WO2020080881A1 - 배터리 관리 장치 - Google Patents

배터리 관리 장치 Download PDF

Info

Publication number
WO2020080881A1
WO2020080881A1 PCT/KR2019/013750 KR2019013750W WO2020080881A1 WO 2020080881 A1 WO2020080881 A1 WO 2020080881A1 KR 2019013750 W KR2019013750 W KR 2019013750W WO 2020080881 A1 WO2020080881 A1 WO 2020080881A1
Authority
WO
WIPO (PCT)
Prior art keywords
balancing
balanced
battery
processor
substrate
Prior art date
Application number
PCT/KR2019/013750
Other languages
English (en)
French (fr)
Inventor
정문구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020564894A priority Critical patent/JP7111439B2/ja
Priority to EP19873770.2A priority patent/EP3820015A4/en
Priority to CN201980035204.XA priority patent/CN112204842B/zh
Priority to US17/251,934 priority patent/US11616257B2/en
Publication of WO2020080881A1 publication Critical patent/WO2020080881A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/108Normal resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery management apparatus, and more particularly, while maintaining the substrate temperature of the substrate on which the balancing resistance of each of the plurality of battery cells is mounted below a reference temperature, a battery that performs balancing between the charging states of each of the plurality of battery cells It relates to a management device.
  • types of secondary batteries include nickel cadmium batteries, nickel hydrogen batteries, lithium ion batteries, and lithium ion polymer batteries. Such secondary batteries are classified into lithium-based batteries and nickel-hydrogen-based batteries. Lithium-based batteries are mainly applied to small products such as digital cameras, P-DVDs, MP3Ps, mobile phones, PDAs, portable game devices, power tools, and e-bikes, and nickel-metal hydride batteries are high-power such as electric vehicles or hybrid electric vehicles. It is applied and used in the large products that are required.
  • a passive balancing circuit that discharges a specific cell having a higher charge state than a unit cell having a different charge state by connecting it with a balancing resistor has the advantage of being able to quickly balance.
  • heat is generated in the balancing resistor, and a phenomenon occurs that the substrate on which the balancing resistor is mounted is overheated. Due to this, there is a problem in that elements such as ICs, memories, and switches mounted on the substrate are overheated and burned.
  • the present invention is to control the duty cycle of the balancing switch that electrically connects the balancing target battery cell and the balancing resistor to control the duty cycle of the balancing target battery cell to maintain the substrate temperature of the substrate mounted on the substrate below the reference temperature.
  • the purpose is to provide.
  • the battery management apparatus includes a plurality of balancing resistors electrically connected to each of a plurality of battery cells, a plurality of balancing paths electrically connecting each of the plurality of battery cells and the plurality of balancing resistors, and the plurality of balancing paths.
  • a balancing circuit unit having a plurality of balancing switches for energizing or blocking the balancing path and a charging state of each of the plurality of battery cells determines a battery target to be balanced among the plurality of battery cells, and the balancing target battery cell and electrical Comparison of the magnitude of the substrate temperature and the reference temperature of the substrate on which the balancing resistor connected is connected, and based on the comparison result, conducts a balancing path that electrically connects the balancing target battery cell and the balancing resistor among the plurality of balancing switches, or Switch to be balanced
  • it may include a processor to maintain the substrate temperature below the reference temperature .
  • the processor compares the size of the substrate temperature and the reference temperature when the battery cell to be balanced is determined, and when the substrate temperature is less than the reference temperature as a result of the comparison, the balancing target is maximized.
  • the operating state of the switch can be controlled.
  • the processor may control the operation state of the balancing target switch so that the duty cycle of the balancing target switch is maximized.
  • the processor compares the magnitude of the substrate temperature and the reference temperature when the battery cell to be balanced is determined, and when the substrate temperature is equal to the reference temperature as a result of the comparison, the battery cell to be balanced is electrically connected
  • the operating state of the balancing target switch may be controlled such that the power consumption of the balancing resistor is equal to the amount of heat transferred from the substrate to the outside.
  • the processor may calculate a duty cycle of the switch to be balanced, such that the power consumption and the heat transfer amount are the same, and control the operation state of the switch to be balanced with the calculated duty cycle.
  • the processor compares the size of the substrate temperature and the reference temperature when the battery cell to be balanced is determined, and when the substrate temperature exceeds the reference temperature as a result of the comparison, electrically connected to the battery cell to be balanced
  • the operating state of the balancing target switch may be controlled so that the power consumption of the balancing resistor is less than the amount of heat transferred from the substrate to the outside.
  • the processor may calculate the duty cycle of the switch to be balanced, such that the power consumption is less than the heat transfer amount, and control the operating state of the switch to be balanced with the calculated duty cycle.
  • the processor may calculate the duty cycle of the switch to be balanced within the reference time so that the substrate temperature is less than the reference temperature, and control the operation state of the switch to be balanced with the calculated duty cycle.
  • a battery pack according to another aspect of the present invention may include the battery management device.
  • a vehicle according to another aspect of the present invention may include the battery management device.
  • the duty cycle of a balancing switch that electrically connects a battery cell to be balanced and a balancing resistor is controlled, so that the substrate temperature is maintained below a reference temperature, and parts included in the battery management apparatus due to heat generated in the balancing process The overheating and burnout can be prevented.
  • FIG. 1 is a block diagram schematically showing the configuration of a battery management apparatus and a battery pack including the same according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram schematically showing a connection configuration of a battery management device and a battery pack including the same according to an embodiment of the present invention.
  • FIG 3 is a graph showing a state of charge of a plurality of battery cells before the battery management apparatus according to an embodiment of the present invention performs balancing.
  • FIG. 4 is a graph showing a state of charge of a plurality of battery cells while the battery management apparatus according to an embodiment of the present invention performs balancing.
  • FIG. 5 is a circuit diagram schematically showing a connection configuration of a battery management apparatus and a battery pack including the same according to another embodiment of the present invention.
  • 1 is a block diagram schematically showing the configuration of a battery management apparatus 100 and a battery pack including the same according to an embodiment of the present invention.
  • 2 is a circuit diagram schematically showing a connection configuration of a battery management device 100 and a battery pack including the same according to an embodiment of the present invention.
  • 3 is a graph showing a state of charge of a plurality of battery cells C1 to C4 before the battery management apparatus 100 according to an embodiment of the present invention performs balancing.
  • 4 is a graph showing a state of charge of a plurality of battery cells C1 to C4 while the battery management apparatus 100 according to an embodiment of the present invention performs balancing.
  • the battery management apparatus 100 is included in a battery pack including a plurality of battery cells C1 to C4 and a plurality of battery cells C1 to C4
  • the liver can be balanced.
  • the battery management apparatus 100 may perform balancing based on the state of charge (SOC) of the plurality of battery cells C1 to C4.
  • the plurality of battery cells C1 to C4 may be charged and discharged according to the operating state of the charge / discharge switch SW2 included in the battery pack. For example, when the charge / discharge switch SW2 is turned on, the plurality of battery cells C1 to C4 are charged by receiving a charging current from a load connected to the battery pack or discharged by outputting a discharge current to an external load. You can. In addition, when the charge / discharge switch SW2 is turned off, the plurality of battery cells C1 to C4 may be disconnected from the load connected to the battery pack.
  • the state of charge may be a ratio of a current charged capacity to a maximum charging capacity of each of the plurality of battery cells C1 to C4.
  • the balancing is a battery cell determined as a battery target to be balanced among the plurality of battery cells C1 to C4 so that the charging state is the same when the charging state is changed in the process of charging and discharging each of the plurality of battery cells C1 to C4. It may mean a process of discharging.
  • the battery management apparatus 100 may include a balancing circuit unit 110, a sensing unit 120, a memory unit 130, a processor 140, and a notification unit 150 have.
  • the balancing circuit unit 110 may include a plurality of balancing resistors R1 to R4, a plurality of balancing paths L1a to L1d, and a plurality of balancing switches SW1a to SW1d.
  • the plurality of balancing resistors R1 to R4 may be electrically connected to corresponding battery cells among the plurality of battery cells C1 to C4 through the plurality of balancing paths L1a to L1d.
  • the plurality of balancing resistors R1 to R4 may be connected in series with the corresponding battery cells among the plurality of battery cells C1 to C4 through the plurality of balancing paths L1a to L1d.
  • the plurality of balancing resistors R1 to R4 may be mounted together on a substrate PCB on which the components of the battery management device described above are mounted. Accordingly, when discharge currents of each of the plurality of battery cells C1 to C4 are output to the plurality of balancing resistors R1 to R4, the resistance heat generated by the plurality of balancing resistors R1 to R4 is a substrate (PCB). Can be inverted. Accordingly, the components of the battery management device mounted on the substrate PCB as well as the substrate PCB may be overheated.
  • the plurality of balancing resistors R1 to R4 may be mounted on one substrate PCB, as shown in FIG. 2.
  • a first battery cell C1, a first balancing switch SW1a, and a first balancing resistor R1 may be provided in the first balancing path L1a.
  • a second battery cell C2, a second balancing switch SW1b, and a second balancing resistor R2 may be provided in the second balancing path L1b.
  • a third battery cell C3, a third balancing switch SW1c, and a third balancing resistor R3 may be provided in the third balancing path L1c.
  • a fourth battery cell C4, a fourth balancing switch SW1d, and a fourth balancing resistor R4 may be provided in the fourth balancing path L1d.
  • Each of the plurality of balancing switches SW1a to SW1d is provided in a corresponding balancing path among the plurality of balancing paths L1a to L1d, each of a plurality of balancing resistors R1 to R4 and a plurality of battery cells C1 to C4 Electrical connections can be turned on or off.
  • the operation states of the plurality of balancing switches SW1a to SW1d may be controlled to a turn-on state or a turn-off state in response to a control signal output from the processor 140.
  • discharge currents of each of the plurality of battery cells C1 to C4 may be output to the plurality of balancing resistors R1 to R4.
  • the sensing unit 120 may be operatively coupled with the processor 140. That is, the sensing unit 120 may be connected to the processor 140 to transmit an electrical signal to the processor 140 or to receive an electrical signal from the processor 140.
  • the sensing unit 120 may repeatedly measure the cell voltage by measuring the voltage across each of the plurality of battery cells C1 to C4 at a predetermined period.
  • the sensing unit 120 may repeatedly measure the cell current input or output to each of the plurality of battery cells C1 to C4 at a predetermined period.
  • the sensing unit 120 may repeatedly measure the substrate temperature of the substrate PCB on which the plurality of balancing resistors R1 to R4 are mounted and the internal temperature of the battery pack every predetermined period.
  • the sensing unit 120 may provide measurement signals indicating the measured cell voltage, cell current, substrate temperature, and internal temperature to the processor 140.
  • the sensing unit 120 may include a voltage sensor configured to measure cell voltage, a current sensor configured to measure cell current, and a temperature sensor configured to measure substrate temperature and internal temperature.
  • the processor 140 may determine digital values of each of the cell voltage, cell current, substrate temperature, and internal temperature through signal processing and store the digital values in the memory unit 130.
  • the memory unit 130 is a semiconductor memory device, and can write, erase, and update data generated by the processor 140. Also, the memory unit 130 may store a plurality of program codes that can be driven by the processor 140. For example, the plurality of program codes may include codes for estimating a state of charge of the plurality of battery cells C1 to C4, codes for determining a battery cell to be balanced, and a plurality of balancing switches SW1a to SW1d corresponding to the substrate temperature. Code provided to control the may be included. Also, the memory unit 130 may store preset values of various predetermined parameters used when implementing the present invention.
  • the memory unit 130 is not particularly limited in its type as long as it is a semiconductor memory device known to be capable of writing, erasing, and updating data.
  • the memory unit 130 may be DRAM, SDRAM, flash memory, ROM, EEPROM, registers, and the like.
  • the memory unit 130 may further include a storage medium storing program codes defining control logic of the processor 140.
  • the storage medium includes an inert storage element such as a flash memory or hard disk.
  • the memory unit 130 may be physically separated from the processor 140 or may be integrally integrated with the processor 140.
  • the processor 140 may estimate the state of charge of the plurality of battery cells C1 to C4 based on the cell current input / output to each of the plurality of battery cells C1 to C4.
  • the processor 140 may estimate the charging state of each of the plurality of battery cells C1 to C4 using a current integration method for integrating the cell current of each of the plurality of battery cells C1 to C4.
