WO2017047121A1 - 電極および電解装置 - Google Patents

電極および電解装置 Download PDF

Info

Publication number
WO2017047121A1
WO2017047121A1 PCT/JP2016/054583 JP2016054583W WO2017047121A1 WO 2017047121 A1 WO2017047121 A1 WO 2017047121A1 JP 2016054583 W JP2016054583 W JP 2016054583W WO 2017047121 A1 WO2017047121 A1 WO 2017047121A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
anode
amount
cathode
chamber
Prior art date
Application number
PCT/JP2016/054583
Other languages
English (en)
French (fr)
Inventor
典裕 吉永
内藤 勝之
英男 太田
直美 信田
横田 昌広
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201680002274.1A priority Critical patent/CN107001078A/zh
Priority to JP2017540525A priority patent/JP6434159B2/ja
Publication of WO2017047121A1 publication Critical patent/WO2017047121A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • Embodiment described here is related with an electrode and an electrolysis device provided with this electrode.
  • electrolyzers that electrolyze water to produce electrolyzed water having various functions, such as alkaline ionized water, ozone water, or hypochlorous acid water, have been provided.
  • an electrolysis apparatus an electrolysis apparatus having a one-chamber type, two-chamber type, or three-chamber type electrolytic cell (electrolysis cell) is known.
  • a three-chamber type electrolytic cell is partitioned into three chambers of an intermediate chamber and an anode chamber and a cathode chamber located on both sides of the intermediate chamber by a cation exchange membrane and an anion exchange membrane.
  • An anode and a cathode are respectively disposed in the anode chamber and the cathode chamber.
  • a base material is a metal such as titanium, tantalum, chromium, aluminum or an alloy thereof, and the base material surface is a noble metal such as platinum, an oxide catalyst layer such as iridium oxide or ruthenium oxide.
  • An electrode coated with is used.
  • salt water is passed through the intermediate chamber, and water is circulated through the anode chamber and the cathode chamber, respectively.
  • hypochlorous acid water is generated from the chlorine gas generated at the anode
  • sodium hydroxide water is generated in the cathode chamber.
  • the produced hypochlorous acid water is used as sterilizing / disinfecting water
  • sodium hydroxide water is used as washing water.
  • the electrolysis apparatus As described above, it is known that when an electrode undergoes an electrolytic reaction for a long time, deterioration of the electrode surface proceeds and the initial electrolytic performance cannot be maintained. The elution of the catalyst layer and the separation of the catalyst layer due to long-term operation cause deterioration. The deterioration rate depends on the current density of the electrode when the voltage is applied, the electrolytic cell temperature, and the amount of catalyst.
  • the subject of embodiment is providing the electrode which can maintain electrolysis performance over a long period of time, and has high durability, and an electrolyzer provided with the same.
  • the electrolysis apparatus includes an electrolytic cell having an anode chamber provided with an anode and a cathode chamber provided with a cathode facing the anode, and at least one of the anode and the cathode is a catalyst.
  • the at least one of the anode and the cathode has a current density distribution generated when a voltage is applied, and the catalyst amount of the catalyst on the first surface is equal to the current density distribution. It has a corresponding distribution.
  • FIG. 1 is a block diagram schematically showing an electrolyzed water generating apparatus according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing an electrode unit of the electrolyzed water generating apparatus.
  • FIG. 3 is a side view schematically showing electrodes of the electrode unit.
  • FIG. 4 is a cross-sectional view of the electrolytic cell schematically showing a deformed state of the electrode when the water pressure in the intermediate chamber of the electrolytic cell is set high.
  • FIG. 5 is a cross-sectional view of the electrolytic cell schematically showing a deformed state of the electrode when the water pressure in the intermediate chamber of the electrolytic cell is set low.
  • FIG. 1 is a block diagram schematically showing an electrolyzed water generating apparatus according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing an electrode unit of the electrolyzed water generating apparatus.
  • FIG. 3 is a side view schematically showing electrodes of the electrode unit.
  • FIG. 4 is a cross-sectional view of the electro
  • FIG. 6 is a diagram showing the results of measuring the life of an electrode by variously changing the catalyst amount of the electrode and the water pressure in each chamber of the electrolytic cell in the electrolyzed water generating apparatus according to the first embodiment.
  • FIG. 7 is a cross-sectional view schematically showing an electrolyzed water generating apparatus according to the second embodiment.
  • FIG. 8 is an exploded perspective view showing an electrode unit of the electrolyzed water generating apparatus according to the second embodiment.
  • Drawing 1 is a figure showing roughly the composition of the electrolyzed water generating device concerning a 1st embodiment.
  • An electrolyzed water generator 10 as an example of an electrolyzer includes a so-called three-chamber electrolyzer 11.
  • the electrolytic cell 11 is formed in a flat rectangular box shape, and the inside thereof is constituted by an intermediate chamber 15a and an anode chamber 15b and a cathode chamber 15c located on both sides of the intermediate chamber 15a by a first diaphragm 16a and a second diaphragm 16b. It is divided into three rooms.
  • the electrolysis chamber is partitioned into an anode chamber 15b and an intermediate chamber 15a by a first diaphragm 16a, and is partitioned into an intermediate chamber 15a and a cathode chamber 15c by a second diaphragm 16b.
  • the first diaphragm 16a and the second diaphragm 16b face each other substantially in parallel with a space therebetween.
  • An anode (first electrode) 18 is provided in the anode chamber 15b and faces the first diaphragm 16a.
  • a cathode (second electrode) 20 is provided in the cathode chamber 15c and faces the second diaphragm 16b.
  • the anode 18 and the cathode 20 are formed in a rectangular plate shape having substantially the same size, and face each other with the first and second diaphragms and the intermediate chamber 15a interposed therebetween.
  • the first and second diaphragms 16a and 16b, the anode 18 and the cathode 20 are fixed and supported by the electrolytic cell 11 at their outer peripheral edges, respectively.
  • the electrolyzed water generating apparatus 10 supplies electrolyzed water, for example, water, to the electrolyte chamber 11, the electrolyte solution supply unit 31 that supplies an electrolyte, for example, saturated brine, to the intermediate chamber 15a, and the anode chamber 15b and the cathode chamber 15c.
  • the water supply part 32 and the power supply 33 which applies a positive voltage and a negative voltage to the anode 18 and the cathode 20, respectively are provided.
  • the electrolyte solution supply unit 31 includes a salt water tank 25 that generates saturated salt water, a supply pipe 31a that guides the saturated salt water from the salt water tank 25 to the lower portion of the intermediate chamber 15a, a liquid feeding pump 29 provided in the supply pipe 31a, And a drain pipe 31b for sending the electrolyte flowing through the intermediate chamber 15a from the upper portion of the intermediate chamber 15a to the salt water tank 25.
  • the drain pipe 31b is provided with an adjusting valve (throttle valve) 30a.
  • the water supply unit 32 includes a water supply source (not shown) for supplying water, a water supply pipe 32a for guiding water from the water supply source to the lower portions of the anode chamber 15b and the cathode chamber 15c, and water flowing through the anode chamber 15b from the upper portion of the anode chamber 15b.
  • the liquid feed pump 29 and the adjusting valves 30a, 30b, and 30c constitute a water pressure adjusting mechanism (pressure adjusting mechanism). That is, by adjusting the supply flow rate of the liquid feed pump 29 that supplies the electrolytic solution to the intermediate chamber 15a, or by adjusting the flow rate of water or the flow rate of the electrolytic solution by the adjusting valves 30a, 30b, and 30c, the anode chamber
  • the water pressure in 15b, the water pressure in the cathode chamber 15c, and the water pressure in the intermediate chamber 15a can be adjusted.
  • the water pressure in the intermediate chamber 15a is adjusted to be higher than each water pressure in the anode chamber 15b and the cathode chamber 15c, or the water pressure in the intermediate chamber 15a is higher than each water pressure in the anode chamber 15b and the cathode chamber 15c. Can be adjusted. It is also possible to adjust the water pressure in the intermediate chamber 15a, the anode chamber 15b, and the cathode chamber 15c to be equal to each other.
  • the liquid feeding pump 29 is operated to supply saturated salt water to the intermediate chamber 15a of the electrolytic cell 11, and water is supplied to the anode chamber 15b and the cathode chamber 15c.
  • a positive voltage and a negative voltage are applied from the power source 33 to the anode 18 and the cathode 20, respectively.
  • Sodium ions ionized in the salt water flowing into the intermediate chamber 15a are attracted to the cathode 20, pass through the second diaphragm 16b, and flow into the cathode chamber 15c.
  • water is electrolyzed at the cathode 20 to generate hydrogen gas and an aqueous sodium hydroxide solution.
  • the aqueous sodium hydroxide solution (alkaline water) and hydrogen gas thus generated flow out from the cathode chamber 15c to the second drain pipe 32c and are discharged through the second drain pipe 32c.
  • Chlorine ions ionized in the salt water in the intermediate chamber 15a are attracted to the anode 18, pass through the first diaphragm 16a, and flow into the anode chamber 15b.
  • chlorine ions give electrons to the anode 18 to generate chlorine gas.
  • the chlorine gas reacts with water in the anode chamber 15b to produce hypochlorous acid and hydrochloric acid.
  • the acidic water (hypochlorous acid water and hydrochloric acid) produced in this way is discharged from the anode chamber 15b through the first drain pipe 32b.
  • the following characteristics appear by applying pressure (water pressure) to the liquid supplied to each of the intermediate chamber 15a, the anode chamber 15b, and the cathode chamber 15c.
  • pressure water pressure
  • the permeation of chlorine ions from the intermediate chamber 15a to the anode chamber 15b is promoted, so that the reaction at the anode 18 proceeds and hypochlorous acid is transmitted. Acid production efficiency increases.
  • FIG. 2 is an exploded perspective view showing the electrode unit.
  • the first diaphragm 16 a is formed in a rectangular shape having substantially the same dimensions as the anode 18, and is adjacent to or in contact with the surface of the anode 18.
  • an anion exchange membrane, a reverse osmosis membrane, various electrolyte membranes, a porous membrane having nanopores, or the like can be used as the first diaphragm 16a.
  • An anion exchange membrane can be used as the anion exchange membrane, and an example is A201 manufactured by Tokuyama Corporation.
  • ROMEMBRA Toray Industries, Inc.
  • porous film having nanopores include porous ceramics such as porous glass, high-quality alumina, porous titania and porous zeolite, and porous polymers such as porous polyethylene and porous propylene.
  • the second diaphragm 16b is formed in, for example, a rectangular shape having substantially the same dimensions as the cathode 20, and is adjacent to or in contact with the surface of the cathode 20.
  • a cation exchange membrane As the second diaphragm 16b, a cation exchange membrane, a reverse osmosis membrane, a porous membrane having nanopores, or the like can be used.
  • a cation exchange membrane a cation exchange membrane can be used, and examples thereof include NAFION (Eai DuPont: Trademark) 112, 115, 117, Flemion (Asahi Glass Co., Ltd .: Trademark), ACPLEX (Asahi Kasei Corporation: Trademark) and Gore Select (W. El Gore & Associates: Trademark).
  • the anode (first electrode) 18 has a porous structure in which a large number of through holes 23 are formed in a base material 22 made of, for example, a rectangular metal plate.
  • the base material 22 has a first surface 18a and a second surface 18b facing the first surface 18a substantially in parallel. The distance between the first surface 18a and the second surface 18b, that is, the plate thickness is formed at T1.
  • the first surface 18a faces the first diaphragm 16a, and the second surface 18b faces the anode chamber 15b.
  • a catalyst layer 19a is formed or supported over at least the entire first surface 18a. In the present embodiment, the catalyst layers 19a and 19b are formed on both the first surface 18a and the second surface 18b.
  • a catalytic metal may be used as the substrate 22.
  • the anode 18 integrally has a connection terminal 24 protruding from one side edge, for example, the upper edge.
  • the anode 18 is connected to a power source via the connection terminal 24. It is possible to provide not only one electrode terminal but also a plurality of electrode terminals. When the plate thickness T1 of the base material 22 is thin, if a plurality of electrode terminals are provided, the movement resistance of electrons moving between the electrode terminals and the reaction part can be suppressed.
  • a large number of through holes 23 are formed over almost the entire surface of the anode 18.
  • Each through hole 23 opens to the first surface 18a and the second surface 18b.
  • the through-hole 23 can use various shapes such as a square, a rectangle, a rhombus, a circle, and an ellipse.
  • the vertices of squares, rectangles and rhombuses may be rounded.
  • the through holes 23 are not limited to regular shapes, and may be formed side by side at random.
  • the cathode (second electrode) 20 is configured in the same manner as the anode 18. That is, the cathode 20 has a porous structure in which a large number of through holes 27 are formed in a base material 26 made of, for example, a rectangular metal plate.
  • the base material 26 has a first surface 20a and a second surface 20b facing the first surface 20a substantially in parallel.
  • the first surface 20a faces the second diaphragm 16b, and the second surface 20b faces the cathode chamber 15c.
  • the catalyst layer 21a is formed or supported on at least the entire surface of the first surface 20a. In the present embodiment, the catalyst layers 21a and 21b are formed on both the first surface 20a and the second surface 20b.
  • a catalytic metal may be used as the substrate 26.
  • the cathode 20 integrally has a connection terminal 28 protruding from one side edge, for example, the upper edge. The cathode 20 is connected to a power source via the connection terminal 28.
  • a valve metal such as titanium, chromium, aluminum, or an alloy thereof, or a conductive metal can be used as the base materials 22 and 26 of the anode 18 and the cathode 20.
  • the plate thickness T1 of the base materials 22 and 26 is determined according to the current density of the voltage (current) applied to the electrodes. If the current density is several hundred mA per unit square centimeter, it is sufficient that the thickness T1 of the base materials 22 and 26 is 0.4 to 1 mm. In this embodiment, the board thickness T1 of the base materials 22 and 26 is, for example, about 500 ⁇ m.
  • the opening diameter, the opening interval, and the opening ratio of the through holes 23 and 27 can be selected according to the current density of the electrodes 18 and 20. Furthermore, as will be described later, it is also possible to adopt so-called double mesh structure electrodes in which the opening diameters of the through holes are different between the front and back surfaces of one electrode.
  • anode used for hydrochloric acid generation and hypochlorous acid generation it is possible to use a noble metal such as platinum and an oxide such as iridium oxide and ruthenium oxide that can withstand acidity and high potential as a catalyst.
  • a noble metal such as platinum and an oxide such as iridium oxide and ruthenium oxide that can withstand acidity and high potential
  • nickel or noble metal having alkali resistance can be used as a catalyst.
  • a noble metal catalyst such as platinum that can withstand acidity, copper, silver, stainless steel, or the like can be used as the catalyst.
  • the amount of catalyst supported on the electrode substrate is determined by the current density of the electrode and the required electrolysis time.
  • the catalyst layer 19a formed on at least the first surface 18a of the anode 18 changes the amount of catalyst in the same plane according to the current density distribution of each part of the anode 18 generated when voltage is applied. . That is, in the first surface 18 a of the anode 18, the portion having a low current density has a small amount of catalyst, and the amount of catalyst is increased toward the portion having a high current density.
  • the minimum amount of the catalyst is 1 g / m 2 or more, and the amount of the catalyst continuously slopes (changes) within 30% and within 300% of the minimum amount within the first surface 18a. It is applied to the material. In this case, the total amount of catalyst on the entire first surface 18a is constant and has a distribution of the amount of catalyst depending on the location.
  • the catalyst layer 19a is formed on the first surface 18a of the anode 18 so that the amount of catalyst in the vicinity of the root of the connection terminal 24 is increased. As shown in FIG.
  • the shapes of the anode 18 and the cathode 20 slightly vary according to the water pressure in the anode chamber, the intermediate chamber, and the cathode chamber.
  • the central portions of the anode 18 and the cathode 20 are separated from each other. Deform in the direction.
  • the anode 18 and the cathode 20 each have a higher current density in the peripheral portion than the current density in the central portion when a voltage is applied.
  • the amount of catalyst at the central portion (site 5) is reduced, and the amount of catalyst at the peripheral portions (sites 1-4 and 6-9) is increased.
  • the catalyst layer 19a is formed.
  • the electrodes having the same total catalyst amount can be obtained by applying a large amount of catalyst to a portion having a high current density, that is, a portion easily deteriorated, and reducing the amount of catalyst in other portions. Can extend the lifespan.
  • the catalyst can be applied to the surface of the substrate with a brush, and the number of applications can be changed depending on the location of the substrate surface. It is.
  • the inclined structure can be manufactured by changing the position of the target.
  • the catalyst layer is formed by dipping the base material into the dipping solution (catalyst solution)
  • the lifting speed from the dipping solution can be adjusted and the hanging position when dipping can be changed for each number of dippings.
  • the amount of catalyst can be freely tilted within the same surface of the substrate.
  • the deterioration state of the electrode can be grasped from the remaining amount of the catalyst applied on the electrode and the voltage fluctuation.
  • the residual amount of the catalyst can be determined by fluorescent X-ray analysis or ICP emission analysis, but it is desirable to adopt fluorescent X-ray analysis for the amount of catalyst in the electrolysis process from a non-destructive viewpoint.
  • the electrode is taken out once every several hundred hours, and for example, the catalyst amount at a plurality of designated locations as indicated by points 1 to 9 in FIG. It is preferable to measure.
  • FIG. 6 shows an example in which the relationship between the distribution of the catalyst amount and the life is measured for a plurality of electrodes prepared by changing the catalyst amount in various ways.
  • Comparative Examples 1 to 4 each show an electrode example in which a catalyst is uniformly applied to the entire surface of the electrode.
  • Reference numerals 1 to 30 denote electrodes having a catalyst amount distribution.
  • the ratio of the catalyst amount is expressed as (maximum catalyst amount / minimum amount ⁇ 100-100) among the points in the plane.
  • the electrode life is 2500 to 400 h.
  • the amount of the catalyst is doubled to 100 g / m 2 as in Comparative Example 4, the life becomes 9000 h, which is not desirable in terms of production cost.
  • the electrode no when the catalyst amount is distributed and the water pressure in the intermediate chamber, the anode chamber, and the cathode chamber is equal, the electrode no.
  • electrode No. 1, No. 1 As shown in FIG. 6, when the ratio between the maximum amount of catalyst and the minimum amount of catalyst is 30% or less, or when it is 300% or more, the effect of extending the life of the electrode is lowered.
  • the electrode no When the water pressure in the intermediate chamber is set higher than the water pressure in the anode chamber and the cathode chamber, the electrode no. It can be seen that the life of the electrode is improved by reducing the amount of catalyst at the central portion 5 of the electrode and increasing the amount of catalyst at the peripheral portions 1 to 3, 4, 6, 7 to 9 as in 8 to 11. . However, electrode No. 7, no. When the ratio of the maximum catalyst amount to the minimum catalyst amount is 30% or less as shown in FIG.
  • the electrode no. 20 to 23 by maximizing the amount of catalyst at the central portion 5 of the electrode, maximizing or slightly eliminating the adjacent portions 1, 2, 3 and further reducing the amount of catalyst at the lower end portions 7, 8, 9 or The life of the electrode is improved by maximizing the amount of catalyst in the central portion 5 of the electrode and decreasing the amount of catalyst in the other portions 1 to 4 and 6 to 9.
  • electrode No. 19 no. As in 24, when the ratio of the maximum amount of catalyst to the minimum amount of catalyst is 30% or less or 300% or more, the life extension effect is low.
  • the electrode configured as described above and the electrolyzed water generating apparatus including the electrode by distributing the catalyst amount in accordance with the current density of each part of the electrode, that is, the amount of catalyst in a portion having a high current density can be obtained.
  • the total amount of catalyst applied or supported on the electrode surface can be made the same as in the prior art, and the life of the electrode can be improved without causing an increase in manufacturing cost.
  • a long-life electrode capable of maintaining the electrolysis performance for a long period of time and an electrolyzer provided with the same are obtained.
  • the anode 18 and the cathode 20 have a porous structure having a large number of through holes.
  • the present invention is not limited to this, and may be a flat electrode having no through holes.
  • an electrode and an electrolyzed water generating apparatus according to another embodiment will be described.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted, and the parts different from those in the first embodiment. Will be described in detail.
  • FIG. 7 is a sectional view schematically showing an electrolyzed water generating apparatus according to the second embodiment
  • FIG. 8 is an exploded perspective view of the electrode unit.
  • the anode 18 provided in the anode chamber 15b of the electrolytic cell 11 and the cathode 20 provided in the cathode chamber 15c are each configured as an electrode having a double mesh structure.
  • the anode 18 has a porous structure in which a large number of through holes are formed in a base material 22 made of, for example, a rectangular metal plate.
  • the base material 22 has a first surface 18a and a second surface 18b facing the first surface 18a substantially in parallel. The distance between the first surface 18a and the second surface 18b, that is, the plate thickness is formed at T1.
  • the first surface 18a faces the first diaphragm 16a
  • the second surface 18b faces the anode chamber 15b.
  • a plurality of first holes 40 are formed in the first surface 18a of the base material 22 and open to the first surface 18a.
  • a plurality of second holes 42 are formed in the second surface 18b and open to the second surface 18b.
  • Each first hole 40 communicates with the opposing second hole 42 and forms a through-hole penetrating the base material 22.
  • the opening diameter R1 of the first hole 40 on the first diaphragm 16a side is smaller than the opening diameter R2 of the second hole 42, and the number of holes is such that the first hole 40 is the second hole 42. More are formed.
  • the second hole portion 42 is formed, for example, in a rectangular shape, and is provided side by side in a matrix on the second surface 18b.
  • the peripheral wall defining each second hole portion 42 is formed by a tapered surface or a curved surface whose diameter increases from the bottom of the hole portion toward the opening, that is, toward the second surface 18b side. Also good.
  • the interval between the adjacent second hole portions 42, that is, the width of the linear portion of the electrode is set to W2.
  • the second hole portion 42 is not limited to a rectangular shape, and may have other various shapes. Further, the second hole portions 42 are not limited to regular, and may be formed side by side at random.
  • the first hole 40 is, for example, formed in a rectangular shape, and is provided in a matrix on the first surface 18a.
  • the peripheral wall defining each first hole 40 may be formed by a tapered surface or a curved surface whose diameter increases from the bottom of the hole toward the opening, that is, toward the first surface 18a. Good.
  • a plurality of, for example, nine first hole portions 40 are provided so as to face one second hole portion 42.
  • Each of these nine first holes 40 communicates with the second hole 42 to form a through hole that penetrates the base material 22 together with the second hole 42.
  • the interval W1 between the adjacent first hole portions 40 is set to be smaller than the interval W2 between the second hole portions 42. Thereby, the number density of the 1st hole 40 in the 1st surface 18a is sufficiently larger than the number density of the 2nd hole 42 in the 2nd surface 18b.
  • the 1st hole part 40 is good also as another shape, without being limited to a rectangular shape.
  • the 1st hole part 40 may be formed not only regularly but in a line.
  • the structure which all the 1st hole parts 40 are connected to the 2nd hole part 42 but the 1st hole part which is not connected to the 2nd hole part 42 may be included.
  • a smaller opening diameter of the first hole portion 40 is preferable in order to make the pressure uniform, but a certain size is necessary to inhibit the material diffusion.
  • the thickness is preferably 1 to 2 mm, more preferably 0.3 to 1 mm.
  • As the opening various shapes such as a square, a rectangle, a rhombus, a circle, an ellipse and the like can be used, but the opening area is preferably 0.01 to 4 mm 2 which is the same as the opening area of the square.
  • the ratio (opening ratio) of the opening area to the electrode area including the opening is preferably 0.05 to 0.5, and more preferably 0.1 to 0.3. If the aperture ratio is too small, it will be difficult to outgas. If the aperture ratio is too large, the electrode reaction is hindered.
  • Various shapes such as a square, a rectangle, a rhombus, a circle, and an ellipse can be used for the opening of the second hole portion 42.
  • a larger opening diameter of the second hole portion 42 is preferable in order to improve gas escape, but it cannot be so large because electric resistance increases.
  • one side is preferably 1 to 40 mm, more preferably 2 to 20 mm.
  • the opening square, rectangular, rhombic, circular may be used an elliptical or the like and the various shapes, as the opening area equal to the opening area of the square, preferably those from 1 mm 2 of 1600 mm 2.
  • An opening that extends in one direction and connects from one end of the electrode to the other is also possible, such as a rectangle or an ellipse.
  • the anode 18 is integrally provided with a connection terminal 24 protruding from the upper edge, for example.
  • catalyst layers 19a and 19b are formed on the entire surface of the first surface 18a and the entire surface of the second surface 18b of the substrate 22. At least on the first surface 18a, the catalyst amount of the catalyst layer 19a varies depending on each part of the electrode, and particularly varies depending on the current density, and has a distribution in the same plane. The distribution of the catalyst amount is set similarly to the first embodiment. Note that the catalyst layer 19b on the second surface 18b side may also have the same amount of catalyst as the catalyst layer 19a.
  • the cathode 20 is configured in the same manner as the anode 18. That is, the cathode 20 has a porous structure in which a large number of through holes are formed in a base material 26 made of, for example, a rectangular metal plate.
  • the base material 26 has a first surface 20a and a second surface 20b facing the first surface 20a substantially in parallel.
  • the first surface 20a faces the second diaphragm 16b, and the second surface 20b faces the cathode chamber 15c.
  • a plurality of first holes 44 are formed in the first surface 20a of the base material 26 and open to the first surface 20a.
  • a plurality of second holes 46 are formed in the second surface 20b and open to the second surface 20b.
  • the opening diameter of the first hole 44 on the second diaphragm 16b side is smaller than the opening of the second hole 46, and the number of holes is larger in the first hole 44 than in the second hole 46. Is formed.
  • the depth of the first hole 44 is formed to be smaller than the depth of the second hole 46.
  • a plurality of, for example, nine first hole portions 44 are provided to face one second hole portion 46.
  • Each of these nine first holes 44 communicates with the second hole 46 to form a through hole that penetrates the base material 26 together with the second hole 46.
  • the interval between the adjacent first hole portions 44 is set to be smaller than the interval between the second hole portions 46.
  • the cathode 20 is integrally provided with a connection terminal 28 that protrudes from the upper edge, for example.
  • catalyst layers 21 a and 21 b are formed on the entire first surface 20 a and the second surface 20 b of the base material 26. At least on the first surface 20a, the amount of catalyst in the catalyst layer 21a varies depending on each part of the electrode, particularly varies depending on the current density, and has a distribution in the same plane. The distribution of the catalyst amount is set similarly to the first embodiment. Note that the catalyst layer 21b on the second surface 20b side may also have the same amount of catalyst as the catalyst layer 19a.
  • the configurations of the water supply system, the salt water supply system, the power source, and the water pressure adjustment mechanism of the electrolyzed water generating device are the same as those of the first embodiment described above.
  • the distribution of the amount of catalyst according to the current density of each part of the electrode that is, the amount of catalyst in a portion having a high current density is increased, and the current density is increased.
  • the total amount of catalyst applied or supported on the electrode surface can be made the same as in the prior art, and the life of the electrode can be improved without causing an increase in manufacturing cost. Thereby, a long-life electrode capable of maintaining the electrolysis performance for a long period of time and an electrolyzer provided with the same are obtained.
  • Example 1 The base materials 22 and 26 of the anode 18 and the cathode 20 are formed by etching a flat titanium plate having a plate thickness of 0.5 mm to produce the electrodes 18 and 20 having a double mesh structure shown in FIG.
  • the width W1 of the linear portion formed between the adjacent first hole portions 40 is 1 mm
  • the width W2 of the wide linear portion formed between the adjacent second hole portions 42 is 2 mm.
  • released by the rhombus is 120 degrees.
  • the etched electrode base material 22 is treated at 80 ° C. for 1 hour in a 10 wt% oxalic acid aqueous solution.
  • the electrode base material 22 that has been repeatedly applied, dried, and fired a plurality of times is cut into a reaction electrode area of 15 cm ⁇ 20 cm, and used as the anode 18.
  • a connecting terminal 24 having a width of 3 cm and a height of 3 cm is attached to the upper right portion of the anode 18 from the corner.
  • the amount of catalyst applied was varied in the plane, and the details of the catalyst amount at each point are the 12 types shown in FIG. 6 (Nos. 7 to 18 in FIG. 6).
  • the cathode 20 by sputter
  • A201 made by Tokuyama is used as the first diaphragm 16a that partitions the anode chamber and the intermediate chamber, and Nafion 117, a cation exchange membrane, is used as the second diaphragm 16b that partitions the cathode chamber and the intermediate chamber.
  • An electrolytic cell electrolysis cell
  • a power source is connected to the connection terminals of the anode 18 and the cathode 20, and a pipe and a liquid feed pump are connected to the electrolytic cell.
  • pure water is supplied to the anode chamber 15b and the cathode chamber 15c, and saturated sodium chloride water is supplied to the intermediate chamber 15a.
  • the water pressures in the anode chamber, intermediate chamber, and cathode chamber are controlled by a regulating valve and a liquid feed pump, and the water pressure in each chamber is set as shown in FIG.
  • the current density of the anode and the cathode was fixed at 300 mA / cm 2 , hypochlorous acid water was generated in the anode chamber 15b, and hydrogen and sodium hydroxide water were generated in the cathode chamber 15c.
  • the life of the electrode was defined as the time when the electrolysis voltage increased to 8V.
  • Comparative Example 1 Although the structure of the electrolyzed water generating apparatus of Comparative Example 1 is the same as that of Example 1, the catalyst amount of the catalyst supported on the anode and the cathode is uniform in the plane. The reaction electrode area and operating conditions of each electrode are the same as in Example 1. From Comparative Examples 1 to 4 in FIG. 6, it can be seen that when the catalyst amount is uniform, the life of the electrode is short compared to Example 1 in which the average catalyst amount is the same.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the anode and the cathode are not limited to a rectangular shape, and various other shapes can be selected.
  • the material of each constituent member is not limited to the above-described embodiments and examples, and other materials can be appropriately selected.
  • Electrolytes and products are not limited to salts and hypochlorous acid, and may be applied to various electrolytes and products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 実施形態によれば、電解装置は、陽極18が設けられた陽極室と、陽極に対向する陰極20が設けられた陰極室と、を有する電解槽を備えている。陽極18は、触媒が担持された第1表面18aを有している。陽極18は、電圧印加時に生じる電流密度の分布を有し、第1表面18aにおける触媒の触媒量は、電流密度の分布に応じた分布を有している。

Description

電極および電解装置
 ここで述べる実施形態は、電極、およびこの電極を備える電解装置に関する。
 近年、水を電解して様々な機能を有する電解水、例えば、アルカリイオン水、オゾン水または次亜塩素酸水などを生成する電解装置が提供されている。電解装置としては、1室型、2室型、あるいは、3室型の電解槽(電解セル)を有する電解装置が知られている。例えば、3室型の電解槽内は、陽イオン交換膜および陰イオン交換膜によって、中間室と、この中間室の両側に位置する陽極室および陰極室との3室に仕切られている。陽極室および陰極室には、陽極および陰極がそれぞれ配置されている。
 例えば、一般的な電解用の陽極としては、チタン、タンタル、クロム、アルミニウムやその合金等の金属を基材とし、基材表面を白金等の貴金属や酸化イリジウム、酸化ルテニウム等の酸化物触媒層で被覆した電極が用いられる。
 このような3室型の電解槽を有する電解装置では、例えば、中間室に塩水を流し、陽極室および陰極室にそれぞれ水を流通する。中間室の塩水を陰極および陽極で電解することで、陽極で発生した塩素ガスから次亜塩素酸水を生成するとともに、陰極室で水酸化ナトリウム水を生成する。生成した次亜塩素酸水は殺菌消毒水として、水酸化ナトリウム水は洗浄水として活用される。
特開2006-198562号公報 特開平05-148676号公報
 上記のような電解装置において、電極は長時間電解反応を行うと電極表面の劣化が進み、当初の電解性能を維持できなくなることが知られている。長時間の運転による触媒層の溶出や、触媒層の剥離が劣化の原因となる。劣化速度は、電圧印加時の電極の電流密度、電解槽温度、触媒量に依存する。 
 実施形態の課題は、長期間に亘って電解性能を維持でき高い耐久性を有する電極、およびこれを備える電解装置を提供することにある。
 実施形態によれば、電解装置は、陽極が設けられた陽極室と、前記陽極に対向する陰極が設けられた陰極室と、を有する電解槽を備え、前記陽極および陰極の少なくとも一方は、触媒が担持された第1表面を有し、前記陽極および陰極の前記少なくとも一方は、電圧印加時に生じる電流密度の分布を有し、前記第1表面における触媒の触媒量は、前記電流密度の分布に応じた分布を有している。
図1は、第1の実施形態に係る電解水生成装置を概略的に示すブロック図。 図2は、上記電解水生成装置の電極ユニットを示す分解斜視図。 図3は、前記電極ユニットの電極を概略的に示す側面図。 図4は、電解槽の中間室の水圧を高く設定した場合の電極の変形状態を概略的に示す電解槽の断面図。 図5は、電解槽の中間室の水圧を低く設定した場合の電極の変形状態を概略的に示す電解槽の断面図。 図6は、第1の実施形態に係る電解水生成装置において、電極の触媒量、電解槽の各室の水圧を種々変更して、電極の寿命を測定した結果を示す図。 図7は、第2の実施形態に係る電解水生成装置を概略的に示す断面図。 図8は、第2の実施形態に係る電解水生成装置の電極ユニットを示す分解斜視図。
 以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
 (第1の実施形態)
 図1は、第1の実施形態に係る電解水生成装置の構成を概略的に示す図である。電解装置の一例としての電解水生成装置10は、いわゆる3室型の電解槽11を備えている。電解槽11は、偏平な矩形箱状に形成され、その内部は、第1隔膜16aおよび第2隔膜16bにより、中間室15aと、中間室15aの両側に位置する陽極室15bおよび陰極室15cとの3室に仕切られている。すなわち、電解室は、第1隔膜16aにより陽極室15bと中間室15aとに仕切られ、第2隔膜16bにより中間室15aと陰極室15cとに仕切られている。第1隔膜16aおよび第2隔膜16bは、間隔を置いて、互いにほぼ平行に対向している。陽極室15b内に陽極(第1電極)18が設けられ、第1隔膜16aに対向している。陰極室15c内に陰極(第2電極)20が設けられ、第2隔膜16bに対向している。陽極18および陰極20は、ほぼ等しい大きさの矩形板状に形成され、第1、第2隔膜および中間室15aを挟んで、互いに対向している。
 なお、第1および第2隔膜16a、16b、並びに、陽極18および陰極20は、それぞれその外周縁部が電解槽11に固定、支持されている。
 電解水生成装置10は、電解槽11の中間室15aに電解液、例えば、飽和塩水を供給する電解液供給部31と、陽極室15bおよび陰極室15cに被電解水、例えば、水を供給する給水部32と、陽極18および陰極20に正電圧および負電圧をそれぞれ印加する電源33と、を備えている。
 電解液供給部31は、飽和塩水を生成する塩水タンク25と、塩水タンク25から中間室15aの下部に飽和塩水を導く供給配管31aと、供給配管31a中に設けられた送液ポンプ29と、中間室15a内を流れた電解液を中間室15aの上部から塩水タンク25に送る排水配管31bと、を備えている。排水配管31bには、調整弁(絞り弁)30aが設けられている。
 給水部32は、水を供給する図示しない給水源と、給水源から陽極室15bおよび陰極室15cの下部に水を導く給水配管32aと、陽極室15bを流れた水を陽極室15bの上部から排出する第1排水配管32bと、陰極室15cを流れた水を陰極室15cの上部から排出する第2排水配管32cと、第1排水配管32b中に設けられた調整弁(絞り弁)30bと、第2排水配管32c中に設けられた調整弁(絞り弁)30cと、を備えている。
 送液ポンプ29、調整弁30a、30b、30cは、水圧調整機構(圧力調整機構)を構成している。すなわち、中間室15aに電解液を供給する送液ポンプ29の供給流量を調整することにより、あるいは、調整弁30a、30b、30cによって水の流量あるいは電解液の流量を調整することにより、陽極室15b内の水圧、陰極室15c内の水圧、および中間室15a内の水圧、これらの水圧差を調整することができる。例えば、中間室15aの水圧が陽極室15bおよび陰極室15cの各水圧よりも高くなるように調整し、あるいは、中間室15aの水圧が陽極室15bおよび陰極室15cの各水圧よりも高くなるように調整することができる。また、中間室15a、陽極室15b、陰極室15cの水圧が互いに等しくなるように調整することも可能である。
 電解水生成装置10により、食塩水を電解して酸性水(次亜塩素酸水および塩酸)とアルカリ性水(水酸化ナトリウム)を生成する動作について説明する。 
 図1に示すように、送液ポンプ29を作動させ、電解槽11の中間室15aに飽和塩水を供給するとともに、陽極室15bおよび陰極室15cに水を給水する。同時に、電源33から正電圧および負電圧を陽極18および陰極20にそれぞれ印加する。中間室15aへ流入した塩水中において電離しているナトリウムイオンは、陰極20に引き寄せられ、第2隔膜16bを通過して、陰極室15cへ流入する。そして、陰極室15cにおいて、陰極20で水が電気分解されて水素ガスと水酸化ナトリウム水溶液を生じる。このようにして生成された水酸化ナトリウム水溶液(アルカリ性水)および水素ガスは、陰極室15cから第2排水配管32cに流出し、第2排水配管32cを通って排出される。
 中間室15a内の塩水中において電離している塩素イオンは、陽極18に引き寄せられ、第1隔膜16aを通過して、陽極室15bへ流入する。そして、陽極室15bにて塩素イオンが陽極18に電子を与えて塩素ガスが発生する。その後、塩素ガスは陽極室15b内で水と反応して次亜塩素酸と塩酸を生じる。このようにして生成された酸性水(次亜塩素酸水および塩酸)は、陽極室15bから第1排水配管32bを通って排出される。
 上述した電解水生成において、中間室15a、陽極室15b、陰極室15cの各室に供給する液体に圧力(水圧)を掛けることで以下のような特徴が表れる。例えば、中間室15aの水圧を陽極室15bの水圧よりも高く設定した場合、中間室15aから陽極室15bへの塩素イオンの透過が促進されるので、陽極18での反応が進行し次亜塩素酸の生成効率が上昇する。逆に、中間室15aの水圧を陽極室15bの水圧よりも低く設定した場合、次亜塩素酸の生成効率は低下するが、陽極室15bへ透過する塩水の量が減るため、電解水使用時に錆の発生抑制や食品への塩味添加の影響を少なくする効果が得られる。
 中間室15aの水圧が陰極室15cの水圧よりも高い場合、中間室15aから陰極室15cへのナトリウムイオンの透過が促進されるので、運転電圧の低下に寄与する。逆に、中間室15aの水圧が陰極室15cの水圧よりも低い場合、電解電圧は上昇するが、陰極室15cへ透過する塩水の量が減るため、陰極20および配管、アルカリ水使用時の錆の発生抑制効果が得られる。
 次に、電解槽11内に設けられた電極ユニット(隔膜および電極)12について詳細に説明する。図2は、電極ユニットを示す分解斜視図である。 
 第1隔膜16aは、例えば、陽極18とほぼ等しい寸法の矩形状に形成されて、陽極18の表面に隣接あるいは接触している。第1隔膜16aとして、陰イオン交換膜、逆浸透膜、種々の電解質膜やナノポアを有する多孔質膜等を用いることができる。陰イオン交換膜としてはアニオン交換性の膜を用いることができ、一例として、株式会社トクヤマ製のA201等が挙げられる。逆浸透膜としてはロメンブラ(東レ株式会社)等が用いられる。ナノポアを有する多孔質膜としては、多孔質ガラス、多高質アルミナ、多孔質チタニア、多孔質ゼオライト等の多孔質セラミックス、多孔質ポリエチレン、多孔質プロピレン等の多孔質ポリマー等がある。
 第2隔膜16bは、例えば、陰極20とほぼ等しい寸法の矩形状に形成されて、陰極20の表面に隣接あるいは接触している。第2隔膜16bとして、陽イオン交換膜、逆浸透膜、ナノポアを有する多孔質膜等を用いることができる。陽イオン交換膜としてはカチオン交換性の膜を用いることができ、例として、NAFION(イー アイ デュポン社:商標)112、115、117、フレミオン(旭硝子株式会社:商標)、ACIPLEX(旭化成株式会社:商標)、ゴアセレクト(ダブリュー.エル.ゴア アンド アソシエーツ社:商標)が挙げられる。
 図1および図2に示すように、陽極(第1電極)18は、例えば、矩形状の金属板からなる基材22に多数の貫通孔23を形成した多孔構造を有している。基材22は、第1表面18aおよび、第1表面18aとほぼ平行に対向する第2表面18bを有している。第1表面18aと第2表面18bとの間隔、すなわち、板厚はT1に形成されている。第1表面18aは第1隔膜16aに対向し、第2表面18bは陽極室15bに対向する。少なくとも第1表面18aの全面に亘って触媒層19aが形成あるいは担持されている。本実施形態では、第1表面18aおよび第2表面18bの両面に触媒層19a、19bを形成している。触媒金属を基材22として用いてもよい。
 陽極18は、その一側縁、例えば、上縁から突出した接続端子24を一体に有している。陽極18は、接続端子24を介して電源に接続される。電極端子は1つだけでなく複数設けることも可能である。基材22の板厚T1が薄い場合、電極端子を複数で設けると、電極端子と反応部で電子が移動する移動抵抗が抑えられる。
 貫通孔23は、陽極18のほぼ全面に亘って多数形成されている。各貫通孔23は、第1表面18aおよび第2表面18bに開口している。貫通孔23は、正方形、長方形、ひし形、円形、楕円形等、種々の形状を用いることができる。正方形や長方形、ひし形の頂点は丸まっていてもよい。貫通孔23は、規則的に限らず、ランダムに並んで形成してもよい。
 図1および図2に示すように、本実施形態では、陰極(第2電極)20は、陽極18と同様に構成されている。すなわち、陰極20は、例えば、矩形状の金属板からなる基材26に多数の貫通孔27を形成した多孔構造を有している。基材26は、第1表面20aおよび、第1表面20aとほぼ平行に対向する第2表面20bを有している。第1表面20aは第2隔膜16bに対向し、第2表面20bは陰極室15cに対向する。少なくとも第1表面20aの全面に亘って触媒層21aが形成あるいは担持されている。本実施形態では、第1表面20aおよび第2表面20bの両面に触媒層21a、21bを形成している。触媒金属を基材26として用いてもよい。更に、陰極20は、その一側縁、例えば、上縁から突出した接続端子28を一体に有している。陰極20は、接続端子28を介して電源に接続される。
 陽極18および陰極20の基材22、26としては、チタン、クロム、アルミニウムやその合金等のバルブ金属、導電性金属を用いることができる。基材22、26の板厚T1は、電極に印加する電圧(電流)の電流密度に応じて決められる。電流密度が単位平方センチメートル当たり数百mAであれば、基材22、26の板厚T1は、0.4~1ミリの厚さがあれば十分である。本実施形態において、基材22、26の板厚T1は、例えば、500μm程度としている。 
 また、貫通孔23、27の開口径および開口間隔、開口率は、電極18、20の電流密度によって選択可能である。更に、後述するように、1枚の電極の表裏で貫通孔の開口径が異なる、いわゆるダブルメッシュ構造の電極を採用することもできる。
 塩酸生成および次亜塩素酸生成に用いる陽極では、触媒として、酸性および高電位に耐える白金等の貴金属や酸化イリジウム、酸化ルテニウム等の酸化物を用いることができる。塩酸生成に用いる陰極では、触媒として、アルカリ耐性のあるニッケルや貴金属等を用いることができる。次亜塩素酸生成に用いる陰極では、酸性に耐える白金等の貴金属触媒や銅、銀、ステンレス等を触媒に用いることができる。
 電極の基材に担持する触媒量は、電極の電流密度と要求電解時間とによって決定される。本実施形態において、陽極18の少なくとも第1表面18aに形成された触媒層19aは、電圧印加時に生じる陽極18の各部の電流密度の分布に応じて、同一平面内で触媒量を変化させている。すなわち、陽極18の第1表面18aにおいて、電流密度の低い部位は触媒量を少なく、電流密度の高い部位に向かって触媒量を多くしている。触媒の最低量を1g/m以上とし、かつ、第1表面18aの面内で触媒量が最低量の30%以上かつ300%以内で連続的に傾斜(変化)を有するように触媒を基材に塗布している。この場合、第1表面18a全体の触媒量の合計は、一定とし、場所に応じて触媒量の分布を持たしている。
 通常、陽極18および陰極20において、接続端子24、28の近傍は、電圧印加時に電流が集中し易く、電流密度が高くなり、同時に、触媒の劣化が多くなり易い。そこで、本実施形態によれば、陽極18の第1表面18aにおいて、接続端子24の根本近傍部分の触媒量が多くなるように、触媒層19aを形成している。図3に示すように、例えば、第1表面18aの複数の部位を点1~9で示した場合、接続端子24の近傍部位3、および部位1、5の触媒量を多く形成し、次いで、部位2,4の触媒量を多く、更に、部位6、7、8、9の触媒量を最小量としている(触媒量:部位1、3、5>2、4>6、7、8、9)。
 また、上述した3室型の電解槽11において、陽極室、中間室、陰極室の水圧に応じて、陽極18および陰極20の形状が僅かに変動する。図4に示すように、例えば、中間室15aの水圧が陽極室15bおよび陰極室15cの水圧よりも高くなるように設定されている場合、陽極18および陰極20は、その中央部が互いに離間する方向に変形する。これにより、陽極18および陰極20は、電圧印加時、それぞれ中央部の電流密度よりも、周縁部の電流密度が高くなる。
 そこで、このような水圧設定の場合、陽極18の第1表面18aにおいて、中央部(部位5)の触媒量を少なくし、周縁部(部位1-4、6-9)の触媒量が多くなるように触媒層19aを形成する。
 逆に、中間室15aの水圧が陽極室15bおよび陰極室15cの水圧よりも低くなるように設定されている場合、図5に示すように、陽極18および陰極20は、その中央部が互いに接近する方向に変形する。これにより、陽極18および陰極20は、それぞれ中央部の距離が互いに近づき、中央部の電流密度が高くなる。
 そこで、このような水圧設定の場合、陽極18の第1表面18aにおいて、中央部(部位5)の触媒量を多くし、周縁部(部位1、4、6-9)の触媒量が少なくなるように触媒層19aを形成する。但し、接続端子24の近傍部位3の触媒量は多く設定する。
 以上のように、電極18、20において、電流密度の高い部位、すなわち、劣化しやすい部位に触媒を多く塗り、他の部分の触媒量を減らすことで、トータルの触媒量は同じであるものの電極の寿命を延ばすことができる。
 上記のような電極の触媒量の傾斜構造を作製するためには、基材の表面に触媒を刷毛等で塗布し、その際、塗布回数を基材表面の場所に応じて変えることで作製可能である。また、スパッタリング等で触媒を塗布する場合は、ターゲットの位置を変えることで傾斜構造を製造可能である。基材をディップ液(触媒液)にディッピングして触媒層を形成する場合、ディップ液からの引き上げ速度を調節することや、これに加えディップするときの吊り下げ位置をディップ回数ごとに変えることで、基材の同一表面内で自在に触媒量の傾斜をつけることができる。
 電極の劣化状態は、電極上に塗布された触媒の残存量と電圧の変動から把握することができる。ただし、経過的に触媒が消耗しても電圧変動はほとんど無いことがわかっており、触媒がある程度消耗すると電圧が急激に上昇する傾向にある。そのため、触媒の消耗と電圧の上昇の両方を見ながら、電極の寿命を決定する必要がある。触媒の残存量は、蛍光X線分析法やICP発光分析法によって決定することができるが、非破壊の観点から電解経過過程の触媒量に関しては蛍光X線分析法を採用することが望ましい。また、電極面内での触媒量の経時変化を観察するために、数百時間程度に一度電極を取り出し、例えば図3に点1~9で示すような指定された複数の場所の触媒量を測定することが好ましい。
 図6は、触媒量を種々変更して作成した複数の電極について、触媒量の分布と寿命との関係を測定した例を示している。図6において、比較例1ないし4は、それぞれ電極の表面全体に触媒を均一に塗布した電極例を示し、電極No.1~30は、触媒量の分布を有する電極を示している。なお、図6において、触媒量の比率については、面内の各点の中で(触媒最大量/最小量×100-100)として表している。
 比較例1ないし3のように、触媒量(g/m)を全面に亘って均一(平均触媒量50g/m)とした場合、電極の寿命は2500~400hとなる。比較例4のように、触媒量を100g/mと2倍にした場合は、寿命は9000hと長くなるが、製造コストの点で望ましくない。
 これに対して、触媒量に分布を持たせる場合において、中間室、陽極室、陰極室の水圧が等しい場合、電極No.2~5のように、接続端子の近傍部位1,2,3、中央部4,5,6、下端部7,8,9の順で触媒量を少なくしていくことにより、電極の寿命が改善することが分かる。但し、電極No.1,No.6のように、触媒最大量と触媒最小量との比が30%以下の場合、あるいは、300%以上の場合、電極の寿命延長効果が低下する。
 中間室の水圧が陽極室および陰極室の水圧よりも高く設定されている場合、電極No.8~11のように、電極の中央部位5の触媒量を少なくし、周縁部1~3、4、6、7~9の触媒量を多くすることにより、電極の寿命が改善することが分かる。但し、電極No.7,No.12のように、触媒最大量と触媒最小量との比が30%以下の場合、あるいは、300%以上の場合、電極の寿命延長効果が低下する。
 中間室の水圧が陽極室および陰極室の水圧よりも低く設定されている場合、電極No.20~23のように、電極の中央部位5の触媒量を最大とし、近傍部位1,2,3を最大もしくは少しすくなく、下端部7,8,9の触媒量を更に少なくすることにより、あるいは、電極の中央部位5の触媒量を最大とし、他の部位1~4、6~9の触媒量を少なくすることにより、電極の寿命が改善する。但し、電極No.19,No.24のように、触媒最大量と触媒最小量との比が30%以下の場合、あるいは、300%以上の場合、寿命延長効果が低い。
 以上のように構成された電極およびこれを備える電解水生成装置によれば、電極各部の電流密度に応じて、触媒量に分布を持たせることにより、すなわち、電流密度の高い部位の触媒量を多くし、電流密度の低い部位の触媒量を低減することにより、電極の劣化を抑制し、寿命を延ばすことが可能となる。また、電極表面に塗布あるいは担持するトータルの触媒量は従来と同様にすることができ、製造コストの上昇を招くことなく電極の寿命改善を図ることができる。これにより、長期間に亘って電解性能を維持できる長寿命の電極およびこれを備える電解装置が得られる。 
 なお、第1の実施形態において、陽極18および陰極20は、多数の貫通孔を有する多孔構造としたが、これに限らず、貫通孔を持たない平板状の電極としてもよい。 
 次に、他の実施形態に係る電極および電解水生成装置について説明する。なお、以下に説明する他の実施形態において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、第1の実施形態と異なる部分を中心に詳しく説明する。
(第2の実施形態) 
 図7は、第2の実施形態に係る電解水生成装置を概略的に示す断面図、図8は、電極ユニットの分解斜視図である。 
 第2の実施形態によれば、電解槽11の陽極室15bに設けられた陽極18、および陰極室15cに設けられた陰極20は、それぞれダブルメッシュ構造を有する電極として構成されている。 
 陽極18は、例えば、矩形状の金属板からなる基材22に多数の貫通孔を形成した多孔構造を有している。基材22は、第1表面18aおよび、第1表面18aとほぼ平行に対向する第2表面18bを有している。第1表面18aと第2表面18bとの間隔、すなわち、板厚はT1に形成されている。第1表面18aは第1隔膜16aに対向し、第2表面18bは陽極室15bに対向する。
 基材22の第1表面18aに複数の第1孔部40が形成され、第1表面18aに開口している。また、第2表面18bに複数の第2孔部42が形成され、第2表面18bに開口している。各第1孔部40は、対向する第2孔部42に連通し、基材22を貫通する貫通孔を形成している。第1隔膜16a側となる第1孔部40の開口径R1は、第2孔部42の開口径R2よりも小さく、また、孔部の数は、第1孔部40が第2孔部42よりも多く形成されている。第1孔部40の深さはT2、第2孔部42の深さはT3であり、T2+T3=T1に形成されている。また、本実施形態において、T2<T3に形成されている。
 第2孔部42は、例えば、矩形状に形成され、第2表面18bにマトリクス状に並んで設けられている。各第2孔部42を規定している周壁は、孔部の底から開口に向かって、すなわち、第2表面18b側に向かって、径が広くなるようなテーパー面あるいは湾曲面により形成してもよい。隣り合う第2孔部42間の間隔、すなわち、電極の線状部の幅、はW2に設定されている。なお、第2孔部42は、矩形状に限定されることなく、他の種々の形状としてもよい。また、第2孔部42は、規則的に限らず、ランダムに並んで形成してもよい。
 第1孔部40は、例えば、矩形状に形成され、第1表面18aにマトリクス状に並んで設けられている。各第1孔部40を規定している周壁は、孔部の底から開口に向かって、すなわち、第1表面18aに向かって、径が広くなるようなテーパー面あるいは湾曲面により形成してもよい。本実施形態において、複数、例えば、9個の第1孔部40が、1つの第2孔部42と対向して設けられている。これら9個の第1孔部40は、それぞれ第2孔部42に連通し、第2孔部42と共に基材22を貫通する貫通孔を形成している。隣合う第1孔部40間の間隔W1は、第2孔部42間の間隔W2よりも小さく設定されている。これにより、第1表面18aにおける第1孔部40の数密度は、第2表面18bにおける第2孔部42の数密度よりも充分に大きい。
 なお、第1孔部40は、矩形状に限定されることなく、他の形状としてもよい。第1孔部40は、規則的に限らず、ランダムに並んで形成してもよい。更に、全ての第1孔部40が第2孔部42に連通している構成に限らず、第2孔部42に連通していない第1孔部を含んでいてもよい。
 第1孔部40の開口径としては小さい方が圧力を均一化するためには好ましいが、物質拡散を阻害するためある程度の大きさは必要であり、正方形とした場合の開口の一辺が0.1~2mmが好ましく、さらに好ましくは0.3~1mmである。開口としては正方形、長方形、ひし形、円、楕円等と様々な形状を用いることができるが、開口面積としては上記正方形の開口面積と同じ、0.01~4mmのものが好ましい。開口も含めた電極面積に占める開口面積の割合(開口率)は0.05~0.5が好ましく、0.1~0.3がさらに好ましい。開口率が小さすぎるとガス抜けが困難になる。開口率が大きすぎると電極反応が阻害される。
 第2孔部42の開口も正方形、長方形、ひし形、円、楕円等と様々な形状を用いることができる。第2孔部42の開口径としては大きい方がガス抜けをよくするためには好ましいが、電気抵抗が大きくなるためあまり大きくはできない。正方形の開口とすると一辺が1~40mmが好ましく、さらに好ましくは2~20mmである。開口としては正方形、長方形、ひし形、円、楕円等と様々な形状を用いることができるが、開口面積としては上記正方形の開口面積と同じ、1mmから1600mmのものが好ましい。長方形や楕円のように一方向に長くして電極の端から端につながるような開口も可能である。
 陽極18は、例えば、上端縁から突出する接続端子24を一体に備えている。また、基材22の第1表面18aの全面および第2表面18bの全面に触媒層19a、19bが形成されている。少なくとも第1表面18aにおいて、触媒層19aの触媒量は、電極の各部位により異なり、特に、電流密度に応じて異なり、同一平面内で分布を有している。触媒量の分布は、第1の実施形態と同様に設定されている。なお、第2表面18b側の触媒層19bも、触媒層19aと同様の触媒量の傾斜を有していてもよい。
 第2の実施形態によれば、陰極20は、陽極18と同様に構成されている。すなわち、陰極20は、例えば、矩形状の金属板からなる基材26に多数の貫通孔を形成した多孔構造を有している。基材26は、第1表面20aおよび、第1表面20aとほぼ平行に対向する第2表面20bを有している。第1表面20aは第2隔膜16bに対向し、第2表面20bは陰極室15cに対向する。
 基材26の第1表面20aに複数の第1孔部44が形成され、第1表面20aに開口している。また、第2表面20bに複数の第2孔部46が形成され、第2表面20bに開口している。第2隔膜16b側となる第1孔部44の開口径は、第2孔部46の開口よりも小さく、また、孔部の数は、第1孔部44が第2孔部46よりも多く形成されている。第1孔部44の深さは、第2孔部46の深さよりも小さく形成されている。
 複数、例えば、9個の第1孔部44が、1つの第2孔部46と対向して設けられている。これら9個の第1孔部44は、それぞれ第2孔部46に連通し、第2孔部46とともに基材26を貫通する貫通孔を形成している。隣合う第1孔部44間の間隔は、第2孔部46間の間隔よりも小さく設定されている。これにより、第1表面20aにおける第1孔部44の数密度は、第2表面20bにおける第2孔部46の数密度よりも充分に大きい。
 陰極20は、例えば、上端縁から突出する接続端子28を一体に備えている。また、基材26の第1表面20aの全面および第2表面20bの全面に触媒層21a、21bが形成されている。少なくとも第1表面20aにおいて、触媒層21aの触媒量は、電極の各部位により異なり、特に、電流密度に応じて異なり、同一平面内で分布を有している。触媒量の分布は、第1の実施形態と同様に設定されている。なお、第2表面20b側の触媒層21bも、触媒層19aと同様の触媒量の傾斜を有していてもよい。 
 その他、電解水生成装置の給水系、塩水給水系、電源、水圧調整機構の構成は、前述した第1の実施形態と同一である。
 以上のように構成された第2の実施形態においても、電極各部の電流密度に応じて、触媒量に分布を持たせることにより、すなわち、電流密度の高い部位の触媒量を多くし、電流密度の低い部位の触媒量を低減することにより、電極の劣化を抑制し、寿命を延ばすことが可能となる。また、電極表面に塗布あるいは担持するトータルの触媒量は従来と同様にすることができ、製造コストの上昇を招くことなく電極の寿命改善を図ることができる。これにより、長期間に亘って電解性能を維持できる長寿命の電極およびこれを備える電解装置が得られる。
 次に、種々の実施例および比較例について説明する。 
 (実施例1) 
 陽極18および陰極20の基材22、26は、板厚0.5mmの平坦なチタン板をエッチングすることにより、図8に示したダブルメッシュ構造の電極18、20を作製する。隣合う第1孔部40間に形成される線状部の幅W1は1mm、隣合う第2孔部42間に形成される幅広の線状部の幅W2は2mmである。菱形に開放された第1孔部40および第2孔部42の開口角度は120°である。
 このエッチングされた電極基材22を10wt%シュウ酸水溶液中1時間80℃で処理する。塩化イリジウム(IrCl3・nH2O)に1-ブタノールを0.25M(Ir)になるように加えて調整した溶液を、引き上げ速度と吊り箇所を調節して電極基材22の第1表面および第2表面にディップコートした後、乾燥と焼成を行う。乾燥は80℃で10分間行ない、焼成は450℃で10分間行なう。塗布と乾燥と焼成を複数回繰り返した電極基材22を、反応電極面積が15cm×20cmの大きさに切り出して、陽極18とする。陽極18の右上部に角から1cm離し、幅3cm高さ3cmの接続端子24を取り付ける。塗布した触媒量は面内で変化させており、各ポイントの触媒量の詳細は図6に示した12種類(図6におけるNo7~18)である。
 また、10wt%シュウ酸水溶液中、1時間80℃で処理した電極基材26に触媒層として白金をスパッタすることにより陰極20とする。 
 陽極室と中間室とを仕切る第1隔膜16aとしてトクヤマ製のA201を用い、陰極室と中間室とを仕切る第2隔膜16bとして陽イオン交換膜のナフィオン117を用いる。 
 これらの陽極18、陰極20、第1および第2隔膜16a、16b、例えば、塩化ビニル製の容器を用いて電解槽(電解セル)を作製する。陽極18および陰極20の接続端子に電源を接続し、電解槽に配管および送液ポンプを接続する。
 このような電解水生成装置10を用いて、陽極室15bおよび陰極室15cに純水を供給し、中間室15aに飽和塩化ナトリウム水を供給する。陽極室、中間室、陰極室の水圧は、調整弁および送液ポンプにより制御し、各室の水圧は図6に示すように設定する。陽極および陰極の電流密度は300mA/cmで固定し、陽極室15bで次亜塩素酸水を、陰極室15cで水素と水酸化ナトリウム水を生成した。この際、電解電圧が8Vまで上昇したときを電極の寿命とした。
 図6に示すように、中間室15aの水圧が陽極室15bおよび陰極室15cの水圧よりも低い場合、電極中央部の触媒の消耗が加速する。逆に中間室の圧力が高い場合は中央部の消耗は周辺部よりも遅くなる。また、端子から反応箇所までの距離も寿命に効く要因となる。そして、触媒比率が30%以上かつ300%以内では電極の寿命が長くなる一方で、触媒比率が30%未満、300%以上の場合では寿命が急激に短くなる。
 (比較例1) 
 比較例1の電解水生成装置の構成は実施例1と同様であるが、陽極および陰極に担持された触媒の触媒量は面内で均一である。各電極の反応電極面積や運転条件は、実施例1と同様である。図6の比較例1~4から、触媒量が均一な場合は、平均触媒量が同一の実施例1と比べても電極の寿命が短いことがわかる。
 本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 
 例えば、陽極および陰極は、矩形状に限定されることなく、他の種々の形状を選択可能である。各構成部材の材料は、前述した実施形態および実施例に限定されるものではなく、他の材料を適宜選択可能である。電解質や生成物も塩や次亜塩素酸に限るものではなく、様々な電解質や生成物に展開してもよい。

Claims (17)

  1.  陽極が設けられた陽極室と、前記陽極に対向する陰極が設けられた陰極室と、を有する電解槽を備え、
     前記陽極および陰極の少なくとも一方は、触媒が担持された第1表面を有し、前記陽極および陰極の少なくとも一方は、電圧印加時に生じる電流密度の分布を有し、
    前記第1表面における触媒の触媒量は、前記電流密度の分布に応じた分布を有している電解装置。
  2.  前記第1表面において、電流密度の低い部位は触媒量が少なく、電流密度の高い部位に向かって触媒量が増加するように前記触媒が担持されている請求項1に記載の電解装置。
  3.  前記第1表面において、触媒の最低量を1g/m以上とし、かつ、触媒量が最低量の30%以上かつ300%以内で変化して触媒が担持されている請求項2に記載の電解装置。
  4.  前記陽極および陰極は、電源に接続される接続端子をそれぞれ有し、前記第1表面において、前記接続端子に近い部位ほど、触媒量が多い請求項1から3のいずれか1項に記載の電解装置。
  5.  前記電解槽は、互いに対向する第1隔膜および第2隔膜と、前記第1隔膜および第2隔膜により前記陽極室と陰極室との間に仕切られ電解液を収容する中間室と、を備え、
     前記陽極および陰極は、前記第1隔膜および第2隔膜を挟んで互いに対向し、
     前記中間室の水圧を前記陽極室および陰極室の水圧よりも低く設定する圧力調整機構を更に備え、
     前記第1表面において、中央部の触媒量よりも周縁部の触媒量が多い請求項1から4のいずれか1項に記載の電解装置。
  6.  前記電解槽は、互いに対向する第1隔膜および第2隔膜と、前記第1隔膜および第2隔膜により前記陽極室と陰極室との間に仕切られ電解液を収容する中間室と、を備え、
     前記陽極および陰極は、前記第1隔膜および第2隔膜を挟んで互いに対向し、
     前記中間室の水圧を前記陽極室および陰極室の水圧よりも高く設定する圧力調整機構を更に備え、
     前記第1表面において、中央部の触媒量よりも周縁部の触媒量が少ない請求項1から4のいずれか1項に記載の電解装置。
  7.  前記陽極は、前記第1隔膜に対向する第1表面と、前記第1表面と反対側に位置する第2表面と、前記第1表面および第2表面に開口する複数の貫通孔と、を備えている請求項5又は6に記載の電解装置。
  8.  前記陽極は、前記第1隔膜あるいは第2隔膜に対向する第1表面と、前記第1表面と反対側に位置する第2表面と、前記第1表面に開口する複数の第1孔部と、前記第2表面に開口しているとともに、前記第1孔部よりも大径の複数の第2孔部と、を有し、1つの前記第2孔部に複数の前記第1孔部が連通している請求項6又は7に記載の電解装置。
  9.  前記触媒は、貴金属、酸化イリジウム、酸化ルテニウムの少なくとも1つを含んでいる請求項1から8のいずれか1項に記載の電解装置。
  10.  電解装置に用いる電極であって、
     第1表面を有する金属の基材と、前記基材の少なくとも第1表面に担持された触媒層と、を備え、前記触媒層の各部位の触媒量は、電圧印加時に生じる当該電極の電流密度の分布に応じて、前記第1表面内で分布している電極。
  11.  前記第1表面において、電流密度の低い部位は触媒量が少なく、電流密度の高い部位に向かって触媒量が増加するように触媒が担持されている請求項10に記載の電極。
  12.  前記第1表面において、触媒の最低量を1g/m以上とし、かつ、触媒量が最低量の30%以上かつ300%以内で変化して触媒が担持されている請求項11に記載の電極。
  13.  電源に接続される接続端子を有し、前記第1表面において、前記接続端子に近い部位ほど、触媒量が多く担持されている請求項10から12のいずれか1項に記載の電極。
  14.  前記第1表面において、中央部の触媒量よりも周縁部の触媒量が多い請求項10から13のいずれか1項に記載の電極。
  15.  前記第1表面において、中央部の触媒量よりも周縁部の触媒量が少ない請求項10から13のいずれか1項に記載の電極。
  16.  陽極が設けられた陽極室と、前記陽極に対向する陰極が設けられた陰極室と、を有する電解槽を備え、
     前記陽極および陰極の少なくとも一方は、触媒が担持された第1表面を有し、前記担持された触媒は、前記第1表面の部位に応じて触媒量が相違し、前記第1表面内で触媒量の分布を有している電解装置。
  17.  前記陽極および陰極の少なくとも一方は、電圧印加時に生じる電流密度の分布を有し、前記第1表面における触媒の触媒量は、前記電流密度の分布に応じた分布を有している請求項16に記載の電解装置。
PCT/JP2016/054583 2015-09-15 2016-02-17 電極および電解装置 WO2017047121A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680002274.1A CN107001078A (zh) 2015-09-15 2016-02-17 电极和电解装置
JP2017540525A JP6434159B2 (ja) 2015-09-15 2016-02-17 電極および電解装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181739 2015-09-15
JP2015181739 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047121A1 true WO2017047121A1 (ja) 2017-03-23

Family

ID=58288562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054583 WO2017047121A1 (ja) 2015-09-15 2016-02-17 電極および電解装置

Country Status (3)

Country Link
JP (1) JP6434159B2 (ja)
CN (1) CN107001078A (ja)
WO (1) WO2017047121A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021193386A (ja) * 2018-09-13 2021-12-23 株式会社東芝 電気化学素子
JP7188625B1 (ja) 2022-02-02 2022-12-13 トヨタ自動車株式会社 水電解セル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745293A (ja) * 1993-07-30 1995-02-14 Mitsui Eng & Shipbuild Co Ltd 燃料電池用燃料改質触媒
JP2005095896A (ja) * 2004-12-20 2005-04-14 Hoshizaki Electric Co Ltd 電解水製造装置
JP2007190548A (ja) * 2005-12-21 2007-08-02 Midori Anzen Co Ltd 電解水の有効塩素濃度調節方法、電解水のpH調節方法および電解水生成装置。
JP2010059506A (ja) * 2008-09-04 2010-03-18 Dainippon Printing Co Ltd 水素発生用電気分解セル及び水素発生用電気分解セルスタック
JP2014530291A (ja) * 2011-09-08 2014-11-17 アクアエコス株式会社 電解装置及び電解方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032922A1 (fr) * 1994-05-31 1995-12-07 Toto Ltd. Appareil et procede d'electrolyse pour eau courante contenant des ions chlorure
JP2007309052A (ja) * 2006-05-22 2007-11-29 Toshiba Corp 構造物の防汚装置および防汚方法
JP5752399B2 (ja) * 2010-11-22 2015-07-22 三菱重工環境・化学エンジニアリング株式会社 海水電解装置、海水電解システム及び海水電解方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745293A (ja) * 1993-07-30 1995-02-14 Mitsui Eng & Shipbuild Co Ltd 燃料電池用燃料改質触媒
JP2005095896A (ja) * 2004-12-20 2005-04-14 Hoshizaki Electric Co Ltd 電解水製造装置
JP2007190548A (ja) * 2005-12-21 2007-08-02 Midori Anzen Co Ltd 電解水の有効塩素濃度調節方法、電解水のpH調節方法および電解水生成装置。
JP2010059506A (ja) * 2008-09-04 2010-03-18 Dainippon Printing Co Ltd 水素発生用電気分解セル及び水素発生用電気分解セルスタック
JP2014530291A (ja) * 2011-09-08 2014-11-17 アクアエコス株式会社 電解装置及び電解方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021193386A (ja) * 2018-09-13 2021-12-23 株式会社東芝 電気化学素子
JP7263458B2 (ja) 2018-09-13 2023-04-24 株式会社東芝 燃料電池
JP7188625B1 (ja) 2022-02-02 2022-12-13 トヨタ自動車株式会社 水電解セル
JP2023112816A (ja) * 2022-02-02 2023-08-15 トヨタ自動車株式会社 水電解セル

Also Published As

Publication number Publication date
JP6434159B2 (ja) 2018-12-05
CN107001078A (zh) 2017-08-01
JPWO2017047121A1 (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6407963B2 (ja) 電極ユニット、電極ユニットを備える電解槽および電解装置
JP6062597B2 (ja) 電解装置、電極ユニットおよび電解水生成方法
JP6258515B2 (ja) 電極ユニット、電解装置、および電解装置に用いる電極
JP4856530B2 (ja) 電解水の有効塩素濃度調節方法、電解水のpH調節方法および電解水生成装置。
CN106661743B (zh) 电极单元、具备电极单元的电解槽、电解装置、电极单元的电极的制造方法
JPWO2016117170A1 (ja) 多孔質隔膜、その製造方法、次亜塩素酸水製造用電極ユニット、及びそれを用いた次亜塩素酸水製造装置
JP6434159B2 (ja) 電極および電解装置
JP6639638B2 (ja) 電解用電極、電極ユニット、及び電解水生成装置
JP6216806B2 (ja) イオン交換膜電解槽
JP3421021B2 (ja) 塩化アルカリの電解方法
JP2016168542A (ja) 電解水生成装置および電解水生成方法
JP2012091121A (ja) 電解水製造装置
WO2016147439A1 (ja) 電解槽および電解水生成方法
JP6585176B2 (ja) 電極、電極ユニット、及び電解装置
JP6776077B2 (ja) 電解水製造装置
JP7236568B2 (ja) 電解用電極および電解装置
JP2016060950A (ja) 電解装置
JP2018076554A (ja) 陰イオン交換膜、電解セル、及び電解水生成装置
JP7061997B2 (ja) 水酸化ナトリウム及び/又は塩素の製造方法、並びに2室法型食塩水電解槽
JP6408033B2 (ja) 電極ユニットおよびそれを用いた電解装置
JP7052121B1 (ja) 電解セル、及び電解水生成装置
JP2019147073A (ja) 次亜塩素酸水の製造装置
JP3653129B2 (ja) 電解水生成装置
JP6208380B2 (ja) 電解用電極、電極ユニット、及び電解装置
JP2016172230A (ja) 電解水生成装置および電解水生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845994

Country of ref document: EP

Kind code of ref document: A1