WO2017043090A1 - Production method for alloy steel powder for powder metallurgy - Google Patents

Production method for alloy steel powder for powder metallurgy Download PDF

Info

Publication number
WO2017043090A1
WO2017043090A1 PCT/JP2016/004119 JP2016004119W WO2017043090A1 WO 2017043090 A1 WO2017043090 A1 WO 2017043090A1 JP 2016004119 W JP2016004119 W JP 2016004119W WO 2017043090 A1 WO2017043090 A1 WO 2017043090A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
gas
iron
content
alloy steel
Prior art date
Application number
PCT/JP2016/004119
Other languages
French (fr)
Japanese (ja)
Inventor
小林 聡雄
中村 尚道
伊都也 佐藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016575265A priority Critical patent/JP6112277B1/en
Priority to KR1020187002726A priority patent/KR20180022905A/en
Publication of WO2017043090A1 publication Critical patent/WO2017043090A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a method for producing an alloy steel powder for powder metallurgy by reducing atomized iron base powder to produce an alloy steel powder for powder metallurgy, and in particular, the atomized iron base powder is an easily oxidizable element such as Cr and Mn
  • the present invention relates to a method for producing alloy steel powder for powder metallurgy that can effectively reduce the C (carbon) content and O (oxygen) content in the alloy steel powder.
  • Powder metallurgy technology allows parts with complex shapes to be manufactured in a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy. Therefore, if a part is produced using powder metallurgy technology, the cutting cost can be greatly reduced. For this reason, powder metallurgy products to which powder metallurgy technology is applied are used in various fields as various machine parts. Recently, there has been a strong demand for improving the strength of powder metallurgy products in order to reduce the size and weight of parts. In particular, there is a demand for higher strength in iron-based powder metallurgy products (iron-based sintered bodies). Is strong.
  • an alloy element is added to the iron-based powder used in powder metallurgy.
  • the alloy element for example, Cr and Mn are used because they have a high effect of improving hardenability and are relatively inexpensive.
  • alloy powder for powder metallurgy containing the above alloy elements examples include Cr—Mo alloy steel powder (Patent Document 1) and Cr—Mn—Mo alloy steel powder (Patent Document 2, Patent Document 3). Are known.
  • heat treatment is performed to reduce the C content and O content in the iron-based powder as a raw material.
  • the heat treatment is generally carried out continuously using a moving bed furnace (moving bed furnace).
  • the iron-based powder include a crude iron-based powder that has been atomized and a roughly reduced iron obtained by roughly reducing a mill scale.
  • a crude iron-based powder such as a base powder is used.
  • at least one treatment of decarburization, deoxidation, and denitrification is performed according to the use of the powder.
  • an apparatus described in Patent Document 4 is known as an apparatus for performing the heat treatment.
  • the space in the moving bed furnace is divided into a plurality of partitions by a partition wall provided so as to be perpendicular to the traveling direction of the raw material powder.
  • the flow path for flowing atmospheric gas is provided in the upper part of each divided
  • the heat treatment is continuously performed while flowing an atmospheric gas through the channel in a direction opposite to the moving direction of the raw material powder.
  • Cr and Mn are further oxidized during the heat treatment, and the amount of oxide is increased.
  • the C content and the O content are large, the compressibility of the alloy steel powder at the time of pressure forming is lowered, so that a large amount of oxide remains is a problem.
  • Patent Document 5 and Patent Document 6 propose a method that enables decarburization and deoxidation in the production of alloy steel powder containing easily oxidizable elements such as Cr and Mn.
  • the method proposed in Patent Document 6 is a method of performing heat treatment continuously using a belt furnace and is therefore suitable for mass production.
  • it is essential to continuously measure the CO or CO 2 concentration or the oxygen potential (O 2 concentration or H 2 / H 2 O concentration ratio) in the atmospheric gas during the heat treatment, Furthermore, it is necessary to adjust the amount of water vapor injected into the furnace so that these measured values become target values.
  • the sensor part is soiled and the gas intake port is clogged, making it impossible to perform measurement normally. There's a problem. Therefore, when the method of Patent Document 6 is continuously performed, maintenance of the analyzer is a heavy burden.
  • the present invention has been made in view of the above circumstances, and is a method for producing alloy steel powder for powder metallurgy using a moving bed furnace, without requiring gas analysis that requires complicated maintenance management, It aims at providing the manufacturing method of the alloy steel powder for powder metallurgy which can heat-process the iron-base powder containing Cr and Mn, and can reduce C content and O content stably.
  • the gist configuration of the present invention is as follows.
  • alloy steel powder containing Cr and Mn which are easily oxidizable elements
  • the content and the O content can be stably reduced.
  • alloy steel powder that is low in cost and excellent in compressibility during pressure forming.
  • sintered parts produced using the alloy steel powder for powder metallurgy obtained by the production method of the present invention have excellent mechanical properties such as strength, toughness and fatigue properties. Applications of powders and sintered bodies can be expanded.
  • FIG. 1 It is side sectional drawing which shows the example of the heat processing apparatus which can be used in one Embodiment of this invention. It is a figure which shows the example of the temperature pattern in the heat processing apparatus described in patent document 4. FIG.
  • alloy steel powder for powder metallurgy (hereinafter sometimes simply referred to as “alloy steel powder”) is produced by heat-treating atomized iron-based powder as a raw material using a moving bed furnace.
  • the production method of the present invention includes the following treatments; (1) Prepare atomized iron-based powder. (2) supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed having a thickness of d (mm); (3) By supplying hydrogen-containing gas into the moving bed furnace so as to have an average gas flow velocity v (mm / s), and (4) by heat-treating the atomized iron-based powder in the moving bed furnace. Reduce to alloy steel powder for powder metallurgy.
  • Each of the above processes can be performed independently at an arbitrary timing, and a plurality of processes can be performed simultaneously.
  • atomized iron-based powder is used as a raw material.
  • the manufacturing method of the atomized iron-based powder is not particularly limited, and can be manufactured according to a conventional method.
  • “Atomized iron-based powder” means an iron-based powder produced by the atomizing method.
  • the “iron-based powder” means a powder containing 50% by mass or more of Fe.
  • the atomized iron-based powder either a gas atomized iron-based powder obtained by a gas atomizing method or a water atomized iron-based powder obtained by a water atomizing method can be used.
  • the gas atomization method it is preferable to use an inert gas such as nitrogen or argon.
  • gas since gas is inferior in cooling capacity compared to water, it is necessary to use a large amount of gas when producing iron-based powder by the gas atomization method. Therefore, it is preferable to use the water atomization method from the viewpoint of mass productivity and manufacturing cost.
  • the water atomization method is normally performed in an atmosphere in which air is mixed, the iron-based powder is more easily oxidized in the production process than the gas atomization method. Therefore, the method of the present invention is particularly effective when a water atomized iron-based powder is used.
  • C and O are elements to be reduced by a heat treatment described later. And from the viewpoint of improving the compressibility of the finally obtained alloy steel powder for powder metallurgy, it is desirable to reduce the C content and O content of the alloy steel powder as much as possible, specifically, C: 0.1% or less, O: 0.28% or less are preferable. In order to achieve these appropriate amounts of C and O, the amount that can be reduced by the heat treatment according to the present invention is anticipated, and the appropriate ranges of the C content and O content of the atomized iron-based powder are determined as follows.
  • C 0.8% or less C is present in the atomized iron-based powder mainly as a precipitate such as cementite or in a solid solution state.
  • the C content in the atomized iron-based powder exceeds 0.8%, it becomes difficult to lower the C content to 0.1% or less in the heat treatment of the present invention, and an alloy powder having excellent compressibility is obtained. I can't. Therefore, the C content of the atomized iron-based powder is set to 0.8% or less.
  • the lower the C content the easier the reduction (decarburization) of the C content during heat treatment. Therefore, the lower limit of the C content is not particularly limited, and may be 0% or industrially greater than 0%.
  • O 1.0% or less O is present on the surface of the iron-based powder mainly as Cr oxide or Fe oxide. If the O content in the atomized iron-based powder exceeds 1.0%, it becomes difficult to reduce the O content to 0.28% or less during heat treatment, and an alloy powder having excellent compressibility cannot be obtained. Therefore, the O content of the atomized iron-based powder is set to 1.0% or less. The O content is preferably 0.9% or less. On the other hand, the lower the O content, the easier the reduction (deoxidation) of the O content during heat treatment. Therefore, the lower limit of the O content is not particularly limited, but excessive reduction leads to an increase in manufacturing cost, so the O content is preferably 0.4% or more.
  • the contents of Mn, Cr, Mo, S, and P are not changed by the heat treatment of the present invention. Therefore, these elements contained in the atomized iron-based powder remain as they are in the alloy steel powder for powder metallurgy after the heat treatment. Based on this, the contents of these elements in the atomized iron-based powder are respectively defined as follows.
  • Mn 0.08% or less Mn is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, and the like. However, if the Mn content is higher than 0.08%, the amount of Mn oxide produced increases and the compressibility of the alloy steel powder decreases. Further, the Mn oxide serves as a starting point for destruction inside the sintered body, and reduces fatigue strength and toughness. Therefore, the Mn content is set to 0.08% or less. The Mn content is preferably 0.07% or less.
  • the lower limit of the Mn content is not particularly limited and may be 0%, but from the viewpoint of improving the strength of the sintered body, it is preferably 0.01% or more, 0.05% More preferably.
  • Cr 0.3-3.5%
  • Cr is an element that has the effect of improving hardenability and improving the tensile strength and fatigue strength of the sintered body. Further, Cr has the effect of increasing the hardness after heat treatment such as quenching and tempering of the sintered body and improving the wear resistance. In order to obtain these effects, the Cr content is set to 0.3% or more. On the other hand, when the Cr content exceeds 3.5%, the amount of Cr oxide generated increases. Since the Cr oxide serves as a starting point for fatigue failure inside the sintered body, the fatigue strength of the sintered body is reduced. Therefore, the Cr content is 3.5% or less.
  • Mo 0.1-2%
  • Mo is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, precipitation strengthening, and the like. In order to acquire the said effect, Mo content shall be 0.1% or more. On the other hand, when the content of Mo exceeds 2%, the toughness of the sintered body decreases. Therefore, the Mo content is 2% or less.
  • the Mn content in the atomized iron-based powder is set to 0.08% or less. Therefore, among S contained in the atomized iron-based powder, the amount present as MnS decreases, and the amount present as solute S increases. If the S content of the finally obtained alloy steel powder exceeds 0.01%, the solid solution S increases and the grain boundary strength decreases. Therefore, the S content at the stage of atomized iron-based powder is set to 0.01% or less. On the other hand, the lower the S content, the better because the solid solution S decreases. Therefore, the lower limit of the S content is not particularly limited, and may be 0%, but industrially it may be more than 0%. However, since excessive reduction leads to an increase in manufacturing cost, the S content is preferably 0.0005% or more.
  • the content of P does not affect the toughness, but the Mn content of the alloy steel powder is 0.08% or less and the S content is 0.00.
  • the content is 01% or less, the grain boundary strength is increased and the toughness is improved by setting the P content to 0.01% or less. Therefore, the P content at the stage of atomized iron-based powder is set to 0.01% or less.
  • the lower limit of the P content is not particularly limited and may be 0%, but industrially it may be more than 0%. However, excessive reduction leads to an increase in manufacturing cost, so the P content is preferably 0.0005% or more.
  • the component composition of the atomized iron-based powder in the present invention is composed of the above elements, the remainder Fe and inevitable impurities.
  • the average particle size of the atomized iron-based powder is not particularly limited, and any particle size can be used as long as it is an iron-based powder obtained by the atomization method.
  • the average particle size of the atomized iron-based powder is less than 30 ⁇ m, the fluidity of the atomized iron-based powder is lowered, and it may be difficult to supply to the moving bed furnace using a hopper or the like.
  • the average particle size of the atomized iron-based powder is less than 30 ⁇ m, the fluidity of the alloy steel powder after heat treatment also decreases, so the work efficiency of filling the mold when the alloy steel powder is press-formed decreases. There is a case.
  • the average particle size of the atomized iron-based powder is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, and even more preferably 50 ⁇ m or more.
  • the average particle size of the atomized iron-based powder is preferably 120 ⁇ m or more, more preferably 100 ⁇ m or less, and even more preferably 90 ⁇ m or less.
  • the average particle diameter means a median diameter (so-called d50, volume basis).
  • the apparent density of the atomized iron-based powder is not particularly limited, but is preferably 2.0 to 3.5 Mg / m 3, and more preferably 2.4 to 3.2 Mg / m 3 .
  • Atomized iron-based powder having the above component composition is supplied to a moving bed furnace, and a packed bed having a thickness d (mm) is formed on the moving bed of the moving bed furnace.
  • a moving bed furnace any one can be used as long as it can heat treat the atomized iron-based powder, but a moving bed furnace (hereinafter referred to as a “belt type moving bed furnace” or “ It is preferable to use a belt furnace).
  • a moving bed furnace hereinafter referred to as a “belt type moving bed furnace” or “ It is preferable to use a belt furnace).
  • an atomized iron-based powder can be supplied onto the belt to form a packed bed.
  • the atomized iron-based powder can be supplied by any method, but it is preferable to use a hopper.
  • the conveyance direction of the atomized iron-based powder in the moving bed furnace is not particularly limited, but it is generally conveyed linearly from the inlet side to the outlet side of the moving bed furnace. The thickness of the fill
  • the heating system of the moving bed furnace is not particularly limited, and any system can be used as long as it can heat the atomized iron-based powder.
  • the indirect heating system is used. It is preferable to use heating using a radiant tube.
  • a muffle furnace can also be suitably used as an indirect heating furnace.
  • the moving bed furnace is supplied with a hydrogen-containing gas.
  • the hydrogen-containing gas any gas can be used as long as it contains hydrogen.
  • the hydrogen-containing gas include pure H 2 gas and a mixed gas of H 2 gas and inert gas.
  • the mixed gas it is preferable to use a mixed gas of H 2 gas and N 2 gas.
  • a mixed gas of H 2 gas and N 2 gas obtained by decomposing ammonia can also be used.
  • the H 2 content of the hydrogen-containing gas is preferably 75% or more, and 90 vol% or more. it is more preferable, and even more preferably to a 100 vol% (H 2 gas).
  • the hydrogen-containing gas is supplied into the moving bed furnace so as to have an average gas flow velocity v (mm / s) during the heat treatment of the atomized iron-based powder in the moving bed furnace.
  • the hydrogen-containing gas is preferably flowed in the moving bed furnace in a direction opposite to the moving direction of the raw material powder.
  • a conveying means such as a belt
  • the hydrogen-containing gas is introduced from the other end (downstream side) and exhausted from the one end (upstream side). Therefore, it is preferable that the moving bed furnace is provided with an atomized iron-based powder supply port and an atmospheric gas discharge port at one end, and a discharge port for treated powder (alloy steel powder) and a hydrogen-containing gas supply port at the other end.
  • both the thickness d (mm) of the packed bed and the average gas flow velocity v (mm / s) are controlled so as to satisfy the following expression (1).
  • the heat treatment By performing the heat treatment under the above-mentioned conditions, it is possible to stably reduce C and O contained in the atomized iron-based powder even though the atomized iron-based powder contains Cr and Mn which are easily oxidizable elements. .
  • the C content and the O content in the alloy steel powder after the heat treatment can be set to extremely low values such as C ⁇ 0.1% and O ⁇ 0.28%. The reason will be described below.
  • the dew point of the atmospheric gas in the furnace is always set higher than the equilibrium dew point determined by the equilibrium reaction of the above equations (2) to (4). Need to keep low. Therefore, it is necessary to reduce the amount of generated H 2 O gas so that the dew point of the atmospheric gas is not increased too much by the H 2 O gas generated by the reaction.
  • the packed bed thickness it is conceivable to suppress the amount of iron-based powder charged into the moving bed furnace, that is, the packed bed thickness. It is also conceivable to reduce the H 2 O gas concentration by removing the H 2 O gas generated by the above reaction or diluting with a hydrogen-containing gas introduced into the moving bed furnace. Therefore, in the present invention, the packed bed thickness d and the average gas flow velocity v in the furnace when the hydrogen-containing gas is introduced into the furnace are controlled so as to satisfy the above equation (1).
  • a velocity boundary layer of flowing hydrogen-containing gas is formed in the space above the surface of the packed bed. It is derived from the theory regarding the boundary layer that the thickness of the velocity boundary layer is inversely proportional to ⁇ v. In addition, since the diffusion rate of hydrogen before the reduction reaction and water vapor generated by the reduction reaction is considered to be constant regardless of the thickness of the velocity boundary layer, the diffusion time is proportional to the thickness of the velocity boundary layer.
  • the velocity boundary layer thickness is halved and the same diffusion time is given, the hydrogen concentration at the packed bed surface will be doubled and the water vapor concentration at the packed bed surface will be halved, It is estimated that even if the thickness of the packed bed is doubled, the concentration of hydrogen and water vapor in the lowermost layer of the packed bed can be made the same. Therefore, assuming that the concentration is constant, the packed layer thickness and the velocity boundary layer thickness are inversely proportional, that is, it is estimated that the packed layer thickness and ⁇ v are in a proportional relationship.
  • d / ⁇ v ⁇ 2.8 (mm 1/2 ⁇ s 1/2 ) is more preferable.
  • the lower limit of d / ⁇ v is not particularly limited. The lower the better, the lower the better. However, if d is excessively decreased, the production efficiency decreases, and if v is excessively increased, the cost increases. It is preferable to set it as the above, and it is more preferable to set it as 0.3 or more.
  • the average gas flow velocity v (mm / s) is obtained by changing the volume flow rate f of hydrogen-containing gas supplied to the moving bed furnace (volume of hydrogen-containing gas supplied per second). It is defined as dividing by the cross-sectional area S of the floor furnace.
  • the cross-sectional area refers to the area of the space inside the annealing furnace that is perpendicular to the conveying direction of the atomized iron-based powder (in the belt furnace, the belt traveling method).
  • the cross-sectional area S is the cross-sectional area at the highest temperature in the annealing furnace.
  • the deoxidation zone is usually at the highest temperature. May be used.
  • the volume flow rate f is a volume flow rate at the measurement position of the cross-sectional area S. That is, considering the volume expansion of gas at a high temperature, the above flow rate is multiplied by the volume expansion coefficient obtained from the temperature at the position.
  • the definition of the cross-sectional area S will be further described.
  • the cross-sectional area of the internal space of the moving bed furnace is used as it is as the cross-sectional area S without subtracting the area of objects existing in the furnaces.
  • a radiant tube type heat treatment furnace as shown in FIG. 1, a radiant tube, a belt, a roll (not shown) for feeding the belt, and iron-based powder laminated on the belt are contained in the furnace.
  • existing in the cross section of the space part in the furnace the gas flow rate is slower in the part where there is no radiant tube or roll, but it is particularly important to control the flow rate in this slow part. It was because it was found from.
  • the cross-sectional area of the belt or iron powder packed-layer thickness portion is negligible with respect to the entire cross-sectional area of the furnace, so there is no need to consider it.
  • the dew point of the hydrogen-containing gas introduced into the furnace is preferably 0 ° C or less.
  • the dew point of the atmospheric gas lower than the equilibrium dew point determined from the equilibrium reaction represented by the above equations (2) to (4). There is. Therefore, it is preferable to lower the dew point of the introduced hydrogen-containing gas, and specifically, it is preferable to set it to 0 ° C. or less.
  • the hydrogen-containing gas flowing upstream in the iron-based powder conveyance direction contains water vapor generated by the reaction.
  • the dew point is higher than the hydrogen-containing gas at the time of supply. Considering this, the dew point of the introduced hydrogen-containing gas is kept low at 0 ° C. or less. Thereby, even if a dew point rises with progress of reaction, deoxidation reaction can fully be advanced.
  • the equilibrium dew point increases, so it seems that the dew point of the hydrogen-containing gas may be increased at first glance.
  • the reaction rate of the deoxidation reaction reaction
  • the generation rate of H 2 O also increases.
  • the dew point of the in-furnace gas also tends to increase. Therefore, it is preferable to control the dew point of the hydrogen-containing gas introduced into the moving bed furnace as described above.
  • the dew point is set to 40 ° C. or less in the iron-based powder that does not contain an easily oxidizable element such as Cr and Mn as in the prior art.
  • the temperature is preferably 0 ° C. or lower.
  • the lower the dew point of the hydrogen-containing gas the better the deoxidation reaction proceeds.
  • a gas with a low dew point is expensive, and the use of a gas with an excessively low dew point causes an increase in production cost. Therefore, it is usually preferable to set the dew point to ⁇ 40 ° C. or higher.
  • the moving bed furnace includes a sealing unit for preventing gas leakage and intrusion.
  • a sealing unit for example, a water-sealed tank (15 in FIG. 1) as described in Patent Document 4 can be used, but it is more preferable to use a system that does not use water such as a seal roll.
  • the sealing means is preferably provided at both ends on the upstream side and the downstream side in the transport direction.
  • the atmospheric temperature is set to 1000 ° C. or higher in order to make the equilibrium dew point higher than the dew point raised by H 2 O generated by the deoxidation reaction. It is preferable.
  • the upper limit of the ambient temperature is not particularly limited, but is preferably about 1200 ° C. in consideration of the heat resistance performance of the apparatus, the manufacturing cost, and the like.
  • the “atmosphere temperature” is a temperature measured by a thermocouple at a position 20 mm immediately above the surface of the iron-based powder (packed bed) in the moving bed furnace.
  • the holding time t is 10 4 -0.0037 ⁇ T hours or more according to the ambient temperature T (° C.) because O can be further reduced. .
  • the relationship between the said t and T was determined from the result of having conducted the experiment which manufactures alloy steel powder with various T and t. Specifically, the O content of the obtained alloy steel powder was plotted on a Tt diagram, and a curve (contour line) connecting the same oxygen content was determined as an approximate expression.
  • the upper limit of the retention time is not particularly limited, but the retention time is preferably 4 hours or less because the production cost only increases even if the retention time is longer than the time required for completion of the deoxidation reaction.
  • Patent Document 4 it is supposed that one or more kinds of processes of decarburization, deoxidation, or denitrification are continuously performed by using a continuous moving bed furnace to heat-treat the iron-based powder. Further, in the description of Patent Document 4, each of the decarburization, deoxidation, and denitrification treatment steps is made independent using the divided space of the moving bed furnace, and the decarburization step is performed at 600 to 1100 ° C. In the denitrification process, the iron-base powder is heat-treated by controlling the temperature independently at 450 to 750 ° C.
  • Patent Document 4 as the atmosphere gas, a reducing gas such as H 2 or AX gas at decarburization zone or an inert gas such as N 2 or Ar, reduction such as H 2 or AX gas in deoxidation zone It is said that gas mainly composed of H 2 is used in the denitrification zone.
  • FIG. 1 A heat treatment apparatus 100 shown in FIG. 1 is provided on a furnace body 30 divided into a plurality of zones by a partition wall 1, that is, a decarburization zone 2, a deoxidation zone 3, and a denitrification zone 4, and an entrance side of the furnace body 30.
  • the hopper 8 is provided, a wheel 10 provided on the entrance / exit side of the furnace body 30, a belt 9 that continuously rotates by the wheel 10 and circulates in each zone in the furnace body 30, and a radiant tube 11.
  • the product powder 13 is stored in the product tank 14.
  • the reaction in each zone is considered as follows.
  • the ambient temperature is controlled to 600 to 1100 ° C. by the radiant tube 11, and the water vapor (H 2 O gas) introduced from the water vapor inlet 12 provided on the downstream side of the decarburization zone 2
  • the atmospheric gas in the deoxidation zone 3 which is the next zone, to a dew point of 30 to 60 ° C.
  • an atmospheric gas discharge port 6 is provided to discharge the atmospheric gas to the outside of the apparatus.
  • the decarburization reaction formula is represented by the following formula (I).
  • C (in Fe) + H 2 O (g) CO (g) + H 2 (g) (I)
  • the ambient temperature is controlled to 700 to 1100 ° C. by the radiant tube 11, and deoxidation is performed from the crude iron-based powder using the atmospheric gas from the denitrification zone 4 (dew point: hydrogen gas of 40 ° C. or less). Is going to do.
  • the ambient temperature is controlled to 450 to 750 ° C. by the radiant tube 11, and hydrogen gas (dew point: 40 ° C.) as a reaction gas is supplied from the atmosphere gas inlet 5 provided on the downstream side of the denitrification zone 4.
  • hydrogen gas dew point: 40 ° C.
  • the following is introduced to denitrify the crude iron-based powder.
  • the water sealing tank 15 functions to block the mixing of the outside gas into the furnace gas and the leakage of the inside gas to the outside of the furnace.
  • FIG. 1 a typical example of a heat treatment temperature pattern by a belt furnace type heat treatment apparatus described in Patent Document 4 is shown in FIG.
  • the iron-based powder to be treated is first heated in the decarburization zone, then soaked in the deoxidation zone, and finally in the denitrification zone.
  • the hydrogen gas introduced in the direction opposite to the flow of the iron-based powder first enters the denitrification zone, denitrifies the iron-based powder while being heated, and then enters the deoxidation zone and is kept at a constant temperature.
  • the iron-base powder is deoxidized while finally entering the decarburization zone together with a predetermined amount of water vapor, and the iron-base powder is decarburized while being cooled.
  • the C content in the atomized iron-based powder is set to 0.8% or less so that the decarburization can be completed only with water vapor generated by the deoxidation reaction. Therefore, decarburization can be completed without additionally introducing water vapor.
  • An atomized iron-based powder having the component composition shown in Table 1 was produced by the water atomization method. These atomized iron-based powders were heat-treated using a moving bed furnace and crushed to obtain alloy steel powder for powder metallurgy. Table 2 shows the atomized iron-based powder used and the heat treatment conditions. Further, in the heat treatment, the atomized iron powder is supplied into the moving bed furnace so as to have a packed bed thickness d shown in Table 2, and a hydrogen-containing gas so as to have an average gas flow velocity v shown in Table 2. The heat treatment was carried out continuously while supplying. The component composition of the obtained alloy steel powder for powder metallurgy was as shown in Table 3. In addition,% display in the composition of the hydrogen-containing gas shown in Table 2 means vol%.
  • the obtained alloy steel powder has a C content of 0.1% or less and an O content of 0. .28% or less.
  • the O content exceeded 0.28%.
  • the obtained alloy steel was 0.1% or less, the O content was 0.2% or less, and the O content was further reduced.
  • powder symbols B1 to B3 an O content of 0.28% or less was obtained, but a lower O content was obtained as the H 2 concentration of the hydrogen-containing gas used was increased.
  • D1 to D4 it can be seen that in D2 to D4 where the dew point is 0 ° C. or less, the O content is 0.15% or less, and a much better result is obtained.
  • E1 to E3 and F1 to F3 those having an ambient temperature of 1000 ° C. or higher and satisfying the condition of t ⁇ 10 4 ⁇ 0.0037 ⁇ T (powder symbols: E3, F3) have an O content. A much better result was obtained at 0.15% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Tunnel Furnaces (AREA)

Abstract

Provided is a method that is for producing an alloy steel powder for powder metallurgy. The method uses a moving bed furnace and, without the need for gas analysis, which makes cumbersome maintenance necessary, makes it possible to heat treat an iron-based powder that contains Cr and Mn and stably reduce C content and O content. A production method for an alloy steel powder for powder metallurgy wherein an atomized iron-based powder that has a specific component composition is prepared, wherein the atomized iron-based powder is supplied to the inside of a moving bed furnace such that a filling layer that has a thickness of d (mm) is formed, wherein a hydrogen-containing gas is supplied to the inside of the moving bed furnace such that the hydrogen-containing gas has an average gas flow velocity of v (mm/s), and wherein the atomized iron-based powder is reduced by being heat treated inside the moving bed furnace and an alloy steel powder for powder metallurgy is produced, wherein d and v satisfy the expression d/√v ≤ 3.2 (mm1/2∙s1/2).

Description

粉末冶金用合金鋼粉の製造方法Method for producing alloy steel powder for powder metallurgy
 本発明は、アトマイズ鉄基粉末を還元して粉末冶金用合金鋼粉とする、粉末冶金用合金鋼粉の製造方法に関し、特に、前記アトマイズ鉄基粉末が、酸化されやすい元素であるCrおよびMnを含有していても、合金鋼粉中のC(炭素)含有量およびO(酸素)含有量を効果的に下げることができる粉末冶金用合金鋼粉の製造方法に関する。 The present invention relates to a method for producing an alloy steel powder for powder metallurgy by reducing atomized iron base powder to produce an alloy steel powder for powder metallurgy, and in particular, the atomized iron base powder is an easily oxidizable element such as Cr and Mn The present invention relates to a method for producing alloy steel powder for powder metallurgy that can effectively reduce the C (carbon) content and O (oxygen) content in the alloy steel powder.
 粉末冶金技術は、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネット形状)で、しかも高い寸法精度で製造することができる。よって、粉末冶金技術を用いて部品を作製すると、大幅な切削コストの低減が可能となる。このため、粉末冶金技術を適用した粉末冶金製品は、各種の機械用部品として、多方面に利用されている。さらに、最近では、部品の小型化、軽量化のために、粉末冶金製品の強度の向上が強く要望されており、特に、鉄基粉末冶金製品(鉄基焼結体)に対する高強度化の要求が強い。 Powder metallurgy technology allows parts with complex shapes to be manufactured in a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy. Therefore, if a part is produced using powder metallurgy technology, the cutting cost can be greatly reduced. For this reason, powder metallurgy products to which powder metallurgy technology is applied are used in various fields as various machine parts. Recently, there has been a strong demand for improving the strength of powder metallurgy products in order to reduce the size and weight of parts. In particular, there is a demand for higher strength in iron-based powder metallurgy products (iron-based sintered bodies). Is strong.
 この高強度化の要求に応じるため、粉末冶金に用いられる鉄基粉末に対して合金元素が添加される。前記合金元素としては、例えば、焼入れ性向上効果が高く、比較的安価であることから、CrやMnが使用される。 In order to meet this demand for higher strength, an alloy element is added to the iron-based powder used in powder metallurgy. As the alloy element, for example, Cr and Mn are used because they have a high effect of improving hardenability and are relatively inexpensive.
 上記のような合金元素を含む粉末冶金用合金粉としては、例えば、Cr-Mo系合金鋼粉(特許文献1)、Cr-Mn-Mo系合金鋼粉(特許文献2、特許文献3)が知られている。 Examples of the alloy powder for powder metallurgy containing the above alloy elements include Cr—Mo alloy steel powder (Patent Document 1) and Cr—Mn—Mo alloy steel powder (Patent Document 2, Patent Document 3). Are known.
 また、粉末冶金用鉄基粉末の製造においては、原料としての鉄基粉末中のC含有量およびO含有量を低減するために熱処理が行われる。前記熱処理は、一般的に移動床炉(moving bed furnace)を用いて連続的に実施され、前記鉄基粉末としては、アトマイズしたままの粗鉄基粉末や、ミルスケールを粗還元した粗還元鉄基粉末などの粗鉄基粉末が用いられる。そして、前記熱処理においては、粉末の用途に応じて、脱炭、脱酸、および脱窒の少なくとも1つの処理が行われる。 Also, in the production of iron-based powder for powder metallurgy, heat treatment is performed to reduce the C content and O content in the iron-based powder as a raw material. The heat treatment is generally carried out continuously using a moving bed furnace (moving bed furnace). Examples of the iron-based powder include a crude iron-based powder that has been atomized and a roughly reduced iron obtained by roughly reducing a mill scale. A crude iron-based powder such as a base powder is used. In the heat treatment, at least one treatment of decarburization, deoxidation, and denitrification is performed according to the use of the powder.
 上記熱処理を行うための装置としては、例えば、特許文献4に記載された装置が知られている。特許文献4に記載の装置では、原料粉末の走行方向に垂直となるように設けられた仕切壁によって、移動床炉内の空間が複数に分割されている。そして、分割された各空間の上部には、雰囲気ガスを流すための流路が設けられている。熱処理は、前記流路に、原料粉末の移動方向と反対の方向に、雰囲気ガスを流しながら、連続的に行われる。 For example, an apparatus described in Patent Document 4 is known as an apparatus for performing the heat treatment. In the apparatus described in Patent Document 4, the space in the moving bed furnace is divided into a plurality of partitions by a partition wall provided so as to be perpendicular to the traveling direction of the raw material powder. And the flow path for flowing atmospheric gas is provided in the upper part of each divided | segmented space. The heat treatment is continuously performed while flowing an atmospheric gas through the channel in a direction opposite to the moving direction of the raw material powder.
特許第3224417号公報Japanese Patent No. 3224417 特許第5125158号公報Japanese Patent No. 5125158 特許第5389577号公報Japanese Patent No. 5,389,577 特公平01-40881号公報Japanese Patent Publication No. 01-40881 特表2002-501123号公報JP-T-2002-501123 特許第4225574号公報Japanese Patent No. 4225574
 しかし、特許文献1~3に記載されているような合金元素を含む粉末冶金用合金粉の製造において、C含有量やO含有量を低減するために特許文献4に記載されているような熱処理法を用いた場合、次のような問題があった。すなわち、Feに比べて酸化されやすい性質を有するCrやMnとった元素(以下、「易酸化性元素」という)が含まれている。そのため、アトマイズ法(特に水アトマイズ法)によりCrやMnを含有する鉄基粉末を製造すると、得られた鉄基粉末にはアトマイズの際にCrやMnが酸化されてできた酸化物が含まれることとなる。前記酸化物は、前記熱処理においても十分に還元されることなく残留する。また、場合によっては、熱処理の際にさらにCrやMnが酸化され、かえって酸化物の量が増加する。一般にC含有量やO含有量が多いと加圧成形時における前記合金鋼粉の圧縮性が低下するので、酸化物が多く残留するのは問題である。 However, in the production of alloy powders for powder metallurgy containing alloy elements as described in Patent Documents 1 to 3, a heat treatment as described in Patent Document 4 is performed to reduce the C content and O content. When the method was used, there were the following problems. That is, it contains elements such as Cr and Mn (hereinafter referred to as “easily oxidizable elements”), which are more easily oxidized than Fe. Therefore, when an iron-based powder containing Cr or Mn is produced by an atomizing method (particularly, a water atomizing method), the obtained iron-based powder contains an oxide formed by oxidation of Cr or Mn during atomization. It will be. The oxide remains without being sufficiently reduced even in the heat treatment. In some cases, Cr and Mn are further oxidized during the heat treatment, and the amount of oxide is increased. In general, when the C content and the O content are large, the compressibility of the alloy steel powder at the time of pressure forming is lowered, so that a large amount of oxide remains is a problem.
 そこで、特許文献5および特許文献6では、CrおよびMnなどの易酸化性元素を含む合金鋼粉の製造の際に、脱炭や脱酸を可能とする方法が提案されている。 Therefore, Patent Document 5 and Patent Document 6 propose a method that enables decarburization and deoxidation in the production of alloy steel powder containing easily oxidizable elements such as Cr and Mn.
 しかし、特許文献5で提案されている処理方法では、気密性のバッチ炉を使用して、不活性ガス雰囲気下で熱処理が行われる。前記方法ではバッチ炉が用いられるため、ベルト炉を含む移動床炉を用いて連続的に熱処理を行う場合に比べて生産性が低く、したがって大量生産に不向きである。 However, in the treatment method proposed in Patent Document 5, heat treatment is performed in an inert gas atmosphere using an airtight batch furnace. Since a batch furnace is used in the method, the productivity is low as compared with the case where continuous heat treatment is performed using a moving bed furnace including a belt furnace, and thus is not suitable for mass production.
 一方、特許文献6で提案されている方法は、ベルト炉を用いて連続的に熱処理を行う方法であるため、量産に適している。しかし、前記方法では、熱処理を行う間、雰囲気ガス中のCOまたはCO2濃度、あるいは酸素ポテンシャル(O2濃度またはH2/H2O濃度比)を連続的に測定することが必須であり、さらにこれらの測定値が目標の値になるよう炉内に注入する水蒸気量を調節する必要がある。このようなガス分析のための装置を、実際に、鉄粉等を製造する工場において連続的に使用する場合、センサー部分の汚れやガス取り込み口の詰まりが発生し、測定が正常に行えなくなるという問題がある。そのため、特許文献6の方法を連続的に実施する上で、分析装置の維持管理が大きな負担となる。 On the other hand, the method proposed in Patent Document 6 is a method of performing heat treatment continuously using a belt furnace and is therefore suitable for mass production. However, in the above method, it is essential to continuously measure the CO or CO 2 concentration or the oxygen potential (O 2 concentration or H 2 / H 2 O concentration ratio) in the atmospheric gas during the heat treatment, Furthermore, it is necessary to adjust the amount of water vapor injected into the furnace so that these measured values become target values. When such a device for gas analysis is actually used continuously in a factory that manufactures iron powder, etc., the sensor part is soiled and the gas intake port is clogged, making it impossible to perform measurement normally. There's a problem. Therefore, when the method of Patent Document 6 is continuously performed, maintenance of the analyzer is a heavy burden.
 本発明は、上記実状に鑑みてなされたものであり、移動床炉を用いた粉末冶金用合金鋼粉の製造方法であって、煩雑な維持管理が必要となるガス分析を必要とせずに、CrおよびMnを含有する鉄基粉末を熱処理し、C含有量およびO含有量を安定して低減することができる粉末冶金用合金鋼粉の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method for producing alloy steel powder for powder metallurgy using a moving bed furnace, without requiring gas analysis that requires complicated maintenance management, It aims at providing the manufacturing method of the alloy steel powder for powder metallurgy which can heat-process the iron-base powder containing Cr and Mn, and can reduce C content and O content stably.
 本発明の要旨構成は次のとおりである。 The gist configuration of the present invention is as follows.
1.質量%で、
  C :0.8%以下、
  O :1.0%以下、
  Mn:0.08%以下、
  Cr:0.3~3.5%、
  Mo:0.1~2%、
  S :0.01%以下、および
  P :0.01%以下を含有し、
  残部Feおよび不可避不純物であるアトマイズ鉄基粉末を用意し、
 前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給し、
 前記移動床炉内に、水素含有気体を平均ガス流速v(mm/s)となるように供給し、
 前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする、粉末冶金用合金鋼粉の製造方法であって、
 前記dおよびvが、下記(1)式を満足する、粉末冶金用合金鋼粉の製造方法。
                     記
           d/√v≦3.2(mm1/2・s1/2)…(1)
1. % By mass
C: 0.8% or less,
O: 1.0% or less,
Mn: 0.08% or less,
Cr: 0.3 to 3.5%,
Mo: 0.1-2%
S: 0.01% or less, and P: 0.01% or less,
Prepare the remaining Fe and atomized iron-based powder which is an inevitable impurity,
Supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed of thickness d (mm);
A hydrogen-containing gas is supplied into the moving bed furnace so as to have an average gas flow velocity v (mm / s),
The atomized iron-based powder is reduced by heat treatment in the moving bed furnace to obtain an alloy steel powder for powder metallurgy, a method for producing an alloy steel powder for powder metallurgy,
The manufacturing method of the alloy steel powder for powder metallurgy in which said d and v satisfy | fill following (1) Formula.
D / √v ≦ 3.2 (mm 1/2 · s 1/2 ) (1)
2.前記水素含有気体の露点を0℃以下とする、上記1に記載の粉末冶金用合金鋼粉の製造方法。 2. 2. The method for producing alloy steel powder for powder metallurgy according to 1 above, wherein a dew point of the hydrogen-containing gas is 0 ° C. or lower.
3.前記熱処理において、雰囲気温度T:1000℃以上、保持時間t:104-0.0037・T時間以上の条件で脱酸が行われる、上記1または2に記載の粉末冶金用合金鋼粉の製造方法。 3. 3. The method for producing alloy steel powder for powder metallurgy according to 1 or 2 above, wherein in the heat treatment, deoxidation is performed under conditions of an atmospheric temperature T: 1000 ° C. or more and a holding time t: 10 4−0.0037 · T hours or more.
 本発明によれば、易酸化性元素であるCrおよびMnを含有する合金鋼粉であっても、煩雑な維持管理が必要となるガス分析を行うことなく移動床炉を用いて熱処理し、C含有量およびO含有量を安定して低減することができる。そしてその結果、低コストで、かつ加圧成形時の圧縮性に優れた合金鋼粉を製造することができる。また、本発明の製造方法によって得られる粉末冶金用合金鋼粉を用いて製造される焼結部品は、優れた強度、靭性、疲労特性などの機械的特性を有することから、粉末冶金用合金鋼粉および焼結体の用途を拡大できる。 According to the present invention, even alloy steel powder containing Cr and Mn, which are easily oxidizable elements, is heat-treated using a moving bed furnace without performing gas analysis that requires complicated maintenance and management. The content and the O content can be stably reduced. As a result, it is possible to produce alloy steel powder that is low in cost and excellent in compressibility during pressure forming. In addition, sintered parts produced using the alloy steel powder for powder metallurgy obtained by the production method of the present invention have excellent mechanical properties such as strength, toughness and fatigue properties. Applications of powders and sintered bodies can be expanded.
本発明の一実施形態において用いることのできる熱処理装置の例を示す側断面図である。It is side sectional drawing which shows the example of the heat processing apparatus which can be used in one Embodiment of this invention. 特許文献4に記載された熱処理装置における温度パターンの例を示す図である。It is a figure which shows the example of the temperature pattern in the heat processing apparatus described in patent document 4. FIG.
 以下、本発明を具体的に説明する。本発明においては、原料となるアトマイズ鉄基粉末を、移動床炉を用いて熱処理することによって粉末冶金用合金鋼粉(以下、単に「合金鋼粉」という場合がある)が製造される。具体的には、本発明の製造方法は、次の各処理を含む;
(1)アトマイズ鉄基粉末を用意する、
(2)前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給する、
(3)前記移動床炉内に、水素含有気体を平均ガス流速v(mm/s)となるように供給する、および
(4)前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする。
Hereinafter, the present invention will be specifically described. In the present invention, alloy steel powder for powder metallurgy (hereinafter sometimes simply referred to as “alloy steel powder”) is produced by heat-treating atomized iron-based powder as a raw material using a moving bed furnace. Specifically, the production method of the present invention includes the following treatments;
(1) Prepare atomized iron-based powder.
(2) supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed having a thickness of d (mm);
(3) By supplying hydrogen-containing gas into the moving bed furnace so as to have an average gas flow velocity v (mm / s), and (4) by heat-treating the atomized iron-based powder in the moving bed furnace. Reduce to alloy steel powder for powder metallurgy.
 上記各処理は、それぞれ独立して、任意のタイミングで行うことができ、複数の処理を同時に行うこともできる。 Each of the above processes can be performed independently at an arbitrary timing, and a plurality of processes can be performed simultaneously.
 さらに本発明では、上記処理を行う際に、充填層厚さdおよび前記平均ガス流速vが、下記(1)式を満足することが重要である。
d/√v≦3.2(mm1/2・s1/2)…(1)
Furthermore, in the present invention, it is important that the packed bed thickness d and the average gas flow velocity v satisfy the following expression (1) when performing the above treatment.
d / √v ≦ 3.2 (mm 1/2 · s 1/2 ) (1)
 以下、各処理の詳細と、上記条件の限定理由について説明する。 The details of each process and the reasons for limiting the above conditions are described below.
[アトマイズ鉄基粉末]
 本発明においては、原料としてアトマイズ鉄基粉末を使用する。アトマイズ鉄基粉末の製造方法は特に限定されず、常法に従って製造することができる。なお、「アトマイズ鉄基粉末」とは、アトマイズ法によって製造された鉄基粉末を意味する。また、「鉄基粉末」とは、Feを50質量%以上含有する粉末を意味する。
[Atomized iron-based powder]
In the present invention, atomized iron-based powder is used as a raw material. The manufacturing method of the atomized iron-based powder is not particularly limited, and can be manufactured according to a conventional method. “Atomized iron-based powder” means an iron-based powder produced by the atomizing method. The “iron-based powder” means a powder containing 50% by mass or more of Fe.
 前記アトマイズ鉄基粉末としては、ガスアトマイズ法によって得られるガスアトマイズ鉄基粉末と、水アトマイズ法によって得られる水アトマイズ鉄基粉末の、いずれをも使用することができる。前記ガスアトマイズ法では、窒素、アルゴンなどの不活性ガスを用いることが好ましい。ただし、ガスは水に比べて冷却能力に劣るため、ガスアトマイズ法で鉄基粉末を製造する場合には、多量のガスを使用する必要がある。そのため、量産性や製造コストの観点からは、水アトマイズ法を用いることが好ましい。また、水アトマイズ法は、通常大気が混入するような雰囲気でアトマイズが行われるため、ガスアトマイズ法に比べて製造過程における鉄基粉末の酸化が生じやすい。そのため、本発明の方法は、水アトマイズ鉄基粉末を用いる場合に特に有効である。 As the atomized iron-based powder, either a gas atomized iron-based powder obtained by a gas atomizing method or a water atomized iron-based powder obtained by a water atomizing method can be used. In the gas atomization method, it is preferable to use an inert gas such as nitrogen or argon. However, since gas is inferior in cooling capacity compared to water, it is necessary to use a large amount of gas when producing iron-based powder by the gas atomization method. Therefore, it is preferable to use the water atomization method from the viewpoint of mass productivity and manufacturing cost. In addition, since the water atomization method is normally performed in an atmosphere in which air is mixed, the iron-based powder is more easily oxidized in the production process than the gas atomization method. Therefore, the method of the present invention is particularly effective when a water atomized iron-based powder is used.
(成分組成)
 次に、本発明においてアトマイズ鉄基粉末の成分組成を上記のように限定する理由について説明する。なお、特に断らない限り、以下の説明において「%」は「質量%」を意味するものとする。
(Component composition)
Next, the reason for limiting the component composition of the atomized iron-based powder in the present invention as described above will be described. Unless otherwise specified, “%” in the following description means “mass%”.
 本発明において、CおよびOは、後述する熱処理によって低減させるべき元素である。そして、最終的に得られる粉末冶金用合金鋼粉の圧縮性を向上させるという観点からは、該合金鋼粉のC含有量およびO含有量を可能な限り低減することが望ましく、具体的には、C:0.1%以下、O:0.28%以下とすることが好ましい。これらCおよびOの適正量を達成するために、本発明に従う熱処理で低減できる量を見込み、アトマイズ鉄基粉末のC含有量およびO含有量の適正範囲を以下のように定める。 In the present invention, C and O are elements to be reduced by a heat treatment described later. And from the viewpoint of improving the compressibility of the finally obtained alloy steel powder for powder metallurgy, it is desirable to reduce the C content and O content of the alloy steel powder as much as possible, specifically, C: 0.1% or less, O: 0.28% or less are preferable. In order to achieve these appropriate amounts of C and O, the amount that can be reduced by the heat treatment according to the present invention is anticipated, and the appropriate ranges of the C content and O content of the atomized iron-based powder are determined as follows.
C:0.8%以下
 Cは、主にセメンタイトなどの析出物として、あるいは固溶状態でアトマイズ鉄基粉末中に存在する。アトマイズ鉄基粉末中のC含有量が0.8%を超えると、本発明の熱処理においてC含有量を0.1%以下まで下げることが困難となり、優れた圧縮性を有する合金粉末を得ることができない。そのため、アトマイズ鉄基粉末のC含有量を0.8%以下とする。一方、C含有量が低ければ低いほど、熱処理時のC含有量の低減(脱炭)が容易になる。そのため、C含有量の下限は特に限定されず、0%であって良く、工業的には0%超であってよい。
C: 0.8% or less C is present in the atomized iron-based powder mainly as a precipitate such as cementite or in a solid solution state. When the C content in the atomized iron-based powder exceeds 0.8%, it becomes difficult to lower the C content to 0.1% or less in the heat treatment of the present invention, and an alloy powder having excellent compressibility is obtained. I can't. Therefore, the C content of the atomized iron-based powder is set to 0.8% or less. On the other hand, the lower the C content, the easier the reduction (decarburization) of the C content during heat treatment. Therefore, the lower limit of the C content is not particularly limited, and may be 0% or industrially greater than 0%.
O:1.0%以下
 Oは、主にCr酸化物やFe酸化物として鉄基粉末表面に存在する。アトマイズ鉄基粉末中のO含有量が1.0%を超えると、熱処理においてO含有量を0.28%以下まで下げることが困難となり、優れた圧縮性を有する合金粉末を得ることができない。そのため、アトマイズ鉄基粉末のO含有量を1.0%以下とする。O含有量は、0.9%以下とすることが好ましい。一方、O含有量が低ければ低いほど、熱処理時のO含有量の低減(脱酸)が容易になる。そのため、O含有量の下限は特に限定されないが、過度の低減は製造コストの増加を招くため、O含有量は0.4%以上とすることが好ましい。
O: 1.0% or less O is present on the surface of the iron-based powder mainly as Cr oxide or Fe oxide. If the O content in the atomized iron-based powder exceeds 1.0%, it becomes difficult to reduce the O content to 0.28% or less during heat treatment, and an alloy powder having excellent compressibility cannot be obtained. Therefore, the O content of the atomized iron-based powder is set to 1.0% or less. The O content is preferably 0.9% or less. On the other hand, the lower the O content, the easier the reduction (deoxidation) of the O content during heat treatment. Therefore, the lower limit of the O content is not particularly limited, but excessive reduction leads to an increase in manufacturing cost, so the O content is preferably 0.4% or more.
 また、Mn、Cr、Mo、S、およびPの含有量は、いずれも本発明の熱処理によって変化はしない。したがって、アトマイズ鉄基粉末中に含まれるこれらの元素は、熱処理後の粉末冶金用合金鋼粉中にそのまま残留する。このことを踏まえ、アトマイズ鉄基粉末におけるこれらの元素の含有量を、それぞれ以下のように規定する。 Also, the contents of Mn, Cr, Mo, S, and P are not changed by the heat treatment of the present invention. Therefore, these elements contained in the atomized iron-based powder remain as they are in the alloy steel powder for powder metallurgy after the heat treatment. Based on this, the contents of these elements in the atomized iron-based powder are respectively defined as follows.
Mn:0.08%以下
 Mnは、焼入性向上、固溶強化などによって、焼結体の強度を向上させる作用を有する元素である。しかし、Mn含有量が0.08%より高いと、Mn酸化物の生成量が多くなり、合金鋼粉の圧縮性が低下する。また、Mn酸化物が、焼結体内部の破壊の起点となって、疲労強度および靱性を低下させる。したがって、Mn含有量を0.08%以下とする。Mn含有量は0.07%以下とすることが好ましい。一方、Mn含有量の下限は特に限定されず、0%であってもよいが、焼結体の強度を向上させるという観点からは、0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。
Mn: 0.08% or less Mn is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, and the like. However, if the Mn content is higher than 0.08%, the amount of Mn oxide produced increases and the compressibility of the alloy steel powder decreases. Further, the Mn oxide serves as a starting point for destruction inside the sintered body, and reduces fatigue strength and toughness. Therefore, the Mn content is set to 0.08% or less. The Mn content is preferably 0.07% or less. On the other hand, the lower limit of the Mn content is not particularly limited and may be 0%, but from the viewpoint of improving the strength of the sintered body, it is preferably 0.01% or more, 0.05% More preferably.
Cr:0.3~3.5%
 Crは、焼入性を向上させて、焼結体の引張強度および疲労強度を向上させる作用を有する元素である。さらにCrは、焼結体の焼入れ・焼き戻しなどの熱処理後の硬さを高め、耐摩耗性を向上させる効果を有している。これらの効果を得るために、Cr含有量を0.3%以上とする。一方、Cr含有量が3.5%を超えると、Cr酸化物の生成量が多くなる。Cr酸化物は、焼結体内部の疲労破壊の起点となるため、焼結体の疲労強度を低下させる。したがって、Cr含有量を3.5%以下とする。
Cr: 0.3-3.5%
Cr is an element that has the effect of improving hardenability and improving the tensile strength and fatigue strength of the sintered body. Further, Cr has the effect of increasing the hardness after heat treatment such as quenching and tempering of the sintered body and improving the wear resistance. In order to obtain these effects, the Cr content is set to 0.3% or more. On the other hand, when the Cr content exceeds 3.5%, the amount of Cr oxide generated increases. Since the Cr oxide serves as a starting point for fatigue failure inside the sintered body, the fatigue strength of the sintered body is reduced. Therefore, the Cr content is 3.5% or less.
Mo:0.1~2%
 Moは、焼入性向上、固溶強化、析出強化などによって、焼結体の強度を向上させる作用を有する元素である。前記効果を得るために、Mo含有量を0.1%以上とする。一方、Moの含有量が2%を超えると、焼結体の靭性が低下する。したがって、Mo含有量を2%以下とする。
Mo: 0.1-2%
Mo is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, precipitation strengthening, and the like. In order to acquire the said effect, Mo content shall be 0.1% or more. On the other hand, when the content of Mo exceeds 2%, the toughness of the sintered body decreases. Therefore, the Mo content is 2% or less.
S:0.01%以下
 本発明では、アトマイズ鉄基粉末中のMn含有量を0.08%以下としている。そのため、アトマイズ鉄基粉末に含有されているSのうち、MnSとして存在する量は少なくなり、固溶Sとして存在する量が多くなる。最終的に得られる合金鋼粉のS含有量が0.01%を超えると、固溶Sが増え、粒界強度が低下する。そのため、アトマイズ鉄基粉末の段階でのS含有量を0.01%以下とする。一方、S含有量は低ければ低いいほど、固溶Sが減るため好ましい。そのため、S含有量の下限は特に限定されず、0%であって良いが、工業的には0%超であってよい。しかし、過度の低減は製造コストの増加を招くため、S含有量は0.0005%以上とすることが好ましい。
S: 0.01% or less In the present invention, the Mn content in the atomized iron-based powder is set to 0.08% or less. Therefore, among S contained in the atomized iron-based powder, the amount present as MnS decreases, and the amount present as solute S increases. If the S content of the finally obtained alloy steel powder exceeds 0.01%, the solid solution S increases and the grain boundary strength decreases. Therefore, the S content at the stage of atomized iron-based powder is set to 0.01% or less. On the other hand, the lower the S content, the better because the solid solution S decreases. Therefore, the lower limit of the S content is not particularly limited, and may be 0%, but industrially it may be more than 0%. However, since excessive reduction leads to an increase in manufacturing cost, the S content is preferably 0.0005% or more.
P:0.01%以下
 Mn、Sの含有量が多いときは、Pの含有量は靭性に影響を及ぼさないが、合金鋼粉のMn量が0.08%以下、S含有量が0.01%以下のときは、P含有量を0.01%以下にすることによって、粒界強度が増加し、靭性が向上する。そのため、アトマイズ鉄基粉末の段階でのP含有量を0.01%以下とする。一方、P含有量は低ければ低いほど粒界強度が増加し、靭性が向上するため好ましい。そのため、P含有量の下限は特に限定されず、0%であってよいが、工業的には0%超であってよい。しかし、過度の低減は製造コストの増加を招くため、P含有量は0.0005%以上とすることが好ましい。
P: 0.01% or less When the contents of Mn and S are large, the content of P does not affect the toughness, but the Mn content of the alloy steel powder is 0.08% or less and the S content is 0.00. When the content is 01% or less, the grain boundary strength is increased and the toughness is improved by setting the P content to 0.01% or less. Therefore, the P content at the stage of atomized iron-based powder is set to 0.01% or less. On the other hand, the lower the P content, the greater the grain boundary strength and the better the toughness. Therefore, the lower limit of the P content is not particularly limited and may be 0%, but industrially it may be more than 0%. However, excessive reduction leads to an increase in manufacturing cost, so the P content is preferably 0.0005% or more.
 本発明におけるアトマイズ鉄基粉末の成分組成は、上記元素と、残部Feおよび不可避不純物からなる。 The component composition of the atomized iron-based powder in the present invention is composed of the above elements, the remainder Fe and inevitable impurities.
(平均粒径)
 アトマイズ鉄基粉末の平均粒径は特に限定されず、アトマイズ法によって得られた鉄基粉末であれば、任意の粒径のものを用いることができる。しかし、アトマイズ鉄基粉末の平均粒径が30μmを下回ると、アトマイズ鉄基粉末の流動性が低下し、ホッパなどを用いて移動床炉へ供給することが困難となる場合がある。また、アトマイズ鉄基粉末の平均粒径が30μmを下回ると、熱処理後の合金鋼粉の流動性も低下するため、該合金鋼粉をプレス成形する際の金型への充填の作業効率が低下する場合がある。そのため、アトマイズ鉄基粉末の平均粒径を30μm以上とすることが好ましく、40μm以上とすることがより好ましく、50μm以上とすることがさらに好ましい。
(Average particle size)
The average particle size of the atomized iron-based powder is not particularly limited, and any particle size can be used as long as it is an iron-based powder obtained by the atomization method. However, when the average particle size of the atomized iron-based powder is less than 30 μm, the fluidity of the atomized iron-based powder is lowered, and it may be difficult to supply to the moving bed furnace using a hopper or the like. In addition, if the average particle size of the atomized iron-based powder is less than 30 μm, the fluidity of the alloy steel powder after heat treatment also decreases, so the work efficiency of filling the mold when the alloy steel powder is press-formed decreases. There is a case. For this reason, the average particle size of the atomized iron-based powder is preferably 30 μm or more, more preferably 40 μm or more, and even more preferably 50 μm or more.
 一方、アトマイズ鉄基粉末の平均粒径が120μmより大きいと、得られた合金粉末を用いて得られる焼結体に粗大な空孔が生じて焼結体の密度が低下し、強度や靭性が不足する場合がある。そのため、アトマイズ鉄基粉末の平均粒径を120μm以上とすることが好ましく、100μm以下とすることがより好ましく、90μm以下とすることがさらに好ましい。なお、ここで平均粒径とは、メジアン径(いわゆるd50、体積基準)を指すものとする。 On the other hand, if the average particle size of the atomized iron-based powder is larger than 120 μm, coarse pores are generated in the sintered body obtained using the obtained alloy powder, the density of the sintered body is lowered, and the strength and toughness are reduced. There may be a shortage. Therefore, the average particle size of the atomized iron-based powder is preferably 120 μm or more, more preferably 100 μm or less, and even more preferably 90 μm or less. Here, the average particle diameter means a median diameter (so-called d50, volume basis).
(見掛密度)
 アトマイズ鉄基粉末の見掛密度は、特に限定しないが、2.0~3.5Mg/m3とすることが好ましく、2.4~3.2Mg/m3とすることがより好ましい。
(Apparent density)
The apparent density of the atomized iron-based powder is not particularly limited, but is preferably 2.0 to 3.5 Mg / m 3, and more preferably 2.4 to 3.2 Mg / m 3 .
[移動床炉]
 上記成分組成を有するアトマイズ鉄基粉末を、移動床炉に供給し、該移動床炉の移動床上に厚さd(mm)の充填層を形成する。前記移動床炉としては、アトマイズ鉄基粉末を熱処理できるものであれば任意のものを用いることができるが、搬送用のベルトを備えた移動床炉(以下、「ベルト式移動床炉」または「ベルト炉」ともいう)を用いることが好ましい。ベルト炉を用いて熱処理を行う場合には、ベルト上にアトマイズ鉄基粉末を供給して、充填層を形成することができる。アトマイズ鉄基粉末の供給は、任意の方法で行うことができるが、ホッパを用いて行うことが好ましい。また、移動床炉におけるアトマイズ鉄基粉末の搬送方向は特に限定されないが、移動床炉の入り口側から出口側へ直線的に搬送することが一般的である。なお、充填層の厚さについては後述する。
[Moving floor furnace]
Atomized iron-based powder having the above component composition is supplied to a moving bed furnace, and a packed bed having a thickness d (mm) is formed on the moving bed of the moving bed furnace. As the moving bed furnace, any one can be used as long as it can heat treat the atomized iron-based powder, but a moving bed furnace (hereinafter referred to as a “belt type moving bed furnace” or “ It is preferable to use a belt furnace). When heat treatment is performed using a belt furnace, an atomized iron-based powder can be supplied onto the belt to form a packed bed. The atomized iron-based powder can be supplied by any method, but it is preferable to use a hopper. Moreover, the conveyance direction of the atomized iron-based powder in the moving bed furnace is not particularly limited, but it is generally conveyed linearly from the inlet side to the outlet side of the moving bed furnace. The thickness of the filling layer will be described later.
 上記移動床炉の加熱方式は特に限定されず、アトマイズ鉄基粉末を加熱することができるものであれば、任意の方式を用いることができるが、雰囲気制御の観点からは、間接加熱式とすることが好ましく、ラジアントチューブを用いた加熱を用いることがより好ましい。また、マッフル炉も、間接加熱式の炉として好適に用いることができる。 The heating system of the moving bed furnace is not particularly limited, and any system can be used as long as it can heat the atomized iron-based powder. However, from the viewpoint of atmosphere control, the indirect heating system is used. It is preferable to use heating using a radiant tube. A muffle furnace can also be suitably used as an indirect heating furnace.
[水素含有気体]
 上記移動床炉には、水素含有気体が供給される。前記水素含有気体としては、水素を含有する気体であれば任意のものを用いることができる。前記水素含有気体としては、例えば、純H2ガスや、H2ガスと不活性ガスとの混合ガスなどが挙げられる。前記混合ガスとしては、H2ガスとN2ガスとの混合ガスを用いることが好ましい。アンモニアを分解して得られる、H2ガスとN2ガスとの混合ガス(いわゆるAXガス)も用いることができる。熱処理における還元、すなわち、アトマイズ鉄基粉末からの酸素の除去を効率的に進めるという観点からは、水素含有気体のH2含有量を、75%以上とすることが好ましく、90vol%以上とすることがより好ましく、100vol%(H2ガス)とすることがさらに好ましい。
[Hydrogen-containing gas]
The moving bed furnace is supplied with a hydrogen-containing gas. As the hydrogen-containing gas, any gas can be used as long as it contains hydrogen. Examples of the hydrogen-containing gas include pure H 2 gas and a mixed gas of H 2 gas and inert gas. As the mixed gas, it is preferable to use a mixed gas of H 2 gas and N 2 gas. A mixed gas of H 2 gas and N 2 gas (so-called AX gas) obtained by decomposing ammonia can also be used. From the viewpoint of efficiently proceeding reduction in heat treatment, that is, removal of oxygen from atomized iron-based powder, the H 2 content of the hydrogen-containing gas is preferably 75% or more, and 90 vol% or more. it is more preferable, and even more preferably to a 100 vol% (H 2 gas).
 前記水素含有気体は、上記移動床炉においてアトマイズ鉄基粉末の熱処理を行う間、平均ガス流速v(mm/s)となるように該移動床炉内へ供給される。水素含有気体は、移動床炉内に、原料粉末の移動方向と反対の方向に流すことが好ましい。例えば、移動床炉の一端(上流側)からアトマイズ鉄基粉末を供給し、該アトマイズ鉄基粉末をベルト等の搬送手段により該移動床炉の他端(下流側)へ搬送する場合には、水素含有気体を前記他端(下流側)から導入し、前記一端(上流側)より排気することが好ましい。そのため、移動床炉は、一端にアトマイズ鉄基粉末供給口および雰囲気ガス排出口を備え、他端に処理済みの粉末(合金鋼粉)の排出口および水素含有気体供給口を備えることが好ましい。 The hydrogen-containing gas is supplied into the moving bed furnace so as to have an average gas flow velocity v (mm / s) during the heat treatment of the atomized iron-based powder in the moving bed furnace. The hydrogen-containing gas is preferably flowed in the moving bed furnace in a direction opposite to the moving direction of the raw material powder. For example, when supplying atomized iron-based powder from one end (upstream side) of the moving bed furnace, and transporting the atomized iron-based powder to the other end (downstream side) of the moving bed furnace by a conveying means such as a belt, It is preferable that the hydrogen-containing gas is introduced from the other end (downstream side) and exhausted from the one end (upstream side). Therefore, it is preferable that the moving bed furnace is provided with an atomized iron-based powder supply port and an atmospheric gas discharge port at one end, and a discharge port for treated powder (alloy steel powder) and a hydrogen-containing gas supply port at the other end.
[熱処理]
 上記のように水素含有気体を供給した状態で、前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することにより、粉末冶金用合金鋼粉を得ることができる。前記熱処理により、アトマイズ鉄基粉末に含まれるCおよびOは、後述する脱炭および脱酸(還元)の反応により、除去される。
[Heat treatment]
With the hydrogen-containing gas supplied as described above, the atomized iron-based powder is heat-treated in the moving bed furnace, whereby an alloy steel powder for powder metallurgy can be obtained. By the heat treatment, C and O contained in the atomized iron-based powder are removed by a decarburization and deoxidation (reduction) reaction described later.
・d/√v≦3.2
 本発明においては、上記熱処理を行う間、前記充填層の厚さd(mm)および平均ガス流速v(mm/s)の両者を、下記(1)式を満足するように制御する。
           d/√v≦3.2(mm1/2・s1/2)…(1)
・ D / √v ≦ 3.2
In the present invention, during the heat treatment, both the thickness d (mm) of the packed bed and the average gas flow velocity v (mm / s) are controlled so as to satisfy the following expression (1).
d / √v ≦ 3.2 (mm 1/2 · s 1/2 ) (1)
 上記条件で熱処理を行うことにより、アトマイズ鉄基粉末が易酸化性の元素であるCrおよびMnを含むにもかかわらず、アトマイズ鉄基粉末に含まれるCおよびOを安定して低減することができる。そしてその結果、熱処理後の合金鋼粉におけるC含有量およびO含有量を、例えば、C≦0.1%、O≦0.28%といった極めて低い値とすることができる。以下、その理由について説明する。 By performing the heat treatment under the above-mentioned conditions, it is possible to stably reduce C and O contained in the atomized iron-based powder even though the atomized iron-based powder contains Cr and Mn which are easily oxidizable elements. . As a result, the C content and the O content in the alloy steel powder after the heat treatment can be set to extremely low values such as C ≦ 0.1% and O ≦ 0.28%. The reason will be described below.
 アトマイズ鉄基粉末に含まれるFe、Cr、およびMnの酸化物と、雰囲気中の水素との反応(脱酸反応)は、次の(2)~(4)式で表される。
 FeO(s)+ H2(g)= Fe(s)+H2O(g)…(2)
 Cr23(s)+ 3H2(g)= 2Cr(in Fe)+3H2O(g)…(3)
 MnO(s)+ H2(g)= Mn(in Fe)+H2O(g)…(4)
The reaction (deoxidation reaction) of the oxides of Fe, Cr, and Mn contained in the atomized iron-based powder with hydrogen in the atmosphere is expressed by the following equations (2) to (4).
FeO (s) + H 2 (g) = Fe (s) + H 2 O (g) (2)
Cr 2 O 3 (s) + 3H 2 (g) = 2Cr (in Fe) + 3H 2 O (g) (3)
MnO (s) + H 2 (g) = Mn (in Fe) + H 2 O (g) (4)
 上記反応ではH2Oガスが生成するため、脱酸反応を効率よく進めるためには、炉内雰囲気ガスの露点を、上記(2)~(4)式の平衡反応によってきまる平衡露点よりも常に低く保つ必要がある。そのため、上記反応によって発生するH2Oガスによって雰囲気ガスの露点が上がり過ぎないように、発生するH2Oガスの量を少なくする必要がある。 Since H 2 O gas is generated in the above reaction, in order to advance the deoxidation reaction efficiently, the dew point of the atmospheric gas in the furnace is always set higher than the equilibrium dew point determined by the equilibrium reaction of the above equations (2) to (4). Need to keep low. Therefore, it is necessary to reduce the amount of generated H 2 O gas so that the dew point of the atmospheric gas is not increased too much by the H 2 O gas generated by the reaction.
 そのためには、移動床炉内へ装入する鉄基粉末の量すなわち充填層厚を抑制することが考えられる。また、上記反応により発生したH2Oガスを除去する、あるいは移動床炉に導入する水素含有気体で希釈することによってH2Oガス濃度を低下させることが考えられる。そこで、本発明では、充填層厚dと、水素含有気体を炉内へ導入したときの炉内での平均ガス流速vを、上記(1)式を満たすように制御することとした。 For this purpose, it is conceivable to suppress the amount of iron-based powder charged into the moving bed furnace, that is, the packed bed thickness. It is also conceivable to reduce the H 2 O gas concentration by removing the H 2 O gas generated by the above reaction or diluting with a hydrogen-containing gas introduced into the moving bed furnace. Therefore, in the present invention, the packed bed thickness d and the average gas flow velocity v in the furnace when the hydrogen-containing gas is introduced into the furnace are controlled so as to satisfy the above equation (1).
 上記(1)式を満たすように充填層厚dと平均ガス流速vを制御することにより、脱酸が効率的に進む理由については、必ずしも明確ではないものの、次のように推定される。 The reason why the deoxidation proceeds efficiently by controlling the packed bed thickness d and the average gas flow velocity v so as to satisfy the above expression (1) is not necessarily clear, but is estimated as follows.
 すなわち、移動床炉内での熱処理中、充填層の表面上部の空間には流している水素含有気体の速度境界層ができる。この速度境界層の厚さは√vに反比例することが境界層に関する理論から導かれる。また、還元反応前の水素や還元反応により発生した水蒸気の拡散速度は、速度境界層の厚さによらず一定であると考えられるので、拡散時間は速度境界層の厚さに比例する。したがって、速度境界層厚さを半分にして同じ拡散時間を与えると、充填層表面での水素の濃度は2倍に、充填層表面での水蒸気の濃度は1/2になると考えられ、そうすると、充填層の厚さを2倍にしても充填層の最下層での水素や水蒸気の濃度を同じ濃度にできると推定される。したがって、濃度を一定と仮定すれば充填層厚と速度境界層の厚さは反比例することになり、つまりは、充填層厚と√vが比例関係にあると推定される。 That is, during the heat treatment in the moving bed furnace, a velocity boundary layer of flowing hydrogen-containing gas is formed in the space above the surface of the packed bed. It is derived from the theory regarding the boundary layer that the thickness of the velocity boundary layer is inversely proportional to √v. In addition, since the diffusion rate of hydrogen before the reduction reaction and water vapor generated by the reduction reaction is considered to be constant regardless of the thickness of the velocity boundary layer, the diffusion time is proportional to the thickness of the velocity boundary layer. Therefore, if the velocity boundary layer thickness is halved and the same diffusion time is given, the hydrogen concentration at the packed bed surface will be doubled and the water vapor concentration at the packed bed surface will be halved, It is estimated that even if the thickness of the packed bed is doubled, the concentration of hydrogen and water vapor in the lowermost layer of the packed bed can be made the same. Therefore, assuming that the concentration is constant, the packed layer thickness and the velocity boundary layer thickness are inversely proportional, that is, it is estimated that the packed layer thickness and √v are in a proportional relationship.
 上記知見に基づいて検討を行った結果、熱処理において、d/√v≦3.2の条件が満たされるように充填層厚とガス流速の調整を行えば、煩雑な維持管理が必要となるガス分析装置を使わなくても、Cr23あるいはMnOを還元するための平衡露点よりも炉内雰囲気ガスの露点が低い状態が維持されることを見出した。 As a result of the examination based on the above knowledge, if the packed layer thickness and the gas flow rate are adjusted so that the condition of d / √v ≦ 3.2 is satisfied in the heat treatment, the gas that requires complicated maintenance management is required. It has been found that the dew point of the atmospheric gas in the furnace is maintained lower than the equilibrium dew point for reducing Cr 2 O 3 or MnO without using an analyzer.
 なお、粉末冶金用合金鋼粉におけるO含有量をさらに低減するという観点からは、d/√v≦2.8(mm1/2・s1/2)とすることがより好ましい。一方、d/√vの下限は特に限定されず、低ければ低いほどよいが、dを過度に小さくすると生産効率が低下し、また、vを過度に大きくするとコストが増大するため、0.1以上とすることが好ましく、0.3以上とすることがより好ましい。 From the viewpoint of further reducing the O content in the powder metal alloy powder for powder metallurgy, d / √v ≦ 2.8 (mm 1/2 · s 1/2 ) is more preferable. On the other hand, the lower limit of d / √v is not particularly limited. The lower the better, the lower the better. However, if d is excessively decreased, the production efficiency decreases, and if v is excessively increased, the cost increases. It is preferable to set it as the above, and it is more preferable to set it as 0.3 or more.
(平均ガス流速v)
 なお、本発明において、上記平均ガス流速v(mm/s)は、移動床炉に供給される水素含有気体の体積流量f(1秒当たりに供給される水素含有気体の体積)を、該移動床炉の断面積Sで割ったものと定義される。ここで、断面積とは、アトマイズ鉄基粉末の搬送方向(ベルト炉においては、ベルトの進行方法)に垂直な断面の、焼鈍炉内部の空間の面積を指すものとする。ただし、焼鈍炉の断面積が搬送方向の位置によって異なる場合には、焼鈍炉内の最も高温である位置での断面積を前記断面積Sとする。後述するように、移動床炉内に脱炭ゾーン、脱酸ゾーン、および脱窒ゾーンを設ける場合は、通常、脱酸ゾーンが最も高温であるため、脱酸ゾーンにおける断面積を前記断面積Sとして用いればよい。さらに、上記体積流量fは、前記断面積Sの測定位置での体積流量とする。すなわち、高温でガスが体積膨張することを考慮して、前記位置における温度から求められる体積膨張率を上記流量に乗じておく。
(Average gas flow velocity v)
In the present invention, the average gas flow velocity v (mm / s) is obtained by changing the volume flow rate f of hydrogen-containing gas supplied to the moving bed furnace (volume of hydrogen-containing gas supplied per second). It is defined as dividing by the cross-sectional area S of the floor furnace. Here, the cross-sectional area refers to the area of the space inside the annealing furnace that is perpendicular to the conveying direction of the atomized iron-based powder (in the belt furnace, the belt traveling method). However, when the cross-sectional area of the annealing furnace differs depending on the position in the conveying direction, the cross-sectional area S is the cross-sectional area at the highest temperature in the annealing furnace. As will be described later, when a decarburization zone, a deoxidation zone, and a denitrification zone are provided in a moving bed furnace, the deoxidation zone is usually at the highest temperature. May be used. Further, the volume flow rate f is a volume flow rate at the measurement position of the cross-sectional area S. That is, considering the volume expansion of gas at a high temperature, the above flow rate is multiplied by the volume expansion coefficient obtained from the temperature at the position.
 ここで、上記断面積Sの定義についてさらに説明する。上記断面積Sの算出では、炉内に存在する搬送手段、加熱手段などの構造物や、被処理物である鉄基粉末が占める面積を考慮する必要がない。すなわち、それら炉内に存在する物の面積を差し引くことなく、移動床炉の内部空間の断面積を、そのまま上記断面積Sとして用いる。 Here, the definition of the cross-sectional area S will be further described. In the calculation of the cross-sectional area S, it is not necessary to consider the area occupied by the structure such as the conveying means and the heating means existing in the furnace and the iron-based powder as the object to be processed. That is, the cross-sectional area of the internal space of the moving bed furnace is used as it is as the cross-sectional area S without subtracting the area of objects existing in the furnaces.
 例えば、図1に示すようなラジアントチューブ型の熱処理炉の場合には、炉内には、ラジアントチューブ、ベルト、ベルトを送るためのロール(図示しない)、ベルト上に積層された鉄基粉末が存在する。しかし、これらの断面積を炉内の空間部分の断面積から差引くことは特に必要がない。炉内の空間部分の断面のなかで、ラジアントチューブやロールがない部分の方がガス流速は遅くなるが、この遅い部分の流速を制御することが特に重要であると、発明者らの試験結果から見出されたからである。また、ベルトや鉄粉の充填層厚部分の断面積は、炉の断面積全体に対しては無視できる大きさであるため、考慮する必要がない。 For example, in the case of a radiant tube type heat treatment furnace as shown in FIG. 1, a radiant tube, a belt, a roll (not shown) for feeding the belt, and iron-based powder laminated on the belt are contained in the furnace. Exists. However, it is not particularly necessary to subtract these cross-sectional areas from the cross-sectional area of the space portion in the furnace. In the cross section of the space part in the furnace, the gas flow rate is slower in the part where there is no radiant tube or roll, but it is particularly important to control the flow rate in this slow part. It was because it was found from. In addition, the cross-sectional area of the belt or iron powder packed-layer thickness portion is negligible with respect to the entire cross-sectional area of the furnace, so there is no need to consider it.
 また、マッフル型の熱処理炉の場合には、炉内にラジアントチューブやロールは設置されないので、もとよりこれらの断面積を考慮する必要はなく、ベルトや鉄粉の充填層厚部分の断面積は、炉の断面積全体に対して無視できるため考慮する必要がないことは、ラジアントチューブ型の熱処理炉の場合と同じである。 In addition, in the case of a muffle type heat treatment furnace, there is no radiant tube or roll installed in the furnace, so there is no need to consider these cross-sectional areas, and the cross-sectional area of the belt or iron powder packed layer thickness part is It is the same as in the case of a radiant tube type heat treatment furnace that it is negligible with respect to the entire cross-sectional area of the furnace and therefore need not be considered.
 そして、発明者らの試験結果から、上記定義に基づいて、移動床炉内に導入するガスの平均ガス流速を制御すれば、熱処理後の合金鋼粉のC含有量およびO含有量を、十分に安定して低減することができることが見出された。 And from the test results of the inventors, if the average gas flow rate of the gas introduced into the moving bed furnace is controlled based on the above definition, the C content and O content of the alloy steel powder after the heat treatment are sufficiently It has been found that it can be stably reduced.
(露点)
・水素含有気体の露点:0℃以下
 炉内に導入する水素含有気体の露点は0℃以下とすることが好ましい。先に述べたように、熱処理での還元反応を効率よく進めるためには、雰囲気ガスの露点を、上記(2)~(4)式で表される平衡反応から決まる平衡露点よりも低く保つ必要がある。そのため、導入される水素含有気体の露点を低くすることが好ましく、具体的には、0℃以下とすることが好ましい。
(Dew point)
-Dew point of hydrogen-containing gas: 0 ° C or less The dew point of the hydrogen-containing gas introduced into the furnace is preferably 0 ° C or less. As described above, in order to efficiently advance the reduction reaction in the heat treatment, it is necessary to keep the dew point of the atmospheric gas lower than the equilibrium dew point determined from the equilibrium reaction represented by the above equations (2) to (4). There is. Therefore, it is preferable to lower the dew point of the introduced hydrogen-containing gas, and specifically, it is preferable to set it to 0 ° C. or less.
 例えば、水素含有気体を、鉄基粉末の搬送方向と逆向きに流す場合には、鉄基粉末の搬送方向上流側に流れてくる水素含有気体には、反応によって生じた水蒸気が含まれており、供給時の水素含有気体よりも露点が上がっている。これを考慮して、導入される水素含有気体の露点を0℃以下と低くしておく。これにより、反応の進行に伴って露点が上昇しても、脱酸反応を十分に進行させることができる。 For example, when flowing a hydrogen-containing gas in the direction opposite to the iron-based powder conveyance direction, the hydrogen-containing gas flowing upstream in the iron-based powder conveyance direction contains water vapor generated by the reaction. The dew point is higher than the hydrogen-containing gas at the time of supply. Considering this, the dew point of the introduced hydrogen-containing gas is kept low at 0 ° C. or less. Thereby, even if a dew point rises with progress of reaction, deoxidation reaction can fully be advanced.
 ここで、雰囲気温度(脱酸反応を行わせる温度)を上げれば、平衡露点は上がるので、一見、水素含有気体の露点を上げてもいいように思われる。しかし、炉内温度が上がると、それに伴って脱酸反応(還元反応)の反応速度が大きくなってH2Oの発生速度も大きくなる。すると、炉内ガスの露点も上がりやすくなる。そのため、上記のように移動床炉に導入される水素含有気体の露点を制御することが好ましい。 Here, if the atmospheric temperature (the temperature at which the deoxidation reaction is carried out) is increased, the equilibrium dew point increases, so it seems that the dew point of the hydrogen-containing gas may be increased at first glance. However, when the temperature in the furnace rises, the reaction rate of the deoxidation reaction (reduction reaction) increases accordingly, and the generation rate of H 2 O also increases. Then, the dew point of the in-furnace gas also tends to increase. Therefore, it is preferable to control the dew point of the hydrogen-containing gas introduced into the moving bed furnace as described above.
 なお、従来のように、CrやMnといった易酸化性元素を含まない鉄基粉末では、特許文献4にあるように、露点を40℃以下とすれば問題はない。しかし、CrやMnを所定量含む鉄粉については、上式(3)および式(4)で表される脱酸反応を進めるために露点をさらに下げることが望ましく、具体的には、露点を0℃以下とすることが好ましい。 Note that, as in the prior art, there is no problem if the dew point is set to 40 ° C. or less in the iron-based powder that does not contain an easily oxidizable element such as Cr and Mn as in the prior art. However, for iron powder containing a predetermined amount of Cr or Mn, it is desirable to further lower the dew point in order to advance the deoxidation reaction represented by the above formulas (3) and (4). The temperature is preferably 0 ° C. or lower.
 一方、脱酸反応の進みやすさの点では、水素含有気体の露点は低いほどよい。しかし、露点が低いガスは高価であり、過度に露点が低いガス使用することは製造コストの増加を招くため、通常は前記露点を-40℃以上とすることが好ましい。 On the other hand, the lower the dew point of the hydrogen-containing gas, the better the deoxidation reaction proceeds. However, a gas with a low dew point is expensive, and the use of a gas with an excessively low dew point causes an increase in production cost. Therefore, it is usually preferable to set the dew point to −40 ° C. or higher.
 上記のような低い露点を達成するためには、炉外ガスの炉内への侵入や炉内ガスの炉外への漏洩を遮断することが好ましい。そのため、上記移動床炉は、ガスの漏洩および侵入を防止するための封止手段を備えることが好ましい。前記封止手段としては、例えば、特許文献4に記載されているような水封槽(図1の15)を用いることができるが、シールロールなどの水を使わない方式とすることがより好ましい。前記封止手段は、搬送方向の上流側と下流側の両端に設けることが好ましい。 In order to achieve the low dew point as described above, it is preferable to block intrusion of out-of-furnace gas into the furnace and leakage of out-of-furnace gas to the outside of the furnace. Therefore, it is preferable that the moving bed furnace includes a sealing unit for preventing gas leakage and intrusion. As the sealing means, for example, a water-sealed tank (15 in FIG. 1) as described in Patent Document 4 can be used, but it is more preferable to use a system that does not use water such as a seal roll. . The sealing means is preferably provided at both ends on the upstream side and the downstream side in the transport direction.
(雰囲気温度、保持時間)
 さらに、上記熱処理では、雰囲気温度T:1000℃以上、保持時間t:104-0.0037・T時間以上の条件で脱酸を行うことが好ましい。言い換えれば、上記熱処理では、雰囲気温度T:1000℃以上で、保持時間t:104-0.0037・T時間以上保持する時間を設けることが好ましい。以下、その理由について説明する。
(Atmosphere temperature, holding time)
Further, in the heat treatment, it is preferable to perform deoxidation under conditions of an atmospheric temperature T: 1000 ° C. or higher and a holding time t: 10 4−0.0037 · T hours or longer. In other words, in the heat treatment, it is preferable to provide a time for holding at an atmospheric temperature T: 1000 ° C. or more and a holding time t: 10 4−0.0037 · T hours or more. The reason will be described below.
・雰囲気温度T:1000℃以上
 従来のように、CrやMnといった易酸化性元素を含まない鉄基粉末を還元する場合には、還元すべき酸化物はFeOのみである。そのため、特許文献4に記載されているように脱酸ゾーンにおける雰囲気温度を700℃以上とすれば、上式(2)の平衡反応から決まる平衡露点は70℃以上と高い温度になる。このとき、導入するH2の露点を特許文献4にあるように40℃以下とすれば、十分な速度で脱酸反応(還元反応)が進むために問題は発生しなかった。
-Atmospheric temperature T: 1000 degreeC or more As usual, when reducing the iron-based powder which does not contain easily oxidizable elements, such as Cr and Mn, the oxide which should be reduced is only FeO. Therefore, as described in Patent Document 4, when the atmospheric temperature in the deoxidation zone is set to 700 ° C. or higher, the equilibrium dew point determined from the equilibrium reaction of the above formula (2) is as high as 70 ° C. or higher. At this time, if the dew point of H 2 to be introduced was set to 40 ° C. or lower as described in Patent Document 4, no problem occurred because the deoxidation reaction (reduction reaction) proceeded at a sufficient rate.
 これに対して、CrやMnを含む鉄基粉末を還元する場合、平衡露点を、脱酸反応によって発生するH2Oにより上昇した露点よりも高くするために、雰囲気温度を1000℃以上とすることが好ましい。一方、雰囲気温度の上限は、特に限定されないが、装置の耐熱性能、製造コスト等を考慮すれば、1200℃程度とすることが好ましい。なお、ここで「雰囲気温度」とは、移動床炉内の鉄基粉末(充填層)の表面から直上20mmの位置で、熱電対により測定した温度とする。 On the other hand, when reducing iron-based powder containing Cr and Mn, the atmospheric temperature is set to 1000 ° C. or higher in order to make the equilibrium dew point higher than the dew point raised by H 2 O generated by the deoxidation reaction. It is preferable. On the other hand, the upper limit of the ambient temperature is not particularly limited, but is preferably about 1200 ° C. in consideration of the heat resistance performance of the apparatus, the manufacturing cost, and the like. Here, the “atmosphere temperature” is a temperature measured by a thermocouple at a position 20 mm immediately above the surface of the iron-based powder (packed bed) in the moving bed furnace.
・保持時間t:104-0.0037・T時間以上
 保持時間tを、雰囲気温度T(℃)に応じて、104-0.0037・T時間以上とすれば、Oをより低減することができるため好ましい。なお、前記tおよびTの間の関係は、様々なTおよびtで合金鋼粉を製造する実験を行った結果から決定した。具体的には、得られた合金鋼粉のO含有量を、T-t図上へプロットし、同一酸素量を結ぶ曲線(等高線)を近似式として定めた。一方、保持時間の上限は特に限定されないが、脱酸反応完了に必要な時間以上に保持を行っても製造コストが増加するだけであるため、 前記保持時間は4時間以下とすることが好ましい。
-Holding time t: 10 4 -0.0037 · T hours or more It is preferable that the holding time t is 10 4 -0.0037 · T hours or more according to the ambient temperature T (° C.) because O can be further reduced. . In addition, the relationship between the said t and T was determined from the result of having conducted the experiment which manufactures alloy steel powder with various T and t. Specifically, the O content of the obtained alloy steel powder was plotted on a Tt diagram, and a curve (contour line) connecting the same oxygen content was determined as an approximate expression. On the other hand, the upper limit of the retention time is not particularly limited, but the retention time is preferably 4 hours or less because the production cost only increases even if the retention time is longer than the time required for completion of the deoxidation reaction.
 次に、特許文献4の記載された移動床炉を用いて、本発明を実施する場合について、さらに詳細に説明する。特許文献4の記載では、連続式移動床炉を用いて、脱炭、脱酸または脱窒のうちの1種以上の処理を連続的に行い、鉄基粉末の熱処理を行うとされている。また、特許文献4の記載では、移動床炉の分割された空間を利用して、脱炭、脱酸、脱窒の各処理工程を独立させ、脱炭工程では600~1100℃、脱酸工程では700~1100℃、脱窒工程では450~750℃に独立に温度制御して、鉄基粉末の熱処理を行うとされている。さらに、特許文献4では、雰囲気ガスとして、脱炭ゾーンではH2やAXガスなどの還元性ガス、または、N2やArなどの不活性ガス、脱酸ゾーンではH2やAXガスなどの還元性ガス、さらに脱窒ゾーンではH2主体のガスが用いられる、とされている。 Next, the case where this invention is implemented using the moving bed furnace described in Patent Document 4 will be described in more detail. In the description of Patent Document 4, it is supposed that one or more kinds of processes of decarburization, deoxidation, or denitrification are continuously performed by using a continuous moving bed furnace to heat-treat the iron-based powder. Further, in the description of Patent Document 4, each of the decarburization, deoxidation, and denitrification treatment steps is made independent using the divided space of the moving bed furnace, and the decarburization step is performed at 600 to 1100 ° C. In the denitrification process, the iron-base powder is heat-treated by controlling the temperature independently at 450 to 750 ° C. Further, Patent Document 4, as the atmosphere gas, a reducing gas such as H 2 or AX gas at decarburization zone or an inert gas such as N 2 or Ar, reduction such as H 2 or AX gas in deoxidation zone It is said that gas mainly composed of H 2 is used in the denitrification zone.
 ここで、特許文献4に記載された連続式移動床炉と同型の熱処理装置を、図1に示す。図1に示した熱処理装置100は、仕切壁1により複数のゾーン、すなわち脱炭ゾーン2、脱酸ゾーン3、脱窒ゾーン4に分割された炉体30と、炉体30の入側に設けられたホッパ8と、炉体30の入出側に設けられたホイール10と、該ホイール10により連続回転し、炉体30内の各ゾーンを巡回するベルト9と、ラジアントチューブ11と、を有する。ホッパ8から、ホイール10の連続回転により連続的に移動するベルト9上に所定の充填層厚(ベルト上に積載される粗製鉄基粉末の厚み)にて供給された粗製鉄基粉末7は、ラジアントチューブ11により適正温度に加熱された各ゾーン2,3,4を移動しながら熱処理され、脱炭、脱酸、脱窒されて製品粉13とされる。なお、製品粉13は製品タンク14に貯められる。 Here, a heat treatment apparatus of the same type as the continuous moving bed furnace described in Patent Document 4 is shown in FIG. A heat treatment apparatus 100 shown in FIG. 1 is provided on a furnace body 30 divided into a plurality of zones by a partition wall 1, that is, a decarburization zone 2, a deoxidation zone 3, and a denitrification zone 4, and an entrance side of the furnace body 30. The hopper 8 is provided, a wheel 10 provided on the entrance / exit side of the furnace body 30, a belt 9 that continuously rotates by the wheel 10 and circulates in each zone in the furnace body 30, and a radiant tube 11. The crude iron-based powder 7 supplied from the hopper 8 on the belt 9 continuously moved by the continuous rotation of the wheel 10 with a predetermined packed bed thickness (thickness of the crude iron-based powder loaded on the belt), It is heat-treated while moving through the zones 2, 3 and 4 heated to an appropriate temperature by the radiant tube 11, and decarburized, deoxidized and denitrified to obtain the product powder 13. The product powder 13 is stored in the product tank 14.
 そして、特許文献4に記載された技術において、各ゾーンでの反応はつぎのように考えられている。 脱炭ゾーン2では、ラジアントチューブ11により雰囲気温度を600~1100℃に制御し、脱炭ゾーン2の下流側に設けられた水蒸気吹込み口12から導入された水蒸気(H2Oガス)により、次ゾーンである脱酸ゾーン3の雰囲気ガスを露点:30~60℃に調整しつつ、粗製鉄基粉末から脱炭を行うとしている。
 脱炭ゾーン2の上流側には、雰囲気ガスの排出口6が設けられ、雰囲気ガスを装置外に排出している。なお、脱炭の反応式は、次式(I)で表される。
   C(in Fe)+ H2O(g)=CO(g)+H2(g)・・・(I)
And in the technique described in Patent Document 4, the reaction in each zone is considered as follows. In the decarburization zone 2, the ambient temperature is controlled to 600 to 1100 ° C. by the radiant tube 11, and the water vapor (H 2 O gas) introduced from the water vapor inlet 12 provided on the downstream side of the decarburization zone 2 It is supposed that decarburization is performed from the crude iron-based powder while adjusting the atmospheric gas in the deoxidation zone 3, which is the next zone, to a dew point of 30 to 60 ° C.
At the upstream side of the decarburization zone 2, an atmospheric gas discharge port 6 is provided to discharge the atmospheric gas to the outside of the apparatus. The decarburization reaction formula is represented by the following formula (I).
C (in Fe) + H 2 O (g) = CO (g) + H 2 (g) (I)
 脱酸ゾーン3では、ラジアントチューブ11により雰囲気温度を700~1100℃に制御し、脱窒ゾーン4からの雰囲気ガス(露点:40℃以下の水素ガス)を用いて、粗製鉄基粉末から脱酸を行うとしている。なお、脱酸の反応式は、次式(II)で表される。
   FeO(s)+ H2(g)=Fe(s)+H2O(g)・・・(II)
In the deoxidation zone 3, the ambient temperature is controlled to 700 to 1100 ° C. by the radiant tube 11, and deoxidation is performed from the crude iron-based powder using the atmospheric gas from the denitrification zone 4 (dew point: hydrogen gas of 40 ° C. or less). Is going to do. The reaction formula for deoxidation is represented by the following formula (II).
FeO (s) + H 2 (g) = Fe (s) + H 2 O (g) (II)
 脱窒ゾーン4では、ラジアントチューブ11により雰囲気温度を450~750℃に制御し、この脱窒ゾーン4の下流側に設けられた雰囲気ガス導入口5から反応ガスである水素ガス(露点:40℃以下)を導入して、粗製鉄基粉末から脱窒するとしている。なお、脱窒の反応式は、次式(III)で表される。
   N(in Fe)+ 3/2H2(g)=NH3(g)・・・(III)
 水封槽15は、炉外ガスの炉内ガスへの混入や炉内ガスの炉外への漏洩を遮断する働きを果たしている。
In the denitrification zone 4, the ambient temperature is controlled to 450 to 750 ° C. by the radiant tube 11, and hydrogen gas (dew point: 40 ° C.) as a reaction gas is supplied from the atmosphere gas inlet 5 provided on the downstream side of the denitrification zone 4. The following is introduced to denitrify the crude iron-based powder. The denitrification reaction formula is represented by the following formula (III).
N (in Fe) + 3 / 2H 2 (g) = NH 3 (g) (III)
The water sealing tank 15 functions to block the mixing of the outside gas into the furnace gas and the leakage of the inside gas to the outside of the furnace.
 また、特許文献4に記載されたベルト炉タイプの熱処理装置による熱処理温度パターンの典型例を図2に示す。処理される鉄基粉末は、(イ)または(ロ)に示したように、炉に入るとまず脱炭ゾーンで昇温され、続いて脱酸ゾーンで均熱され、最後に脱窒ゾーンで冷却される。鉄基粉末の流れと逆向きに導入される水素ガスは、まず脱窒ゾーンに入って昇温されながら鉄基粉末の脱窒を行い、次に脱酸ゾーンに入って一定の温度に保たれながら鉄基粉末の脱酸を行い、最後に脱炭ゾーンに所定量の水蒸気とともに入り、冷却されながら鉄基粉末の脱炭を行う。 Moreover, a typical example of a heat treatment temperature pattern by a belt furnace type heat treatment apparatus described in Patent Document 4 is shown in FIG. As shown in (a) or (b), the iron-based powder to be treated is first heated in the decarburization zone, then soaked in the deoxidation zone, and finally in the denitrification zone. To be cooled. The hydrogen gas introduced in the direction opposite to the flow of the iron-based powder first enters the denitrification zone, denitrifies the iron-based powder while being heated, and then enters the deoxidation zone and is kept at a constant temperature. The iron-base powder is deoxidized while finally entering the decarburization zone together with a predetermined amount of water vapor, and the iron-base powder is decarburized while being cooled.
 上記のような熱処理装置を用いて本発明を実施する場合、すなわち、CrやMnなどの易酸化性元素を含む鉄基粉末を処理する場合には、これらの元素を含まない鉄基粉末を処理する場合と違って、以下の点に注意を要する。すなわち、通常、水素ガスが最後の脱炭ゾーンに入る際には上記のように所定量の水蒸気が追加導入されるが、易酸化性元素を含む鉄基粉末を処理する場合には、水蒸気を追加導入してはいけない。水蒸気を追加導入すると、易酸化性元素がますます酸化され、脱酸(還元)が完了しなくなるおそれがあるからである。また、本発明の方法では、脱酸反応で発生した水蒸気だけで脱炭が完了できるよう、前記の通りアトマイズ鉄基粉末中のC含有量を0.8%以下と定めている。そのため、水蒸気を追加導入せずとも、脱炭を完了することができる。 When carrying out the present invention using the heat treatment apparatus as described above, that is, when processing an iron-based powder containing oxidizable elements such as Cr and Mn, the iron-based powder not containing these elements is processed. Unlike the case, the following points should be noted. That is, normally, when hydrogen gas enters the final decarburization zone, a predetermined amount of water vapor is additionally introduced as described above. However, when processing iron-based powder containing easily oxidizable elements, water vapor is used. Do not introduce additional. This is because when water vapor is additionally introduced, the easily oxidizable element is further oxidized and deoxidation (reduction) may not be completed. Further, in the method of the present invention, as described above, the C content in the atomized iron-based powder is set to 0.8% or less so that the decarburization can be completed only with water vapor generated by the deoxidation reaction. Therefore, decarburization can be completed without additionally introducing water vapor.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
 水アトマイズ法にて、表1に示す成分組成を有するアトマイズ鉄基粉末を製造した。これらのアトマイズ鉄基粉末を、移動床炉を用いて熱処理し、解砕して粉末冶金用合金鋼粉を得た。使用したアトマイズ鉄基粉末と、熱処理条件を表2に示す。また、前記熱処理においては、前記アトマイズ鉄粉を表2に示した充填層厚さdとなるように移動床炉内へ供給し、表2に示した平均ガス流速vとなるように水素含有気体を供給しながら、連続的に熱処理を実施した。得られた粉末冶金用合金鋼粉の成分組成は表3に示した通りであった。なお、表2に示した水素含有気体の組成における%表示は、vol%を意味する。 An atomized iron-based powder having the component composition shown in Table 1 was produced by the water atomization method. These atomized iron-based powders were heat-treated using a moving bed furnace and crushed to obtain alloy steel powder for powder metallurgy. Table 2 shows the atomized iron-based powder used and the heat treatment conditions. Further, in the heat treatment, the atomized iron powder is supplied into the moving bed furnace so as to have a packed bed thickness d shown in Table 2, and a hydrogen-containing gas so as to have an average gas flow velocity v shown in Table 2. The heat treatment was carried out continuously while supplying. The component composition of the obtained alloy steel powder for powder metallurgy was as shown in Table 3. In addition,% display in the composition of the hydrogen-containing gas shown in Table 2 means vol%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2から分かるように、充填層厚dと平均ガス流速vが本発明の条件を満たす実施例においては、得られた合金鋼粉におけるC含有量が0.1%以下、O含有量が0.28%以下まで低減されていた。これに対して、dおよびvが本発明の条件を満たさない比較例(A5、C1、およびC2)においては、O含有量が0.28%を超えていた。 As can be seen from Table 2, in the examples in which the packed bed thickness d and the average gas flow velocity v satisfy the conditions of the present invention, the obtained alloy steel powder has a C content of 0.1% or less and an O content of 0. .28% or less. On the other hand, in comparative examples (A5, C1, and C2) in which d and v do not satisfy the conditions of the present invention, the O content exceeded 0.28%.
 また、水素含有気体として100%H2(純水素ガス)を使用し、d/√v≦2.8(mm1/2・s1/2)である実施例においては、得られた合金鋼粉におけるC含有量が0.1%以下、O含有量が0.2%以下となっており、O含有量がより低減されていた。 Further, in the example in which 100% H 2 (pure hydrogen gas) is used as the hydrogen-containing gas and d / √v ≦ 2.8 (mm 1/2 · s 1/2 ), the obtained alloy steel The C content in the powder was 0.1% or less, the O content was 0.2% or less, and the O content was further reduced.
 また、粉末記号:B1~B3においてはいずれもO含有量で0.28%以下が得られているが、使用した水素含有気体のH2濃度が高くなるほど低いO含有量が得られた。粉末記号:D1~D4について見ると、露点が0℃以下であるD2~D4において、O含有量が0.15%以下と、一段と良好な結果が得られていることが分かる。さらに、粉末記号:E1~E3およびF1~F3のうち、雰囲気温度が1000℃以上、かつt≧104-0.0037・Tの条件を満たすもの(粉末記号:E3、F3)は、O含有量が0.15%以下と、一段と良好な結果が得られている。 In addition, in powder symbols B1 to B3, an O content of 0.28% or less was obtained, but a lower O content was obtained as the H 2 concentration of the hydrogen-containing gas used was increased. Looking at the powder symbols D1 to D4, it can be seen that in D2 to D4 where the dew point is 0 ° C. or less, the O content is 0.15% or less, and a much better result is obtained. Further, among powder symbols: E1 to E3 and F1 to F3, those having an ambient temperature of 1000 ° C. or higher and satisfying the condition of t ≧ 10 4−0.0037 · T (powder symbols: E3, F3) have an O content. A much better result was obtained at 0.15% or less.
 他方、J1およびK1については、アトマイズ鉄基粉末のC含有量またはO含有量が高過ぎたために、熱処理によってもC含有量またはO含有量が規定の量まで低減できていない。 On the other hand, as for J1 and K1, since the C content or O content of the atomized iron-based powder was too high, the C content or O content could not be reduced to the specified amount even by heat treatment.
 1 仕切り壁
 2 脱炭ゾーン
 3 脱酸ゾーン
 4 脱窒ゾーン
 5 雰囲気ガス供給口(供給雰囲気ガス)
 6 雰囲気ガス排出口(排出雰囲気ガス)
 7 粗製鉄基粉末
 8 ホッパ
 9 ベルト
 10 ホイール
 11 ラジアントチューブ
 12 水蒸気吹込み管
 13 製品粉
 14 製品タンク
 15 水封槽
 20 製品粉粉砕用装置
 21 冷却器
 22 循環ファン
 30 炉体(加熱炉)
 100 熱処理装置
1 Partition Wall 2 Decarburization Zone 3 Deoxidation Zone 4 Denitrification Zone 5 Atmosphere Gas Supply Port (Supply Atmosphere Gas)
6 Atmosphere gas outlet (exhaust gas)
7 Crude iron-based powder 8 Hopper 9 Belt 10 Wheel 11 Radiant tube 12 Steam blowing tube 13 Product powder 14 Product tank 15 Water seal tank 20 Product powder grinding device 21 Cooler 22 Circulating fan 30 Furnace (heating furnace)
100 Heat treatment equipment

Claims (3)

  1.  質量%で、
      C :0.8%以下、
      O :1.0%以下、
      Mn:0.08%以下、
      Cr:0.3~3.5%、
      Mo:0.1~2%、
      S :0.01%以下、および
      P :0.01%以下を含有し、
      残部Feおよび不可避不純物であるアトマイズ鉄基粉末を用意し、
     前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給し、
     前記移動床炉内に、水素含有気体を平均ガス流速v(mm/s)となるように供給し、
     前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする、粉末冶金用合金鋼粉の製造方法であって、
     前記dおよびvが、下記(1)式を満足する、粉末冶金用合金鋼粉の製造方法。
                         記
               d/√v≦3.2(mm1/2・s1/2)…(1)
    % By mass
    C: 0.8% or less,
    O: 1.0% or less,
    Mn: 0.08% or less,
    Cr: 0.3 to 3.5%,
    Mo: 0.1-2%
    S: 0.01% or less, and P: 0.01% or less,
    Prepare the remaining Fe and atomized iron-based powder which is an inevitable impurity,
    Supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed of thickness d (mm);
    A hydrogen-containing gas is supplied into the moving bed furnace so as to have an average gas flow velocity v (mm / s),
    The atomized iron-based powder is reduced by heat treatment in the moving bed furnace to obtain an alloy steel powder for powder metallurgy, a method for producing an alloy steel powder for powder metallurgy,
    The manufacturing method of the alloy steel powder for powder metallurgy in which said d and v satisfy | fill following (1) Formula.
    D / √v ≦ 3.2 (mm 1/2 · s 1/2 ) (1)
  2.  前記水素含有気体の露点を0℃以下とする、請求項1に記載の粉末冶金用合金鋼粉の製造方法。 The method for producing alloy steel powder for powder metallurgy according to claim 1, wherein the dew point of the hydrogen-containing gas is 0 ° C or lower.
  3.  前記熱処理において、雰囲気温度T:1000℃以上、保持時間t:104-0.0037・T時間以上の条件で脱酸が行われる、請求項1または2に記載の粉末冶金用合金鋼粉の製造方法。 3. The method for producing alloy steel powder for powder metallurgy according to claim 1, wherein in the heat treatment, deoxidation is performed under conditions of an atmospheric temperature T: 1000 ° C. or more and a holding time t: 10 4−0.0037 · T hours or more. .
PCT/JP2016/004119 2015-09-11 2016-09-09 Production method for alloy steel powder for powder metallurgy WO2017043090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016575265A JP6112277B1 (en) 2015-09-11 2016-09-09 Method for producing alloy steel powder for powder metallurgy
KR1020187002726A KR20180022905A (en) 2015-09-11 2016-09-09 Production method for alloy steel powder for powder metallurgy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-180105 2015-09-11
JP2015180105 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043090A1 true WO2017043090A1 (en) 2017-03-16

Family

ID=58239395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004119 WO2017043090A1 (en) 2015-09-11 2016-09-09 Production method for alloy steel powder for powder metallurgy

Country Status (3)

Country Link
JP (1) JP6112277B1 (en)
KR (1) KR20180022905A (en)
WO (1) WO2017043090A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170002A (en) * 1995-10-19 1997-06-30 Kawasaki Steel Corp Iron powder finish heat-treating method and device therefor
JP2006016688A (en) * 2004-05-31 2006-01-19 Jfe Steel Kk Finish-heat treatment method for iron powder and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170002A (en) * 1995-10-19 1997-06-30 Kawasaki Steel Corp Iron powder finish heat-treating method and device therefor
JP2006016688A (en) * 2004-05-31 2006-01-19 Jfe Steel Kk Finish-heat treatment method for iron powder and apparatus therefor

Also Published As

Publication number Publication date
KR20180022905A (en) 2018-03-06
JP6112277B1 (en) 2017-04-12
JPWO2017043090A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
Dossett et al. Steel heat treating fundamentals and processes
CN111440987B (en) Quenching distribution steel with tensile strength of more than or equal to 980MPa produced by adopting short process and method
CN103757530B (en) The thin strap continuous casting economy ultra-high strength package binding band of tensile strength >=1250MPa and manufacture method thereof
CN112226676A (en) Low-cost L320MS/X46MS hot-rolled steel strip for hydrogen sulfide corrosion resistant welded pipe and manufacturing method thereof
US9815115B2 (en) Finish heat treatment method and finish heat treatment apparatus for iron powder
JP6112280B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112281B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112283B1 (en) Method for producing alloy steel powder for powder metallurgy
CN110747397B (en) Round steel for gear and preparation method thereof, gear part and preparation method thereof
JP6112277B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112282B1 (en) Method for producing alloy steel powder for powder metallurgy
JP6112278B1 (en) Method for producing alloy steel powder for powder metallurgy
CN111893390A (en) Method for producing steel sheet for wide-width railway vehicle tank body with uniform performance
JPS61110701A (en) Finish heat treatment of iron and steel powder
CN114130820B (en) Hot rolled steel plate for carriage and manufacturing method thereof
Dossett et al. Normalizing of Steel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016575265

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002726

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843956

Country of ref document: EP

Kind code of ref document: A1