WO2017065216A1 - State detection device and state detection program - Google Patents

State detection device and state detection program Download PDF

Info

Publication number
WO2017065216A1
WO2017065216A1 PCT/JP2016/080378 JP2016080378W WO2017065216A1 WO 2017065216 A1 WO2017065216 A1 WO 2017065216A1 JP 2016080378 W JP2016080378 W JP 2016080378W WO 2017065216 A1 WO2017065216 A1 WO 2017065216A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric wire
catenary
unit
flight
state detection
Prior art date
Application number
PCT/JP2016/080378
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 高木
Original Assignee
東京電力ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力ホールディングス株式会社 filed Critical 東京電力ホールディングス株式会社
Publication of WO2017065216A1 publication Critical patent/WO2017065216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • the present invention relates to a state detection device and a state detection program.
  • the unmanned aerial vehicle as described in Patent Document 1 flies in the vicinity of the transmission line, and flies along a curve (hereinafter referred to as a catenary curve) formed by an electric wire suspended from an electric wire support point. It is not a thing. That is, when detecting the temperature of the electric wire and the state of the electric wire such as corona discharge generated from the electric wire, the position where the unmanned air vehicle flies is different every time, and the state of the electric wire may not be detected accurately.
  • This invention is made
  • One aspect of the present invention is an imaging unit that captures a landscape image in which a landscape around an unmanned air vehicle is captured, images of a plurality of structures included in the landscape image captured by the imaging unit, and the plurality of the plurality of structures
  • a catenary calculation unit that calculates a catenary curve of the electric wire based on an image of the electric wire suspended between structures, and a flight path of the unmanned air vehicle along the catenary curve of the electric wire calculated by the catenary calculation unit.
  • the flight control unit that controls the flight of the unmanned air vehicle based on the flight path calculated by the flight path calculation unit, and the catenary curve calculated by the catenary calculation unit
  • the catenary curve calculation target wire is suspended between the plurality of structures that suspend the calculation target wire. That a state detector for detecting the state of the other wire, a state detecting device to be mounted on an unmanned air vehicle.
  • the state detection unit detects at least one of the temperature of the electric wire and the corona discharge generated from the electric wire.
  • the flight path calculation unit calculates a flight path that is a predetermined distance away from the catenary curve of the wire calculated by the catenary calculation unit.
  • the state detection device is based on facility information including information indicating the position of the structure, own weight of the wire, and information indicating the tension of the wire.
  • the apparatus further includes a catenary estimation unit that estimates a catenary curve, and the flight path calculation unit calculates a flight path based on a calculation result of the catenary calculation unit and an estimation result of the catenary estimation unit.
  • a flight path calculation step for calculating the flight path, a flight control step for controlling the flight of the unmanned air vehicle based on the flight path calculated by the flight path calculation step, and the catenary curve calculated by the catenary calculation step When an unmanned air vehicle is flying along the flight path calculated based on A state detecting program for executing the status detection step of detecting the other conditions of the wire which is suspended between the plurality of structures for suspending the wires or the calculation target of the wire.
  • the state of the electric wire can be detected with high accuracy.
  • FIG. 1 is a schematic diagram showing an example of the appearance of an unmanned air vehicle D equipped with a state detection device 1 according to the first embodiment of the present invention.
  • the unmanned air vehicle D is a drone
  • the unmanned air vehicle D flies by autonomous control.
  • the unmanned air vehicle D includes a plurality of rotors, and flies in various directions by adjusting the number of rotations of the rotors.
  • the drone as a specific example of the unmanned air vehicle D is demonstrated here, the unmanned air vehicle D is not restricted to this.
  • FIG. 2 is a schematic diagram showing an example of the flight of the unmanned air vehicle D equipped with the state detection device 1 according to the first embodiment of the present invention.
  • the unmanned air vehicle D flies near the electric wire WR supported by the steel tower ST. More specifically, the unmanned air vehicle D flies along the electric wire WR supported by the steel tower ST.
  • the steel tower ST is, for example, a power transmission line steel tower.
  • the electric wire WR is, for example, a power transmission line.
  • the flight of the unmanned air vehicle D is controlled by the state detection device 1.
  • the state detection device 1 mounted on the unmanned air vehicle D includes a control unit 10, an imaging unit 20, and a state detection unit 30. A more specific configuration of the state detection device 1 will be described with reference to FIG.
  • FIG. 3 is a configuration diagram illustrating an example of a configuration of the state detection device 1 according to the first embodiment.
  • the imaging unit 20 includes a camera and images a landscape around the unmanned air vehicle D. Specifically, the imaging unit 20 captures a landscape image P that is a landscape image. More specifically, the imaging unit 20 captures a landscape image P in the traveling direction in which the unmanned air vehicle D flies.
  • FIG. 4 is a schematic diagram illustrating an example of a landscape image P captured by the imaging unit 20 of the first embodiment.
  • the coordinate system of the landscape image P is defined.
  • the landscape image P is a rectangular image.
  • the coordinates of the pixels of the landscape image P are indicated by an orthogonal image coordinate system (Xp, Yp).
  • the horizontal direction of the landscape image P is the axis Xp
  • the vertical direction of the landscape image P orthogonal to the axis Xp is the axis Yp.
  • the coordinates of the landscape included in the landscape image P are indicated by a three-dimensional orthogonal coordinate system (Xg, Yg, Zg).
  • the vertical upward direction of the landscape included in the landscape image P is the axis Zg, and the directions orthogonal to the axis Zg are the axis Xg and the axis Yg, respectively.
  • the imaging unit 20 images a part of the electric wire WR.
  • the landscape image P includes an image of the steel tower ST and an image of the electric wire WR.
  • This steel tower ST is an example of a structure.
  • the electric wire WR is suspended between the two steel towers ST, that is, the steel tower ST1 and the steel tower ST2.
  • the landscape image P includes a background image BG such as a tree, the ground, and the sky.
  • the imaging unit 20 supplies the captured landscape image P to the control unit 10.
  • the control unit 10 includes a CPU (Central Processing Unit), and includes an image extraction unit 110, a catenary calculation unit 120, a route calculation unit 130, and a flight control unit 140 as functional units.
  • the image extraction unit 110 acquires the landscape image P from the imaging unit 20.
  • the image extraction unit 110 extracts the span information SP indicating the distance between the structures from the landscape image P by a known image processing technique.
  • the span information SP is information indicating the lengths of the chords CD connecting the vertices of the two steel towers ST, that is, the points P1 and P2.
  • the image extraction unit 110 supplies the extracted span information SP to the catenary calculation unit 120.
  • the catenary calculation unit 120 calculates the route calculation formula FC based on the acquired span information SP.
  • the route calculation formula FC is a derivation formula for the catenary curve C formed by the electric wire WR.
  • the catenary calculating unit 120 determines the parameters of the derivation formula for the catenary curve C based on the acquired span information SP.
  • the determination of the parameter of the derivation formula indicating the catenary curve C based on the span information SP by the catenary calculation unit 120 is also referred to as calculating the catenary curve C.
  • the derivation formula for the catenary curve C is formula (1).
  • the line density ⁇ is the weight per unit length of the electric wire WR.
  • the tension T is a tension related to the electric wire WR when the electric wire WR is supported by the steel tower ST.
  • the catenary calculation unit 120 calculates the route calculation formula FC based on the formula (1) and the span information SP. That is, the catenary calculating unit 120 calculates the catenary curve C formed by the electric wire WR based on the image of the structure included in the landscape image P captured by the imaging unit 20 and the image of the electric wire WR suspended from the structure. To do.
  • the catenary calculation unit 120 supplies information indicating the calculated route calculation formula FC to the route calculation unit 130.
  • the catenary calculation unit 120 may calculate the route calculation formula FC even if it is information other than the span information SP.
  • the image extraction unit 110 may extract the coordinates of two points having a catenary curve C formed by the electric wire WR by a known image processing technique.
  • the catenary calculation unit 120 may calculate the route calculation formula FC based on the coordinates of the three points of the catenary curve C formed by a certain electric wire WR extracted by the image extraction unit 110.
  • the route calculation unit 130 acquires information indicating the route calculation formula FC calculated by the catenary calculation unit 120.
  • the route calculation unit 130 calculates the flight route FL on which the unmanned air vehicle D flies based on the acquired route calculation formula FC.
  • the separation distance OD is a distance from the electric wire WR on which the unmanned air vehicle D flies to the unmanned air vehicle D.
  • the upper direction is the positive direction of the axis Zg.
  • FIG. 5 is a schematic diagram illustrating an example of a flight path FL of the unmanned air vehicle D according to the first embodiment.
  • the flight path FL is a path that is above the electric wire WR by the separation distance OD and has the same shape as the catenary curve C formed by the electric wire WR. That is, the flight path FL is a path along the electric wire WR.
  • the route calculation unit 130 calculates a flight route FL that is a predetermined distance away from the route calculation formula FC calculated by the catenary calculation unit 120. Specifically, the route calculation unit 130 calculates the flight route FL of the unmanned air vehicle D along the shape of the catenary curve C formed by the electric wire WR.
  • the flight path FL may be in the left-right direction of the electric wire WR or may be below.
  • the route calculation unit 130 supplies information indicating the flight route FL to the flight control unit 140.
  • the flight control unit 140 controls the flight of the unmanned air vehicle D based on the flight path FL acquired from the path calculation unit 130. Specifically, the flight control unit 140 controls the rotational speed of the rotor of the unmanned air vehicle D so that the unmanned air vehicle D flies along the flight path FL. That is, the flight control unit 140 controls the flight of the unmanned air vehicle based on the flight path FL calculated by the path calculation unit 130. Thereby, the unmanned air vehicle D can fly along the electric wire WR.
  • the flight control unit 140 detects the flight position information H indicating the height information indicating the height from the ground surface to the position where the unmanned air vehicle D flies and the position information indicating the coordinates where the unmanned air vehicle D flies. To the unit 30.
  • the state detection unit 30 includes a heat detection unit 310 and a corona detection unit 320.
  • the heat detector 310 detects the temperature of the electric wire WR that the unmanned air vehicle D flies along. Specifically, the heat detection unit 310 detects the temperature generated in the electric wire WR along which the unmanned air vehicle D flies. Thereby, the heat detection unit 310 detects the degree of heat loss due to breakage or deterioration of the electric wire WR.
  • the heat detection unit 310 is, for example, an infrared sensor.
  • the corona detector 320 detects a corona discharge of the electric wire WR that the unmanned air vehicle D flies along.
  • the corona detector 320 detects a corona discharge that occurs in the electric wire WR along which the unmanned air vehicle D flies. Thereby, the corona detector 320 detects the degree of corona discharge due to the breakage or deterioration of the electric wire WR.
  • the corona detection unit 320 is, for example, an acoustic sensor.
  • the state detection unit 30 is in the state of the electric wire WR to be calculated for the catenary curve C when the unmanned air vehicle D is flying on the flight path FL calculated based on the catenary curve C calculated by the catenary calculation unit 120. Is detected.
  • the state of the electric wire WR is indicated by the temperature of the electric wire WR and the corona discharge of the electric wire WR.
  • the state detection unit 30 determines whether or not the unmanned air vehicle D is flying.
  • the state detection unit 30 detects the state of the electric wire WR when it is determined that the unmanned air vehicle D is flying. Specifically, the state detection unit 30 acquires the flight position information H from the control unit 10.
  • the state detection unit 30 determines that the unmanned air vehicle D is flying when the acquired flight position information H indicates a predetermined value. Specifically, the state detection unit 30 is a case where the height information indicating the height from the ground surface to the position where the unmanned air vehicle D flies is larger than a predetermined value, and the unmanned air vehicle D flies. When the information indicating the coordinates indicates the position of the electric wire WR whose state is to be determined, it is determined that the unmanned air vehicle D is flying. When it is determined that the unmanned air vehicle D is flying, the state detection unit 30 detects the state of the electric wire WR using the heat detection unit 310 and the corona detection unit 320.
  • the state detection unit 30 detects the state of the electric wire WR when the unmanned air vehicle D flies above the steel tower ST.
  • the state detection unit 30 causes the storage unit 40 to store the detected state of the electric wire WR.
  • the state detection unit 30 includes the heat detection unit 310 and the corona detection unit 320 has been described as an example, but the present invention is not limited thereto.
  • the state detection unit 30 may include any one of the heat detection unit 310 and the corona detection unit 320.
  • the state detection device 1 may include a communication unit that communicates with a monitoring device that centrally monitors the state of the electric wire WR, and may sequentially supply the state of the electric wire WR detected by the state detection unit 30 to the monitoring device.
  • the state detection unit 30 detects the state of the electric wire WR that is the electric wire WR captured in the landscape image P and the catenary calculation unit 120 calculates the catenary curve C has been described. However, it is not limited to this.
  • the state detection unit 30 may detect the state of another electric wire WR supported by the same steel tower ST as the electric wire WR.
  • FIG. 6 is a flowchart illustrating an example of the operation of the control unit 10 according to the first embodiment.
  • the image extraction unit 110 acquires the landscape image P from the imaging unit 20 (step S100).
  • the image extraction unit 110 extracts the span information SP from the landscape image P (step S110).
  • the image extraction unit 110 supplies the span information SP to the catenary calculation unit 120 (step S120).
  • the catenary calculation unit 120 acquires the span information SP from the image extraction unit 110 (step S130).
  • the catenary calculation unit 120 calculates a route calculation formula FC that is a derivation formula of the catenary curve C formed by the electric wire WR based on the acquired span information SP (step S140).
  • the catenary calculation unit 120 supplies information indicating the calculated route calculation formula FC to the route calculation unit 130 (step S150).
  • the route calculation unit 130 acquires information indicating the route calculation formula FC from the catenary calculation unit 120 (step S160).
  • the route calculation unit 130 calculates the flight route FL on which the unmanned air vehicle D flies based on the acquired route calculation formula FC (step S170).
  • the route calculation unit 130 supplies information indicating the calculated flight route FL to the flight control unit 140 (step S180).
  • the flight control unit 140 acquires information indicating the flight route FL from the route calculation unit 130 (step S190).
  • the flight control unit 140 controls the flight of the unmanned air vehicle D based on the acquired flight path FL (step S200).
  • the state detection unit 30 detects at least one of the temperature of the electric wire WR and the corona discharge generated from the electric wire WR. Thereby, the state detection unit 30 detects the degree of heat loss due to breakage or deterioration of the electric wire WR, or the degree of corona discharge. That is, according to the state detection unit 30 of the present embodiment, the state of the electric wire WR can be detected.
  • the route calculation unit 130 calculates a flight route FL that is a predetermined distance away from the catenary curve C formed by the electric wire WR based on the route calculation formula FC calculated by the catenary calculation unit 120.
  • the state detection unit 30 detects the state of the electric wire WR, if the positions of the state detection unit 30 and the electric wire WR are different, the accuracy of the detection result may be different. That is, when the state of the electric wire WR is accurately detected by the state detection unit 30, it is required that the positions of the unmanned air vehicle D and the electric wire WR are sequentially the same.
  • the unmanned air vehicle D that detects the state of the power transmission line flies in the vicinity of the power transmission line and flies along the catenary curve C formed by the electric wire suspended from the electric wire support point.
  • the unmanned air vehicle D flies away from the electric wire WR when approaching the electric wire WR by a predetermined distance or more.
  • the unmanned air vehicle D flies in a direction approaching the electric wire WR when it is separated from the electric wire WR by a predetermined distance or more.
  • the unmanned air vehicle D may have realized the flight in the vicinity of the electric wire WR by repeating this operation.
  • the flight direction of the unmanned air vehicle D is successively feedback controlled based on the current flight position of the unmanned air vehicle D and the position of the electric wire WR. Thereby, the flight of the unmanned air vehicle D is controlled. That is, in the conventional technique, a control delay occurs in the control of the flight direction of the unmanned air vehicle D. That is, when the unmanned air vehicle D flies according to the conventional technique, the distance from the electric wire WR of the unmanned air vehicle D may not be stabilized due to the control delay described above, and thus the state of the electric wire WR can be detected with high accuracy. There were cases where it was not possible.
  • the unmanned air vehicle D flies at a position away from the electric wire WR by a predetermined distance by the unmanned air vehicle D flying on the flight route FL calculated by the route calculation unit 130. can do. Specifically, the state detection device 1 of the present embodiment estimates the flight direction of the unmanned air vehicle D based on the current position of the unmanned air vehicle D and the flight path FL. That is, according to the state detection device 1 of the present embodiment, the flight direction of the unmanned air vehicle D is estimated in advance by the flight path FL.
  • the electric wire WR has a shape indicated by the catenary curve C. Further, the flight path FL is calculated based on the catenary curve C as described above.
  • the flight path FL of the unmanned air vehicle D is along the electric wire WR. That is, according to the state detection device 1 of the present embodiment, the unmanned air vehicle D can fly with high accuracy along the electric wire WR. That is, according to the state detection device 1 of the present embodiment, the state of the electric wire WR can be detected with high accuracy.
  • the state detection device 1 includes a control unit 10, an imaging unit 20, and a state detection unit 30.
  • the imaging unit 20 captures a landscape image P in which a landscape around the unmanned air vehicle D is captured.
  • the control unit 10 includes an image extraction unit 110, a catenary calculation unit 120, a route calculation unit 130, and a flight control unit 140 as functional units.
  • the catenary calculation unit 120 is based on the image of the plurality of structures included in the landscape image P captured by the imaging unit 20 and the image of the wire WR suspended between the plurality of structures, and calculates the route of the wire WR. Calculate FC.
  • the route calculation unit 130 calculates the flight route FL of the unmanned air vehicle D along the catenary curve C of the electric wire WR calculated by the catenary calculation unit 120.
  • the flight control unit 140 controls the flight of the unmanned air vehicle D based on the flight path FL calculated by the path calculation unit 130.
  • the state detection unit 30 calculates the electric wire WR or the calculation target of the catenary curve C. The state of the other electric wire WR supported by the same steel tower ST as the electric wire WR is detected.
  • the state detection device 1 of the present embodiment can control the flight of the unmanned air vehicle D along the electric wire WR based on the landscape image P captured by the imaging unit 20.
  • the state detection device 1 controls the flight of the unmanned air vehicle D, so that the unmanned air vehicle D can fly along the electric wire WR.
  • the state detection apparatus 1 of this embodiment can detect the state of the electric wire WR accurately.
  • FIG. 7 is a configuration diagram illustrating an example of a configuration of the state detection device 2 according to the second embodiment.
  • symbol is attached
  • the control unit 11 included in the state detection device 2 according to the present embodiment further includes a facility information storage unit 150 and a catenary estimation unit 160 in addition to each unit of the control unit 10 included in the state detection device 1. Prepare.
  • the facility information storage unit 150 stores facility information EI in advance.
  • the facility information EI includes at least information indicating the position of the structure, the line density ⁇ of the electric wire WR, and the tension T of the electric wire WR.
  • the information indicating the position of the structure is information indicating the position of the steel tower ST, for example.
  • the information indicating the position of the steel tower ST is information indicating the coordinates of the position of the steel tower ST, for example.
  • the catenary estimation unit 160 reads the facility information EI from the facility information storage unit 150.
  • the catenary estimation unit 160 estimates the estimated path equation EC based on the information indicating the position of the structure stored in the facility information EI, the line density ⁇ of the electric wire WR, and the tension T of the electric wire WR.
  • the estimated route formula EC is a derivation formula of the catenary curve C formed by the electric wire WR estimated by the catenary estimation unit 160.
  • the catenary estimation unit 160 determines a parameter of a derivation formula for the catenary curve C based on the read facility information EI.
  • the catenary estimation unit 160 supplies information indicating the estimated route equation EC estimated to the route calculation unit 130.
  • the route calculation unit 130 calculates the flight route FL based on the route calculation formula FC acquired from the catenary calculation unit 120 and the estimated route formula EC acquired from the catenary estimation unit 160. In this example, the route calculation unit 130 calculates the average of the route calculation formula FC and the estimated route formula EC as the flight route FL.
  • the route calculation unit 130 calculates the flight route FL based on the average of the route calculation formula FC and the estimated route formula EC
  • the present invention is not limited thereto.
  • the route calculation unit 130 may calculate the flight route FL by any method as long as the flight route FL is calculated based on the route calculation formula FC and the estimated route formula EC.
  • the span information SP may not be acquired from the landscape image P captured by the imaging unit 20 due to dense fog or the like.
  • the route calculation formula FC calculated by the catenary calculation unit 120 based on the landscape image P and the shape of the catenary curve C formed by the electric wire WR deviate from each other.
  • the route calculation unit 130 may calculate the flight route FL based on the estimated route equation EC when the route calculation equation FC deviates from a predetermined value.
  • the catenary estimation unit 160 may estimate the estimated route equation EC of the position corresponding to the position of the electric wire WR where the catenary calculation unit 120 calculates the route calculation equation FC based on the facility information EI.
  • the unmanned air vehicle D may be provided with GPS (Global Positioning System), and the position where the unmanned air vehicle D is flying may be detected by GPS.
  • the catenary estimation unit 160 may estimate the shape of the catenary curve C formed by the electric wire WR at a position based on the flight position detected by the GPS.
  • the route calculation unit 130 may calculate the flight route FL based on the route calculation formula FC calculated by the catenary calculation unit 120 and the estimated route formula EC of the position corresponding to the route calculation formula FC.
  • the facility information EI may include an elongation rate of the electric wire WR according to the ambient temperature of the electric wire WR.
  • the catenary estimation unit 160 causes the wire WR to expand according to the ambient temperature of the electrical wire WR detected by the state detection unit 30 as the unmanned air vehicle D flies along the flight path FL and the ambient temperature of the electrical wire WR.
  • the estimated path equation EC may be estimated based on the rate.
  • FIG. 8 is a flowchart illustrating an example of the operation of the control unit 11 according to the second embodiment.
  • steps S100 to S200 are the same as the steps in the first embodiment described above, and a description thereof will be omitted.
  • the catenary estimation unit 160 reads the facility information EI from the facility information storage unit 150 (step S300).
  • the catenary estimation unit 160 estimates the catenary curve C based on the read facility information EI (step S310).
  • the catenary estimation unit 160 supplies information indicating the estimated route equation EC indicating the estimated catenary curve C to the route calculation unit 130 (step S320).
  • the route calculation unit 130 acquires information indicating the estimated route equation EC from the catenary estimation unit 160 (step S330).
  • the route calculation unit 130 calculates the flight route FL based on the acquired route calculation formula FC and the estimated route formula EC (step S340).
  • the control unit 11 of the present embodiment includes the facility information storage unit 150 and the catenary estimation unit 160 in addition to the units included in the control unit 10.
  • the facility information storage unit 150 stores information indicating the position of the structure, information indicating the weight of the electric wire WR, and the tension T of the electric wire WR.
  • the catenary estimation unit 160 estimates the catenary curve C of the electric wire WR based on the facility information EI.
  • the route calculation unit 130 calculates the flight route FL based on the calculation result of the catenary calculation unit 120 and the estimation result of the catenary estimation unit 160.
  • the path calculation formula FC calculated by the catenary calculation unit 120 and the shape of the catenary curve C formed by the electric wire WR may deviate.
  • the route calculation unit 130 of the present embodiment can calculate the flight route FL based on the estimated route equation EC estimated by the catenary estimation unit 160 and the route calculation equation FC calculated by the catenary calculation unit 120. That is, the state detection device 2 of the present embodiment calculates the flight path FL based on the path calculation formula FC and the estimated path formula EC. Thereby, the state detection apparatus 2 of this embodiment can detect the state of the electric wire WR with higher accuracy than when the flight route FL is calculated based only on the route calculation formula FC.
  • each of the above devices has a computer inside.
  • the process of each device described above is stored in a computer-readable recording medium in the form of a program, and the above-described processing is performed by the computer reading and executing the program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Electric Cable Installation (AREA)

Abstract

In the present invention, an unmanned flight vehicle flies along a catenary curve, thereby detecting the state of an electric wire more accurately. The state detection device is equipped with: an imaging unit for capturing a scenery image showing the scenery around an unmanned flight vehicle; a catenary calculation part for calculating the catenary curve of an electric wire on the basis of an image of multiple structures included in the scenery image captured by the imaging unit and an image of the electric wire suspended between the multiple structures; a flight path calculation part for calculating a flight path of the unmanned flight vehicle along the catenary curve of the electric wire calculated by the catenary calculation part; a flight control part for controlling the flight of the unmanned flight vehicle on the basis of the flight path calculated by the flight path calculation part; and a state detection unit for detecting, during the flight of the unmanned flight vehicle along the flight path which is calculated on the basis of the catenary curve calculated by the catenary calculation part, the state of the electric wire for which the catenary curve is calculated, or the state of another electric wire which is suspended between the multiple structures suspending the electric wire for which the catenary curve is calculated. The state detection device is mounted on the unmanned flight vehicle.

Description

状態検出装置及び状態検出プログラムStatus detection device and status detection program
 本発明は、状態検出装置及び状態検出プログラムに関する。 The present invention relates to a state detection device and a state detection program.
 従来、無人飛行体(例えば、ドローン)が自律飛行し、送電線の点検箇所まで飛行することにより、送電線の近傍から撮像した画像を用いて送電線を点検する技術が知られている。 Conventionally, a technique for inspecting a power transmission line using an image captured from the vicinity of the power transmission line when an unmanned air vehicle (for example, a drone) flies autonomously and flies to the inspection position of the power transmission line is known.
特開2001-39397号公報JP 2001-39397 A
 しかしながら、特許文献1に記載されるような無人飛行体は、送電線の近傍を飛行するものであって、電線支持点に懸垂される電線のなす曲線(以下、カテナリー曲線)に沿って飛行するものではない。すなわち、電線の温度、及び電線から発生するコロナ放電等の電線の状態を検出する場合、無人飛行体が飛行する位置が都度異なり、精度よく電線の状態を検出できない場合があった。本発明は、上記の点に鑑みてなされたものであり、無人飛行体がカテナリー曲線に沿って飛行することにより、電線の状態をより精度よく検出する状態検出装置を提供する。 However, the unmanned aerial vehicle as described in Patent Document 1 flies in the vicinity of the transmission line, and flies along a curve (hereinafter referred to as a catenary curve) formed by an electric wire suspended from an electric wire support point. It is not a thing. That is, when detecting the temperature of the electric wire and the state of the electric wire such as corona discharge generated from the electric wire, the position where the unmanned air vehicle flies is different every time, and the state of the electric wire may not be detected accurately. This invention is made | formed in view of said point, and provides the state detection apparatus which detects the state of an electric wire more accurately, when an unmanned air vehicle flies along a catenary curve.
 本発明の一態様は、無人飛行体の周辺の風景が撮像された風景画像を撮像する撮像部と、前記撮像部が撮像する前記風景画像に含まれる複数の構造物の画像と、前記複数の構造物間に懸垂される電線の画像とに基づいて、前記電線のカテナリー曲線を算出するカテナリー算出部と、前記カテナリー算出部が算出した前記電線の前記カテナリー曲線に沿う無人飛行体の飛行経路を算出する飛行経路算出部と、前記飛行経路算出部が算出した前記飛行経路に基づいて、無人飛行体の飛行を制御する飛行制御部と、前記カテナリー算出部が算出した前記カテナリー曲線に基づいて算出された前記飛行経路を無人飛行体が飛行している時に、当該カテナリー曲線の算出対象の電線、または前記算出対象の電線を懸垂する前記複数の構造物間に懸垂される他の電線の状態を検出する状態検出部とを備え、無人飛行体に搭載される状態検出装置である。 One aspect of the present invention is an imaging unit that captures a landscape image in which a landscape around an unmanned air vehicle is captured, images of a plurality of structures included in the landscape image captured by the imaging unit, and the plurality of the plurality of structures A catenary calculation unit that calculates a catenary curve of the electric wire based on an image of the electric wire suspended between structures, and a flight path of the unmanned air vehicle along the catenary curve of the electric wire calculated by the catenary calculation unit. Based on the flight path calculation unit to be calculated, the flight control unit that controls the flight of the unmanned air vehicle based on the flight path calculated by the flight path calculation unit, and the catenary curve calculated by the catenary calculation unit When an unmanned aerial vehicle is flying along the flight path, the catenary curve calculation target wire is suspended between the plurality of structures that suspend the calculation target wire. That a state detector for detecting the state of the other wire, a state detecting device to be mounted on an unmanned air vehicle.
 また、本発明の一態様の状態検出装置において、前記状態検出部は、前記電線の温度、及び前記電線から発生するコロナ放電のうち、少なくとも1つを検出する。 Further, in the state detection device according to one aspect of the present invention, the state detection unit detects at least one of the temperature of the electric wire and the corona discharge generated from the electric wire.
 また、本発明の一態様の状態検出装置において、前記飛行経路算出部は、前記カテナリー算出部が算出した前記電線の前記カテナリー曲線から所定の距離離れた飛行経路を算出する。 Further, in the state detection device according to one aspect of the present invention, the flight path calculation unit calculates a flight path that is a predetermined distance away from the catenary curve of the wire calculated by the catenary calculation unit.
 また、本発明の一態様の状態検出装置は、前記構造物の位置を示す情報と、前記電線の自重と、前記電線の張力とを示す情報とが含まれる設備情報に基づいて、前記電線のカテナリー曲線を推定するカテナリー推定部を更に備え、前記飛行経路算出部は、前記カテナリー算出部の算出結果と、前記カテナリー推定部の推定結果とに基づいて、飛行経路を算出する。 Moreover, the state detection device according to an aspect of the present invention is based on facility information including information indicating the position of the structure, own weight of the wire, and information indicating the tension of the wire. The apparatus further includes a catenary estimation unit that estimates a catenary curve, and the flight path calculation unit calculates a flight path based on a calculation result of the catenary calculation unit and an estimation result of the catenary estimation unit.
 また、本発明の一態様は、コンピュータに、無人飛行体の周辺の風景が撮像された風景画像を撮像する撮像ステップ、前記撮像ステップが撮像する前記風景画像に含まれる複数の構造物の画像と、前記複数の構造物間に懸垂される電線の画像とに基づいて、前記電線のカテナリー曲線を算出するカテナリー算出ステップと、前記カテナリー算出ステップが算出した前記電線の前記カテナリー曲線に沿う無人飛行体の飛行経路を算出する飛行経路算出ステップと、前記飛行経路算出ステップが算出した前記飛行経路に基づいて、無人飛行体の飛行を制御する飛行制御ステップと、前記カテナリー算出ステップが算出した前記カテナリー曲線に基づいて算出された前記飛行経路を無人飛行体が飛行している時に、当該カテナリー曲線の算出対象の電線、または前記算出対象の電線を懸垂する前記複数の構造物間に懸垂される他の電線の状態を検出する状態検出ステップとを実行させるための状態検出プログラムである。 According to one embodiment of the present invention, an imaging step of capturing a landscape image in which a landscape around an unmanned air vehicle is imaged in a computer, images of a plurality of structures included in the landscape image captured by the imaging step, and A catenary calculating step of calculating a catenary curve of the electric wire based on an image of the electric wire suspended between the plurality of structures, and an unmanned air vehicle along the catenary curve of the electric wire calculated by the catenary calculating step A flight path calculation step for calculating the flight path, a flight control step for controlling the flight of the unmanned air vehicle based on the flight path calculated by the flight path calculation step, and the catenary curve calculated by the catenary calculation step When an unmanned air vehicle is flying along the flight path calculated based on A state detecting program for executing the status detection step of detecting the other conditions of the wire which is suspended between the plurality of structures for suspending the wires or the calculation target of the wire.
 本発明によれば、電線の状態を精度よく検出することができる。 According to the present invention, the state of the electric wire can be detected with high accuracy.
本発明の第1実施形態に係る状態検出装置を搭載する無人飛行体の外観の一例を示す模式図である。It is a schematic diagram which shows an example of the external appearance of the unmanned air vehicle which mounts the state detection apparatus which concerns on 1st Embodiment of this invention. 第1実施形態の状態検出装置を搭載する無人飛行体の飛行の一例を示す模式図である。It is a schematic diagram which shows an example of the flight of the unmanned air vehicle which mounts the state detection apparatus of 1st Embodiment. 第1実施形態の状態検出装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the state detection apparatus of 1st Embodiment. 第1実施形態の撮像部が撮像する風景画像の一例を示す模式図である。It is a schematic diagram which shows an example of the landscape image which the imaging part of 1st Embodiment images. 第1実施形態の無人飛行体の飛行経路の一例を示す模式図である。It is a schematic diagram which shows an example of the flight path | route of the unmanned air vehicle of 1st Embodiment. 第1実施形態の制御部の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of the control part of 1st Embodiment. 第2実施形態の状態検出装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the state detection apparatus of 2nd Embodiment. 第2実施形態の制御部の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of the control part of 2nd Embodiment.
[第1実施形態]
 以下、図面を参照して本発明の第1実施形態について説明する。図1は、本発明の第1実施形態に係る状態検出装置1を搭載する無人飛行体Dの外観の一例を示す模式図である。ここでは、無人飛行体Dがドローンである場合を一例として説明する。また、この一例では無人飛行体Dは、自律制御により飛行する。図1に示す通り、無人飛行体Dは、複数のロータを備えており、このロータの回転数などを調整することにより、様々な方向に飛行する。
 なお、ここでは無人飛行体Dの具体例としてのドローンについて説明するが、無人飛行体Dはこれに限られない。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an example of the appearance of an unmanned air vehicle D equipped with a state detection device 1 according to the first embodiment of the present invention. Here, a case where the unmanned air vehicle D is a drone will be described as an example. In this example, the unmanned air vehicle D flies by autonomous control. As shown in FIG. 1, the unmanned air vehicle D includes a plurality of rotors, and flies in various directions by adjusting the number of rotations of the rotors.
In addition, although the drone as a specific example of the unmanned air vehicle D is demonstrated here, the unmanned air vehicle D is not restricted to this.
 次に図2を参照して、無人飛行体Dの飛行について説明する。図2は、本発明の第1実施形態に係る状態検出装置1を搭載する無人飛行体Dの飛行の一例を示す模式図である。
 図2に示す通り、無人飛行体Dは、鉄塔STが支持する電線WRの近傍を飛行する。より具体的には、無人飛行体Dは、鉄塔STに支持される電線WRに沿って飛行する。ここで、鉄塔STとは、例えば、送電線鉄塔である。また、電線WRとは、例えば、送電線である。
 無人飛行体Dは、状態検出装置1によってその飛行が制御される。
Next, the flight of the unmanned air vehicle D will be described with reference to FIG. FIG. 2 is a schematic diagram showing an example of the flight of the unmanned air vehicle D equipped with the state detection device 1 according to the first embodiment of the present invention.
As shown in FIG. 2, the unmanned air vehicle D flies near the electric wire WR supported by the steel tower ST. More specifically, the unmanned air vehicle D flies along the electric wire WR supported by the steel tower ST. Here, the steel tower ST is, for example, a power transmission line steel tower. Moreover, the electric wire WR is, for example, a power transmission line.
The flight of the unmanned air vehicle D is controlled by the state detection device 1.
 図1に戻り、無人飛行体Dに搭載される状態検出装置1は、制御部10と、撮像部20と、状態検出部30とを備える。状態検出装置1のより具体的な構成について、図3を参照して説明する。 Returning to FIG. 1, the state detection device 1 mounted on the unmanned air vehicle D includes a control unit 10, an imaging unit 20, and a state detection unit 30. A more specific configuration of the state detection device 1 will be described with reference to FIG.
 図3は、第1実施形態の状態検出装置1の構成の一例を示す構成図である。
 撮像部20は、カメラを備えており、無人飛行体Dの周辺の風景を撮像する。具体的には、撮像部20は、風景の画像である風景画像Pを撮像する。より具体的には、撮像部20は、無人飛行体Dが飛行する進行方向の風景画像Pを撮像する。
FIG. 3 is a configuration diagram illustrating an example of a configuration of the state detection device 1 according to the first embodiment.
The imaging unit 20 includes a camera and images a landscape around the unmanned air vehicle D. Specifically, the imaging unit 20 captures a landscape image P that is a landscape image. More specifically, the imaging unit 20 captures a landscape image P in the traveling direction in which the unmanned air vehicle D flies.
 次に図4を参照して、風景画像Pについて説明する。図4は、第1実施形態の撮像部20が撮像する風景画像Pの一例を示す模式図である。ここで、風景画像Pの座標系を定義する。この一例において、風景画像Pとは、矩形画像である。風景画像Pの画素の座標は、直交画像座標系(Xp、Yp)によって示される。風景画像Pの横方向が軸Xpであり、軸Xpと直交する風景画像Pの縦方向が軸Ypである。また、風景画像Pに含まれる風景の座標は、三次元直交座標系(Xg,Yg,Zg)によって示される。風景画像Pに含まれる風景の鉛直上方向が軸Zgであり、この軸Zgにそれぞれ直行する方向が軸Xg、軸Ygである。 Next, the landscape image P will be described with reference to FIG. FIG. 4 is a schematic diagram illustrating an example of a landscape image P captured by the imaging unit 20 of the first embodiment. Here, the coordinate system of the landscape image P is defined. In this example, the landscape image P is a rectangular image. The coordinates of the pixels of the landscape image P are indicated by an orthogonal image coordinate system (Xp, Yp). The horizontal direction of the landscape image P is the axis Xp, and the vertical direction of the landscape image P orthogonal to the axis Xp is the axis Yp. The coordinates of the landscape included in the landscape image P are indicated by a three-dimensional orthogonal coordinate system (Xg, Yg, Zg). The vertical upward direction of the landscape included in the landscape image P is the axis Zg, and the directions orthogonal to the axis Zg are the axis Xg and the axis Yg, respectively.
 この一例では、撮像部20は、電線WRの一部を撮像している。風景画像Pには、鉄塔STの画像と、電線WRの画像とが含まれる。この鉄塔STとは、構造物の一例である。
この一例では、2本の鉄塔ST、すなわち鉄塔ST1と鉄塔ST2との間に、電線WRが懸垂されている。また、風景画像Pには、樹木や地面、空などの背景画像BGが含まれる。
In this example, the imaging unit 20 images a part of the electric wire WR. The landscape image P includes an image of the steel tower ST and an image of the electric wire WR. This steel tower ST is an example of a structure.
In this example, the electric wire WR is suspended between the two steel towers ST, that is, the steel tower ST1 and the steel tower ST2. The landscape image P includes a background image BG such as a tree, the ground, and the sky.
 図3に戻り、撮像部20は、撮像した風景画像Pを制御部10へ供給する。
 制御部10は、CPU(Central Processing Unit)を備えており、画像抽出部110と、カテナリー算出部120と、経路算出部130と、飛行制御部140とをその機能部として備える。
 画像抽出部110は、撮像部20から風景画像Pを取得する。画像抽出部110は、風景画像Pから既知の画像処理技術によって構造物間の距離を示す径間情報SPを抽出する。
Returning to FIG. 3, the imaging unit 20 supplies the captured landscape image P to the control unit 10.
The control unit 10 includes a CPU (Central Processing Unit), and includes an image extraction unit 110, a catenary calculation unit 120, a route calculation unit 130, and a flight control unit 140 as functional units.
The image extraction unit 110 acquires the landscape image P from the imaging unit 20. The image extraction unit 110 extracts the span information SP indicating the distance between the structures from the landscape image P by a known image processing technique.
 図4に示す通り、径間情報SPとは、2本の鉄塔STのそれぞれの頂点、すなわち点P1と点P2を結ぶ弦CDの長さを示す情報である。 As shown in FIG. 4, the span information SP is information indicating the lengths of the chords CD connecting the vertices of the two steel towers ST, that is, the points P1 and P2.
 図3に戻り、画像抽出部110は、抽出した径間情報SPをカテナリー算出部120へ供給する。
 カテナリー算出部120は、取得した径間情報SPに基づいて、経路算出式FCを算出する。経路算出式FCとは、電線WRがなすカテナリー曲線Cの導出式である。具体的には、カテナリー算出部120は、取得した径間情報SPに基づいて、カテナリー曲線Cの導出式のパラメータを決定する。以下、カテナリー算出部120が径間情報SPに基づいて、カテナリー曲線Cを示す導出式のパラメータを決定することを、カテナリー曲線Cを算出するとも記載する。カテナリー曲線Cの導出式とは、式(1)である。
Returning to FIG. 3, the image extraction unit 110 supplies the extracted span information SP to the catenary calculation unit 120.
The catenary calculation unit 120 calculates the route calculation formula FC based on the acquired span information SP. The route calculation formula FC is a derivation formula for the catenary curve C formed by the electric wire WR. Specifically, the catenary calculating unit 120 determines the parameters of the derivation formula for the catenary curve C based on the acquired span information SP. Hereinafter, the determination of the parameter of the derivation formula indicating the catenary curve C based on the span information SP by the catenary calculation unit 120 is also referred to as calculating the catenary curve C. The derivation formula for the catenary curve C is formula (1).
Figure JPOXMLDOC01-appb-M000001
                  
Figure JPOXMLDOC01-appb-M000001
                  
 この一例では、線密度ωと、張力Tとが所定の大きさである場合について説明する。
 ここで、線密度ωとは、電線WRの単位長当たりの自重である。また、張力Tとは、電線WRが鉄塔STに支持されるに際して、電線WRに係る張力である。
 カテナリー算出部120は、式(1)と、径間情報SPとに基づいて、経路算出式FCを算出する。
 すなわち、カテナリー算出部120は、撮像部20が撮像する風景画像Pに含まれる構造物の画像と、構造物に懸垂される電線WRの画像とに基づいて、電線WRがなすカテナリー曲線Cを算出する。
 カテナリー算出部120は、算出した経路算出式FCを示す情報を経路算出部130へ供給する。
In this example, the case where the linear density ω and the tension T are predetermined magnitudes will be described.
Here, the line density ω is the weight per unit length of the electric wire WR. Further, the tension T is a tension related to the electric wire WR when the electric wire WR is supported by the steel tower ST.
The catenary calculation unit 120 calculates the route calculation formula FC based on the formula (1) and the span information SP.
That is, the catenary calculating unit 120 calculates the catenary curve C formed by the electric wire WR based on the image of the structure included in the landscape image P captured by the imaging unit 20 and the image of the electric wire WR suspended from the structure. To do.
The catenary calculation unit 120 supplies information indicating the calculated route calculation formula FC to the route calculation unit 130.
 なお、この一例では、カテナリー算出部120が取得した径間情報SPに基づいて、経路算出式FCを算出する場合について説明したが、これに限られない。カテナリー算出部120は、径間情報SP以外の情報であっても、経路算出式FCを算出してもよい。
 例えば、画像抽出部110は、既知の画像処理技術によって、電線WRがなすカテナリー曲線Cのある2点の座標を抽出してもよい。カテナリー算出部120は、画像抽出部110が抽出したある電線WRがなすカテナリー曲線Cの3点の座標に基づいて、経路算出式FCを算出してもよい。
In this example, although the case where the route calculation formula FC is calculated based on the span information SP acquired by the catenary calculation unit 120 has been described, the present invention is not limited thereto. The catenary calculation unit 120 may calculate the route calculation formula FC even if it is information other than the span information SP.
For example, the image extraction unit 110 may extract the coordinates of two points having a catenary curve C formed by the electric wire WR by a known image processing technique. The catenary calculation unit 120 may calculate the route calculation formula FC based on the coordinates of the three points of the catenary curve C formed by a certain electric wire WR extracted by the image extraction unit 110.
 経路算出部130は、カテナリー算出部120が算出した経路算出式FCを示す情報を取得する。経路算出部130は、取得した経路算出式FCに基づいて、無人飛行体Dが飛行する飛行経路FLを算出する。
 この一例では、無人飛行体Dが電線WRから離隔距離ODだけ上方を飛行する場合について説明する。離隔距離ODとは、無人飛行体Dが飛行する電線WRから無人飛行体Dまでの距離である。また、上方とは、軸Zgの正の方向である。
The route calculation unit 130 acquires information indicating the route calculation formula FC calculated by the catenary calculation unit 120. The route calculation unit 130 calculates the flight route FL on which the unmanned air vehicle D flies based on the acquired route calculation formula FC.
In this example, a case where the unmanned air vehicle D flies upward from the electric wire WR by the separation distance OD will be described. The separation distance OD is a distance from the electric wire WR on which the unmanned air vehicle D flies to the unmanned air vehicle D. The upper direction is the positive direction of the axis Zg.
 次に、図5を参照して飛行経路FLの一例について説明する。図5は、第1実施形態の無人飛行体Dの飛行経路FLの一例を示す模式図である。
 図5に示す通り、飛行経路FLは、電線WRから離隔距離ODだけ上方であって、かつ電線WRがなすカテナリー曲線Cと同じ形状の経路である。つまり、飛行経路FLは、電線WRに沿った経路である。
 すなわち、経路算出部130は、カテナリー算出部120が算出した経路算出式FCから所定の距離離れた飛行経路FLを算出する。具体的には、経路算出部130は、電線WRがなすカテナリー曲線Cの形状に沿う無人飛行体Dの飛行経路FLを算出する。
Next, an example of the flight path FL will be described with reference to FIG. FIG. 5 is a schematic diagram illustrating an example of a flight path FL of the unmanned air vehicle D according to the first embodiment.
As shown in FIG. 5, the flight path FL is a path that is above the electric wire WR by the separation distance OD and has the same shape as the catenary curve C formed by the electric wire WR. That is, the flight path FL is a path along the electric wire WR.
That is, the route calculation unit 130 calculates a flight route FL that is a predetermined distance away from the route calculation formula FC calculated by the catenary calculation unit 120. Specifically, the route calculation unit 130 calculates the flight route FL of the unmanned air vehicle D along the shape of the catenary curve C formed by the electric wire WR.
 なお、この一例では、飛行経路FLが電線WRの上方である場合について説明したが、これに限られない。飛行経路FLは、電線WRがなすカテナリー曲線Cの形状に基づいて算出されれば、電線WRの左右方向であってもよく、下方であってもよい。 In addition, in this example, although the case where the flight path | route FL was above the electric wire WR was demonstrated, it is not restricted to this. As long as the flight path FL is calculated based on the shape of the catenary curve C formed by the electric wire WR, the flight path FL may be in the left-right direction of the electric wire WR or may be below.
 図3に戻り、経路算出部130は、飛行経路FLを示す情報を飛行制御部140へ供給する。
 飛行制御部140は、経路算出部130から取得した飛行経路FLに基づいて、無人飛行体Dの飛行を制御する。具体的には、飛行制御部140は、飛行経路FLを無人飛行体Dが飛行するよう、無人飛行体Dのロータの回転数等を制御する。すなわち、飛行制御部140は、経路算出部130が算出した飛行経路FLに基づいて、無人飛行体の飛行を制御する。
 これにより、無人飛行体Dは、電線WRに沿って飛行することができる。
 飛行制御部140は、地表面から無人飛行体Dが飛行する位置までの高さを示す高さ情報と、無人飛行体Dが飛行する座標を示す位置情報とを示す飛行位置情報Hを状態検出部30へ供給する。
Returning to FIG. 3, the route calculation unit 130 supplies information indicating the flight route FL to the flight control unit 140.
The flight control unit 140 controls the flight of the unmanned air vehicle D based on the flight path FL acquired from the path calculation unit 130. Specifically, the flight control unit 140 controls the rotational speed of the rotor of the unmanned air vehicle D so that the unmanned air vehicle D flies along the flight path FL. That is, the flight control unit 140 controls the flight of the unmanned air vehicle based on the flight path FL calculated by the path calculation unit 130.
Thereby, the unmanned air vehicle D can fly along the electric wire WR.
The flight control unit 140 detects the flight position information H indicating the height information indicating the height from the ground surface to the position where the unmanned air vehicle D flies and the position information indicating the coordinates where the unmanned air vehicle D flies. To the unit 30.
 状態検出部30は、熱検出部310と、コロナ検出部320とを備える。
 熱検出部310は、無人飛行体Dが沿って飛行する電線WRの温度を検出する。具体的には、熱検出部310は、無人飛行体Dが沿って飛行する電線WRに生じる温度を検出する。これにより、熱検出部310は、電線WRの破損、または劣化等による熱損失の程度を検出する。熱検出部310とは、例えば、赤外線センサである。
 コロナ検出部320は、無人飛行体Dが沿って飛行する電線WRのコロナ放電を検出する。具体的には、コロナ検出部320は、無人飛行体Dが沿って飛行する電線WRに生じるコロナ放電を検出する。これにより、コロナ検出部320は、電線WRの破損、または劣化等によるコロナ放電の程度を検出する。コロナ検出部320とは、例えば、音響センサである。
The state detection unit 30 includes a heat detection unit 310 and a corona detection unit 320.
The heat detector 310 detects the temperature of the electric wire WR that the unmanned air vehicle D flies along. Specifically, the heat detection unit 310 detects the temperature generated in the electric wire WR along which the unmanned air vehicle D flies. Thereby, the heat detection unit 310 detects the degree of heat loss due to breakage or deterioration of the electric wire WR. The heat detection unit 310 is, for example, an infrared sensor.
The corona detector 320 detects a corona discharge of the electric wire WR that the unmanned air vehicle D flies along. Specifically, the corona detector 320 detects a corona discharge that occurs in the electric wire WR along which the unmanned air vehicle D flies. Thereby, the corona detector 320 detects the degree of corona discharge due to the breakage or deterioration of the electric wire WR. The corona detection unit 320 is, for example, an acoustic sensor.
 すなわち、状態検出部30は、カテナリー算出部120が算出したカテナリー曲線Cに基づいて算出された飛行経路FLを無人飛行体Dが飛行している時に、カテナリー曲線Cの算出対象の電線WRの状態を検出する。この一例では、電線WRの状態とは、電線WRの温度、および電線WRのコロナ放電とによって示される。
 ここで、状態検出部30は、無人飛行体Dが飛行しているか否かを判定する。状態検出部30は、無人飛行体Dが飛行していると判定した場合に、電線WRの状態を検出する。
 具体的には、状態検出部30は、制御部10から飛行位置情報Hを取得する。状態検出部30は、取得した飛行位置情報Hが所定の値を示す場合に、無人飛行体Dが飛行していると判定する。具体的には、状態検出部30は、地表面から無人飛行体Dが飛行する位置までの高さを示す高さ情報が所定の値より大きい場合であって、かつ無人飛行体Dが飛行する座標を示す情報が状態を判定する電線WRの位置を示す場合に、無人飛行体Dが飛行していると判定する。状態検出部30は、無人飛行体Dが飛行していると判定された場合、熱検出部310、及びコロナ検出部320により電線WRの状態を検出する。より具体的には、所定の値が地表面から鉄塔STの頂点までの高さを示す値である場合であって、かつ座標を示す情報が状態を判定する電線WRの位置を示す場合に、状態検出部30は、無人飛行体Dが鉄塔STの上方を飛行する時に電線WRの状態を検出する。
 状態検出部30は、検出した電線WRの状態を記憶部40に記憶させる。
That is, the state detection unit 30 is in the state of the electric wire WR to be calculated for the catenary curve C when the unmanned air vehicle D is flying on the flight path FL calculated based on the catenary curve C calculated by the catenary calculation unit 120. Is detected. In this example, the state of the electric wire WR is indicated by the temperature of the electric wire WR and the corona discharge of the electric wire WR.
Here, the state detection unit 30 determines whether or not the unmanned air vehicle D is flying. The state detection unit 30 detects the state of the electric wire WR when it is determined that the unmanned air vehicle D is flying.
Specifically, the state detection unit 30 acquires the flight position information H from the control unit 10. The state detection unit 30 determines that the unmanned air vehicle D is flying when the acquired flight position information H indicates a predetermined value. Specifically, the state detection unit 30 is a case where the height information indicating the height from the ground surface to the position where the unmanned air vehicle D flies is larger than a predetermined value, and the unmanned air vehicle D flies. When the information indicating the coordinates indicates the position of the electric wire WR whose state is to be determined, it is determined that the unmanned air vehicle D is flying. When it is determined that the unmanned air vehicle D is flying, the state detection unit 30 detects the state of the electric wire WR using the heat detection unit 310 and the corona detection unit 320. More specifically, when the predetermined value is a value indicating the height from the ground surface to the top of the steel tower ST, and the information indicating the coordinates indicates the position of the electric wire WR for determining the state, The state detection unit 30 detects the state of the electric wire WR when the unmanned air vehicle D flies above the steel tower ST.
The state detection unit 30 causes the storage unit 40 to store the detected state of the electric wire WR.
 なお、この一例では、状態検出部30が熱検出部310と、コロナ検出部320とを備える場合を一例にして説明したが、これに限られない。状態検出部30は、熱検出部310と、コロナ検出部320とのうち、いずれか一方を備えていてもよい。 In this example, the case where the state detection unit 30 includes the heat detection unit 310 and the corona detection unit 320 has been described as an example, but the present invention is not limited thereto. The state detection unit 30 may include any one of the heat detection unit 310 and the corona detection unit 320.
 また、この一例では、状態検出部30が電線WRの状態を記憶部40に記憶させる場合について説明したが、これに限られない。状態検出装置1は、電線WRの状態を集中監視する監視装置と通信する通信部を備えていてもよく、状態検出部30が検出した電線WRの状態を監視装置に逐次供給してもよい。 Moreover, in this example, although the case where the state detection part 30 memorize | stores the state of the electric wire WR in the memory | storage part 40 was demonstrated, it is not restricted to this. The state detection device 1 may include a communication unit that communicates with a monitoring device that centrally monitors the state of the electric wire WR, and may sequentially supply the state of the electric wire WR detected by the state detection unit 30 to the monitoring device.
 また、この一例では、状態検出部30が風景画像Pに撮像された電線WRであって、かつカテナリー算出部120がカテナリー曲線Cを算出した算出対象の電線WRの状態を検出する場合について説明したが、これに限られない。
 状態検出部30は、電線WRと同じ鉄塔STに支持される他の電線WRの状態を検出してもよい。
Further, in this example, the case where the state detection unit 30 detects the state of the electric wire WR that is the electric wire WR captured in the landscape image P and the catenary calculation unit 120 calculates the catenary curve C has been described. However, it is not limited to this.
The state detection unit 30 may detect the state of another electric wire WR supported by the same steel tower ST as the electric wire WR.
 次に、図6を参照して、制御部10による電線WRに沿った無人飛行体Dの飛行の制御について説明する。図6は、第1実施形態の制御部10の動作の一例を示す流れ図である。
 画像抽出部110は、撮像部20から風景画像Pを取得する(ステップS100)。画像抽出部110は、風景画像Pから径間情報SPを抽出する(ステップS110)。画像抽出部110は、カテナリー算出部120へ径間情報SPを供給する(ステップS120)。
Next, the control of the flight of the unmanned air vehicle D along the electric wire WR by the control unit 10 will be described with reference to FIG. FIG. 6 is a flowchart illustrating an example of the operation of the control unit 10 according to the first embodiment.
The image extraction unit 110 acquires the landscape image P from the imaging unit 20 (step S100). The image extraction unit 110 extracts the span information SP from the landscape image P (step S110). The image extraction unit 110 supplies the span information SP to the catenary calculation unit 120 (step S120).
 カテナリー算出部120は、画像抽出部110から径間情報SPを取得する(ステップS130)。カテナリー算出部120は、取得した径間情報SPに基づいて、電線WRがなすカテナリー曲線Cの導出式である経路算出式FCを算出する(ステップS140)。
カテナリー算出部120は、算出した経路算出式FCを示す情報を経路算出部130へ供給する(ステップS150)。
The catenary calculation unit 120 acquires the span information SP from the image extraction unit 110 (step S130). The catenary calculation unit 120 calculates a route calculation formula FC that is a derivation formula of the catenary curve C formed by the electric wire WR based on the acquired span information SP (step S140).
The catenary calculation unit 120 supplies information indicating the calculated route calculation formula FC to the route calculation unit 130 (step S150).
 経路算出部130は、カテナリー算出部120から経路算出式FCを示す情報を取得する(ステップS160)。経路算出部130は、取得した経路算出式FCに基づいて、無人飛行体Dが飛行する飛行経路FLを算出する(ステップS170)。経路算出部130は、算出した飛行経路FLを示す情報を飛行制御部140へ供給する(ステップS180)。 The route calculation unit 130 acquires information indicating the route calculation formula FC from the catenary calculation unit 120 (step S160). The route calculation unit 130 calculates the flight route FL on which the unmanned air vehicle D flies based on the acquired route calculation formula FC (step S170). The route calculation unit 130 supplies information indicating the calculated flight route FL to the flight control unit 140 (step S180).
 飛行制御部140は、経路算出部130から飛行経路FLを示す情報を取得する(ステップS190)。飛行制御部140は、取得した飛行経路FLに基づいて、無人飛行体Dの飛行を制御する(ステップS200)。 The flight control unit 140 acquires information indicating the flight route FL from the route calculation unit 130 (step S190). The flight control unit 140 controls the flight of the unmanned air vehicle D based on the acquired flight path FL (step S200).
 以上説明したように、状態検出部30は、電線WRの温度、及び電線WRから発生するコロナ放電のうち、少なくとも1つを検出する。これにより、状態検出部30は、電線WRの破損、または劣化等による熱損失の程度、またはコロナ放電の程度を検出する。つまり、本実施形態の状態検出部30によれば、電線WRの状態を検出することができる。 As described above, the state detection unit 30 detects at least one of the temperature of the electric wire WR and the corona discharge generated from the electric wire WR. Thereby, the state detection unit 30 detects the degree of heat loss due to breakage or deterioration of the electric wire WR, or the degree of corona discharge. That is, according to the state detection unit 30 of the present embodiment, the state of the electric wire WR can be detected.
 また、経路算出部130は、カテナリー算出部120が算出した経路算出式FCに基づいて、電線WRがなすカテナリー曲線Cから所定の距離離れた飛行経路FLを算出する。
 ここで、状態検出部30が電線WRの状態を検出するに際して、状態検出部30と、電線WRとの位置が異なると、その検出結果の精度が異なる場合がある。つまり、状態検出部30によって電線WRの状態を精度よく検出する場合、無人飛行体Dと、電線WRとの位置が逐次同じであることが求められる。
Further, the route calculation unit 130 calculates a flight route FL that is a predetermined distance away from the catenary curve C formed by the electric wire WR based on the route calculation formula FC calculated by the catenary calculation unit 120.
Here, when the state detection unit 30 detects the state of the electric wire WR, if the positions of the state detection unit 30 and the electric wire WR are different, the accuracy of the detection result may be different. That is, when the state of the electric wire WR is accurately detected by the state detection unit 30, it is required that the positions of the unmanned air vehicle D and the electric wire WR are sequentially the same.
 ここで、従来の技術では、送電線の状態を検出する無人飛行体Dは、送電線の近傍を飛行するものであって、電線支持点に懸垂される電線のなすカテナリー曲線Cに沿って飛行するものではない場合があった。例えば、従来の技術では、無人飛行体Dは、電線WRに所定の距離以上接近した場合に電線WRから離れる方向へ飛行する。また、従来の技術では、無人飛行体Dは、電線WRから所定の距離以上離れた場合に電線WRに接近する方向へ飛行する。従来の技術において、無人飛行体Dは、この動作を繰り返すことにより、電線WRの近傍での飛行を実現している場合があった。
 つまり、従来の技術では、無人飛行体Dの現在の飛行位置と、電線WRとの位置に基づいて、無人飛行体Dの飛行方向を逐次フィードバック制御する。これにより、無人飛行体Dの飛行は制御される。すなわち、従来の技術では、無人飛行体Dの飛行方向の制御には、制御遅れが生じる。
 つまり、従来の技術によって無人飛行体Dが飛行する場合、上述した制御遅れにより、無人飛行体Dの電線WRからの距離が安定しないことがあるため、電線WRの状態を精度よく検出することができない場合があった。
Here, in the conventional technique, the unmanned air vehicle D that detects the state of the power transmission line flies in the vicinity of the power transmission line and flies along the catenary curve C formed by the electric wire suspended from the electric wire support point. There was a case not to do. For example, in the conventional technology, the unmanned air vehicle D flies away from the electric wire WR when approaching the electric wire WR by a predetermined distance or more. Further, in the conventional technique, the unmanned air vehicle D flies in a direction approaching the electric wire WR when it is separated from the electric wire WR by a predetermined distance or more. In the conventional technique, the unmanned air vehicle D may have realized the flight in the vicinity of the electric wire WR by repeating this operation.
That is, in the conventional technique, the flight direction of the unmanned air vehicle D is successively feedback controlled based on the current flight position of the unmanned air vehicle D and the position of the electric wire WR. Thereby, the flight of the unmanned air vehicle D is controlled. That is, in the conventional technique, a control delay occurs in the control of the flight direction of the unmanned air vehicle D.
That is, when the unmanned air vehicle D flies according to the conventional technique, the distance from the electric wire WR of the unmanned air vehicle D may not be stabilized due to the control delay described above, and thus the state of the electric wire WR can be detected with high accuracy. There were cases where it was not possible.
 本実施形態の状態検出装置1によれば、経路算出部130が算出した飛行経路FLを無人飛行体Dが飛行することにより、無人飛行体Dは、電線WRから所定の距離離れた位置を飛行することができる。具体的には、本実施形態の状態検出装置1は、無人飛行体Dの現在位置と、飛行経路FLとに基づいて、無人飛行体Dの飛行方向を推定する。すなわち、本実施形態の状態検出装置1によれば、無人飛行体Dの飛行方向は飛行経路FLによって予め推定される。
 ここで、電線WRは、カテナリー曲線Cによって示される形状を有する。また、飛行経路FLは、上述したように、カテナリー曲線Cに基づいて算出される。したがって、本実施形態の状態検出装置1によれば、無人飛行体Dの飛行経路FLが電線WRに沿ったものになる。つまり、本実施形態の状態検出装置1によれば、無人飛行体Dは、電線WRに沿って精度よく飛行することができる。すなわち、本実施形態の状態検出装置1によれば、電線WRの状態を精度よく検出することができる。
According to the state detection device 1 of the present embodiment, the unmanned air vehicle D flies at a position away from the electric wire WR by a predetermined distance by the unmanned air vehicle D flying on the flight route FL calculated by the route calculation unit 130. can do. Specifically, the state detection device 1 of the present embodiment estimates the flight direction of the unmanned air vehicle D based on the current position of the unmanned air vehicle D and the flight path FL. That is, according to the state detection device 1 of the present embodiment, the flight direction of the unmanned air vehicle D is estimated in advance by the flight path FL.
Here, the electric wire WR has a shape indicated by the catenary curve C. Further, the flight path FL is calculated based on the catenary curve C as described above. Therefore, according to the state detection device 1 of the present embodiment, the flight path FL of the unmanned air vehicle D is along the electric wire WR. That is, according to the state detection device 1 of the present embodiment, the unmanned air vehicle D can fly with high accuracy along the electric wire WR. That is, according to the state detection device 1 of the present embodiment, the state of the electric wire WR can be detected with high accuracy.
 また、状態検出装置1は、制御部10と、撮像部20と、状態検出部30とを備える。
 撮像部20は、無人飛行体Dの周辺の風景が撮像された風景画像Pを撮像する。
 制御部10は、画像抽出部110と、カテナリー算出部120と、経路算出部130と、飛行制御部140とをその機能部として備える。カテナリー算出部120は、撮像部20が撮像する風景画像Pに含まれる複数の構造物の画像と、複数の構造物間に懸垂される電線WRの画像とに基づいて、電線WRの経路算出式FCを算出する。経路算出部130は、カテナリー算出部120が算出した電線WRのカテナリー曲線Cに沿う無人飛行体Dの飛行経路FLを算出する。飛行制御部140は、経路算出部130が算出した飛行経路FLに基づいて、無人飛行体Dの飛行を制御する。
Further, the state detection device 1 includes a control unit 10, an imaging unit 20, and a state detection unit 30.
The imaging unit 20 captures a landscape image P in which a landscape around the unmanned air vehicle D is captured.
The control unit 10 includes an image extraction unit 110, a catenary calculation unit 120, a route calculation unit 130, and a flight control unit 140 as functional units. The catenary calculation unit 120 is based on the image of the plurality of structures included in the landscape image P captured by the imaging unit 20 and the image of the wire WR suspended between the plurality of structures, and calculates the route of the wire WR. Calculate FC. The route calculation unit 130 calculates the flight route FL of the unmanned air vehicle D along the catenary curve C of the electric wire WR calculated by the catenary calculation unit 120. The flight control unit 140 controls the flight of the unmanned air vehicle D based on the flight path FL calculated by the path calculation unit 130.
 状態検出部30は、カテナリー算出部120が算出したカテナリー曲線Cに基づいて算出された飛行経路FLを無人飛行体Dが飛行している時に、カテナリー曲線Cの算出対象の電線WR、または算出対象の電線WRと同じ鉄塔STに支持される他の電線WRの状態を検出する。 When the unmanned air vehicle D is flying on the flight path FL calculated based on the catenary curve C calculated by the catenary calculation unit 120, the state detection unit 30 calculates the electric wire WR or the calculation target of the catenary curve C. The state of the other electric wire WR supported by the same steel tower ST as the electric wire WR is detected.
 すなわち、本実施形態の状態検出装置1は、撮像部20が撮像した風景画像Pに基づいて、無人飛行体Dの飛行を電線WRに沿うように制御することができる。
 上述したように、従来の技術によって無人飛行体Dが飛行する場合、無人飛行体Dの電線WRからの位置が逐次異なるため、電線WRの状態を精度よく検出できない場合があった。
 本発明によれば、状態検出装置1が無人飛行体Dの飛行を制御することにより、無人飛行体Dは、電線WRに沿って飛行することができる。これにより、本実施形態の状態検出装置1は、電線WRの状態を精度よく検出することができる。
That is, the state detection device 1 of the present embodiment can control the flight of the unmanned air vehicle D along the electric wire WR based on the landscape image P captured by the imaging unit 20.
As described above, when the unmanned air vehicle D flies according to the conventional technique, the position of the unmanned air vehicle D from the electric wire WR is sequentially different, and thus the state of the electric wire WR may not be detected accurately.
According to the present invention, the state detection device 1 controls the flight of the unmanned air vehicle D, so that the unmanned air vehicle D can fly along the electric wire WR. Thereby, the state detection apparatus 1 of this embodiment can detect the state of the electric wire WR accurately.
[第2実施形態]
 以下、図面を参照して本発明の第2実施形態について説明する。図7は、第2実施形態の状態検出装置2の構成の一例を示す構成図である。なお、上述した、第1実施形態と同様の構成及び動作については、同一の符号を付してその説明を省略する。
 図7に示す通り、本実施形態における状態検出装置2が備える制御部11は、状態検出装置1が備える制御部10の各部に加えて、設備情報記憶部150と、カテナリー推定部160とを更に備える。
[Second Embodiment]
The second embodiment of the present invention will be described below with reference to the drawings. FIG. 7 is a configuration diagram illustrating an example of a configuration of the state detection device 2 according to the second embodiment. In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 7, the control unit 11 included in the state detection device 2 according to the present embodiment further includes a facility information storage unit 150 and a catenary estimation unit 160 in addition to each unit of the control unit 10 included in the state detection device 1. Prepare.
 設備情報記憶部150には、予め設備情報EIが記憶される。設備情報EIには、構造物の位置を示す情報と、電線WRの線密度ωと、電線WRの張力Tとが少なくとも含まれる。構造物の位置を示す情報とは、例えば、鉄塔STの位置を示す情報である。鉄塔STの位置を示す情報とは、例えば、鉄塔STの位置の座標を示す情報である。 The facility information storage unit 150 stores facility information EI in advance. The facility information EI includes at least information indicating the position of the structure, the line density ω of the electric wire WR, and the tension T of the electric wire WR. The information indicating the position of the structure is information indicating the position of the steel tower ST, for example. The information indicating the position of the steel tower ST is information indicating the coordinates of the position of the steel tower ST, for example.
 カテナリー推定部160は、設備情報記憶部150から設備情報EIを読み出す。カテナリー推定部160は、設備情報EIに記憶される構造物の位置を示す情報と、電線WRの線密度ωと、電線WRの張力Tとに基づいて、推定経路式ECを推定する。推定経路式ECとは、カテナリー推定部160が推定した電線WRがなすカテナリー曲線Cの導出式である。具体的には、カテナリー推定部160は、読み出した設備情報EIに基づいて、カテナリー曲線Cの導出式のパラメータを決定する。以下、カテナリー推定部160がカテナリー曲線Cのパラメータを決定することを、カテナリー曲線Cを推定するとも記載する。カテナリー推定部160は、推定した推定経路式ECを示す情報を経路算出部130へ供給する。 The catenary estimation unit 160 reads the facility information EI from the facility information storage unit 150. The catenary estimation unit 160 estimates the estimated path equation EC based on the information indicating the position of the structure stored in the facility information EI, the line density ω of the electric wire WR, and the tension T of the electric wire WR. The estimated route formula EC is a derivation formula of the catenary curve C formed by the electric wire WR estimated by the catenary estimation unit 160. Specifically, the catenary estimation unit 160 determines a parameter of a derivation formula for the catenary curve C based on the read facility information EI. Hereinafter, the determination of the parameters of the catenary curve C by the catenary estimation unit 160 is also referred to as estimating the catenary curve C. The catenary estimation unit 160 supplies information indicating the estimated route equation EC estimated to the route calculation unit 130.
 経路算出部130は、カテナリー算出部120から取得した経路算出式FCと、カテナリー推定部160から取得した推定経路式ECとに基づいて、飛行経路FLを算出する。
この一例では、経路算出部130は、経路算出式FCと、推定経路式ECとの平均を飛行経路FLとして算出する。
The route calculation unit 130 calculates the flight route FL based on the route calculation formula FC acquired from the catenary calculation unit 120 and the estimated route formula EC acquired from the catenary estimation unit 160.
In this example, the route calculation unit 130 calculates the average of the route calculation formula FC and the estimated route formula EC as the flight route FL.
 なお、ここでは、経路算出部130が経路算出式FCと、推定経路式ECとの平均に基づいて、飛行経路FLを算出する場合について説明したが、これに限られない。経路算出部130は、経路算出式FCと、推定経路式ECとに基づいて、飛行経路FLを算出すれば、いずれの方法で飛行経路FLを算出してもよい。 In addition, although the case where the route calculation unit 130 calculates the flight route FL based on the average of the route calculation formula FC and the estimated route formula EC has been described here, the present invention is not limited thereto. The route calculation unit 130 may calculate the flight route FL by any method as long as the flight route FL is calculated based on the route calculation formula FC and the estimated route formula EC.
 例えば、濃霧等により、撮像部20が撮像した風景画像Pから径間情報SPを取得することができない場合がある。この場合、カテナリー算出部120が、風景画像Pに基づいて算出した経路算出式FCと、電線WRがなすカテナリー曲線Cの形状とが乖離する。経路算出部130は、経路算出式FCが所定の値より乖離している場合に、推定経路式ECに基づいて、飛行経路FLを算出してもよい。 For example, the span information SP may not be acquired from the landscape image P captured by the imaging unit 20 due to dense fog or the like. In this case, the route calculation formula FC calculated by the catenary calculation unit 120 based on the landscape image P and the shape of the catenary curve C formed by the electric wire WR deviate from each other. The route calculation unit 130 may calculate the flight route FL based on the estimated route equation EC when the route calculation equation FC deviates from a predetermined value.
 また、カテナリー推定部160は、設備情報EIに基づいて、カテナリー算出部120が経路算出式FCを算出する電線WRの位置と対応する位置の推定経路式ECを推定してもよい。例えば、無人飛行体Dは、GPS(Global Positioning System)を備えていてもよく、無人飛行体Dが飛行している位置をGPSによって検出してもよい。この場合、カテナリー推定部160は、GPSが検出する飛行位置に基づく位置の電線WRがなすカテナリー曲線Cの形状を推定してもよい。経路算出部130は、カテナリー算出部120が算出した経路算出式FCと、経路算出式FCに対応する位置の推定経路式ECとに基づいて、飛行経路FLを算出してもよい。 Further, the catenary estimation unit 160 may estimate the estimated route equation EC of the position corresponding to the position of the electric wire WR where the catenary calculation unit 120 calculates the route calculation equation FC based on the facility information EI. For example, the unmanned air vehicle D may be provided with GPS (Global Positioning System), and the position where the unmanned air vehicle D is flying may be detected by GPS. In this case, the catenary estimation unit 160 may estimate the shape of the catenary curve C formed by the electric wire WR at a position based on the flight position detected by the GPS. The route calculation unit 130 may calculate the flight route FL based on the route calculation formula FC calculated by the catenary calculation unit 120 and the estimated route formula EC of the position corresponding to the route calculation formula FC.
 また、カテナリー推定部160は、設備情報EIに含まれる線密度ωと、電線WRの張力Tとに基づいて、推定経路式ECを推定する場合について説明したが、これに限られない。設備情報EIには、電線WRの周辺温度に応じた電線WRの伸び率が含まれていてもよい。これにより、カテナリー推定部160は、飛行経路FLに沿って無人飛行体Dが飛行することにより状態検出部30が検出した電線WRの周辺温度と、電線WRの周辺温度に応じた電線WRの伸び率とに基づいて、推定経路式ECを推定してもよい。 Further, although the catenary estimation unit 160 has been described for estimating the estimated path equation EC based on the line density ω included in the facility information EI and the tension T of the electric wire WR, the present invention is not limited to this. The facility information EI may include an elongation rate of the electric wire WR according to the ambient temperature of the electric wire WR. Thus, the catenary estimation unit 160 causes the wire WR to expand according to the ambient temperature of the electrical wire WR detected by the state detection unit 30 as the unmanned air vehicle D flies along the flight path FL and the ambient temperature of the electrical wire WR. The estimated path equation EC may be estimated based on the rate.
 次に、図8を参照して、制御部11による電線WRに沿った無人飛行体Dの飛行の制御について説明する。図8は、第2実施形態の制御部11の動作の一例を示す流れ図である。図8において、ステップS100からステップS200までについては、上述した第1実施形態における各ステップと同一であるため、説明を省略する。 Next, the control of the flight of the unmanned air vehicle D along the electric wire WR by the control unit 11 will be described with reference to FIG. FIG. 8 is a flowchart illustrating an example of the operation of the control unit 11 according to the second embodiment. In FIG. 8, steps S100 to S200 are the same as the steps in the first embodiment described above, and a description thereof will be omitted.
 カテナリー推定部160は、設備情報記憶部150から設備情報EIを読み出す(ステップS300)。カテナリー推定部160は、読み出した設備情報EIに基づいて、カテナリー曲線Cを推定する(ステップS310)。カテナリー推定部160は、推定したカテナリー曲線Cを示す推定経路式ECを示す情報を経路算出部130へ供給する(ステップS320)。 The catenary estimation unit 160 reads the facility information EI from the facility information storage unit 150 (step S300). The catenary estimation unit 160 estimates the catenary curve C based on the read facility information EI (step S310). The catenary estimation unit 160 supplies information indicating the estimated route equation EC indicating the estimated catenary curve C to the route calculation unit 130 (step S320).
 経路算出部130は、カテナリー推定部160から推定経路式ECを示す情報を取得する(ステップS330)。経路算出部130は、取得した経路算出式FCと、推定経路式ECとに基づいて、飛行経路FLを算出する(ステップS340)。 The route calculation unit 130 acquires information indicating the estimated route equation EC from the catenary estimation unit 160 (step S330). The route calculation unit 130 calculates the flight route FL based on the acquired route calculation formula FC and the estimated route formula EC (step S340).
 以上説明したように、本実施形態の制御部11は、制御部10が備える各部に加えてと、設備情報記憶部150と、カテナリー推定部160とを備える。
 設備情報記憶部150には、構造物の位置を示す情報と、電線WRの自重と、電線WRの張力Tとを示す情報とが記憶される。カテナリー推定部160は、設備情報EIに基づいて、電線WRのカテナリー曲線Cを推定する。経路算出部130は、カテナリー算出部120の算出結果と、カテナリー推定部160の推定結果とに基づいて、飛行経路FLを算出する。
As described above, the control unit 11 of the present embodiment includes the facility information storage unit 150 and the catenary estimation unit 160 in addition to the units included in the control unit 10.
The facility information storage unit 150 stores information indicating the position of the structure, information indicating the weight of the electric wire WR, and the tension T of the electric wire WR. The catenary estimation unit 160 estimates the catenary curve C of the electric wire WR based on the facility information EI. The route calculation unit 130 calculates the flight route FL based on the calculation result of the catenary calculation unit 120 and the estimation result of the catenary estimation unit 160.
 上述したように、濃霧等の場合には、カテナリー算出部120が算出する経路算出式FCと、電線WRがなすカテナリー曲線Cの形状とが乖離する場合がある。
 本実施形態の経路算出部130は、カテナリー推定部160が推定した推定経路式ECと、カテナリー算出部120が算出した経路算出式FCとに基づいて、飛行経路FLを算出することができる。つまり、本実施形態の状態検出装置2は、経路算出式FCと、推定経路式ECとに基づいて、飛行経路FLを算出する。これにより、本実施形態の状態検出装置2は、経路算出式FCのみに基づいて、飛行経路FLを算出する場合より、精度高く電線WRの状態を検出することができる。
As described above, in the case of dense fog, the path calculation formula FC calculated by the catenary calculation unit 120 and the shape of the catenary curve C formed by the electric wire WR may deviate.
The route calculation unit 130 of the present embodiment can calculate the flight route FL based on the estimated route equation EC estimated by the catenary estimation unit 160 and the route calculation equation FC calculated by the catenary calculation unit 120. That is, the state detection device 2 of the present embodiment calculates the flight path FL based on the path calculation formula FC and the estimated path formula EC. Thereby, the state detection apparatus 2 of this embodiment can detect the state of the electric wire WR with higher accuracy than when the flight route FL is calculated based only on the route calculation formula FC.
 以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and appropriate modifications may be made without departing from the spirit of the present invention. it can.
 なお、上述の各装置は内部にコンピュータを有している。そして、上述した各装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 Note that each of the above devices has a computer inside. The process of each device described above is stored in a computer-readable recording medium in the form of a program, and the above-described processing is performed by the computer reading and executing the program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。
 さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be for realizing a part of the functions described above.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.
1,2…状態検出装置、ST…鉄塔、WR…電線、D…無人飛行体、10,11…制御部、20…撮像部、30…状態検出部、110…画像抽出部、120…カテナリー算出部、130…経路算出部、140…飛行制御部、150…設備情報記憶部、160…カテナリー推定部、310…熱検出部、320…コロナ検出部、FL…飛行経路 DESCRIPTION OF SYMBOLS 1,2 ... State detection apparatus, ST ... Steel tower, WR ... Electric wire, D ... Unmanned air vehicle 10, 11 ... Control part, 20 ... Imaging part, 30 ... State detection part, 110 ... Image extraction part, 120 ... Catenary calculation , 130 ... route calculation unit, 140 ... flight control unit, 150 ... facility information storage unit, 160 ... catenary estimation unit, 310 ... heat detection unit, 320 ... corona detection unit, FL ... flight path

Claims (5)

  1.  無人飛行体の周辺の風景が撮像された風景画像を撮像する撮像部と、
     前記撮像部が撮像する前記風景画像に含まれる複数の構造物の画像と、前記複数の構造物間に懸垂される電線の画像とに基づいて、前記電線のカテナリー曲線を算出するカテナリー算出部と、
     前記カテナリー算出部が算出した前記電線の前記カテナリー曲線に沿う無人飛行体の飛行経路を算出する飛行経路算出部と、
     前記飛行経路算出部が算出した前記飛行経路に基づいて、無人飛行体の飛行を制御する飛行制御部と、
     前記カテナリー算出部が算出した前記カテナリー曲線に基づいて算出された前記飛行経路を無人飛行体が飛行している時に、当該カテナリー曲線の算出対象の電線、または前記算出対象の電線を懸垂する前記複数の構造物間に懸垂される他の電線の状態を検出する状態検出部と
     を備え、無人飛行体に搭載される状態検出装置。
    An imaging unit that captures a landscape image in which a landscape around an unmanned air vehicle is captured;
    A catenary calculating unit that calculates a catenary curve of the electric wire based on an image of a plurality of structures included in the landscape image captured by the imaging unit and an image of an electric wire suspended between the plurality of structures; ,
    A flight path calculation unit that calculates a flight path of an unmanned air vehicle along the catenary curve of the electric wire calculated by the catenary calculation unit;
    Based on the flight path calculated by the flight path calculation unit, a flight control unit that controls the flight of an unmanned air vehicle,
    When the unmanned aerial vehicle is flying on the flight path calculated based on the catenary curve calculated by the catenary calculation unit, the plurality of cables that suspend the calculation target electric wire or the calculation target electric wire And a state detection unit for detecting the state of other electric wires suspended between the structures of the vehicle, and a state detection device mounted on an unmanned air vehicle.
  2.  前記状態検出部は、
     前記電線の温度、及び前記電線から発生するコロナ放電のうち、少なくとも1つを検出する
     ことを特徴とする請求項1に記載の状態検出装置。
    The state detection unit
    The state detection device according to claim 1, wherein at least one of the temperature of the electric wire and the corona discharge generated from the electric wire is detected.
  3.  前記飛行経路算出部は、
     前記カテナリー算出部が算出した前記電線の前記カテナリー曲線から所定の距離離れた飛行経路を算出する
     ことを特徴とする請求項1または請求項2に記載の状態検出装置。
    The flight path calculation unit
    The state detection apparatus according to claim 1, wherein a flight path that is a predetermined distance away from the catenary curve of the electric wire calculated by the catenary calculation unit is calculated.
  4.  前記構造物の位置を示す情報と、前記電線の自重と、前記電線の張力とを示す情報とが含まれる設備情報に基づいて、前記電線のカテナリー曲線を推定するカテナリー推定部
     を更に備え、
     前記飛行経路算出部は、
     前記カテナリー算出部の算出結果と、前記カテナリー推定部の推定結果とに基づいて、飛行経路を算出する
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の状態検出装置。
    A catenary estimating unit for estimating a catenary curve of the electric wire based on equipment information including information indicating the position of the structure, the weight of the electric wire, and information indicating the tension of the electric wire;
    The flight path calculation unit
    The state detection device according to any one of claims 1 to 3, wherein a flight path is calculated based on a calculation result of the catenary calculation unit and an estimation result of the catenary estimation unit.
  5.  コンピュータに、
     無人飛行体の周辺の風景が撮像された風景画像を撮像する撮像ステップ、
     前記撮像ステップが撮像する前記風景画像に含まれる複数の構造物の画像と、前記複数の構造物間に懸垂される電線の画像とに基づいて、前記電線のカテナリー曲線を算出するカテナリー算出ステップと、
     前記カテナリー算出ステップが算出した前記電線の前記カテナリー曲線に沿う無人飛行体の飛行経路を算出する飛行経路算出ステップと、
     前記飛行経路算出ステップが算出した前記飛行経路に基づいて、無人飛行体の飛行を制御する飛行制御ステップと、
     前記カテナリー算出ステップが算出した前記カテナリー曲線に基づいて算出された前記飛行経路を無人飛行体が飛行している時に、当該カテナリー曲線の算出対象の電線、または前記算出対象の電線を懸垂する前記複数の構造物間に懸垂される他の電線の状態を検出する状態検出ステップと
     を実行させるための状態検出プログラム。
    On the computer,
    An imaging step of capturing a landscape image in which a landscape around an unmanned air vehicle is captured;
    A catenary calculating step of calculating a catenary curve of the electric wire based on an image of a plurality of structures included in the landscape image captured by the imaging step and an image of an electric wire suspended between the plurality of structures; ,
    A flight path calculation step of calculating a flight path of an unmanned air vehicle along the catenary curve of the electric wire calculated by the catenary calculation step;
    A flight control step for controlling the flight of the unmanned air vehicle based on the flight path calculated by the flight path calculation step;
    When the unmanned air vehicle is flying on the flight path calculated based on the catenary curve calculated by the catenary calculating step, the plurality of wires that suspend the calculation target electric wire or the calculation target electric wire A state detection program for executing a state detection step of detecting a state of another wire suspended between the structures.
PCT/JP2016/080378 2015-10-14 2016-10-13 State detection device and state detection program WO2017065216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-202854 2015-10-14
JP2015202854A JP6436049B2 (en) 2015-10-14 2015-10-14 Status detection device and status detection program

Publications (1)

Publication Number Publication Date
WO2017065216A1 true WO2017065216A1 (en) 2017-04-20

Family

ID=58518332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080378 WO2017065216A1 (en) 2015-10-14 2016-10-13 State detection device and state detection program

Country Status (2)

Country Link
JP (1) JP6436049B2 (en)
WO (1) WO2017065216A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665099A (en) * 2017-10-13 2019-04-23 阿尔派株式会社 Stringing camera chain and stringing method for imaging
CN114019273A (en) * 2021-10-26 2022-02-08 国网山东省电力公司烟台市牟平区供电公司 Multifunctional distribution network line loss detection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6859241B2 (en) * 2017-09-28 2021-04-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Aircraft, biological search systems, biological search methods, programs, and recording media
JP6795244B2 (en) * 2018-03-27 2020-12-02 株式会社ナイルワークス Drones, how to control them, and programs
JP6591627B1 (en) * 2018-07-12 2019-10-16 株式会社東芝 Management device, unmanned air vehicle, and program
KR102374635B1 (en) * 2020-05-26 2022-03-15 서울여자대학교 산학협력단 Wireless charging system for drone
JP7436403B2 (en) 2021-01-28 2024-02-21 株式会社日立製作所 measurement system
JP6991525B1 (en) 2021-07-09 2022-01-12 株式会社センシンロボティクス Waypoint height coordinate setting method and management server, information processing system, program
WO2024069669A1 (en) * 2022-09-26 2024-04-04 株式会社センシンロボティクス Information processing system, program, information processing method, terminal, and server

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112911A (en) * 1996-10-03 1998-04-28 Chubu Electric Power Co Inc Automatic follower in photographing of transmission line
JP2006027448A (en) * 2004-07-16 2006-02-02 Chugoku Electric Power Co Inc:The Aerial photographing method and device using unmanned flying body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112911A (en) * 1996-10-03 1998-04-28 Chubu Electric Power Co Inc Automatic follower in photographing of transmission line
JP2006027448A (en) * 2004-07-16 2006-02-02 Chugoku Electric Power Co Inc:The Aerial photographing method and device using unmanned flying body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665099A (en) * 2017-10-13 2019-04-23 阿尔派株式会社 Stringing camera chain and stringing method for imaging
CN109665099B (en) * 2017-10-13 2024-02-23 阿尔派株式会社 Unmanned aerial vehicle and overhead line shooting method
CN114019273A (en) * 2021-10-26 2022-02-08 国网山东省电力公司烟台市牟平区供电公司 Multifunctional distribution network line loss detection device

Also Published As

Publication number Publication date
JP2017077080A (en) 2017-04-20
JP6436049B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6436049B2 (en) Status detection device and status detection program
US10162368B2 (en) Autonomous moving machine
JP6493267B2 (en) Wind state determination device and flying object
US11879737B2 (en) Systems and methods for auto-return
JP5618840B2 (en) Aircraft flight control system
JP5775632B2 (en) Aircraft flight control system
EP3123260B1 (en) Selective processing of sensor data
CN107703951B (en) A kind of unmanned plane barrier-avoiding method and system based on binocular vision
JP2009068951A (en) Aerial wire controlling system
JP6761146B1 (en) Information processing system, information processing method and program
JP2010202178A5 (en)
KR101771492B1 (en) Method and system for mapping using UAV and multi-sensor
US11320269B2 (en) Information processing apparatus, information processing method, and information processing program
US11490005B2 (en) Overhead line image capturing system and overhead line image capturing method
WO2015004739A1 (en) Monitor system, automated patrol robot, and monitor method
JP2017188067A (en) Autonomous mobile body
JP2019211257A (en) Inspection system
JP6482856B2 (en) Monitoring system
JP6681101B2 (en) Inspection system
JP2019211486A (en) Inspection system
JP2012185134A (en) Course estimating device and program
JP2021047744A (en) Information processing device, information processing method and information processing program
JP2021103410A (en) Mobile body and imaging system
JP7284060B2 (en) Distance evaluation device, distance evaluation method, and distance evaluation program
JP5713939B2 (en) Target detection apparatus and target detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855469

Country of ref document: EP

Kind code of ref document: A1