  • the processor 140 has been described as estimating the charging state of each of the plurality of battery cells C1 to C4 using the current integration method, an estimation method of estimating the charging state of each of the plurality of battery cells C1 to C4 is Note that it is not limited.
  • the processor 140 may determine a battery cell to be balanced among the plurality of battery cells C1 to C4 based on the charging state of each of the plurality of battery cells C1 to C4.
  • the processor 140 may calculate a difference in charge states of each of the plurality of battery cells C1 to C4, and check whether the calculated charge state difference is equal to or greater than a preset reference difference value.
  • the processor 140 may calculate the difference between the smallest charging state and the other charging states among the charging states of the plurality of battery cells C1 to C4 as the charging state difference.
  • the charge states of the plurality of battery cells “C1”, “C2”, “C3”, and “C4”, respectively, are “50%”, “56%”, “53%”, and “60%” If “, the processor 140 charges” 50% “of the first battery cell” C1 "with the lowest charge state and the charge state of each of the remaining battery cells” C2 ",” C3 “and” C4 "is” 56% " The difference in state of charge between ",” 53% "and” 60% "can be calculated. Accordingly, the processor 140 changes the state of charge between the state of charge of the first battery cell “C1” and the state of charge of each of the remaining battery cells “C2”, “C3”, and “C4” by “6%” and “3%. "And” 10% ".
  • the processor 140 checks whether the calculated charging state difference is equal to or greater than a preset reference difference value, and when the result of the check indicates that the calculated charging state difference is greater than or equal to the preset reference difference value, the battery cell having the largest charging state is targeted for balancing It can be determined by the battery cell.
  • the processor 140 confirms that the difference in the charging state of the second battery cell “C2” and the fourth battery cell “C4" is greater than or equal to the preset reference difference value.
  • the fourth battery cell “C4” having the largest charging state among the second battery cell “C2” and the fourth battery cell “C4” may be determined as a battery cell to be balanced.
  • the processor 140 may compare the magnitude of the substrate temperature and the reference temperature of the substrate PCB on which the fourth balancing resistor R4, which is electrically connected to the battery cell C4 to be balanced, is mounted. In addition, the processor 140 may select the fourth balancing switch SW1d to energize or block the fourth balancing path L1d among the plurality of balancing switches SW1a to SW1d, based on the comparison result, as a target switch for balancing. . In addition, the processor 140 may exclude an operation state of the fourth balancing switch SW1d selected as a switch to be balanced.
  • the fourth balancing switch SW1d connects a fourth balancing path L1d that electrically connects the battery cell C4 to be balanced and the fourth fourth balancing resistor R4 among the plurality of balancing switches SW1a to SW1d. It may be a switch that turns on or off.
  • the reference temperature may be a maximum temperature at which electronic components, such as a balancing resistor mounted on the substrate (PCB), are not burned out at a high temperature. That is, if the substrate temperature is greater than or equal to the reference temperature, the electronic components mounted on the substrate PCB may be burned out due to the high temperature.
  • PCB balancing resistor mounted on the substrate
  • the processor 140 controls the operating state of the fourth balancing switch SW1d to adjust the balancing current flowing in the fourth balancing resistor R4 electrically connected to the battery cell C4 to be balanced, thereby adjusting the substrate temperature to the reference temperature. It can be maintained below.
  • the processor 140 may determine the substrate temperature and reference of the substrate PCB on which the fourth balancing resistor R4 electrically connected to the battery cell C4 to be balanced is mounted. The magnitude of the temperature can be compared. In addition, when the substrate temperature is lower than the reference temperature as a result of the comparison, the processor 140 may control the operating state of the fourth balancing switch SW1d so that the balancing current flowing in the fourth balancing resistor R4 is maximized.
  • the processor 140 may control the operation state of the fourth balancing switch SW1d so that the duty cycle of the fourth balancing switch SW1d is maximized when the substrate temperature is less than the reference temperature.
  • the processor 140 continuously outputs a turn-on control signal such that the duty cycle of the fourth balancing switch SW1d is “100%” can do.
  • the power of the battery cell to be balanced is controlled by maximally controlling the duty cycle of the balancing switch even when the heat generated from the balancing resistor is maximized. It can be quickly balanced by consuming the maximum.
  • the processor 140 controls the operating state of the fourth balancing switch SW1d so that the duty cycle of the fourth balancing switch SW1d is maximized, and the substrate temperature after and after the control battery battery C4 is determined.
  • the size of the reference temperature can be compared.
  • the processor 140 consumes power of the fourth balancing resistor R4 electrically connected to the battery cell C4 to be balanced from the substrate PCB to the outside of the substrate PCB.
  • the operating state of the fourth balancing switch SW1d may be controlled to be equal to the amount of heat transferred to.
  • the processor 140 has a fourth balancing switch in which the power consumption of the fourth balancing resistor R4 is equal to the amount of heat transferred from the substrate PCB to the outside of the substrate PCB.
  • the duty cycle of (SW1d) can be calculated.
  • the processor 140 uses the following equation (1), the fourth balancing switch (R4) power consumption is equal to the amount of heat transferred from the substrate (PCB) to the outside of the substrate (PCB) the fourth balancing switch ( The duty cycle of SW1d) can be calculated.
  • D is the duty cycle of the balancing switch where the power consumption of the balancing resistor is equal to the amount of heat transferred from the substrate to the outside of the substrate
  • h is the convection heat transfer coefficient of the substrate [W / (m 2 K)]
  • A is The area of the substrate [m 2 ]
  • R is the resistance value of the balancing resistance [ ⁇ ]
  • Te is the external temperature of the substrate [° C] (ie, the internal temperature of the battery pack)
  • Tp is the substrate temperature [° C]
  • V is the cell voltage [V] of the battery cell to be balanced.
  • the convective heat transfer coefficient (h) is 0.4 [W / m 2 K]
  • the area (A) of the substrate is 0.02 [m 2 ]
  • the resistance value (R) of the balancing resistor is 20 [ ⁇ ]
  • the external temperature Te is 55 [° C]
  • the substrate temperature Tp is 25 [° C]
  • the cell voltage V of the battery cell is 3.7 [V].
  • the processor 140 may calculate the duty cycle of the balancing switch as “35%”.
  • the processor 140 may discharge the battery cell C4 to be balanced while the substrate temperature maintains the reference temperature by controlling the operating state of the fourth balancing switch SW1d with the calculated duty cycle.
  • the processor 140 consumes power of the fourth balancing resistor R4 electrically connected to the battery cell C4 to be balanced, as shown in FIG. 4.
  • the turn-on control signal and the turn-off control signal may be output to the fourth balancing switch SW1d for the same time so as to be equal to the amount of heat transferred from the PCB) to the outside of the substrate PCB.
  • the processor 140 may alternately output the turn-on control signal and the turn-off control signal such that the duty cycle of the fourth balancing switch SW1d is “50%”.
  • the duty cycle of the fourth balancing switch SW1d having the same amount of heat generated from the connected fourth balancing resistor R4 and the amount of heat emitted from the substrate PCB to the outside is the same.
  • the battery cell C4 to be balanced can be discharged while the substrate temperature maintains the reference temperature.
  • the processor 140 is electrically connected to the battery cell C4 to be balanced when the substrate temperature exceeds the reference temperature.
  • the operating state of the fourth balancing switch SW1d may be controlled such that the power consumption of the fourth balancing resistor R4 is less than the amount of heat transferred from the substrate PCB to the outside of the substrate PCB.
  • the processor 140 when the substrate temperature exceeds the reference temperature, the power consumption of the fourth balancing resistor R4 is less than the amount of heat transferred from the substrate PCB to the outside of the substrate PCB, and the fourth balancing switch
  • the duty cycle of (SW1d) can be calculated.
  • the processor 140 is less than the duty cycle of the fourth balancing switch SW1d in which the power consumption of the fourth balancing resistor R4 is equal to the amount of heat transferred from the substrate PCB to the outside of the substrate PCB. You can recalculate the cycle.
  • the processor 140 performs a duty cycle of the fourth balancing switch SW1d in which the power consumption of the fourth balancing resistor R4 is equal to the amount of heat transferred from the substrate PCB to the outside of the substrate PCB.
  • the duty cycle can be recalculated to be less than "50%”.
  • the processor 140 controls the operation state of the fourth balancing switch SW1d with a recalculated duty cycle for a preset control time, thereby discharging the battery cell C4 to be balanced while reducing the substrate temperature exceeding the reference temperature. I can do it.
  • FIG. 5 is a circuit diagram schematically showing a connection configuration of a battery management apparatus 100 and a battery pack including the same according to another embodiment of the present invention.
  • the battery cells to be balanced may be determined using the identification code data to which the resistance identification codes of each of the balancing resistors R1 to R4 and each of the plurality of substrates PCB1 'and PCB2' are mapped.
  • the identification code data may be data to which a substrate identification code and a resistance identification code of a board on which a balancing resistor corresponding to the resistance identification code is mounted are mapped.
  • the resistance identification codes of each of the balancing resistors "R1" and “R2” are mapped to the substrate identification codes of the substrate "PCB1 '", and the balancing resistors "R3" and “R4" respectively
  • the resistance identification code of can be mapped to the substrate identification code of the substrate "PCB2 '".
  • the processor 140 ′ calculates a difference in the charging state between the charging states of the plurality of battery cells C1 to C4 and checks whether the charging state difference is equal to or greater than a preset reference difference value. .
  • the processor 140 ′ may calculate a difference between the smallest charging state and the other charging state among the charging states of the plurality of battery cells C1 to C4 as the charging state difference.
  • the charge status of each of the plurality of battery cells “C1”, “C2”, “C3” and “C4” is “50%”, “56%”, “53%” and “60%”
  • the processor 140 'according to another embodiment charges each of the remaining battery cells “C2”, “C3” and “C4" and the charging state "50%" of the first battery cell “C1” having the smallest charging state.
  • the difference in state of charge between states “56%”, “53%” and “60%” can be calculated.
  • the processor 140 'according to another embodiment may determine a difference between the charging state of the first battery cell “C1” and the charging state of each of the remaining battery cells “C2”, “C3”, and “C4”. % ",” 3% “and” 10% ".
  • the processor 140 ′ checks whether the calculated charging state difference is greater than or equal to a preset reference difference value, and if the calculated charging state difference is greater than or equal to a preset reference difference value, the battery cell and The substrate identification code mapped to the resistance identification code of the electrically connected balancing resistor can be read.
  • the processor 140 ′ may include a second electrically connected to the second battery cell “C2” and the fourth battery cell “C4” having a difference in the state of charge equal to or greater than a preset reference difference value.
  • the substrate identification code mapped to each of the resistance identification codes of the balancing resistor "R2" and the fourth balancing resistor "R4" can be read.
  • the processor 140 ′ may determine a battery cell having the largest difference in charge state for each substrate (PCB1 ′, PCB 2 ′) corresponding to the read substrate identification code as the battery cells C2 and C4 to be balanced. have.
  • the processor 140 ′ includes a first battery cell “C1” electrically connected to the first balancing resistor “R1” and the second balancing resistor “R2” mounted on the substrate “PCB1”, and Among the second battery cells “C2”, the second battery cell “C2” having a difference in the charging state that is greater than or equal to a preset reference difference value and having the largest charging state may be determined as a battery cell C2 to be balanced.
  • the processor 140 ' includes a third battery cell “C3” and a third battery cell “C3” electrically connected to the third balancing resistor “R3” and the fourth balancing resistor “R4" mounted on the substrate "PCB2'", respectively.
  • the difference in the charging state is equal to or greater than a preset reference difference value, and the fourth battery cell "C4" having the largest charging state may be determined as the battery cell C4 to be balanced.
  • the processor 140 ' calculates a duty cycle in the same manner as the processor 140 according to an embodiment while maintaining the substrate temperature of each of the substrates PCB1' and PCB2 'below a reference temperature. , Balancing can be performed.
  • the notification unit 150 may receive the determination result of the battery cell to be balanced from the processor 140 and output it to the outside. More specifically, the notification unit 150 may include at least one of a display unit for displaying the determination result of the above-mentioned balancing target battery cell using one or more of symbols, numbers and codes, and a speaker device for outputting sound. .
  • the battery pack according to the present invention may further include a case, a cartridge, and a bus bar for accommodating the battery cells in addition to the plurality of battery cells.
  • the battery pack according to the present invention may perform balancing among the charging states of each of a plurality of battery cells by using a balancing resistor including the battery management apparatus.
  • the battery management apparatus according to the present invention can be applied to an automobile such as an electric vehicle or a hybrid vehicle. That is, the vehicle according to the present invention may include the battery management device according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 복수의 배터리 셀 각각의 밸런싱 저항이 실장된 기판의 기판 온도를 기준 온도 이하로 유지시키면서 복수의 배터리 셀 각각의 충전 상태 간에 밸런싱을 수행하는 배터리 관리 장치에 관한 것이다. 본 발명에 따르면, 밸런싱 스위치의 듀티 사이클이 제어되어, 기판 온도가 기준 온도 이하로 유지됨으로써, 밸런싱 과정에서 발생되는 열로 인해 배터리 관리 장치에 포함된 부품들이 과열되어 소소되는 현상이 방지될 수 있다.

Description

배터리 관리 장치
본 출원은 2018년 10월 19일자로 출원된 한국 특허 출원번호 제10-2018-0125539호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 관리 장치에 관한 것으로, 더욱 상세하게는 복수의 배터리 셀 각각의 밸런싱 저항이 실장된 기판의 기판 온도를 기준 온도 이하로 유지시키면서 복수의 배터리 셀 각각의 충전 상태 간에 밸런싱을 수행하는 배터리 관리 장치에 관한 것이다.
최근 들어, 화석 에너지의 고갈과 환경오염으로 인해 화석 에너지를 사용하지 않고 전기 에너지를 이용하여 구동할 수 있는 전기 제품에 대한 관심이 높아지고 있다.
이에 따라 모바일 기기, 전기차, 하이브리드 자동차, 전력 저장 장치, 무정전 전원 장치 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격히 증가하고 있으며 수요의 형태 역시 다양해지고 있다. 따라서 다양한 요구에 부응할 수 있게 이차 전지에 대한 많은 연구가 진행되고 있다.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 리튬 계열 전지와 니켈 수소 계열의 전지로 분류된다. 리튬 계열 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품에 주로 적용되며, 니켈 수소 계열 전지는 전기 자동차나 하이브리드 전기 자동차와 같은 고출력이 요구되는 대형 제품에 적용되어 사용되고 있다.
한편, 전기 자동차나 하이브리드 전기 자동차가 주행하기 위해서는 고출력을 요구하는 전동 모터를 구동시켜야 한다. 또한, 건물이나 일정 지역에 전력을 공급하는 전력 저장 장치의 경우 전력 수요를 충족시킬 수 있을 만큼 많은 전력을 공급해야 한다. 이처럼 고출력 또는 대용량 전력을 제공하기 위해 단위 셀 집합체로 이루어진 배터리를 직렬 또는 병렬로 다수 연결하여 원하는 출력 또는 전력이 공급되도록 하고 있다.
그런데, 다수의 단위 셀이 연결된 배터리의 경우, 충방전을 반복하게 되면 각 단위 셀의 충전 상태(State Of Charge; SOC)에 차이가 발생하게 된다. 이러한 충전 상태의 불균형이 있는 상태에서 배터리의 방전이 계속되면 충전 상태가 낮은 특정 단위 셀이 과방전되어 배터리의 안정적인 동작이 어려워 진다. 반대로, 이러한 충전 상태의 불균형이 있는 상태에서 배터리의 충전이 계속되면 충전 상태가 높은 특정 단위 셀이 과충전되어 배터리의 안전성을 저해한다. 충전 상태의 불균형은 일부의 단위 셀을 과충전 상태 또는 과방전 상태가 되도록 할 수 있고, 이러한 문제로 인해 부하(예컨대, 전동 모터, 전력망)에 안정적으로 전력을 공급할 수 없는 문제가 발생하게 된다.
위와 같은 문제를 해결하기 위해 배터리 셀의 충전 상태를 지속적으로 모니터링 하여 각 배터리 셀의 충전 상태를 일정한 레벨로 밸런싱하는 다양한 형태의 회로가 사용되고 있다.
특히, 충전 상태가 다른 단위 셀 보다 높은 특정 셀을 밸런싱 저항과 연결시켜 방전시키는 패시브 밸런싱 회로는 빠르게 밸런싱이 가능한 장점이 있다. 하지만, 밸런싱 과정에서 밸런싱 저항에서 열이 발생하여 밸런싱 저항이 실장된 기판이 과열되는 현상이 발생한다. 이로 인해, 기판에 실장된 IC, 메모리, 스위치 등과 같은 소자들까지 과열되어 소손되는 문제점이 있다.
따라서, 밸런싱 저항이 실장된 기판을 과열시키지 않으면서 복수의 배터리 셀 각각의 충전 상태를 밸런싱할 수 있는 밸런싱 기술이 요구되고 있다.
본 발명은 밸런싱 대상 배터리 셀과 밸런싱 저항을 전기적으로 연결시키는 밸런싱 스위치의 듀티 사이클을 제어하여 밸런싱 대상 배터리 셀의 밸런싱 저항이 실장된 기판의 기판 온도를 기준 온도 이하로 유지시킬 수 있는 배터리 관리 장치를 제공하는데 그 목적이 있다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 관리 장치는 복수의 배터리 셀 각각과 전기적으로 연결된 복수의 밸런싱 저항, 상기 복수의 배터리 셀과 상기 복수의 밸런싱 저항 각각을 전기적으로 연결시키는 복수의 밸런싱 경로 및 상기 복수의 밸런싱 경로를 통전 또는 차단시키는 복수의 밸런싱 스위치를 구비하는 밸런싱 회로부 및 상기 복수의 배터리 셀 각각의 충전 상태에 기초하여 상기 복수의 배터리 셀 중 밸런싱 대상 배터리 셀을 결정하고, 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항이 실장된 기판의 기판 온도와 기준 온도의 대소를 비교하며, 상기 비교 결과에 기초하여 상기 복수의 밸런싱 스위치 중에서 상기 밸런싱 대상 배터리 셀과 밸런싱 저항을 전기적으로 연결시키는 밸런싱 경로를 통전 또는 차단시키는 밸런싱 대상 스위치를 선택하고, 선택된 밸런싱 대상 스위치의 동작 상태를 제어하여 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항에 흐르는 밸런싱 전류를 조절함으로써, 상기 기판 온도를 상기 기준 온도 이하로 유지시키는 프로세서를 포함할 수 있다.
바람직하게, 상기 프로세서는 상기 밸런싱 대상 배터리 셀이 결정되면 상기 기판 온도와 상기 기준 온도의 대소를 비교하고, 상기 비교 결과 상기 기판 온도가 상기 기준 온도 미만이면, 상기 밸런싱 전류가 최대가 되도록 상기 밸런싱 대상 스위치의 동작 상태를 제어할 수 있다.
바람직하게, 상기 프로세서는 상기 밸런싱 대상 스위치의 듀티 사이클이 최대가 되도록 상기 밸런싱 대상 스위치의 동작 상태를 제어할 수 있다.
바람직하게, 상기 프로세서는 상기 밸런싱 대상 배터리 셀이 결정되면 상기 기판 온도와 상기 기준 온도의 대소를 비교하고, 상기 비교 결과 상기 기판 온도가 상기 기준 온도와 동일하면, 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항의 소비 전력이 상기 기판에서 외부로 전달되는 열전달량과 동일하도록 상기 밸런싱 대상 스위치의 동작 상태를 제어할 수 있다.
바람직하게, 상기 프로세서는 상기 소비 전력과 상기 열전달량이 동일해지는 상기 밸런싱 대상 스위치의 듀티 사이클을 산출하고, 상기 산출된 듀티 사이클로 상기 밸런싱 대상 스위치의 동작 상태를 제어할 수 있다.
바람직하게, 상기 프로세서는 상기 밸런싱 대상 배터리 셀이 결정되면 상기 기판 온도와 상기 기준 온도의 대소를 비교하고, 상기 비교 결과 상기 기판 온도가 상기 기준 온도를 초과하면, 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항의 소비 전력이 상기 기판에서 외부로 전달되는 열전달량 미만이 되도록 상기 밸런싱 대상 스위치의 동작 상태를 제어할 수 있다.
바람직하게, 상기 프로세서는 상기 소비 전력이 상기 열전달량 미만이 되는 상기 밸런싱 대상 스위치의 듀티 사이클을 산출하고, 상기 산출된 듀티 사이클로 상기 밸런싱 대상 스위치의 동작 상태를 제어할 수 있다.
바람직하게, 상기 프로세서는 기준 시간 내에 상기 기판 온도가 상기 기준 온도 미만이 되도록 밸런싱 대상 스위치의 듀티 사이클을 산출하고, 상기 산출된 듀티 사이클로 상기 밸런싱 대상 스위치의 동작 상태를 제어할 수 있다.
본 발명의 다른 측면에 따른 배터리 팩은 상기 배터리 관리 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 자동차는 상기 배터리 관리 장치를 포함할 수 있다.
본 발명에 따르면, 밸런싱 대상 배터리 셀과 밸런싱 저항을 전기적으로 연결시키는 밸런싱 스위치의 듀티 사이클이 제어되어, 기판 온도가 기준 온도 이하로 유지됨으로써, 밸런싱 과정에서 발생되는 열로 인해 배터리 관리 장치에 포함된 부품들이 과열되어 소소되는 현상이 방지될 수 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치와 이를 포함하는 배터리 팩의 구성을 개략적으로 도시한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 배터리 관리 장치와 이를 포함하는 배터리 팩의 연결 구성을 개략적으로 도시한 회로도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 관리 장치가 밸런싱을 수행하기 전 복수의 배터리 셀의 충전 상태를 도시한 그래프이다.
도 4는 본 발명의 일 실시예에 따른 배터리 관리 장치가 밸런싱을 수행하는 동안에 복수의 배터리 셀의 충전 상태를 도시한 그래프이다.
도 5는 본 발명의 다른 실시예에 따른 배터리 관리 장치와 이를 포함하는 배터리 팩의 연결 구성을 개략적으로 도시한 회로도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
도 1은 본 발명의 일 실시예에 따른 배터리 관리 장치(100)와 이를 포함하는 배터리 팩의 구성을 개략적으로 도시한 블록도이다. 도 2는 본 발명의 일 실시예에 따른 배터리 관리 장치(100)와 이를 포함하는 배터리 팩의 연결 구성을 개략적으로 도시한 회로도이다. 도 3은 본 발명의 일 실시예에 따른 배터리 관리 장치(100)가 밸런싱을 수행하기 전 복수의 배터리 셀(C1 내지 C4)의 충전 상태를 도시한 그래프이다. 도 4는 본 발명의 일 실시예에 따른 배터리 관리 장치(100)가 밸런싱을 수행하는 동안에 복수의 배터리 셀(C1 내지 C4)의 충전 상태를 도시한 그래프이다.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 복수의 배터리 셀(C1 내지 C4)을 구비하는 배터리 팩에 포함되어 복수의 배터리 셀(C1 내지 C4) 간의 밸런싱을 수행할 수 있다. 예컨대, 배터리 관리 장치(100)는 복수의 배터리 셀(C1 내지 C4)의 충전 상태(State of charge, SOC)에 기반하여 밸런싱을 수행할 수 있다.
복수의 배터리 셀(C1 내지 C4)은 배터리 팩에 포함된 충방전 스위치(SW2)의 동작 상태에 따라 충방전될 수 있다. 예를 들어, 충방전 스위치(SW2)가 턴 온 상태이면, 복수의 배터리 셀(C1 내지 C4)은 배터리 팩에 연결된 부하로부터 충전 전류를 인가받아 충전되거나, 외부 부하로 방전 전류를 출력하여 방전될 수 있다. 그리고, 복수의 배터리 셀(C1 내지 C4)은 충방전 스위치(SW2)가 턴 오프 상태이면 배터리 팩에 연결된 부하와의 연결이 차단될 수 있다.
여기서, 충전 상태(State of Charge; SOC)는, 복수의 배터리 셀(C1 내지 C4) 각각의 최대 충전 용량 대비 현재 충전된 용량의 비율일 수 있다. 또한, 밸런싱은, 복수의 배터리 셀(C1 내지 C4) 각각이 충방전되는 과정에서 충전 상태가 달라진 경우, 충전 상태가 동일해지도록 복수의 배터리 셀(C1 내지 C4) 중 밸런싱 대상 배터리 셀로 결정된 배터리 셀을 방전시키는 과정을 의미할 수 있다.
이를 위하여, 본 발명의 일 실시예에 따른 배터리 관리 장치(100)는 밸런싱 회로부(110), 센싱부(120), 메모리부(130), 프로세서(140) 및 알림부(150)를 포함할 수 있다.
밸런싱 회로부(110)는 복수의 밸런싱 저항(R1 내지 R4), 복수의 밸런싱 경로(L1a 내지 L1d), 복수의 밸런싱 스위치(SW1a 내지 SW1d)를 구비할 수 있다.
복수의 밸런싱 저항(R1 내지 R4)은 복수의 밸런싱 경로(L1a 내지 L1d)를 통해 복수의 배터리 셀(C1 내지 C4) 중 대응되는 배터리 셀과 전기적으로 연결될 수 있다.
즉, 복수의 밸런싱 저항(R1 내지 R4)은 복수의 밸런싱 경로(L1a 내지 L1d)를 통해 복수의 배터리 셀(C1 내지 C4)중 대응되는 배터리 셀과 각각 직렬 연결될 수 있다.
복수의 밸런싱 저항(R1 내지 R4)은 상술된 배터리 관리 장치의 구성 요소들이 실장된 기판(PCB)에 함께 실장될 수 있다. 이에 따라, 복수의 밸런싱 저항(R1 내지 R4)으로 복수의 배터리 셀(C1 내지 C4) 각각의 방전 전류가 출력되는 경우, 복수의 밸런싱 저항(R1 내지 R4)에서 발생하는 저항열이 기판(PCB)에 전도될 수 있다. 따라서, 기판(PCB)뿐만 아니라 기판(PCB)에 실장된 배터리 관리 장치의 구성 요소까지 과열될 수 있다.
일 실시예에서, 복수의 밸런싱 저항(R1 내지 R4)은 도 2에 도시된 바와 같이, 하나의 기판(PCB)에 실장될 수 있다.
도 2를 참조하면, 제1 밸런싱 경로(L1a)에는 제1 배터리 셀(C1), 제1 밸런싱 스위치(SW1a) 및 제1 밸런싱 저항(R1)이 구비될 수 있다. 제2 밸런싱 경로(L1b)에는 제2 배터리 셀(C2), 제2 밸런싱 스위치(SW1b) 및 제2 밸런싱 저항(R2)이 구비될 수 있다. 제3 밸런싱 경로(L1c)에는 제3 배터리 셀(C3), 제3 밸런싱 스위치(SW1c) 및 제3 밸런싱 저항(R3)이 구비될 수 있다. 제4 밸런싱 경로(L1d)에는 제4 배터리 셀(C4), 제4 밸런싱 스위치(SW1d) 및 제4 밸런싱 저항(R4)이 구비될 수 있다.
복수의 밸런싱 스위치(SW1a 내지 SW1d) 각각은 복수의 밸런싱 경로(L1a 내지 L1d) 중 대응되는 밸런싱 경로에 구비되어, 복수의 밸런싱 저항(R1 내지 R4)과 복수의 배터리 셀(C1 내지 C4) 각각의 전기적 연결을 통전 또는 차단시킬 수 있다.
이러한, 복수의 밸런싱 스위치(SW1a 내지 SW1d)는 프로세서(140)로부터 출력되는 제어 신호에 대응하여 동작 상태가 턴 온 상태 또는 턴 오프 상태로 제어될 수 있다.
복수의 밸런싱 스위치(SW1a 내지 SW1d)의 동작 상태가 턴 온 상태로 제어되면, 복수의 밸런싱 저항(R1 내지 R4)으로 복수의 배터리 셀(C1 내지 C4) 각각의 방전 전류가 출력될 수 있다.
반대로, 복수의 밸런싱 스위치(SW1a 내지 SW1d)의 동작 상태가 턴 오프 상태로 제어되면, 복수의 밸런싱 저항(R1 내지 R4)과 복수의 배터리 셀(C1 내지 C4) 각각의 전기적 연결은 차단될 수 있다.
센싱부(120)는 프로세서(140)와 동작 가능하게 결합될 수 있다. 즉, 센싱부(120)는 프로세서(140)로 전기적 신호를 송신하거나 프로세서(140)로부터 전기적 신호를 수신 가능하도록 프로세서(140)에 접속될 수 있다.
센싱부(120)는 미리 설정된 주기마다 복수의 배터리 셀(C1 내지 C4) 각각의 양단 전압을 측정함으로써, 셀 전압을 반복 측정할 수 있다.
센싱부(120)는 미리 설정된 주기마다 복수의 배터리 셀(C1 내지 C4) 각각에 입력 또는 출력되는 셀 전류를 반복 측정할 수 있다.
센싱부(120)는 미리 설정된 주기마다 복수의 밸런싱 저항(R1 내지 R4)이 실장된 기판(PCB)의 기판 온도와 배터리 팩의 내부 온도를 반복 측정할 수 있다.
센싱부(120)는 측정된 셀 전압, 셀 전류, 기판 온도 및 내부 온도를 나타내는 측정 신호를 프로세서(140)에게 제공할 수 있다.
이를 위하여, 센싱부(120)는 셀 전압을 측정하도록 구성된 전압 센서, 셀 전류를 측정하도록 구성된 전류 센서, 기판 온도 및 내부 온도를 측정하도록 구성된 온도 센서를 포함할 수 있다.
프로세서(140)는 센싱부(120)로부터 측정 신호가 수신되면, 신호 처리를 통해 셀 전압, 셀 전류, 기판 온도 및 내부 온도 각각의 디지털 값을 결정하고 메모리부(130)에 저장할 수 있다.
메모리부(130)는 반도체 메모리 소자로서, 프로세서(140)에 의해 생성되는 데이터를 기록, 소거, 갱신할 수 있다. 그리고, 메모리부(130)는 프로세서(140)에 의해 구동될 수 있는 복수의 프로그램 코드를 저장할 수 있다. 예컨대, 복수의 프로그램 코드에는 복수의 배터리 셀(C1 내지 C4)의 충전 상태를 추정하기 위한 코드, 밸런싱 대상 배터리 셀을 결정하기 위한 코드, 및 기판 온도에 대응하여 복수의 밸런싱 스위치(SW1a 내지 SW1d)를 제어하기 위해 마련된 코드가 포함될 수 있다. 또한, 메모리부(130)는 본 발명을 실시할 때 사용되는 미리 결정된 각종 파라미터들의 사전 설정 값들을 저장할 수 있다.
메모리부(130)는 데이터를 기록, 소거, 갱신할 수 있다고 알려진 반도체 메모리 소자라면 그 종류에 특별한 제한이 없다. 일 예시로서, 메모리부(130)는 DRAM, SDRAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등일 수 있다. 메모리부(130)는 프로세서(140)의 제어 로직을 정의한 프로그램 코드들을 저장하고 있는 저장매체를 더 포함할 수 있다. 저장매체는 플래쉬 메모리나 하드디스크와 같은 불활성 기억 소자를 포함한다. 메모리부(130)는 프로세서(140)와 물리적으로 분리되어 있을 수도 있고, 프로세서(140)와 일체로 통합되어 있을 수도 있다.
우선, 프로세서(140)는 복수의 배터리 셀(C1 내지 C4) 각각에 입출력되는 셀 전류에 기초하여 복수의 배터리 셀(C1 내지 C4)의 충전 상태를 추정할 수 있다.
프로세서(140)는 복수의 배터리 셀(C1 내지 C4) 각각의 셀 전류를 적산하는 전류적산법을 이용하여 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태를 추정할 수 있다.
프로세서(140)는 전류적산법을 이용하여 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태를 추정하는 것으로 설명하였으나, 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태를 추정하는 한 추정 방법은 한정되지 않음을 유의한다.
프로세서(140)는 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태에 기초하여 복수의 배터리 셀(C1 내지 C4) 중에서 밸런싱 대상 배터리 셀을 결정할 수 있다.
보다 구체적으로, 프로세서(140)는 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태 차이를 산출하고, 산출된 충전 상태 차이가 미리 설정된 기준 차이값 이상인지 여부를 확인할 수 있다.
이때, 프로세서(140)는 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태 중에서 제일 작은 충전 상태와 다른 충전 상태 간의 차이를 충전 상태 차이로 산출할 수 있다.
도 3에 도시된 바와 같이, 복수의 배터리 셀 "C1", "C2", "C3" 및 "C4" 각각의 충전 상태가 "50%", "56%", "53%" 및 "60%"인 경우, 프로세서(140)는 충전 상태가 가장 작은 제1 배터리 셀 "C1"의 충전 상태 "50%"와 나머지 배터리 셀 "C2", "C3" 및 "C4" 각각의 충전 상태 "56%", "53%" 및 "60%" 간의 충전 상태 차이를 산출할 수 있다. 이에 따라, 프로세서(140)는 제1 배터리 셀 "C1"의 충전 상태와 나머지 배터리 셀 "C2", "C3" 및 "C4" 각각의 충전 상태 간의 충전 상태 차이를 "6%", "3%" 및 "10%"으로 산출할 수 있다.
이후, 프로세서(140)는 산출된 충전 상태 차이가 미리 설정된 기준 차이값 이상인지 여부를 확인하고, 확인 결과 산출된 충전 상태 차이가 미리 설정된 기준 차이값 이상이면 충전 상태가 가장 큰 배터리 셀을 밸런싱 대상 배터리 셀로 결정할 수 있다.
예를 들어, 미리 설정된 기준 차이값이 "5%"인 경우, 프로세서(140)는 제2 배터리 셀 "C2" 및 제4 배터리 셀 "C4"의 충전 상태 차이가 미리 설정된 기준 차이값 이상임을 확인하고, 제2 배터리 셀 "C2" 및 제4 배터리 셀 "C4" 중에서 충전 상태가 가장 큰 제4 배터리 셀 "C4"를 밸런싱 대상 배터리 셀로 결정할 수 있다.
프로세서(140)는 밸런싱 대상 배터리 셀(C4)과 전기적으로 연결된 제4 제4 밸런싱 저항(R4)이 실장된 기판(PCB)의 기판 온도와 기준 온도의 대소를 비교할 수 있다. 그리고, 프로세서(140)는 비교 결과에 기초하여, 복수의 밸런싱 스위치(SW1a 내지 SW1d) 중에서 제4 밸런싱 경로(L1d)를 통전 또는 차단시키는 제4 밸런싱 스위치(SW1d)를 밸런싱 대상 스위치로 선택할 수 있다. 그리고, 프로세서(140)는 밸런싱 대상 스위치로 선택된 제4 밸런싱 스위치(SW1d)의 동작 상태를 제할 수 있다.
여기서, 제4 밸런싱 스위치(SW1d)는 복수의 밸런싱 스위치(SW1a 내지 SW1d) 중에서 밸런싱 대상 배터리 셀(C4)과 제4 제4 밸런싱 저항(R4)을 전기적으로 연결시키는 제4 밸런싱 경로(L1d)를 통전 또는 차단시키는 스위치일 수 있다.
여기서, 기준 온도는 기판(PCB)에 실장된 밸런싱 저항 등과 같은 전자 부품이 고온으로 소손되지 않는 최대 온도일 수 있다. 즉, 기판 온도가 기준 온도 이상이면 고온으로 인해 기판(PCB)에 실장된 전자 부품이 소손될 수 있다.
프로세서(140)는 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어하여, 밸런싱 대상 배터리 셀(C4)과 전기적으로 연결된 제4 밸런싱 저항(R4)에 흐르는 밸런싱 전류를 조절함으로써, 기판 온도를 기준 온도 이하로 유지시킬 수 있다.
보다 구체적으로, 프로세서(140)는 밸런싱 대상 배터리 셀(C4)이 결정되면, 밸런싱 대상 배터리 셀(C4)과 전기적으로 연결된 제4 밸런싱 저항(R4)이 실장된 기판(PCB)의 기판 온도와 기준 온도의 대소를 비교할 수 있다. 그리고, 프로세서(140)는 비교 결과 기판 온도가 기준 온도 미만이면, 제4 밸런싱 저항(R4)에 흐르는 밸런싱 전류가 최대가 되도록 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어할 수 있다.
이때, 프로세서(140)는 기판 온도가 기준 온도 미만이면, 제4 밸런싱 스위치(SW1d)의 듀티 사이클이 최대가 되도록 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어할 수 있다.
예를 들어, 도 3에 도시된 바와 같이, 프로세서(140)는 기판 온도가 기준 온도 미만이면, 제4 밸런싱 스위치(SW1d)의 듀티 사이클이 "100%"가 되도록 연속적으로 턴 온 제어 신호를 출력할 수 있다.
이러한 본 발명에 따르면, 기판 온도가 실장된 부품이 고온으로 소손되지 않는 기준 온도 미만이면, 밸런싱 저항으로부터 발생하는 열이 최대가 되더라도 밸런싱 스위치의 듀티 사이클을 최대로 제어함으로써, 밸런싱 대상 배터리 셀의 전력을 최대로 소비시켜 신속히 밸런싱을 수행할 수 있다.
프로세서(140)는 제4 밸런싱 스위치(SW1d)의 듀티 사이클이 최대가 되도록 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어한 시점 이후 또는 밸런싱 대상 배터리 셀(C4)이 결정된 시점 이후의 기판 온도와 기준 온도의 대소를 비교할 수 있다. 그리고, 프로세서(140)는, 기판 온도가 기준 온도와 동일하면, 밸런싱 대상 배터리 셀(C4)과 전기적으로 연결된 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량과 동일해지도록 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어할 수 있다.
이를 위하여, 프로세서(140)는 기판 온도가 기준 온도와 동일하면 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량과 동일해지는 제4 밸런싱 스위치(SW1d)의 듀티 사이클을 산출할 수 있다.
이때, 프로세서(140)는 하기의 수학식 1을 이용하여 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량과 동일해지는 제4 밸런싱 스위치(SW1d)의 듀티 사이클을 산출할 수 있다.
<수학식 1>
Figure PCTKR2019013750-appb-img-000001
여기서, D는 밸런싱 저항의 소비 전력이 기판에서 기판의 외부로 전달되는 열전달량과 동일해지는 밸런싱 스위치의 듀티 사이클이고, h는 기판의 대류열전달계수[W/(m 2K)]이고, A는 기판의 면적[m 2]이고, R은 밸런싱 저항의 저항값[Ω]이고, Te는 기판의 외부 온도[℃](즉, 배터리 팩의 내부 온도)이고, Tp는 기판 온도[℃]이고, V는 밸런싱 대상 배터리 셀의 셀 전압[V]이다.
예컨대, 대류열전달계수(h)가 0.4[W/m 2K]이고, 기판의 면적(A)이 0.02[m 2]이고, 밸런싱 저항의 저항값(R)이 20[Ω]이고, 기판의 외부 온도(Te)가 55[℃]이고, 기판 온도(Tp)가 25[℃]이고, 배터리 셀의 셀 전압(V)이 3.7[V]라고 가정한다. 이 경우, 수학식 1를 참조하면, 프로세서(140)는 밸런싱 스위치의 듀티 사이클을 "35%"로 산출할 수 있다.
프로세서(140)는 산출된 듀티 사이클로 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어함으로써, 기판 온도가 기준 온도를 유지한 상태에서 밸런싱 대상 배터리 셀(C4)을 방전시킬 수 있다.
예를 들어, 프로세서(140)는 기판 온도가 기준 온도와 동일하면, 도 4에 도시된 바와 같이, 밸런싱 대상 배터리 셀(C4)과 전기적으로 연결된 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량과 동일해지도록, 제4 밸런싱 스위치(SW1d)에게 턴 온 제어 신호와 턴 오프 제어 신호를 동일한 시간 동안 출력할 수 있다. 예컨대, 도 4의 실시예에서, 프로세서(140)는 제4 밸런싱 스위치(SW1d)의 듀티 사이클이 "50%"가 되도록 턴 온 제어 신호 및 턴 오프 제어 신호를 교번하여 출력할 수 있다.
이러한 본 발명에 따르면 기판 온도가 기준 온도와 동일하면, 연결된 제4 밸런싱 저항(R4)으로부터 발생하는 열량과 기판(PCB)에서 외부로 방출되는 열량이 동일한 제4 밸런싱 스위치(SW1d)의 듀티 사이클을 산출하여 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어함으로써, 기판 온도가 기준 온도를 유지한 상태에서 밸런싱 대상 배터리 셀(C4)을 방전시킬 수 있다.
한편, 프로세서(140)는 밸런싱 대상 배터리 셀(C4)이 결정된 시점 이후에 기판 온도와 기준 온도의 대소를 비교한 결과, 기판 온도가 기준 온도를 초과하면 밸런싱 대상 배터리 셀(C4)과 전기적으로 연결된 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량 미만이 되도록 제4 밸런싱 스위치(SW1d)의 동작 상태를 제어할 수 있다.
이를 위하여, 프로세서(140)는 기판 온도가 기준 온도를 초과하면 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량 미만이 되는 제4 밸런싱 스위치(SW1d)의 듀티 사이클을 산출할 수 있다.
이때, 프로세서(140)는 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량과 동일해지는 제4 밸런싱 스위치(SW1d)의 듀티 사이클 미만으로 듀티 사이클을 재산출할 수 있다.
예를 들어, 프로세서(140)는 제4 밸런싱 저항(R4)의 소비 전력이 기판(PCB)에서 기판(PCB)의 외부로 전달되는 열전달량과 동일해지는 제4 밸런싱 스위치(SW1d)의 듀티 사이클을 "50%"로 산출한 경우, "50%" 미만으로 듀티 사이클을 재산출할 수 있다.
이후, 프로세서(140)는 재산출된 듀티 사이클로 제4 밸런싱 스위치(SW1d)의 동작 상태를 미리 설정된 제어 시간 동안 제어함으로써, 기준 온도를 초과한 기판 온도를 감소시키면서 밸런싱 대상 배터리 셀(C4)을 방전시킬 수 있다.
도 5는 본 발명의 다른 실시예에 따른 배터리 관리 장치(100)와 이를 포함하는 배터리 팩의 연결 구성을 개략적으로 도시한 회로도이다.
도 5를 참조하면, 다른 실시예에 따른 배터리 관리 장치(100)의 프로세서(140')는 복수의 밸런싱 저항(R1 내지 R4)이 복수의 기판(PCB1', PCB2')에 실장된 경우, 복수의 밸런싱 저항(R1 내지 R4) 각각의 저항 식별 코드와 복수의 기판(PCB1', PCB2') 각각의 기판 식별 코드가 맵핑된 식별 코드 데이터 이용하여 밸런싱 대상 배터리 셀을 결정할 수 있다. 여기서, 식별 코드 데이터는 저항 식별 코드에 해당하는 밸런싱 저항이 실장된 기판의 기판 식별 코드와 저항 식별 코드가 맵핑된 데이터일 수 있다.
예를 들어, 도 5에 도시된 바와 같이, 밸런싱 저항 "R1"과 "R2" 각각의 저항 식별 코드는 기판 "PCB1'"의 기판 식별 코드와 맵핑되고, 밸런싱 저항 "R3"과 "R4" 각각의 저항 식별 코드는 기판 "PCB2'"의 기판 식별 코드와 맵핑될 수 있다.
이후, 다른 실시예에 따른 프로세서(140')는 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태 간의 충전 상태 차이를 산출하고, 충전 상태 차이가 미리 설정된 기준 차이값 이상인지 여부를 확인할 수 있다.
다른 실시예에 따른 프로세서(140')는 복수의 배터리 셀(C1 내지 C4) 각각의 충전 상태 중에서 제일 작은 충전 상태와 다른 충전 상태 간의 차이를 충전 상태 차이로 산출할 수 있다.
상술된 예와 같이, 복수의 배터리 셀 "C1", "C2", "C3" 및 "C4" 각각의 충전 상태가 "50%", "56%", "53%" 및 "60%"인 경우, 다른 실시예에 따른 프로세서(140')는 충전 상태가 가장 작은 제1 배터리 셀 "C1"의 충전 상태 "50%"와 나머지 배터리 셀 "C2", "C3" 및 "C4" 각각의 충전 상태 "56%", "53%" 및 "60%" 간의 충전 상태 차이를 산출할 수 있다. 이에 따라, 다른 실시예에 따른 프로세서(140')는 제1 배터리 셀 "C1"의 충전 상태와 나머지 배터리 셀 "C2", "C3" 및 "C4" 각각의 충전 상태 간의 충전 상태 차이를 "6%", "3%" 및 "10%"으로 산출할 수 있다.
이후, 다른 실시예에 따른 프로세서(140')는 산출된 충전 상태 차이가 미리 설정된 기준 차이값 이상인지 여부를 확인하고, 확인 결과 산출된 충전 상태 차이가 미리 설정된 기준 차이값 이상이면 해당 배터리 셀과 전기적으로 연결된 밸런싱 저항의 저항 식별 코드에 맵핑된 기판 식별 코드를 독출할 수 있다.
상술된 예를 이어서 설명하면, 다른 실시예에 따른 프로세서(140')는 충전 상태 차이가 미리 설정된 기준 차이값 이상인 제2 배터리 셀 "C2" 및 제4 배터리 셀 "C4"와 전기적으로 연결된 제2 밸런싱 저항 "R2" 및 제4 밸런싱 저항 "R4"의 저항 식별 코드 각각에 맵핑된 기판 식별 코드를 독출할 수 있다.
다른 실시예에 따른 프로세서(140')는 독출된 기판 식별 코드에 대응되는 기판(PCB1', PCB 2') 별로 충전 상태 차이가 가장 큰 배터리 셀을 밸런싱 대상 배터리 셀(C2, C4)로 결정할 수 있다.
이에 따라, 다른 실시예에 따른 프로세서(140')는 기판 "PCB1'"에 실장된 제1 밸런싱 저항 "R1" 및 제2 밸런싱 저항 "R2"와 각각 전기적으로 연결된 제1 배터리 셀 "C1" 및 제2 배터리 셀 "C2" 중에서 충전 상태 차이가 미리 설정된 기준 차이값 이상이고, 충전 상태가 가장 큰 제2 배터리 셀 "C2"를 밸런싱 대상 배터리 셀(C2)로 결정할 수 있다.
또한, 다른 실시예에 따른 프로세서(140')는 기판 "PCB2'"에 실장된 제3 밸런싱 저항 "R3" 및 제4 밸런싱 저항 "R4"와 각각 전기적으로 연결된 제3 배터리 셀 "C3" 및 제4 배터리 셀 "C4" 중에서 충전 상태 차이가 미리 설정된 기준 차이값 이상이고, 충전 상태가 가장 큰 제4 배터리 셀 "C4"를 밸런싱 대상 배터리 셀(C4)로 결정할 수 있다.
이후, 다른 실시예에 따른 프로세서(140')는 일 실시예에 따른 프로세서(140)와 동일하게 듀티 사이클을 산출하여 기판(PCB1', PCB2') 각각의 기판 온도가 기준 온도 이하가 되도록 유지시키면서, 밸런싱을 수행할 수 있다.
도 1 내지 도 4를 다시 참조하면, 알림부(150)는 프로세서(140)로부터 밸런싱 대상 배터리 셀의 결정 결과를 입력받아 외부로 출력할 수 있다. 보다 구체적으로, 알림부(150)는 상술된 밸런싱 대상 배터리 셀의 결정 결과를 기호, 숫자 및 코드 중 하나 이상을 이용하여 표시하는 디스플레이부 및 소리로 출력하는 스피커 장치 중 하나 이상을 구비할 수 있다.
한편, 본 발명에 따른 배터리 팩은, 복수의 배터리 셀 외에 배터리 셀을 수납하기 위한 케이스, 카트리지 및 버스바 등이 더 포함될 수 있다. 특히, 본 발명에 따른 배터리 팩은, 상기 배터리 관리 장치를 포함하여 밸런싱 저항을 이용하여 복수의 배터리 셀 각각의 충전 상태 간에 밸런싱을 수행할 수 있다.
본 발명에 따른 배터리 관리 장치는, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다. 즉, 본 발명에 따른 자동차는, 본 발명에 따른 배터리 관리 장치를 포함할 수 있다.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.
(부호의 설명)
100: 배터리 관리 장치
110: 밸런싱 회로부
120: 센싱부
130: 메모리부
140, 140': 프로세서
150: 알림부

Claims (10)

  1. 복수의 배터리 셀 각각과 전기적으로 연결된 복수의 밸런싱 저항, 상기 복수의 배터리 셀과 상기 복수의 밸런싱 저항 각각을 전기적으로 연결시키는 복수의 밸런싱 경로 및 상기 복수의 밸런싱 경로를 통전 또는 차단시키는 복수의 밸런싱 스위치를 구비하는 밸런싱 회로부; 및
    상기 복수의 배터리 셀 각각의 충전 상태에 기초하여 상기 복수의 배터리 셀 중 밸런싱 대상 배터리 셀을 결정하고, 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항이 실장된 기판의 기판 온도와 기준 온도의 대소를 비교하며, 상기 비교 결과에 기초하여 상기 복수의 밸런싱 스위치 중에서 상기 밸런싱 대상 배터리 셀과 대응되는 밸런싱 저항을 전기적으로 연결시키는 밸런싱 경로를 통전 또는 차단시키는 밸런싱 대상 스위치를 선택하고, 선택된 밸런싱 대상 스위치의 동작 상태를 제어하여 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항에 흐르는 밸런싱 전류를 조절함으로써, 상기 기판 온도를 상기 기준 온도 이하로 유지시키는 프로세서를 포함하는 것은 특징으로 하는 배터리 관리 장치.
  2. 제1항에 있어서,
    상기 프로세서는
    상기 밸런싱 대상 배터리 셀이 결정되면 상기 기판 온도와 상기 기준 온도의 대소를 비교하고, 상기 비교 결과 상기 기판 온도가 상기 기준 온도 미만이면, 상기 밸런싱 전류가 최대가 되도록 상기 밸런싱 대상 스위치의 동작 상태를 제어하는 배터리 관리 장치.
  3. 제2항에 있어서,
    상기 프로세서는
    상기 밸런싱 대상 스위치의 듀티 사이클이 최대가 되도록 상기 밸런싱 대상 스위치의 동작 상태를 제어하는 배터리 관리 장치.
  4. 제1항에 있어서,
    상기 프로세서는
    상기 밸런싱 대상 배터리 셀이 결정되면 상기 기판 온도와 상기 기준 온도의 대소를 비교하고, 상기 비교 결과 상기 기판 온도가 상기 기준 온도와 동일하면, 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항의 소비 전력이 상기 기판에서 외부로 전달되는 열전달량과 동일하도록 상기 밸런싱 대상 스위치의 동작 상태를 제어하는 배터리 관리 장치.
  5. 제4항에 있어서,
    상기 프로세서는
    상기 소비 전력과 상기 열전달량이 동일해지는 상기 밸런싱 대상 스위치의 듀티 사이클을 산출하고, 상기 산출된 듀티 사이클로 상기 밸런싱 대상 스위치의 동작 상태를 제어하는 배터리 관리 장치.
  6. 제1항에 있어서,
    상기 프로세서는
    상기 밸런싱 대상 배터리 셀이 결정되면 상기 기판 온도와 상기 기준 온도의 대소를 비교하고, 상기 비교 결과 상기 기판 온도가 상기 기준 온도를 초과하면, 상기 밸런싱 대상 배터리 셀과 전기적으로 연결된 밸런싱 저항의 소비 전력이 상기 기판에서 외부로 전달되는 열전달량 미만이 되도록 상기 밸런싱 대상 스위치의 동작 상태를 제어하는 배터리 관리 장치.
  7. 제6항에 있어서,
    상기 프로세서는
    상기 소비 전력이 상기 열전달량 미만이 되는 상기 밸런싱 대상 스위치의 듀티 사이클을 산출하고, 상기 산출된 듀티 사이클로 상기 밸런싱 대상 스위치의 동작 상태를 제어하는 배터리 관리 장치.
  8. 제6항에 있어서,
    상기 프로세서는
    기준 시간 내에 상기 기판 온도가 상기 기준 온도 미만이 되도록 밸런싱 대상 스위치의 듀티 사이클을 산출하고, 상기 산출된 듀티 사이클로 상기 밸런싱 대상 스위치의 동작 상태를 제어하는 배터리 관리 장치.
  9. 상기 제1항 내지 제8항 중 어느 한 항에 따른 배터리 관리 장치를 포함하는 배터리 팩.
  10. 상기 제1항 내지 제8항 중 어느 한 항에 따른 배터리 관리 장치를 포함하는 자동차.
PCT/KR2019/013750 2018-10-19 2019-10-18 배터리 관리 장치 WO2020080881A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020564894A JP7111439B2 (ja) 2018-10-19 2019-10-18 バッテリー管理装置
EP19873770.2A EP3820015A4 (en) 2018-10-19 2019-10-18 BATTERY MANAGEMENT DEVICE
CN201980035204.XA CN112204842B (zh) 2018-10-19 2019-10-18 电池管理装置
US17/251,934 US11616257B2 (en) 2018-10-19 2019-10-18 Battery management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0125539 2018-10-19
KR1020180125539A KR102500362B1 (ko) 2018-10-19 2018-10-19 배터리 관리 장치

Publications (1)

Publication Number Publication Date
WO2020080881A1 true WO2020080881A1 (ko) 2020-04-23

Family

ID=70284759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013750 WO2020080881A1 (ko) 2018-10-19 2019-10-18 배터리 관리 장치

Country Status (6)

Country Link
US (1) US11616257B2 (ko)
EP (1) EP3820015A4 (ko)
JP (1) JP7111439B2 (ko)
KR (1) KR102500362B1 (ko)
CN (1) CN112204842B (ko)
WO (1) WO2020080881A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918326A (zh) * 2020-12-28 2021-06-08 中国第一汽车股份有限公司 一种电池管理***、方法、车辆及介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102443667B1 (ko) * 2018-10-26 2022-09-14 주식회사 엘지에너지솔루션 밸런싱 장치, 및 그것을 포함하는 배터리 관리 시스템과 배터리팩
KR20210120687A (ko) * 2020-03-27 2021-10-07 엘지이노텍 주식회사 셀 밸런싱 모듈
KR20220060997A (ko) * 2020-11-05 2022-05-12 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
EP4166962B1 (de) * 2021-10-15 2024-06-19 Andreas Stihl AG & Co. KG Elektrischer energiespeicher
CN114771348A (zh) * 2022-04-25 2022-07-22 岚图汽车科技有限公司 动力电池均衡控制方法及装置
KR20230171401A (ko) * 2022-06-13 2023-12-20 스탠다드에너지(주) 에너지 조절을 위한 배터리 관리 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115101A (ja) * 2010-11-26 2012-06-14 Keihin Corp セルバランス制御装置
US20140042977A1 (en) * 2012-08-09 2014-02-13 Samsung Sdi Co., Ltd. Battery pack, cell balancing method of the same, and energy storage system including the battery pack
JP2014171323A (ja) * 2013-03-04 2014-09-18 Toyota Industries Corp セルバランス装置
KR20180036237A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 셀 밸런싱 제어장치 및 방법
KR20180082345A (ko) * 2017-01-10 2018-07-18 주식회사 엘지화학 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
KR20180125539A (ko) 2016-03-29 2018-11-23 스미도모쥬기가이고교 가부시키가이샤 액추에이터

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975801B2 (ja) 2002-03-27 2007-09-12 松下電器産業株式会社 蓄電池システム
KR100468127B1 (ko) 2003-02-13 2005-01-27 넥스콘 테크놀러지 주식회사 배터리 셀의 균등 충전장치
JP4843921B2 (ja) 2004-09-02 2011-12-21 日産自動車株式会社 組電池の容量調整装置及び組電池の容量調整方法
JP5423429B2 (ja) 2010-01-27 2014-02-19 パナソニック株式会社 蓄電装置
KR101369323B1 (ko) 2010-08-30 2014-03-05 주식회사 엘지화학 배터리팩의 냉각 제어 장치 및 방법
JP5632723B2 (ja) * 2010-11-26 2014-11-26 株式会社ケーヒン セルバランス制御装置
JP2013021821A (ja) * 2011-07-12 2013-01-31 Honda Motor Co Ltd 電池均等化回路装置
EP2744067A4 (en) * 2011-08-11 2015-01-14 Panasonic Corp EQUIPMENT CONTROL, POWER SUPPLY SYSTEM AND VEHICLE
JP5918961B2 (ja) * 2011-10-07 2016-05-18 株式会社ケーヒン セルバランス制御装置
JP5932569B2 (ja) * 2012-08-24 2016-06-08 ルネサスエレクトロニクス株式会社 半導体装置及び電池電圧監視装置
KR20150004035A (ko) 2013-07-02 2015-01-12 현대자동차주식회사 배터리셀 밸런싱 방법 및 시스템
JP6194841B2 (ja) 2014-04-07 2017-09-13 株式会社デンソー 均等化放電装置
WO2016190292A1 (ja) 2015-05-25 2016-12-01 日本電気株式会社 蓄電装置
JP6638727B2 (ja) 2015-05-25 2020-01-29 日本電気株式会社 蓄電装置、セルバランス動作方法、及びプログラム
GB201523105D0 (en) 2015-12-30 2016-02-10 Hyperdrive Innovation Ltd Battery management system
KR102096132B1 (ko) 2016-07-29 2020-04-01 주식회사 엘지화학 배터리 셀 밸런싱 장치 및 방법
KR102167428B1 (ko) * 2016-10-21 2020-10-20 주식회사 엘지화학 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115101A (ja) * 2010-11-26 2012-06-14 Keihin Corp セルバランス制御装置
US20140042977A1 (en) * 2012-08-09 2014-02-13 Samsung Sdi Co., Ltd. Battery pack, cell balancing method of the same, and energy storage system including the battery pack
JP2014171323A (ja) * 2013-03-04 2014-09-18 Toyota Industries Corp セルバランス装置
KR20180125539A (ko) 2016-03-29 2018-11-23 스미도모쥬기가이고교 가부시키가이샤 액추에이터
KR20180036237A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 셀 밸런싱 제어장치 및 방법
KR20180082345A (ko) * 2017-01-10 2018-07-18 주식회사 엘지화학 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3820015A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918326A (zh) * 2020-12-28 2021-06-08 中国第一汽车股份有限公司 一种电池管理***、方法、车辆及介质
CN112918326B (zh) * 2020-12-28 2023-02-28 中国第一汽车股份有限公司 一种电池管理***、方法、车辆及介质

Also Published As

Publication number Publication date
EP3820015A1 (en) 2021-05-12
KR102500362B1 (ko) 2023-02-14
EP3820015A4 (en) 2021-10-06
JP2021524224A (ja) 2021-09-09
US11616257B2 (en) 2023-03-28
US20210265671A1 (en) 2021-08-26
CN112204842B (zh) 2024-05-14
KR20200044574A (ko) 2020-04-29
CN112204842A (zh) 2021-01-08
JP7111439B2 (ja) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020080881A1 (ko) 배터리 관리 장치
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2021045387A1 (ko) 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2013119070A1 (ko) 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치
WO2019177303A1 (ko) 과방전 방지 장치
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2020085819A1 (ko) 밸런싱 장치, 그것을 포함하는 배터리 관리 시스템 및 배터리팩
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2020145550A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2022092612A1 (ko) 충전 관리 장치, 충전 관리 방법, 및 전기 차량
WO2022265358A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2022065676A1 (ko) 배터리 저항 산출 장치 및 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2018131874A1 (ko) 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
WO2020076126A1 (ko) 배터리 관리 장치 및 방법
WO2021256864A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2021112459A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2020059952A1 (ko) 배터리의 밸런싱 장치 및 방법
WO2016060356A1 (ko) 배터리 보호회로
WO2024058523A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2023101136A1 (ko) 셀 전압 추정 방법 및 그 방법을 제공하는 배터리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE