WO2017047812A1 - 物体の選別装置及びその方法 - Google Patents

物体の選別装置及びその方法 Download PDF

Info

Publication number
WO2017047812A1
WO2017047812A1 PCT/JP2016/077677 JP2016077677W WO2017047812A1 WO 2017047812 A1 WO2017047812 A1 WO 2017047812A1 JP 2016077677 W JP2016077677 W JP 2016077677W WO 2017047812 A1 WO2017047812 A1 WO 2017047812A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorting
conduit
suction port
unit
airflow
Prior art date
Application number
PCT/JP2016/077677
Other languages
English (en)
French (fr)
Inventor
佳宏 西須
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2017540046A priority Critical patent/JP6666012B2/ja
Priority to US15/759,868 priority patent/US10512940B2/en
Priority to CN201680060430.XA priority patent/CN108136444B/zh
Publication of WO2017047812A1 publication Critical patent/WO2017047812A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/02Arrangement of air or material conditioning accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/04Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets

Definitions

  • the present invention relates to an object sorting apparatus and method, and in particular, in the recycling field, small diameters such as crushed materials disassembled after being collected for collection and pulverized and separated for each material, and elements peeled off from substrates of electronic and electrical equipment.
  • the present invention relates to a sorting apparatus and a method for sorting for removal of impurities in the field of parts sorting, sorting of natural resources in the field of resources, and in the field of manufacturing and production.
  • An airflow sorter using a vertical column as a sorting tank has a small area and a relatively high sorting efficiency (see, for example, Patent Documents 1 to 8).
  • a certain column length is required.
  • there is a space in the height direction it becomes more necessary and restricts the installation location (see, for example, Patent Documents 1 to 7).
  • a suction port is provided between an input port for introducing an object to be separated into the column and an air supply port for supplying an air flow into the column.
  • the airflow velocity should be uniform (equal) in a cross section orthogonal to the airflow direction (column direction). If this air flow velocity has a high or low distribution, the sorting accuracy is lowered, and this rectification measure is required.
  • the size of the device is increased, it is difficult to take countermeasures in a manner compatible with the requirements of the existing device, as in the case of the braking mechanism.
  • a mesh-like plate or the like is arranged in the column as a braking mechanism that causes a falling object to collide and relax the falling speed of the object.
  • the size of the braking mechanism and its application position (range) are important for effective collision while considering the influence of the occupation of the flow path. That is, if the gap is widened, the probability of collision with a small sorting object decreases, while if the gap is narrowed, a large sorting object cannot pass.
  • Patent Document 8 discloses that the above-described braking and rectification are provided by attaching a throttle in the column.
  • the airflow speed fluctuates in conjunction with the aperture, it is not easy to install the aperture.
  • the space in the throttle becomes larger, and the flow velocity distribution width in the column becomes larger even at the same flow velocity, so that both braking and rectification are complicated.
  • Patent Document 7 a mechanism for providing a weak W-shaped swirling flow (W-shaped distribution) across the tube wall, the tube center, and the tube wall is provided in the column, and the wind velocity distribution in the tube cross section is smoothed and rectified. ing. Similar to the above, as the column diameter increases, the uneven amplitude of the W-shaped distribution increases as well as the convex flow velocity distribution due to the original wall friction of the column, and the effect of rectification becomes limited. End up.
  • the flow passage cross-sectional area of the airflow is changed stepwise, the light objects that float at the average flow velocity of each airflow corresponding to the cross-sectional area are collected, and the light and heavy objects are selected and selected.
  • a multi-stage wind sorting apparatus that sorts a mixture of types at once is disclosed.
  • An obstacle (diffuser) that disperses the airflow is provided in the flow path, and the flow velocity distribution of the airflow is relaxed to obtain a uniform flow velocity.
  • the effect of rectification is limited to forming the original flow velocity distribution at a short distance (upstream downstream side) from the connecting portion in which the pipes having different inner diameters are connected in series.
  • a rectifying plate is generally used in which an inner wall is provided in the column in a direction parallel to the flow path to disperse the influence of wall friction inside the column.
  • the effect can be enhanced by increasing the quantity.
  • the column is more occupied, the installation position and quantity are limited.
  • a dedicated mechanism that provides both braking and rectifying effects is provided in the vicinity of the suction port in the main column where the flow velocity should be adjusted most strictly. This is very difficult in terms of physical (spatial) design.
  • the present invention has been made in view of the circumstances as described above.
  • the object of the present invention is (1) a variety of mechanisms, structures, and configurations that are space-saving, compact, simple and relatively low cost. High accuracy for various sorting objects, (2) flexible and easy adjustment to cope with various sorting objects, and controllability, and (3) flexibility for equipment scale and high adaptability.
  • An object of the present invention is to provide a sorting method and a sorting apparatus therefor.
  • the present invention is a sorting apparatus that performs sorting of a sorting object, and has a central axis line along which a sorting object is dropped by gravity, and is provided at a lower portion of the conduit.
  • An inlet for introducing the object to be sorted around the suction pipe in the conduit; and by the air from the air supply port In a sorting apparatus that performs sorting depending on whether or not the object to be sorted is sucked from the suction port together with a part or all of the airflow generated in the airflow, it is provided at the lower part of the suction port in the conduit and falls by gravity. Shield the fall path of the sorting object.
  • the airflow adjuster has an inclined surface that has a vertex on the central axis and expands the cross-sectional area in a similar manner toward the lower direction, and drops by gravity. It is characterized in that the drag acting on the selection object is made larger from the suction port in the downward direction.
  • the air flow adjusting body may have a rotating body shape.
  • the conduit may have an inner surface inclined portion that is inclined so as to expand a horizontal cross-sectional area downward, and the air flow adjusting body is located in the inner surface inclined portion.
  • the shape of the inner surface inclined portion of the conduit and the inclined surface of the air flow adjusting body may be controlled so that the flow velocity of the airflow in the inner surface inclined portion is constant in the height direction.
  • pipe may have a ring part which makes the said horizontal cross-sectional area toward the downward direction in the said inner surface inclined part variable.
  • the air flow adjusting body is characterized in that at least a maximum cross-sectional area portion is positioned on the inner surface inclined portion, and a cross-sectional area of the maximum cross-sectional area portion is larger than a cross-sectional area of the inner surface straight portion. Also good. Further, the air flow adjusting body may be provided with a vertical position adjusting means and move up and down in the inner inclined portion to control the drag force.
  • a plurality of the suction ports may be provided so as to open in the same horizontal plane.
  • a second suction port that is an opening directed downward of a second suction pipe provided in parallel to the central axis may be provided above the suction port. The flow rates at the suction port and the second suction port can be independently controlled.
  • the present invention is a sorting method for sorting a sorting object, which is provided at a lower portion of the conduit having a central axis and gravity dropping the sorting object along the center axis.
  • gravity is provided at the lower portion of the suction port in the conduit. Falling path of the sorting object falling The given air flow adjusting member so as to block, the drag acting on the screened object of gravity from the suction port,
  • the air flow may be controlled so that the flow velocity of the air flow at the side of the air flow adjusting body is constant in the height direction.
  • the air flow adjusting body may be a rotating body with respect to the central axis, and may have an inclined surface that expands a cross-sectional area downward.
  • the conduit has an inner surface inclined portion that is inclined so as to expand a horizontal sectional area downward, and the air flow adjusting body is located in the inner surface inclined portion. Good.
  • FIG. 6 is a graph showing the calculation results of the relative value of the maximum inner diameter of a region 3b2 and the distance between the outer wall of the air flow adjusting body 32 and the inner wall of the conduit 35. It is a figure which shows the difference in the flow-velocity distribution width of a flow-path cross section by the presence or absence of an airflow adjustment body. It is a figure which shows the position of an airflow adjustment body. It is a figure which shows a suction opening and a suction path. It is a figure which shows the modification of FIG. It is a figure which shows the modification of FIG. It is a figure which shows arrangement
  • flow velocity is the average flow velocity unless otherwise specified. This average flow velocity is a simple calculated value obtained by dividing the flow rate by the channel cross-sectional area at a predetermined position, and this is defined as the average flow velocity in the channel cross-section at this position.
  • the “air flow” may be an air flow generated by a blower or a pump in the atmosphere, but is not limited thereto.
  • FIG. 1 is a conceptual diagram showing a part (sorting unit 1) related to a main sorting operation in basic structural units.
  • a unit (introduction unit 2) that is arranged at the top and introduces a selection target (object) into the apparatus
  • a unit selection unit (unit selection unit 3) that performs unit selection operation )
  • An airflow introducing unit (air supply unit 4) which is disposed below the air supply unit 4, blocks outflow of the airflow below the position, and passes through all the sorting units 3.
  • It consists of a unit (bottom unit 5) installed at the bottom for capturing an object.
  • each unit is arranged along a central axis.
  • the unit selection operation can be made multistage and continuous by adopting a device configuration in which a plurality of unit selection units 3 are connected in the vertical direction (for the overall configuration, FIGS. 4 to 7 are also shown). reference).
  • the structural unit (unit) is for the purpose of clarifying the necessary functions and elements in the explanation here, and it is necessary to draw or classify each physical unit in the actual device. Absent. However, in terms of operation, it is preferable to have a structure and a configuration that can be physically divided for each unit as necessary from the viewpoint of adjustment and repair convenience of the apparatus.
  • the unit selection unit 3 may be installed in an existing apparatus having a mechanism for supplying a minimum necessary air supply / intake and an object to be selected in order to perform the same operation as the apparatus here.
  • the unit operation part has substantially the same configuration as the apparatus here, and the selection function itself operates similarly.
  • the unit sorting unit 3 may be additionally installed and used for the purpose of partially improving the sorting ability and improving efficiency and convenience. Is possible. Even in this case, a high effect equivalent to that of the present apparatus can be expected.
  • an existing sorting unit or the like may be incorporated between some units of the apparatus so as not to affect the unit (for example, see FIG. 3). Then, among the three (three stages) unit sorting units 3, the middle stage unit corresponds to an existing sorting unit).
  • each unit may be configured as a single unit by sharing the conduit portion (conduit 35, etc.) that also serves as a casing with the adjacent unit, and the original three units or more may be configured as a single unit. Alternatively, all may be combined into a single unit.
  • the cross section of the conduit portion (conduit 35 and the like) has a substantially circular shape unless otherwise specified. However, the present invention is not limited to this.
  • the introduction unit 2 is installed for the purpose of supplying an object for sorting and collection into the apparatus (sorting unit 1).
  • a sorting object can be introduced into the apparatus continuously or intermittently as necessary via an introduction pipe portion (conduit) 21 having an input port 22 opened outside the apparatus.
  • a supply device with a control device capable of adjusting or quantifying the input amount may be installed or used in cooperation with the requirements of the device performance such as sorting accuracy and sorting efficiency.
  • dust or the like is placed at a position that does not affect the operation of the device above the inlet 22 as shown in FIGS.
  • a collection mechanism may be provided in which a lightweight object that is not introduced into the entry port position is separately sucked and collected by a solid-gas separation device such as a filter.
  • conveyance apparatuses such as a belt conveyor for supplying a selection target object (particulate matter etc.) continuously, the input chute, the input hopper, etc. for assisting this introduction.
  • the air supply unit 4 is installed to introduce an airflow generated by a blower or the like into the sorting unit 1 and may have one or a plurality of air supply ports 43 serving as airflow inlets. Adjacent upper and lower units are connected to each other with high airtightness, form a space through which an object and air flow pass, and connect a single or multiple types of pipes (conduit pipes) (air supply pipe part 41). It has become.
  • the unit sorting unit 3 has a space through which a sorting object and an air flow pass, and a conduit-like part (main pipe part 31) in which single or plural kinds of pipes (conduit 35) are connected,
  • a pipe internal wall surface constituent part (air flow adjusting body 32) which is inside the main pipe part 31 and forms a flow path together with the inner wall of the main pipe part 31, and a support part for fixing the air flow adjusting body 32 to the unit are basic constituent elements. It is said.
  • a conduit portion (suction path 34) that extends from the opening (suction port 33) and forms a suction tube is disposed in the internal space.
  • the inside of the unit is connected to the outside, and the air flow (arrow F in FIGS. 8 and 11) and the sucked material are discharged to the outside of the unit.
  • the inside of the unit does not have a portion that is nearly horizontal or concave so as to capture the object to be dropped and prevent it from dropping below it.
  • mold so that the resistance with respect to the airflow from the downward direction may become small.
  • unit 3 is designed as follows. An air flow is introduced into the unit 3, and this air flow is sucked from the suction port 33 in the unit 3 to the suction path 34, and thereafter, the air flow rate of the residual suction is in the main pipe portion 31 on the downstream side of the unit 3. It is designed so that the flow rate distribution in the unit 3 can be adjusted, for example, the entire amount of the supplied airflow can be sucked through the suction port 33 and the remaining amount can be reduced to zero.
  • the air flow velocity in the column is changed with the vicinity of the suction port 33 as a boundary, and from the other areas in the unit below the boundary. As a result, a region 3b in which the flow velocity is increased is formed.
  • the air flow adjusting body 32 is disposed in the region 3 b, and has a vertex at a substantially central lower position of the suction port 33, and a downward (from the air flow on the side opposite to the suction port 33). It is formed in a shape that widens toward the upstream direction (the cross-sectional area increases in the upstream direction). Since the air flow adjusting body 32 is intended for air flow adjustment, it is preferable that the cross-sectional outline is a smooth curve and the cross-sectional shapes are substantially similar in the height direction except for the apex so that the disturbance of the air flow is reduced. .
  • the region 3b1 is a ring portion in which the diameter of the conduit 35 including the space is narrowed above the air flow adjusting body 32. Is installed. Further, in the lower region 3b2 below the region 3b1, the inner wall of the conduit 35 of the main pipe portion 31 is formed into a shape along the air flow adjusting body 32 that faces.
  • the space in the conduit (the flow path 36) also becomes an inner inclined portion that spreads downward, and due to the presence of the air flow adjusting body 32, the flow path has a substantially hollow ring shape (substantially annular).
  • the sorting object passes by the velocity of the airflow in the region 3b (arrow F in FIGS. 9 and 14), that is, the region 3b having a high drag force acting on the object by this airflow (drop). Whether it is possible or not is a determining factor for the first selection.
  • the drag (flow velocity) of the lower region 3b2 that is the final passing point in the region 3b of the selection object that falls by gravity becomes a more dominant configuration and design element.
  • the drag is dominant in determining the sortability in the unit sorting unit 3, and the drag varies depending on the flow velocity in the flow path 36.
  • the flow path cross-sectional area be substantially constant so that the change in the flow velocity in the flow path 36 does not become significant.
  • the airflow channel 36 is designed so that the cross-sectional area is constant and the flow velocity is uniform (see also FIG. 10 described later).
  • the airflow adjustment body 32 itself serves as a braking mechanism for an object having a large gravity drop speed, and relaxes the drop speed mainly by collision with an object that drops by gravity.
  • the maximum outer diameter portion of the divergent portion of the airflow adjusting body 32 is designed to be equal to or larger than the inner diameter of the conduit 35 of the main pipe portion 31 in the region 3b1.
  • the height (length) of the divergent portion of the airflow adjusting body 32 is preferably as low (short) as possible from the viewpoint of space saving.
  • an object that is estimated to be collected at the suction port 33 in the region 3b1 and that has the highest gravity drop speed can decelerate the gravity drop speed in the air flow channel 36, and further the upward direction in which the suction port 33 is positioned. You may set according to the distance required to turn to the movement to.
  • the distance dw is shorter than the distance between the walls (upper limit value U) in the conduit 35 of the main pipe portion 31 in the region 3b1 where the air flow adjusting body 32 is not present, and the distance dw becomes smaller with the ratio.
  • the collision between the air flow adjusting body 32 and the target object also has an effect of enhancing the selection accuracy by promoting the crushing of the mixture and separation of the single substance when the selection target object is a plurality of types of mixtures. .
  • the flow velocity (cross-sectional area) of the region 3b1 is basically the same as the flow velocity (cross-sectional area) of the region 3b2, but fine adjustment is appropriately performed in consideration of the selection characteristics (selection accuracy and speed). Is preferred. Since the flow path 36 is inclined in the region 3b2, the component in the direction of the gravity flow channel 36 acting on the object is smaller than the component in the region 3b1 as an examination item of the flow velocity (cross-sectional area) balance. Also good.
  • the shape of the lower part of the air flow adjusting body 32 is not specified in detail such as the shape, but a shape with low air resistance is preferable because it faces the air flow.
  • a support (post) for fixing the airflow adjusting body 32 in the column may be installed, and a required position is assumed when the airflow adjusting body 32 described later is operated vertically (position adjustment).
  • An adjustment mechanism airflow adjustment body position adjustment mechanism 39 may be installed.
  • the characteristics of the air flow in the air flow channel 37 depend on the form of the lower part of the main pipe portion 31 and the air flow adjusting body 32, and the flow velocity in the flow channel 37 immediately below the flow channel 36 is the flow velocity in the flow channel 36. If it is larger than that, an object that becomes (the drag force in the flow path 37> gravity> the drag force in the flow path 36) is likely to be captured at the boundary between the flow path 36 and the flow path 37, which is not preferable.
  • the flow path 37 is not reached, and there is no particular effect.
  • the flow path 37 is on the upstream side of the air flow like the combination of the cylindrical conduit 35 (main pipe portion 31) shown in FIG. If the cross-sectional area is uniformly reduced toward the flow path 36, the effect of rectification can be expected. In the case of multi-stages, which will be described later, it is preferable from the viewpoint of space saving and efficiency to match the lower units, or to be easily connectable and compact.
  • the position adjustment of the air flow adjusting body 32 can be easily performed, and the cross-sectional area of the flow path 36 between the air flow adjusting body 32 and the conduit 35 can be changed by this position adjustment. It is good. By changing the cross-sectional area, it is possible to change the flow velocity, that is, the drag applied to the object to be sorted, and to adjust the sortability in the unit.
  • FIG. 10 when the entire region 3b has a uniform cross-sectional area, the airflow adjusting body 32 is moved by L21 (0 mm, reference position), L22 (+1 mm), and L23 (+2 mm) in the height direction. The flow velocity at the height position is shown.
  • FIGS. 14A and 14B show graphs when the inner diameter adjusting ring 38 as shown in FIG. 14 is used and when not used.
  • the air flow adjusting body 32 is raised and the flow velocity is increased. Further, as shown in FIG. 10 (a), a section (L ′ in FIG. 10 (a)) in which the flow velocity is relatively lowered in the region 3b in accordance with the control of the relative position between the air flow adjusting body 32 and the conduit 35. If the inner diameter adjusting ring 38 is installed at the part, this can be eliminated as shown in FIG. It should be noted that it is preferable that a portion of the conduit 35 or the like that is highly likely to be changed is designed to have a structure that facilitates replacement or adjustment. Here, adjustment is also performed by replacing or adjusting the portion of the conduit 35. obtain.
  • suction port 33 that is installed in the unit selection unit 3 and opens the end of the suction path to form a suction pipe substantially faces the airflow at a substantially central position in the cross section of the airflow passage in the unit 3. Open in the direction.
  • the suction port 33 is connected to the solid-gas separation mechanism 6 installed outside the unit 3 through a suction path 34 which is substantially the same diameter and extends and bends in a certain height direction and is led out of the unit 3. .
  • the downstream side of the path (conduit) extending from the suction port 33 via the suction path 34, the solid-gas separation mechanism 6 and the like is connected to a blower, a pump, or the like, and a part of the airflow in the unit 3 is removed from the suction port 33.
  • the flow rate and flow velocity in the unit 3 are adjusted by suction. Further, among the sorting objects introduced from the introduction unit 2, those that cannot pass (fall) through the unit are sucked and collected together with the air flow (arrow F in FIG. 15). That is, whether or not the object to be sorted is sucked from the suction port 33 is a determining factor for the second sorting.
  • the property of the suction path 34 immediately above the suction port 33 that forms the rising airflow that opposes the gravity drop is changed, and in particular, the length of the suction path 34 in the height direction is changed. It may be adjustable. From the viewpoint of suction accuracy (airflow stability), it is preferable to design the shape of the conduit, the cross-sectional area, and the like so that the flow velocity (suction force) in the suction path 34 is constant. In particular, with respect to the suction pipe portion formed by opening the end of the suction path, the distribution of the flow velocity in the unit 3 immediately below tends to be biased or disturbed depending on the direction of the airflow to be sucked.
  • the suction pipe portion extends upward in the direction parallel to the central axis that is equal to the direction of the air flow in the unit 3.
  • the length of the suction pipe portion is shortened as much as possible, and the height and length of the inclined portion of the suction path 34 positioned above it are adjusted. Also good.
  • a plurality of suction ports 33 in the unit selection unit 3 may be provided.
  • the physical properties and characteristics of the objects to be selected taken in from the suction ports 33 are substantially the same, and even a suction port 33 having a relatively strong suction force is positioned below the suction port 33. It is installed so that it can be adjusted so as not to suck even the physical property selection object passing through the region 3b having the fastest flow velocity.
  • the shape and structure of all the suction ports 33 may be the same, and an arrangement that satisfies the same conditions in the unit 3 may be used.
  • all the components of the unit 3 have a circular cross section such as a cylinder, they may be arranged at equal distances from the center point (C in FIG. 18).
  • the plurality of suction ports 33 are installed when the output of one power source such as a blower or a pump responsible for suction is limited (small), or the influence of the diameter on the flow velocity distribution of the cross section of the suction port 33 when a large-scale device is realized. This can be taken into account when the value is made smaller.
  • FIG. 4 shows an embodiment in which one blower is used for air supply and intake, and air supply and intake air are circulated.
  • FIGS. 5 and 6 show an embodiment in which the air supply and intake air are installed independently.
  • 7 shows an embodiment in which intake units are installed independently for each unit selection unit 3.
  • pumps or existing intake / exhaust equipment may be used instead of the blower if there are existing intake / exhaust equipment. Can be increased or decreased in consideration of the output of
  • Airflow management since airflow is used as a driving force for selection, management and control of the flow rate of the airflow and the like are required, and an output management and control mechanism may be provided in the air supply and intake mechanism that is the source of the airflow.
  • a valve for adjusting the flow rate, a measuring device for measuring a flow rate, a flow rate, or the like may be installed in the intake path.
  • FIGS. 4 to 7 show an example in which a management / control mechanism (flow rate / flow velocity control unit 8 and control device 9) and a blower 7 capable of adjusting and monitoring the output are used.
  • the control / control mechanism measures the selection unit 1 while the control signal is sent to the flow rate / velocimeter 81.
  • the control valve 83 having an external signal input / output for adjusting the opening degree is provided, and the flow rate of the air flow sucked at each suction port 33 is monitored and adjusted. Also good.
  • the output variable blower having an external signal input / output for output adjustment, the total airflow may be adjusted at the same time. It should be noted that the present invention is not limited to the above-described example as long as air supply and intake necessary for operating the apparatus can be performed, and individual manual adjustment may be possible.
  • Solid-gas separation mechanism and recovery tank The object P sucked together with the air flow (arrow F in FIG. 20) from the suction port of the unit selection unit 3 is recovered by separating from the air flow.
  • the part where the separation operation is performed is defined as the solid-gas separation mechanism 6, but the flow velocity until the object P falls by gravity and separates from the air flow is reduced by simply increasing the diameter of the flow path. It is good also as a structure to make.
  • a dedicated device such as a cyclone may be installed, or a recovery tank 16 for securing an object after solid-gas separation may be installed at the bottom of the solid-gas separation device.
  • a recovery tank 16 for securing an object after solid-gas separation may be installed at the bottom of the solid-gas separation device. Good.
  • the recovery tank is equipped with a discharge mechanism for discharging the object outside the apparatus during operation (single, intermittent or continuous at any time), the recovery tank itself is discharged. It may be replaced with a mechanism.
  • FIG. 21A shows an embodiment in which a valve (individual recovery valve 15) is installed between the solid-gas separation mechanism 6 and the recovery tank 16, and the recovery tank 16 can be removed.
  • FIG. 21 (b) shows an embodiment in which multiple valves are installed so that the confidentiality of the take-out port can be secured so that there is no airflow leakage even while the apparatus is in operation, and the object can be easily taken out of the apparatus. It was.
  • FIG. 21C shows an embodiment in which a rotary valve capable of ensuring airtightness is installed. Note that these recovery mechanisms may be installed in the bottom unit 5.
  • thermometer thermometer 82
  • airflow management and control incorporating measurement values may be introduced.
  • the device has a static elimination mechanism to prevent the influence of static electricity such as electrostatic adhesion of the object to be sorted, prevention of adhesion due to moisture cross-linking of the object, and a dehumidification and drying mechanism from the viewpoint of equipment maintenance. It may be given.
  • a part of the conduit constituting the main pipe part 31 or the whole can be exchanged, or As an easily adjustable mechanism and structure, the inner diameter or the cross-sectional area may be freely changed.
  • the inner wall surface of the conduit with which the sorting object may come into contact is smooth so as not to trap the sorting object.
  • FIG. 2 (schematic diagram of selection multi-stage) and FIG. 23 (flow rate change graph in multi-stage)
  • an example of multi-stage having three unit selection units 3 of the same shape is shown.
  • the number of stages is not limited to three, and can be selected (increased / decreased) as necessary.
  • the size and shape of each unit sorting unit 3 is designed individually and appropriately according to the form, physical properties, absolute amount, and quantity ratio (distribution) with other objects to be collected by each unit. Also good.
  • an air supply unit 4 may be additionally installed between the units as needed for the main purpose of increasing the air flow rate of the upper unit sorting unit 3.
  • each component unit other than the opening installed as the airflow inlet / outlet part should be designed so that there is no unintended and effective airflow between the units. is there.
  • the conditions of the airflow such as the flow rate can be managed and controlled in conjunction with the management and control of air supply and intake.
  • the flow rate is important as a factor for determining the sortability.
  • the measuring unit may be installed in the sorting unit 1 to directly measure the flow rate.
  • the object to be sorted is introduced into the apparatus (sorting unit 1) from the inlet 22 of the introduction unit 2, and the introduced object is supplied to the unit sorting unit 3 of the sorting unit 1 by gravity drop.
  • the object is supplied to the uppermost unit first, and the object that has passed through the uppermost unit due to the gravity drop is supplied to the next unit. Units are supplied as well. Whether or not each unit sorting unit 3 can pass reflects the sorting result of the sorting unit, and if there is no object passing as the sorting result, no object is supplied below this unit. .
  • each unit sorting unit 3 the supplied objects are sorted into those that can and cannot pass through the region 3b where the air velocity in the unit is relatively high.
  • the object that has passed through the region 3b falls without gravity in the unit and is supplied to the lower unit.
  • the object that cannot pass through the region 3b is sucked together with the air current from the suction port 33 installed in the unit, and is carried out of the unit (sorting unit 1) via the suction path 34. . Therefore, each suction force is adjusted in advance to a suction force capable of sucking an object that cannot pass through the unit region 3b. At the time of this adjustment, a flow rate equal to or higher than that of the region 3b is required.
  • the flow rate is significantly higher than that of the region 3b, an object that can pass through the region 3b is also sucked. Further, the sucked object is separated from the air current by the solid-gas separation mechanism 6 via the suction path 34 and can be recovered in a recovery tank or the like, but the object does not stay in the middle due to a decrease in the flow velocity or the like in the path. Need to be designed to be.
  • the design or operation conditions basically increase the flow velocity in the region 3b in the lower stage.
  • the object that has passed through the entire unit sorting unit 3 can be collected by using a separate collecting tank or the like at the bottom unit 5 provided below the unit of the sorting unit 1 or via the bottom unit. it can. In this apparatus, it is possible to have the ability to sort to a number obtained by adding 1 to the number of installed unit sorting units 3 for a single supply.
  • sorting device (1) high for various samples while having a space-saving, compact, simple and relatively low-cost mechanism, structure, and configuration that only adopts a configuration in which an airflow adjusting body is disposed. Accuracy, (2) flexible and easy adjustment to cope with various samples, controllability, (3) flexibility to scale, high adaptability sorting device and sorting method can be realized.
  • FIG. 24 is a diagram for explaining the sorting principle in the unit sorting unit 3 in the sorting apparatus according to the present invention.
  • is the air density
  • CD drag coefficient
  • V gravity falling speed of the object P
  • V the sum of the air velocity (flow velocity) and the gravity falling speed (constant) of the object P. Therefore, D is adjusted and determined by the flow velocity of the airflow 36.
  • buoyancy As a force acting on the object P.
  • the airflow is air and the specific gravity of the object P is about 1, it is substantially negligible with respect to gravity. Can think.
  • the acceleration of the object P that has fallen due to gravity and reaches the region 3b becomes 0, but continues to move downward due to inertial force. At this time, if there is no other acting force, it will continue to fall through the region 3b. On the other hand, if there is no downward movement in the region 3b due to factors such as a collision with the air flow adjusting body 32, the region 3b cannot be passed.
  • the motion component in the same direction as the air flow is also present in the relationship of the formula (1).
  • the object P moves in the same direction as the airflow, and as a result, it can be taken out of the unit sorting unit via the suction path and collected.
  • the drag (D ') in the suction port 33 and the suction path 34 is larger than the drag in the region 3b, the ability to suck the object P that cannot pass through the region 3b more quickly is provided.
  • the drag D directly below the suction port 33 in the region 3b can be locally increased, and even the object that originally falls through the region 3b can be sucked and collected, which can be a factor in reducing the sorting accuracy. Therefore, it is possible to adjust the sorting property according to the purpose by adjusting the balance between the two drags and the drag.
  • each unit sorting unit 3 controls sorting by adjusting the airflow introduced into the region 3b (main pipe portion 31) and the airflow sucked from the suction port 33, respectively.
  • the control of the air flow in the former region 3b is based on the management and control of the blower and the flow rate adjustment valve on the air supply port side.
  • the air flow sucked from the latter suction port 33 is based on the management and control of a blower, a flow rate adjusting valve, and the like on the downstream side of the suction path 34.
  • the region 3b (main pipe portion 31) and the suction port 33 (and the suction path 34) have independent sorting properties, and the conditions are adjusted so that they can cooperate with each other. This makes it possible to perform a sorting operation as a unit.
  • the unit unit that performs one sorting has a double sorting process that can be controlled and adjusted, thereby achieving high sorting accuracy.
  • Table 1 shows the results of a selection experiment of five types of samples with different materials using the above-described sorting apparatus.
  • the samples used in the experiment were almost granular with an outer diameter of about 7 mm, and the conditions of the unit selection unit 3 to be a selection target were set in advance from the properties of each known sample.
  • the sorting experiment the sample is first mixed, and the obtained sample in the mixed state is continuously fed into the apparatus through the inlet 22 to evaluate whether or not each sample is collected in a predetermined collection tank. It is a thing. All sample types were selected with a high accuracy of separation efficiency of 90% or more.
  • the airflow temperature at the time of circulation decreased by adding the inlet 12 and the gas cooling mechanism 14.
  • Control of the air flow temperature is effective not only in stabilizing the sorting ability but also in reducing the influence of heating on the object depending on the apparatus and the type.
  • the addition of the intake port 12 can also increase the air flow rate of the air supply in the uppermost unit selection unit relatively, thereby improving the degree of freedom in designing the apparatus (conduit diameter and the like).
  • the airflow sorting device described above has high accuracy and easy adjustment with a simple configuration. Therefore, for example, in the recycling field, when selecting crushed material that has been disassembled, crushed and separated for each material after waste collection, and small-diameter parts of various compositions such as elements peeled off from substrates of electronic and electrical equipment Suitable for sorting types. Further, in the resource field, it can be used as a sorting device used for sorting in the same way with natural resources, or in the field of manufacturing and production, for product separation, sorting, impurity removal, and the like.
  • Thermometer (Control signal output) 83 Flow control valve 9 ... Control device 10 ... Intake hood 11 ... Dust collector 12 ... Intake port 13 ... Exhaust port 14 ... Gas cooling mechanism 15 ... Solid Recovery valve 16 ... Recovery tank

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

簡便な構成で高精度、易調整性の気流選別装置を提供するために、中央軸線を有しこれに沿ってその内部で選別対象物を重力落下させる導管と、導管の下部に設けられ、中央軸線に沿って上方に送風するための送気口と、導管の送気口よりも上部に設けられ、中央軸線に平行に設けられた吸引管の下方へ向けた開口である吸引口と、導管の吸引口よりも上部に設けられ、選別対象物を導管内の吸引管の周囲に投入するための投入口と、を備える。送気口からの送風により導管内に生ずる気流の一部または全部とともに、選別対象物を吸引口より吸引するか否かによって、選別を行う選別装置において、導管内の吸引口の下部に設けられて重力落下する選別対象物の落下経路を遮るように気流調整体を備え、気流調整体は中央軸線上に頂点を有し下方向に向けて断面形状を相似状にその断面積を拡げるような傾斜表面を有し、重力落下する前記選別対象物に作用する抗力を前記吸引口から下方向に向けてより大きくなるようにさせる。

Description

物体の選別装置及びその方法
 本発明は、物体の選別装置及びその方法に関し、特に、リサイクル分野では廃棄回収後に解体され粉砕されて材料毎に分離された破砕物や、電子電気機器の基板等から剥離された素子等の小径部品類の選別、資源分野では天然資源の選別、製造・生産の分野では、不純物の除去等のための選別についての選別装置及びその方法に関する。
 固体粒子等を対象とした選別及び回収技術がこれまでに幅広い選別対象物に合わせて、湿式及び乾式の両技術において種々開発されてきた。これらの中で、磁性や帯電性等の材料種に依存する特性ではなく、比重や粒子径等の固体として汎用性の高い基本的物性を利用した乾式選別技術、例えば、慣性力や風力を応用した技術が提案されている。これら選別方法の多くは、遠心力や慣性力と抗力(気体抵抗等)、さらに気流による運搬作用や重力による落下運動を組み合わせて機能するように構成されており、軽量物と重量物とを分ける技術として発展してきた。
 選別機として産業利用上で求められることとしては、汎用性の高いことである。つまり、多種多様な物性を示す様々な選別対象物に対応できるよう、簡便容易かつ幅広く選別性を調整できることが求められる。また、高い選別精度を達成できること、対象物に見合った初期投資、稼働費用で実現可能なことなども求められる。特に、近年急速に需要が増加している都市鉱山等のリサイクル分野では、従来以上に、より費用対効果の高い選別技術が求められる。
 縦型のカラムを選別槽とした気流選別機では、専有面積が狭くかつ比較的高い選別効率が得られる(例えば、特許文献1~8参照)。かかる気流選別機で高い選別精度を達成するためには、一定のカラム長が必要であり、特に、多種類を一括同時に選別するための多段化構成とする場合には、高さ方向の空間がより必要となって設置箇所への制約となる(例えば、特許文献1~7参照)。
 同じく縦型のカラムを利用する選別装置としては、カラム内への分離対象物を投入する投入口とカラム内に気流を送気する送気口との間に吸引口を設け該吸引口からの気流とともに分離対象物を吸引する選別装置が知られている。カラム略全体を利用して選別を行う従来型の気流選別装置に対して、カラムの吸引口部分において選別を行うことから、高さ方向への占有空間が小さくできる(例えば、特許文献8参照)。他方、分離対象物毎の重力落下速度の差異が選別精度に悪影響を及ぼし得て、選別精度を高めるためにはかかる差異を緩和するための制動機構が必要となる(例えば、特許文献8参照)。
特開平07-204584号公報 特開2000-202368号公報 特開2003-71386号公報 特開2005-205282号公報 特開2006-218357号公報 特開2007-61737号公報 国際公開WO2013/145871号公報 特開2014-188452号公報
 ところで、制動機構の装置への組み込みにおいては、気流への影響を考慮する必要がある。また、選別対象物の大きさや形状等、その特性については多種多様である。さらに上記した簡便性、易調整性、省スペース性等の既存の装置における要求を満たすことも必要である。
 また、気流を利用するカラム型の選別機では、共通して、気流の送気方向(カラム方向)の直交断面で気流速度を一様(均等)とすべきである。この気流速度に高低の分布が生じると選別精度を低下するためこの整流対策が必要となる。しかしながら、装置が大規模化すると、制動機構と同様に、既存の装置における要求と両立して対策を施すことは困難であった。
 ここで、例えば、特許文献8では、落下する対象物を衝突させて該対象物の落下速度を緩和させる制動機構として、カラム内にメッシュ状の板等を配置させている。流路の占有の影響を考慮しつつも実効的に衝突させるには、制動機構の大きさ及びその適用位置(範囲)が重要となる。つまり、隙間を拡げると小さな選別対象物との衝突確率が低下する一方、隙間を狭めると大きな選別対象物が通過できなくなるのである。
 また、特許文献8では、カラム内に絞りを取り付けて上記した制動及び整流を与えることを開示している。しかしながら、絞りと連動して気流速度も変動するから絞りの設置は簡単ではない。また、カラム径が大きくなるにしたがって、絞り内の空間は大きくなり同じ流速でもカラム内の流速分布幅は大きくなるから、制動と整流の両立は複雑である。
 更に、特許文献7では、管壁-管中心-管壁にわたって略W字状の微弱旋回流(W型分布)を与える機構をカラムに設けて、管断面内の風速分布を平滑化し整流を行っている。上記同様、カラム径が大きくなるにしたがって、カラム本来の壁面摩擦に起因した凸型の流速分布と同様に、W型分布の凹凸の振れ幅も大きくなって、整流の効果は限定的となってしまう。
 また、特許文献4では、気流の流路断面積を段階的に変化させ、断面積に対応したそれぞれの気流の平均流速で浮揚する軽量物を回収し、軽量物と重量物を選別して多種類の混合物を一度に選別する多段風力選別装置を開示している。流路内に気流を分散させる障害物(ディフューザー)を設け、気流の流速分布を緩和して、一様な流速としている。整流の効果は、内径の異なる管を直列に連結した連結部よりも上側(流路下流側)の短い距離において管本来の流速分布を形成することに制限され、限定的となってしまう。
 更に、管内流体の整流方法として、カラム内に流路と平行方向に内壁を与えて壁面摩擦の影響をカラム内部で分散させる整流板が一般的に用いられるが、これを格子状にし、その設置数量を多くしてその効果を高め得る。しかしながら、カラム内をより占有することから、設置位置や数量は限定される。特に、特許文献8の装置では、流速を最も厳密に調整すべき主カラム内の吸引口付近に制動及び整流の両効果を与える専用機構を設けていることから、かかる位置に整流板を設置するのは、物理的(空間的)に設計上、非常に困難である。
 さらに、既存装置では、運転条件の範囲外となって装置調整を必要とする場合に対する特段の配慮がなされていないか、あるいは、装置各部位、部品単位の交換を容易に出来るようにする程度の配慮にとどまっていた。
 本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、省スペース、コンパクト、シンプルで比較的低コストな機構、構造、及び構成ながら、(1)多様な選別対象物に対して高い精度、(2)多様な選別対象物に対応するための柔軟で容易な調整性、及び制御性、(3)装置スケールの大小に対する柔軟性、及び高い適応性を有する選別方法及びその選別装置を提供することにある。
 本発明は、選別対象物の選別を行う選別装置であって、中央軸線を有しこれに沿ってその内部で選別対象物を重力落下させる導管と、前記導管の下部に設けられ、前記中央軸線に沿って上方に送風するための送気口と、前記導管の前記送気口よりも上部に設けられ、前記中央軸線に平行に設けられた吸引管の下方へ向けた開口である吸引口と、前記導管の前記吸引口よりも上部に設けられ、前記選別対象物を前記導管内の前記吸引管の周囲に投入するための投入口と、を備え、前記送気口からの送風により前記導管内に生ずる気流の一部または全部とともに、前記選別対象物を前記吸引口より吸引するか否かによって、選別を行う選別装置において、前記導管内の前記吸引口の下部に設けられて重力落下する前記選別対象物の落下経路を遮るように気流調整体を備え、前記気流調整体は前記中央軸線上に頂点を有し下方向に向けて断面形状を相似状にその断面積を拡げるような傾斜表面を有し、重力落下する前記選別対象物に作用する抗力を前記吸引口から下方向に向けてより大きくなるようにさせることを特徴とする。
 かかる発明によれば、多様な選別対象物に対してしかも高い精度で選別が可能となるのである。
 上記した発明において、前記気流調整体は、回転体形状であることを特徴としてもよい。前記導管は、下方に向けて水平断面積を拡げるように傾斜させた内面傾斜部を有し、前記内面傾斜部内には前記気流調整体が位置することを特徴としてもよい。また、前記内面傾斜部における気流の流速を高さ方向に一定にするように前記導管の前記内面傾斜部及び前記気流調整体の前記傾斜表面の形状を制御することを特徴としてもよい。さらに、前記導管は、前記内面傾斜部における下方に向けた前記水平断面積を可変とさせるリング部を有することを特徴としてもよい。
 上記した発明において、前記気流調整体は、少なくとも最大断面積部を前記内面傾斜部に位置させ、前記最大断面積部の断面積を前記内面ストレート部の断面積よりも大とすることを特徴としてもよい。また、前記気流調整体は、上下位置調整手段を与えられ、前記内面傾斜部において上下動し、前記抗力を制御することを特徴としてもよい。
 更に、上記した発明において、前記吸引口を同一水平面内に開口するように複数設けたことを特徴としてもよい。また、前記吸引口の上方において、前記中央軸線に平行に設けられた第2の吸引管の下方へ向けた開口である第2の吸引口を設けたことを特徴としてもよい。そして、前記吸引口及び前記第2の吸引口での各々の流量を独立して制御可能であることを特徴としてもよい。
 更に、本発明は、選別対象物の選別を行う選別方法であって、中央軸線を有しこれに沿ってその内部で選別対象物を重力落下させる導管と、前記導管の下部に設けられ、前記中央軸線に沿って上方に送風するための送気口と、前記導管の前記送気口よりも上部に設けられ、前記中央軸線に平行に設けられた吸引管の下方へ向けた開口である吸引口と、前記導管の前記吸引口よりも上部に設けられ、前記選別対象物を前記導管内の前記吸引管の周囲に投入するための投入口と、を備え、前記送気口からの送風により前記導管内に生ずる気流の一部または全部とともに、前記選別対象物を前記吸引口より吸引するか否かによって、選別を行う選別装置において、前記導管内の前記吸引口の下部に設けられて重力落下する前記選別対象物の落下経路を遮るように気流調整体を与え、重力落下する前記選別対象物に作用する抗力を前記吸引口から下方向に向けてより大きくなるようにさせることを特徴とする。
 かかる発明によれば、多様な選別対象物に対してしかも高い精度で選別が可能となるのである。
 上記した発明において、前記気流調整体側部における気流の流速を高さ方向に一定にするように気流制御することを特徴としてもよい。また、前記気流調整体は前記中央軸線について回転体であって下方向に向けて断面積を拡げる傾斜表面を有することを特徴としてもよい。
 また、上記した発明において、前記導管は、下方に向けて水平断面積を拡げるように傾斜させた内面傾斜部を有し、前記内面傾斜部内には前記気流調整体が位置することを特徴としてもよい。
本発明による選別装置の要部を示す図である。 本発明による選別装置の1つの多段化の実施例を示す図である。 図2の変形例を示す図である。 本発明による選別方法の全体構成を示す図である。 本発明による選別方法の全体構成を示す図である。 本発明による選別方法の全体構成を示す図である。 本発明による選別方法の全体構成を示す図である。 本発明による選別装置の要部(単位選別ユニット)を示す図である。 図8における流路断面での気流を説明する図である。 主管部高さと流速との関係の計算結果を示したグラフである。 本発明による選別装置の要部である単位選別ユニットを説明する図である。 領域3b2の最大内径の相対値と気流調整体32外壁、導管35の内壁間距離との計算結果を示したグラフである。 気流調整体の有無による流路断面の流速分布幅の違いを示す図である。 気流調整体の位置を示す図である。 吸引口及び吸引経路を示す図である。 図15の変形例を示す図である。 図15の変形例を示す図である。 複数の吸引口の配置を示す図である。 送吸気の出力管理、制御の機構を示す図である。 固気分離機構及び回収槽を示す図である。 他の固気分離機構及び回収槽を示す図である。 整流機構を含む導管を示す図である。 単位選別ユニットを複数連結した場合の流速の変化の計算結果を示すグラフである。 選別対象物の選別原理を説明するための図である。 循環、吸気口、冷却機構を追加したときの気流温度の変化を示すグラフである。
 本発明の選別装置の1つの実施例について以下に説明する。
 ここで、以下で「流速」とは、特段の説明が付加されていない限り、平均流速とする。この平均流速は、流量を所定位置の流路断面積で除した単純計算値であり、これを該位置での流路断面における平均流速と定義する。また、「気流」は、大気中でのブロワやポンプにより発生させる空気の気流を用いることができるが、これに限られるものではない。
[選別部]
 図1は、主要な選別操作にかかる部位(選別部1)を、基本的な構成単位にて表した概念図である。部位の主要な要素の構成単位(ユニット)としては、最上部に配置され選別対象(対象物)を装置に導入するユニット(導入ユニット2)、単位選別操作を担う単位選別ユニット(単位選別ユニット3)、気流を導入するユニット(送気ユニット4)、送気ユニット4よりも下側に配置され、気流の当該位置よりも下側への流出を遮断し、また全ての選別ユニット3を通過した対象物を捕捉するために最下部に設置するユニット(底部ユニット5)からなり、典型的には、中央軸線に沿って各ユニットが配置される。
 また、図2に示すとおり、単位選別ユニット3を上下に複数接続した装置構成とすることで、単位選別操作を多段化、連続化することができる(全体構成については、図4~図7も参照)。なお、構成単位(ユニット)は、ここでの説明上、必要な機能、要素を明確にするためのものであり、実装置での物理的なユニット毎の線引き(区分)あるいは区分けをする必要はない。もっとも、運用上、装置の調整や改修の利便性等の面から必要に応じて該ユニット毎に物理的に区分け可能な構造、構成にすることが好ましい。
 また、単位選別ユニット3は、ここでの装置と同等の動作をするために必要最低限の送吸気や選別対象物を供給するための機構等を有する既存の装置内に設置されてもよい。この場合、ユニット動作部位にあっては、実質的にここでの装置と同等の構成となって、選別機能自体が同様に動作することは自明である。例えば、特許文献2を利用した装置、設備等において、部分的に選別能力を高め、効率や利便性を改善することなどを目的として、単位選別ユニット3を付加的に設置して利用することも可能である。この場合であっても、本装置と同等の高い効果が期待できる。また、上記とは逆に、本装置の一部のユニット間に既存の選別ユニット等を、本ユニットに影響のないように組み入れて使用することも可能である(例えば、図3を参照。ここでは、3つ(3段)の単位選別ユニット3のうち、中段のユニットが既存の選別ユニットに相当する)。
 また、各ユニットの本体で筐体を兼ねる導管部分(導管35等)を隣接するユニットと共用して、単一のユニットとして構成してもよく、もとの3ユニット以上を単一のユニットとしても、全てを合わせて単一のユニットとしてもよい。なお、本実施例では、特に断りの無い限り、導管部分(導管35等)の断面を略円形としているが、これに限るものではない。
[導入ユニット]
 導入ユニット2は選別回収の対象物を装置内(選別部1)に供給する目的で設置されるものである。装置外に開口した投入口22を有し、これを形成する導入管部(導管)21を経由して、選別対象物を必要に応じて連続的、または断続的に装置内に導入可能である。選別精度や選別効率等の装置性能の要求から、投入量を調整や定量化を可能とする制御機器付き供給装置(振動フィーダ、ロータリー弁等)を設置または連携させて用いてもよい。また、送気ユニット4からの気流の流出等で微細な粉塵等によって投入困難な場合には、図5~7のように、投入口22の上方の装置の稼働に影響ない位置に粉塵等を吸引回収する集塵装置11を、または装置とは別に設置された集塵機に連結された吸気フード10を設置してもよい。更に、投入口位置に投入されない軽量物を別途吸引しフィルター等の固気分離装置により回収する回収機構を設置してもよい。また選別対象物(粒子状物など)を連続的に供給するためのベルトコンベアー等の運搬装置や、この導入を補助するための投入用シュートや投入用ホッパー等を用いてもよい。
[送気ユニット]
 送気ユニット4は、ブロワ等により発生させた気流を選別部1に導入するために設置され、気流の導入口となる送気口43を単数または複数有し得る。隣接する上下のユニット同士は、気密性を高く接続され、内部に対象物や気流が通る空間を形成し、単一あるいは複数種の管(導管)を接続した導管状(送気管部41)となっている。
[単位選別ユニット]
 図8に示すように、単位選別ユニット3は、選別対象物や気流の通る空間を有し、単一、あるいは複数種の管(導管35)を接続した導管状部(主管部31)と、主管部31内部にあって主管部31の内壁とともに流路を構成する管内部壁面構成部(気流調整体32)と、気流調整体32をユニットに固定する支持部と、を基本的な構成要素としている。さらに、内部空間には、開口部(吸引口33)より伸長して吸引管を形成する導管部(吸引経路34)が配置される。これを経由して、ユニット内部と外部とが接続されて吸引される気流(図8、11の矢印F)及び吸引物をユニット外部へ排出する経路となるのである。なお、ユニット内部は、落下する対象物を捕獲しそれよりも下部に落下出来なくなる様に、水平に近いかまたは凹状等となる箇所がない方が好ましい。また、下方からの気流に対する抵抗が小さくなるように成形されていることが好ましい。
 さらにユニット3は以下のとおり設計される。ユニット3内に気流が導入され、この気流はユニット3内の吸引口33から吸引経路34へと吸引され、それ以降のユニット3下流側の主管部31内は吸引残分の気流量となる。送気された気流全量を全て吸引口33にて吸引して残分を0にまで減少させることができるなど、ユニット3内の流量配分が調整可能なように設計されている。
 また、気流の流量配分と吸引口33前後の主管部31の断面積の設定によって、吸引口33付近を境界として、カラム内での気流流速を変化させて境界以下にユニット内の他の領域よりも流速が速くなる領域3bが形成される。
 図8及び9に示すように、気流調整体32は領域3b内に配置され、吸引口33の略中央下側位置に頂点を置いて、この頂点から下方(吸引口33とは反対側の気流上流方向)に末広がる(断面積が上流方向に大きくなる)形状に形成される。なお前記気流調整体32は気流調整が目的であることから気流の乱れが少なくなるように断面輪郭線は滑らかな曲線でかつ頂点を除き高さ方向に各断面形状が略相似であることが好ましい。さらに前記目的の観点からより均等な形状となるように前記吸引口33の中央位置と頂点の2点を通る直線を軸とする回転体としてもよい。気流調整体32と吸引口33の間には対象物が通過可能な空間の確保が必要であり、気流調整体32より上に空間を包含する導管35の径を絞ったリング部である領域3b1を設置する。さらに領域3b1以下の下方の領域3b2では、主管部31の導管35内壁が対面する気流調整体32に沿う形状に成形される。領域3b2の形状から導管内空間(流路36)も下側に末広がる内面傾斜部となり、また気流調整体32の存在から流路は中空の略リング形状(略環状)となる。
 なお、ユニット3における選別では、選別対象物が領域3bの気流(図9、14の矢印F)の速度、即ち、この気流により対象物に作用する抗力の高い領域3bを重力により通過(落下)可能か否かを第1の選別の決定要因とするものである。ここで、重力落下する選別対象物の領域3bにおける最終通過点となる下部領域3b2の抗力(流速)がより支配的な構成、設計要素となる。
[気流調整体と周囲の流路について]
 図8及び9に示すように、領域3b2では、抗力が単位選別ユニット3における選別性の決定において支配的であり、抗力は流路36における流速によって変化する。選別性の安定化を図るためには流路36内での流速変化が有意にならないように、流路断面積を略一定とすることが好ましい。例えば、図8では、気流流路36の断面積が一定で均等な流速となるように設計されている(後述する、図10も併せて参照されたい)。
 なお、気流調整体32(気流流路36)の高さ(長さ)や幅(口径)については、幅広い選択可能性及び自由度の高い設計が可能である。例えば、気流調整体32は、それ自体が重力落下速度の大きい対象物に対する制動機構となり、主に重力落下する対象物との衝突により落下速度を緩和させるものであり、機構面からは、重力落下する対象物との衝突確率を高めるため気流調整体32の衝突可能な面積(幅)を大きくすることが好ましい。
 例えば、図11に示すように、気流調整体32の末広がり部の最大外径部が領域3b1での主管部31の導管35の内径と同程度以上となるように設計することが好ましい。また、気流調整体32の末広がり部の高さ(長さ)については、省スペース的な観点からは極力低い(短い)方がよい。例えば、領域3b1での吸引口33で回収されると推定される対象物の最も重力落下速度の大きいものが気流流路36にて重力落下速度を減速でき、さらに吸引口33の位置する上方向への運動に転じるのに必要な距離に対応させて設定してもよい。
 さらに、上記のように、流速が略一定の条件とした場合には、気流調整体32の最大外径の領域3b1の内径に対する比率が大きくなるに従って、流路36を構成する気流調整体32の外壁と導管35の内壁との間の距離dwが小さくなる。
 図12に示すように、領域3b1の導管内径が一定の場合、領域3b2の導管の最大内径の相対値(1.0~1.6)と距離dwとの関係を示すと、略流速一定の前提下では、距離dwは、気流調整体32のない領域3b1の主管部31の導管35内の壁間距離(上限値U)と比較して短く、さらに比率とともに距離dwはより小さくなる。
 図13(a)及び(b)に示すように、流路壁面の物性に顕著な差がなければ、距離の短い方が流路壁面との摩擦抵抗に起因した流路断面の流速分布(図13の曲線V(直線
Figure JPOXMLDOC01-appb-I000001
:上付きバーはVの平均流速を表す))の幅は小さくなる(整流の効果)。即ち、抗力分布も一定となって選別性の面では有利となる。したがって、選別対象物の大きさと選別精度のバランスを考慮して比率を選定することが好ましい。
 以上のとおり、選別原理を考慮すると流速を最も厳密に調整することが必要となるが、なおかつ、単位選別ユニット3の吸引口33付近において、領域内の空間を占有してしまうような専用機構を別途設置することなく、制動と整流の両効果を得ることを可能とするものである。さらに、気流調整体32と対象物との衝突は、選別対象物が複数種類の混合体である場合には、混合体の解砕、単体分離を促進して、選別精度を高める効果も得られる。
 また、領域3b1の流速(断面積)は、領域3b2の流速(断面積)と同程度であることを基本とするが、選別特性(選別の精度や速度)を勘案して適宜微調整することが好ましい。領域3b2では流路36が傾斜していることから、対象物に作用する重力の流路36方向の成分が、領域3b1における当該成分より小さくなることも上記流速(断面積)バランスの検討項目としてもよい。
[気流調整体の形態について]
 気流調整体32の下部形態としては、形状等詳細までを特定するものではないが、気流と対面することから空気抵抗の小さい形状が好ましい。また、気流調整体32をカラム内に固定するための支持(支柱)等を設置してもよく、後述する気流調整体32の上下動作(位置調整)を前提とする場合には、必要な位置調整機構(気流調整***置調整機構39)を設置してもよい。
 なお、気流流路37における気流の特性は、主管部31及び気流調整体32の下部の形態に依存するものであって、流路36の直下となる流路37における流速が流路36における流速よりも大きくなると、(流路37における抗力>重力>流路36における抗力)となる対象物が流路36と流路37の境界で捕獲される可能性が高くなり好ましくない。また、流速(流路36=流路37)となる構成では、流路36の前記のとおり必要十分の長さが設置してあれば、当該単位選別ユニットで吸引、回収されるべき対象物は、理論的に流路37に達することはなく、特段の効果はない。一方、該流速(流路36>流路37)で、図8に示されている円柱の導管35(主管部31)と略錘状構造との組み合わせの様に、流路37が気流上流側より流路36側に向かって一様に断面積が小さくなるように構成されていれば整流の効果も期待できる。また、後述する多段化の場合には、省スペース、効率の観点から、下段のユニットに合致するか、または容易に接続可能でコンパクトな形態とすることが好ましい。
[気流調整体の設置と位置調整]
 また、図14に示すように、単位選別ユニットにおいて、気流調整体32の位置調整を容易可能とし、この位置調整によって気流調整体32と導管35との間の流路36の断面積を変更可能としてもよい。断面積の変更により、流速、即ち選別対象物にかかる抗力を変更でき、ユニットにおける選別性の調節を可能とする。
 図10には、領域3b全域を一様な断面積としたときに、気流調整体32を高さ方向にL21(0mm、基準位置)、L22(+1mm)、L23(+2mm)だけ動かしたときの高さ方向位置での流速を示した。なお、(a)及び(b)には、それぞれ、図14に示すような内径調整リング38を用いたときと用いなかったときのグラフを示した。
 これによると、気流調整体32を上昇させるとともに流速が大きくなっていることがわかる。また、図10(a)に示すように、気流調整体32と導管35との相対位置の制御に伴って、領域3b内に流速を相対的に低くする区間(図10(a)のL’部)が生じる場合には、当該部位に内径調整用リング38を設置すると、図10(b)に示すようにこれを解消できる。なお、導管35等で構成変更の可能性が高い部位については、交換や調整を容易とするような構造に設計されていることが好ましく、ここでも導管35の部位の交換や調整によって調整を行い得る。
[吸引量の調整]
 一方、気流調整体32の上下方向位置を調整しても、気流調整体32よりも上側(領域3b1)の流速は基本的に変化しない。故に、気流調整体32の上下方向位置の調整による流速制御、即ち選別対象物へ作用する抗力変化(増加)に対応させて、吸引口33の気流の吸引量(流速)を調整して(増加させて)もよい。
[吸引口及び吸引経路]
 図15に示すように、単位選別ユニット3内に設置され吸引経路の端を開口し吸引管を形成する吸引口33は、ユニット3内の気流流路断面における略中心位置で気流に略対向する向きに開口する。吸引口33からは略同径で一定の高さ方向に伸長して屈曲しユニット3外へ導出される吸引経路34を介してユニット3外に設置された固気分離機構6へと接続される。吸引口33から吸引経路34、固気分離機構6等を経由して伸長する経路(導管)の下流側はブロワやポンプ等と接続されて、吸引口33よりユニット3内の気流の一部を吸引してユニット3内の流量、流速を調整する。また、導入ユニット2より導入された選別対象物のうちユニットを通過(落下)できないものを気流(図15の矢印F)と共に吸引回収する。即ち、吸引口33より選別対象物が吸引されるか否かが第2の選別の決定要因となる。
 そこで、図16や17に示すように、重力落下に対向する上昇気流を形成する吸引口33直上の吸引経路34の性状を変更して、特に、高さ方向の吸引経路34の経路長等を調整可能としてもよい。なお、吸引の精度(気流の安定性)の観点から、吸引経路34における流速(吸引力)が一定になるように導管の向きや断面積等の形状を設計することが好ましい。特に、吸引経路の端を開口して形成される吸引管部については、吸引する気流の向きによって直下のユニット3内の流速の分布に偏りや乱れを生じさせ易い。故に、これを生じさせないように、吸引管部は、ユニット3内の気流の向きと等しくなる中央軸線と平行方向上方に伸長していることが望ましい。もっとも、機器構成上の都合等によっては、図16に示すように、吸引管部の長さをなるべく短くして、その上方に位置する吸引経路34の傾斜部分の高さや長さを調整してもよい。
[単位選別ユニットにおける吸引口の数量について]
 図18に示すように、単位選別ユニット3における吸引口33は複数設けてもよい。吸引口33を複数とした場合は、各吸引口33から取り込まれる選別対象物の物性、特性が略一致するようにし、比較的吸引力の強い吸引口33でも、吸引口33下に位置するユニット内で流速が最も速い領域3bを通過する物性の選別対象物まで吸引しないように調整可能に設置する。この条件を満たすには、例えば、全吸引口33の形状、構造を同一にして、さらにユニット3内で同一条件となる配置にすればよい。ユニット3の各構成要素が円柱等の断面が全て同心円形となる場合には、この中心点(図18のC)から均等距離に均等間隔で配置するようにすればよい。
 吸引口33の複数の設置は、吸引を担うブロワやポンプ等の1動力源の出力が制限される(小さい)場合や、大規模装置化時における吸引口33の断面の流速分布に対する口径の影響を小さくする場合などに考慮され得る。
[送気および吸気の機構]
 図4~7において、送気機構と吸引機構を示した。図4では1台のブロワを送吸気用として用いて、送気と吸気とを循環させた実施例、図5及び6では送気用と吸気用とを各々独立して設置した実施例、図7ではさらに単位選別ユニット3毎に独立して吸気用を設置した実施例を示した。これ以外に、ブロワの代わりにポンプや、装置設置箇所に既存の吸排気設備があればそれらを利用してもよく、装置に設置する送吸気系統数も装置の規模や使用可能な送吸気機器の出力等を勘案して増減することができる。
[気流の管理]
 ここでは、気流を選別の駆動力としていることから、気流の流量等の管理、制御を必要とし、気流の発生源となる送吸気機構に出力管理や制御の機構を設けてもよいし、送吸気経路中に流量調整を行うための弁や、流量や流速等の測定を行う計測機器等を設置してもよい。
 図4~7では、管理・制御機構(流量・流速制御部8および制御装置9)と、これによって出力調整、監視が可能なブロワ7を使用した例を示している。
 図19に示すように、図4~7の例において、管理・制御機構(流量・流速制御部8および制御装置9)において選別部1の計測を行いつつ、制御用信号を流量・流速計81、開度調整のための外部信号入出力を有した調整弁83等を具備して、気流の総流量の監視に加えて、各吸引口33で吸引する気流の流量の監視と調整を行っても良い。一方、出力調整のための外部信号入出力を有した出力可変ブロワの利用により、同時に気流総量の調整も行っても良い。なお、装置稼働に必要な送吸気が行えれば上記した例に限るものではなく、個別に手動調整可能としてもよい。
[固気分離機構と回収槽]
 単位選別ユニット3の吸引口より気流(図20の矢印F)と共に吸引された対象物Pは、この気流から分離することで回収される。この分離操作を行う部位を固気分離機構6と定義しているが、単純に流路の径を大きくするなどして、対象物Pが重力落下して上記気流から剥離するまでの流速を低下させる構造としてもよい。
 また、図20に示すように、サイクロン等の専用装置を設置してもよく、固気分離後の対象物を確保しておくための回収槽16を固気分離装置の下部に設置してもよい。さらに回収槽には、装置動作中(の任意のタイミングで、単発的、断続的あるいは連続的に)対象物を装置外に排出するための排出機構を備えていても、この回収槽自体を排出機構と置き換えてもよい。
 図21(a)では、固気分離機構6と回収槽16との間に弁(個体回収弁15)を設置して、回収槽16を取り外し可能とした実施例を示した。また、図21(b)では、装置稼働中でも気流の漏出がないように取り出し口の機密性を確保して装置外に対象物を容易に取り出せるように、弁を多重に設置した実施例を示した。また、図21(c)では、気密性を確保可能なロータリー弁を設置した実施例を示した。なお、これら回収用の機構は底部ユニット5に設置してもよい。
[循環利用時の気流の補足管理]
 図4に示すように、1台のブロワ7によって気流を循環利用する場合、装置外との気流の出入りはなく、即ち、開口部である投入口22での吸排気も基本的にない。したがって、軽量な選別対象物が投入口22の排気によって投入を妨げられることを考慮する必要がない。しかしながら、導入ユニット2の直下の単位選別ユニット3では、気流量が相対的に少ないことによる制限を受け得る。
 そこで、図5に示すように、外気の吸気口12を設けることで、給気による流量増加分を得ることが出来て、上記した気流量の相対的な少なさの制限を緩和できる。また、ブロワの熱量による循環気流の加熱を緩和する効果も得られる。更に、排気口13を設けることで、投入口22にて負圧を発生させて吸気し選別対象物の導入の補助を与え、また、気流の加熱の緩和を与え得る。なお、排気や吸気を補助するための専用のブロワ等を設けてもよい。さらに加熱への対処として気流を冷却するための気体冷却機構14を導入してもよい。
 また、図6及び図7に示すように、気流を循環利用させなければ、吸気口12及び排気口13の設置が必要となる。このとき、気流の温度調整には吸引される外気の温度制御を利用することができる。
[温度管理]
 図19に示すように、気流の送吸気の循環利用時に限らず、室温により装置稼働時の気流の温度は変動するため、気流の温度変化による装置への影響を考慮し、気流温度用の計測器(温度計82)と、計測値を組み入れた気流の管理、制御を導入してもよい。
[その他の処置等]
 また装置には、選別対象物の静電的な付着等、静電気の影響を防止するための除電機構や、対象物の水分架橋による付着の防止や、装置保守の観点等から除湿、乾燥機構を付与してもよい。
[主管部や吸引経路等の導管について]
 主管部31や吸引経路34等の導管内には、整流の補助を目的として、部分的に内径を細くして流速を高める絞り(例えば、特許文献8を参照)や、図22に示すような整流機構を設けてもよい。また主管部31の導管内には、選別対象物の重力落下の制動の補助を与える制動機構を設けてもよい(例えば、特許文献8を参照)。また、選別対象物の大きさ、比重等の各種性状や、処理量等の種々の条件への最適化を与える目的として、主管部31を構成する一部の導管または全体を交換可能に、あるいは容易に調整可能な機構、構造として、自由に内径あるいは断面積を変更可能としてもよい。なお、選別対象物が接する可能性がある導管内壁表面は、選別対象物を捕捉してしまわないように滑らかであることが好ましい。
[全体の構成]
 種々の構成要素において、同一構成要素を複数装備することが可能であり、上記した実施例に限らず、任意の組み合わせや構成数が選択可能である。さらに個々の構成要素について大きさ等、種々形態を設定することができる。
 例えば、図2(選別多段化の模式図)や図23(多段化時の流速変化グラフ)において、同一形状の3個の単位選別ユニット3を有する多段化の実施例を示した。この段数は3段に限るものではなく、必要に応じて選択(増減)可能である。また、各単位選別ユニット3の大きさや形状も個々のユニットで回収しようとする対象物の形態、物性、絶対量や他の対象物との量比(配分)等によって適宜、個別に設計してもよい。また、単位選別ユニット3を複数設置する場合には、上段の単位選別ユニット3の気流量増加を主目的として、必要に応じてユニット間に送気ユニット4を追加設置してもよい。
 上記した装置としての気流の管理、制御において、気流の入出部として設置された開口部以外の各構成ユニット、またはユニット間で意図せぬ有為な気流の入出がないように設計されるべきである。これにより気流を動作の駆動力とする選別部1においても、流量等の気流の条件を送吸気の管理、制御から、連動して管理、制御可能となる。後述するとおり、選別部1においては流速が選別性を決定する因子として重要であるが、選別部1に計測器を設置して流速を直接測定してもよいし、流量の測定と設計断面積より求められる任意位置での計算値やその他間接的に流速を推定可能な各種計測値および計測器を利用してもよく、さらに装置全体の気流管理から選別部1の流速が計算、推定可能であれば選別部1の計測器を省略してもよい。
[選別動作]
 選別の対象物は導入ユニット2の投入口22より装置内(選別部1)に導入され、導入された対象物は重力落下によって選別部1の単位選別ユニット3に供給される。なお、単位選別ユニット3が複数ある場合には、初めに最上段のユニットに供給され、最上段ユニットを重力落下により通過することができた対象物が次段のユニットに供給され、より下段のユニットにも同様に供給される。各単位選別ユニット3を通過可能かは、選別ユニットの選別結果を反映したものであって、選別結果として通過する対象物がない場合にはこのユニットの下方には対象物が供給されないことになる。
 各単位選別ユニット3においては、供給された対象物がユニット内での気流速度が相対的に大きい領域3bを通過できるものとできないものに選別される。領域3bを通過した対象物は、ユニット内に残留することなく重力落下して、より下段のユニットに供給される。一方、領域3bを通過不可となった対象物は、このユニット内に設置されている吸引口33から気流と共に吸引され、吸引経路34を経由してユニット(選別部1)外へと搬出される。したがって、予め各吸引力を、ユニットの領域3bを通過不可となる対象物を吸引可能な吸引力に調整しておく。この調整時には領域3bと同等以上の流速が必要となるが、一方で、領域3bよりも顕著に大きい流速となれば、領域3bを通過可能な対象物までも吸引してしまう。また、吸引された対象物は吸引経路34を経て固気分離機構6で気流より分離され回収槽等にて回収可能となるが、経路途中で流速低下等に起因して対象物が途中滞留しないように設計されている必要がある。
 単位選別ユニット3を複数設置して、選別工程を多段化すれば連続的にユニットでの選別を実施することができる。なお、下段のユニットでは上段のユニットよりも領域3bの流速、すなわち流速に起因した抗力が大きくないと、上段のユニットを通過した対象物を回収不可能である。したがって基本的に下段ほど領域3bの流速を大きくする設計または運転条件となる。さらに、全単位選別ユニット3を通過した対象物は、選別部1のユニットよりも下部に設けられた底部ユニット5で、または底部ユニットを経由して、別途回収槽等を用いて回収することができる。本装置では、単一供給に対して基本的に単位選別ユニット3の設置数に1加算した数に選別する能力を具備することができる。
 上記した選別装置によれば、気流調整体を配置した構成を採用しただけの、省スペース、コンパクト、シンプルで比較的低コストな機構、構造、構成ながら、(1)多様なサンプルに対して高い精度、(2)多様なサンプルに対応するための柔軟で容易な調整性、制御性、(3)スケールの大小に対する柔軟性、高い適応性を有する選別装置、選別方法を実現できる。
[本発明の原理の説明]
 図24には、本発明による選別装置における単位選別ユニット3での選別原理について説明した図である。
 図1を合わせて参照すると、導入ユニット2より選別ユニット3に供給された対象物Pの質量がa1[kg]のとき、対象物Pに作用する重力(Fgで表す)は、おおむね、
  Fg=9.8×a1[N]
となる。
 一方、送気ユニットより選別部1に導入された気流により、単位選別ユニット3の領域3bにおいて対象物に作用する抗力(D)は、
  D=ρ×V÷2×s×C
ρ:流体の密度、V:対象物Pとの相対速度、s:対象物の代表面積、C:抗力係数
となる。ここで、ρを空気密度、抗力係数Cおよび対象物Pの重力落下速度を一定と仮定すると、変量Vが気流の速度(流速)と、対象物Pの重力落下速度(一定)との和であることから、Dは気流36の流速により調整され、決定される。
 なお、抗力の他に対象物Pに作用する力として浮力があるが、例えば、気流が空気で、対象物Pの比重が1程度の場合に、重力に対して著しく小さいことから、実質無視して考えることができる。
 即ち、対象物Pが比重1(密度:1[g/cm3]、1000[kg/m3])とすると、空気の浮力は、大気圧で20℃(空気密度:1.205[kg/m3])の時、(浮力/重力)比は1.205/1000と著しく小さい。そこで、領域3bにおいて、気流36の流速の調整により、以下の(1)式の条件となる場合を考える。
  Fg=D            …(1)
  Fg<D            …(2)
 上記(1)式の関係となる場合は、重力落下して領域3bに到達した対象物Pの加速度は0となるが、慣性力により下方への移動を続ける。このとき、他に作用する力がなければ、領域3bを通過してさらに落下を続けることになる。一方、気流調整体32との衝突等の要因によって、領域3b内で下方への運動がなくなれば、領域3bを通過できなくなる。
 上記(2)式の場合は、差分の力により上方(気流の向き)に加速度が生じ、重力落下していた対象物Pが領域3b内で減速しさらに上方への加速に転じれば領域3bを通過できなくなる。
 また、領域3b直上に設置された吸引口33および吸引経路34において、上記と同様の原理により、(2)式の関係となる場合、(1)式の関係でも気流と同方向の運動成分がある場合には、対象物Pは気流と同じ方向に運動して、結果として吸引経路を経由して単位選別ユニット外に搬出して回収することが可能になる。
 なお、吸引口33および吸引経路34における抗力(D’)が、領域3bの抗力に比較して大きくなれば、領域3bを通過できない対象物Pをより速やかに吸引する能力を具備させる。その一方で、領域3b内の吸引口33直下の抗力Dを局所的に大きくして、本来領域3bを通過して落下する対象物までも吸引回収して選別精度を低下させる要因になり得る。そこで、両抗力および抗力間のバランスを調整して、目的に応じて選別性を調整することができる。
 以上のとおり、各単位選別ユニット3では、領域3b(主管部31)に導入される気流と吸引口33より吸引される気流とを各々調整して選別を制御している。前者の領域3bの気流の制御は、送気口側のブロワや流量調整弁等の管理、制御による。また、後者の吸引口33より吸引される気流は、吸引経路34の下流側のブロワや流量調整弁等の管理、制御による。つまり、各単位選別ユニット3では、領域3b(主管部31)と吸引口33(および吸引経路34)とが各々独立した選別性を有していて、両者が相互に連携可能な条件に調整されることでユニットとしての選別動作が可能になる。即ち、1の選別を行う単位ユニットにおいて、制御、調整可能な2重の選別工程を有することになり、これにより高い選別精度が達成されるのである。
 表1に上記した選別装置を用いて、材質の異なる5種のサンプルの選別実験を行った結果を示した。実験に用いたサンプルは何れも外径7mm前後の略粒状で、予め既知の各サンプルの性状から選別対象物となる単位選別ユニット3の条件を設定した。選別実験は、初めにサンプルを混合し、得られた混合状態のサンプルを投入口22より装置に連続的に投入して、各サンプルが各々定められた回収槽にて回収されたか否かを評価したものである。何れのサンプル種についても分離効率90%以上と高い精度で選別された。
Figure JPOXMLDOC01-appb-T000002
[吸気口と気体冷却機構の効果の例]
 ここで、図4に示したように、気流を循環利用した場合(図25の直線L31)にあっては、上記したように、外気を吸気する吸気口12を設けた場合(図25の点線L32)と、さらに気体冷却機構14を設けた場合(図25の一点鎖線L33)の気流の温度を計測した。この値を図25に示した。なお、運転条件としては、単位選別ユニット3の数が5、送気には1200W級のDCブロワを用いて、室温約25℃の環境下で、吸気口12から外気の取り込みを全吸気量の略10%、気体冷却機構14の冷却能力は約120Wとした。
 図25に示すように、吸気口12や気体冷却機構14を追加することで、循環時の気流温度は低下した。気流温度の制御は、選別性の安定化のみならず、装置、加えて種類によっては対象物への加熱の影響等の低減の面で効果的である。また、吸気口12の追加により、最上段の単位選別ユニットにおける送気の気流量を相対的に増加させ、その分、装置設計の自由度(導管径等)を向上させる効果も得られる。
 上記した気流選別装置は、簡便な構成で高い精度と易調整性がある。そこで、例えば、リサイクル分野において、廃棄回収後に解体、粉砕され材料毎に分離された破砕物を選別する場合、また、電子・電気機器の基板等から剥離された素子等の種々の組成の小径部品類等を選別する場合に適する。また、資源分野において、天然資源で同様に選別する場合や、製造・生産の分野において、製品の分別、選別や不純物の除去等に使用される選別装置として利用することができる。
 以上、本発明による選別装置及び選別方法の実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は特許請求の範囲を逸脱することなく、様々な代替実施例又は改変例を見出すことができるであろう。
1・・・選別部
2・・・導入ユニット
21・・・導入管部
22・・・投入口
3・・・単位選別ユニット
31・・・主管部
32・・・気流調整体
33・・・吸引口
34・・・吸引経路
35・・・導管
36・・・領域3b2での導管内空間流路
37・・・領域3b1下での導管内空間流路
38・・・内径調整用リング
39・・・気流調整***置調整機構
4・・・送気ユニット
41・・・送気管部
42・・・送気経路
43・・・送気口
5・・・底部ユニット
6・・・固気分離機構
7・・・ブロワ
8・・・流量、流速制御部
81・・・流量計、流速計(制御用信号出力)
82・・・温度計(制御用信号出力)
83・・・流量調整弁
9・・・制御装置
10・・・吸気フード
11・・・集塵装置
12・・・吸気口
13・・・排気口
14・・・気体冷却機構
15・・・固体回収弁
16・・・回収槽

Claims (14)

  1.  選別対象物の選別を行う選別装置であって、
     中央軸線を有しこれに沿ってその内部で選別対象物を重力落下させる導管と、
     前記導管の下部に設けられ、前記中央軸線に沿って上方に送風するための送気口と、
     前記導管の前記送気口よりも上部に設けられ、前記中央軸線に平行に設けられた吸引管の下方へ向けた開口である吸引口と、
     前記導管の前記吸引口よりも上部に設けられ、前記選別対象物を前記導管内の前記吸引管の周囲に投入するための投入口と、を備え、前記送気口からの送風により前記導管内に生ずる気流の一部または全部とともに、前記選別対象物を前記吸引口より吸引するか否かによって、選別を行う選別装置において、
     前記導管内の前記吸引口の下部に設けられて重力落下する前記選別対象物の落下経路を遮るように気流調整体を備え、前記気流調整体は前記中央軸線上に頂点を有し下方向に向けて断面形状を相似状にその断面積を拡げるような傾斜表面を有し、重力落下する前記選別対象物に作用する抗力を前記吸引口から下方向に向けてより大きくなるようにさせることを特徴とする選別装置。
  2.  前記気流調整体は、回転体形状であることを特徴とする請求項1記載の選別装置。
  3.  前記導管は、下方に向けて水平断面積を拡げるように傾斜させた内面傾斜部を有し、前記内面傾斜部内には前記気流調整体が位置することを特徴とする請求項1記載の選別装置。
  4.  前記内面傾斜部における気流の流速を高さ方向に一定にするように前記導管の前記内面傾斜部及び前記気流調整体の前記傾斜表面の形状を制御することを特徴とする請求項3記載の選別装置。
  5.  前記導管は、前記内面傾斜部における下方に向けた前記水平断面積を可変とさせるリング部を有することを特徴とする請求項4記載の選別装置。
  6.  前記気流調整体は、少なくとも最大断面積部を前記内面傾斜部に位置させ、前記最大断面積部の断面積を前記内面ストレート部の断面積よりも大とすることを特徴とする請求項4記載の選別装置。
  7.  前記気流調整体は、上下位置調整手段を与えられ、前記内面傾斜部において上下動し、前記抗力を制御することを特徴とする請求項4記載の選別装置。
  8.  前記吸引口を同一水平面内に開口するように複数設けたことを特徴とする請求項1記載の選別装置。
  9.  前記吸引口の上方において、前記中央軸線に平行に設けられた第2の吸引管の下方へ向けた開口である第2の吸引口を設けたことを特徴とする請求項1記載の選別装置。
  10.  前記吸引口及び前記第2の吸引口での各々の流量を独立して制御可能であることを特徴とする請求項9記載の選別装置。
  11.  選別対象物の選別を行う選別方法であって、
     中央軸線を有しこれに沿ってその内部で選別対象物を重力落下させる導管と、
     前記導管の下部に設けられ、前記中央軸線に沿って上方に送風するための送気口と、
     前記導管の前記送気口よりも上部に設けられ、前記中央軸線に平行に設けられた吸引管の下方へ向けた開口である吸引口と、
     前記導管の前記吸引口よりも上部に設けられ、前記選別対象物を前記導管内の前記吸引管の周囲に投入するための投入口と、を備え、前記送気口からの送風により前記導管内に生ずる気流の一部または全部とともに、前記選別対象物を前記吸引口より吸引するか否かによって、選別を行う選別装置において、
     前記導管内の前記吸引口の下部に設けられて重力落下する前記選別対象物の落下経路を遮るように気流調整体を与え、重力落下する前記選別対象物に作用する抗力を前記吸引口から下方向に向けてより大きくなるようにさせることを特徴とする選別方法。
  12.  前記気流調整体側部における気流の流速を高さ方向に一定にするように気流制御することを特徴とする請求項11記載の選別方法。
  13.  前記気流調整体は前記中央軸線について回転体であって下方向に向けて断面積を拡げる傾斜表面を有することを特徴とする請求項12記載の選別方法。
  14.  前記導管は、下方に向けて水平断面積を拡げるように傾斜させた内面傾斜部を有し、前記内面傾斜部内には前記気流調整体が位置することを特徴とする請求項13記載の選別装置。
     
PCT/JP2016/077677 2015-09-17 2016-09-20 物体の選別装置及びその方法 WO2017047812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017540046A JP6666012B2 (ja) 2015-09-17 2016-09-20 物体の選別装置及びその方法
US15/759,868 US10512940B2 (en) 2015-09-17 2016-09-20 Device and method for sorting objects
CN201680060430.XA CN108136444B (zh) 2015-09-17 2016-09-20 物体的筛选装置及其方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-184070 2015-09-17
JP2015184070 2015-09-17

Publications (1)

Publication Number Publication Date
WO2017047812A1 true WO2017047812A1 (ja) 2017-03-23

Family

ID=58289523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077677 WO2017047812A1 (ja) 2015-09-17 2016-09-20 物体の選別装置及びその方法

Country Status (4)

Country Link
US (1) US10512940B2 (ja)
JP (1) JP6666012B2 (ja)
CN (1) CN108136444B (ja)
WO (1) WO2017047812A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530267B (zh) * 2019-01-07 2023-08-11 山东泓盛智能科技有限公司 粮食质量智能化定等检验***及其检验方法
CN112935280B (zh) * 2021-01-15 2022-05-03 南京航空航天大学 一种高强铝基材料选区激光熔化成形铺粉***及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129931A (en) * 1989-12-02 1992-07-14 N.V. Nederlandse Gasunie Device for separating liquids and/or solids from a gas stream
JPH06123421A (ja) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd 高圧用粗粒分配器
JPH08266938A (ja) * 1995-03-29 1996-10-15 Chugoku Electric Power Co Inc:The 分級点可変型サイクロン装置
JP2014188452A (ja) * 2013-03-27 2014-10-06 National Institute Of Advanced Industrial & Technology 選別装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726763A (en) * 1951-08-14 1955-12-13 Rakowsky Victor Method of gravity separation
JPS4511902Y1 (ja) 1966-05-12 1970-05-26
JPS5219884U (ja) 1975-07-29 1977-02-12
JPS5339766A (en) 1976-09-24 1978-04-11 Sumitomo Electric Ind Ltd Method and apparatus for detecting foreign substance in pellets
JPS5643418Y2 (ja) 1976-10-30 1981-10-12
JPS5847376Y2 (ja) 1981-06-29 1983-10-28 株式会社島津製作所 穀物粒子供給装置
JPS61216781A (ja) 1985-03-19 1986-09-26 住友重機械工業株式会社 風力分級器
JPS6265781A (ja) 1985-09-14 1987-03-25 株式会社 シスコ プラスチツク成形機に用いる粉粒体等をはじめ比重差のある各種物に使用可能な選別装置
JPS6463078A (en) 1987-09-02 1989-03-09 Zennosuke Tanaka Dry-sorting method
JPH04131467U (ja) 1991-05-20 1992-12-03 川崎重工業株式会社 気流分級器
JPH0751626A (ja) 1993-08-20 1995-02-28 Hitachi Ltd 風力分別方法及び装置
JP2636160B2 (ja) 1994-01-18 1997-07-30 工業技術院長 固形物の気流選別方法及び装置
JP2807875B2 (ja) 1996-06-12 1998-10-08 エム・エルエンジニアリング株式会社 合成樹脂ペレットの微粉除去装置
JP3113641B2 (ja) 1999-01-12 2000-12-04 株式会社御池鐵工所 風力選別装置
JP2001327923A (ja) 2000-05-24 2001-11-27 Yanmar Diesel Engine Co Ltd 風選別装置
JP2003071386A (ja) 2001-08-31 2003-03-11 Nkk Corp 軽量プラスチックの選別回収装置
SE0103501D0 (sv) 2001-10-19 2001-10-19 Rapid Granulator Ab Separering
JP2003237887A (ja) 2002-02-19 2003-08-27 Toray Ind Inc 粉粒体の排出装置および粉粒体の粉塵除去方法
JP4009511B2 (ja) 2002-09-06 2007-11-14 和博 中 ラベル取り機及び廃プラスチック容器のリサイクル回収処理システム
JP4122438B2 (ja) 2004-01-21 2008-07-23 独立行政法人産業技術総合研究所 多段風力選別装置
JP2006218357A (ja) 2005-02-08 2006-08-24 Dowa Mining Co Ltd 風力選別装置及び風力選別方法
JP2007061737A (ja) 2005-08-31 2007-03-15 Jfe Steel Kk 廃プラスチックの選別装置および選別方法
CN201366413Y (zh) * 2009-02-06 2009-12-23 东莞市天图环保科技有限公司 一种内胆式可调压力风力分选装置
CN103547382B (zh) * 2011-05-03 2017-02-15 布勒股份公司 用于将给料至少分成一个轻物料组分和一个重物料组分的装置和方法
US9821343B2 (en) * 2012-03-28 2017-11-21 National Institute Of Advanced Industrial Science And Technology Particle sorting machine
CN104368528B (zh) * 2014-11-17 2017-01-11 王树波 一种高精度的控制粒度分布的分离器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129931A (en) * 1989-12-02 1992-07-14 N.V. Nederlandse Gasunie Device for separating liquids and/or solids from a gas stream
JPH06123421A (ja) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd 高圧用粗粒分配器
JPH08266938A (ja) * 1995-03-29 1996-10-15 Chugoku Electric Power Co Inc:The 分級点可変型サイクロン装置
JP2014188452A (ja) * 2013-03-27 2014-10-06 National Institute Of Advanced Industrial & Technology 選別装置

Also Published As

Publication number Publication date
JP6666012B2 (ja) 2020-03-13
CN108136444B (zh) 2021-02-02
CN108136444A (zh) 2018-06-08
US10512940B2 (en) 2019-12-24
US20180257108A1 (en) 2018-09-13
JPWO2017047812A1 (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
JP4897893B2 (ja) 分級機吸込み口と小粒子バイパスを備えたサイクロン
KR20170048250A (ko) 사이클론 장치 및 분급 방법
US9022222B2 (en) Device for the selective granulometric separation of solid powdery materials using centrifugal action, and method for using such a device
WO2017212898A1 (ja) セパレータ装置及びショット処理装置
CN1913981B (zh) 颗粒状物质的气动分离器和由该气动分离器进行颗粒分离的方法
CN104399607A (zh) 一种旋风分离装置及基于该装置的旋风分离***
JP6341630B2 (ja) 選別装置
WO2017047812A1 (ja) 物体の選別装置及びその方法
SE430659B (sv) Forfarande och apparat for pneumatisk finklassificering
RU78703U1 (ru) Установка пневматической сепарации
Klujszo et al. Dust collection performance of a swirl air cleaner
NO131276B (ja)
CN103781560B (zh) 粒状物料分离器
KR101695000B1 (ko) 분체형 연원료용 분급장치
RU2407601C1 (ru) Способ воздушно-центробежной классификации порошков и устройство для его осуществления
US3365058A (en) Particle classifying-separating apparatus
JP6535961B2 (ja) 選別装置
JP4097619B2 (ja) サイクロン式分級装置
RU2290263C1 (ru) Пневмогравитационный классификатор
RU2414969C1 (ru) Воздушный двухпродуктовый классификатор
JP2017018946A (ja) サイクロン装置及び分級方法
RU2210205C2 (ru) Замкнутый пневматический сепаратор
KR100887159B1 (ko) 플라이 애시 분급장치
RU152312U1 (ru) Центробежный классификатор
JPH01274882A (ja) 空気分級機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540046

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15759868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846683

Country of ref document: EP

Kind code of ref document: A1