overlap each other and be formed in a multilayer. The size of the protrusion provided on the outer surface of the metal particle 314 is 10 to 300nm. If it is less than 10nm there is a problem of light scattering degradation, if it exceeds 300nm there is a problem of transmittance loss.
제2 투명전도층(30)이 금속 입자(314)를 포함하는 경우 금속 입자(314)는 제2 투명전도층(30)의 A 영역에 50% 이상 분포되도록 형성한다. 보다 바람직하게는 제2 투명전도층(30)의 제조 특성에 따라 60% 또는 70% 이상으로 분포하도록 형성하는 것이 좋다.When the second transparent conductive layer 30 includes the metal particles 314, the metal particles 314 are formed to be distributed at least 50% in the A region of the second transparent conductive layer 30. More preferably, it may be formed to be distributed in 60% or 70% or more according to the manufacturing characteristics of the second transparent conductive layer 30.
금속 나노와이어(311)와 금속 입자(314)의 금속은 임의의 도전성 물질일 수 있다. 보다 통상적으로, 은(Ag), 금(Au), 구리(Cu), 백금(Pt), 철(Fe), 니켈(Ni), 코발트(Co), 아연(Zn), 티탄(Ti), 크롬(Cr), 알루미늄(Al), 팔라듐(Pd) 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것이나 이에 제한되지 않는다. 바람직하게는 은(Ag)을 사용한다. 은(Ag)의 경우 금속으로서 빛을 반사시키고, 투과율이 낮지만 유기발광소자(1000)에서 반사 전극(300)(예를 들면, 알루미늄(Al) 금속 전극)과 상응하여 서로 빛을 반사하므로 실제로 소자 내부에서의 광손실을 적게 하기 때문이다.The metal of the metal nanowires 311 and the metal particles 314 may be any conductive material. More typically, silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), titanium (Ti), chromium And those selected from the group consisting of (Cr), aluminum (Al), palladium (Pd), and combinations thereof. Preferably silver (Ag) is used. Silver (Ag) reflects light as a metal and has a low transmittance but reflects light to each other in correspondence with the reflective electrode 300 (for example, aluminum (Al) metal electrode) in the organic light emitting diode 1000. This is because the optical loss inside the device is reduced.
금속 나노와이어, 돌기가 외면에 구비된 금속 입자를 포함하는 제2 투명전도층(30)의 두께는 100nm 내지 10㎛ 이다. 100nm 미만인 경우 전기전도도 저하 문제점이 있고, 10㎛ 초과하는 경우 투과율 손실 문제점이 있다. 금속 나노와이어 및 금속 입자의 표면에 빛이 도달하면 금속 나노와이어 및 금속입자를 통해 빛을 산란시켜 광 추출 효율을 높일 수 있다. 특히 금속 입자는 외면에 돌기를 구비하여 더 넓은 영역대를 가지는 파장의 빛을 산란시킬 수 있다. The thickness of the second transparent conductive layer 30 including metal nanowires and metal particles having protrusions on the outer surface thereof is 100 nm to 10 μm. If it is less than 100nm, there is a problem of lowering the conductivity, and if it exceeds 10㎛, there is a problem of loss of transmittance. When light reaches the surface of the metal nanowires and the metal particles, light may be scattered through the metal nanowires and the metal particles to increase light extraction efficiency. In particular, the metal particles may have projections on the outer surface to scatter light having a wider band.
제2 투명전도층(30)의 도전체(31)로서, 메탈 메쉬 패턴(312)은 금속을 이용하여 다양한 선폭 및 다양한 교차형태로 패턴을 형성한 것이며, 메탈 메쉬 패턴(312)은 은(Ag), 구리(Cu), 알루미늄(Al), 합금 등을 이용하여 직교형식으로 패턴 형성한 층일 수 있으나 이에 제한되는 것은 아니며, 이용되는 소자의 적절한 헤이즈값 및 투과성 등의 요구에 따라 다양한 선폭 및 패턴으로 형성될 수 있다. 예를 들어, 투광성 기판이 조명용 유기발광소자에 사용되는 경우 30 내지 80% 정도의 헤이즈값 및 70 내지 90% 정도의 투과율을 나타내기 위하여 100nm 내지 10μm의 선폭으로 메탈 메쉬 패턴(312)을 형성하는 것이 바람직하다. As the conductor 31 of the second transparent conductive layer 30, the metal mesh pattern 312 is formed of a pattern having various line widths and various cross shapes using metal, and the metal mesh pattern 312 is formed of silver (Ag). ), But may be a layer formed in a pattern orthogonal form using copper (Cu), aluminum (Al), alloys, etc., but is not limited thereto, and various line widths and patterns according to the requirements of the appropriate haze value and permeability of the device used It can be formed as. For example, when the light transmissive substrate is used in an organic light emitting device for illumination, the metal mesh pattern 312 is formed to have a line width of 100 nm to 10 μm to exhibit a haze value of about 30 to 80% and a transmittance of about 70 to 90%. It is preferable.
제2 투명전도층(30)의 도전체(31)로서, 도전성 폴리머(313)는 폴리에틸렌디옥시티오펜/폴리스티렌술폰산(Poly Ethylene Di Oxy Thiophene/Poly Styrene Sulfonate, PEDOT/PSS), 폴리이미드(Polyimide, PI), 폴리에틸렌테레프탈레이트 (Polyethylene terephthalate, PET), 폴리테트라플루오로에틸렌(Poly Tetra Fluoro Ethylene, PTFE) 또는 고분자를 이용한 유브이 레진(UV resin) 등을 사용하여 형성된 층일 수 있다. 도전성 폴리머(313) 층의 두께는 300nm 내지 5μm인 것이 좋다. 300nm미만인 경우 투습성이 열악하여 소자 수명을 낮추는 문제점이 있고, 5μm초과인 경우 광투과도를 낮추는 문제점이 있다. As the conductor 31 of the second transparent conductive layer 30, the conductive polymer 313 is made of polyethylene dioxythiophene / polystyrene sulfonic acid (Poly Ethylene Di Oxy Thiophene / Poly Styrene Sulfonate, PEDOT / PSS), polyimide (Polyimide, PI), polyethylene terephthalate (PET), polytetrafluoroethylene (Poly Tetra Fluoro Ethylene, PTFE) or a layer formed using a UV resin (UV resin) using a polymer or the like. The thickness of the conductive polymer 313 layer is preferably 300nm to 5μm. If less than 300nm, there is a problem of lowering device life due to poor moisture permeability, and if it exceeds 5μm, there is a problem of lowering light transmittance.
본 발명의 일실시예에 따른 투광성 기판(100)은 제2 투명전도층(30)과 기저 폴리머층(50) 사이에 구비되는 광추출층(40)을 더 포함할 수 있다. 광추출층(40)은 광추출 기능이 가능하여 주로 전도체의 기능을 갖는 제2 투명전도층(30)을 기능적 측면에서 보완 가능하며, 제2 투명전도층(30)에 포함되는 금속 나노와이어 또는 금속 입자가 광추출층(40)에 의해 함침 또는 코팅되는 효과가 있어 금속 나노와이어 또는 금속 입자 간의 황화 및 산화로 일어나는 신뢰성 저하의 문제점을 해결할 수 있다.The light transmissive substrate 100 according to an embodiment of the present invention may further include a light extraction layer 40 provided between the second transparent conductive layer 30 and the base polymer layer 50. The light extraction layer 40 is capable of light extraction, and can complement the second transparent conductive layer 30 having a function of a conductor mainly in terms of function, and the metal nanowires included in the second transparent conductive layer 30 or Since the metal particles are impregnated or coated by the light extraction layer 40, the problem of deterioration in reliability caused by sulfation and oxidation between the metal nanowires or the metal particles may be solved.
광추출층(40)은 금속의 산화물, 질화물 또는 황화물 등으로 코팅된 층일 수 있고, 평균직경 50 내지 300nm의 산란 입자(41)가 삽입된 층일 수 있다. 또한 이들이 복합된 금속의 산화물, 질화물 또는 황화물 등으로 코팅되고 산란 입자 역시 삽입된 층일 수 있다.The light extraction layer 40 may be a layer coated with an oxide, nitride, or sulfide of a metal, and may be a layer in which scattering particles 41 having an average diameter of 50 to 300 nm are inserted. In addition, they may be a layer coated with oxides, nitrides, sulfides, etc. of the metals in which they are complex, and also scattering particles inserted therein.
또한 광추출층(40)은 돌기 형태를 갖거나 패턴 형상을 가질 수 있으며 그 두께는 100nm 내지 600nm이다. 100nm 미만인 경우 광산란 효과가 낮은 문제점이 있고, 600nm 초과인 경우 광투과도 감소의 문제점이 있다. 더욱 바람직하게는 100 내지 300nm인 것이 좋다.In addition, the light extraction layer 40 may have a protrusion shape or a pattern shape, the thickness is 100nm to 600nm. If it is less than 100nm there is a problem of low light scattering effect, if it is more than 600nm there is a problem of light transmittance reduction. More preferably, it is 100-300 nm.
본 발명의 일 실시예에 따른 유기발광소자(1000)는, 본 발명의 일 실시예에 따른 투광성 기판(100); 투광성 기판(100)에 대향하는 반사 전극(300); 및 투광성 기판(100)과 반사 전극(300) 사이에 구비되는 유기발광층(200);을 포함한다. An organic light emitting device 1000 according to an embodiment of the present invention, the light-transmitting substrate 100 according to an embodiment of the present invention; A reflective electrode 300 facing the light transmissive substrate 100; And an organic light emitting layer 200 provided between the light transmissive substrate 100 and the reflective electrode 300.
유기발광층(200)은 투명 전극 역할의 투광성 기판(100), 반사 전극(300) 사이에 구비되며, 투광성 기판(100)과 반사 전극(300)의 전기적 구동에 의해 발광한다. 유기발광층(200)은 발광층을 포함하고, 정공 주입층, 정공 수송층, 전자 수송층 및 전자 주입층 중에서 선택된 하나 이상을 더 포함하는 적층 구조일 수 있다. 발광층을 형성할 수 있는 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송 받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. The organic light emitting layer 200 is provided between the transparent substrate 100 and the reflective electrode 300 serving as a transparent electrode, and emits light by electric driving of the transparent substrate 100 and the reflective electrode 300. The organic light emitting layer 200 may include a light emitting layer, and may have a stacked structure further including at least one selected from a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer. As a material capable of forming the light emitting layer, a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, is preferably a material having good quantum efficiency for fluorescence or phosphorescence.
반사 전극(300)은 일함수가 작은 알칼리 금속, 알칼리 토금속 및 주기율표 제3속의 금속 즉, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li 또는 Ca 또는 그 합금 등으로 형성될 수 있으며, 이에 한정되는 것은 아니다.The reflective electrode 300 may be formed of an alkali metal, an alkaline earth metal and a metal of the third genus of the periodic table, ie, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, or an alloy thereof. It may be formed as, but is not limited thereto.
조명용으로 사용되는 유기발광소자는 광추출 효율의 중요성이 더욱 부각되고, 본 발명에 따른 투광성 기판을 투명 전극으로 사용하여 투과성 및 전기전도성에 영향을 미치지 않으면서도 광 추출 효율을 향상시킬 수 있으며, 균열을 가짐으로써 초래할 수 있는 전기전도성의 저하를 방지할 수 있는 유기발광소자를 제공하게 한다.The organic light emitting device used for the illumination is more important, the light extraction efficiency is more important, using the light-transmitting substrate according to the present invention as a transparent electrode can improve the light extraction efficiency without affecting the transmittance and electrical conductivity, cracks It is to provide an organic light emitting device that can prevent a decrease in electrical conductivity that can be caused by having.
*본 발명의 일실시예에 따른 유기발광소자는 투명 전도층뿐만 아니라, 유기발광층 및 반사전극층에도 균열을 포함하여 적층 형태의 복수의 메사 구조를 포함할 수 있다. 각 메사 구조는 투명 전도층, 유기발광층, 반사전극층이 적층된 형태일 수 있다. The organic light emitting device according to the embodiment of the present invention may include a plurality of mesa structures in a stacked form including cracks in the organic light emitting layer and the reflective electrode layer as well as the transparent conductive layer. Each mesa structure may have a form in which a transparent conductive layer, an organic light emitting layer, and a reflective electrode layer are stacked.
본 발명의 또 다른 일실시예에 따른 투광성 기판(100)의 제조방법은 기저 폴리머층(50), 제2 투명전도층(30) 및 제1 투명전도층(20)을 포함하는 투광성 기판(100)을 제조하는 투광성 기판제조단계(S10) 및 제조된 투광성 기판(100)에 물리적 외력을 가하여 균열(crack) (41)을 형성하는 균열형성단계(S20)를 포함한다.Method for manufacturing a light transmissive substrate 100 according to another embodiment of the present invention is a light transmissive substrate 100 including a base polymer layer 50, a second transparent conductive layer 30 and a first transparent conductive layer 20 ) Is a light-transmitting substrate manufacturing step (S10) and a crack forming step (S20) to form a crack (41) by applying a physical external force to the prepared light-transmissive substrate (100).
투광성 기판제조단계(S10)는 이형층(10)을 준비하는 제1 단계, 준비된 이형층(10) 상에 제1 투명전도층(20)을 형성하는 제2-1 단계, 형성된 제1 투명전도층 상(40)에 제2 투명전도층(30)을 형성하는 제2-2 단계, 형성된 제2 투명전도층(30) 상에 기저 폴리머층(50)을 형성하는 제3 단계 및 이형층(10)과 제1 투명전도층(20)을 분리하는 제4 단계를 포함한다. Translucent substrate manufacturing step (S10) is a first step of preparing the release layer 10, step 2-1 to form the first transparent conductive layer 20 on the prepared release layer 10, the first transparent conductive formed Step 2-2 of forming the second transparent conductive layer 30 on the layer 40, the third step of forming the base polymer layer 50 on the formed second transparent conductive layer 30 and the release layer ( 10) and a fourth step of separating the first transparent conductive layer 20.
투광성 기판제조단계(S10)를 통해 이형층(기판 또는 버퍼층)(10) 상에 제1 투명전도층(20)을 형성하고 제2 투명전도층(30)을 형성함으로써 평탄도가 우수한 제1 투명전도층(20)을 형성하면서도 기판과의 분리가 용이하며, 보다 단순화되고 비용 절감이 가능한 플렉서블 투광성 기판(100)을 제조할 수 있다. The first transparent conductive layer 20 is formed on the release layer (substrate or buffer layer) 10 and the second transparent conductive layer 30 is formed through the light-transmissive substrate manufacturing step (S10). While forming the conductive layer 20, it is easy to separate from the substrate, and the flexible light-transmissive substrate 100 can be manufactured that can be simplified and reduced in cost.
제1 단계는 제1 투명전도층(20)과의 분리가 용이한 이형층(10)을 준비하는 것으로서, 이형층(10)은 기판 자체로 구성(11)되거나, 기판상에 버퍼층(12)으로 구성될 수 있다. The first step is to prepare a release layer 10 that can be easily separated from the first transparent conductive layer 20, the release layer 10 is composed of the substrate 11 or the buffer layer 12 on the substrate It can be configured as.
기판은 테플론(polytetrafluoroetylene) 기판, Bulk PMMA(Polymethyl methacrylate) 등을 이용할 수 있으며, 플렉서블 플라스틱 기판을 사용하는 경우, 유연기판에 사용 가능한 플렉서블 투광성 기판을 제조할 수 있으며, 각 단계 공정은 롤투롤(Roll to Roll) 방식으로 연속적으로 이루어져 생산성, 신뢰성, 경제성을 높일 수 있다. 또한 테플론(polytetrafluoroetylene) 기판, 이형기판을 이용하는 경우 별도의 버퍼층(12)을 구비하지 않고 기판 자체로써 이형층(10)으로 사용될 수 있다.The substrate may be a Teflon (polytetrafluoroetylene) substrate, Bulk PMMA (Polymethyl methacrylate), etc., In the case of using a flexible plastic substrate, it is possible to manufacture a flexible light-transmissive substrate that can be used for the flexible substrate, each step is roll-to-roll to Roll) to improve productivity, reliability and economics. In addition, when using a Teflon (polytetrafluoroetylene) substrate and a release substrate, the substrate itself may be used as the release layer 10 without having a separate buffer layer 12.
버퍼층(12)은 다양한 종류의 탄소화합물 및 금속산화물 이용하여 형성된 층으로서, 제1 탄소화합물, 제2 탄소화합물 및 금속산화물로 구성되는 군에서 선택되는 어느 하나 이상을 사용하여 형성될 수 있다. 제1 탄소화합물은 유리전이온도(Tg)가 200℃ 이하인 탄소화합물을 포함하며, 제2 탄소화합물은 자외선에 의해 분해되는 탄소화합물을 포함하고, 금속산화물은 표면 점착성이 낮은 금속산화물을 포함한다.The buffer layer 12 is a layer formed using various kinds of carbon compounds and metal oxides, and may be formed using any one or more selected from the group consisting of a first carbon compound, a second carbon compound, and a metal oxide. The first carbon compound includes a carbon compound having a glass transition temperature (Tg) of 200 ° C. or less, the second carbon compound includes a carbon compound decomposed by ultraviolet rays, and the metal oxide includes a metal oxide having low surface tack.
제1 탄소화합물은 유리전이온도(Tg)가 200℃ 이하인 탄소화합물 중에서도 PC(Polycarbonate), PMMA(Polymethyl methacrylate) PTFE(Polytetrafluoroethylene), Polyvinylchloride(PVC), Polystyrene(PS) 및 Polyethyl methacrylate(PEMA) 로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것이 바람직하다. 더욱 바람직하게는 유리전이온도(Tg)가 100 내지 150 ℃인 탄소화합물, PMMA(Polymethylmethacrylate), PTFE(Polytetrafluoroethylene)를 사용하는 것이 버퍼층(12)을 형성하는 계면에서의 표면 점착성이 낮아 좋다. The first carbon compound is composed of PC (Polycarbonate), PMMA (Polymethyl methacrylate) PTFE (Polytetrafluoroethylene), Polyvinylchloride (PVC), Polystyrene (PS) and Polyethyl methacrylate (PEMA) among carbon compounds having a glass transition temperature (Tg) of 200 ° C or less. It is preferable to include any one or more selected from the group to be. More preferably, the use of a carbon compound having a glass transition temperature (Tg) of 100 to 150 ° C., PMMA (polymethylmethacrylate), or PTFE (polytetrafluoroethylene) may lower the surface adhesion at the interface forming the buffer layer 12.
버퍼층(12)이 유리전이온도(Glass transition temperature, Tg)가 200℃ 이하인 제1 탄소화합물을 포함함으로써 후술할 제4 단계에서 버퍼층(12)과 제1 투명전도층(20)의 분리 공정에 있어서 버퍼층(12)의 성질 및 형상을 변화시키기에 좋다. 유리전이온도가 200℃를 초과하는 경우 상대적으로 경화 시 높은 온도와 시간이 요구되는 문제점이 있다. 또한 롤투롤 및 연속공정 진행 시, 공정가격 및 수율을 위해 낮은 유리전이온도를 가지는 재료가 적합하다. In the separation process of the buffer layer 12 and the first transparent conductive layer 20 in the fourth step to be described later, the buffer layer 12 includes a first carbon compound having a glass transition temperature (Tg) of 200 ° C. or less. It is good to change the nature and shape of the buffer layer 12. If the glass transition temperature exceeds 200 ℃ there is a problem that a relatively high temperature and time is required during curing. In addition, materials with low glass transition temperature are suitable for process price and yield during roll-to-roll and continuous process.
제2 탄소화합물은 자외선에 의해 분해되는 탄소화합물 중에서도 금속이온계 폴리머, Vinyl-ketone계 공중합물 및 Ethylene-CO 공중합체로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것이 바람직하다. The second carbon compound preferably includes any one or more selected from the group consisting of metal ion polymers, vinyl-ketone copolymers, and Ethylene-CO copolymers among carbon compounds decomposed by ultraviolet rays.
버퍼층(12)이 자외선에 의해 분해되는 제2 탄소화합물을 포함함으로써 후술할 제4 단계에서 버퍼층(12)과 제1 투명전도층(20)의 분리 공정에 있어서, 간단한 처리에 의해서도 용이하게 제1 투명전도층(20)을 분리할 수 있는 장점이 있다. In the separation process of the buffer layer 12 and the first transparent conductive layer 20 in the fourth step to be described later, the buffer layer 12 includes a second carbon compound decomposed by ultraviolet light, and thus, the first layer can be easily processed by a simple process. There is an advantage in that the transparent conductive layer 20 can be separated.
금속산화물은 계면에 치환된 원자에 의해 표면장력 및 표면에너지의 컨트롤이 용이하며, UV/ozone, Plasma treatment 방법에 의해 쉽게 컨트롤 할 수 있는 장점이 있다. 그에 따라, 계면의 점착성 및 점착성을 조절할 수 있고 이종재료를 쉽게 전사할 수 있는 특성을 나타낸다.Metal oxides have the advantage of easy control of surface tension and surface energy by atoms substituted at the interface, and easy control by UV / ozone and plasma treatment methods. Thereby, the adhesiveness and adhesiveness of an interface can be adjusted and the characteristic which can transfer easily a different material is shown.
금속산화물은 점착성이 낮은 거의 모든 분위기에서 2000℃에 이르기까지 열역학적으로 매우 높은 안정성을 가지는 물질로 산화 이트륨(Y2O3), 지르코니아(ZrO2), 알루미나(Al2O3), 질화붕소(BN), 질화티타늄(TiN) 및 실리콘산화물(SiO2)로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것이 바람직하다.Metal oxides are thermodynamically very stable materials up to 2000 ° C in almost all low-adhesive atmospheres. Yttrium oxide (Y 2 O 3 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), and boron nitride ( It is preferable to include any one or more selected from the group consisting of BN), titanium nitride (TiN) and silicon oxide (SiO 2 ).
또한 버퍼층(12)은 제1 투명전도층(20)과 접하는 표면에 오목 또는 볼록한 형상의 표면패턴을 형성할 수 있다. 버퍼층(12) 형성 시 표면 형상을 조절하여 본 발명의 일실시예에 따른 투광성 기판 제조방법(S10)의 제4 단계를 통해 최종적으로 전사된 투광성 기판(100)의 제1 투명전도층(20)의 표면 형상을 제어할 수 있다. 예를 들어, 버퍼층에 물결무늬를 형성하여 제1 투명전도층(20) 등을 적층하고 분리시키면, 제1 투명전도층(20)에 물결무늬가 전사된다. In addition, the buffer layer 12 may form a concave or convex surface pattern on a surface of the buffer layer 12 in contact with the first transparent conductive layer 20. The first transparent conductive layer 20 of the light transmissive substrate 100 finally transferred through the fourth step of the method for manufacturing a light transmissive substrate S10 according to an embodiment of the present invention by adjusting the surface shape when the buffer layer 12 is formed. The surface shape of can be controlled. For example, when a wave pattern is formed in the buffer layer to stack and separate the first transparent conductive layer 20 or the like, the wave pattern is transferred to the first transparent conductive layer 20.
표면에 오목 또는 볼록한 형상의 표면패턴을 구비하는 투명 전도층을 포함하는 투광성 기판(100)상에 발광층 및 반사 전극을 적층하여 유기발광소자를 제조하는 경우, 표면 조도가 높아져 발광면적을 높여 주고, 또한 광추출 역할을 하여 발광효율을 높여 주는 효과를 제공할 수 있다. 또한 이 투광성 기판(100) 상에 광활성층 및 금속 전극을 적층하여 유기태양전지를 제조하는 경우, 태양광의 수광면적을 높여주고, 또한 광포집 역할을 하여 발전효율을 높여 주는 효과를 제공할 수 있다. When the organic light emitting device is manufactured by stacking a light emitting layer and a reflective electrode on a light transmissive substrate 100 including a transparent conductive layer having a concave or convex surface pattern on its surface, the surface roughness is increased to increase the light emitting area. In addition, it can provide an effect of increasing the luminous efficiency by acting as a light extraction. In addition, in the case of manufacturing an organic solar cell by stacking a photoactive layer and a metal electrode on the light-transmissive substrate 100, it is possible to increase the light receiving area of the sunlight and also provide a light collecting role to increase the power generation efficiency. .
버퍼층(12)의 두께는 100nm 내지 10μm로 형성하는 것이 좋다. 100nm 미만으로 버퍼층(12)을 형성하는 경우 화학적 내식성 및 표면 균일도가 불안정한 문제점이 있으며, 10μm 초과하여 버퍼층(12)을 형성하는 경우 표면 패턴 및 경화시간이 연장되어 공정상 문제점이 있다. 더욱 바람직하게는 400nm 내지 600nm인 것이 좋다. The thickness of the buffer layer 12 is preferably formed to 100nm to 10μm. When the buffer layer 12 is formed below 100 nm, chemical corrosion resistance and surface uniformity are unstable, and when the buffer layer 12 is formed above 10 μm, the surface pattern and curing time are prolonged, thereby causing a process problem. More preferably, it is 400 nm-600 nm.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제1 단계는 버퍼 용액을 이용하여 스핀 코팅(spin coating)하거나 버퍼층(12) 시트를 별도로 형성하여 접착시켜 기판 상에 친수성의 버퍼층을 형성거나, 기판으로 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 버퍼 용액을 이용한 코팅 및 열처리 방식으로 버퍼층(12)을 형성할 수 있고, 표면 형상을 조절할 수 있다. The first step of the light-transmissive substrate manufacturing step (S10) according to an embodiment of the present invention is to spin-coating using a buffer solution or to form a separate sheet of the buffer layer 12 to adhere to form a hydrophilic buffer layer on the substrate When forming or using a flexible substrate as a substrate, the buffer layer 12 may be formed by coating and heat treatment using a buffer solution in a roll-to-roll process, and the surface shape may be adjusted.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제2-1 단계는 이형층(10) 상에 제1 투명전도층(20)을 형성하는 단계로서, ITO(Indium Tin Oxide), ZnO(Zinc Oxide) 및 SnO2(Tin Oxide) 및 이들의 고용체에서 선택되는 어느 하나 이상을 사용하여 형성될 수 있으며, 여기에 F, Al, Ga, In, Si 등이 도핑된 것을 사용하여 제1 투명전도층(20)을 형성할 수 있다. Step 2-1 of the step of manufacturing a light-transmissive substrate according to an embodiment of the present invention (S10) is a step of forming a first transparent conductive layer 20 on the release layer 10, ITO (Indium Tin Oxide), It may be formed using one or more selected from ZnO (Zinc Oxide) and SnO 2 (Tin Oxide) and a solid solution thereof, and using the doped with F, Al, Ga, In, Si, etc. The transparent conductive layer 20 can be formed.
제1 투명전도층(20)의 두께는 5nm 내지 100nm로 형성하는 것이 좋다. 5nm 미만으로 형성하는 경우 박막의 결정성이 떨어지는 문제점이 있으며, 100nm를 초과하여 형성하는 경우 유연성(Flexibility)의 저하로 접거나 휠 때 표면 크랙이 발생하는 문제점이 있다. 더욱 바람직하게는 5nm 내지 20nm인 것이 좋다. The thickness of the first transparent conductive layer 20 is preferably formed in 5nm to 100nm. If the thickness is less than 5nm, there is a problem in that the crystallinity of the thin film is inferior, and if the thickness is formed over 100nm, there is a problem in that surface cracks occur when folding or bending due to a decrease in flexibility. More preferably, it is 5 nm-20 nm.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제2-1 단계는 스핀 코팅(spin coating)을 이용하여 상기 버퍼층(12) 상에 제1 투명전도층(20)을 형성하거나, 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 증착(Deposition)을 통해 형성할 수 있으나 이에 제한되는 것은 아니다. In the second to second steps of the transparent substrate manufacturing step S10 according to the embodiment of the present invention, the first transparent conductive layer 20 is formed on the buffer layer 12 by using spin coating, In the case of using the flexible substrate, the flexible substrate may be formed through deposition on a roll-to-roll process, but is not limited thereto.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)는 도 5에 나타낸 것과 같이 제1 투명전도층(20) 상에 제2 투명전도층(30)을 형성하는 제2-2 단계를 포함하여 제1 투명전도층(20), 제2 투명전도층(30) 및 기저 폴리머층(50)을 포함하는 플렉서블 투광성 기판(100)을 제조할 수 있다. Transmissive substrate manufacturing step (S10) according to an embodiment of the present invention includes a step 2-2 to form a second transparent conductive layer 30 on the first transparent conductive layer 20 as shown in FIG. The flexible light-transmissive substrate 100 including the first transparent conductive layer 20, the second transparent conductive layer 30, and the base polymer layer 50 may be manufactured.
본 발명의 일실시예에 따른 투광성 기판제조단계(S10)는 버퍼층(12) 상에 제1 투명전도층(20)을 형성한 후 제2 투명전도층(30)을 형성함으로써 제1 투명전도층(20)에 도전체(31)가 연접하기 때문에 우수한 전기전도성 및 광 산란 효과까지 갖는 투광성 기판(100)을 제조하는 공정을 제공할 수 있다.Transmissive substrate manufacturing step (S10) according to an embodiment of the present invention after forming the first transparent conductive layer 20 on the buffer layer 12 by forming a second transparent conductive layer 30, the first transparent conductive layer Since the conductor 31 is connected to the 20, a process of manufacturing the light transmissive substrate 100 having excellent electric conductivity and light scattering effect can be provided.
*본 발명의 일실시예에 따른 투광성 기판제조단계(S10)의 제2-2 단계는 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 금속 나노와이어(311) 또는 금속 입자(314)를 포함하는 잉크 조성물을 도포하고 건조하여 금속나노와이어층을 형성하거나 스핀 코팅(spin coating)을 이용하여 상기 제1 투명전도층 상(40)에 제2 투명전도층(30)을 형성하거나, 포토리소그래피(photolithography) 등을 이용하여 제2 투명전도층(30)을 형성할 수 있으나 이에 제한되는 것은 아니다. * The second to second step of the light-transmissive substrate manufacturing step (S10) according to an embodiment of the present invention is an ink composition comprising a metal nanowire 311 or metal particles 314 on a roll-to-roll process when using a flexible substrate Coating and drying to form a metal nanowire layer, or using a spin coating to form a second transparent conductive layer 30 on the first transparent conductive layer 40, photolithography, etc. The second transparent conductive layer 30 may be formed using, but is not limited thereto.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)에 의해 이형층(10) 상에 제1 투명전도층(20)이 형성되고, 제1 투명전도층(20) 상에 순차적으로 제2 투명전도층(30)을 형성시킴으로써, 제2 투명전도층(30)의 금속 나노와이어(311) 및 금속 입자(314)가 중력에 의해 제1 투명전도층(20)에 더욱 인접하여 위치하기 때문에 전기 전도성 향상 및 광 추출 효율이 우수한 투광성 기판을 제공할 수 있다. The first transparent conductive layer 20 is formed on the release layer 10 and the second transparent conductive layer 20 is sequentially formed on the light-transmissive substrate manufacturing step S10 according to an embodiment of the present invention. By forming the transparent conductive layer 30, since the metal nanowires 311 and the metal particles 314 of the second transparent conductive layer 30 are located closer to the first transparent conductive layer 20 by gravity. It is possible to provide a light transmissive substrate having improved electrical conductivity and excellent light extraction efficiency.
제2 투명전도층(30)의 두께는 40nm 내지 150nm 이다. 40nm 미만인 경우 전기전도도 저하 문제점이 있고, 150nm 초과하는 경우 투과율 손실 문제점이 있다. 금속 나노와이어(311) 및 금속 입자(314)의 표면에 빛이 도달하면 금속 나노와이어(311) 및 금속입자(314)를 통해 빛을 산란시킬 수 있으므로 유기발광소자(1000)의 투광성 전극으로 사용되는 경우, 광 추출 효율을 높일 수 있다. 특히 금속 입자(314)는 외면에 돌기를 구비하여 더 넓은 영역대를 가지는 파장의 빛을 산란시킬 수 있다. 또한 제2 투명전도층(30)이 형성되는 투명 전도성 산화물층과의 접합성을 높일 수 있다. The thickness of the second transparent conductive layer 30 is 40 nm to 150 nm. If it is less than 40nm, there is a problem of lowering the conductivity, and if it exceeds 150nm, there is a problem of loss of transmittance. When light reaches the surfaces of the metal nanowires 311 and the metal particles 314, the light may be scattered through the metal nanowires 311 and the metal particles 314, and thus used as a light transmitting electrode of the organic light emitting device 1000. In this case, the light extraction efficiency can be increased. In particular, the metal particles 314 may have projections on the outer surface to scatter light having a wider band. In addition, the adhesion to the transparent conductive oxide layer on which the second transparent conductive layer 30 is formed can be improved.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)는 제2 투명전도층 상에 광추출층을 더 형성하는 제2-3 단계를 더 포함하여 제1 투명전도층(20), 제2 투명전도층(30), 광추출층(40) 및 기저 폴리머층(50)을 포함하는 투광성 기판(100)을 제조할 수 있다. Transmissive substrate manufacturing step (S10) according to an embodiment of the present invention further comprises a second to third step of forming a light extraction layer on the second transparent conductive layer, the first transparent conductive layer 20, the second The light transmissive substrate 100 including the transparent conductive layer 30, the light extraction layer 40, and the base polymer layer 50 may be manufactured.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제2-3 단계는 스핀 코팅(spin coating)을 이용하여 상기 제2 투명전도층(30) 상에 광추출층(40)을 형성하거나, 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 금속의 산화물, 질화물, 황화물 또는 이의 혼합물을 포함하는 잉크 조성물을 도포하고 열처리하여 형성할 수 있으나 이에 제한되는 것은 아니다. In the second to third steps of the transparent substrate manufacturing step S10 according to the embodiment of the present invention, the light extraction layer 40 is formed on the second transparent conductive layer 30 by using spin coating. Alternatively, in the case of using the flexible substrate, an ink composition including an oxide, a nitride, a sulfide, or a mixture of metals may be applied and heat treated in a roll-to-roll process, but is not limited thereto.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제3 단계는 상기 제1 투명전도층(20), 제2 투명전도층(30) 상에 기저 폴리머층(50)을 형성하는 단계로서 보다 단순화되고 비용이 절감되는 롤투롤(roll to roll) 공정을 통해 플렉서블한 투광성 기판을 제조할 수 있다.The third step of the light-transmissive substrate manufacturing step (S10) according to an embodiment of the present invention is the step of forming a base polymer layer 50 on the first transparent conductive layer 20, the second transparent conductive layer 30 As a result, a flexible and transparent substrate may be manufactured through a roll to roll process that is more simplified and lower in cost.
기저 폴리머층(50)은 PI(polyimide), PET(polyethylene terephthalate), PC(poly carbonate), PES(polyether sulfone), PEN(polyethylene naphthalate), PA(poly acrylate), PUA(polyurethane acrylate), PDMS(polydimethyl siloxane) 및 금속 박막으로 이루어진 군에서 선택된 적어도 1종 이상을 포함하여 형성될 수 있다. 내화학성, 내열성 등이 우수한 PI를 이용하여 형성하는 것이 바람직하다.The base polymer layer 50 may be formed of polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC), polyether sulfone (PES), polyethylene naphthalate (PEN), poly acrylate (PA), polyurethane acrylate (PUA), and PDMS (PDMS). polydimethyl siloxane) and a metal thin film. It is preferable to form using PI which is excellent in chemical resistance, heat resistance, etc.
기저 폴리머층(50)의 두께는 50㎛ 내지 3mm로 형성하는 것이 좋다. 0.7mm 미만으로 형성하는 경우 모기판으로써 지지력이 낮은 문제점이 있으며, 3mm 초과하여 형성하는 경우 유연성(Flexibility)이 감소하는 문제점이 있다. 더욱 바람직하게는 200㎛ 내지 1.5mm인 것이 좋다. The base polymer layer 50 may have a thickness of 50 μm to 3 mm. In the case of forming less than 0.7mm, there is a problem in that the bearing capacity is low as the mother substrate, and in the case of forming more than 3mm, flexibility is reduced. More preferably, it is 200 micrometers-1.5 mm.
본 발명의 본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제3 단계는 폴리머 용액을 이용하여 라미네이팅(laminating)하거나 폴리머 조성물을 도포한 후 건조 및 경화시키거나 스크린 프린팅(screen printing)하여 기저 폴리머층(50)을 형성하거나, 플렉서블 기판을 사용하는 경우 롤투롤 공정 상에서 폴리머 조성물을 도포하고 열처리하여 형성할 수 있으나 이에 제한되는 것은 아니다. The third step of the light-transmitting substrate manufacturing step (S10) according to an embodiment of the present invention of the present invention is the laminating (laminating) using a polymer solution or after applying the polymer composition, drying and curing or screen printing (screen printing) To form the base polymer layer 50, or when using a flexible substrate can be formed by applying the polymer composition and heat treatment in a roll-to-roll process, but is not limited thereto.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제4 단계는 이형층(10)을 디태칭(detaching)하는 단계로서, 이형층(10)과 제1 투명전도층(20) 사이를 분리(전사)하여 제1 투명전도층(20), 제2 투명전도층(30) 및 기저 폴리머층(50)을 포함하는 플렉서블 투광성 기판(100)을 제공하는 단계이다. A fourth step of manufacturing a transparent substrate according to an embodiment of the present invention (S10) is a step of detaching the release layer 10, between the release layer 10 and the first transparent conductive layer 20. Separating (transferring) to provide a flexible light-transmitting substrate 100 including the first transparent conductive layer 20, the second transparent conductive layer 30 and the base polymer layer (50).
또한 버퍼층(12) 형성 시 표면에 형상을 갖도록 제조하고 제1 투명전도층(20)을 전사한 경우, 버퍼층(12) 표면 형상과 같이 제1 투명전도층(20) 표면에 버퍼층(12)의 형상이 전사되므로 제조된 플렉서블 투광성 기판(100)의 표면 형상을 제어할 수 있다.Also, when the buffer layer 12 is formed to have a shape on the surface and the first transparent conductive layer 20 is transferred, the buffer layer 12 may be formed on the surface of the first transparent conductive layer 20 like the surface of the buffer layer 12. Since the shape is transferred, the shape of the surface of the manufactured flexible light-transmitting substrate 100 may be controlled.
본 발명의 일실시예에 따른 투광성 기판 제조단계(S10)의 제4 단계는 이형층(10) (버퍼층)에 광원을 통한 광조사 처리하여 성상을 선택적으로 변화시켜 제1 투명전도층(20)과의 접착력을 낮추어 안정적으로 분리할 수 있으나 이에 제한되는 것은 아니다. 본 발명의 일실시예에 따른 버퍼층(12)은 상기 언급한 제1 탄소화합물, 제2 탄소화합물, 금속산화물 등의 물질 즉, 유리전이온도가 200℃ 이하인 탄소화합물, 자외선에 의해 분해되는 탄소화합물, 금속산화물 사용하여 형성하기 때문에 복잡한 공정을 거치거나 많은 에너지를 들이지 않고도 용이하게 분리(전사)가 가능한 장점이 있다. In the fourth step of the light-transmitting substrate manufacturing step (S10) according to an embodiment of the present invention, the first transparent conductive layer 20 by selectively changing the properties of the release layer 10 (buffer layer) by irradiation with light through a light source. Lower adhesive strength and can be separated stably, but is not limited thereto. The buffer layer 12 according to an embodiment of the present invention is a material such as the first carbon compound, the second carbon compound, and the metal oxide mentioned above, that is, the carbon compound having a glass transition temperature of 200 ° C. or less, and the carbon compound decomposed by ultraviolet rays. Because it is formed using a metal oxide, there is an advantage that it can be easily separated (transferred) without undergoing a complicated process or using a lot of energy.
광조사 처리에 이용될 수 있는 광원으로는 제논 램프, 할로겐 램프, HID 램프, 형광 램프, 수은 램프를 포함하는 가스 방전 램프 등을 사용할 수 있으며, 버퍼층(12)의 유리전이온도 이상의 열을 가하여 성상을 변화시킬 수 있는 열원이라면 제한없이 사용 가능하다. 바람직하게는 제논 렘프를 사용하는 것이 투명 전도성 산화층과 타 재료에 손상을 주지 않으면서 광추출층 형성을 위한 국부적인 에너지 전달에 좋다. As a light source that can be used for the light irradiation treatment, a xenon lamp, a halogen lamp, a HID lamp, a fluorescent lamp, a gas discharge lamp including a mercury lamp, and the like may be used. Any heat source that can change the temperature can be used without limitation. Preferably, the use of xenon lamps is good for local energy transfer to form the light extraction layer without damaging the transparent conductive oxide layer and other materials.
또한 본 발명의 일실시예에 따른 투광성 기판 제조방법(S10)의 제4 단계 이후에, 상기 분리된 제1 투명전도층(20)에 잔존하는 이형층(10) 성분을 제거하는 제5 단계를 더 포함할 수 있다. 분리된 제1 투명전도층(20)을 포함하는 투광성 기판 표면에 잔존하는 버퍼층(12) 성분은 아세톤, 에탄올과 같은 화학약품을 이용하여 세척하여 제거하거나 플라즈마 처리하여 제거할 수 있다.In addition, after the fourth step of the method for manufacturing a transparent substrate (S10) according to an embodiment of the present invention, a fifth step of removing the release layer 10 components remaining in the separated first transparent conductive layer 20 It may further include. The buffer layer 12 remaining on the surface of the transparent substrate including the separated first transparent conductive layer 20 may be removed by washing or plasma treatment using chemicals such as acetone and ethanol.
본 발명의 일실시예에 따른 균열형성단계(S20)는 투광성 기판(100)에 물리적 외력을 가하여 제1 투명전도층(20)에 균열(21) (crack)을 형성하는 단계이다. 균열형성단계(S20)는 투광성 기판(100)을 굽힘(bending)으로써 물리적 외력을 가하여 굽힘 세기 및 굽힘 위치에 따른 균열(21) (crack)을 형성할 수 있다. 또한 균열형성단계(S20)는 상기 굽힘 위치 및 굽힘 세기를 조절하여 제1 투명 전도층(40)의 영역별 균열(21) (crack)의 크기를 상이하게 형성할 수 있다. In the crack forming step (S20) according to an embodiment of the present invention, a crack 21 is formed in the first transparent conductive layer 20 by applying a physical external force to the transparent substrate 100. The crack forming step S20 may form a crack 21 according to the bending strength and the bending position by applying a physical external force by bending the light transmissive substrate 100. In addition, in the crack forming step S20, the size of the cracks 21 for each region of the first transparent conductive layer 40 may be differently adjusted by adjusting the bending position and the bending strength.
또한 균열형성단계(S20)는 상기 굽힘 위치 및 굽힘 세기를 조절하여 상기 균열(21) (crack)이 상기 투명 전도층의 가장자리(edge) 영역으로 갈수록 분포가 증가하도록 형성할 수 있다. 더욱 구체적으로 투명 전도층의 중앙 영역에서 가장자리 영역으로 갈수록 굽힘 세기를 크게 하여 형성되는 중앙 영역의 균열(21)에 의해 분획되는 구획의 최단 길이(l)가 40 내지 300nm 인 것에 비하여, 가장자리 영역의 균열(21)에 의해 분획되는 구획의 최단 길이(l)가 40 내지 100nm 가 되도록 균열(21)을 형성할 수 있다. In addition, the crack forming step (S20) may be formed such that the distribution increases as the cracks 21 (crack) toward the edge region of the transparent conductive layer by adjusting the bending position and the bending strength. More specifically, the shortest length l of the section fractionated by the crack 21 in the central region formed by increasing the bending strength from the central region to the edge region of the transparent conductive layer is 40 to 300 nm. The cracks 21 can be formed such that the shortest length l of the section fractionated by the cracks 21 is 40 to 100 nm.
또한 균열형성단계(S20)는 상기 투광성 기판 제조단계(S10)를 통해 제조된 투광성 기판(100)에 유기발광층(200) 및 반사 전극층(300)을 형성한 후에 이루어질 수 있다. 즉, 투광성 기판(100)의 투명 전도층 상에 유기발광층(200) 및 반사 전극층(300)을 형성하여 유기발광소자(1000)를 제조한 후 물리적 외력을 가하여 균열(21)을 형성하는 경우, 외력의 세기에 따라 투명 전도층뿐만 아니라 유기발광층(200)까지, 또는 반사 전극층(300)까지도 균열(21)을 형성할 수 있다. In addition, the crack forming step S20 may be performed after the organic light emitting layer 200 and the reflective electrode layer 300 are formed on the light transmitting substrate 100 manufactured through the light transmitting substrate manufacturing step S10. That is, when the organic light emitting device 1000 is formed by forming the organic light emitting layer 200 and the reflective electrode layer 300 on the transparent conductive layer of the light transmissive substrate 100 and then forming a crack 21 by applying a physical external force, According to the strength of the external force, not only the transparent conductive layer but also the organic light emitting layer 200 or the reflective electrode layer 300 may form a crack 21.
균열 구조 및 경사 구조의 광추출 시뮬레이션Light extraction simulation of cracked and sloped structures
(1) 균열 구조의 광추출 시뮬레이션(1) Light extraction simulation of crack structure
제1 투명전도층 균열 구조의 광 추출 효율의 개선 효과를 알아보기 위하여 균열에 의해 분획되는 구역에 대응하는 일정한 간격의 마이크로 픽셀(Micro Pixel) 구조를 갖는 유기발광소자에 대한 광추출 시뮬레이션을 수행하였다. 마이크로 픽셀 효과로 인한 광량 증가는 도 6에 나타낸 것과 같이 총 면적과 발생광량이 같은 마이크로 픽셀 구조로 설정하여 광선광학 시뮬레이션(Light tools)으로 해석하였으며, 길이(l=800, 400, 267, 200, 160, 67, 40nm)에 따른 광 추출 효율 변화를 확인하였다. 마이크로 픽셀의 효과를 명확하게 하기 위하여 도 7에 나타낸 것과 같이 기판 상층부(Top), 기판 측면(Side), 유기발광소자 측면(Guided)으로 나누어 광 추출 효율을 계산하였다.In order to examine the effect of improving the light extraction efficiency of the first transparent conductive layer crack structure, light extraction simulation was performed on the organic light emitting device having the micro pixel structure having a regular interval corresponding to the area fractionated by the crack. . As shown in FIG. 6, the increase in the amount of light due to the micro pixel effect was set to the same micro pixel structure as the total area and the amount of generated light, and analyzed by photo-optic simulation (Light tools), and the length (l = 800, 400, 267, 200, 160, 67, 40nm) was confirmed a change in light extraction efficiency. In order to clarify the effect of the micro pixel, as shown in FIG. 7, light extraction efficiency was calculated by dividing into a substrate top, a substrate side, and an organic light emitting diode side.
시뮬레이션 결과 도 8에 나타낸 것과 같이 균열에 의해 분획되는 구역(마이크로 픽셀)의 최단 길이(l)가 작아짐에 따라 기판의 상부(Top)와 측면(Side)의 추출 광량은 균열에 의해 분획되는 구역의 크기와 무관하게 일정한 추이를 보이나, 측면(Guided)의 추출 광량은 균열에 의해 분획되는 구역의 크기가 작아질수록 증가하는 경향을 보여, 전체(Total) 추출 효율이 증가하는 것을 알 수 있다. As a result of the simulation, as shown in FIG. 8, as the shortest length (l) of the area fractionated by the crack (micropixel) becomes smaller, the amount of extracted light at the top and the side of the substrate is reduced. Although it shows a constant trend regardless of the size, the extraction light amount of the side (Guided) tends to increase as the size of the area fractionated by the crack decreases, indicating that the total extraction efficiency increases.
(2) 경사 구조의 광추출 시뮬레이션(2) Light extraction simulation of inclined structure
제1 투명전도층을 포함하는 유기발광소자의 가장자리에 경사를 갖는 구조의 광 추출 효율의 개선 효과를 알아보기 위하여 도 9에 나타낸 것과 같은 경사 각도가 45°인 유기발광소자에 대한 광 추출 효율을 계산하였다.. The light extraction efficiency of the organic light emitting device having an inclination angle of 45 ° as shown in FIG. 9 is shown to improve the light extraction efficiency of the structure having the inclination at the edge of the organic light emitting device including the first transparent conductive layer. Calculated.
시뮬레이션 결과 유기발광소자의 측면으로 방출되거나 내부 물질로 흡수되어 사라질 빛들이 가장자리의 경사면과 부딪힌 후 전반사를 일으켜 기판의 측면이나 상부 방향으로 진행하여 광 추출 효율이 개선됨을 알 수 있다. The simulation results indicate that the light emitted from the side of the organic light emitting device or absorbed by the internal material disappears after hitting the inclined surface of the edge, causing total reflection to proceed toward the side or the top of the substrate, thereby improving light extraction efficiency.
또한 도 10에 나타낸 것과 같이 균열에 의해 분획되는 구역와 복합된 효과로서, 기판의 상부(Top)와 측면(Side)의 추출 광량이 증가하여 전체(Total) 추출 광량이 대폭 증가하는 것을 확인할 수 있다. In addition, as shown in FIG. 10, as an effect combined with the region fractionated by the crack, the amount of extracted light from the top and the side of the substrate increases, and thus the total amount of extracted light increases significantly.
실시예Example
하기 표 1과 같이 제1 투명전도층, 제2 투명전도층 및 기저 폴리머층을 포함하는 투광성 기판 상에, 유기발광층 및 반사 전극을 순차적으로 적층하여 2X2mm2의 발광 영역을 갖는 유기발광소자를 제작하였다. 반사 전극으로는 알루미늄(Al)을 사용하여 형성하였으며, 유기발광층은 백색 유기전자소자의 제조 분야에서 통상적으로 사용되는 소재를 사용하였고, 그 형성방법 역시 일반적인 방식을 사용하였다. As shown in Table 1 below, an organic light emitting layer having a light emitting area of 2 × 2 mm 2 was manufactured by sequentially stacking an organic light emitting layer and a reflective electrode on a light transmissive substrate including a first transparent conductive layer, a second transparent conductive layer, and a base polymer layer. It was. The reflective electrode was formed using aluminum (Al), and the organic light emitting layer was formed of a material commonly used in the field of manufacturing white organic electronic devices, and a method of forming the organic light emitting layer was also used.
도 11에 실시예 1에 따라 제조된 투광성 기판의 광학 현미경 이미지를 나타내었다. FIG. 11 shows an optical microscope image of a light transmissive substrate prepared according to Example 1. FIG.
최단 길이(nm)Shortest length (nm) 측면 경사(°)Side slope (°) 제2 투명전도층2nd transparent conductive layer 광추출층Light extraction layer
실시예 1Example 1 100-300100-300 9090 AgNWAgNW XX
실시예 2Example 2 40-20040-200 9090 AgNWAgNW XX
실시예 3Example 3 100-300100-300 9090 Cu metal mashCu metal mash XX
실시예 4Example 4 100-300100-300 9090 PEDOT/PSSPEDOT / PSS XX
실시예 5Example 5 100-300100-300 4545 AgNWAgNW XX
실시예 6Example 6 40-20040-200 2525 AgNWAgNW XX
실시예 7Example 7 40-30040-300 6565 Cu metal mashCu metal mash XX
실시예 8Example 8 균열 XCrack X 9090 AgNWAgNW
실시예 9Example 9 40-30040-300 9090 AgNWAgNW ZnOZnO
비교예 1Comparative Example 1 균열 XCrack X 9090 XX XX
비교예 2Comparative Example 2 600-800600-800 9090
비교예 3Comparative Example 3 300-600300-600 125125
실험예Experimental Example
(1) 전기전도성 측정(1) Electrical conductivity measurement
실시예 및 비교예에서 제조된 유기발광소자의 표면 저항을 측정하여 전기전도성을 측정하였으며, 표면 저항 측정 시에 통상적으로 사용되는 4 포인트 프로브(기기명: MCP-T610, 제조사: MITSUBISHI CHEMICAL)를 사용하고, 핀간 간격이 5 mm인 ESP 타입의 프로브를 이용하여 측정하였다.The electrical conductivity was measured by measuring the surface resistance of the organic light emitting diodes manufactured in Examples and Comparative Examples, using a 4-point probe (device name: MCP-T610, manufacturer: MITSUBISHI CHEMICAL) which is commonly used in measuring surface resistance. It was measured using an ESP type probe having an interval between pins of 5 mm.
도 12에 균열없는 제1 투명 전도층 만을 포함하는 투광성 기판(비교예 1), 균열없는 제1 투명전도층 및 제2 투명전도층으로 AgNW을 포함하는 투광성 기판(실시예 8), 균열있는 제1 투명전도층 및 제2 투명전도층으로 AgNW을 포함하는 투광성 기판(실시예 1), 균열있는 제1 투명전도층, 제2 투명전도층으로 AgNW층, ZnO 광추출층을 포함하는 투광성 기판(실시예 9)의 면저항 측정 그래프를 나타내었다. 12 is a light transmissive substrate (Comparative Example 1) containing only the first transparent conductive layer without cracks, a light transmissive substrate (Example 8) containing AgNW as the first transparent conductive layer without cracks and the second transparent conductive layer, and a cracked agent A transparent substrate comprising AgNW as a transparent conductive layer and a second transparent conductive layer (Example 1), a first transparent conductive layer with cracks, and a transparent substrate including an AgNW layer as a second transparent conductive layer and a ZnO light extracting layer ( The sheet resistance measurement graph of Example 9) is shown.
도 12 에 나타나는 것과 같이 비교예 1의 경우 면저항이 약 240(Ω/□)으로 측정되었으며, AgNW를 도포한 실시예 8의 경우 면저항이 17(Ω/□)로 감소하였으며, 균열을 포함하는 제1 투명 전도층을 사용한 실시예 1 및 실시예 9의 경우에도 면저항을 비슷한 수준으로 유지하는 것을 알 수 있다. As shown in FIG. 12, in the case of Comparative Example 1, the sheet resistance was measured to be about 240 (Ω / □), and in Example 8 coated with AgNW, the sheet resistance was reduced to 17 (Ω / □), and the crack-containing agent 1 It can be seen that in the case of Example 1 and Example 9 using a transparent conductive layer, the sheet resistance is maintained at a similar level.
(2) 투과율 측정(2) transmittance measurement
실시예 및 비교예에서 제조된 유기발광소자를 UV/Vis 분광기를 이용하여 투과율을 측정하였다. Transmittance of the organic light emitting diodes manufactured in Examples and Comparative Examples was measured using a UV / Vis spectrometer.
도 13 실시예 1에 의해 제조된 투광성 기판의 광추출층의 생성시간에 따른 투과도 측정데이터 및 헤이즈 측정데이터를 나타내었다. 헤이즈값은 광추출층의 생성 시간에 따라 증가하는 경향을 보이며, 광추출 효율은 광추출층과 균열에 의해 복합된 효과를 나타낸다. FIG. 13 shows transmittance measurement data and haze measurement data according to generation time of the light extraction layer of the light-transmissive substrate prepared in Example 1. FIG. The haze value tends to increase with the generation time of the light extraction layer, and the light extraction efficiency shows the combined effect of the light extraction layer and the crack.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like illustrated in the above-described embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.

Claims (18)

  1. 투명전도층을 포함하는 투광성 기판으로서, A light transmissive substrate comprising a transparent conductive layer,
    상기 투광성 기판은, The light transmissive substrate,
    투광성 재료로 이루어진 기저 폴리머층;A base polymer layer made of a light transmitting material;
    상기 기저 폴리머층 상에 구비되는 제1 투명전도층;을 포함하고,And a first transparent conductive layer provided on the base polymer layer.
    상기 제1 투명전도층에는 균열에 의해 분획되는 복수의 구역이 형성되어, 상기 균열에서 입사되는 광의 굴절이 발생되는 투광성 기판. The first transparent conductive layer has a plurality of zones formed by the crack is formed, the light-transmitting substrate is generated in the refraction of light incident from the crack.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 투명전도층의 수평방향으로 측정되는 상기 균열의 두께(t)는 100 nm 내지 20 μm 인 투광성 기판.The thickness (t) of the crack measured in the horizontal direction of the first transparent conductive layer is 100 nm to 20 μm transparent substrate.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 투명전도층의 수평방향으로 측정되는 상기 균열에 의해 분획되는 구역의 최단 길이 (l)는 100μm 내지 2mm인 투광성 기판.A translucent substrate having a shortest length (l) of a region fractionated by the crack measured in the horizontal direction of the first transparent conductive layer is 100 μm to 2 mm.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 투명전도층의 두께는 5nm 내지 100nm인 투광성 기판.The first transparent conductive layer has a thickness of 5nm to 100nm transparent substrate.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 투명전도층은 측면에 경사를 가지며, The first transparent conductive layer has a slope on the side,
    상기 제1 투명전도층 측면과 상기 기저 폴리머층의 수평면이 이루는 경사 각도는 45°±20°인 투광성 기판.The light transmissive substrate of which the inclination angle between the side of the first transparent conductive layer and the horizontal polymer layer is 45 ° ± 20 °.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 투명 전도층은 투명 전도성 산화물층, 투명 전도성 질화물층, 투명 전도성 황화물층 및 이들의 혼합층으로 구성되는 군에서 선택되는 어느 하나 이상의 층으로 형성되는 투광성 기판.The first transparent conductive layer is formed of one or more layers selected from the group consisting of a transparent conductive oxide layer, a transparent conductive nitride layer, a transparent conductive sulfide layer, and a mixed layer thereof.
  7. 제1항에 있어서, The method of claim 1,
    상기 투광성 기판은, The light transmissive substrate,
    상기 기저 폴리머층 상에 구비되며, 도전체 및 상기 도전체를 피복하는 피복폴리머를 포함하는 제2 투명전도층을 더 포함하고, A second transparent conductive layer provided on the base polymer layer, the second transparent conductive layer comprising a conductor and a coating polymer covering the conductor,
    상기 제1 투명전도층은 상기 제2 투명전도층 상에 구비되는 투광성 기판.The first transparent conductive layer is a transparent substrate provided on the second transparent conductive layer.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 제2 투명전도층의 상기 도전체는 금속 나노와이어, 메탈 메쉬 패턴 또는 도전성 폴리머를 포함하는 투광성 기판.The conductor of the second transparent conductive layer is a light-transmitting substrate comprising a metal nanowire, a metal mesh pattern or a conductive polymer.
  9. 제8항에 있어서, The method of claim 8,
    상기 제2 투명전도층이 상기 제1 투명전도층에 인접하는 절반을 A 영역이라 하고, 상기 기저 폴리머층에 인접하는 절반을 B 영역이라고 할 때, When the second transparent conductive layer is referred to as an A region and the half adjacent to the first transparent conductive layer is called an A region, and the half adjacent to the base polymer layer is a B region,
    상기 도전체는 상기 A 영역에 60% 이상 분포하는 투광성 기판.The conductor is light-transmissive substrate distributed in the area A or more than 60%.
  10. 제9항에 있어서, The method of claim 9,
    상기 금속 나노와이어는 은(Ag), 금(Au), 구리(Cu), 백금(Pt), 철(Fe), 니켈(Ni), 코발트(Co), 아연(Zn), 티탄(Ti), 크롬(Cr), 알루미늄(Al), 팔라듐(Pd) 및 이들의 조합들로 이루어진 군으로부터 선택되는 어느 하나의 물질로 형성된 투광성 기판.The metal nanowires are silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), nickel (Ni), cobalt (Co), zinc (Zn), titanium (Ti), A light transmissive substrate formed of any one material selected from the group consisting of chromium (Cr), aluminum (Al), palladium (Pd), and combinations thereof.
  11. 제9항에 있어서, The method of claim 9,
    상기 메탈 메쉬 패턴은 은(Ag), 구리(Cu), 알루미늄(Al) 또는 이들의 합금을 이용하여 교차형태로 형성된 패턴인 투광성 기판.The metal mesh pattern is a light-transmissive substrate that is formed in a cross shape using silver (Ag), copper (Cu), aluminum (Al) or an alloy thereof.
  12. 제9항에 있어서, The method of claim 9,
    상기 제2 투명전도층의 상기 도전체는 금속 입자를 더 포함하고, The conductor of the second transparent conductive layer further includes metal particles,
    상기 금속 입자는 상기 A 영역에 50% 이상 분포하는 투광성 기판.The metal particles are 50% or more in the transmissive substrate in the A region.
  13. 기저 폴리머층, 제2 투명전도층 및 제1 투명전도층을 포함하는 투광성 기판을 제조하는 투광성 기판 제조단계;A translucent substrate manufacturing step of manufacturing a translucent substrate comprising a base polymer layer, a second transparent conductive layer and a first transparent conductive layer;
    상기 투광성 기판에 물리적 외력을 가하여 균열(crack)을 형성하는 균열형성단계;를 포함하는 투광성 기판의 제조방법.And a crack forming step of forming a crack by applying a physical external force to the light transmissive substrate.
  14. 제13항에 있어서,The method of claim 13,
    상기 균열형성단계는 상기 제조된 투광성 기판을 굽힘(bending)으로써 물리적 외력을 가하여 균열(crack)을 형성하는 단계인 투광성 기판의 제조방법.The crack forming step is a step of forming a crack by applying a physical external force by bending the manufactured light-transmissive substrate (crack).
  15. 제14항에 있어서,The method of claim 14,
    상기 균열형성단계는 상기 굽힘의 세기 및 위치를 조절하여 상기 균열(crack)이 상기 제1 투명전도층의 가장자리(edge) 영역으로 갈수록 분포가 증가하도록 형성하는 단계인 투광성 기판의 제조방법.The crack forming step is a method of manufacturing a light-transmitting substrate, the step of forming the cracks to increase the distribution toward the edge (edge) of the first transparent conductive layer by adjusting the strength and position of the bending.
  16. 제13항에 있어서,The method of claim 13,
    상기 투광성 기판 제조단계는,The transparent substrate manufacturing step,
    이형층을 준비하는 제1 단계;A first step of preparing a release layer;
    상기 이형층 상에 제1 투명전도층을 형성하는 제2-1 단계;Forming a first transparent conductive layer on the release layer;
    상기 제1 투명전도층 상에 제2 투명전도층을 형성하는 제2-2 단계;Forming a second transparent conductive layer on the first transparent conductive layer;
    상기 제2 투명전도층 상에 기저 폴리머층을 형성하는 제3 단계; 및Forming a base polymer layer on the second transparent conductive layer; And
    상기 이형층과 상기 제1 투명전도층을 분리하는 제4 단계;를 포함하여 기저 폴리머층, 제2 투명전도층 및 제1 투명전도층을 포함하는 투광성 기판을 제조하는 단계인, 투광성 기판의 제조방법.And a fourth step of separating the release layer and the first transparent conductive layer, to prepare a light-transmissive substrate including a base polymer layer, a second transparent conductive layer, and a first transparent conductive layer. Way.
  17. 제1항 내지 제12항 중 어느 한 항의 투광성 기판;을 포함하는 조명 장치.The light transmitting device according to any one of claims 1 to 12;
  18. 제1항 내지 제12항 중 어느 한 항의 투광성 기판;The light-transmitting substrate of any one of claims 1 to 12;
    상기 투광성 기판에 대향하는 반사 전극; 및A reflective electrode opposite the translucent substrate; And
    상기 투광성 기판과 상기 반사 전극 사이에 구비되는 유기발광층;을 포함하는 유기발광소자.And an organic light emitting layer disposed between the light transmissive substrate and the reflective electrode.
PCT/KR2016/012136 2015-10-28 2016-10-27 Light-transmissive substrate and manufacturing method therefor WO2017074047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0150436 2015-10-28
KR1020150150436A KR101862318B1 (en) 2015-10-28 2015-10-28 The light transmitting substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017074047A1 true WO2017074047A1 (en) 2017-05-04

Family

ID=58630499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012136 WO2017074047A1 (en) 2015-10-28 2016-10-27 Light-transmissive substrate and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101862318B1 (en)
WO (1) WO2017074047A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956672B1 (en) * 2017-08-29 2019-03-12 주식회사 도프 Manufacturing method of transparent conductive film using the hybrid of nano silver and silver nanowire and the transparent conductive film made therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120114961A (en) * 2011-04-08 2012-10-17 삼성전자주식회사 Bending sensor and fabrication method thereof
KR20130010471A (en) * 2010-02-27 2013-01-28 이노바 다이나믹스, 인코포레이티드 Structures with surface-embedded additives and related manufacturing methods
KR20140085292A (en) * 2012-12-27 2014-07-07 제일모직주식회사 Transparent conductor and apparatus comprising the same
KR20140118513A (en) * 2013-03-29 2014-10-08 삼성전기주식회사 flexible/stretchable transparent film having conductivity and manufacturing method thereof
KR20150024184A (en) * 2013-08-26 2015-03-06 제일모직주식회사 Transparent conductor and optical display apparatus comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997758B2 (en) * 2011-03-29 2016-09-28 エルジー ディスプレイ カンパニー リミテッド Method for manufacturing organic electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130010471A (en) * 2010-02-27 2013-01-28 이노바 다이나믹스, 인코포레이티드 Structures with surface-embedded additives and related manufacturing methods
KR20120114961A (en) * 2011-04-08 2012-10-17 삼성전자주식회사 Bending sensor and fabrication method thereof
KR20140085292A (en) * 2012-12-27 2014-07-07 제일모직주식회사 Transparent conductor and apparatus comprising the same
KR20140118513A (en) * 2013-03-29 2014-10-08 삼성전기주식회사 flexible/stretchable transparent film having conductivity and manufacturing method thereof
KR20150024184A (en) * 2013-08-26 2015-03-06 제일모직주식회사 Transparent conductor and optical display apparatus comprising the same

Also Published As

Publication number Publication date
KR20170049261A (en) 2017-05-10
KR101862318B1 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
US10964890B2 (en) Opto-electrical devices incorporating metal nanowires
WO2013187736A1 (en) Layered structure for oled device, method for manufacturing the same, and oled device having the same
WO2012134200A2 (en) Substrate for organic electrode device
WO2014021522A1 (en) Semiconductor device and method for producing same
WO2011162461A1 (en) Transparent electrode and a production method therefor
WO2016036150A1 (en) Method for manufacturing light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode including same
KR101499279B1 (en) Substrate for organic electronic device
WO2017074049A1 (en) Method for manufacturing light-transmissive substrate and light-transmissive substrate manufactured by using same
WO2012127916A1 (en) Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same
JP2008076823A (en) Display device
WO2017074047A1 (en) Light-transmissive substrate and manufacturing method therefor
US9570709B2 (en) Method for manufacturing ultrathin organic light-emitting device
WO2016047936A4 (en) Flexible substrate and method of manufacturing same
WO2017074048A1 (en) Light-transmissive substrate manufacturing method and light-transmissive substrate manufactured using same
JP2012009225A (en) Organic electroluminescent element and method of manufacturing the same
WO2017074051A1 (en) Light-transmissive substrate and manufacturing method therefor
WO2016105016A1 (en) Light extracting substrate for organic light emitting device, method of manufacturing same, and organic light emitting device including same
WO2021187888A1 (en) Transparent conductor comprising nanostructure, and manufacturing method therefor
WO2017204533A9 (en) Substrate
CN109817819A (en) Enhance the white OLED device that light takes out
WO2018021632A1 (en) Transparent conductor and display device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860230

Country of ref document: EP

Kind code of ref document: A1