WO2017057304A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2017057304A1
WO2017057304A1 PCT/JP2016/078332 JP2016078332W WO2017057304A1 WO 2017057304 A1 WO2017057304 A1 WO 2017057304A1 JP 2016078332 W JP2016078332 W JP 2016078332W WO 2017057304 A1 WO2017057304 A1 WO 2017057304A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
vehicle
variator
sailing stop
condition
Prior art date
Application number
PCT/JP2016/078332
Other languages
English (en)
French (fr)
Inventor
征史 大塚
中崎 勝啓
義祐 西廣
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to EP16851475.0A priority Critical patent/EP3358226A4/en
Priority to CN201680053193.4A priority patent/CN108027049B/zh
Priority to US15/757,506 priority patent/US10793156B2/en
Priority to KR1020187006617A priority patent/KR102000893B1/ko
Publication of WO2017057304A1 publication Critical patent/WO2017057304A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/181Preparing for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18054Propelling the vehicle related to particular drive situations at stand still, e.g. engine in idling state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/54Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the brakes, e.g. parking brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66231Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/009Priority selection
    • B60W2050/0094Priority selection of control units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • B60W2050/0096Control during transition between modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0627Fuel flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0015Transmission control for optimising fuel consumptions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0096Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using a parameter map
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a vehicle control device that performs sailing stop control for setting a transmission in a neutral state and stopping a drive source under predetermined control conditions.
  • the control conditions for the sailing stop control include the following conditions (A) to (D) as AND conditions.
  • the gear ratio of the variator of the continuously variable transmission is downshifted to the lowest level before the vehicle is stopped to prepare for a subsequent restart.
  • the drive source is stopped when the vehicle speed of the condition (B) is equal to or higher than the set vehicle speed (medium to high vehicle speed), and the gear ratio of the variator at medium to high vehicle speed is high.
  • the transmission is neutral when the forward clutch is released.
  • the reason why the forward clutch is engaged before the variator is downshifted is that the forward clutch can be rotationally synchronized more quickly when the gear ratio of the variator is higher.
  • the variator changes the gear ratio while changing the rotation (speed change), the slower the rotation speed, the longer the speed change takes.
  • the variator in a transmission having a forward clutch arranged downstream of the variator, If the vehicle stops with the clutch engaged, the variator will also stop and become unrotatable, making it impossible to completely shift the variator.
  • the speed change operation can be completed while the variator is rotating at a certain rotational speed, but if the vehicle speed is medium speed, The vehicle may stop before the completion of the shift operation.
  • the present invention has been devised in view of such problems, and in a vehicle equipped with a continuously variable transmission having a variator, even when a brake operation is performed during sailing stop control, the variator is It is an object of the present invention to provide a vehicle control device capable of improving low return performance for downshifting the gear ratio to the lowest position.
  • a vehicle control apparatus of the present invention has a drive source, a fastening element for connecting / disconnecting transmission of driving force, and a variator disposed upstream of the fastening element,
  • a control device for a vehicle having an automatic transmission connected to the drive source and when a sailing stop condition is satisfied, performs a sailing stop control that stops the drive source and sets the automatic transmission to a neutral state
  • a predetermined sailing stop cancellation condition among the first control unit and the sailing stop cancellation condition is satisfied and the sailing stop control is canceled
  • the deceleration of the vehicle is equal to or greater than a predetermined value.
  • a second control unit for starting the drive source, downshifting the variator, and fastening the fastening element after the downshift is completed. Is a shall.
  • the second control unit When releasing the sailing stop control, when the magnitude of the vehicle deceleration is less than the predetermined value, the second control unit starts the drive source and fastens the fastening element, and the fastening element It is preferable to shift to the control of the variator after fastening.
  • the predetermined value is variably set according to the traveling speed of the vehicle when the sailing stop control is canceled.
  • the sailing stop condition includes that the selection range of the automatic transmission is a forward range, the traveling speed of the vehicle is equal to or higher than a set speed, the accelerator of the vehicle is off, and the brake of the vehicle is OFF is included as an AND condition, the sailing stop release condition is that any of the sailing stop conditions is no longer satisfied, and the predetermined sailing stop release condition is that the brake is turned on. It is preferable that
  • the second control unit When the start of the drive source and the fastening of the fastening element are completed by the second control unit, the fastening of the fastening element is maintained, the output of the drive source is controlled according to the accelerator opening of the vehicle, and preset It is preferable to implement normal control for controlling the speed ratio of the variator according to the shift map.
  • the drive source is an internal combustion engine and has a third control unit that performs fuel cut control for stopping fuel supply to the internal combustion engine when a fuel cut condition is satisfied.
  • the sailing stop control when the sailing stop control is terminated in a situation where the deceleration of the vehicle due to sudden braking or the like is high, the drive source is restarted, and the shift of the variator is completed in preference to the fastening of the fastening element.
  • the low return performance of the variator can be improved, and the speed change ratio of the variator can be reached to the lowest or as close as possible to the lowest before the vehicle is stopped, so that the vehicle can be restarted.
  • FIG. 1 is a system diagram showing the main parts of a drive system and a control system of a vehicle to which a control device according to an embodiment of the present invention is applied. It is a figure which shows the control map used for control of the vehicle which concerns on one Embodiment of this invention. It is a gear shift diagram explaining the gear ratio characteristic of the variator relevant to control of the vehicle concerning one embodiment of the present invention. It is a flowchart explaining control of the vehicle which concerns on one Embodiment of this invention. It is a time chart explaining return control (variator downshift priority) of control of vehicles concerning one embodiment of the present invention. It is a time chart explaining return control (engagement priority of forward clutch and vehicle stop) of control of a vehicle concerning one embodiment of the present invention. It is a time chart explaining the return control of the control of the vehicle which concerns on one Embodiment of this invention (fastening of fastening of a forward clutch, and vehicle travel continuation).
  • FIG. 1 is an overall system diagram showing a vehicle drive system and a control system to which a control device according to the present embodiment is applied.
  • the vehicle drive system includes an engine (internal combustion engine) 1 that is a drive source, a torque converter 2, a variator (continuously variable transmission mechanism) 3, and a forward clutch (fastening element) 41.
  • An advance switching mechanism 4, a final deceleration mechanism (not shown), a differential (not shown), and a drive wheel 5 are provided.
  • a continuously variable transmission (hereinafter also referred to as “CVT” or simply “transmission”) 100 as an automatic transmission by housing the torque converter 2, the variator 3, and the forward / reverse switching mechanism 4 in a transmission case. Is configured.
  • the engine 1 is connected to a mechanical oil pump 10P that is driven by the engine 1, and the oil pump 10P pressurizes hydraulic oil [ATF (Automatic Transmission Fluid)] according to the rotation of the engine 1 to change speed.
  • ATF Automatic Transmission Fluid
  • the torque converter 2 is a starting element having a torque increasing function, and includes a pump impeller 23 connected to the engine output shaft 11 via a converter housing 22, a turbine runner 24 connected to the torque converter output shaft 21, and a case.
  • a stator 25 provided via a one-way clutch (not shown) is a constituent element.
  • the lockup clutch 20 operates in response to a differential pressure PA-PR between the torque converter apply pressure PA and the torque converter release pressure PR on the input side and the output side thereof.
  • the input / output elements of the torque converter 20 are switched between a released state, a completely engaged state (directly connected state), and an intermediate slip engaged state between them. be able to.
  • the variator 3 includes a primary pulley 31, a secondary pulley 32, and a belt (or chain) 33 as a power transmission member, and changes a winding radius of the belt 33 around the pulleys 31 and 32 by hydraulic control of hydraulic oil.
  • the gear ratio (transmission input speed / transmission output speed) which is the ratio between the input speed of the variator input shaft (transmission input shaft) 34 and the output speed of the variator output shaft 35, is continuously changed. It has a continuously variable transmission function.
  • the torque converter output shaft 21 and the variator input shaft 34 are the same shaft. However, the torque converter output shaft 21 and the variator input shaft 34 are separate shafts, and the power is connected via a gear mechanism or the like. May be adopted.
  • the primary pulley 31 includes a fixed pulley and a slide pulley, and the slide pulley slides in the axial direction in accordance with the hydraulic pressure (primary pressure or primary pulley pressure) guided to the primary hydraulic chamber.
  • the secondary pulley 32 includes a fixed pulley and a slide pulley, and the slide pulley slides in the axial direction according to the hydraulic pressure (secondary pressure or secondary pulley pressure) guided to the secondary hydraulic chamber.
  • the sheave surfaces which are the opposing surfaces of the fixed pulley and the slide pulley of the primary pulley 31 and the secondary pulley 32 are all V-shaped, and the belt 33 is formed in the V-shape of the primary pulley 31 and the secondary pulley 32. Power is transmitted across the sheave surface by contact between both side portions of the belt 33 and each sheave surface.
  • the forward / reverse switching mechanism 4 is a mechanism that switches between forward and reverse using a planetary gear mechanism (not shown), and is a forward clutch that achieves a forward gear (a fastening element for connecting and disconnecting transmission of driving force according to the present invention). ) 41 and a reverse engagement element (not shown) that achieves the reverse gear, and these friction engagement elements are engaged and released according to the hydraulic pressure supplied to and discharged from the hydraulic chambers.
  • a fastening element is provided downstream of the variator 3.
  • a fastening element is provided downstream of the variator 3.
  • the forward / reverse switching mechanism 4 for example, a stepped transmission mechanism with two forward speeds and one reverse speed.
  • a sub-transmission mechanism may be provided.
  • the sub-transmission mechanism is connected to, for example, a Ravigneaux planetary gear mechanism in which two planetary gear carriers are connected, and a plurality of rotating elements constituting the Ravigneaux planetary gear mechanism, and a plurality of them change their linkage state. And a frictional engagement element.
  • the hydraulic pressures of the primary hydraulic chamber, the secondary hydraulic chamber of the variator 3, the hydraulic chambers of the friction engagement elements of the forward / reverse switching mechanism 4, and the hydraulic chambers of the lockup clutch 20 are respectively corresponding to the hydraulic pressures. It is controlled through the control valve 10V.
  • Each hydraulic control valve 10V is a solenoid valve provided in the hydraulic control unit 10, and is operated by a command signal from an ATCU 7 serving as a shift control means to be described later to regulate the hydraulic oil supplied from the oil pump 10P. And supply / exhaust to each hydraulic chamber.
