WO2017039164A1 - Ups 배터리 충전용량 제어 방법 - Google Patents

Ups 배터리 충전용량 제어 방법 Download PDF

Info

Publication number
WO2017039164A1
WO2017039164A1 PCT/KR2016/008608 KR2016008608W WO2017039164A1 WO 2017039164 A1 WO2017039164 A1 WO 2017039164A1 KR 2016008608 W KR2016008608 W KR 2016008608W WO 2017039164 A1 WO2017039164 A1 WO 2017039164A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charge capacity
temperature
charge
capacity
Prior art date
Application number
PCT/KR2016/008608
Other languages
English (en)
French (fr)
Inventor
남정현
이규성
최범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/738,388 priority Critical patent/US10461377B2/en
Priority to EP16842130.3A priority patent/EP3291409B1/en
Priority to CN201680033640.XA priority patent/CN108064429B/zh
Publication of WO2017039164A1 publication Critical patent/WO2017039164A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/002Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which a reserve is maintained in an energy source by disconnecting non-critical loads, e.g. maintaining a reserve of charge in a vehicle battery for starting an engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method and apparatus for controlling the charge capacity of a battery.
  • the present invention relates to a method and an apparatus for controlling a charging capacity of a battery according to temperature.
  • UPS is an abbreviation for Uninterruptible Power Supply, which normally receives commercial power or generator power and keeps the battery fully charged. It is a power supply device that supplies electricity. It is a device that always supplies electricity of rated voltage and rated frequency to load even in case of voltage fluctuation and frequency fluctuation of input power.
  • Batteries are used in the UPS device, and the battery used in the UPS device supplies power to the electronic device when the main power supply to the electronic device is interrupted, so that most of the time is kept in a fully charged state.
  • the full charge state of the battery is determined based on the output voltage, the current of the battery, and the holding time of the output voltage and the current.
  • 1 is a graph showing an output voltage according to a charging capacity of a battery.
  • Table 1 is a table showing the charge and discharge capacity of the battery according to the temperature under the same conditions.
  • the battery when the battery's charge capacity remains, the battery can be supplied for a longer time than the specification, but in the case of a battery that is fully charged, the battery's charge capacity is exceeded and it is left in a high voltage state for a long time. This causes a problem of shortening the life of the battery.
  • the present invention provides an apparatus and method for controlling the charge capacity of a battery to minimize battery damage and thus allow the battery to last longer.
  • the present invention provides an apparatus and a method for extending the life of a battery by reducing the damage of the battery by controlling the charge capacity of the battery according to the temperature.
  • the present invention provides a method for controlling a battery charge capacity according to a temperature, comprising: a current temperature detection step of measuring a current temperature, an optimum charge capacity detection step of detecting an optimum charge capacity of a battery corresponding to each temperature, and a current charge capacity of a battery Determining the current charge capacity to detect the charge capacity, comparing the charge capacity and the current charge capacity comparing the charge capacity, the charge and discharge determination step of determining the charge and discharge of the battery according to the result of the charge capacity comparison step, the charge and discharge determination The charging / discharging progress step of charging and discharging the battery is performed according to the result of the step.
  • the optimal charging capacity detecting step includes a maximum charging capacity detecting step of detecting a maximum charging capacity for a predetermined temperature corresponding to a temperature, and a minimum charging capacity detecting step of detecting a minimum charging capacity for a predetermined temperature corresponding to a temperature.
  • the charging / discharging determining step when the current charging capacity of the battery is greater than the maximum charging capacity, the signal for discharging the battery is transmitted to the controller. If it is smaller than the minimum charging capacity, a signal for charging the battery is transmitted to the controller.
  • the present invention provides a battery charge capacity control apparatus according to temperature, comprising: a controller for controlling a charge capacity of a battery, a memory in which an optimum charge capacity table corresponding to temperature is stored, a measurement unit for measuring a temperature and a current charge capacity of a battery, etc. It consists of.
  • the control unit includes a comparator for comparing the optimum charge capacity table with a current charge capacity of the battery, and a charge / discharge control switch for controlling the battery in a charged or discharged state according to the result of the comparator.
  • the measuring unit includes a temperature measuring module for measuring the temperature and temperature of the battery, a charging capacity measuring module for measuring the current charging capacity of the battery, and the like.
  • the present invention is a battery full charge voltage condition control apparatus according to the temperature, the control unit for controlling the charge capacity of the battery, the memory storing the optimum charge capacity table corresponding to the temperature, the temperature for measuring the temperature and temperature of the battery
  • the measurement module may be configured to communicate with the BMS and receive a current charging capacity of the battery.
  • the controller may include a comparator for comparing the optimum charge capacity table with a current charge capacity of the battery, and a charge / discharge control switch for controlling the battery in a charged or discharged state according to the result of the comparator.
  • the present invention by controlling the charging capacity of the battery in a state suitable for temperature, it is possible to extend the life of the battery by reducing the damage of the battery.
  • 1 is a graph showing an output voltage of a battery according to a charging capacity.
  • FIG. 4 is a configuration diagram according to a first embodiment of the present invention.
  • FIG. 5 is a detailed configuration diagram of a comparison unit of a first embodiment of the present invention.
  • FIG. 6 is a configuration diagram according to a second embodiment of the present invention.
  • the present invention relates to an apparatus and method for controlling charge and discharge of a battery for a UPS.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the present invention provides a method of controlling a battery charge capacity according to temperature, the current temperature detection step of measuring the current temperature (S110), the optimum charge capacity detection step of detecting the optimum charge capacity of the battery corresponding to each temperature (S120) ), According to the results of the current charge capacity detection step (S130) of detecting the current charge capacity of the battery, the charge capacity comparison step (S140) comparing the optimum charge capacity and the current charge capacity, the comparison of the charge capacity (S140) Charge and discharge determination step (S150) for determining the charge and discharge of the battery, the charge and discharge progress step (S160) for proceeding the charge and discharge of the battery according to the charge and discharge determination step (S150).
  • the current temperature detection step (S110) is a step of measuring the temperature and temperature of the current battery using the temperature measurement module.
  • the reason for measuring the temperature and temperature of the current battery as described above is that even if the same battery, the charging capacity of the battery is changed according to the temperature, temperature, etc. of the battery, and thus the full charge capacity is also changed.
  • the optimal charge capacity detection step (S120) is a step of detecting the charge capacity of the battery optimized for a predetermined temperature among the charge capacity of the battery that is changed due to the change in the temperature and temperature of the battery.
  • the step of detecting the maximum charge capacity corresponding to the temperature measured in the current temperature detection step (S110) in the optimum charge capacity table stored in the memory, the maximum charge capacity detection step (S121) and the minimum charge capacity It consists of a minimum charge capacity detection step (S122) for detecting the.
  • the detecting of the maximum charging capacity is a step of detecting a maximum charging capacity in which the battery does not become overcharged at a current temperature in an optimal charging capacity table stored in a memory.
  • the detecting of the minimum charge capacity is a step of detecting a minimum charge capacity of a battery capable of outputting a minimum output corresponding to a user's request at a current temperature from an optimal charge capacity table stored in a memory. .
  • the current charge capacity detection step (S130) is a step of measuring the charge capacity of the current battery based on the output voltage, current, etc. of the battery using the charge capacity measurement module or detecting the charge capacity of the current battery in the BMS. .
  • the charging capacity comparison step (S140) is a comparison between the maximum charge capacity and the minimum charge capacity detected in the optimum charge capacity detection step (S120) and the current battery charge capacity detected in the current charge capacity detection step (S130). It's a step.
  • the current battery charge capacity is a value between the maximum charge capacity and the minimum charge capacity detected in the optimum charge capacity detection step (S120), it is determined that the charge capacity is appropriate for the current temperature and does not generate a separate signal.
  • the charge / discharge determination step (S150) when a discharge request signal is generated in the charge capacity comparison step (S140), a predetermined discharge time is set based on the charge amount of the current battery (S151) and a battery is operated by operating a discharge switch. Is connected to the discharge circuit.
  • a predetermined charging time S152 is set based on the current charging amount of the battery, and the battery is connected to the charging circuit by operating the charging switch.
  • the charging and discharging step (S160) is a step of discharging (S162) or charging (S161) for a predetermined time set in the charge and discharge determination step.
  • FIG. 4 is a configuration diagram of a battery charge capacity control device according to a first embodiment of the present invention.
  • the apparatus for controlling a battery charge capacity includes a controller 100 for controlling a charge capacity of a battery, a memory 200 in which an optimum charge capacity table corresponding to a temperature is stored, a temperature and a current charge of a battery. It consists of a measuring unit 300 for measuring the capacity.
  • control unit 100 compares the charging capacity of the current battery measured by the measuring unit 200 with the optimum charging capacity table corresponding to the measured temperature 110, the comparison unit 110
  • the charge / discharge control switch 120 controls the battery in the charged or discharged state according to the charge or discharge signal generated in the).
  • comparison unit 110 will be described in more detail with reference to FIG. 5.
  • the comparator 110 stores the optimal charge capacity corresponding to the current temperature in the first storage 111 and the optimal charge capacity table corresponding to the temperature, which stores the charge capacity of the current battery measured by the measurement unit 200.
  • the optimal charging capacity refers to the minimum charging capacity that the battery can output the minimum to meet the needs of the user and the maximum charging capacity within a range that does not damage the battery.
  • This temperature-voltage relationship can be set by adjusting the charge capacity to a value within a range of the lowest charge capacity possible for the battery output required by the user and the maximum charge capacity without damaging the battery.
  • the value between the temperature and the voltage may be set using linear interpolation.
  • the comparison module 114 compares the charging capacity of the current battery and the minimum charging capacity, and if the charging capacity of the current battery is smaller as a result of the comparison, the charging capacity of the current battery is insufficient to satisfy the output requirement of the user.
  • the predetermined charging time required for charging is calculated and a charging request signal is generated. Meanwhile, as a result of the comparison, if the charge capacity of the battery is larger, the charge capacity of the current battery and the charge capacity of the maximum battery are compared. As a result, if the charge capacity of the current battery is smaller, the charge capacity of the current battery is the minimum charge capacity and the maximum charge capacity. Since a separate signal is not generated, but a comparison result indicates that the current battery's charging capacity is larger, the battery's charging capacity has exceeded the maximum charging capacity, thereby calculating a predetermined discharge time required for discharging and generating a discharge signal.
  • the memory 200 is a table of the optimum charge capacity is stored.
  • the optimal charging capacity refers to the minimum charging capacity that enables the battery to output the minimum required to meet the needs of the user, and the maximum charging capacity within a range that does not damage the battery.
  • the minimum charge capacity and the maximum charge capacity have different values for each battery, and the method of detecting the same may be obtained through charge and discharge experiments by setting the same conditions except the temperature with the same battery and changing the temperature. have.
  • the measuring unit 300 is composed of a temperature measuring module 310 for measuring the temperature and the charging capacity measuring module 320 for measuring the charging capacity of the battery.
  • the temperature measuring module 310 measures the temperature and temperature of the battery, and the temperature value measured by the temperature measuring module 310 is stored in the memory 200 or immediately transmitted to the controller 100 to detect the optimal charging capacity. Can be used for
  • the charging capacity measuring module 320 measures the current charging capacity of the battery, and more specifically, calculates the charging capacity based on the measurement of the voltage and current of the battery. In addition, the measured charge capacity of the current battery is compared with the optimum charge capacity in the comparator 110 of the controller 100.
  • FIG. 6 is a configuration diagram of a battery charge capacity control device according to a second embodiment of the present invention.
  • the apparatus for controlling a battery charge capacity includes a controller 100 for controlling a charge capacity of a battery, a memory 200 in which an optimum charge capacity table corresponding to a temperature is stored, and a temperature measurement for measuring temperature.
  • the module 310 and the BMS 500 may be configured to include a communication unit 400 for receiving a current charge capacity of the battery.
  • the controller 100 compares the optimum charge capacity detected in the optimum charge capacity table corresponding to the current temperature measured by the temperature measurement module 310 with the current charge capacity measured by the BMS 500.
  • the comparator 110 and the charge / discharge control switch 120 for controlling the battery in a charged or discharged state according to the charge or discharge signal generated by the comparator 110 is configured.
  • the comparator 110 detects an optimum charge capacity detection module that detects an optimum charge capacity corresponding to a current temperature measured by the temperature measurement module 310. And a second storage unit for storing the optimum charge capacity detected by the optimum charge capacity detection module, measured by the BMS 500 and transmitted to the controller 100 and the current temperature of the current battery transmitted through the communication unit 400. It consists of a comparison module for comparing the corresponding optimum charging capacity.
  • the optimal charging capacity refers to the minimum charging capacity that the battery can output the minimum to meet the needs of the user and the maximum charging capacity within a range that does not damage the battery.
  • the comparison unit compares the current battery charge capacity and the minimum charge capacity, and if the battery charge capacity is smaller as a result of the comparison, the current battery charge capacity is insufficient to satisfy the user's output error, the predetermined required for charging The charging time is calculated and a charging request signal is generated. Meanwhile, as a result of the comparison, when the charging capacity of the battery is larger, the charging capacity of the current battery and the charging capacity of the maximum battery are compared. As a result, when the charging capacity of the current battery is smaller, the charging capacity of the current battery is the minimum charging capacity and the maximum charging.
  • the memory 200 is stored in the optimum charge capacity table that records the optimum charge capacity for each temperature.
  • the optimal charging capacity refers to the minimum charging capacity that the battery can output the minimum to meet the needs of the user and the maximum charging capacity within a range that does not damage the battery.
  • This temperature-voltage relationship can be set by adjusting the charge capacity to a value within a range of the lowest charge capacity possible for the battery output required by the user and the maximum charge capacity without damaging the battery.
  • the value between the temperature and the voltage may be set using linear interpolation.
  • the optimal charging capacity refers to the minimum charging capacity that enables the battery to output the minimum required to meet the needs of the user, and the maximum charging capacity within a range that does not damage the battery.
  • the minimum charge capacity and the maximum charge capacity have different values for each battery, and the method of detecting the same may be obtained through charge and discharge experiments by setting the same conditions except the temperature with the same battery and changing the temperature. have.
  • the temperature measuring module 310 measures the temperature and temperature of the battery, and the temperature value measured by the temperature measuring module is stored in the memory 200 or immediately transmitted to the controller 100 to detect the optimal charge capacity. Can be used.
  • the communication unit 400 communicates with the BMS 500 to transmit the current charging capacity of the battery periodically measured by the BMS 500 to the control unit 100.
  • the measured charge capacity of the current battery is compared with the optimum charge capacity in the comparator 110 of the controller 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 배터리의 충전용량을 제어하여 배터리 손상을 최소화하여 배터리를 보다 오래 사용 가능하도록 하는 장치 및 방법을 제공한다. 보다 구체적으로 배터리의 충전용량을 온도에 따라 제어함으로써 배터리의 손상을 줄여 배터리의 수명을 연장하는 장치 및 방법을 제공한다.

Description

UPS 배터리 충전용량 제어 방법
본 발명은 배터리의 충전용량을 제어하는 방법 및 장치에 관한 것이다.
보다 구체적으로는 온도에 따른 배터리의 충전용량을 제어하는 방법 및 장치에 관한 것이다.
UPS 장치는 무정전 전원 장치(Uninterruptible Power Supply) 의 약자이며 평상시 상용 전원 또는 발전기 전원을 수전하여 축전지를 만충전 상태로 유지하다 정전 되었을 때 축전지를 방전시켜 순간의 정전도 없이 정해진 시간 동안 부하에 계속적으로 전기를 공급해 주는 전원장치로 입력 전원의 전압변동 및 주파수 변동에도 부하에는 항상 정격전압, 정격주파수의 전기를 공급하는 장치이다.
이러한 UPS 장치에는 배터리가 사용되는데 UPS 장치에서 사용되는 배터리는 전자장치에 공급되는 메인 전원의 공급이 중단 되었을 때 전자장치에 전원을 공급하게 되므로 대부분의 시간을 만충전 상태로 유지된다.
일반적인 BMS에서는 배터리의 만충전 상태를 배터리의 출력 전압, 전류, 상기 출력 전압과 전류의 유지 시간을 기반으로 배터리의 만충전 상태를 판단한다.
도 1은 배터리의 충전용량에 따른 출력전압을 나타낸 그래프이다.
도 1을 살펴보면 충전용량이 증가 할수록 배터리의 출력전압이 커지는 것을 확인 할 수 있다.
한편, 같은 배터리라도 온도에 따라서 배터리 내부의 화학전 변화로 인해 충전용량이 달라진다.
표1은 동일한 조건에서 온도에 따른 배터리의 충전 및 방전 용량을 나타낸 표이다.
충전온도(℃) 방전 온도(℃)
-10 0 25 45 60
-5 100% 113% - - -
10 120% 115% 130% - -
25 104% 117% 134% 139% 139%
45 - - 135% 140% 140%
60 - - - 141% 141%
상기 표를 살펴보면 고온에서 충전 및 방전을 실시 하였을 경우에는 저온에 비해 40% 이상의 충전용량이 남게 된다.
이와 같이 배터리의 충전용량이 남는 경우에는 스펙 보다 오랜 시간 배터리를 사용하여 전원을 공급 할 수는 있지만 만충전 상태를 유지하는 배터리의 경우에는 배터리의 충전용량이 초과되어 고전압 상태로 오랫동안 방치되게 되고, 이로 인해 배터리의 수명이 단축되는 문제점이 발생한다.
본 발명은 배터리의 충전용량을 제어하여 배터리 손상을 최소화하여 배터리를 보다 오래 사용 가능하도록 하는 장치 및 방법을 제공한다.
보다 구체적으로 배터리의 충전용량을 온도에 따라 제어함으로써 배터리의 손상을 줄여 배터리의 수명을 연장하는 장치 및 방법을 제공한다.
본 발명은 온도에 따른 배터리 충전용량을 제어 방법에 있어서, 현재 온도를 측정하는 현재 온도 검출 단계, 각각의 온도에 대응하는 배터리의 최적 충전용량을 검출하는 최적 충전용량 검출 단계, 배터리의 현재 충전용량을 검출하는 현재 충전용량 검출 단계, 상기 최적 충전용량과 현재 충전용량을 비교하는 충전용량 비교 단계, 상기 충전용량 비교 단계의 결과에 따라 배터리의 충방전을 결정하는 충방전 결정 단계, 상기 충방전 결정 단계의 결과에 따라 배터리의 충방전을 진행하는 충방전 진행 단계로 구성된다.
상기 최적 충전용량 검출 단계는 온도에 대응하는 기설정된 온도별 최대 충전용량을 검출하는 최대 충전용량 검출 단계, 온도에 대응하는 기설정된 온도별 최소 충전용량을 검출하는 최소 충전용량 검출 단계로 구성된다.
상기 충방전 결정 단계는 상기 충전량 비교 단계의 결과가 배터리의 현재 충전용량이 최대 충전용량 보다 큰 경우, 배터리를 방전 시키는 신호를 제어부로 전송하고, 상기 충전량 비교 단계의 결과가 배터리의 현재 충전용량이 최소 충전용량 보다 작은 경우, 배터리를 충전 시키는 신호를 제어부로 전송한다.
본 발명은 온도에 따른 배터리 충전용량 제어 장치에 있어서, 배터리의 충전용량을 제어하는 제어부, 온도에 대응되는 최적 충전용량 테이블이 저장되어 있는 메모리, 온도 및 배터리의 현재 충전용량을 측정하는 측정부 등으로 구성된다.
상기 제어부는 상기 최적 충전용량 테이블과 배터리의 현재 충전용량을 비교하는 비교부, 상기 비교부의 결과에 따라 배터리를 충전 또는 방전 상태로 제어하는 충방전 제어 스위치 등으로 구성된다.
상기 측정부는 배터리의 온도 및 기온을 측정하는 온도 측정 모듈, 배터리의 현재 충전용량을 측정하는 충전용량 측정 모듈 등으로 구성된다.
또한, 본 발명은 온도에 따른 배터리 만충전 전압 조건 제어 장치에 있어서, 배터리의 충전용량을 제어하는 제어부, 온도에 대응되는 최적 충전용량 테이블이 저장되어 있는 메모리, 배터리의 온도 및 기온을 측정하는 온도 측정 모듈, BMS와 통신하여 배터리의 현재 충전용량을 전송 받는 통신부 등으로 구성될 수 있다.
상기 제어부는 상기 최적 충전용량 테이블과 배터리의 현재 충전용량을 비교하는 비교부, 상기 비교부의 결과에 따라 배터리를 충전 또는 방전 상태로 제어하는 충방전 제어 스위치 등으로 구성 될 수 있다.
본 발명은 배터리의 충전용량을 온도에 맞는 상태로 제어함으로써, 배터리의 손상을 줄여 배터리의 수명을 연장 할 수 있다.
도 1은 충전용량에 따른 배터리의 출력 전압을 나타낸 그래프이다.
도 2는 본 발명의 전체적인 흐름도이다.
도 3은 본 발명의 구체적인 흐름도이다.
도 4는 본 발명의 제1 실시 예에 따른 구성도이다.
도 5는 본 발명의 제1 실시 예의 비교부의 구체적인 구성도이다.
도 6은 본 발명의 제2 실시 예에 따른 구성도이다.
도 7은 본 발명의 온도-전압 사이의 관계의 실시 예이다.
본 발명은 UPS용 배터리의 충전 및 방전 제어 장치 및 방법에 관한 것이다.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명에 따른 예시적 실시 예를 상세하게 설명한다. 다만, 본 발명이 예시적 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조부호는 실질적으로 동일한 기능을 수행하는 부재를 나타낸다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예컨대, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
1.본 발명의 배터리 충전용량 제어 방법.
도 2는 본 발명의 전체적인 흐름도이다.
이하에서는 도 2를 참조하여 본 발명의 배터리 충전용량 제어 방법을 설명한다.
본 발명은 온도에 따른 배터리 충전용량을 제어하는 방법에 있어서, 현재 온도를 측정하는 현재 온도 검출 단계(S110), 각각의 온도에 대응하는 배터리의 최적 충전용량을 검출하는 최적 충전용량 검출 단계(S120), 배터리의 현재 충전용량을 검출하는 현재 충전용량 검출 단계(S130), 상기 최적 충전용량과 현재 충전용량을 비교하는 충전용량 비교 단계(S140), 상기 충전용량 비교 단계(S140)의 결과에 따라 배터리의 충방전을 결정하는 충방전 결정 단계(S150), 상기 충방전 결정 단계(S150)에 따라 배터리의 충방전을 진행하는 충방전 진행 단계(S160)를 포함하여 구성된다.
이하에서는 도 3을 참조하여 상기 단계들을 구체적으로 설명한다.
상기 현재 온도 검출 단계(S110)는 온도 측정 모듈을 이용하여 현재 배터리의 온도 및 기온을 측정하는 단계이다. 이와 같이 현재 배터리의 온도 및 기온을 측정하는 이유는 동일한 배터리라도 배터리의 온도, 기온 등에 따라서 배터리의 충전용량이 달라지고, 이로 인해 만충전용량도 변화되기 때문이다.
한편, 최적 충전용량 검출 단계(S120)는 배터리의 온도 및 기온의 변화로 인해 변동되는 배터리의 충전용량 중에서 소정의 온도에 최적화된 배터리의 충전용량을 검출하는 단계이다.
보다 구체적으로는 상기 현재 온도 검출 단계(S110)에서 측정된 온도에 대응되는 최대 충전용량을 메모리에 저장되어 있는 최적 충전용량 테이블에서 검출하는 단계로, 최대 충전용량 검출 단계(S121)와 최소 충전용량을 검출하는 최소 충전용량 검출 단계(S122)로 구성된다.
상기 최대 충전용량 검출 단계(S121)는 배터리가 현재 온도에서 과충전 상태가 되지 않는 최대 충전용량을 메모리에 저장되어 있는 최적 충전용량 테이블에서 검출하는 단계이다.
그리고, 상기 최소 충전용량 검출 단계(S122)는 배터리가 현재 온도에서 사용자의 요구에 부합하는 최소한의 출력을 낼 수 있는 배터리의 최소 충전용량을 메모리에 저장되어 있는 최적 충전용량 테이블에서 검출하는 단계이다.
한편, 상기 현재 충전용량 검출 단계(S130)는 충전용량 측정 모듈을 이용하여 배터리의 출력 전압, 전류 등을 기반으로 하여 현재 배터리의 충전용량을 측정하거나 BMS에서 현재 배터리의 충전용량을 검출하는 단계이다.
한편, 상기 충전용량 비교 단계(S140)는 상기 최적 충전용량 검출 단계(S120)에서 검출된 최대 충전용량 및 최소 충전용량과 상기 현재 충전용량 검출 단계(S130)에서 검출된 현재 배터리의 충전용량을 비교하는 단계이다.
상기 현재의 배터리가 충전용량이 상기 최적 충전용량 검출 단계(S120)에서 검출된 최대 충전용량과 최소 충전용량의 사이 값인 경우에 현재 온도에 적합한 충전용량이라 판단하여 별도의 신호를 생성하지 않는다.
그러나, 상기 현재 충전용량 검출 단계(S130)에서 측정한 현재 배터리의 충전용량이 상기 최적 충전용량 검출 단계(S120)에서 검출된 최대 충전용량을 비교 하였을 때, 현재 배터리의 충전용량이 더 큰 경우에는 해당 온도에서 배터리가 과충전 된 상태로 판단하여 방전 요청 신호를 발생한다. 한편, 상기 현재 충전용량 검출 단계(S130)에서 측정한 현재 배터리의 충전용량이 상기 최적 충전용량 검출 단계(S120)에서 검출된 최소 충전용량보다 작을 경우에는 해당 배터리가 사용자가 원하는 최소 출력을 내지 못하는 상태로 판단하여 충전 요청 신호를 발생한다.
한편, 상기 충방전 결정 단계(S150)는 상기 충전용량 비교 단계(S140)에서 방전 요청 신호가 발생되면, 현재 배터리의 충전량을 기준으로 소정의 방전 시간을 설정(S151)하고 방전 스위치를 조작하여 배터리를 방전 회로에 연결한다.
이와는 반대로 상기 충전용량 비교 단계에서 충전 요청 신호가 발생되면, 현재 배터리의 충전량을 기준으로 소정의 충전 시간(S152)을 설정하고 충전 스위치를 조작하여 배터리를 충전 회로에 연결한다.
한편, 상기 충방전 진행 단계(S160)는 상기 충방전 결정 단계에서 설정된 소정의 시간 동안 방전(S162) 또는 충전(S161) 하는 단계이다.
2. 본 발명의 배터리 충전용량 제어 장치.
도 4는 본 발명의 제1 실시 예에 따른 배터리 충전용량 제어 장치의 구성도이다.
이하에서는 도 4를 참조하여 본 발명의 제1 실시 예에 따른 배터리 충전용량 제어 장치를 설명한다.
본 발명의 제1 실시 예에 따른 배터리 충전용량 제어 장치는 배터리의 충전용량을 제어하는 제어부(100), 온도에 대응되는 최적 충전용량 테이블이 저장되어 있는 메모리(200), 온도 및 배터리의 현재 충전용량을 측정하는 측정부(300)로 구성된다.
보다 구체적으로, 상기 제어부(100)는 상기 측정부(200)에서 측정된 현재 배터리의 충전용량과 상기 측정된 온도에 대응되는 최적 충전용량 테이블을 비교하는 비교부(110), 상기 비교부(110)에서 발생되는 충전 또는 방전 신호에 따라 배터리를 충전 또는 방전 상태로 제어하는 충방전 제어 스위치(120) 등으로 구성된다.
이하에서는 도 5를 참조하여 상기 비교부(110)를 보다 구체적으로 설명한다.
상기 비교부(110)는 측정부(200)에서 측정된 현재 배터리의 충전용량을 저장하는 제1 저장부(111), 상기 온도에 대응되는 최적 충전용량 테이블에서 현재 온도에 해당하는 최적 충전용량을 검출하는 최적 충전용량 검출 모듈(112), 상기 최적 충전용량 검출 모듈로 검출된 최적 충전용량을 저장하는 제2 저장부(113), 상기 현재 배터리의 충전용량과 현재 온도에 해당되는 최적 충전용량을 비교하는 비교 모듈(114) 등으로 구성된다.
상기 최적 충전용량은 배터리가 사용자의 요구에 맞는 최소한의 출력이 가능한 최소 충전용량과 배터리의 손상을 주지 않는 범위 내의 최대 충전용량을 의미한다.
도 1을 참조하여 충전용량과 배터리의 출력을 살펴보면, 충전용량이 커질수록 배터리의 출력이 증가 하는 것을 확인 할 수 있다.
배터리의 충전용량이 증가하여 만충전 고전압 상태로 오랜 시간 유지되면 배터리의 열화가 가속화되어 기대수명이 급감하게 된다.
이처럼 만충전 고전압 상태로 오랜 시간 유지 되는 것을 방지하기 위해 도7과 같이 적절한 온도-전압 사이의 관계를 유지해야 된다.
이러한 온도-전압 사이의 관계는, 사용자가 요구하는 배터리의 출력이 가능한 최저 충전용량과 배터리의 손상을 주지 않는 최대 충전용량 범위 내의 값으로 충전용량을 조절 함으로써 설정 될 수 있다.
예를 들어 도 7과 같이 온도와 전압 사이 값은 선형 보간법(linear interpolation)을 사용하여 설정될 수도 있다.
상기 비교 모듈(114)은 현재 배터리의 충전용량과 최소 충전용량을 비교하고, 상기 비교 결과 현재 배터리의 충전용량이 더 작으면 현재 배터리의 충전용량이 부족하여 사용자의 출력 요구 사항을 만족하지 못하므로 충전에 필요한 소정의 충전 시간을 연산하고, 충전 요청 신호를 발생한다. 한편 상기 비교 결과 배터리의 충전용량이 더 크면 상기 현재 배터리의 충전용량과 최대 배터리의 충전용량을 비교하여 그 결과 현재 배터리의 충전용량이 더 작으면 현재 배터리의 충전용량은 최소 충전용량과 최대 충전용량 사이에 있으므로 별도의 신호를 발생하지 않지만 비교 결과 현재 배터리의 충전용량이 더 크면 상기 배터리의 충전용량은 최대 충전용량을 초과하였으므로 방전에 필요한 소정의 방전 시간을 연산하고, 방전 신호를 발생시킨다.
한편, 상기 메모리(200)는 최적 충전용량 테이블이 저장되어 있다. 최적 충전용량은 상술한 바와 같이 배터리가 사용자의 요구에 맞는 최소한의 출력이 가능한 최소 충전용량과 배터리의 손상을 주지 않는 범위 내의 최대 충전용량을 의미한다. 상기 최소 충전용량 및 최대 충전용량은 배터리 마다 다른 값을 가지게 되며, 이를 검출하는 방법으로는 동일한 배터리를 가지고 온도를 제외한 조건을 동일하게 설정하고, 온도를 변화 시켜가며 충방전 실험을 통해 획득 할 수 있다.
한편, 상기 측정부(300)는 온도를 측정하는 온도 측정 모듈(310)과 배터리의 충전 용량을 측정하는 충전용량 측정 모듈(320) 등으로 구성된다.
상기 온도 측정 모듈(310)은 배터리의 온도 및 기온을 측정하며, 상기 온도 측정 모듈(310)에서 측정된 온도 값은 상기 메모리(200)에 저장되거나 바로 제어부(100)로 전송되어 최적 충전용량 검출에 사용될 수 있다.
상기 충전용량 측정 모듈(320)은 배터리의 현재 충전용량을 측정하는 구성으로 보다 구체적으로는 배터리의 전압, 전류 등을 측정하여 이를 기반으로 충전용량을 산출한다. 그리고, 상기 측정된 현재 배터리의 충전용량은 제어부(100)의 비교부(110)에서 상기 최적 충전용량과 비교된다.
도 6은 본 발명의 제2 실시 예에 따른 배터리 충전용량 제어 장치의 구성도이다.
이하에서는 도 6을 참조하여 본 발명의 제2 실시 예에 따른 배터리 충전용량 제어 장치를 설명한다.
본 발명의 제2 실시 예에 따른 배터리 충전용량 제어 장치는 배터리의 충전용량을 제어하는 제어부(100), 온도에 대응되는 최적 충전용량 테이블이 저장되어 있는 메모리(200), 온도를 측정하는 온도 측정모듈(310), BMS(500)와 통신하여 배터리의 현재 충전용량을 전송 받는 통신부(400) 등으로 구성된다.
보다 구체적으로, 상기 제어부(100)는 상기 온도 측정 모듈(310)에서 측정된 현재 온도에 대응되는 최적 충전용량 테이블에서 검출된 최적 충전용량과 상기 BMS(500)에서 측정된 현재 충전용량을 비교하는 비교부(110), 상기 비교부(110) 에서 발생되는 충전 또는 방전 신호에 따라 배터리를 충전 또는 방전 상태로 제어하는 충방전 제어 스위치(120) 등으로 구성된다.
보다 구체적으로 도 5를 참조하여 상기 비교부(110)를 설명하면, 상기 비교부(110)는 온도 측정 모듈(310)에서 측정된 현재 온도에 대응되는 최적 충전용량을 검출하는 최적 충전용량 검출 모듈, 상기 최적 충전용량 검출 모듈로 검출된 최적 충전용량을 저장하는 제2 저장부, BMS(500)에서 측정되어 통신부(400)를 통해 제어부(100)로 전송된 현재 배터리의 충전용량과 현재 온도에 해당되는 최적 충전용량을 비교하는 비교 모듈 등으로 구성된다.
상기 최적 충전용량은 배터리가 사용자의 요구에 맞는 최소한의 출력이 가능한 최소 충전용량과 배터리의 손상을 주지 않는 범위 내의 최대 충전용량을 의미한다.
상기 비교부는 현재 배터리의 충전용량과 최소 충전용량을 비교하고, 상기 비교 결과 배터리의 충전용량이 더 작으면 현재 배터리의 충전용량이 부족하여 사용자의 출력 오구 사항을 만족하지 못하므로 충전에 필요한 소정의 충전 시간을 연산하고, 충전 요청 신호를 발생한다. 한편, 상기 비교 결과 배터리의 충전용량이 더 크면 상기 현재 배터리의 충전용량과 최대 배터리의 충전용량을 비교하여 그 결과 현재 배터리의 충전용량이 더 작으면 현재 배터리의 충전용량은 최소 충전용량과 최대 충전용량 사이에 있으므로 별도의 신호를 발생하지 않지만 비교 결과 현재 배터리의 충전용량이 더 크면 상기 배터리의 충전용량은 최대 충전용량을 초과하였으므로 방전에 필요한 소정의 방전 시간을 연산하고, 방전 요청 신호를 발생시킨다.
한편, 상기 메모리(200)는 온도 별로 최적 충전용량이 기록되어 있는 최적 충전용량 테이블이 저장되어 있다.
상기 최적 충전용량은 배터리가 사용자의 요구에 맞는 최소한의 출력이 가능한 최소 충전용량과 배터리의 손상을 주지 않는 범위 내의 최대 충전용량을 의미한다.
도 1을 참조하여 충전용량과 배터리의 출력을 살펴보면, 충전용량이 커질수록 배터리의 출력이 증가하는 것을 확인 할 수 있다.
배터리의 충전용량이 증가하여 만충전 고전압 상태로 오랜 시간 유지되면 배터리의 열화가 가속화되어 기대수명이 급감하게 된다.
이처럼 만충전 고전압 상태로 오랜 시간 유지 되는 것을 방지하기 위해 적절한 온도-전압 사이의 관계를 유지해야 된다.
이러한 온도-전압 사이의 관계는, 사용자가 요구하는 배터리의 출력이 가능한 최저 충전용량과 배터리의 손상을 주지 않는 최대 충전용량 범위 내의 값으로 충전용량을 조절 함으로써 설정 될 수 있다.
예를 들어 도 7과 같이 온도와 전압 사이 값은 선형 보간법(linear interpolation)을 사용하여 설정될 수도 있다.
최적 충전용량은 상술한 바와 같이 배터리가 사용자의 요구에 맞는 최소한의 출력이 가능한 최소 충전용량과 배터리의 손상을 주지 않는 범위 내의 최대 충전용량을 의미한다. 상기 최소 충전용량 및 최대 충전용량은 배터리 마다 다른 값을 가지게 되며, 이를 검출하는 방법으로는 동일한 배터리를 가지고 온도를 제외한 조건을 동일하게 설정하고, 온도를 변화 시켜가며 충방전 실험을 통해 획득 할 수 있다.
한편, 상기 온도 측정 모듈(310)은 배터리의 온도 및 기온을 측정하며, 상기 온도 측정 모듈에서 측정된 온도 값은 상기 메모리(200)에 저장되거나 바로 제어부(100)로 전송되어 최적 충전용량 검출에 사용될 수 있다.
상기 통신부(400)는 BMS(500)와 통신하여 BMS(500)에서 주기적으로 측정되는 배터리의 현재 충전용량을 제어부(100)로 전송한다. 그리고, 상기 측정된 현재 배터리의 충전용량은 제어부(100)의 비교부(110)에서 상기 최적 충전용량과 비교된다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (10)

  1. 온도에 따른 배터리 충전용량을 제어 방법에 있어서,
    현재 온도를 측정하는 현재 온도 검출 단계;
    각각의 온도에 대응하는 배터리의 최적 충전용량을 검출하는 최적 충전용량 검출 단계;
    배터리의 현재 충전용량을 검출하는 현재 충전용량 검출 단계;
    상기 최적 충전용량과 현재 충전용량을 비교하는 충전용량 비교 단계;
    상기 충전용량 비교 단계의 결과에 따라 배터리의 충방전을 결정하는 충방전 결정 단계;
    상기 충방전 결정 단계의 결과에 따라 배터리의 충방전을 진행하는 충방전 진행 단계;
    를 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어 방법.
  2. 청구항 1에 있어서,
    상기 최적 충전용량 검출 단계는
    온도에 대응하는 기설정된 온도별 최대 충전용량을 검출하는 최대 충전용량 검출 단계;
    온도에 대응하는 기설정된 온도별 최소 충전용량을 검출하는 최소 충전용량 검출 단계;
    를 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어 방법.
  3. 청구항 1에 있어서,
    상기 충방전 결정 단계는
    상기 충전량 비교 단계의 결과가 배터리의 현재 충전용량이 최대 충전용량 보다 큰 경우,
    배터리를 방전 시키는 신호를 제어부로 전송하고,
    상기 충전량 비교 단계의 결과가 배터리의 현재 충전용량이 최소 충전용량 보다 작은 경우,
    배터리를 충전 시키는 신호를 제어부로 전송하는 것을 특징으로 하는 배터리 충전용량 제어 방법.
  4. 온도에 따른 배터리 충전용량 제어 장치에 있어서,
    배터리의 충전용량을 제어하는 제어부;
    온도에 대응되는 최적 충전용량 테이블이 저장되어 있는 메모리;
    온도 및 배터리의 현재 충전용량을 측정하는 측정부;
    를 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어 장치.
  5. 청구항 4에 있어서,
    상기 제어부는
    상기 최적 충전용량 테이블과 배터리의 현재 충전용량을 비교하는 비교부;
    상기 비교부의 결과에 따라 배터리를 충전 또는 방전 상태로 제어하는 충방전 제어 스위치;
    를 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어 장치.
  6. 청구항 5에 있어서,
    상기 비교부는
    측정부에서 측정된 현재 배터리의 충전용량을 저장하는 제1 저장부;
    메모리의 최적 용량측정 테이블에서 현재 온도에 대응되는 최적 충전용량을 검출하는 최적 충전용량 검출 모듈;
    상기 현재 온도에 대응되는 최적 충전용량을 저장하는 제2 저장부;
    상기 현재 배터리의 충전용량과 현재 온도에 대응되는 최적 충전용량을 비교하여 충전 또는 방전 신호를 생성하는 비교 모듈;
    을 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어장치.
  7. 청구항 4에 있어서,
    상기 측정부는
    배터리의 온도 및 기온을 측정하는 온도 측정 모듈;
    배터리의 현재 충전용량을 측정하는 충전용량 측정 모듈;
    을 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어 장치.
  8. 온도에 따른 배터리 만충전 전압 조건 제어 장치에 있어서,
    배터리의 충전용량을 제어하는 제어부;
    온도에 대응되는 최적 충전용량 테이블이 저장되어 있는 메모리;
    배터리의 온도 및 기온을 측정하는 온도 측정 모듈;
    BMS와 통신하여 배터리의 현재 충전용량을 전송 받는 통신부;
    를 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어 장치.
  9. 청구항 8에 있어서,
    상기 제어부는
    상기 최적 충전용량 테이블과 배터리의 현재 충전용량을 비교하는 비교부;
    상기 비교부의 결과에 따라 배터리를 충전 또는 방전 상태로 제어하는 충방전 제어 스위치;
    를 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어 장치.
  10. 청구항 9에 있어서,
    상기 비교부는
    BMS에서 측정되고 통신부를 통해 전송된 현재 배터리의 충전용량을 저장하는 제1 저장부;
    메모리의 최적 용량측정 테이블에서 현재 온도에 대응되는 최적 충전용량을 검출하는 최적 충전용량 검출 모듈;
    상기 현재 온도에 대응되는 최적 충전용량을 저장하는 제2 저장부;
    상기 현재 배터리의 충전용량과 현재 온도에 대응되는 최적 충전용량을 비교하여 충전 또는 방전 신호를 생성하는 비교 모듈;
    을 포함하여 구성되는 것을 특징으로 하는 배터리 충전용량 제어장치.
PCT/KR2016/008608 2015-09-01 2016-08-04 Ups 배터리 충전용량 제어 방법 WO2017039164A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/738,388 US10461377B2 (en) 2015-09-01 2016-08-04 Method for controlling charge capacity of UPS battery
EP16842130.3A EP3291409B1 (en) 2015-09-01 2016-08-04 Method and device for controlling charge capacity of ups battery
CN201680033640.XA CN108064429B (zh) 2015-09-01 2016-08-04 用于控制ups电池充电容量的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0123490 2015-09-01
KR1020150123490A KR101875536B1 (ko) 2015-09-01 2015-09-01 Ups 배터리 충전용량 제어 방법

Publications (1)

Publication Number Publication Date
WO2017039164A1 true WO2017039164A1 (ko) 2017-03-09

Family

ID=58187798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008608 WO2017039164A1 (ko) 2015-09-01 2016-08-04 Ups 배터리 충전용량 제어 방법

Country Status (5)

Country Link
US (1) US10461377B2 (ko)
EP (1) EP3291409B1 (ko)
KR (1) KR101875536B1 (ko)
CN (1) CN108064429B (ko)
WO (1) WO2017039164A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920236B1 (ko) * 2012-06-19 2018-11-20 삼성전자주식회사 배터리를 충전하기 위한 방법 및 그 전자 장치
JP6760233B2 (ja) * 2017-09-11 2020-09-23 株式会社デンソー 電源システム
CN110048473B (zh) * 2018-01-17 2023-05-02 中兴通讯股份有限公司 充电电流控制方法、终端及存储介质
KR102108692B1 (ko) 2019-12-24 2020-05-11 주식회사 패미컴 무정전 전원장치용 제어장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0145442B1 (ko) * 1994-05-31 1998-10-01 김광호 충전기의 배터리 충전 제어방법
US20020193953A1 (en) * 2001-05-02 2002-12-19 Honeywell International Inc. Method and apparatus for predicting the available energy of a battery
JP2007151329A (ja) * 2005-11-29 2007-06-14 Hitachi Computer Peripherals Co Ltd 無停電電源システム及びバッテリの充電方法
KR20120046355A (ko) * 2010-11-02 2012-05-10 에스케이이노베이션 주식회사 배터리의 교환 시기 통보 장치 및 방법
US20120331317A1 (en) * 2011-06-26 2012-12-27 Microsoft Corporation Power-capping based on ups capacity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4314223B2 (ja) * 2004-09-24 2009-08-12 株式会社東芝 回生用蓄電システム、蓄電池システムならびに自動車
US7880438B1 (en) * 2006-06-07 2011-02-01 American Power Conversion Corporation UPS battery replacement
KR100913824B1 (ko) * 2007-05-23 2009-08-26 (주)아이비티 과충전 방지기능이 부가된 무정전 전원장치
US8010250B2 (en) * 2007-06-05 2011-08-30 The Boeing Company Life-optimal power management methods for battery networks system
FR2950742B1 (fr) * 2009-09-29 2011-10-07 Commissariat Energie Atomique Procede de charge et procede de determination d'un critere de fin de charge d'une batterie a base de nickel
JP5919857B2 (ja) * 2012-02-03 2016-05-18 スズキ株式会社 充放電制御装置
JP2013009594A (ja) * 2012-09-26 2013-01-10 Sharp Corp 充電制御方法および充電制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0145442B1 (ko) * 1994-05-31 1998-10-01 김광호 충전기의 배터리 충전 제어방법
US20020193953A1 (en) * 2001-05-02 2002-12-19 Honeywell International Inc. Method and apparatus for predicting the available energy of a battery
JP2007151329A (ja) * 2005-11-29 2007-06-14 Hitachi Computer Peripherals Co Ltd 無停電電源システム及びバッテリの充電方法
KR20120046355A (ko) * 2010-11-02 2012-05-10 에스케이이노베이션 주식회사 배터리의 교환 시기 통보 장치 및 방법
US20120331317A1 (en) * 2011-06-26 2012-12-27 Microsoft Corporation Power-capping based on ups capacity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291409A4 *

Also Published As

Publication number Publication date
CN108064429B (zh) 2021-01-08
US10461377B2 (en) 2019-10-29
EP3291409B1 (en) 2019-10-23
US20180175461A1 (en) 2018-06-21
EP3291409A1 (en) 2018-03-07
EP3291409A4 (en) 2018-06-27
KR101875536B1 (ko) 2018-07-06
CN108064429A (zh) 2018-05-22
KR20170027057A (ko) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2017086687A1 (ko) 절연 저항 측정 시스템 및 장치
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2017039164A1 (ko) Ups 배터리 충전용량 제어 방법
WO2018074807A1 (ko) 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
WO2018225921A1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
WO2018139740A1 (ko) 배터리 팩, 배터리 팩의 관리 방법, 및 배터리 팩을 포함하는 차량
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2020080881A1 (ko) 배터리 관리 장치
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2020189998A1 (ko) 배터리 뱅크 제어 장치 및 방법
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2019103412A1 (ko) 배터리 장치 및 배터리 온도 조절방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
WO2019066358A1 (ko) 배터리 셀의 스웰링을 방지하는 방법 및 이를 이용한 배터리 팩
WO2019088404A1 (ko) 배터리 충전량 표시 방법 및 이를 수행하는 배터리 팩 및 전자 기기
WO2018230813A1 (ko) 밸런싱 저항을 이용한 과전압 방지 시스템
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2018190512A1 (ko) 에너지 저장 장치의 과방전 방지 및 재기동 장치 및 방법
WO2020076126A1 (ko) 배터리 관리 장치 및 방법
WO2021153923A1 (ko) 공통 모드 전압 모니터링 장치 및 모니터링 방법
WO2022019600A1 (ko) 이상 셀 진단 방법 및 이를 적용한 배터리 시스템
WO2020153663A1 (ko) 배터리 보호회로 및 이를 이용한 과전류 차단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15738388

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE