WO2017047100A1 - 粉末冶金用混合粉、焼結体および焼結体の製造方法 - Google Patents

粉末冶金用混合粉、焼結体および焼結体の製造方法 Download PDF

Info

Publication number
WO2017047100A1
WO2017047100A1 PCT/JP2016/004258 JP2016004258W WO2017047100A1 WO 2017047100 A1 WO2017047100 A1 WO 2017047100A1 JP 2016004258 W JP2016004258 W JP 2016004258W WO 2017047100 A1 WO2017047100 A1 WO 2017047100A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
iron
sintered body
mixed
metallurgy
Prior art date
Application number
PCT/JP2016/004258
Other languages
English (en)
French (fr)
Inventor
拓也 高下
小林 聡雄
中村 尚道
伊都也 佐藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201680049635.8A priority Critical patent/CN108025357B/zh
Priority to SE1850096A priority patent/SE541269C2/en
Priority to CA2992092A priority patent/CA2992092C/en
Priority to JP2017500097A priority patent/JP6160792B1/ja
Priority to US15/739,839 priority patent/US10710155B2/en
Priority to KR1020187005232A priority patent/KR102097956B1/ko
Publication of WO2017047100A1 publication Critical patent/WO2017047100A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a powder mixture for powder metallurgy, particularly a powder mixture for powder metallurgy suitable for the production of high-strength sintered parts for automobiles, and the density of a sintered body obtained by molding and sintering the alloy steel powder,
  • the present invention relates to a mixed powder for powder metallurgy and a sintered body produced by using the same, in which the tensile strength and toughness (impact value) after carburizing, quenching and tempering of the sintered body are surely improved.
  • the present invention also relates to a method for producing the sintered body.
  • Powder metallurgy technology is a technology that enables a drastic reduction in cutting costs because parts with complicated shapes can be manufactured in a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy. For this reason, powder metallurgy products are used in various fields as various machines and parts.
  • the compact before sintering is a mixed powder obtained by mixing an iron-based powder, an alloy powder such as copper powder or graphite powder, and a lubricant such as stearic acid or lithium stearate. It is manufactured by filling in and pressure molding.
  • the density of the molded body obtained by a normal powder metallurgy process is generally about 6.6 to 7.1 Mg / m 3 .
  • the formed body is subsequently subjected to a sintering process to be a sintered body, and further subjected to sizing and cutting as necessary to obtain a powder metallurgy product.
  • carburizing heat treatment or bright heat treatment may be performed after sintering.
  • the iron-based powder used here is classified into iron powder (for example, pure iron powder) and alloy steel powder according to the components. Moreover, as classification according to the manufacturing method of iron-based powder, there are atomized iron powder and reduced iron powder. Iron powder in the classification according to this manufacturing method is used in a broad sense including pure iron powder and alloy steel powder.
  • the mixed powder (1) has the advantage of having high compressibility comparable to that of pure iron powder.
  • each alloy element does not sufficiently diffuse into Fe to form a heterogeneous structure, and as a result, the strength of the finally obtained sintered body may be inferior.
  • Mn, Cr, V, Si, etc. are used as alloy elements, these elements are oxidized more easily than Fe, so that the sintered body finally obtained by oxidation during sintering There was a problem that the strength of the steel was lowered.
  • the prealloyed steel powder (2) which is completely alloyed with each element, is used, the segregation of the alloy elements is completely prevented and the structure of the sintered body can be made uniform, so that the mechanical properties are stabilized. To do.
  • Mn, Cr, V, Si, or the like is used as an alloy element, there is an advantage that the oxygen content of the sintered body can be reduced by limiting the type and amount of the alloy element.
  • pre-alloyed steel powder is produced from molten steel by the atomizing method, oxidation in the atomizing process of molten steel and solid solution hardening of the steel powder due to complete alloying are likely to occur. There was a problem that it was difficult to increase.
  • the density of the molded body is low, the toughness of the sintered body is low when the molded body is sintered. Therefore, even when pre-alloyed steel powder is used, it cannot meet the recent demands for high strength and high toughness.
  • the partially diffused alloy steel powder (3) above is prepared by mixing each alloy element powder with pure iron powder or prealloyed steel powder and heating it in a non-oxidizing or reducing atmosphere to obtain pure iron powder or prealloyed steel powder.
  • Each alloy element powder is partially diffusion bonded to the surface of the alloy steel powder particles. Therefore, the advantages of the iron-based mixed powder (1) and the prealloyed steel powder (2) can be obtained.
  • Ni and Mo are frequently used as basic alloy components used in the partially diffused alloy steel powder.
  • Ni has the effect of improving the toughness of the sintered body. This is because the addition of Ni stabilizes austenite, and as a result, more austenite remains as retained austenite without being transformed into martensite after quenching. Moreover, Ni has the effect
  • Mo has the effect of improving hardenability. Therefore, Mo strengthens the matrix of the sintered body by suppressing the formation of ferrite during the quenching process and facilitating the formation of bainite or martensite. Mo has both the effect of solid solution strengthening by solid solution in the matrix and the effect of precipitation strengthening the matrix by forming fine carbides.
  • Patent Document 1 discloses an alloy in which Ni: 0.5 to 4 mass% and Mo: 0.5 to 5 mass% are partially alloyed. Further disclosed is a mixed powder for high-strength sintered parts in which Ni: 1 to 5 mass%, Cu: 0.5 to 4 mass%, and graphite powder: 0.2 to 0.9% mass% are further mixed with steel powder.
  • the sintered material described in Patent Document 1 contains at least 1.5 mass% Ni, and in the examples, it substantially contains 3 mass% or more of Ni.
  • Ni such as 3 mass% or more is required to obtain a high strength of 800 MPa or more in the sintered body. Furthermore, in order to obtain a high-strength material of 1000 MPa or higher by carburizing, quenching, and tempering the sintered body, a large amount of Ni such as 3 mass% or 4 mass% is similarly required.
  • Ni is a disadvantageous element from the viewpoint of dealing with recent environmental problems and recycling, and it is desirable to avoid using it as much as possible. In terms of cost, the addition of several mass% of Ni is extremely disadvantageous. Furthermore, when Ni is used as an alloy element, there is also a problem that long-time sintering is required to sufficiently diffuse Ni into iron powder and steel powder. Furthermore, when the diffusion of Ni, which is an austenite phase stabilizing element, is insufficient, the high Ni region is stabilized as an austenite phase (hereinafter also referred to as ⁇ phase), and the Ni dilute region is stabilized by other phases. As a result, the metal structure of the sintered body becomes non-uniform.
  • Patent Document 2 discloses a technique related to Mo partially-diffused alloy steel powder that does not contain Ni. That is, by optimizing the amount of Mo, a sintered body having high ductility and toughness that can withstand re-pressurization after sintering can be obtained.
  • Patent Document 3 discloses that iron powder having an average particle diameter of 1 to 18 ⁇ m and copper powder having an average particle diameter of 1 to 18 ⁇ m are 100: (0.2 to 5 ) Are mixed and molded and sintered at a weight ratio.
  • an extremely high density sintered body having a sintered body density of 7.42 g / cm 3 or more is obtained by using an iron-based powder having an average particle diameter extremely smaller than usual. Is possible.
  • Patent Document 4 a high-strength and high-toughness sintered body is obtained by using Ni-free powder in which Mo is diffused and adhered to the surface of an iron-based powder and the specific surface area is 0.1 m 2 / g or more. It is described.
  • Patent Document 5 describes that a sintered body having high strength and high toughness is obtained by using a powder obtained by diffusing and adhering Mo to an iron-based powder containing reduced iron powder.
  • Patent Document 2 Patent Document 3
  • Patent Document 4 Patent Document 5
  • Patent Document 2 assumes that high strength is obtained by re-compression after sintering, although there is no addition of Ni, and when manufactured by a normal powder metallurgy process, sufficient strength, Establishing toughness and hardness is difficult.
  • the average particle size of the iron-based powder used is 1 to 18 ⁇ m, which is smaller than usual.
  • the particle size is small as described above, the fluidity of the mixed powder is deteriorated, and there is a problem that the working efficiency when filling the mixed powder with a mold at the time of pressure molding is lowered.
  • Patent Document 4 since the powder described in Patent Document 4 has a very large specific surface area, when such a powder is used, the fluidity of the powder is lowered, and the handling of the powder becomes difficult.
  • the object of the present invention is a component system that does not use any Ni (hereinafter also referred to as Ni-free) which causes non-uniformity of the metal structure in the sintered body and is the largest factor in increasing the cost of the alloy powder.
  • an object of the present invention is to provide a powder mixture for powder metallurgy, which can sinter a molded body of alloy steel powder and further make the mechanical properties of the carburized, quenched and tempered parts equal to or higher than those of Ni-added products.
  • the objective of this invention is providing the iron-based sintered compact excellent in the mechanical characteristic produced using the mixed powder.
  • the inventors have made various studies on the alloy component of the powder mixture for powder metallurgy not containing Ni, its addition means, and powder characteristics.
  • the mixed powder for powder metallurgy controlled the average particle size, specific surface area and circularity of partially diffused alloy steel powder partially alloyed with Mo instead of using Ni at all.
  • I came up with the idea of mixing Cu powder with graphite powder. That is, Mo acts as a ferrite stabilizing element during the sintering heat treatment. As a result, a ferrite phase is generated in the vicinity of the portion where the amount of Mo is large, the sintering of the iron powders is promoted, and the density of the sintered body is improved.
  • the circularity of the partially diffused alloy steel powder by controlling the circularity of the partially diffused alloy steel powder to have a low circularity, coarse pores that reduce toughness in the sintered body can be reduced. Furthermore, it has also been found that the compressibility at the time of molding is improved by setting the specific surface area of the partially diffused alloy steel powder to a certain value or less. Furthermore, it has been found that when the average particle size of the partially diffused alloy steel powder is controlled to 30 ⁇ m or more, the fluidity of the alloy steel powder can be improved.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. 1. It has a partial diffusion alloy steel powder in which Mo is diffused and adhered to the particle surface of the iron-based powder, Cu powder and graphite powder, and Mo: 0.2 to 1.5 mass%, Cu: 0.5 to 4.0 mass%, C: 0.1 to A powder mixture for powder metallurgy having a composition containing 1.0 mass% and the balance consisting of Fe and inevitable impurities, The partially diffused alloy steel powder has an average particle size of 30 to 120 ⁇ m, a specific surface area of less than 0.10 m 2 / g, and a circularity of particles having a diameter in the range of 50 to 100 ⁇ m is 0.65 or less. Mixed powder for powder metallurgy.
  • the sintered compact which is a sintered compact of the molded object containing the mixed powder for powder metallurgy in any one of said 1-3.
  • It has a partial diffusion alloy steel powder in which Mo is diffused and adhered to the particle surface of the iron-based powder, Cu powder and graphite powder, and Mo: 0.2 to 1.5 mass%, Cu: 0.5 to 4.0 mass%, C: 0.1 to A mixed powder for powder metallurgy having a composition of 1.0 mass%, the balance being composed of Fe and inevitable impurities, wherein the partial diffusion alloy steel powder has an average particle size of 30 to 120 ⁇ m and a specific surface area of 0.10 m A method for producing a sintered body for sintering a compact of a powder mixture for powder metallurgy, wherein the circularity of particles having a diameter of less than 2 / g and a diameter in the range of 50 to 100 ⁇ m is 0.65 or less.
  • a mixed powder for powder metallurgy that can produce a sintered body having excellent characteristics equivalent to or better than the case of containing Ni while being a Ni-free component system that does not use any Ni. can get. Moreover, since the mixed powder for powder metallurgy of the present invention has high fluidity, it is excellent in work efficiency when filling the mixed powder for powder metallurgy into a mold for pressure molding. Furthermore, according to the present invention, a sintered body having both excellent strength and toughness can be produced at low cost even by a normal sintering method.
  • the mixed powder for powder metallurgy according to the present invention is obtained by adding Cu to the surface of an iron-based powder, partially diffused alloy steel powder having an appropriate average particle diameter and specific surface area (hereinafter also referred to as partial alloy steel powder), Cu It is a mixed powder for powder metallurgy in which powder and graphite powder are mixed.
  • the partially diffused alloy steel powder has an average particle size of 30 to 120 ⁇ m and a specific surface area of less than 0.10 m 2 / g, and the circularity of the powder having a diameter in the range of 50 to 100 ⁇ m is 0.65 or less, is required.
  • the mixed powder for powder metallurgy needs to contain Mo: 0.2 to 1.5 mass%, Cu: 0.5 to 4.0 mass%, C: 0.1 to 1.0 mass%, with the balance being composed of Fe and inevitable impurities. There is.
  • the mixed powder for powder metallurgy is formed into a molded body by a conventional pressure molding, and further sintered by a conventional method to obtain a sintered body according to the present invention.
  • the entanglement between the powders at the time of molding due to the formation of Mo enriched parts at the sintering neck between the iron-based powder particles of the compact and the low circularity of the partially diffused alloy steel powder As a result, the subsequent sintering is promoted.
  • the density of the sintered body increases in this way, both the strength and toughness of the sintered body improve, but unlike the sintered body using Ni as in the conventional material, the machine of the sintered body of the present invention Since the metal structure is uniform, the characteristics are small and stable.
  • the mixed powder for powder metallurgy according to the present invention will be described in detail.
  • the “%” shown below means “mass%” unless otherwise specified, and the Mo amount, Cu amount and graphite powder amount represent the respective ratios in the entire powder mixture for powder metallurgy (100% mass%). ing.
  • the partially diffused alloy steel powder has Mo diffused on the surface of the iron-based powder, has an average particle size of 30 to 120 ⁇ m, a specific surface area of less than 0.10 m 2 / g, and a diameter of 50 It is important that the circularity of the powder in the range of ⁇ 100 ⁇ m is 0.65 or less.
  • the particle size and the circularity hardly change. Accordingly, an iron-based powder within the same range as the average particle diameter and circularity of the partially diffused alloy steel powder is used.
  • the iron-based powder has an average particle diameter of 30 to 120 ⁇ m and a powder having a diameter of 50 to 100 ⁇ m having a circularity (cross-sectional circularity) of 0.65 or less. That is, for the reasons described later, the average particle size of the partially alloyed steel powder must be 30 to 120 ⁇ m and the circularity of the powder in the range of 50 to 100 ⁇ m must be 0.65 or less. It is necessary to satisfy the conditions.
  • the average particle diameter of the iron-base powder and the partially alloyed steel powder is the median diameter D50 of the weight cumulative distribution, and is obtained by measuring the particle size distribution using a sieve specified in JIS Z 8801-1.
  • the particle size is such that the weight above and below the sieve is 50%.
  • the circularity of the iron-based powder and the partially alloyed steel powder can be determined according to the following.
  • iron-based powder will be described as an example, but in the case of partially alloyed steel powder, the circularity is obtained in the same procedure.
  • iron-based powder is embedded in a thermosetting resin.
  • the iron-based powder is uniformly embedded in the thermosetting resin with a thickness of 0.5 mm or more so that a sufficient amount of iron-based powder cross section can be observed on the observation surface where the embedded resin is polished and exposed.
  • a cross section of the iron-based powder is revealed by polishing, the cross section is mirror-polished, and the cross section is magnified with an optical microscope and photographed.
  • the cross-sectional area A and the outer peripheral length Lp of each iron-based powder in the cross-sectional photograph are obtained by image analysis.
  • image analysis for example, Image J (Open Source, National Institutes of Health) is available.
  • the equivalent circle diameter dc is calculated from the obtained cross-sectional area A.
  • dc is obtained by the following equation (I).
  • the circular approximate outer circumference Lc is calculated by multiplying the particle diameter dc by the circumference ratio ⁇ .
  • the circularity C is calculated from the obtained Lc and the outer peripheral length Lp of the iron-based powder cross section.
  • the circularity C is a value defined by the following formula (II).
  • the iron-based powder means a powder having an Fe content of 50% or more.
  • the iron-based powder include atomized raw powder (atomized iron powder as atomized), atomized iron powder (reduced atomized raw powder in a reducing atmosphere), reduced iron powder, and the like.
  • the iron-based powder used in the present invention is preferably atomized raw powder or atomized iron powder. This is because the reduced iron powder contains a large number of pores in the particles, so that there is a possibility that a sufficient density cannot be obtained during pressure molding. Further, the reduced iron powder contains more inclusions in the particles as starting points of fracture than the atomized iron powder, and there is a risk that fatigue strength, which is an important mechanical property of the sintered body, is reduced.
  • a suitable iron-based powder used in the present invention is atomized raw powder that is obtained by atomizing molten steel, drying, classifying, and not performing heat treatment for deoxidation treatment (reduction treatment) or decarburization treatment, or Any atomized iron powder obtained by reducing atomized raw powder in a reducing atmosphere.
  • the iron-based powder according to the circularity described above can be obtained by appropriately adjusting the spraying conditions during atomization and the conditions of additional processing performed after spraying. Further, iron-base powders having different circularities may be mixed and adjusted so that the circularity of the iron-base powder having a particle diameter in the range of 50 to 100 ⁇ m falls within the above range.
  • Partially diffused alloy steel powder is obtained by diffusing and adhering Mo to the surface of the iron-based powder described above, having an average particle size of 30 to 120 ⁇ m, a specific surface area of less than 0.10 m 2 / g, and a diameter of 50 to 100 ⁇ m. It is necessary that the circularity of the powder in the range is 0.65 or less.
  • the partial diffusion alloy steel powder is produced by diffusing and adhering Mo to the above-mentioned iron-based powder.
  • the amount of Mo at that time shall be a ratio of 0.2 to 1.5% in the entire powder mixture for powder metallurgy (100%).
  • the amount of Mo is less than 0.2%, in the sintered body produced using the powder mixture for powder metallurgy, the effect of improving hardenability is small and the effect of improving strength is also small.
  • the amount of Mo to be diffused is 0.2 to 1.5%.
  • it is 0.3 to 1.0%, more preferably 0.4 to 0.8%.
  • examples of the Mo supply source include Mo-containing powder.
  • examples of the Mo-containing powder include Mo pure powder, Mo oxide powder, and Mo alloy powder such as Fe-Mo (ferromolybdenum) powder.
  • Mo compound Mo carbide, Mo sulfide, Mo nitride, and the like can be used as suitable Mo-containing powders. These may be used alone or as a mixture of a plurality of substances.
  • the iron-based powder and the Mo-containing powder are mixed at the above-described ratio (Mo amount is 0.2 to 1.5% in the entire powder mixture for powder metallurgy (100%)).
  • Mo amount is 0.2 to 1.5% in the entire powder mixture for powder metallurgy (100%).
  • the mixing method For example, it can carry out in accordance with a conventional method using a Henschel mixer, a corn type mixer, etc.
  • the mixed powder of the iron-based powder and the Mo-containing powder is heated, and Mo is diffused into the iron-based powder through the contact surface between the iron-based powder and the Mo-containing powder to join Mo to the iron-based powder.
  • partial alloy steel powder containing Mo is obtained.
  • the atmosphere for the heat treatment a reducing atmosphere or a hydrogen-containing atmosphere is suitable, and a hydrogen-containing atmosphere is particularly suitable.
  • heat treatment may be applied under vacuum.
  • the heat treatment temperature is preferably in the range of 800 to 1100 ° C. when a Mo compound such as oxidized Mo powder is used as the Mo-containing powder.
  • the heat treatment temperature is less than 800 ° C.
  • the Mo compound is not sufficiently decomposed, and Mo does not diffuse into the iron-based powder, making it difficult to adhere Mo.
  • the temperature exceeds 1100 ° C. sintering between the iron-based powders during the heat treatment proceeds, and the circularity of the iron-based powder exceeds the specified range.
  • a preferable heat treatment temperature is in the range of 600 to 1100 ° C.
  • the temperature of the heat treatment is less than 600 ° C.
  • the diffusion of Mo into the iron-based powder is insufficient and it becomes difficult to adhere the Mo.
  • the temperature exceeds 1100 ° C. the sintering of the iron-based powders during the heat treatment proceeds, and the circularity of the partially alloyed steel powder exceeds the specified range.
  • the partially alloyed steel powders are in a sintered and solidified state. Do. That is, if necessary, the pulverization conditions are strengthened or coarse powder is removed by classification with a sieve having a predetermined opening so that the prescribed particle size is obtained. Furthermore, you may anneal as needed.
  • the average particle size of the partially alloyed steel powder is in the range of 30 to 120 ⁇ m.
  • the lower limit of the average particle diameter is 40 ⁇ m, more preferably 50 ⁇ m.
  • the upper limit of the average particle diameter is 100 ⁇ m, more preferably 80 ⁇ m.
  • the average particle size of the partially alloyed steel powder is the median diameter D50 of the weight cumulative distribution as described above, and is obtained by measuring the particle size distribution using a sieve specified in JIS Z 8801-1. When the cumulative particle size distribution is created from the measured particle size distribution, the particle diameter is such that the weight of the sieve top and the sieve bottom is 50%.
  • the average particle size of the partial alloy steel powder is less than 30 ⁇ m, the fluidity of the partial alloy steel powder is deteriorated, which hinders the production efficiency at the time of compression molding in a mold.
  • the average particle diameter of the partial alloy steel powder exceeds 120 ⁇ m, the driving force during the sintering becomes weak, and coarse pores are formed around the coarse partial alloy steel powder in the sintering process, and the sintering is performed. This results in a decrease in the density of the sintered body and causes a decrease in strength and toughness after carburizing, quenching, and tempering the sintered body.
  • the maximum particle size of the partially alloyed steel powder is preferably 180 ⁇ m or less.
  • the specific surface area of the partially alloyed steel powder is set to less than 0.10 m 2 / g.
  • the specific surface area of the partial alloy steel powder refers to the specific surface area of the powder of the partial alloy steel powder excluding additives (Cu powder, graphite powder, lubricant).
  • the specific surface area of the partially alloyed steel powder exceeds 0.10 m 2 / g, the fluidity of the mixed powder for powder metallurgy is lowered.
  • the specific surface area can be arbitrarily controlled by adjusting the particle size of coarse particles of more than 100 ⁇ m and fine particles of less than 50 ⁇ m after diffusing adhesion treatment by sieving. That is, the specific surface area decreases by reducing the proportion of fine particles or increasing the proportion of coarse particles.
  • the degree of circularity of particles having a partial alloy steel powder diameter of 50 to 100 ⁇ m needs to be 0.65 or less.
  • the circularity is preferably 0.60 or less, more preferably 0.58 or less.
  • the entanglement between the powders during pressure molding is strengthened and the compressibility of the powder mixture for powder metallurgy is improved, so that coarse pores in the compact and sintered body are eliminated. Decrease.
  • the circularity is excessively reduced, the compressibility of the powder mixture for powder metallurgy is reduced, so the circularity is preferably 0.40 or more.
  • the circularity of the particles having a partial alloy steel powder diameter of 50 to 100 ⁇ m can be measured as follows. First, with the particle diameter of the partial alloy steel powder calculated in the same manner as the iron-based powder described above as dc, the partial alloy steel powder having this dc in the range of 50 to 100 ⁇ m is extracted. At this time, an optical microscope image sufficient to extract at least 150 particles of partially alloyed steel powder in the range of 50 to 100 ⁇ m is performed. And the degree of circularity is calculated about the extracted partial alloy steel powder similarly to the case of the above-mentioned iron base powder.
  • the reason for limiting the particle diameter of the partially alloyed steel powder to 50 to 100 ⁇ m is that reducing the circularity of the powder in the left range is the most effective in promoting the sintering. That is, since particles smaller than 50 ⁇ m are fine particles, the sintering promoting effect is originally high, and even if the circularity of the particles smaller than 50 ⁇ m is lowered, the sintering promoting effect is small. In addition, particles having a particle diameter exceeding 100 ⁇ m are extremely coarse, and even if the circularity is lowered, the sintering promoting effect is small. In addition, the circularity of the partial alloy steel powder can be obtained by the same method as the circularity of the iron-based powder described above.
  • the remaining composition in the partially alloyed steel powder is iron and inevitable impurities.
  • impurities contained in the partial alloy steel powder include C (excluding graphite), O, N, S, and the like. %: O: 0.3% or less, N: 0.004% or less, S: 0.03% or less, Si: 0.2% or less, Mn: 0.5% or less, P: 0.1% or less. % Or less is more preferable.
  • the amount of inevitable impurities exceeds these ranges, the compressibility in forming using the partially alloyed steel powder is lowered, and it becomes difficult to form a compact having a sufficient density.
  • Cu powder is added to the partial alloy steel powder obtained above. And add graphite powder.
  • Cu is a useful element that enhances the solid solution strengthening and hardenability of the iron-based powder and increases the strength of the sintered part, and is added in the range of 0.5% to 4.0%.
  • the amount of Cu powder added is less than 0.5%, the above-mentioned useful effects of Cu addition hardly appear, while if it exceeds 4.0%, not only the strength improvement effect of sintered parts is saturated, but also sintering. It causes a drop in body density. Therefore, the amount of Cu powder added is limited to the range of 0.5 to 4.0%. Preferably it is 1.0 to 3.0% of range.
  • the average particle size of the Cu powder is preferably 50 ⁇ m or less. More preferably, it is 40 ⁇ m or less, and further preferably 30 ⁇ m or less.
  • the average particle size of the Cu powder is preferably 50 ⁇ m or less. More preferably, it is 40 ⁇ m or less, and further preferably 30 ⁇ m or less.
  • the minimum of the average particle diameter of Cu powder In order not to raise the manufacturing cost of Cu powder unnecessarily, about 0.5 micrometer is preferable.
  • the average particle diameter of Cu powder can be obtained by the following method. Since powder having an average particle size of 45 ⁇ m or less is difficult to measure the average particle size by sieving, the particle size is measured with a laser diffraction / scattering particle size distribution analyzer. As a laser diffraction / scattering type particle size distribution measuring apparatus, there is LA-950V2 manufactured by Horiba. Of course, other laser diffraction / scattering particle size distribution measuring devices may be used, but in order to perform accurate measurement, the lower limit of the measurable particle diameter range is 0.1 ⁇ m or less and the upper limit is 45 ⁇ m or more. Is preferred.
  • the solvent in which the Cu powder is dispersed is irradiated with laser light, and the particle size distribution and average particle diameter of the Cu powder are measured from the diffraction and scattering intensity of the laser light.
  • the solvent for dispersing the Cu powder it is preferable to use ethanol, which has good particle dispersibility and is easy to handle.
  • Use of a solvent having a high van der Waals force such as water and low dispersibility is not preferable because particles aggregate during measurement and a measurement result coarser than the original average particle diameter is obtained. Therefore, it is preferable to carry out an ultrasonic dispersion treatment on the ethanol solution into which Cu powder has been added before measurement.
  • the dispersion treatment time is carried out in 7 steps of 10 min intervals between 0 to 60 min, and the average particle diameter of Cu powder is measured after each dispersion treatment. Do. During each measurement, measurement is performed while stirring the solvent in order to prevent particle aggregation. And the smallest value is used as an average particle diameter of Cu powder among the particle diameters obtained by seven measurements performed by changing the dispersion treatment time at intervals of 10 min.
  • graphite powder Since graphite powder is effective for increasing strength and fatigue strength, 0.1 to 1.0% is added to and mixed with partially alloyed steel powder. The above effects cannot be obtained unless the amount of graphite powder added is less than 0.1%. On the other hand, if it exceeds 1.0%, it becomes hypereutectoid, so that cementite is precipitated and the strength is lowered. Therefore, the amount of graphite powder added is limited to the range of 0.1 to 1.0%. Preferably, it is 0.2 to 0.8%.
  • the average particle size of the graphite powder to be added is preferably in the range of about 1 to 50 ⁇ m.
  • the above-mentioned Cu powder and graphite powder are mixed with the partial diffusion alloy steel powder to which Mo is diffused and adhered to form a mixed powder for powder metallurgy of the Fe—Mo—Cu—C system. What is necessary is just to perform the mixing method according to the conventional method of powder mixing.
  • a powdery lubricant can be further mixed. It can also be molded by applying or adhering a lubricant to the mold.
  • a lubricant any of metal soaps such as zinc stearate and lithium stearate, amide waxes such as ethylenebisstearic acid amide, and other known lubricants can be suitably used.
  • the amount is preferably about 0.1 to 1.2 parts by mass with respect to 100 parts by mass of the mixed powder for powder metallurgy.
  • the pressure-molding is preferably performed at a pressure of 400 to 1000 MPa.
  • the pressure molding temperature is preferably in the range of room temperature (about 20 ° C.) to about 160 ° C.
  • the sintering temperature is less than 1100 ° C., the sintering does not proceed and it becomes difficult to obtain a desired tensile strength of 1000 MPa or more. On the other hand, if it exceeds 1300 ° C, the life of the sintering furnace is shortened, which is economically disadvantageous.
  • the sintering time is preferably in the range of 10 to 180 minutes.
  • the sintered compact obtained using the powder metallurgy mixed powder according to the present invention under the above sintering conditions has the same compact density as compared with the case where the alloy steel powder out of the above range is used.
  • a high sintered body density can be obtained after sintering.
  • the obtained sintered body can be subjected to strengthening treatment such as carburizing quenching, bright quenching, induction quenching, carbonitriding treatment, etc., if necessary.
  • strengthening treatment such as carburizing quenching, bright quenching, induction quenching, carbonitriding treatment, etc.
  • the sintered body using the mixed powder for powder metallurgy according to the present invention has improved strength and toughness as compared with the conventional sintered body not subjected to the strengthening treatment.
  • strengthening process should just be performed according to a conventional method.
  • Example 1 As the iron-based powder, atomized raw powder having different circularity was used. The circularity of the atomized raw powder was varied by giving the atomized raw powder a pulverization process using a high-speed mixer (LFS-GS-2J type, manufactured by Fukae Pautech Co., Ltd.). To this iron-based powder, oxidized Mo powder (average particle size: 10 ⁇ m) was added at a predetermined ratio, mixed for 15 minutes with a V-type mixer, and then heat-treated in a hydrogen atmosphere with a dew point of 30 ° C. (holding temperature: 880).
  • LFS-GS-2J type high-speed mixer
  • a partial alloy steel powder in which a predetermined amount of Mo shown in Table 1 was diffused and adhered to the particle surface of the iron-based powder was produced at a temperature of 1 ° C. for 1 hour.
  • the amount of Mo was variously changed as shown in Sample Nos. 1 to 8 in Table 1.
  • the produced partial alloy steel powder was embedded in a resin and polished so that a cross section of the partial alloy steel powder was exposed.
  • the partial alloy steel powder was evenly embedded in the thermosetting resin with a thickness of 0.5 mm or more so that a sufficient amount of the partial alloy steel powder cross section could be observed on the polished surface, that is, the observation surface. After polishing, the polished surface was magnified with an optical microscope and photographed, and the circularity was calculated by image analysis according to the above. In addition, specific surface area measurement by BET method was performed on partially alloyed steel powder. All the partial alloy steel powders were confirmed to have a specific surface area of less than 0.10 m 2 / g.
  • the obtained powder mixture for powder metallurgy 0.6 parts by mass of ethylenebisstearic acid amide added to 100 parts by mass and mixed for 15 minutes with a V-type mixer is pressed to a density of 7.0 g / cm 3 Molded to produce rod-shaped compacts (length: 55 mm, width: 10 mm and thickness: 10 mm each), and ring-shaped compacts of outer diameter: 38 mm, inner diameter: 25 mm and thickness: 10 mm .
  • the rod-shaped molded body and the ring-shaped molded body were sintered to obtain a sintered body. This sintering was performed in a propane modified gas atmosphere under conditions of sintering temperature: 1130 ° C. and sintering time: 20 minutes.
  • sintering temperature 1130 ° C.
  • sintering time 20 minutes.
  • the outer diameter, inner diameter and thickness were measured and the mass was measured, and the sintered body density (Mg / m 3 ) was calculated.
  • 5 pieces each were processed into round bar tensile test pieces (JIS No. 2) with a parallel part diameter of 5 mm in order to be subjected to the tensile test specified in JIS Z2241.
  • the above measurement results are also shown in Table 1.
  • the criteria for determination are as follows. (1) Flowability Mixed powder for powder metallurgy: 100 g passed through a nozzle with a diameter of 2.5 mm ⁇ , which passed within a total amount of 80 s without stopping ( ⁇ ), one that took more than 80 s, or A sample which did not flow because the whole amount or a part of it was stopped was judged as rejected (x). (2) Sintered body density The sintered body density is equal to or greater than the conventional 4Ni material (4Ni-1.5Cu-0.5Mo, maximum particle size of raw material powder: 180 ⁇ m), 6.95 Mg / m 3 or more The case was determined to be acceptable.
  • samples No. 1 to 8 are affected by the amount of Mo
  • Nos. 9 to 14 are affected by the amount of Cu
  • Nos. 15 to 19 are affected by the amount of graphite
  • Nos. 20 to 25 are affected by the Cu particle size
  • No. Nos. 26 to 31 are the results of the examination of the influence of the alloy particle size
  • Nos. 32 to 38 are the results of the examination of the influence of the circularity and average particle size of the partially alloyed steel powder.
  • Table 1 also shows the results of a 4Ni material (4Ni-1.5Cu-0.5Mo, maximum particle size of raw material powder: 180 ⁇ m) as a conventional material. It turns out that the example of an invention can obtain the characteristic more than the conventional 4Ni material.
  • Example 2 In order to clarify the technical difference between the present invention example and Patent Document 3, the following experiment was performed. Three types of atomized iron powders having different specific surface areas and roundnesses were prepared. The specific surface area and circularity can be adjusted by applying a high-speed mixer (LFS-GS-2J type, manufactured by Fukae Powtech Co., Ltd.) to atomized iron powder, and blending coarse powder with a particle size of 100 ⁇ m or more and fine powder with a particle size of 45 ⁇ m or less. This was done by adjusting the ratio.
  • LFS-GS-2J type manufactured by Fukae Powtech Co., Ltd.
  • oxidized Mo powder (average particle size: 10 ⁇ m) was added at a predetermined ratio, mixed for 15 minutes with a V-type mixer, and then heat-treated in a hydrogen atmosphere with a dew point of 30 ° C. (holding temperature: 880).
  • a partial alloy steel powder in which a predetermined amount of Mo shown in Table 2 was diffused and adhered to the particle surface of the iron-based powder was produced by heating at 1 ° C. for 1 hour.
  • These partial alloy steel powders were embedded in a resin and polished so that the cross section of the partial alloy steel powder was exposed, and then an enlarged upper photograph was taken with an optical microscope, and the circularity was calculated by image analysis. Moreover, the specific surface area was measured for the partially alloyed steel powder by the BET method.
  • the rod-shaped body and the ring-shaped body were sintered to obtain a sintered body.
  • This sintering was performed in a propane modified gas atmosphere under conditions of sintering temperature: 1130 ° C. and sintering time: 20 minutes.
  • sintering temperature 1130 ° C.
  • sintering time 20 minutes.
  • the outer diameter, inner diameter and thickness were measured and the mass was measured, and the sintered body density (Mg / m 3 ) was calculated.
  • the rod-shaped sintered bodies As for the rod-shaped sintered bodies, 5 pieces each were processed into round bar tensile test pieces (JIS No. 2) with a parallel part diameter of 5 mm in order to be subjected to the tensile test specified in JIS Z2241, and 5 pieces each were JIS Z2242.
  • the size of the rod is as-sintered (no notch), and all are carburized with carbon potential of 0.8 mass% (holding temperature: 870 ° C) , Holding time: 60 minutes), followed by quenching (60 ° C., oil quenching) and tempering (holding temperature: 180 ° C., holding time: 60 minutes).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

焼結体における金属組織の不均一を生じる原因となり、合金粉末のコストアップの最大の要因となっているNiを一切使用しない成分系でありながら、合金鋼粉の成形体を焼結し、さらに浸炭・焼入れ・焼戻しした部品の機械特性をNi添加品と同等以上とすることができる、粉末冶金用混合粉を提供する。 鉄基粉末の粒子表面にMoが拡散付着した部分拡散合金鋼粉と、Cu粉および黒鉛粉とを有し、かつMo:0.2~1.5mass%、Cu:0.5~4.0mass%、C:0.1~1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、前記部分拡散合金鋼粉は、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であり、径が50~100μmの範囲にある粒子の円形度が0.65以下であるものとする。

Description

粉末冶金用混合粉、焼結体および焼結体の製造方法
 本発明は、粉末冶金用混合粉に関し、特に自動車用高強度焼結部品の製造に好適な粉末冶金用混合粉であって、該合金鋼粉を成形し焼結した焼結体の密度と、該焼結体に浸炭・焼入れ・焼戻しの処理を行った後の引張強さおよび靭性(衝撃値)とが確実に向上する、粉末冶金用混合粉およびそれを用いて作製される焼結体に関する。また、本発明は、該焼結体の製造方法に関する。
 粉末冶金技術は、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネット形状)でしかも高い寸法精度で製造できることから、大幅な切削コストの低減を可能とする技術である。このため、粉末冶金製品が各種の機械や部品として、多方面に利用されている。
 最近では、部品の小型化や軽量化のための強度の向上や、安全性の観点からの靭性の向上が、粉末冶金製品に強く要望されている。特に、歯車などに頻繁に用いられる粉末冶金製品(鉄基焼結体)に対しては、高強度化および高靭性化に加えて、耐摩耗性の観点から高硬度化の要求も強い。鉄基焼結体における強度および靭性は、その成分、組織および密度などによって多様に変化するため、前記の要望に応えるために、これらを適切に制御した鉄基焼結体の開発が必要である。
 一般に、焼結前の成形体は、鉄基粉末に、銅粉や黒鉛粉などの合金用粉末と、ステアリン酸、ステアリン酸リチウム等の潤滑剤とを混合して混合粉とし、これを金型に充填して、加圧成形することにより製造される。
 通常の粉末冶金工程で得られる成形体の密度は、6.6~7.1 Mg/m3程度が一般的である。成形体は、その後に焼結処理が行われて焼結体とされ、さらに必要に応じてサイジングや切削加工が行われて、粉末冶金製品とされる。また、さらに高い強度が必要な場合は、焼結後に浸炭熱処理や光輝熱処理が行われることもある。
 ここで用いる鉄基粉末は、成分に応じて、鉄粉(たとえば純鉄粉等)と合金鋼粉とに分類される。また、鉄基粉末の製法による分類としては、アトマイズ鉄粉と還元鉄粉とがある。この製法による分類での鉄粉は、純鉄粉のほか、合金鋼粉を含む広い意味で使用されている。
 そして、高強度および高靭性の焼結体を得るためには、とりわけ主成分となる鉄基粉末において、合金化の促進と高圧縮性の維持とが両立することが有利である。
 まず、鉄基粉末の合金化手段としては、
(1) 純鉄粉に各合金元素粉末を配合した混合粉、
(2) 各合金元素を完全に合金化した予合金鋼粉、
(3) 純鉄粉や予合金鋼粉の表面に各合金元素粉末を部分的に付着拡散させた部分拡散合金鋼粉(複合合金鋼粉ともいう)
等が知られている。
 上記(1)の混合粉は、純鉄粉並みの高圧縮性を有するという利点を有している。しかし、焼結時に、各合金元素がFe中に十分に拡散せずに不均質組織となり、その結果、最終的に得られる焼結体の強度が劣る場合があった。また、合金元素としてMn、Cr、V、およびSiなどを用いる場合、これらの元素はFeに比べてより容易に酸化されるため、焼結時に酸化を受けて、最終的に得られる焼結体の強度が低下するという問題があった。前記酸化を抑制し、焼結体を低酸素量化するためには、焼結時の雰囲気や、焼結後に浸炭を行う場合には浸炭雰囲気中のCO2濃度や露点を、厳密に制御する必要がある。このために、上記(1)の混合粉は、近年の高強度化の要求に対応できず、使用されない状態に至っている。
 他方、上記(2)の、各元素を完全に合金化した予合金鋼粉を用いれば、合金元素の偏析が完全に防止されて焼結体の組織を均一化できるため、機械特性が安定化する。加えて、Mn,Cr,VおよびSiなどを合金元素として使用する場合も、合金元素の種類と量を限定することによって焼結体の低酸素量化できる利点がある。しかしながら、予合金鋼粉を、溶鋼からアトマイズ法で製造する場合、溶鋼のアトマイズ工程での酸化と完全合金化による鋼粉の固溶硬化とを生じ易いため、加圧成形後の成形体の密度を高めることが難しいという問題があった。成形体の密度が低いと、該成形体を焼結した際の、焼結体での靭性が低くなる。そのため、予合金鋼粉を用いる場合も、近年の高強度化および高靭性化の要求に対応できない。
 上記(3)の部分拡散合金鋼粉は、純鉄粉や予合金鋼粉に各合金元素の粉末を配合し、非酸化性または還元性の雰囲気の下で加熱して、純鉄粉や予合金鋼粉の粒子表面に各合金元素粉末を部分的に拡散接合して製造される。そのため、上記(1)の鉄基混合粉および上記(2)の予合金鋼粉の利点を得ることができる。
 したがって、部分拡散予合金鋼粉を用いることによって、焼結体での低酸素量化と純鉄粉並みの成形体での高圧縮性とが得られるため、焼結体は完全合金相と部分的な濃化相からなる複合組織となって焼結体の強度は高まることになる。
 この部分拡散合金鋼粉で使われる基本的な合金成分として、NiおよびMoが多用されている。
 Niは、焼結体の靭性を向上させる効果を有している。これは、Niの添加により、オーステナイトが安定化され、その結果、より多くのオーステナイトが焼入れ後もマルテンサイトへ変態せずに残留オーステナイトとして残るためである。また、Niは、固溶強化によって焼結体のマトリックスを強化する作用を有している。
 これに対して、Moは焼入れ性を向上させる効果を有している。したがって、Moは、焼入れ処理の際にフェライトの生成を抑制し、ベイナイトまたはマルテンサイトを生成しやすくすることによって、焼結体のマトリックスを強化する。また、Moは、マトリックスに固溶して固溶強化する作用と、微細炭化物を形成してマトリックスを析出強化する作用の両者を備えている。
 上記した部分拡散合金鋼粉を使用した高強度焼結部品用の混合粉の例として、例えば、特許文献1には、Ni:0.5~4mass%、Mo:0.5~5mass%を部分合金化した合金鋼粉にさらに、Ni:1~5mass%、Cu:0.5~4mass%、黒鉛粉:0.2~0.9 mass%を混合した高強度焼結部品用混合粉が開示されている。特許文献1に記載された焼結材料は、最低でも1.5mass%のNiを含んでおり、その実施例をみると、実質的には3mass%以上のNiを含んでいる。すなわち、焼結体で800MPa以上の高強度を得るためには、3mass%以上といった多量のNiが必要となることを意味する。さらに、焼結体に、浸炭・焼入れ・焼戻し処理を行って1000MPa以上の高強度材を得るためには、同様に3mass%あるいは4mass%といった多量のNiが必要である。
 しかしながら、Niは近年の環境問題への対応やリサイクルの観点からは不利な元素であり、できるだけ使用を避けることが望ましい。コストの点でも、数mass%のNiの添加は極めて不利である。さらに、Niを合金元素として使用すると、鉄粉や鋼粉にNiを十分に拡散させるために長時間の焼結が必要となるという問題もある。さらには、オーステナイト相安定化元素であるNiの拡散が不十分な場合、高Ni領域はオーステナイト相(以下、γ相とも示す)として安定化し、Niが希薄な領域はそれ以外の相で安定化する結果、焼結体の金属組織が不均一になる。
 Niを含まない技術として、特許文献2には、Niを含まないMoの部分拡散合金鋼粉に関する技術が開示されている。すなわち、Mo量を適正化することで、焼結後の再加圧に耐え得る、高い延性と靭性を有する焼結体が得られる、としている。
 また、Niを含まない高密度の焼結体について、特許文献3には、平均粒径が1~18μmの鉄系粉末に、平均粒径が1~18μmの銅粉を100:(0.2~5)の重量比で混合して成型、焼結することが開示されている。特許文献3に記載の技術では、通常よりも極端に小さい平均粒径の鉄系粉末を使用することによって、焼結体密度が7.42g/cm3以上という極めて高い密度の焼結体を得ることを可能にしている。
 特許文献4には、鉄基粉末の表面にMoを拡散付着させ比表面積を0.1m2/g以上とした、Niを含まない粉末を用いることにより、高強度かつ高靭性の焼結体を得ることが記載されている。
 更に、特許文献5には、還元鉄粉を含む鉄基粉末にMoを拡散付着させた粉末を用いることにより、高強度かつ高靭性の焼結体を得ることが記載されている。
特許第3663929号公報 特許第3651420号公報 特開平4-285141号公報 WO 2015/045273 A1 特開2015-14048号公報
 しかしながら、上記した特許文献2、特許文献3、特許文献4および特許文献5の記載に従って得られる合金粉末および焼結材料には、それぞれ次のような問題点があることが分かった。
 特許文献2に記載の技術は、Niの添加は無いものの、焼結後の再圧縮によって高強度を得ることを想定しており、通常の粉末冶金プロセスで製造した場合には、十分な強度、靭性および硬度の鼎立は難しい。
 また、特許文献3に記載の焼結材料では、Niは添加しないものの、使用している鉄系粉末の平均粒径が1~18μmと通常よりも小さい。このように粒径が小さいと、混合粉の流動性が悪くなり、加圧成型時に混合粉を金型充填するときの作業効率が低くなるといった問題がある。
 また、特許文献4に記載の粉末は、極めて比表面積が大きいため、このような粉末を用いた場合、粉末の流動性が低下してしまい、粉末の取扱いが困難となる。
 特許文献5に記載の焼結体においても、特許文献4に記載の技術と同様に、比表面積の大きい還元鉄粉を用いるため、粉末の流動性が低下してしまい、粉末の取扱いが困難となる。
 本発明の目的は、焼結体における金属組織の不均一を生じる原因となり、合金粉末のコストアップの最大の要因となっているNiを一切使用しない(以下、Niフリーとも称する)成分系でありながら、合金鋼粉の成形体を焼結し、さらに浸炭・焼入れ・焼戻しした部品の機械特性をNi添加品と同等以上とすることができる、粉末冶金用混合粉を提供することにある。さらに、本発明の目的は、その混合粉を用いて作製する機械特性に優れる鉄基焼結体を提供することにある。
 さて、発明者等は、上記の目的を達成するために、Niを含まない粉末冶金用混合粉の合金成分、その添加手段および粉体特性について種々検討を重ねた。その結果、粉末冶金用混合粉につき、Niを一切使用しない代わりに、Moを部分合金化した部分拡散合金鋼粉の平均粒径、比表面積および円形度を制御し、この部分拡散合金鋼粉に、Cu粉を黒鉛粉と共に混合して構成する、ことに想到した。
 すなわち、Moは、焼結熱処理の際にはフェライト安定化元素として働く。その結果、Mo量が多い部分の近傍ではフェライト相を生じて鉄粉同士の焼結が促進され、焼結体の密度を向上する。また、上記部分拡散合金鋼粉の円形度を制御し、低い円形度とすることにより、焼結体において靭性を低下させる粗大な空孔を低減できる。さらに、部分拡散合金鋼粉の比表面積を一定の値以下とすることにより、成形時の圧縮性が改善されることも同時に見出した。さらにまた、部分拡散合金鋼粉の平均粒径を30μm以上に制御すると、合金鋼粉の流動性の向上が併せて実現できることが分った。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
1.鉄基粉末の粒子表面にMoが拡散付着した部分拡散合金鋼粉と、Cu粉および黒鉛粉とを有し、かつMo:0.2~1.5mass%、Cu:0.5~4.0mass%、C:0.1~1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する粉末冶金用混合粉であって、
 前記部分拡散合金鋼粉は、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であり、径が50~100μmの範囲にある粒子の円形度が0.65以下であることを特徴とする粉末冶金用混合粉。
2.前記Cu粉の平均粒径が50μm以下であることを特徴とする前記1に記載の粉末冶金用混合粉。
3.前記鉄基粉末がアトマイズ生粉およびアトマイズ鉄粉のいずれか一方または両方であることを特徴とする前記1または2に記載の粉末冶金用混合粉。
4.前記1から3のいずれかに記載の粉末冶金用混合粉を含む成形体の焼結体である焼結体。
5.鉄基粉末の粒子表面にMoが拡散付着した部分拡散合金鋼粉と、Cu粉および黒鉛粉とを有し、かつMo:0.2~1.5mass%、Cu:0.5~4.0mass%、C:0.1~1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する粉末冶金用混合粉であって、前記部分拡散合金鋼粉は、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であり、径が50~100μmの範囲にある粒子の円形度が0.65以下である、粉末冶金用混合粉の成形体を焼結する焼結体の製造方法。
6.前記Cu粉の平均粒径が50μm以下であることを特徴とする前記5に記載の焼結体の製造方法。
7.前記鉄基粉末がアトマイズ生粉およびアトマイズ鉄粉のいずれか一方または両方であることを特徴とする前記5または6に記載の焼結体の製造方法。
 本発明によれば、Niを一切使用しないNiフリーの成分系でありながら、Niを含有する場合と同等以上の優れた特性を有する焼結体を製造することができる、粉末冶金用混合粉末が得られる。また、本発明の粉末冶金用混合粉末は、流動性が高いため、加圧成形するために該粉末冶金用混合粉末を金型へ充填する際の作業効率に優れる。さらに、本発明によれば、通常の焼結法であっても、優れた強度と靭性を兼ね備えた焼結体を、安価に製造することができる。
 以下、本発明を具体的に説明する。
 本発明の粉末冶金用混合粉は、鉄基粉末の表面にMoが拡散付着した、適正な平均粒径および比表面積を有する部分拡散合金鋼粉(以下、部分合金鋼粉ともいう)に、Cu粉および黒鉛粉を混合した粉末冶金用混合粉である。
 特に、部分拡散合金鋼粉は、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であること並びに径が50~100μmの範囲にある粉末の円形度が0.65以下であること、が必要である。さらに、粉末冶金用混合粉は、Mo:0.2~1.5mass%、Cu:0.5~4.0mass%、C:0.1~1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する必要がある。
 該粉末冶金用混合粉は、常法の加圧成形により成形体とし、さらに常法の焼結を行うことによって、本発明に従う焼結体が得られる。このとき、成形体の鉄基粉末粒子間の焼結ネック部に、Moの濃化部が形成されること、および部分拡散合金鋼粉の円形度が低いことによって、成形時の粉末同士の絡み合いが強くなる結果、その後の焼結が促進する。
 この様に焼結体での密度が増加すると、焼結体の強度および靭性はともに向上するが、従来材のようなNiを使用した焼結体とは異なり、本発明の焼結体の機械特性は、金属組織が均一なために、ばらつきが小さく安定したものとなる。
 以下、本発明の粉末冶金用混合粉について具体的に説明する。なお、以下に示す「%」は特に断らない限り「mass%」を意味し、Mo量、Cu量および黒鉛粉量は、粉末冶金用混合粉全体(100 mass%)における、それぞれの比率を示している。
(鉄基粉末)
 上記のとおり、部分拡散合金鋼粉は、鉄基粉末の表面にMoが拡散付着したものであり、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であること並びに径が50~100μmの範囲にある粉末の円形度が0.65以下であること、が肝要である。ここで、鉄基粉末に部分合金化を施した際、粒径および円形度はほとんど変化しない。従って、部分拡散合金鋼粉の平均粒径および円形度と同じ範囲内の鉄基粉末を用いる。
 まず、鉄基粉末は、平均粒径が30~120μmおよび径が50~100μmの範囲にある粉末の円形度(断面円形度)が0.65以下であることが好ましい。すなわち、後述する理由から部分合金鋼粉の平均粒径を30~120μmおよび径が50~100μmの範囲にある粉末の円形度を0.65以下とする必要があり、そのためには、鉄基粉末もこれら条件を満足することが必要である。
 ここで、鉄基粉末および部分合金鋼粉の平均粒径は、重量累積分布のメジアン径D50のことであって、JIS Z 8801-1に規定される篩を用いて粒度分布を測定し、得られた粒度分布から積算粒度分布を作成したときに、篩上および篩下の重量が50%となる粒子径のことである。
 また、鉄基粉末および部分合金鋼粉の円形度は以下に従って求めることができる。なお、以下では鉄基粉末を例にして説明するが、部分合金鋼粉の場合も同様の手順で円形度を求める。
 まずは、鉄基粉末を熱硬化性樹脂に埋め込む。このとき、埋込樹脂を研磨して現出させる観察面において、十分な量の鉄基粉末断面が観察できるように、0.5mm以上の厚みで満遍なく鉄基粉末を熱硬化性樹脂に埋め込む。その後、研磨により鉄基粉末の断面を現出させ、その断面を鏡面研磨し、該断面を光学顕微鏡で拡大して写真撮影する。得られた断面写真から画像解析により該断面写真における各鉄基粉末の断面積Aおよび外周長さLpを求める。このような画像解析が可能なソフトとしては、例えばImage J(オープンソース,アメリカ国立衛生研究所)などがある。求めた断面積Aより円相当径dcを算出する。ここで、dcは以下の式(I)によって求められる。
Figure JPOXMLDOC01-appb-I000001
 次に、粒子径dcに円周率πをかけることで円近似外周Lcを算出する。得られたLcと鉄基粉末断面の外周長さLpより円形度Cを算出する。ここで、円形度Cは以下の式(II)で定義される値とする。
 この円形度Cが1の場合、断面形状は真円となり、値Cが小さくなるにつれて不定形な断面となる。
Figure JPOXMLDOC01-appb-I000002
 なお、鉄基粉末とは、Fe含有量が50%以上である粉末を意味する。鉄基粉末としては、例えば、アトマイズ生粉(アトマイズままのアトマイズ鉄粉)、アトマイズ鉄粉(アトマイズ生粉を還元性雰囲気化で還元したもの)および還元鉄粉などが挙げられる。特に、本発明で用いる鉄基粉末は、アトマイズ生粉またはアトマイズ鉄粉が好ましい。なぜなら、還元鉄粉は粒子中に多くの空孔を含む為、加圧成形時に十分な密度が得られない可能性があるからである。また、還元鉄粉は、粒子中に破壊の起点となる介在物をアトマイズ鉄粉よりも多く含み、焼結体の重要な力学特性である疲労強度を低下させる虞がある。
 すなわち、本発明に用いられる好適な鉄基粉末は、溶鋼をアトマイズし、乾燥、分級し、脱酸処理(還元処理)や脱炭処理などのための熱処理を加えていないアトマイズ生粉か、またはアトマイズ生粉を還元雰囲気下で還元したアトマイズ鉄粉のいずれかである。
 上記した円形度に従う鉄基粉末は、アトマイズ時の噴霧条件や噴霧後に行う追加工の条件を適宜に調整することによって得ることが出来る。また、円形度の異なる鉄基粉末を混合し、粒子径が50~100μmの範囲にある鉄基粉末の円形度が上記の範囲内に納まるように調整しても構わない。
(部分拡散合金鋼粉)
 部分拡散合金鋼粉は、上記した鉄基粉末の表面にMoが拡散付着したものであり、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であること並びに径が50~100μmの範囲にある粉末の円形度が0.65以下である、必要がある。
 すなわち、部分拡散合金鋼粉は、上記した鉄基粉末にMoを拡散付着して作製する。その際のMo量は、粉末冶金用混合粉全体(100%)において0.2~1.5%の比率とする。Mo量が0.2%を下回ると、粉末冶金用混合粉を用いて作製する焼結体において、焼入れ性向上効果が少なく、強度向上効果も少なくなる。一方、1.5%を超えると、焼結体における焼入れ性向上効果は飽和し、むしろ焼結体の組織の不均一性が高まるため、焼結体で高強度や高靭性が得られなくなる。したがって、拡散付着させるMo量は0.2~1.5%とする。好ましくは0.3~1.0%であり、さらに好ましくは0.4~0.8%である。
 ここで、Moの供給源としては、Mo含有粉末を挙げることができる。Mo含有粉末は、Moの純金属粉末をはじめとして、酸化Mo粉末、あるいはFe-Mo(フェロモリブデン)粉末などのMo合金粉末が例示される。また、Moの化合物としては、Mo炭化物、Mo硫化物およびMo窒化物などが好適Mo含有粉末として使用できる。これらは、単独で使用しても、複数の物質を混合して使用してもよい。
 具体的には、上記した鉄基粉末とMo含有粉末を、前述した比率(粉末冶金用混合粉全体(100%)における、Mo量が0.2~1.5%)で混合する。混合方法については、特に制限はなく、例えばヘンシェルミキサーやコーン型ミキサーなどを用いて、常法に従い行うことができる。
 次いで、上記した鉄基粉末とMo含有粉末との混合粉を加熱し、鉄基粉末とMo含有粉末との接触面を介してMoを鉄基粉末中に拡散させてMoを鉄基粉末に接合する。この熱処理によって、Moを含有する部分合金鋼粉が得られる。
 上記熱処理の雰囲気としては、還元性雰囲気や水素含有雰囲気が好適であり、とりわけ水素含有雰囲気が適している。或いは、真空下で熱処理を加えても良い。
 また、熱処理の温度は、例えば、Mo含有粉末として酸化Mo粉末等のMo化合物を用いた場合、800~1100℃の範囲が好適である。熱処理の温度が800℃未満であると、Mo化合物の分解が不十分になってMoが鉄基粉末中へ拡散せず、Moの付着が困難となる。また、1100℃超えると、熱処理中の鉄基粉末同士の焼結が進み、鉄基粉末の円形度が規定の範囲を超えてしまう。一方、Mo含有粉末として、Mo純金属やFe-Moなどの金属および合金を用いる場合、好適な熱処理温度は600~1100℃の範囲である。熱処理の温度が600℃未満であると、鉄基粉末へのMoの拡散が不十分となりMoの付着が困難となる。一方、1100℃を超えると、熱処理中の鉄基粉末同士の焼結が進み、部分合金鋼粉の円形度が規定の範囲を超えてしまう。
 上述のようにして、熱処理すなわち拡散付着処理を行った場合、通常は、部分合金鋼粉相互が焼結して固まった状態となっているため、以下に示す規定の粒径に粉砕・分級を行う。すなわち、規定の粒径になるように、必要に応じて粉砕条件の強化、あるいは、所定の目開きの篩での分級による粗粉の除去を行う。さらに、必要に応じて、焼鈍を行ってもよい。
 すなわち、部分合金鋼粉の平均粒径を30~120μmの範囲とすることが肝要である。好ましくは前記平均粒径の下限は40μmであり、さらに好ましくは50μmである。一方、前記平均粒径の上限は100μmであり、さらに好ましくは80μmである。
 なお、部分合金鋼粉の平均粒径は、上述のとおり、重量累積分布のメジアン径D50のことであって、JIS Z 8801-1に規定される篩を用いて粒度分布を測定し、得られた粒度分布から積算粒度分布を作成したときに、篩上および篩下の重量が50%となる粒子径のことである。
 ここで、部分合金鋼粉の平均粒径が30μmを下回ると、部分合金鋼粉の流動性が悪くなって、金型での圧縮成形時の製造効率などの点に支障をきたす。一方、部分合金鋼粉の平均粒径が120μmを超えると、焼結の際の駆動力が弱くなって、焼結工程において粗大な部分合金鋼粉の周囲に粗大な空孔が形成され、焼結密度の低下をもたらし、焼結体やこの焼結体に浸炭・焼入れ・焼戻しを施した後の、強度や靭性を低下させる原因となる。なお、部分合金鋼粉の最大粒径は、180μm以下であることが好ましい。
 また、圧縮性の観点から、部分合金鋼粉の比表面積を0.10m2/g未満とする。ここで、部分合金鋼粉の比表面積は、添加剤(Cu粉、黒鉛粉、潤滑剤)を除く、部分合金鋼粉の粉末の比表面積を指す。
 部分合金鋼粉の比表面積が0.10m2/gを超えると、粉末冶金用混合粉の流動性が低下する。なお、下限は、特に無いが、0.010m2/g程度が工業的に得られる限界である。比表面積については、拡散付着処理後の100μmを超える粗粒および50μm未満の微粒の粒度を篩分けにより調整することにより、任意に制御することが可能である。すなわち、微粒の比率を小さくするもしくは粗粒の比率を大きくすることで、比表面積は低下する。
 さらに、部分合金鋼粉の径が50~100μmにある粒子の円形度を0.65以下にする必要がある。この円形度は、好ましくは0.60以下、更に好ましくは0.58以下とするのが良い。すなわち、円形度を小さくすることにより、加圧成形時の粉末同士の絡み合いが強くなるとともに、粉末冶金用混合粉の圧縮性が向上するため、成形体および焼結体中の粗大な空孔が減少する。一方で、過度に円形度を小さくすると粉末冶金用混合粉の圧縮性の低下を招くため、円形度は0.40以上とすることが好ましい。
 なお、部分合金鋼粉の径が50~100μmにある粒子の円形度は、次のように測定することができる。まず、上記した鉄基粉末と同様に算出した、部分合金鋼粉の粒子径をdcとして、このdcが50~100μmの範囲にある部分合金鋼粉を抽出する。このとき、少なくとも50~100μmの範囲にある部分合金鋼粉の粒子が150個抽出できるに十分の光学顕微鏡撮影を行う。そして、抽出した部分合金鋼粉について、上記した鉄基粉末の場合と同様に円形度の算出を行う。
 なお、部分合金鋼粉の粒子径を50~100μmに限定する理由は、左記範囲の粉末の円形度を下げることが、焼結促進には最も効果的であるためである。すなわち、50μm未満の粒子は微粒であることから元々焼結促進効果が高く、50μm未満の粒子の円形度を低下させたとしてもその焼結促進効果は小さい。また、粒子径100μm超の粒子は、きわめて粗大であり、例え円形度を低下させたとしても焼結促進効果は小さい。
 なお、部分合金鋼粉の円形度は、前述の鉄基粉末の円形度と同じ方法で求めることができる。
 本発明において、部分合金鋼粉における残部組成は、鉄および不可避不純物である。ここで、部分合金鋼粉に含有される不純物としては、C(黒鉛分を除く)、O、NおよびS等が挙げられるが、これらの含有量は、部分合金鋼粉においてそれぞれ、C:0.02%以下、O:0.3%以下、N:0.004%以下、S:0.03%以下、Si:0.2%以下、Mn:0.5%以下、P:0.1%以下であれば特に問題はないが、Oは0.25%以下がより好ましい。なお、不可避不純物量がこれらの範囲を超えると、部分合金鋼粉を用いた成形における圧縮性が低下してしまい、十分な密度を有する成形体に成形することが困難となる。
 本発明では、粉末冶金用混合粉を用いて作製した焼結体を、さらに浸炭・焼入れ・焼戻した後に1000MPa以上の引張強さを得る目的から、上記で得られた部分合金鋼粉にCu粉および黒鉛粉を添加する。
(Cu粉)
 Cuは、鉄基粉末の固溶強化および焼入れ性向上を促し、焼結部品の強度を高める有用元素であり、0.5%以上4.0%以下で添加する。すなわち、Cu粉の添加量が0.5%に満たないと、上記したCu添加の有用な効果が現れにくく、一方4.0%を超えると、焼結部品の強度向上効果が飽和するばかりでなく、焼結体密度の低下を招く。したがって、Cu粉の添加量を0.5~4.0%の範囲に限定する。好ましくは1.0~3.0%の範囲である。
 また、粒度が粗いCu粉を用いると、粉末冶金用混合粉の成形体を焼結する際に、溶融したCuが部分合金鋼粉の粒子間に浸入して焼結後の焼結体の体積を膨張させ、焼結体密度を低下させてしまうおそれがある。このような焼結体密度の低下を抑制するには、Cu粉の平均粒径を50μm以下とすることが好ましい。より好ましくは40μm以下、更に好ましくは30μm以下とする。なお、Cu粉の平均粒径の下限に特に制限はないが、Cu粉の製造コストを無用に上げないために0.5μm程度が好ましい。
 ここで、Cu粉の平均粒子径は以下の手法によって求めることができる。
 平均粒子径が45μm以下の粉末は篩分けによる平均粒子径の測定が困難なため、レーザー回折/散乱式粒度分布測定装置による粒子径の測定を行う。レーザー回折/散乱式粒度分布測定装置としては、堀場製作所製:LA-950V2などがある。もちろん、他のレーザー回折/散乱式粒度分布測定装置を使用しても構わないが、正確な測定を行う為に測定可能粒子径範囲の下限が0.1μm以下、上限が45μm以上のものを用いることが好ましい。前記装置では、Cu粉を分散させた溶媒に対してレーザー光を照射し、レーザー光の回折、散乱強度からCu粉の粒度分布および平均粒子径を測定する。Cu粉を分散させる溶媒として、粒子の分散性が良く、扱いが容易であるエタノールを用いるのが好ましい。水などのファンデルワールス力が高く、分散性の低い溶媒を用いると、測定中に粒子が凝集し、本来の平均粒子径よりも粗い測定結果が得られるので好ましくない。従って、Cu粉を投入したエタノール溶液に対して、測定前に超音波による分散処理を実施することが好ましい。なお、対象とする粉末によって、適正な分散処理時間が異なるため、前記分散処理時間を0~60minの間で10min間隔の7段階で実施し、各分散処理後にCu粉の平均粒子径の測定を行う。各測定中は粒子の凝集を防ぐために、溶媒を攪拌しながら測定を行う。そして、分散処理時間を10min間隔で変更して行った7回の測定で得られた粒子径のうち、最も小さい値をCu粉の平均粒子径として用いる。
(黒鉛粉)
 黒鉛粉は、強度並びに疲労強度を高めるために有効であるため、部分合金鋼粉に0.1~1.0%を添加し、混合する。黒鉛粉の添加量が0.1%に満たないと上記の効果を得ることができない。一方、1.0%を超えると過共析になるため、セメンタイトが析出して強度の低下を招く。したがって、黒鉛粉の添加量を0.1~1.0%の範囲に限定する。好ましくは、0.2~0.8%である。なお、添加する黒鉛粉の平均粒径は、1~50μm程度の範囲が好ましい。
 また、本発明では、Moを拡散付着させた部分拡散合金鋼粉に、上記したCu粉および黒鉛粉を混合してFe-Mo-Cu-C系の粉末冶金用混合粉とするのであるが、その混合方法は、粉体混合の常法に従って行えばよい。
 さらに、焼結体の段階で、切削加工などによりさらに部品形状を作り込む必要がある場合には、粉末冶金用混合粉にMnSなどの切削性改善用粉末の添加を常法に従い適宜行うことができる。
 次に、本発明の粉末冶金用混合粉を用いた焼結体の製造に好適な成形条件および焼結条件について説明する。
 本発明の粉末冶金用混合粉を用いた加圧成形では、さらに、粉末状の潤滑剤を混合することができる。また、金型に潤滑剤を塗布あるいは付着させて成形することもできる。いずれの場合であっても、潤滑剤として、ステアリン酸亜鉛やステアリン酸リチウムなどの金属石鹸、エチレンビスステアリン酸アミドなどのアミド系ワックスおよびその他公知の潤滑剤のいずれもが好適に用いることができる。なお、潤滑剤を混合する場合は、粉末冶金用混合粉:100質量部に対して、0.1~1.2質量部程度とすることが好ましい。
 本発明の粉末冶金用混合粉を加圧成形し成形体を製造するに当たり、加圧成形を400~1000MPaの加圧力で行うことが好ましい。加圧力が400MPaに満たないと、得られる成形体の密度が低くなって、焼結体の特性が低下する。一方、1000MPaを超えると金型の寿命が極端に短くなって、経済的に不利になる。なお、加圧成形の温度は、常温(約20℃)~約160℃の範囲とすることが好ましい。
 また、上記成形体の焼結は、1100~1300℃の温度域で行うことが好ましい。焼結温度が1100℃に満たないと焼結が進行しなくなって、所望の引張強さ:1000MPa以上を得ることが難しくなる。一方、1300℃を超えると焼結炉の寿命が短くなって、経済的に不利になる。なお、焼結時間は10~180分の範囲とすることが好ましい。
 かかる手順で、本発明に従う粉末冶金用混合粉を用い、上記焼結条件で得られた焼結体は、上記範囲を外れた合金鋼粉を用いた場合に比べて、同一成形体密度であっても、焼結後に高い焼結体密度が得られる。
 また、得られた焼結体には、必要に応じて、浸炭焼入れや、光輝焼入れ、高周波焼入れ、浸炭窒化処理等の強化処理を行うことができるが、これら強化処理を行わない場合であっても、本発明に従う粉末冶金用混合粉を用いた焼結体は、強化処理を行わない従来の焼結体に比べて強度および靭性が改善されている。なお、各強化処理は常法に従って行えば良い。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明は、以下の例だけに限定されるものではない。
[実施例1]
 鉄基粉末には、円形度の異なるアトマイズ生粉を用いた。アトマイズ生粉の円形度を、ハイスピードミキサー(深江パウテック社製 LFS-GS-2J型)による粉砕加工をアトマイズ生粉へ与えることによって種々異なるようにした。
 この鉄基粉末に、酸化Mo粉末(平均粒径:10μm)を所定の比率で添加し、V型混合機で15分間混合したのち、露点:30℃の水素雰囲気中で熱処理(保持温度:880℃、保持時間:1h)して、鉄基粉末の粒子表面に表1に示す所定量のMoを拡散付着させた部分合金鋼粉を作製した。なお、Mo量を表1の試料No.1~8に示すように種々に変更した。
 作製した部分合金鋼粉を樹脂に埋め込み、部分合金鋼粉の断面が露出するように研磨を実施した。なお、この研磨面、すなわち観察面において十分な量の部分合金鋼粉断面が観察できるように、0.5mm以上の厚みで満遍なく部分合金鋼粉を熱硬化性樹脂に埋め込んだ。研磨後に当該研磨面を光学顕微鏡で拡大して写真撮影し、上述したところに従って画像解析により円形度を算出した。
 また、BET法による比表面積測定を部分合金鋼粉に実施した。いずれの部分合金鋼粉も比表面積が0.10m2/g未満であることを確認した。
 ついで、これらの部分合金鋼粉に対して、表1に示す平均粒径と量のCu粉、同じく表1に示す量の黒鉛粉(平均粒径:5μm)を添加して混合することによって、粉末冶金用混合粉を作製した。なお、表1中のCu粉の粒子径は上記した方法にて測定した値である。
 ちなみに、試料No.9~25は、試料No.5と同等の部分合金鋼粉を用いており、添加するCu粉や黒鉛粉の量を種々に変更している。試料No.26~31は、試料No.5の部分合金鋼粉をベースとして、篩分により平均粒子径を調整している。また、試料No.32~38は部分合金鋼粉の円形度が種々に異なっている。
 その後、得られた粉末冶金用混合粉:100質量部に対してエチレンビスステアリン酸アミドを0.6質量部添加してV型混合機で15分間混合したものを、密度7.0g/cm3に加圧成形して、長さ:55mm、幅:10mmおよび厚さ:10mmの棒状成形体(各々10個)、および外径:38mm、内径:25mmおよび厚さ:10mmのリング状成形体をそれぞれ作製した。
 この棒状成形体およびリング状成形体に焼結を施して、焼結体とした。この焼結は、プロパン変成ガス雰囲気中にて、焼結温度:1130℃、焼結時間:20分の条件で行った。
 リング状焼結体については、外径、内径および厚さの測定および質量測定を行い、焼結体密度(Mg/m3)を算出した。
 棒状状焼結体については、各々5個をJIS Z2241で規定される引張試験に供するために、平行部径:5mmの丸棒引張試験片(JIS 2号) に加工し、また、各々5個をJIS Z2242で規定されるシャルピー衝撃試験に供するため、JIS Z2242に規定された大きさの焼結したままの棒形状(ノッチ無し)で、いずれもカーボンポテンシャル:0.8mass%のガス浸炭(保持温度:870℃、保持時間:60分)を行い、続いて焼入れ(60℃、油焼入れ)および焼戻し(保持温度:180℃、保持時間:60分)を行った。
 これらの浸炭・焼入れ・焼戻し処理を施した丸棒引張試験片およびシャルピー衝撃試験用棒状試験片を、JIS Z2241で規定される引張試験およびJIS Z2242で規定されるシャルピー衝撃試験に供して、引張強さ(MPa)および衝撃値(J/cm2)を測定し、試験数n=5での平均値を求めた。
 以上の測定結果を表1に併記する。
 なお、判定基準は以下のとおりである。
(1)流動性
 粉末冶金用混合粉:100gを径:2.5mmφのノズルを通して、停止することなく全量80s以内に流れきったものを合格(○)、80sを超える時間を要したもの、もしくは全量あるいは一部が停止して流れなかったものを不合格(×)と判定した。
(2)焼結体密度
 焼結体密度は、従来材である4Ni材(4Ni-1.5Cu-0.5Mo、原料粉の最大粒径:180μm)と同等以上である、6.95Mg/m3以上の場合を合格と判定した。
(3)引張強さ
 浸炭・焼入れ・焼戻し処理を施した丸棒引張試験片についての引張強さが1000MPa以上の場合を合格と判定した。
(4)衝撃値
 浸炭・焼入れ・焼戻し処理を施したシャルピー衝撃試験用棒状状試験片についての衝撃値が14.5J/cm2以上の場合を合格と判定した。
Figure JPOXMLDOC01-appb-T000001
 ここで、試料No.1~8はMo量の影響、No.9~14はCu量の影響、No.15~19は黒鉛量の影響、No.20~25はCu粒子径の影響、No.26~31は合金分粒子径の影響、No.32~38は部分合金鋼粉の円形度および平均粒径の影響を検討した結果である。なお、表1には、従来材として4Ni材(4Ni-1.5Cu-0.5Mo、原料粉の最大粒径:180μm)の結果を併せて示した。発明例は、従来の4Ni材以上の特性が得られることが分かる。
 表1に示すように、発明例はいずれも、Niを一切使用しない成分系でありながら、Ni添加材を用いた場合と同等以上の引張強さと靭性をもつ焼結体を得ることができる、粉末冶金用混合粉が得られていることが分かる。
 さらに、発明例では、合金鋼粉の流動性に優れていることも確認できる。
[実施例2]
 本発明例と特許文献3との技術的差異を明確にするため、以下のような実験を実施した。
 比表面積および円形度の異なる3種類のアトマイズ鉄粉を準備した。比表面積および円形度の調整は、ハイスピードミキサー(深江パウテック社製 LFS-GS-2J型)による粉砕加工をアトマイズ鉄粉へ与えることと、粒度100μm以上の粗粉および45μm以下の微粉との配合割合を調整することによって行った。
 この鉄基粉末に、酸化Mo粉末(平均粒径:10μm)を所定の比率で添加し、V型混合機で15分間混合したのち、露点:30℃の水素雰囲気中で熱処理(保持温度:880℃、保持時間:1h)して、鉄基粉末の粒子表面に表2に示す所定量のMoを拡散付着させた部分合金鋼粉を作製した。これらの部分合金鋼粉を樹脂に埋め込み、部分合金鋼粉の断面が露出するように研磨を実施した後に、光学顕微鏡で拡大の上写真を撮影し、画像解析により円形度を算出した。また、BET法による比表面積の測定を部分合金鋼粉に実施した。
 ついで、これらの部分合金鋼粉に対して、平均粒径35μmのCu粉を2mass%と、0.3mass%の黒鉛粉(平均粒径:5μm)を添加し混合することによって、粉末冶金用混合粉を作製した。得られた粉末冶金用混合粉:100質量部に対してエチレンビスステアリン酸アミドを0.6質量部添加してV型混合機で15分間混合したものを、成型圧力686MPaで成形し、長さ:55mm、幅:10mmおよび厚さ:10mmの棒状成形体(各々10個)、および外径:38mm、内径:25mmおよび厚さ:10mmのリング状成形体を作製した。
 この棒状成形体およびリング状成形体を焼結して、焼結体とした。この焼結は、プロパン変成ガス雰囲気中にて、焼結温度:1130℃、焼結時間:20分の条件で行った。
 リング状焼結体については、外径、内径および厚さの測定および質量測定を行い、焼結体密度(Mg/m3)を算出した。
 棒状焼結体については、各々5個をJIS Z2241で規定される引張試験に供するため平行部径:5mmの丸棒引張試験片(JIS 2号)に加工し、また、各々5個をJIS Z2242で規定されるシャルピー衝撃試験に供するため、JIS Z2242に規定された大きさの焼結したままの棒形状で(ノッチ無し)、いずれもカーボンポテンシャル:0.8mass%のガス浸炭(保持温度:870℃、保持時間:60分)を行い、続いて焼入れ(60℃、油焼入れ)および焼戻し(保持温度:180℃、保持時間:60分)を行った。
 これらの浸炭・焼入れ・焼戻し処理を施した丸棒引張試験片およびシャルピー衝撃試験用棒状試験片を、JIS Z2241で規定される引張試験およびJIS Z2242で規定されるシャルピー衝撃試験に供して、引張強さ(MPa)および衝撃値(J/cm2)を測定し、試験数n=5での平均値を求めた。
 測定結果を表2に併記する。また、各種特性値の合格基準は実施例1と同じである。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、比表面積が発明の範囲内となるもののみが流動性がよいことがわかる。また、円形度が大きいと衝撃値が低くなっていることがわかる。

Claims (7)

  1.  鉄基粉末の粒子表面にMoが拡散付着した部分拡散合金鋼粉と、Cu粉および黒鉛粉とを有し、かつMo:0.2~1.5mass%、Cu:0.5~4.0mass%、C:0.1~1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する粉末冶金用混合粉であって、
     前記部分拡散合金鋼粉は、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であり、径が50~100μmの範囲にある粒子の円形度が0.65以下であることを特徴とする粉末冶金用混合粉。
  2.  前記Cu粉の平均粒径が50μm以下であることを特徴とする請求項1に記載の粉末冶金用混合粉。
  3.  前記鉄基粉末がアトマイズ生粉およびアトマイズ鉄粉のいずれか一方または両方であることを特徴とする請求項1または2に記載の粉末冶金用混合粉。
  4.  請求項1から3のいずれかに記載の粉末冶金用混合粉を含む成形体の焼結体である焼結体。
  5.  鉄基粉末の粒子表面にMoが拡散付着した部分拡散合金鋼粉と、Cu粉および黒鉛粉とを有し、かつMo:0.2~1.5mass%、Cu:0.5~4.0mass%、C:0.1~1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する粉末冶金用混合粉であって、前記部分拡散合金鋼粉は、平均粒径が30~120μmおよび比表面積が0.10m2/g未満であり、径が50~100μmの範囲にある粒子の円形度が0.65以下である、粉末冶金用混合粉の成形体を焼結する焼結体の製造方法。
  6.  前記Cu粉の平均粒径が50μm以下であることを特徴とする請求項5に記載の焼結体の製造方法。
  7.  前記鉄基粉末がアトマイズ生粉およびアトマイズ鉄粉のいずれか一方または両方であることを特徴とする請求項5または6に記載の焼結体の製造方法。
PCT/JP2016/004258 2015-09-18 2016-09-16 粉末冶金用混合粉、焼結体および焼結体の製造方法 WO2017047100A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680049635.8A CN108025357B (zh) 2015-09-18 2016-09-16 粉末冶金用混合粉、烧结体及烧结体的制造方法
SE1850096A SE541269C2 (en) 2015-09-18 2016-09-16 Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body
CA2992092A CA2992092C (en) 2015-09-18 2016-09-16 Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body
JP2017500097A JP6160792B1 (ja) 2015-09-18 2016-09-16 粉末冶金用混合粉、焼結体および焼結体の製造方法
US15/739,839 US10710155B2 (en) 2015-09-18 2016-09-16 Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body
KR1020187005232A KR102097956B1 (ko) 2015-09-18 2016-09-16 분말 야금용 혼합분, 소결체 및 소결체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185636 2015-09-18
JP2015185636 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047100A1 true WO2017047100A1 (ja) 2017-03-23

Family

ID=58288597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004258 WO2017047100A1 (ja) 2015-09-18 2016-09-16 粉末冶金用混合粉、焼結体および焼結体の製造方法

Country Status (7)

Country Link
US (1) US10710155B2 (ja)
JP (1) JP6160792B1 (ja)
KR (1) KR102097956B1 (ja)
CN (1) CN108025357B (ja)
CA (1) CA2992092C (ja)
SE (1) SE541269C2 (ja)
WO (1) WO2017047100A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188833A1 (ja) * 2018-03-26 2019-10-03 Jfeスチール株式会社 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
JPWO2020202805A1 (ja) * 2019-04-05 2021-04-30 Jfeスチール株式会社 粉末冶金用鉄基混合粉末および鉄基焼結体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428909B2 (ja) * 2015-09-18 2018-11-28 Jfeスチール株式会社 鉄基焼結体およびその製造方法
JP7036216B2 (ja) * 2019-05-24 2022-03-15 Jfeスチール株式会社 鉄基合金焼結体及び粉末冶金用鉄基混合粉
KR102432708B1 (ko) * 2020-03-25 2022-08-18 아오메탈주식회사 몰리브덴-동 소결 합금의 제조방법
CN112247138A (zh) * 2020-09-23 2021-01-22 山东鲁银新材料科技有限公司 一种扩散型铁铜合金基粉及其制备方法
KR102586490B1 (ko) * 2021-08-13 2023-10-06 현대자동차주식회사 아우터링 및 아우터링을 제조하는 방법
CN114871424A (zh) * 2022-05-10 2022-08-09 辽宁晟钰新材料科技有限公司 一种粉末冶金用无镍扩散合金钢粉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257539A (ja) * 2004-04-22 2006-09-28 Jfe Steel Kk 粉末冶金用混合粉体
JP2008231538A (ja) * 2007-03-22 2008-10-02 Toyota Motor Corp 鉄系焼結体及びその製造方法
JP2014237878A (ja) * 2013-06-07 2014-12-18 Jfeスチール株式会社 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
JP5949952B2 (ja) * 2013-09-26 2016-07-13 Jfeスチール株式会社 鉄基焼結体の製造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212876A (en) 1963-04-22 1965-10-19 Hoganasmetoder Ab Method for the production of iron powder from sponge iron
US4069044A (en) * 1976-08-06 1978-01-17 Stanislaw Mocarski Method of producing a forged article from prealloyed-premixed water atomized ferrous alloy powder
JPH01290702A (ja) * 1988-05-17 1989-11-22 Sumitomo Metal Ind Ltd 粉末冶金用鉄系粉末とその製造方法
JP2812573B2 (ja) 1990-09-07 1998-10-22 アルプス電気株式会社 磁気ヘッド
JPH04285141A (ja) 1991-03-14 1992-10-09 Kawasaki Steel Corp 鉄系焼結体の製造方法
JPH07310101A (ja) 1994-05-12 1995-11-28 Powder Tec Kk 焼結含油軸受用還元鉄粉およびその製造方法
JP3484674B2 (ja) * 1994-09-21 2004-01-06 同和鉄粉工業株式会社 粉末冶金用鉄基銅複合粉末の製造方法
JP3326072B2 (ja) * 1995-04-25 2002-09-17 川崎製鉄株式会社 粉末冶金用鉄基混合物およびその製造方法
JP3663929B2 (ja) 1998-08-20 2005-06-22 Jfeスチール株式会社 高強度焼結部品用混合粉
US6514307B2 (en) 2000-08-31 2003-02-04 Kawasaki Steel Corporation Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density
JP3651420B2 (ja) 2000-08-31 2005-05-25 Jfeスチール株式会社 粉末冶金用合金鋼粉
CN2445270Y (zh) 2000-09-14 2001-08-29 山东莱芜粉末冶金厂 水雾化钢铁粉末烘干机
GB2386908B (en) 2001-01-24 2004-09-29 Federal Mogul Sintered Prod Sintered ferrous material containing copper
CA2476836C (en) 2003-08-18 2009-01-13 Jfe Steel Corporation Alloy steel powder for powder metallurgy
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
JP4704108B2 (ja) * 2005-05-27 2011-06-15 Jx日鉱日石金属株式会社 粉末冶金用複合粉末及びその製造方法
US20090041608A1 (en) 2006-02-15 2009-02-12 Jfe Steel Corporation A Corporation Of Japan Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body
DE502006008730D1 (de) * 2006-12-01 2011-02-24 Ruthner Michael Johann Verfahren zur Herstellung von Eisenpulver oder Stahlpulver aus Eisenoxid-Pulver durch Oxidation und Reduktion
WO2008093430A1 (ja) * 2007-01-30 2008-08-07 Jfe Steel Corporation 高圧縮性鉄粉、およびそれを用いた圧粉磁芯用鉄粉と圧粉磁芯
CA2689286A1 (en) * 2007-06-14 2008-12-18 Hoeganaes Ab (Publ) Iron-based powder and composition thereof
JP5141136B2 (ja) 2007-08-20 2013-02-13 Jfeスチール株式会社 粉末冶金用原料粉末の混合方法
WO2009035119A1 (ja) * 2007-09-14 2009-03-19 Jfe Steel Corporation 粉末冶金用鉄基粉末
CN101896299B (zh) 2007-12-13 2012-10-10 杰富意钢铁株式会社 粉末冶金用铁基粉末
TWI506145B (zh) 2008-06-06 2015-11-01 Hoganas Ab Publ 以鐵為主之預合金化粉末
JP5208647B2 (ja) * 2008-09-29 2013-06-12 日立粉末冶金株式会社 焼結バルブガイドの製造方法
JP5367502B2 (ja) 2009-08-19 2013-12-11 オイレス工業株式会社 鉄系焼結摺動部材及びその製造方法
WO2011051293A1 (en) * 2009-10-26 2011-05-05 Höganäs Ab Iron based powder composition
KR101362036B1 (ko) * 2010-05-19 2014-02-11 스미토모덴키고교가부시키가이샤 자성 부재용 분말, 분말 성형체 및 자성 부재
JP5585237B2 (ja) 2010-06-24 2014-09-10 セイコーエプソン株式会社 粉末冶金用金属粉末および焼結体
JP5552031B2 (ja) 2010-11-09 2014-07-16 株式会社神戸製鋼所 粉末冶金用混合粉末
US9340855B2 (en) 2011-04-06 2016-05-17 Hoeganaes Corporation Vanadium-containing powder metallurgical powders and methods of their use
JP5673893B2 (ja) * 2012-12-28 2015-02-18 Jfeスチール株式会社 粉末冶金用鉄基粉末
JP6048216B2 (ja) * 2013-02-28 2016-12-21 セイコーエプソン株式会社 マグネシウム基合金粉末およびマグネシウム基合金成形体
JP5929967B2 (ja) * 2013-06-07 2016-06-08 Jfeスチール株式会社 粉末冶金用合金鋼粉
CN103506618B (zh) 2013-10-15 2016-02-24 中南大学 粉末冶金用含Mn混合钢粉及制备方法
JP6222189B2 (ja) * 2014-12-05 2017-11-01 Jfeスチール株式会社 粉末冶金用合金鋼粉および焼結体
WO2016088333A1 (ja) * 2014-12-05 2016-06-09 Jfeスチール株式会社 粉末冶金用合金鋼粉および焼結体
KR102022947B1 (ko) * 2015-01-14 2019-11-04 제이에프이 스틸 가부시키가이샤 환원철분의 제조 방법 및 베어링의 제조 방법
KR102058836B1 (ko) * 2015-09-11 2019-12-24 제이에프이 스틸 가부시키가이샤 분말 야금용 혼합 분말의 제조 방법, 소결체의 제조 방법, 및 소결체
JP6428909B2 (ja) * 2015-09-18 2018-11-28 Jfeスチール株式会社 鉄基焼結体およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257539A (ja) * 2004-04-22 2006-09-28 Jfe Steel Kk 粉末冶金用混合粉体
JP2008231538A (ja) * 2007-03-22 2008-10-02 Toyota Motor Corp 鉄系焼結体及びその製造方法
JP2014237878A (ja) * 2013-06-07 2014-12-18 Jfeスチール株式会社 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
JP5949952B2 (ja) * 2013-09-26 2016-07-13 Jfeスチール株式会社 鉄基焼結体の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188833A1 (ja) * 2018-03-26 2019-10-03 Jfeスチール株式会社 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
JP6645631B1 (ja) * 2018-03-26 2020-02-14 Jfeスチール株式会社 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末
CN111902556A (zh) * 2018-03-26 2020-11-06 杰富意钢铁株式会社 粉末冶金用合金钢粉及粉末冶金用铁基混合粉末
CN111902556B (zh) * 2018-03-26 2021-11-19 杰富意钢铁株式会社 粉末冶金用合金钢粉及粉末冶金用铁基混合粉末
US11236411B2 (en) 2018-03-26 2022-02-01 Jfe Steel Corporation Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JPWO2020202805A1 (ja) * 2019-04-05 2021-04-30 Jfeスチール株式会社 粉末冶金用鉄基混合粉末および鉄基焼結体
JP7039692B2 (ja) 2019-04-05 2022-03-22 Jfeスチール株式会社 粉末冶金用鉄基混合粉末および鉄基焼結体

Also Published As

Publication number Publication date
JPWO2017047100A1 (ja) 2017-09-14
CA2992092C (en) 2020-04-07
CA2992092A1 (en) 2017-03-23
JP6160792B1 (ja) 2017-07-12
CN108025357A (zh) 2018-05-11
CN108025357B (zh) 2020-03-03
US10710155B2 (en) 2020-07-14
KR102097956B1 (ko) 2020-04-07
SE1850096A1 (en) 2018-01-29
KR20180031750A (ko) 2018-03-28
SE541269C2 (en) 2019-05-28
US20180193908A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6394768B2 (ja) 粉末冶金用合金鋼粉および焼結体
JP6160792B1 (ja) 粉末冶金用混合粉、焼結体および焼結体の製造方法
JP6428909B2 (ja) 鉄基焼結体およびその製造方法
JP6146548B1 (ja) 粉末冶金用混合粉末の製造方法、焼結体の製造方法、および焼結体
JP6227903B2 (ja) 粉末冶金用合金鋼粉および鉄基焼結体の製造方法
CA2922018C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JP5929967B2 (ja) 粉末冶金用合金鋼粉
WO2016088333A1 (ja) 粉末冶金用合金鋼粉および焼結体
WO2020202805A1 (ja) 粉末冶金用鉄基混合粉末および鉄基焼結体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017500097

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2992092

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187005232

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845974

Country of ref document: EP

Kind code of ref document: A1