  • This vehicle has, as a control means for controlling the vehicle, a travel ECU 6 as a travel control means that is an electronic control unit that controls the travel of the vehicle, and an ATCU 7 as a speed change control means that is an electronic control unit that controls the automatic transmission. And an engine ECU 8 as an engine control means which is an electronic control unit for controlling the engine 1.
  • Each of the travel ECU 6, ATCU 7 and engine ECU 8 includes an input / output device, a storage device (ROM, RAM, etc.) incorporating a large number of control programs, a central processing unit (CPU), a timer counter, and the like.
  • ROM read-only memory
  • RAM random access memory
  • CPU central processing unit
  • the traveling ECU 6 has a function (first control unit) 61 for executing the sailing stop control when the sailing stop condition is satisfied, and a function for canceling the sailing stop control and returning to normal traveling when the condition for canceling the sailing stop control is satisfied. (Second control unit) 62.
  • the travel ECU 6 has a function (third control unit) 63 for executing fuel cut control for stopping fuel supply to the engine 1 when the fuel cut condition is satisfied.
  • the sailing stop control by the first control unit 61 and the return control for releasing the sailing stop control by the second control unit 62 and returning to normal running are control of the transmission 100 through the ATCU 7 and control of the engine 1 through the engine ECU 8. To implement.
  • the fuel cut control by the third control unit 63 is performed by controlling the engine 1 through the engine ECU 8.
  • the ATCU 7 adjusts the hydraulic pressure in each hydraulic chamber of the variator 3 to control the transmission ratio, and adjusts the hydraulic pressure in each hydraulic chamber of the forward / reverse switching mechanism 4 to move forward and backward.
  • the engine ECU 8 controls the fuel supply amount and supply timing of the engine 1, the opening degree of the throttle valve, the ignition timing, and the like.
  • Sailing stop control is control that uses both control (sailing control) for setting the transmission 100 in a neutral state and control for stopping the engine (driving source) 1, thereby promoting energy saving.
  • the forward range is selected.
  • the vehicle speed (vehicle travel speed) Vsp is equal to or higher than the set vehicle speed (set speed) Vsp1 (medium to high vehicle speed).
  • the accelerator is off.
  • the brake is off.
  • detection information from the inhibitor switch 91 that detects the selected range of the transmission 100, the vehicle speed sensor 92, the accelerator opening sensor 93, and the brake sensor 94 is input to the traveling ECU 6, and the first control unit 61
  • the sailing stop condition is determined based on detection signals from the sensors.
  • the condition (A) “the forward range is selected” is determined from whether or not the selected range signal S from the inhibitor switch 91 corresponds to the forward range.
  • the condition (B) “the vehicle speed Vsp is equal to or higher than the set vehicle speed Vsp1” is determined from whether or not the vehicle speed signal Vsp from the vehicle speed sensor 92 is equal to or higher than the set vehicle speed Vsp1.
  • condition (C) “accelerator is off” means that the accelerator operation is not performed, and is determined from whether or not the accelerator opening signal APO from the accelerator opening sensor 93 indicates the opening 0.
  • the condition (D) “Brake is OFF” means that the brake operation is not performed, and it is determined from whether or not the detection signal from the brake sensor 94 indicates brake ON.
  • the first control unit 61 sets the transmission 100 to the neutral state and stops the engine 1 as the sailing stop control. At this time, the gear ratio of the variator 3 is fixed to the highest state or a state close to the highest state, and the lockup clutch 20 is released.
  • the gear ratio is controlled along the target shift line L indicated by a solid line in FIG. 2 when the accelerator is off. Therefore, if the vehicle speed is medium to high, the gear ratio is It becomes the highest state shown by a broken line or a state close to the highest.
  • the sailing stop condition includes a condition (B) in which the vehicle speed is medium to high, and a condition (C) in which the accelerator is off. Therefore, at the start of the sailing stop control, the gear ratio is the target shown in FIG. In the shift line L, the vehicle is in the highest state or near the highest in the middle to high vehicle speed range.
  • the forward clutch 41 In the sailing stop control, the forward clutch 41 is released, while in the return control for releasing the sailing stop control and returning to the normal control, the released forward clutch 41 is engaged. I want to meet quickly. Thereby, the return to the normal control can be accelerated, and the driving performance of the vehicle can be improved.
  • the secondary shaft speed Ns of the variator 3 (which corresponds to the input side speed of the forward clutch 41) compared to the primary shaft speed Np of the variator 3 (corresponding to the engine speed Ne). Therefore, the rotation on the input side of the forward clutch 41 quickly becomes faster, and the synchronization time with the output side of the forward clutch 41 can be shortened.
  • condition for canceling the sailing stop control is that any of the above-mentioned conditions (A) to (D) is not satisfied during the sailing stop control.
  • the second control unit 62 cancels the sailing stop control and returns to the normal control, assuming that the cancellation condition of the sailing stop control is satisfied.
  • the transmission ratio control unit 71 of the ATCU 7 performs this downshift by feedback control based on signals relating to the primary pulley rotation speed Np and the secondary pulley rotation speed Ns detected by the primary pulley rotation sensor 95 and the secondary pulley rotation sensor 96. Do.
  • the gear ratio of the variator 3 is downshifted to the lowest side in preparation for a case where the vehicle restarts after the vehicle is stopped by brake-on. This is to ensure the start performance of the vehicle by making the state close to the lowest.
  • the variator 3 When the sailing stop is canceled by brake-on, the variator 3 is downshifted in addition to the engagement of the forward clutch 41.
  • the second control unit 62 performs the return control of the forward clutch 41.
  • the two processes of fastening and downshifting of the variator 3 are performed with priorities based on the magnitude of deceleration of the vehicle (scalar amount of deceleration, ie, absolute value) d.
  • deceleration magnitude of vehicle (hereinafter, simply referred to as deceleration) d is preset determination threshold value (predetermined value) in the case of more than d V priority downshifting the variator 3
  • determination threshold value predetermined value
  • the second control unit 62 starts the engine 1 and performs a downshift of the variator 3 when the vehicle deceleration d is equal to or greater than the determination threshold value d V when the sailing stop cancellation condition is satisfied.
  • a command signal is output to the ATCU 7 and the engine ECU 8 so that the forward clutch 41 is engaged.
  • the second control unit 62 starts the engine 1 and engages the forward clutch 41 when the vehicle deceleration d is less than the determination threshold value d V when the sailing stop cancellation condition is satisfied, and the forward clutch 41 is engaged.
  • the variator 3 is downshifted.
  • the engine 1 when there is no time before the vehicle stops and before the engine 1 is reduced to an insufficient speed, the engine 1 is set to the oil pump 10P before the vehicle stops.
  • the downshift of the variator 3 is prioritized and executed while the discharge pressure can be secured at a minimum level or more.
  • the forward clutch 41 is prioritized and the clutch 41 is completely engaged. Even if the downshift of the variator 3 is started, the downshift of the variator 3 can be completed until the vehicle stops or the rotational speed of the engine 1 decreases.
  • the rotation synchronization between the input and the output is necessary before the forward clutch 41 is engaged as described above, and the rotation synchronization can be completed more quickly when the gear ratio of the variator 3 is higher. This is because it can be concluded quickly.
  • the determination threshold value d V is variably set according to the vehicle speed Vsp of the vehicle, and the determination threshold value d V tends to be smaller as the vehicle speed Vsp is lower.
  • the time until the vehicle stops or until the rotational speed of the engine 1 decreases to an insufficient state depends on the deceleration d of the vehicle and the vehicle speed Vsp at the start of deceleration, and becomes shorter as the deceleration d is larger.
  • the determination threshold d V is set to be smaller as the vehicle speed Vsp is lower.
  • the variator 3 is set to give priority to the downshift unless the deceleration d is a slow deceleration equal to or lower than the predetermined reduction speed d1.
  • the output of the engine 1 is controlled according to the accelerator opening APO while maintaining the forward clutch 41 in the engaged state, and the gear ratio of the variator 3 is controlled according to a preset shift map.
  • the normal control is performed through the return control (release of the sailing stop control) by the second control unit 62.
  • the return control ends when the forward clutch 41 is completely engaged. Therefore, if priority is given to the downshift of the variator 3, the downshift of the variator 3 is completed and the forward clutch 41 is further engaged. Then return to normal control.
  • the control when priority is given to the engagement of the forward clutch 41, the control returns to the normal control when the engagement of the forward clutch 41 is completed. If the brake-on state continues even after the return to the normal control, the downshift of the variator 3 is performed. Is implemented.
  • the fuel cut control by the third control unit 63 suppresses the fuel consumption by stopping the fuel supply to the engine 1 when the brake operation is performed while the vehicle is traveling at a medium to high vehicle speed. This control strengthens the brake.
  • the following conditions (a) to (e) are provided as AND conditions.
  • the vehicle speed Vsp is equal to or higher than the set vehicle speed Vsp2 (medium to high vehicle speed).
  • the brake is on.
  • the engine speed Ne is equal to or higher than the set recovery speed Ner.
  • one of the conditions is that the brake is off, whereas in the fuel cut condition, one of the conditions is that the brake is on, and in the fuel cut condition, the engine speed is There is a big difference in the point that conditions are added.
  • the reason why the brake-on condition is set in the fuel-cut condition is that this fuel-cut control is intended to strengthen the engine brake.
  • the engine speed condition is added to the fuel cut condition in order to avoid a stall (engine stall) of the engine 1 during the fuel recovery from the fuel cut (resumption of fuel injection).
  • the third control unit 61 determines the fuel cut conditions of the above conditions (a) to (e) based on the detection signals from the respective sensors, and performs the fuel cut control when the fuel cut conditions are satisfied. If the fuel cut condition is not satisfied during the cut control, the fuel cut control is terminated.
  • the transmission 100 is in a power transmission state and power transmission loss is reduced, fuel supply to the engine 1 is stopped, and the gear ratio of the variator 3 is downshifted to the low side.
  • the forward clutch 41 only needs to be engaged to bring the transmission 100 into the power transmission state, and the lockup clutch 20 may be completely engaged (engaged) to reduce the power transmission loss of the transmission 100.
  • the fuel cut condition is as follows: The condition of the engine speed is added.
  • This fuel cut control may be started via a return control from the sailing stop control when the brake is operated from off to on during the sailing stop control.
  • the vehicle control apparatus Since the vehicle control apparatus according to the embodiment of the present invention is configured as described above, for example, the vehicle is controlled as shown in the flowchart of FIG.
  • the flowchart of FIG. 4 starts when the key switch of the vehicle is turned on, is repeatedly executed at a predetermined control cycle, and ends when the key switch is turned off.
  • step S10 it is determined whether or not the sailing stop control is being performed. If the sailing stop control is being performed, it is determined whether or not the sailing stop cancellation condition is satisfied (step S10). S20) If the sailing stop control is not being performed, it is determined whether or not the sailing stop condition is satisfied (step S40).
  • the determination of the sailing stop cancellation condition in step S20 is performed for the above conditions (A) to (D). If any of the conditions (A) to (D) is not satisfied, the sailing stop cancellation condition is satisfied. It is determined that
  • the conditions (A) to (D) are determined. If any of the conditions (A) to (D) is satisfied, it is determined that the sailing stop condition is satisfied. To do.
  • step S60 normal control
  • the output of the engine 1 is controlled in accordance with the accelerator opening APO while maintaining the forward clutch 41 in the engaged state, and the gear ratio of the variator 3 is controlled in accordance with a preset shift map.
  • the fuel supply to the engine 1 is stopped to reduce the fuel consumption and the engine brake. Increase fuel cut control.
  • sailing stop control is being performed and the sailing stop cancellation condition is not satisfied in step S20, and it is determined that the sailing stop condition is not satisfied in step S40 but not in the sailing stop control. If so, sailing stop control (step S50) is performed.
  • the forward clutch 41 is turned off (released) to place the transmission 100 in the neutral state (step S502), the engine 1 is stopped (step S504), and the gear ratio is fixed at the highest level.
  • Control (step S506) to perform, and control (step S508) to turn off (release) the lockup clutch 20 are performed.
  • step S30 the return control for canceling the sailing stop control and returning to the normal traveling is performed.
  • the engine 1 is started and the forward clutch 41 is engaged.
  • the engagement of the forward clutch 41 and the downshift of the variator 3 are prioritized based on the vehicle deceleration d due to the brake operation. carry out.
  • the start control of the engine 1 is performed simultaneously with the start of the return control (step S302), it is determined whether or not the sailing stop release condition is satisfied by the brake on (step S304), and the sailing stop release condition by the brake on is satisfied. For example, it is determined whether or not the vehicle deceleration d is equal to or greater than a determination threshold value d V for each vehicle speed (step S306).
  • step S316 the engagement control of the forward clutch 41 is performed (step S316), and it is determined whether or not the engagement of the forward clutch 41 is completed (step S318).
  • step S316 The engagement control of the forward clutch 41 (step S316) is performed until the completion of the engagement of the forward clutch 41 is determined in step S318.
  • the processes of step S316 and step S318 are performed at a predetermined control period until it is determined that the fastening has been completed.
  • step S318 If it is determined in step S318 that the fastening has been completed, the return control is terminated, and in the next control cycle, normal control is performed through steps S10 and S40 (step S60).
  • step S308 the downshift control of the variator 3 is performed (step S308), and it is determined whether the downshift of the variator 3 has progressed and the gear ratio has become the lowest (step S310).
  • step S308 The downshift control of the variator 3 in step S308 is performed until it is determined in step S310 that the gear ratio has become the lowest. Steps S308 and S310 are performed in a predetermined control cycle until the lowest is determined in step S310.
  • step S310 the engagement control of the forward clutch 41 is performed (step S312), and it is determined whether the engagement of the forward clutch 41 is completed (step S314). Although not shown in FIG. 4, the process proceeds to the clutch engagement process even when the accelerator pedal is depressed during the variator downshift even before the lowest is determined.
  • step S312 The engagement control of the forward clutch 41 in step S312 is performed until the completion of engagement of the forward clutch 41 is determined in step S314.
  • the processes of step S312 and step S314 are performed at a predetermined control cycle until the completion of fastening is determined.
  • SS indicates a sailing stop control state
  • SS return indicates a return control state
  • stop indicates a vehicle stop state
  • FC indicates a fuel cut control state.
  • FIG. 5 shows examples of fluctuations in vehicle speed, brake, each rotation speed, and gear ratio when the condition for canceling the sailing stop control is established when the brake is turned on, and the vehicle deceleration d when this condition is satisfied is equal to or greater than the threshold value d V. Show. (A) shows the case where this control is applied, and (b) shows the case where this control is not applied.
  • the deceleration d of the vehicle when the release condition is satisfied is equal to or greater than the threshold value d V , and the return control is performed with priority given to the downshift of the variator 3, so that the engine 1 is started immediately after the start of the return control. Further, an operation of downshifting the target speed ratio Rt to the lowest side is started.
  • the engine speed Ne rises, and at the same time, the primary shaft speed Np of the variator 3 and the secondary shaft speed Ns of the variator 3 rise.
  • the primary shaft rotational speed Np increases so as to follow the engine rotational speed Ne, and the secondary shaft rotational speed Ns is a gear ratio at the start of the return control. It rises so as to be proportional to the primary shaft rotation speed Np (lowest or substantially lowest).
  • the target gear ratio Rt is gradually changed gradually toward the gear ratio of the lowest row.
  • the downshift start point t of the target gear ratio Rt is not possible. 12 and a time lag occurs between the downshift start time t 13 the actual gear ratio R.
  • the forward clutch 41 is in a released state and the variator 3 can rotate. Therefore, if the engine 1 is operating, the discharge pressure of the oil pump 10P can be secured and the forward clutch 41 can be engaged. It is.
  • the vehicle stops with the gear ratio of the variator 3 being the lowest. For this reason, the vehicle can be re-started with the lowest gear ratio, and the vehicle can have a good start performance.
  • the downshift of the variator 3 is advanced.
  • the primary shaft rotation speed Np and the secondary shaft rotation speed Ns of the variator 3 are decelerated to a very low speed as the vehicle speed is rapidly reduced. Therefore, the downshift of the variator 3 becomes difficult to proceed, and at time t 14 ′ before the downshift of the variator 3 proceeds, the vehicle stops with the forward clutch 41 engaged, and the variator 3 also stops.
  • the vehicle stops in a state where the downshift of the variator 3 does not proceed, that is, in a state where the gear ratio of the variator 3 does not approach the lowest or near the lowest. For this reason, the vehicle must be restarted in a state where the gear ratio is on the high side, and the vehicle start performance is degraded.
  • the condition for canceling the sailing stop control is established by the brake being turned on, and the vehicle speed, the brake, each rotation speed, and the speed change when the vehicle deceleration d when the condition is satisfied is less than the threshold value d V.
  • the ratio is shown.
  • the forward clutch 41 Since the forward clutch 41 is engaged with the variator 3 having a high gear ratio, the rotation synchronization between the input and output before the forward clutch 41 is engaged can be completed quickly, and the forward clutch 41 can be quickly engaged.
  • FIG. 7 shows a case where the condition for canceling the sailing stop control is satisfied at time t 31 by the brake being turned on, and the vehicle deceleration d when this condition is satisfied is less than the threshold value d V.
  • the vehicle speed, the brake, each rotation speed, and the gear ratio when the vehicle speed is high or the vehicle deceleration d is small is shown.
  • the forward clutch 41 Since the forward clutch 41 is engaged with the variator 3 having a high gear ratio, the rotation synchronization between the input and output before the forward clutch 41 is engaged can be completed quickly, and the forward clutch 41 can be quickly engaged.
  • the forward clutch 41 can be quickly engaged, the return control can be completed in a short time even if the time required to complete the subsequent downshift to the lowest speed ratio of the variator 3 is included.
  • the vehicle speed Vsp is sufficiently high at the time t 33 the fastening has been completed of the forward clutch 41, meet "that the vehicle speed Vsp is set vehicle Vsp2 more" of the fuel cut-off condition Condition (b), the fuel cut condition (A) to (e) are all established, and fuel cut control is performed.
  • the fuel supply to the engine 1 is stopped and the engagement of the lockup clutch 20 is strengthened in a state where the forward clutch 41 is engaged and in a state where the speed ratio of the variator 3 is the lowest. is fastened at the time t 34.).
  • the fuel supply to the engine 1 can be stopped to suppress the fuel consumption, and the engine brake can be strengthened.
  • the control including the time required to complete the downshift to the lowest speed ratio of the variator 3 can be completed in a short time. Opportunities can be increased and fuel consumption can be reduced.
  • condition (E) that the gear ratio of the variator 3 is the highest is added as an AND condition.
  • the precondition for performing the control that gives priority to the downshift of the variator 3 by the second control unit 62 is that the establishment of the sailing stop cancellation condition is due to brake-on (step S304 in FIG. 4).
  • the determination of the precondition may be omitted.
  • the fastening element for connecting / disconnecting transmission of the driving force of the present invention is the forward clutch 41.
  • the fastening element is generally intended for a forward fastening element, and is a forward / reverse switching mechanism.
  • forward fastening elements such as a sub-transmission mechanism, which is a stepped transmission mechanism with two forward speeds and one reverse speed, and two forward forward first speed and second forward speed fastening elements, for example, are applied. can do.
  • control unit is configured by hardware from the control units of the travel ECU 6 as the travel control unit, the ATCU 7 as the shift control unit, and the engine ECU 8 as the engine control unit.
  • the hardware configuration related to the travel control means, the shift control means, and the engine control means is not limited to this.
  • various functions such as providing each function of the travel control means, the shift control means, and the engine control means in one control unit. Can be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

セーリングストップ条件が成立すると、駆動源(1)を停止すると共に自動変速機(100)をニュートラル状態とするセーリングストップ制御を実行する第1制御部(61)と、セーリングストップ制御を解除する際、車両の減速度の大きさが所定値以上である場合は、駆動源(1)を始動してバリエータ(3)のダウンシフトを実施し、ダウンシフトの完了後に締結要素(41)を締結させる第2制御部(62)と、を有する。こうすることにより、セーリングストップ制御中にブレーキ操作が行われても、車両停止前にバリエータの変速比をダウンシフトできるようになる。

Description

車両の制御装置
 本発明は、所定の制御条件下で変速機をニュートラル状態にすると共に駆動源を停止させるセーリングストップ制御を実施する車両の制御装置に関するものである。
 近年、車両の走行中に所定の制御条件が成立すると、変速機をニュートラル状態にする制御(セーリング制御)と、駆動源を停止させる制御とを併用して、省エネルギを促進する技術(セーリングストップ制御)が開発されている(特許文献1参照)。
 このセーリングストップ制御の制御条件には、以下の(A)~(D)の条件がアンド条件として含まれている。
 (A)前進レンジが選択されていること。
 (B)車速が設定車速以上(中~高車速)であること。
 (C)アクセルがオフであること。
 (D)ブレーキがオフであること。
 ところで、無段変速機を備えた車両の場合、車両の停止前には無段変速機のバリエータの変速比を最ローにダウンシフトさせてその後の再発進に備えるようにしている。
 このような車両において、セーリングストップ制御から急減速をして車両が停止に至る場合に、車両の停止前には最ローまでダウンシフトしきれない場合があることがわかった。
 この原因を分析する。
 セーリングストップ制御では、上記条件(B)の車速が設定車速以上(中~高車速)の状態において駆動源を停止しており、中~高車速におけるバリエータの変速比はハイ側になっていて、変速機はその前進用クラッチが解放されニュートラルになっている。
 セーリングストップ制御から急ブレーキ操作が行われると、セーリングストップ制御が解除され、駆動源を作動させ前進用クラッチを係合する復帰制御が行われ、前進用クラッチが係合したら、バリエータの変速比を最ローにダウンシフトする。
 バリエータをダウンシフトする前に前進用クラッチを係合させるのは、バリエータの変速比がハイ側の方が前進用クラッチを速やかに回転同期することができるからである。
 しかし、このように、前進用クラッチの締結後にバリエータをダウンシフトしようとすると、目標変速比の最ローまでダウンシフトしきれないうちに車両が停止してしまう。
 バリエータは、回転しながら変速比の変更(変速)を行なうので、回転速度が遅いほど変速に時間がかかり、特に前進用クラッチがバリエータの下流側に配設された構成の変速機では、前進用クラッチの締結状態で車両が停止すると、バリエータも停止して回転不能になるため、バリエータの変速が完全にできなくなってしまう。
 したがって、セーリングストップ制御から急ブレーキ操作が行われる時の車速が高速であれば、バリエータがある程度以上の回転速度で回転しているうちに変速操作を完了できるが、車速が中速であれば、変速操作の完了前に車両が停止してしまう場合がある。
 また、車両の駆動源のエンジンによって駆動される油圧ポンプで油圧を発生させて、この油圧によりバリエータを制御する場合、車速が低下しエンジン回転が低下すると、必要な油圧が得られずにバリエータの変速が困難になる。
 したがって、必要な油圧が得られる状況下でバリエータのダウンシフトを完了させることが必要である。
特開2013-213557号公報
 本発明は、このような課題に鑑み創案されたもので、バリエータを有する無段変速機を備えた車両において、セーリングストップ制御中にブレーキ操作が行われた場合にも、車両停止前にバリエータの変速比を最ローにダウンシフトするためのロー戻り性能を向上させることができるようにした車両の制御装置を提供することを目的とする。
 上記の目的を達成するために、本発明の車両の制御装置は、駆動源と、駆動力の伝達を断接するための締結要素と前記締結要素よりも上流に配置されたバリエータとを有し、前記駆動源と接続された自動変速機と、を有する車両の制御装置であって、セーリングストップ条件が成立すると、前記駆動源を停止すると共に前記自動変速機をニュートラル状態とするセーリングストップ制御を実行する第1制御部と、セーリングストップ解除条件のうちの所定のセーリングストップ解除条件が成立して前記セーリングストップ制御を解除する際に、前記車両の減速度の大きさが所定値以上である場合は、前記駆動源を始動して前記バリエータのダウンシフトを実施し、前記ダウンシフトの完了後に前記締結要素を締結させる第2制御部と、を有するものとしている。
 前記第2制御部は、前記セーリングストップ制御を解除する際、前記車両減速度の大きさが前記所定値未満である場合は、前記駆動源を始動して前記締結要素を締結し、前記締結要素の締結後に前記バリエータの制御に移行することが好ましい。
 前記所定値は前記セーリングストップ制御を解除する時の前記車両の走行速度に応じて可変に設定されることが好ましい。
 前記セーリングストップ条件には、前記自動変速機の選択レンジが前進レンジであること、前記車両の走行速度が設定速度以上であること、前記車両のアクセルがオフであること、及び前記車両のブレーキがオフであることが、アンド条件として含まれ、前記セーリングストップ解除条件は、前記セーリングストップ条件の何れかが成立しなくなったことであり、前記所定のセーリングストップ解除条件は、前記ブレーキがオンになったことであることが好ましい。
 前記第2制御部により前記駆動源の始動及び前記締結要素の締結が完了したら、前記締結要素の締結を維持し、前記車両のアクセル開度に応じて前記駆動源の出力を制御し、予め設定された変速マップに従って前記バリエータの変速比を制御する通常制御を実施することが好ましい。
 前記駆動源は内燃機関であって、燃料カット条件が成立したら、前記内燃機関への燃料供給を停止する燃料カット制御を実施する第3制御部を有することが好ましい。
 本発明によれば、急ブレーキ等による車両の減速度が高い状況でセーリングストップ制御を終了する際には、駆動源を再始動し、締結要素の締結に優先させてバリエータの変速を完了するので、バリエータのロー戻り性能が向上し、車両の停止時までにバリエータの変速比を最ローに到達させるか或いは最ローに極力近づけることができ、車両の再発進性を確保することができる。
本発明の一実施形態に係る制御装置が適用された車両の駆動系と制御系との要部を示すシステム図である。 本発明の一実施形態に係る車両の制御に用いる制御マップを示す図である。 本発明の一実施形態に係る車両の制御に関連するバリエータの変速比特性を説明する変速線図である。 本発明の一実施形態に係る車両の制御を説明するフローチャートである。 本発明の一実施形態に係る車両の制御の復帰制御(バリエータのダウンシフト優先)を説明するタイムチャートである。 本発明の一実施形態に係る車両の制御の復帰制御(前進クラッチの締結優先且つ車両停止)を説明するタイムチャートである。 本発明の一実施形態に係る車両の制御の復帰制御(前進クラッチの締結優先且つ車両走行続行)を説明するタイムチャートである。
 以下、図面を参照して本発明の実施形態を説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
 [1.全体システム構成]
 図1は、本実施形態に係る制御装置が適用された車両の駆動系と制御系とを示す全体システム図である。
 図1に示すように、車両の駆動系は、駆動源であるエンジン(内燃機関)1と、トルクコンバータ2と、バリエータ(無段変速機構)3と、前進クラッチ(締結要素)41を有する前後進切替機構4と、終減速機構(図示略)と、ディファレンシャル(図示略)と、駆動輪5とを備えている。
 なお、トルクコンバータ2とバリエータ3と前後進切替機構4とをトランスミッションケース内に収納することにより自動変速機としての無段変速機(以下、「CVT」或いは単に「変速機」ともいう。)100が構成される。
 エンジン1には、エンジン1で駆動される機械式のオイルポンプ10Pが連結されており、オイルポンプ10Pはエンジン1の回転に応じて作動油〔ATF;(Automatic Transmission Fluid)〕を加圧して変速機100の油圧機器類に供給する。
 トルクコンバータ2は、トルク増大機能を有する発進要素であり、エンジン出力軸11にコンバータハウジング22を介して連結されたポンプインペラ23と、トルクコンバータ出力軸21に連結されたタービンランナ24と、ケースにワンウェイクラッチ(図示略)を介して設けられたステータ25とを構成要素としている。
 トルクコンバータ2は、トルク増大機能を必要としないときは、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21とを直結可能なロックアップクラッチ20を有する。
 図示を省略するが、ロックアップクラッチ20は、その入力側,出力側におけるトルクコンバータアプライ圧PAとトルクコンバータレリーズ圧PRとの差圧PA-PRに応動して作動する。
 つまり、レリーズ圧PRをアプライ圧PAよりも高くするとロックアップクラッチ20は解放されて、レリーズ圧PRをアプライ圧PAよりも低くするとロックアップクラッチ20は係合される。
 したがって、レリーズ圧PR及びアプライ圧PAを調整することにより、トルクコンバータ20の入出力要素間を、解放状態と、完全係合状態(直結状態)と、これらの中間のスリップ係合状態とに切り替えることができる。
 バリエータ3は、プライマリプーリ31と、セカンダリプーリ32と、動力伝達部材としてのベルト(又はチェーン)33とを有し、作動油の油圧制御によってベルト33のプーリ31,32への巻付き半径を変更し、バリエータ入力軸(変速機入力軸)34の入力回転数とバリエータ出力軸35の出力回転数との比である変速比(変速機入力回転数/変速機出力回転数)を無段階に変化させる無段変速機能を備える。
 なお、図1では、トルクコンバータ出力軸21とバリエータ入力軸34とを同一軸としているが、トルクコンバータ出力軸21とバリエータ入力軸34とを別軸とし、ギヤ機構などを介して動力連結する構成を採用する場合もある。
 詳細は図示しないが、プライマリプーリ31は、固定プーリ及びスライドプーリにより構成され、スライドプーリは、プライマリ油圧室に導かれる油圧(プライマリ圧又はプライマリプーリ圧)に応じて軸方向にスライド移動する。
 同様に、セカンダリプーリ32は、固定プーリ及びスライドプーリにより構成され、スライドプーリは、セカンダリ油圧室に導かれる油圧(セカンダリ圧又はセカンダリプーリ圧)に応じて軸方向にスライド移動する。
 プライマリプーリ31及びセカンダリプーリ32の各固定プーリ及びスライドプーリの各対向面であるシーブ面は、何れもV字形状をなしており、ベルト33は、プライマリプーリ31及びセカンダリプーリ32のV字形状のシーブ面に掛け渡され、ベルト33の両側部分と各シーブ面との接触により動力が伝達される。
 プライマリプーリ31及びセカンダリプーリ32の各スライドプーリのスライド移動に応じて、プライマリプーリ31及びセカンダリプーリ32へのベルト33の巻付き半径が変更されて、変速比が変更される。
 前後進切替機構4は、遊星歯車機構(図示略)を用いて前進と後進とを切り替える機構であり、前進段を達成する前進クラッチ(本発明にかかる駆動力の伝達を断接するための締結要素)41と、後進段を達成する後進締結要素(図示略)とを有し、これらの各摩擦締結要素は、各油圧室に給排される油圧に応じて締結及び解放が行なわれる。
 なお、本制御装置の場合、バリエータ3の下流に締結要素が装備されていればよく、例えば、前後進切替機構4に替えて、例えば、前進2段・後進1段の有段式の変速機構である副変速機構を装備してもよい。
 この場合、副変速機構は、例えば、2つの遊星歯車のキャリアを連結したラビニョウ型遊星歯車機構と、ラビニョウ型遊星歯車機構を構成する複数の回転要素に接続され、それらの連係状態を変更する複数の摩擦締結要素とを備えて構成することができる。
 このような変速機100に関し、バリエータ3のプライマリ油圧室,セカンダリ油圧室、前後進切替機構4の各摩擦締結要素の油圧室及びロックアップクラッチ20の各油圧室の油圧は、それぞれに対応する油圧制御弁10Vを通じて制御される。
 各油圧制御弁10Vは、油圧コントロールユニット10内に装備されたソレノイドバルブであって、後述の変速制御手段としてのATCU7からの指令信号によって作動してオイルポンプ10Pから供給される作動油の調圧と各油圧室への給排とを制御する。
 [2.制御系の構成]
 本車両は、車両を制御する制御手段として、車両の走行を制御する電子コントロールユニットである走行制御手段としての走行ECU6と、自動変速機を制御する電子コントロールユニットである変速制御手段としてのATCU7と、エンジン1を制御する電子コントロールユニットであるエンジン制御手段としてのエンジンECU8とを備えている。
 走行ECU6,ATCU7及びエンジンECU8は、何れも、入出力装置,多数の制御プログラムを内蔵した記憶装置(ROM,RAM等),中央処理装置(CPU)及びタイマカウンタ等を備えて構成される。
 走行ECU6は、セーリングストップ条件が成立すると、セーリングストップ制御を実行する機能(第1制御部)61と、このセーリングストップ制御の解除条件が成立すると、セーリングストップ制御を解除し通常走行に復帰させる機能(第2制御部)62とを有している。
 さらに、走行ECU6は、燃料カット条件が成立したら、エンジン1への燃料供給を停止する燃料カット制御を実行する機能(第3制御部)63を有している。
 第1制御部61によるセーリングストップ制御、及び、第2制御部62によるセーリングストップ制御を解除し通常走行に復帰させる復帰制御は、ATCU7を通じた変速機100の制御及びエンジンECU8を通じたエンジン1の制御により実施する。
 また、第3制御部63による燃料カット制御は、エンジンECU8を通じたエンジン1の制御により実施する。
 ATCU7は、バリエータ3の各油圧室の油圧を調整して変速比を制御する変速比制御部(変速比制御手段)71と、前後進切替機構4の各油圧室の油圧を調整して前進及び後進を切り替える前後進切替制御部(前後進切替制御手段)72と、ロックアップクラッチ20の各油圧室の油圧を調整して係合状態を切り替えるロックアップクラッチ制御部(ロックアップクラッチ制御手段)73とを有している。
 エンジンECU8は、エンジン1の燃料供給量や供給タイミング、スロットルバルブの開度、点火タイミング等を制御する。
 セーリングストップ制御は、変速機100をニュートラル状態にする制御(セーリング制御)と、エンジン(駆動源)1を停止させる制御とを併用する制御であり、これにより省エネルギを促進する。
 このセーリングストップ制御を行なうセーリングストップ条件は、以下の(A)~(D)の条件がアンド条件として設けられている。
 (A)前進レンジが選択されていること。
 (B)車速(車両の走行速度)Vspが設定車速(設定速度)Vsp1以上(中~高車速)であること。
 (C)アクセルがオフであること。
 (D)ブレーキがオフであること。
 このため、走行ECU6には、変速機100の選択レンジを検知するインヒビタスイッチ91,車速センサ92,アクセル開度センサ93,ブレーキセンサ94からの検出情報が入力され、第1制御部61では、これらのセンサ類からの検出信号に基づいてセーリングストップ条件を判定する。
 条件(A)の「前進レンジが選択されていること」は、インヒビタスイッチ91からの選択レンジ信号Sが前進レンジに相当するものであるか否かから判定される。
 条件(B)の「車速Vspが設定車速Vsp1以上であること」は、車速センサ92からの車速信号Vspが設定車速Vsp1以上であるか否かから判定される。
 条件(C)の「アクセルがオフであること」は、アクセル操作がなされていないことであり、アクセル開度センサ93からのアクセル開度信号APOが開度0を示しているか否かから判定される。
 条件(D)の「ブレーキがオフであること」は、ブレーキ操作がなされていないことであり、ブレーキセンサ94からの検出信号がブレーキオンを示しているか否かから判定される。
 なお、セーリングストップ制御に関与する上記のセンサ類が何れも正常であることが前提条件であり、この前提条件及び上記の条件(A)~(D)が何れも成立することがセーリングストップ制御を行なう条件となる。
 第1制御部61では、セーリングストップ制御として、変速機100をニュートラル状態にし、エンジン1を停止させる。このとき、バリエータ3の変速比については最ハイ状態或いは最ハイに近い状態に固定し、ロックアップクラッチ20は解放する。
 なお、バリエータ3の通常の変速制御では、アクセルがオフの場合、変速比は図2に実線で示す目標変速線Lに沿って制御されるため、車速が中~高車速であれば変速比は破線で示す最ハイ状態或いは最ハイに近い状態となる。
 セーリングストップ条件には、車速が中~高車速である条件(B)と、アクセルがオフである条件(C)とが含まれるので、セーリングストップ制御の開始時には、変速比は図2に示す目標変速線L中の中~高車速域の最ハイ状態或いは最ハイに近い状態になっている。
 セーリングストップ制御の際には、前進クラッチ41を解放する一方で、セーリングストップ制御を解除し通常制御に復帰させる復帰制御の際には、解放している前進クラッチ41を係合するので、この係合を速やかに行ないたい。これにより、通常制御への復帰を早めることができ、車両の運転性能を向上させることができる。
 前進クラッチ41を係合するには、前進クラッチ41を締結する前に入出力間の回転同期が必要であり、バリエータ3の変速比がハイ側の方が速やかに回転同期を完了でき、前進クラッチ41の係合を速やかに行なうことができる。
 つまり、セーリングストップ制御から通常制御に復帰する際には、エンジン1を始動して前進クラッチ41を締結するが、前進クラッチ41の出力側(駆動輪5側)は車速Vspに対応して比較的高速で回転しており、一方、前進クラッチ41の入力側(バリエータ3側及びエンジン1側)は停止状態から回転を開始する。
 バリエータ3の変速比がハイ側にあれば、バリエータ3のプライマリ軸回転数Np(エンジン回転数Neに対応する)に比べてバリエータ3のセカンダリ軸回転数Ns(前進クラッチ41の入力側回転数に対応する)が高速になるので、前進クラッチ41の入力側回転が速やかに高速になり前進クラッチ41の出力側との同期時間を短縮できる。
 また、セーリングストップ制御の解除条件は、セーリングストップ制御中に、上記の条件(A)~(D)等のセーリングストップ条件の何れかが成立しなくなることである。
 第2制御部62では、セーリングストップ条件の何れかが成立しなくなると、セーリングストップ制御の解除条件が成立したとして、セーリングストップ制御を解除して通常制御に復帰させる。
 この第2制御部62は、セーリングストップ制御を解除する際に、エンジン1を再始動して前進クラッチ41を締結するが、ブレーキがオンとなったことによりセーリングストップ制御を解除する場合には、これらにバリエータ3の変速比の制御が加えられる。
 つまり、第2制御部62では、ブレーキがオンとなってセーリングストップ解除条件が成立した場合には、エンジン1を始動して、前進クラッチ41を締結し且つバリエータ3の変速比を最ロー側にダウンシフトするように、ATCU7及びエンジンECU8に指令信号を出力する。
 なお、ATCU7の変速比制御部71では、このダウンシフトを、プライマリプーリ回転センサ95及びセカンダリプーリ回転センサ96により検出されたプライマリプーリ回転数Np及びセカンダリプーリ回転数Nsにかかる信号に基づくフィードバック制御により行なう。
 このように、バリエータ3の変速比を最ロー側にダウンシフトするのは、ブレーキオンによって車両が停止した後、車両が再発進する場合に備えたもので、バリエータ3の変速比を最ロー又は最ローに近い状態にすることにより車両の発進性能を確保するためである。
 このような復帰制御は、エンジン1の始動及び前進クラッチ41の締結が完了したら終了し、その後は通常制御となる。
 ブレーキオンによってセーリングストップ解除となる場合、前進クラッチ41の締結に加えてバリエータ3のダウンシフトを行なうことになるが、第2制御部62では、この復帰制御の際に、これらの前進クラッチ41の締結及びバリエータ3のダウンシフトの2つの処理を、車両の減速度の大きさ(減速度のスカラー量、即ち、絶対値)dに基づいて優先順位を付けて実施する。
 つまり、第2制御部62は、車両の減速度の大きさ(以下、単に減速度とも言う)dが予め設定された判定閾値(所定値)dV以上の場合はバリエータ3のダウンシフトを優先し、車両の減速度dが判定閾値dV未満の場合は前進クラッチ41の締結を優先する。
 したがって、第2制御部62は、セーリングストップ解除条件が成立した時に、車両の減速度dが判定閾値dV以上である場合は、エンジン1を始動してバリエータ3のダウンシフトを実施し、バリエータ3のダウンシフトが完了したら前進クラッチ41を締結するように、ATCU7及びエンジンECU8に指令信号を出力する。
 また、第2制御部62は、セーリングストップ解除条件が成立した時に、車両の減速度dが判定閾値dV未満である場合は、エンジン1を始動して前進クラッチ41の締結を実施し、前進クラッチ41の締結が完了したらバリエータ3をダウンシフトする。
 このように、車両の減速度dが判定閾値dV以上である場合に、バリエータ3のダウンシフトを優先するので、車両が減速して停止するまでの時間が極めて短くなったとしても、前進クラッチ41が締結されておらずバリエータ3が車輪に連結していないため、バリエータ3をエンジン1によって回転させる状態が確保される。これにより、バリエータ3のロー戻り性能が向上し、バリエータ3の変速比を最ロー又はその近傍までダウンシフトすることができ、その後の車両の発進性能が確保される。
 バリエータ3の変速比を変更するには、バリエータ3が回転していること及びオイルポンプ10Pの吐出圧が最低限度以上確保されていることが必要である。また、オイルポンプ10Pの吐出圧が最低限度以上確保されるには、エンジン1の回転数が必要な回転数以上十分に確保されていることが必要である。
 したがって、車両が停止した場合やエンジン1の回転数が不十分であってオイルポンプ10Pの吐出圧が十分でない場合(この場合、前進クラッチ4へ油圧を供給してしまうとバリエータ3への油圧供給がさらに減少しバリエータ3の変速が極めて困難となる)には、バリエータ3の変速比を変更することが不可能になる。
 そこで、車両が停止するまでに及びエンジン1の回転数が不十分な状態に低下するまでに時間的な余裕がない場合には、車両が停止する前で且つエンジン1の回転数がオイルポンプ10Pの吐出圧が最低限度以上確保しうる間にバリエータ3のダウンシフトを優先して実施するようにしている。
 ただし、車両が停止するまでやエンジン1の回転数が不十分な状態に低下するまでに時間的な余裕がある場合には、前進クラッチ41の締結を優先し、クラッチ41の締結を完了してからバリエータ3のダウンシフトを開始しても、車両が停止するまでやエンジン1の回転数が低下するまでにバリエータ3のダウンシフトを完了することができる。
 これは、前述のように、前進クラッチ41を締結する前に入出力間の回転同期が必要であり、バリエータ3の変速比がハイ側の方が速やかに回転同期を完了でき、前進クラッチ41を速やかに締結できるためである。
 なお、判定閾値dVは、図3の判定マップに示すように、車両の車速Vspに応じて可変に設定され、車速Vspが低いほど判定閾値dVが小さくなる傾向に設定される。
 これは、車両が停止するまでやエンジン1の回転数が低下するまでの時間は、セーリングストップ解除条件が成立した時点における車両の減速度dだけでなく、その時点における車速Vspにも関係するためである。
 つまり、車両が停止するまでやエンジン1の回転数が不十分な状態に低下するまでの時間は、車両の減速度dと減速開始時の車速Vspとに依存し、減速度dが大きいほど短くなり、減速開始時の車速Vspが低いほど短くなる。そこで、車速Vspが低いほど判定閾値dVが小さくなる傾向に設定される。
 図3に示す判定マップでは、車速Vspが所定の車速値Vsp2以上の高速領域では、減速度dに関わらず前進クラッチ41の締結を優先するように設定されている。
 これは、このような車両の高速領域では、図2に実線で示す目標変速線L中の最ハイの線を辿りながら減速していけばよいので、前進クラッチ41を締結してからでも十分にバリエータ3のダウンシフトを完了できるからである。
 また、車速Vspが所定の車速値Vsp2以下の中速領域では、減速度dが所定の低減速度d1以下の緩減速でないかぎり、バリエータ3のダウンシフトを優先するように設定されている。
 これは、このような中速領域では、図2に破線で示すように、目標変速線Lからずれて最ハイの線を辿りながら減速していく場合が想定され、減速度dが所定の低減速度d1以下の緩減速でないかぎり前進クラッチ41を締結してからではバリエータ3のダウンシフトを完了できないおそれが高いからである。
 なお、通常制御では、前進クラッチ41を締結状態に維持しながら、エンジン1の出力をアクセル開度APOに応じて制御し、予め設定された変速マップに従ってバリエータ3の変速比を制御する。
 第1制御部61によるセーリングストップ制御が実施された場合には、第2制御部62による復帰制御(セーリングストップ制御の解除)を経て、通常制御が実施される。
 前記のように復帰制御は、前進クラッチ41の締結が完了した段階で終了するので、バリエータ3のダウンシフトを優先した場合は、バリエータ3のダウンシフトが完了して更に前進クラッチ41の締結が完了したら通常制御に復帰する。
 また、前進クラッチ41の締結を優先した場合は、前進クラッチ41の締結が完了したら通常制御に復帰するが、通常制御に復帰後も、ブレーキオン状態が継続していれば、バリエータ3のダウンシフトが実施される。
 第3制御部63による燃料カット制御は、車両の中~高車速での走行中にブレーキ操作が行われている場合に、エンジン1への燃料供給を停止して燃料消費量を抑制すると共にエンジンブレーキを強める制御である。
 この燃料カット制御を行なう燃料カット条件として、以下の(a)~(e)の条件がアンド条件として設けられている。
 (a)前進レンジが選択されていること。
 (b)車速Vspが設定車速Vsp2以上(中~高車速)であること。
 (c)アクセルがオフであること。
 (d)ブレーキがオンであること。
 (e)エンジン回転数Neが設定されたリカバー回転数Ner以上であること。
 セーリングストップ条件ではブレーキがオフであることを条件の一つとしているのに対して、燃料カット条件ではブレーキがオンであることを条件の一つとしている点と、燃料カット条件ではエンジン回転数の条件が加えられている点と、に大きな差異がある。
 燃料カット条件にブレーキオンであることが設定されているのは、この燃料カット制御はエンジンブレーキを強めることを目的としているためである。
 また、燃料カット条件にエンジン回転数の条件が加えられているのは、燃料カットから燃料リカバー(燃料噴射の再開)の際にエンジン1のストール(エンスト)が発生するのを回避するためである。
 第3制御部61では、各センサ類からの検出信号に基づいて上記の(a)~(e)の条件の燃料カット条件を判定し、燃料カット条件の成立時には燃料カット制御を実施し、燃料カット制御中に燃料カット条件が不成立になると燃料カット制御を終了する。
 この燃料カット制御では、変速機100を動力伝達状態で且つ動力伝達ロスを低下させると共に、エンジン1への燃料供給を停止させ、バリエータ3の変速比をロー側にダウンシフトする。
 変速機100を動力伝達状態にするには前進クラッチ41が締結されればよく、変速機100の動力伝達ロスを低下させるには、ロックアップクラッチ20を完全係合(締結)させればよい。
 このように、ロックアップクラッチ20が完全係合されていると、燃料リカバーの際にエンジン回転数Neがある程度高くないとエンストが発生するおそれがあり、このため、燃料カット条件に、(e)のエンジン回転数の条件が加えられているのである。
 この燃料カット制御は、セーリングストップ制御中に、ブレーキがオフからオンに操作されることにより、セーリングストップ制御からの復帰制御を経て開始する場合がある。
 [3.作用及び効果]
 本発明の一実施形態にかかる車両の制御装置は、上述のように構成されているので、例えば、図4のフローチャートに示すように車両の制御が実施される。なお、図4のフローチャートは車両のキースイッチオンで開始され、所定の制御周期で繰り返し実施され、キースイッチオフで終了する。
 図4に示すように、まず、セーリングストップ制御中であるか否かが判定され(ステップS10)、セーリングストップ制御中であれば、セーリングストップ解除条件が成立しているか否かが判定され(ステップS20)、セーリングストップ制御中でなければ、セーリングストップ条件が成立しているか否かが判定される(ステップS40)。
 ステップS20によるセーリングストップ解除条件の判定は、前記の条件(A)~(D)について判定し、条件(A)~(D)の何れかが成立していなければセーリングストップ解除条件が成立していると判定する。
 ステップS40によるセーリングストップ条件の判定は、前記の条件(A)~(D)について判定し、条件(A)~(D)が何れも成立していればセーリングストップ条件が成立していると判定する。
 セーリングストップ制御中ではなく、ステップS40によりセーリングストップ条件が成立していないと判定された場合には、通常制御(ステップS60)を実施する。
 この通常制御では、前進クラッチ41を締結状態に維持しながら、エンジン1の出力をアクセル開度APOに応じて制御し、予め設定された変速マップに従ってバリエータ3の変速比を制御する。
 また、通常制御中において、車両の中~高車速での走行中にブレーキ操作が行われ燃料カット条件が成立したら、エンジン1への燃料供給を停止して燃料消費量を抑制すると共にエンジンブレーキを強める燃料カット制御を行なう。
 一方、セーリングストップ制御中であって、ステップS20によりセーリングストップ解除条件が成立していないと判定された場合、及び、セーリングストップ制御中ではなく、ステップS40によりセーリングストップ条件が成立していると判定された場合には、セーリングストップ制御(ステップS50)を実施する。
 このセーリングストップ制御では、前進クラッチ41をオフ(解放)にして変速機100をニュートラル状態にする制御(ステップS502)と、エンジン1を停止させる制御(ステップS504)と、変速比を最ハイに固定する制御(ステップS506)と、ロックアップクラッチ20をオフ(解放)にする制御(ステップS508)とを実施する。
 一方、セーリングストップ制御中であって、ステップS20によりセーリングストップ解除条件が成立していると判定された場合には、セーリングストップ制御を解除し通常走行に復帰させる復帰制御(ステップS30)を実施する。
 この復帰制御では、エンジン1の始動及び前進クラッチ41の締結を実施するが、前進クラッチ41の締結及びバリエータ3のダウンシフトについては、ブレーキ操作による車両の減速度dに基づいて優先順位を付けて実施する。
 つまり、復帰制御の開始と共にエンジン1の始動制御を行ない(ステップS302)、セーリングストップ解除条件成立がブレーキオンによるものであるかを判定し(ステップS304)、ブレーキオンによるセーリングストップ解除条件成立であれば、車両の減速度dが車速毎の判定閾値dV以上であるか否かを判定する(ステップS306)。
 セーリングストップ解除条件成立がブレーキオンによるものでない場合や、ブレーキオンによるセーリングストップ解除条件成立であるが、車両の減速度dが閾値dV未満であれば、通常の復帰制御を行なう。
 この通常の復帰制御は、前進クラッチ41の締結を優先し、まず、前進クラッチ41の締結制御を行ない(ステップS316)、前進クラッチ41の締結が完了したか否かを判定する(ステップS318)。
 前進クラッチ41の締結制御(ステップS316)は、ステップS318で前進クラッチ41の締結完了が判定されるまで行なう。ステップS316及びステップS318の処理は、締結完了が判定されるまで所定の制御周期で行なわれる。
 ステップS318で、締結完了が判定されたら、復帰制御を終了し、次の制御周期では、ステップS10,ステップS40を経て、通常制御を実施する(ステップS60)。
 ブレーキオンによるセーリングストップ解除であって、ブレーキオンが継続されていた場合には、通常制御に復帰後、バリエータ3のダウンシフト制御が実施される。
 これに対し、セーリングストップ解除条件成立がブレーキオンによるもので且つ車両の減速度dが閾値dV以上であれば、バリエータ3のダウンシフトを優先した復帰制御を行なう。
 この場合の復帰制御は、まず、バリエータ3のダウンシフト制御を実施し(ステップS308)、バリエータ3のダウンシフトが進行して変速比が最ローになったか否かを判定する(ステップS310)。
 ステップS308のバリエータ3のダウンシフト制御は、ステップS310で変速比が最ローになったことが判定されるまで行なう。ステップS308及びステップS310の処理は、ステップS310で最ローが判定されるまで所定の制御周期で行なわれる。
 ステップS310で最ローが判定されたら、前進クラッチ41の締結制御を行ない(ステップS312)、前進クラッチ41の締結が完了したか否かを判定する(ステップS314)。なお、図4には示していないが、最ローが判定される前であっても、バリエータダウンシフト中にアクセルペダルが踏まれた場合にも、クラッチ締結処理へ移行する。
 ステップS312の前進クラッチ41の締結制御は、ステップS314で前進クラッチ41の締結完了が判定されるまで行なう。ステップS312及びステップS314の処理は、締結完了が判定されるまで所定の制御周期で行なわれる。
 前進クラッチ41の締結完了が判定されたら、復帰制御を終了し、次の制御周期では、ステップS10,ステップS40を経て、通常制御を実施する(ステップS60)。
 次に、図5~図7のタイムチャートを参照して、本制御装置にかかる復帰制御の種々の例を説明する。なお、図5~図7において、SSはセーリングストップ制御状態を、SS復帰は復帰制御状態を、停止は車両停止状態を、FCは燃料カット制御状態を、それぞれ示す。
 図5はブレーキオンによってセーリングストップ制御の解除条件が成立し、この条件成立時の車両の減速度dが閾値dV以上である場合の車速,ブレーキ,各回転数,変速比の各変動例を示している。(a)は本制御を適用した場合を示し、(b)は本制御を適用しない場合を示す。
 図5(a)に示すように、セーリングストップ制御中の時点t11でブレーキ操作がされると、ブレーキがオフからオンに切り替わり、セーリングストップ制御の解除条件が成立して、セーリングストップ制御から通常制御への復帰制御が開始される。
 ここでは、解除条件が成立したときの車両の減速度dが閾値dV以上であり、バリエータ3のダウンシフトを優先した復帰制御を行なうため、復帰制御の開始直後にエンジン1の始動操作を行ない、更に目標変速比Rtを最ロー側へダウンシフトさせる操作を開始する。
 エンジン1の始動と共に、エンジン回転数Neが立ち上がり、これと共にバリエータ3のプライマリ軸回転数Np,バリエータ3のセカンダリ軸回転数Nsが立ち上がる。
 このときには、トルクコンバータ2のロックアップクラッチ20が解放されているため、プライマリ軸回転数Npはエンジン回転数Neに追従するように上昇し、セカンダリ軸回転数Nsは復帰制御の開始時の変速比(最ロー又は略最ロー)でプライマリ軸回転数Npと比例するように上昇する。
 その後、エンジン1の始動完了を判定した時点t12で目標変速比Rtのダウンシフト側への変更が開始され、目標変速比Rtが最ローの変速比へ向けて徐々に変更されていく。
 実変速比Rも、目標変速比Rtに追従して時点t13からダウンシフト側へ変更されていき、プライマリ軸回転数Npに対して相対的にセカンダリ軸回転数Nsが低下していく。
 なお、エンジン1の始動後にオイルポンプ10Pの吐出圧が制御に使用可能な状態になるまでは、実変速比Rのダウンシフトを実施することができないので、目標変速比Rtのダウンシフト開始時点t12と実変速比Rのダウンシフト開始時点t13との間にタイムラグが生じる。
 その後、時点t14で車両が停止し、この車両の停止直後に実変速比Rが最ローまでダウンシフトされ、その後の時点t15で前進クラッチ41の締結を指令する。
 車両が停止していても、前進クラッチ41は解放状態にありバリエータ3は回転可能なため、エンジン1が作動していれば、オイルポンプ10Pの吐出圧を確保でき、前進クラッチ41の締結は可能である。
 これにより、時点t16で前進クラッチ41の締結が完了し、バリエータ3のプライマリ軸,セカンダリ軸及び変速機の出力軸の各回転が停止し、バリエータ3のプライマリ軸回転数Np,バリエータ3のセカンダリ軸回転数Ns,変速機の出力軸回転数Noが何れも0となる。
 したがって、バリエータ3の変速比が最ローとなった状態で車両が停止する。このため、変速比が最ローの状態で車両の再発進時を行なうことができ、車両の良好な発進性能を確保することができる。
 これに対して、図5(a)に示す場合と同様な状況で行なう復帰制御において、エンジン1の始動指令し、前進クラッチ41の締結とバリエータ3のダウンシフトとを同時に指令した場合には、図5(b)に示すようになる。
 つまり、図5(b)に示すように、セーリングストップ制御中の時点t11でブレーキ操作がされ(ブレーキがオフからオン)、セーリングストップ制御の解除条件が成立して、復帰制御が開始される。
 復帰制御の開始時点t11の直後にエンジン1の始動操作を行ない、更に、エンジン1の始動完了を判定した時点t12で、前進クラッチ41の締結と目標変速比Rtのダウンシフト側への変更とが指示される。
 前進クラッチ41の締結応答性は、バリエータ3のダウンシフト応答性よりも高いので、ダウンシフトの完了よりも早い時点t13´で前進クラッチ41の締結が完了し、バリエータ3のセカンダリ軸回転数Nsが変速機の出力軸回転数Noと一致するようになる。
 そして、この後、バリエータ3のダウンシフトが進められていくが、この時点では、車速の急激な減速に伴って、バリエータ3のプライマリ軸回転数Npもセカンダリ軸回転数Nsも極めて低速に減速しており、バリエータ3のダウンシフトは進み難くなり、バリエータ3のダウンシフトが進む前の時点t14´に、前進クラッチ41が締結した状態で車両が停止し、バリエータ3も停止する。
 したがって、バリエータ3のダウンシフトが進まない状態で、即ち、バリエータ3の変速比が最ロー或いは最ロー付近に接近しない状態で車両が停止する。このため、変速比がハイ側の状態で車両の再発進を行なわなくてはならず、車両の発進性能が低下する。
 図6は、時点t21において、ブレーキオンによってセーリングストップ制御の解除条件が成立し、この条件成立時の車両の減速度dが閾値dV未満である場合の車速,ブレーキ,各回転数,変速比の各変動例を示している。
 この場合には、前進クラッチ41の締結を優先した復帰制御を行なうため、復帰制御の開始時点t21直後にエンジン1の始動操作を行ない、更にエンジン1の始動完了判定後の時点t22で前進クラッチ41の締結操作を開始する。
 そして、前進クラッチ41の締結が完了した時点t23から目標変速比Rtを最ロー側へダウンシフトさせる。
 この場合、前進クラッチ41の締結が完了した時点t23においても車速Vspがある程度の高さにあり、その後の車両停止までに時間的な余裕があるので、車両の停止前にバリエータ3のダウンシフトが完了する。
 そして、バリエータ3の変速比がハイ側の状態で前進クラッチ41の締結を行なうので、前進クラッチ41の締結前の入出力間の回転同期を速やかに完了でき、前進クラッチ41を速やかに締結できる。
 このように、前進クラッチ41を速やかに締結できると、その後もブレーキオンが継続した場合、バリエータ3の変速比の最ローへのダウンシフト完了までの時間を含めても制御を短時間で完了できる。
 もちろん、車両停止前に、バリエータ3の変速比の最ローへのダウンシフトが完了するので、その後の再発進時の発進性能を良好に確保することもできる。
 図7は、時点t31において、ブレーキオンによってセーリングストップ制御の解除条件が成立し、この条件成立時の車両の減速度dが閾値dV未満である場合であって、図6の場合よりも車速が高いか或いは車両の減速度dが小さい場合の車速,ブレーキ,各回転数,変速比の各変動例を示している。
 この場合には、前進クラッチ41の締結を優先した復帰制御を行なうため、復帰制御の開始時点t31直後にエンジン1の始動操作を行ない、更にエンジン1の始動完了判定後の時点t32で前進クラッチ41の締結操作を開始する。
 そして、前進クラッチ41の締結が完了した時点t33から目標変速比Rtを最ロー側へダウンシフトさせる。
 この場合も、前進クラッチ41の締結が完了した時点t33においても車速Vspがある程度の高さにあり、その後の車両停止までに時間的な余裕があるので、車両の停止前にバリエータ3のダウンシフトが完了する。
 そして、バリエータ3の変速比がハイ側の状態で前進クラッチ41の締結を行なうので、前進クラッチ41の締結前の入出力間の回転同期を速やかに完了でき、前進クラッチ41を速やかに締結できる。
 このように、前進クラッチ41を速やかに締結できると、その後のバリエータ3の変速比の最ローへのダウンシフト完了までの時間を含めても復帰制御を短時間で完了できる。
 この場合は、前進クラッチ41の締結が完了した時点t33において車速Vspが十分に高く、燃料カット条件の条件(b)の「車速Vspが設定車速Vsp2以上であること」を満たし、燃料カット条件(a)~(e)がすべて成立し、燃料カット制御が実施される。
 この燃料カット制御では、前進クラッチ41が締結された状態で且つバリエータ3の変速比の最ローに近い状態で、エンジン1への燃料供給を停止し、ロックアップクラッチ20の係合が強められる(時点t34で締結される。)。これにより、エンジン1への燃料供給を停止して燃料消費量を抑制すると共にエンジンブレーキを強めることができる。
 また、前進クラッチ41を優先させて締結することにより、バリエータ3の変速比の最ローへのダウンシフト完了までの時間を含めての制御を短時間で完了できるため、このような燃料カット制御の機会を増加させることができ、燃料消費量の抑制を促進することができる。
 [5.その他]
 以上、本発明の実施形態を説明したが、本発明はかかる実施形態に限定されるものではなく、本実施形態の一部を用いたり本実施形態の一部を変更したりして実施しても良い。
 例えば、上記実施形態のセーリングストップ条件(A)~(D)に、更に、バリエータ3の変速比が最ハイであること〔条件(E)〕をアンド条件として加えることも考えられる。
 セーリングストップ条件(A)~(D)が成立する状況では、多くの場合、バリエータ3の変速比が最ハイにあるが、車速Vspが中速域でアクセルがオンからオフに切り替えられた直後には、バリエータ3の変速比が最ハイではない(ただし、最ハイに近い)場合が想定される。
 この場合、条件(E)を追加すると、アクセルオフとされると変速比は最ハイに移行するのでこれを待ってセーリングストップ制御を実施することになり、その後のセーリングストップ制御における車速低下をより抑制することができる。
 また、上記実施形態では、第2制御部62によりバリエータ3のダウンシフトを優先させる制御を実施する前提条件に、セーリングストップ解除条件成立がブレーキオンによるものであること(図4のステップS304)を加えているが、通常は、ブレーキオンとならないと車両の減速度dが閾値dV以上とはならないと考えられるので、かかる前提条件の判定を省略してもよい。
 上記実施形態では、本発明の駆動力の伝達を断接するための締結要素を前進クラッチ41としているが、かかる締結要素としては、一般的には前進用の締結要素を対象とし、前後進切替機構4に替えて、例えば、前進2段・後進1段の有段式の変速機構である副変速機構、前進2段の前進1速,前進2速の各締結要素などの前進用締結要素を適用することができる。
 また、上記実施形態では、制御手段を、走行制御手段としての走行ECU6と、変速制御手段としてのATCU7と、エンジン制御手段としてのエンジンECU8との各制御ユニットからハードウェアを構成したが、これらの走行制御手段,変速制御手段,エンジン制御手段にかかるハードウェア構成はこれに限定されず、例えば、1つの制御ユニット内に走行制御手段,変速制御手段,エンジン制御手段の各機能を設けるなど、種々構成することができる。

Claims (6)

  1.  駆動源と、
     駆動力の伝達を断接するための締結要素と前記締結要素よりも上流に配置されたバリエータとを有し、前記駆動源に接続された自動変速機と、
     を有する車両の制御装置であって、
     セーリングストップ条件が成立すると、前記駆動源を停止すると共に前記自動変速機をニュートラル状態とするセーリングストップ制御を実行する第1制御部と、
     セーリングストップ解除条件のうちの所定のセーリングストップ解除条件が成立して前記セーリングストップ制御を解除する際に、前記車両の減速度の大きさが所定値以上である場合は、前記駆動源を始動して前記バリエータのダウンシフトを実施し、前記ダウンシフトの完了後に前記締結要素を締結させる第2制御部と、
     を有している車両の制御装置。
  2.  前記第2制御部は、前記セーリングストップ制御を解除する際、前記車両減速度の大きさが前記所定値未満である場合は、前記駆動源を始動して前記締結要素を締結し、前記締結要素の締結後に前記バリエータの制御に移行するものである請求項1に記載の車両の制御装置。
  3.  前記所定値は前記セーリングストップ制御を解除する時の前記車両の走行速度に応じて可変に設定されるものである請求項1または2に記載の車両の制御装置。
