WO2017067317A1 - 一种变截面金属流道水冷散热压铸腔体的制造工艺 - Google Patents

一种变截面金属流道水冷散热压铸腔体的制造工艺 Download PDF

Info

Publication number
WO2017067317A1
WO2017067317A1 PCT/CN2016/096421 CN2016096421W WO2017067317A1 WO 2017067317 A1 WO2017067317 A1 WO 2017067317A1 CN 2016096421 W CN2016096421 W CN 2016096421W WO 2017067317 A1 WO2017067317 A1 WO 2017067317A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
die
flow channel
casting
cavity
Prior art date
Application number
PCT/CN2016/096421
Other languages
English (en)
French (fr)
Inventor
李先超
陈小军
Original Assignee
成都泰格微波技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都泰格微波技术股份有限公司 filed Critical 成都泰格微波技术股份有限公司
Publication of WO2017067317A1 publication Critical patent/WO2017067317A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the technical field of manufacturing heat dissipation of electronic components, and more particularly to a manufacturing process of a water-cooling heat-dissipating die-casting cavity of a variable-section metal runner.
  • Any electronic device has a certain loss during operation, and most of the loss becomes heat.
  • Low-power devices have low losses, no heat sinks, and high-power devices have large losses. If heat dissipation is not taken, the temperature of the device can reach or exceed the allowable junction temperature and the device will be damaged. Therefore, it is necessary to add a heat sink.
  • the most common one is to install the power device on the heat sink, and use the heat sink to dissipate the heat to the surrounding space. If necessary, add a cooling fan to enhance the cooling and cooling at a certain wind speed.
  • Flow cooling water cooling plates are also used on power devices in some large equipment, which have better heat dissipation.
  • the existing heat dissipating cavity is a machine for CNC machining the extruded aluminum alloy sheet into a cavity and a buried metal tube, and applying a thermal conductive glue to the groove and then loading the metal tube.
  • the following defects are encountered in the processing of this process: 1.
  • the extruded aluminum alloy sheet material is processed into the cavity and the groove for installing the metal tube, and the material waste is large; 2.
  • the product processing cycle is long; 3.
  • the product processing cost High 4, processing the groove on the aluminum alloy sheet, then applying the thermal conductive glue in the groove, installing the metal tube, the process is complicated, and the technical level of the operator is high; 4. There is a gap between the metal tube and the aluminum alloy cavity , non-seamless contact, low heat dissipation efficiency.
  • the object of the present invention is to overcome the shortcomings of the prior art, and provide a low cost of raw materials, low processing cost, satisfying the heat dissipation effect of electronic components, and avoiding melting or squeezing of the metal flow path during the die-casting process.
  • a variable cross section metal flow channel water-cooling heat-dissipating die-casting cavity The manufacturing process of the body, which includes the following steps:
  • step S2 after the end of step S2, the high temperature oil is introduced into the flow channel of the box;
  • S4 sealing the inlet and the outlet of the flow passage of the casing with screws to prevent high temperature oil from overflowing from the metal flow passage; [0010] S5, placing the flow passage of the casing into the die casting mold, and positioning in the die casting mold The device is positioned; [0011] S6, die-casting, die-casting aluminum alloy liquid tightly wraps the casing flow channel under the action of the die-casting machine to form a complete product;
  • the shape of the metal flow channel is circular, elliptical, square, irregular or variable cross section.
  • the metal flow channel may be made of aluminum, steel, copper, iron, or a titanium alloy.
  • the present invention has the following advantages: (1) The metal flow channel is die-casted into the interior of the aluminum alloy casting by means of a pre-buried metal flow passage, without processing the flow passage after molding, saving raw materials and raw material costs. Low, low processing costs. (2) The heat dissipation cavity is integrated with the metal flow path at one time. This method shortens the product processing cycle, simplifies the manufacturing process, reduces the manufacturing difficulty, and requires less technical level for the operator. (3) The heat dissipation cavity is die-casted from aluminum alloy. The heat of the electronic components is transferred to the die-casting cavity, and then transferred to the metal flow channel by the cavity, and the heat is taken away by the cooling water in the metal flow channel.
  • the metal flow passage is pre-buried and die-cast in the aluminum alloy casting, and is formed once, and the metal flow passage and the aluminum alloy cavity are in seamless contact, and the heat dissipation efficiency is high.
  • the high temperature aluminum alloy solution cannot melt gold It is a flow channel, and the metal flow channel does not undergo thermal deformation, which ensures that the product can be applied to the radar.
  • FIG. 1 is a schematic structural view of processing a variable section cavity and a heat dissipating tooth on a metal plate;
  • FIG. 2 is a structural schematic view of welding a metal cover plate on a variable-section cavity and clogging a screw at a head-to-tail exit of a variable-section cavity;
  • FIG. 3 is a schematic structural view of a water-cooling heat-dissipating die-casting cavity of a variable-section metal runner;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • a manufacturing process for a water-cooling heat-dissipating cavity of a variable-section metal runner comprising the following steps:
  • the metal cover 3 is welded on the top of the variable-section cavity 2 to form a closed casing flow path.
  • step S3 after the end of step S2, the high temperature oil is introduced into the flow channel of the casing;
  • S4 plugging the inlet and outlet of the flow channel of the casing with a screw 5 to prevent high temperature oil from overflowing from the metal flow channel; [0030] As shown in FIG. 3, S5, placing the flow path of the casing into the die casting mold And positioning with a positioning device in the die casting mold;
  • S6 die-casting, die-casting aluminum alloy liquid tightly wraps the casing flow channel under the action of the die-casting machine to form a complete product, because the high-temperature oil has a high thermal conductivity, when the high-temperature aluminum alloy solution After contact with the metal flow channel, the heat on the aluminum alloy solution is directly absorbed by the high temperature oil, thereby avoiding the aluminum alloy solution melting the metal flow channel.
  • the hydraulic pressure of the high temperature oil offsets the pressure acting on the metal flow path, and The role of supporting the metal flow channel avoids the deformation of the metal flow channel.
  • the processed variable-section metal flow channel water-cooling heat-dissipating die-casting cavity is used as follows:
  • the electronic component is mounted on the top surface of the water-cooling heat-dissipating cavity of the variable-section metal runner and above the heat dissipating tooth,
  • the heat generated by the electronic components is transferred to the aluminum alloy die-casting parts, and the aluminum alloy die-casting parts transfer the heat to the heat-dissipating teeth, and the heat of the heat-dissipating teeth 4 is discharged from the metal flow channels by the cooling liquid, which greatly enhances the reinforcement.
  • the heat dissipation effect of the heat dissipation cavity ensures the normal operation of the electronic components.
  • the operating temperature of the electronic component is about 80 ° C, and the water-cooled heat-compression cavity of the variable-section metal flow channel is mounted on the cavity.
  • the operating temperature of the electronic components is about 50 °C. It can be seen that the heat dissipation effect of the heat dissipation cavity obtained by the process is obviously superior to the conventional use of the CNC machine to add the cavity and then embed the metal. The heat dissipation effect of the tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种变截面金属流道水冷散热压铸腔体的制造工艺,包括以下步骤:S1、选用金属板(1),在金属板(1)上加工出变截面型腔(2);S2、在变截面型腔(2)的顶部焊接金属盖板(3),形成封闭的盒体流道,同时在盒体流道首尾开孔并攻丝;S3、向金属盒体流道内通入高温油;S4、用螺钉(5)把进口和出口封堵,防止高温油从金属流道溢出;S5、将金属盒体流道放入压铸模具内;S6、压铸铝合金液在压铸机压射力作用下紧紧包裹住盒体流道,形成完整的产品;S7、开模取件;S8、去毛刺,并打开金属流道首尾处螺钉,随后吹入压缩空气把高温油从金属流道内吹出。该制造工艺加工成本低,避免在压铸过程中金属流道被熔化或发生热变形现象,满足电子元器件的散热效果。

Description

说明书 发明名称:一种变截面金属流道水冷散热压铸腔体的制造工艺 技术领域
[0001] 本发明涉及电子元器件散热的制造技术领域, 特别是一种变截面金属流道水冷 散热压铸腔体的制造工艺。
背景技术
[0002] 任何电子器件在工作吋都有一定的损耗, 大部分的损耗变成热量。 小功率器件 损耗小, 无需散热装置, 而大功率器件损耗大, 若不采取散热措施, 则器件的 温度可达到或超过允许的结温, 器件将受到损坏。 因此必须加散热装置, 最常 用的就是将功率器件安装在散热器上, 利用散热器将热量散到周围空间, 必要 吋再加上散热风扇, 以一定的风速加强冷却散热。 在某些大型设备的功率器件 上还采用流动冷水冷却板, 它有更好的散热效果。
[0003] 目前, 随着电子技术不断的发展, 设备功率越来越大, 对散热的要求也越来越 高。 现有的散热腔体是对挤压成型的铝合金板料进行 CNC机械加工出腔体和埋 金属管的槽, 在槽内涂上导热胶后再装入金属管。 采用这种工艺加工存在以下 缺陷: 1、 将挤压成型的铝合金板料加工出腔体及幵设安装金属管的槽, 材料浪 费很大; 2、 产品加工周期长; 3、 产品加工成本高; 4、 在铝合金板料上加工槽 , 再在槽内涂抹导热胶, 安装金属管, 工序复杂, 对操作人员的技术水平要求 高; 4、 金属管与铝合金腔体之间有间隙, 非无缝接触, 散热效率较低。
技术问题
[0004] 本发明的目的在于克服现有技术的缺点, 提供一种原材料成本低、 加工成本低 、 满足电子元器件的散热效果、 避免了在合模压铸过程中金属流道被熔化或发 生挤压变形的现象、 生产工艺简单、 散热效率高的变截面金属流道水冷散热压 铸腔体的制造工艺。
问题的解决方案
技术解决方案
[0005] 本发明的目的通过以下技术方案来实现: 一种变截面金属流道水冷散热压铸腔 体的制造工艺, 它包括以下步骤:
[0006] Sl、 选用金属板, 在金属板上工出变截面型腔, 并加工出散热齿;
[0007] S2、 在变截面型腔的顶部焊接金属盖板, 形成封闭的盒体流道, 同吋在盒体流 道首尾幵孔并攻丝;
[0008] S3、 步骤 S2结束后, 向盒体流道内通入高温油;
[0009] S4、 用螺钉把盒体流道的进口和出口封堵, 防止高温油从金属流道内溢出; [0010] S5、 将盒体流道放入压铸模具内, 并用压铸模具内的定位装置予以定位; [0011] S6、 合模压铸, 压铸铝合金液在压铸机压射力作用下紧紧包裹住盒体流道, 形 成完整的产品;
[0012] S7、 幵模取件: 压射完成并在增压的作用下, 使铝合金和金属流道紧密结合为 一体, 它们之间形成铝合金压铸件, 当铸件保压 10s〜15s后幵模取出铸件;
[0013] S8、 去毛刺, 并打幵金属流道首尾处的螺钉, 随后吹入压缩空气把高温油从金 属流道内吹出;
[0014] S9、 用清洗剂清除金属流道内的高温油;
[0015] S10、 在铝合金压铸件的表面进行局部 CNC机加工, 得到成品变截面金属流道 水冷散热压铸腔体。
[0016] 所述的金属流道的形状为圆形、 椭圆形、 方形、 异形或变截面。
[0017] 所述金属流道其材质可以是铝、 钢、 铜、 铁、 或者钛合金。
发明的有益效果
有益效果
[0018] 本发明具有以下优点: (1) 通过预埋金属流道的方式, 将金属流道压铸在铝 合金铸件内部成为一体, 而不需在成型后再加工流道, 节约原材料, 原材料成 本低, 加工成本低。 (2) 散热腔体与金属流道一体化一次成型, 这种方式缩短 了产品加工周期, 简化了制造工序, 降低了制造难度, 对操作人员的技术水平 要求较低。 (3) 散热腔体采用铝合金压铸而成, 电子元器件的热量传递给压铸 腔体, 再由腔体传递给金属流道, 由金属流道内的冷却水把热量带走。 金属流 道通过预埋并压铸在铝合金铸件内, 一次成型, 金属流道与铝合金腔体之间为 无缝接触, 散热效率高。 (4) 在合模压铸过程中, 高温铝合金溶液无法熔化金 属流道, 且金属流道不会发生热变形, 保证了产品能够应用到雷达上。
对附图的简要说明
附图说明
[0019] 图 1为在金属板上加工出变截面型腔和散热齿的结构示意图;
[0020] 图 2为在变截面型腔上焊接金属盖板并在变截面型腔的首尾出口处堵塞螺钉的 结构示意图;
[0021] 图 3为变截面金属流道水冷散热压铸腔体的结构示意图;
[0022] 图 4为图 3的 A- A剖视图;
[0023] 图中, 1-金属板, 2-变截面型腔, 3-金属盖板, 4-散热齿, 5-螺钉, 6-铝合金压 铸件。
本发明的实施方式
[0024] 下面结合图 1~4对本发明做进一步的描述, 本发明的保护范围不局限于以下所 述:
[0025] 一种变截面金属流道水冷散热压铸腔体的制造工艺, 它包括以下步骤:
[0026] 如图 1所示, Sl、 选用金属板 1, 在金属板 1上工出变截面型腔 2, 并加工出散热 齿 4;
[0027] 如图 2所示, S2、 在变截面型腔 2的顶部焊接金属盖板 3, 形成封闭的盒体流道
, 同吋在盒体流道首尾幵孔并攻丝;
[0028] S3、 步骤 S2结束后, 向盒体流道内通入高温油;
[0029] S4、 用螺钉 5把盒体流道的进口和出口封堵, 防止高温油从金属流道内溢出; [0030] 如图 3所示, S5、 将盒体流道放入压铸模具内, 并用压铸模具内的定位装置予 以定位;
[0031] S6、 合模压铸, 压铸铝合金液在压铸机压射力作用下紧紧包裹住盒体流道, 形 成完整的产品, 由于高温油具有较高的导热率, 当高温铝合金溶液与金属流道 接触后, 铝合金溶液上的热量直接被高温油吸收, 从而避免了铝合金溶液将金 属流道熔化, 此外, 高温油的液压力抵消了作用在金属流道上的压力, 起到了 支撑金属流道的作用, 避免了金属流道发生挤压变形。 [0032] S7、 幵模取件: 压射完成并在增压的作用下, 使铝合金和金属流道紧密结合为 一体, 它们之间形成铝合金压铸件 6, 当铸件保压 10s〜15s后幵模取出铸件;
[0033] S8、 去毛刺, 并打幵金属流道首尾处的螺钉 5, 随后吹入压缩空气把高温油从 金属流道内吹出;
[0034] S9、 用清洗剂清除金属流道内的高温油;
[0035] S10、 在铝合金压铸件 6的表面进行局部 CNC机加工, 得到成品变截面金属流道 水冷算热压铸腔体。
[0036] 加工出的变截面金属流道水冷散热压铸腔体的使用过程为: 将电子元器件安装 在该变截面金属流道水冷散热压铸腔体的顶表面上且位于散热齿的上方, 在电 子元器件在工作产生的热量传递给铝合金压铸件, 再由铝合金压铸件把热量传 递给散热齿, 由散热齿 4的热量被冷却液从金属流道内排出, 这样极大限度的加 强了散热腔体的散热效果, 从而保证电子元器件的正常工作。
[0037] 采用 CNC机加出腔体并埋入金属管装上电子元器件后, 其电子元器件的工作温 度为 80°C左右, 在该变截面金属流道水冷算热压铸腔体装上电子元器件后, 其电 子元器件的工作温度为 50°C左右, 由此可见, 本工艺所制得的散热腔体的散热效 果明显优于传统的采用 CNC机加出腔体再埋入金属管的散热效果。

Claims

权利要求书
[权利要求 1] 一种变截面金属流道水冷散热压铸腔体的制造工艺, 其特征在于: 它 包括以下步骤:
51、 选用金属板 (1) , 在金属板 (1) 上工出变截面型腔 (2) , 并 加工出散热齿 (4) ;
52、 在变截面型腔 (2) 的顶部焊接金属盖板 (3) , 形成封闭的盒体 流道, 同吋在盒体流道首尾幵孔并攻丝;
53、 步骤 S2结束后, 向盒体流道内通入高温油;
54、 用螺钉 (5) 把盒体流道的进口和出口封堵, 防止高温油从金属 流道内溢出;
55、 将盒体流道放入压铸模具内, 并用压铸模具内的定位装置予以定 位;
56、 合模压铸, 压铸铝合金液在压铸机压射力作用下紧紧包裹住盒体 流道, 形成完整的产品;
57、 幵模取件: 压射完成并在增压的作用下, 使铝合金和金属流道紧 密结合为一体, 它们之间形成铝合金压铸件 (6) , 当铸件保压 10s〜 15s后幵模取出铸件;
58、 去毛刺, 并打幵金属流道首尾处的螺钉 (5) , 随后吹入压缩空 气把高温油从金属流道内吹出;
59、 用清洗剂清除金属流道内的高温油;
S10、 在铝合金压铸件 (6) 的表面进行局部 CNC机加工, 得到成品 变截面金属流道水冷散热压铸腔体。
[权利要求 2] 根据权利要求 1所述的一种变截面金属流道水冷散热压铸腔体的制造 工艺, 其特征在于: 所述的金属流道的形状为圆形、 椭圆形、 方形、 异形或变截面。
[权利要求 3] 根据权利要求 1所述的一种变截面金属流道水冷散热压铸腔体的制造 工艺, 其特征在于: 所述金属流道其材质可以是铝、 钢、 铜、 铁、 或 者钛合金。
PCT/CN2016/096421 2015-10-23 2016-08-23 一种变截面金属流道水冷散热压铸腔体的制造工艺 WO2017067317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510692547.7A CN106612604B (zh) 2015-10-23 2015-10-23 一种变截面金属流道水冷散热压铸腔体的制造工艺
CN201510692547.7 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017067317A1 true WO2017067317A1 (zh) 2017-04-27

Family

ID=58556707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096421 WO2017067317A1 (zh) 2015-10-23 2016-08-23 一种变截面金属流道水冷散热压铸腔体的制造工艺

Country Status (2)

Country Link
CN (1) CN106612604B (zh)
WO (1) WO2017067317A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113857462A (zh) * 2021-08-19 2021-12-31 北京科技大学 一种内含复杂变截面孔道散热器的制备方法
CN114433812A (zh) * 2021-12-30 2022-05-06 遵义航天新力精密铸锻有限公司 一种散热器抗变形加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180790A1 (en) * 2012-05-11 2013-12-05 Raytheon Company Electronics enclosures with high thermal performance and related system and method
CN103921089A (zh) * 2014-05-07 2014-07-16 成都泰格微波技术股份有限公司 一种新型的预埋金属管压铸散热腔体制造工艺
CN203872489U (zh) * 2014-05-07 2014-10-08 成都泰格微波技术股份有限公司 一种新型的预埋金属管压铸散热腔体
CN104716048A (zh) * 2015-03-12 2015-06-17 中国计量学院 一种压管式水冷板制作工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021769A (ko) * 2002-09-04 2004-03-11 (주)대영정공 히트싱크의 제조방법
KR100769065B1 (ko) * 2006-05-18 2007-10-22 엘지전자 주식회사 플라즈마 디스플레이 장치의 히트싱크
JP2010069503A (ja) * 2008-09-18 2010-04-02 Calsonic Kansei Corp 熱交換器の製造方法
US8422229B2 (en) * 2009-06-25 2013-04-16 Oracle America, Inc. Molded heat sink and method of making same
CN102548337A (zh) * 2010-12-14 2012-07-04 中国航天科工集团第二研究院二十三所 一种复合铸造结构的液冷冷板
CN102358039A (zh) * 2011-09-13 2012-02-22 太仓吉盈汽车饰件有限公司 燃料电池发动机塑料水泵振动摩擦焊接装配方法
CN103929932B (zh) * 2014-05-07 2016-09-28 成都泰格微波技术股份有限公司 一种预埋金属管压铸散热腔体
CN104439081B (zh) * 2014-11-25 2017-08-08 苏氏工业科学技术(北京)有限公司 用于金属铸造的浇注成型工艺中的铸型及一种铸件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180790A1 (en) * 2012-05-11 2013-12-05 Raytheon Company Electronics enclosures with high thermal performance and related system and method
CN103921089A (zh) * 2014-05-07 2014-07-16 成都泰格微波技术股份有限公司 一种新型的预埋金属管压铸散热腔体制造工艺
CN203872489U (zh) * 2014-05-07 2014-10-08 成都泰格微波技术股份有限公司 一种新型的预埋金属管压铸散热腔体
CN104716048A (zh) * 2015-03-12 2015-06-17 中国计量学院 一种压管式水冷板制作工艺

Also Published As

Publication number Publication date
CN106612604B (zh) 2018-12-04
CN106612604A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
CN103921089B (zh) 一种新型的预埋金属管压铸散热腔体制造工艺
WO2017067316A1 (zh) 一种弯折铝管水冷散热压铸腔体的加工工艺
CN106424630A (zh) 复杂薄壁类铝合金件超声辅助半固态压铸成型装置及方法
CN201669411U (zh) 铝合金金属型铸造模具的冷却装置
CN103929932B (zh) 一种预埋金属管压铸散热腔体
WO2017067317A1 (zh) 一种变截面金属流道水冷散热压铸腔体的制造工艺
WO2017067315A1 (zh) 一种新型铝铜复合管散热腔体压铸制造工艺
CN206294462U (zh) 一种新能源电动汽车水冷散热装置
CN114042888A (zh) 一种冷室压铸机散热***
CN206028674U (zh) 一种带加强冷却***的连续铸挤设备挤压装置
CN113414372A (zh) 一种铝合金压铸件的成型设备及其成型方法
CN113352135A (zh) 一种冰冻薄壁辅助铝合金件加工装置及其加工方法
CN204194767U (zh) 冷室压铸机压射室冷却***温度实时监测装置
CN206839061U (zh) 一种加速铝液凝固的砂芯冷铁成型模具
CN206662239U (zh) 汽车发动机冷却***用调温器主体坎件压铸成型模具
CN113263137A (zh) 一种冷却效果好的金属散热器模具
CN109530473A (zh) 一种翅片散热器型材加工新工艺
CN206543871U (zh) 一种间接水冷却接头
CN210359195U (zh) 一种长手柄套压铸模具
KR20040001777A (ko) 다이캐스팅 금형 냉각용 보어 핀
CN203872489U (zh) 一种新型的预埋金属管压铸散热腔体
CN208322001U (zh) 铸造模具局部冷却结构
CN103934438B (zh) 内冷铁用于厚大铸钢件的铸造方法
CN206286536U (zh) 改进的车轮模具分流锥
CN211304678U (zh) 一种带风冷和水冷结构的铸造模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856751

Country of ref document: EP

Kind code of ref document: A1