  4.  前記セーリングストップ条件には、前記自動変速機の選択レンジが前進レンジであること、前記車両の走行速度が設定速度以上であること、前記車両のアクセルがオフであること、及び前記車両のブレーキがオフであることが、アンド条件として含まれ、
     前記セーリングストップ解除条件は、前記セーリングストップ条件のいずれかが成立しなくなったことであり、
     前記所定のセーリングストップ解除条件は、前記ブレーキがオンになったことである請求項1~3のいずれか一項に記載の車両の制御装置。
  5.  前記第2制御部により前記駆動源の始動及び前記締結要素の締結が完了したら、前記締結要素の締結を維持し、前記車両のアクセル開度に応じて前記駆動源の出力を制御し、予め設定された変速マップに従って前記バリエータの変速比を制御する通常制御を実施するようになっている請求項1~4のいずれか一項に記載の車両の制御装置。
  6.  前記駆動源は内燃機関であって、
     燃料カット条件が成立したら、前記内燃機関への燃料供給を停止する燃料カット制御を実施する第3制御部を有している請求項1~5のいずれか一項に記載の車両の制御装置。
PCT/JP2016/078332 2015-10-02 2016-09-27 車両の制御装置 WO2017057304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16851475.0A EP3358226A4 (en) 2015-10-02 2016-09-27 Vehicle control device
CN201680053193.4A CN108027049B (zh) 2015-10-02 2016-09-27 车辆的控制装置
US15/757,506 US10793156B2 (en) 2015-10-02 2016-09-27 Vehicle control device
KR1020187006617A KR102000893B1 (ko) 2015-10-02 2016-09-27 차량의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-196964 2015-10-02
JP2015196964A JP6510948B2 (ja) 2015-10-02 2015-10-02 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2017057304A1 true WO2017057304A1 (ja) 2017-04-06

Family

ID=58427507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078332 WO2017057304A1 (ja) 2015-10-02 2016-09-27 車両の制御装置

Country Status (6)

Country Link
US (1) US10793156B2 (ja)
EP (1) EP3358226A4 (ja)
JP (1) JP6510948B2 (ja)
KR (1) KR102000893B1 (ja)
CN (1) CN108027049B (ja)
WO (1) WO2017057304A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017130779A1 (ja) * 2016-01-25 2018-09-13 日産自動車株式会社 車両のセーリングストップ制御方法及び制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107226092B (zh) * 2017-06-01 2019-07-30 清华大学 一种制动方法和装置
WO2020261919A1 (ja) * 2019-06-24 2020-12-30 ジヤトコ株式会社 車両の制御装置及び車両の制御方法
WO2020261918A1 (ja) * 2019-06-24 2020-12-30 ジヤトコ株式会社 車両の制御装置及び車両の制御方法
EP4027040A4 (en) * 2019-09-05 2023-01-04 NISSAN MOTOR Co., Ltd. VEHICLE CONSTANT SPEED TRAVEL CONTROL METHOD AND VEHICLE CONSTANT SPEED TRAVEL CONTROL DEVICE
JP7390231B2 (ja) * 2020-03-26 2023-12-01 本田技研工業株式会社 車両制御装置及び車両管理システム
JP7251519B2 (ja) * 2020-05-22 2023-04-04 トヨタ自動車株式会社 車両の制御装置
CN112660131B (zh) * 2020-12-27 2022-04-26 潍柴动力股份有限公司 车辆换挡的控制方法、装置、可读介质以及设备
CN114278726A (zh) * 2021-12-24 2022-04-05 联合汽车电子有限公司 降低车辆滑行过程油耗的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147048A (ja) * 2003-11-18 2005-06-09 Mitsubishi Motors Corp 車両のエンジン制御装置
WO2012104993A1 (ja) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 車両制御装置
JP2013108467A (ja) * 2011-11-24 2013-06-06 Nissan Motor Co Ltd 車両のエンジン自動停止制御装置
WO2015037502A1 (ja) * 2013-09-13 2015-03-19 ジヤトコ株式会社 ハイブリッド車の制御装置
JP2015108386A (ja) * 2013-12-03 2015-06-11 ジヤトコ株式会社 コーストストップ制御装置及びコーストストップ制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526005B2 (ja) * 2010-11-25 2014-06-18 ジヤトコ株式会社 コーストストップ車両及びコーストストップ車両の制御方法
JP2013213557A (ja) 2012-04-03 2013-10-17 Toyota Motor Corp 車両の制御装置
IN2014DN10273A (ja) * 2012-06-20 2015-08-07 Toyota Motor Co Ltd
JP5843833B2 (ja) * 2013-10-03 2016-01-13 三菱電機株式会社 車両の制御装置
JP6064868B2 (ja) * 2013-11-08 2017-01-25 トヨタ自動車株式会社 車両の制御装置
JP5954306B2 (ja) * 2013-12-17 2016-07-20 トヨタ自動車株式会社 車両制御装置
RU2712713C1 (ru) * 2016-09-16 2020-01-30 Ниссан Мотор Ко., Лтд. Способ управления трансмиссией и устройство управления трансмиссией для бесступенчатой трансмиссии

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147048A (ja) * 2003-11-18 2005-06-09 Mitsubishi Motors Corp 車両のエンジン制御装置
WO2012104993A1 (ja) * 2011-02-01 2012-08-09 トヨタ自動車株式会社 車両制御装置
JP2013108467A (ja) * 2011-11-24 2013-06-06 Nissan Motor Co Ltd 車両のエンジン自動停止制御装置
WO2015037502A1 (ja) * 2013-09-13 2015-03-19 ジヤトコ株式会社 ハイブリッド車の制御装置
JP2015108386A (ja) * 2013-12-03 2015-06-11 ジヤトコ株式会社 コーストストップ制御装置及びコーストストップ制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358226A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017130779A1 (ja) * 2016-01-25 2018-09-13 日産自動車株式会社 車両のセーリングストップ制御方法及び制御装置

Also Published As

Publication number Publication date
EP3358226A4 (en) 2018-10-24
EP3358226A1 (en) 2018-08-08
CN108027049B (zh) 2019-11-15
JP2017067269A (ja) 2017-04-06
KR102000893B1 (ko) 2019-07-17
JP6510948B2 (ja) 2019-05-08
CN108027049A (zh) 2018-05-11
US10793156B2 (en) 2020-10-06
KR20180037263A (ko) 2018-04-11
US20180244272A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2017057304A1 (ja) 車両の制御装置
US8690733B2 (en) Vehicle control system and control method thereof
KR101582435B1 (ko) 차량 제어 장치 및 차량 제어 방법
WO2017051678A1 (ja) 車両のセーリングストップ制御方法及び制御装置
US10612656B2 (en) Control device for vehicle and control method of the same
JP5712331B2 (ja) エンジン自動停止車両及びその制御方法
CN108603590B (zh) 车辆的控制装置
JP7169457B2 (ja) 車両の制御装置及び車両の制御方法
WO2017135172A1 (ja) 車両の制御装置、及び車両の制御方法
WO2016190195A1 (ja) 車両の制御装置、及びその制御方法
US10690238B2 (en) Device for controlling vehicular variator
JP6560758B2 (ja) 車両の制御装置、及び車両の制御方法
JP6313854B2 (ja) 自動変速機の油圧制御装置、及びその制御方法
WO2017135174A1 (ja) 車両の制御装置、及び車両の制御方法
JP6913258B2 (ja) 無段変速機の制御装置および制御方法
WO2023162778A1 (ja) 車両の制御装置、車両の制御方法、及びプログラム
JP6633920B2 (ja) 車両の制御装置、及び車両の制御方法
JP6660122B2 (ja) 車両の制御装置、及び車両の制御方法
JP2019152314A (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757506

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187006617

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE