WO2019103412A1 - 배터리 장치 및 배터리 온도 조절방법 - Google Patents

배터리 장치 및 배터리 온도 조절방법 Download PDF

Info

Publication number
WO2019103412A1
WO2019103412A1 PCT/KR2018/014154 KR2018014154W WO2019103412A1 WO 2019103412 A1 WO2019103412 A1 WO 2019103412A1 KR 2018014154 W KR2018014154 W KR 2018014154W WO 2019103412 A1 WO2019103412 A1 WO 2019103412A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
batteries
hot air
switch
Prior art date
Application number
PCT/KR2018/014154
Other languages
English (en)
French (fr)
Inventor
권동근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020514487A priority Critical patent/JP7091449B2/ja
Priority to EP18881490.9A priority patent/EP3614485B1/en
Priority to US16/629,446 priority patent/US11688893B2/en
Publication of WO2019103412A1 publication Critical patent/WO2019103412A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery device and a battery temperature control method, and more particularly, to a battery device and a battery temperature control method capable of preventing a temperature drop of the battery.
  • a nickel cadmium battery, a nickel hydride battery, a nickel zinc battery, and a lithium ion battery can be used.
  • lithium ion batteries are in the limelight because they are free from charge and discharge, have very low self-discharge rate, and have a high energy density.
  • the lithium ion battery is greatly influenced by ambient temperature conditions.
  • the charging / discharging efficiency is lowered, and the service life can be shortened.
  • a cooler such as an air conditioner is operated to prevent the lithium ion battery from being exposed to a high temperature environment.
  • the present invention provides a battery device and a battery temperature control method capable of easily raising the temperature of the battery.
  • the present invention provides a battery device and a battery temperature control method capable of improving the efficiency of energy used for controlling the temperature of the battery.
  • the present invention relates to an electric power generator comprising a plurality of batteries connected to an electric power generation line connected to an external generator; And a controller for controlling charging and discharging of the batteries according to the temperature of the space in which the batteries are located to raise the temperature of the battery, wherein the plurality of batteries are connected in parallel, A final terminal of the plurality of batteries is connected to the generated power line.
  • a controller for controlling the discharge of the battery so as to supply at least a part of the electric current discharged from the battery to the hot air fan, wherein the controller controls the discharge of the battery so as to supply the hot air to the space where the battery is located. can do.
  • a first switch installed between the generated power line and the battery; And a second switch installed between the hot air fan and the battery.
  • a plurality of auxiliary switches installed between the plurality of batteries to control the flow of current between the plurality of batteries.
  • the controller includes: a temperature sensing unit capable of measuring a temperature of a space in which the battery is located; A first comparator for comparing a temperature value measured by the temperature sensor with a preset temperature value; And a control unit for controlling operations of the first switch, the second switch, and the plurality of auxiliary switches according to a result of comparison by the first comparing unit.
  • the controller includes: a voltage measuring unit capable of measuring a voltage of the battery; And a second comparator configured to compare a voltage value measured by the voltage measuring unit with a predetermined set voltage value, wherein the control unit controls the first switch, the second switch, The second switch, and the plurality of auxiliary switches.
  • the present invention provides a method of controlling a power generation system, the method comprising: providing a plurality of batteries connected to a generator power line connected to a generator; Measuring a temperature of a space in which the plurality of batteries are located; And controlling the charging and discharging of the plurality of batteries to increase the temperature of the battery according to the measured temperature.
  • the step of controlling the charging and discharging of the plurality of batteries comprises the steps of interrupting the connection between the plurality of batteries and the generating power line, And a charging and discharging path between the plurality of batteries to generate heat of the battery.
  • the controlling the charging and discharging of the plurality of batteries includes the steps of connecting the battery and a hot air fan installed to supply hot air to a space where the battery is located; And supplying at least a part of the electric current discharged from the battery to the hot air fan.
  • the step of supplying at least a part of the electric current discharged from the battery to the hot air fan includes the steps of discharging at least a part of the plurality of batteries and supplying current to the hot air fan; And a process of heating the discharged battery.
  • the step of controlling charging and discharging between the plurality of batteries may include: stopping supply of current to the hot air fan; Supplying a current of another battery to a discharged battery among a plurality of batteries; And a process of heating a battery to be charged among the plurality of batteries and a battery to be discharged.
  • the controlling the charging / discharging of the plurality of batteries includes: measuring a voltage of the battery; Comparing the measured voltage value with a preset voltage value; And disconnecting the connection between the battery and the fan when the measured voltage value is less than a preset voltage value.
  • the step of measuring the temperature of the space in which the plurality of batteries are located may include a step of comparing the measured temperature value with a predetermined set temperature value, and the step of raising the temperature of the battery according to the measured temperature includes: And increasing the temperature of the battery if the temperature value is less than the preset temperature value.
  • the temperature of the battery when the battery is exposed to a low-temperature environment, the temperature of the battery can be easily raised. Therefore, it is possible to prevent the problem that the output of the battery is lowered due to the low temperature.
  • the energy used for raising the temperature of the battery can be efficiently used.
  • energy can be prevented from being wasted, and the temperature of the battery can be raised with less energy. Therefore, the efficiency of use of energy can be improved.
  • FIG. 1 is a view showing a structure of a battery device according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a battery temperature control method according to an embodiment of the present invention.
  • FIG. 3 is a view showing a structure for supplying current from a battery to a hot air fan according to an embodiment of the present invention
  • FIG. 4 illustrates a structure for supplying current from one battery to another battery according to an embodiment of the present invention.
  • FIG. 5 illustrates a structure for supplying current from another battery to another battery according to an embodiment of the present invention
  • FIG. 6 is a view showing a structure for charging a battery according to an embodiment of the present invention.
  • FIG. 1 is a view showing a structure of a battery device according to an embodiment of the present invention.
  • a battery device 100 includes a battery 110 connected to a power generation line 51, and a controller 120.
  • the battery device 100 may further include a fan 130, a first switch 140, a second switch 150, a third switch (not shown), and a plurality of auxiliary switches.
  • the generator 50 supplies power to the battery 110 or receives power supplied from the battery 110. Accordingly, when the voltage in the battery 110 is insufficient, the power is supplied from the generated power line 51 to the battery 110, so that the battery 110 can be charged. When the voltage within the battery 110 is sufficient, the battery 110 can deliver power to the generated power line 51. At this time, instead of the generator 50, a substation and a transmission line may be provided.
  • the generated power line 51 electrically connects the generator 50 and the battery 110. Accordingly, the power of the generator 50 can be transmitted to the battery 110 through the generated power line 51.
  • the battery 110 is electrically connected to the generated power line 51.
  • the battery 110 may store the power supplied from the generated power line 51.
  • the battery 110 may be a lithium ion battery.
  • a plurality of batteries 110 may be provided.
  • the plurality of batteries 110 may be connected in parallel and electrically connected to each other.
  • the current stored in one battery 110 can flow to the other battery 110. [ Therefore, as the electric current flows between the batteries 110, the battery 110 can be charged and discharged. At this time, the final terminals of the batteries 110 connected in parallel are connected to the power generation power line 51.
  • the first switch 140 is installed in the generated power line 51 (or between the battery 110 and the power plant 50). Accordingly, the first switch 140 may block or electrically connect the electrical connection between the power plant 50 and the battery 110. [ That is, the first switch 140 can turn on / off the generated power line 51 and the battery 110. Therefore, the operation of the first switch 140 is controlled to supply power from the generated power line 51 to the battery 110 or from the battery 110 to the generated power line 51 .
  • the auxiliary switch 160 serves to control the flow of current between the plurality of batteries 110.
  • a plurality of auxiliary switches 160 may be provided between the plurality of batteries 110.
  • the auxiliary switch 160 may be provided as many times as the battery 110 is provided. Thus, the operation of the auxiliary switch 160 can be controlled to allow current to flow between the batteries 110 connected in parallel.
  • the plurality of auxiliary switches 160 may be connected to a line connected to the first switch 140. Accordingly, the operation of the plurality of auxiliary switches 160 is controlled to supply the power of the generated power line 51 to only the desired battery 110, or to transmit the power to the generated power line 51 only at the desired battery 110 .
  • the hot air fan 130 serves to supply warm air to the space where the battery 110 is located.
  • the hot air fan 130 is electrically connected to the battery 110.
  • the final terminal of the batteries 110 connected in parallel can be connected to the hot air fan 130. That is, the final terminal of the batteries 110 connected in parallel may be connected in parallel with the power generation power line 51 and the fan 130. Therefore, the hot air fan 130 can be operated by the power supplied from the battery 110 to generate hot air, and the temperature of the battery 110 can be raised.
  • the fan 130 may include a heating element and a fan.
  • the heating element serves to generate heat
  • the fan can be installed on the rear side of the heating element to push air toward the front battery 110 side. Accordingly, when the fan is operated in a state where heat is generated in the heat generating element, warm wind can be forcibly sent to the storage space of the battery 110.
  • the second switch 150 is installed between the hot air fan 130 and the batteries 110.
  • the second switch 150 may block or electrically connect the electrical connection between the hot air fan 130 and the battery 110. That is, the second switch 150 can turn on / off the hot air fan 130 and the battery 110. Accordingly, the operation of the second switch 150 may be controlled so that the hot air fan 130 may not operate or operate without transmitting or transmitting power from the battery 110 to the hot air fan 130.
  • the battery 110 and the power generation line 51 may be electrically connected to a device (not shown) that consumes power. Therefore, the power stored in the battery 110 or the power supplied by the power generation line 51 can be supplied to the power consuming apparatus, and the power consuming apparatus can be operated by the supplied power.
  • the third switch is installed between the power consuming device and the battery 110. [ Further, the third switch is provided between the power-consuming device and the generated power line 51. [ Thus, the third switch can electrically connect or disconnect between the power consuming device and the battery 110, and between the power-consuming device and the generated power line 51. [ Therefore, it is possible to control the operation of the third switch so as to supply power to the power-consuming device or to stop the supply.
  • the controller 120 can control charge and discharge between the batteries 110 according to the temperature of the space where the battery 110 is located. Accordingly, the temperature of the battery 110 can be increased by using the heat generated by the charging / discharging of the batteries 110.
  • the controller 120 may control the discharge of the battery 110 so that at least a part of the current discharged from the battery 110 is supplied to the fan 130. [ Accordingly, the controller 120 can supply the hot air to the space where the battery 110 is located by operating the hot air fan 130 while discharging the battery 110 to generate heat. Therefore, not only the battery 110 generates heat but also the space where the battery 110 is stored is heated, so that the temperature of the battery 110 can be rapidly increased.
  • the controller 120 includes a temperature sensing unit 121, a first comparing unit 122, and a controller 123.
  • the controller 120 may further include a voltage measuring unit 124 and a second comparing unit 125.
  • the temperature sensing unit 121 may measure the temperature of the space where the battery 110 is located.
  • the temperature sensing unit 121 may be a temperature measuring sensor, and may be installed in a space where the battery 110 is located. Accordingly, the temperature sensing unit 121 can monitor the temperature of the space where the battery 110 is located.
  • the first comparing unit 122 is connected to the temperature sensing unit 121.
  • the first comparator 122 may compare a temperature value measured by the temperature sensor 121 with a preset temperature value.
  • the set temperature value may be selected from a value between -20 ° C and 0 ° C. Accordingly, if the measured temperature value is larger than the set temperature value, it can be determined that the battery 110 can operate normally because the temperature of the space in which the battery 110 is located is normal temperature. Therefore, it can be determined that it is not necessary to raise the temperature of the battery 110.
  • the measured temperature value is less than the set temperature value, it can be determined that the output of the battery 110 may be lowered because the temperature of the space where the battery 110 is located is low. Therefore, it can be determined that the operation of raising the temperature of the space where the battery 110 or the battery 110 is located should be performed.
  • the control unit 123 is connected to the first comparing unit 122.
  • the control unit 123 may control charging / discharging of the batteries 110 and supply of electric current to the hot air fan 130 according to the result of the comparison by the first comparing unit 122. That is, the control unit 123 can control the operation of the first switch 140, the second switch 150, the third switch, and the plurality of auxiliary switches 160.
  • the control unit 123 can turn off the first switch 140 and the third switch. That is, the electrical connection between the battery 110 and the power generation line 51 is cut off, and the electrical connection between the battery 110 and the power consuming device can be cut off.
  • the second switch 150 may be turned on to electrically connect the battery 110 and the hot air fan 130.
  • the control unit 123 turns on at least some of the plurality of auxiliary switches 160 and turns off the other.
  • the auxiliary switch 160 among the plurality of batteries 110 can discharge the current from the battery 110, which is turned on, to the hot air fan 130. Accordingly, the discharged battery 110 can generate heat, and the hot air fan 130 can be operated to supply warm air to the space in which the battery 110 is stored. Therefore, the temperature of the space in which the battery 110 is stored can quickly rise.
  • the control unit 123 can turn off the second switch 150. [ That is, the electrical connection between the battery 110 and the fan 130 can be cut off. Thus, the operation of the fan 130 can be stopped.
  • the control unit 123 controls the operation of the auxiliary switch 160 to electrically connect the discharged battery 110 to the non-discharged battery 110.
  • the control unit 123 can turn on the first switch 140 or the third switch. That is, the battery 110 and the power generation line 51 may be electrically connected to each other, or the battery 110 and the power consuming device may be electrically connected to each other.
  • the voltage measuring unit 124 may measure the voltage of the battery 110.
  • the voltage measuring unit 124 may be a detector capable of detecting the voltage of the battery 110.
  • the voltage measuring unit 124 may measure a total voltage of the plurality of batteries 110.
  • a plurality of voltage measurement units 124 may be provided to measure the voltage of each battery 110, and to calculate an average of the measured values, thereby measuring the total voltage of the plurality of batteries 110. Therefore, the voltage measuring unit 124 can monitor the voltage state of the battery 110 as a whole.
  • the second comparator 125 is connected to the voltage measuring unit 124.
  • the second comparing unit 125 may compare the voltage measured by the voltage measuring unit 124 with a preset voltage value.
  • the set value can be selected from a value of 40 to 60% of a value of 100% of the voltage of the battery 110 that is fully charged. Accordingly, if the measured voltage value is greater than the set voltage value, it can be determined that there is no danger that the battery 110 is completely discharged. Therefore, it can be determined that there is no need to stop the operation of raising the temperature of the battery 110.
  • the measured voltage value is less than the set voltage value, it can be determined that the battery 110 is completely discharged. Accordingly, it can be determined that the operation of raising the temperature of the battery 110 is stopped, and the battery 110 should be prevented from discharging.
  • control unit 123 is also connected to the second comparing unit 125.
  • the control unit 123 may control charging / discharging of the batteries 110 and supply of current to the hot air fan 130 according to the result of the comparison by the second comparing unit 125.
  • the control unit 123 can control the operation of the first switch 140, the second switch 150, the third switch, and the plurality of auxiliary switches 160.
  • the control unit 123 can turn off the second switch 150 and the third switch. That is, the electrical connection between the battery 110 and the power consuming device is cut off, and the electrical connection between the battery 110 and the hot air fan 130 can be cut off.
  • the control unit 123 can turn on the first switch 140 with all of the auxiliary switches 160 turned on. That is, the batteries 110 and the generator power line 51 can be electrically connected to each other in a state where the batteries 110 are electrically connected to each other. Accordingly, the generated power line 51 supplies power to the batteries 110, so that the batteries 110 can be charged.
  • the controller 123 controls the first switch 140, the second switch 150, and the auxiliary switch 160 are all turned on, only the third switch can be turned off. Accordingly, the electric power supplied from the power generation line 51 charges the battery 110, and the hot air fan 130 is operated to supply hot air to the space where the battery 110 is located.
  • the temperature of the battery 110 can be easily increased automatically. Accordingly, it is possible to prevent the problem that the output of the battery 110 is lowered due to the low temperature. Further, the energy used to raise the temperature of the battery 110 can be efficiently used. Thus, energy can be prevented from being wasted, and the temperature of the battery can be raised with less energy. Therefore, the efficiency of use of energy can be improved.
  • FIG. 2 is a flowchart illustrating a method of controlling a battery temperature according to an embodiment of the present invention.
  • FIG. 3 is a view illustrating a structure for supplying current from a battery to a hot air fan according to an embodiment of the present invention.
  • 5 is a view illustrating a structure for supplying current from another battery to another battery according to an embodiment of the present invention
  • FIG. 6 is a view illustrating a structure for supplying current from one battery to another battery according to an embodiment.
  • 1 is a view showing a structure for charging a battery according to an embodiment of the present invention.
  • a method for adjusting a battery temperature includes a step S110 of providing a plurality of batteries connected to a power generation line connected to a generator, (S120), and controlling the charging / discharging of the plurality of batteries according to the measured temperature to increase the temperature of the battery (S130).
  • temperature control of the battery may be performed during a rest period (Rest). That is, since the battery does not charge and discharge and there is no heat generation of the battery, the battery can easily become a low temperature state in the idle period. Therefore, it is possible to perform an operation of raising the temperature of the battery in accordance with the temperature of the space where the battery is located in the idle period.
  • the embodiment of the present invention also exemplifies the case where the battery includes the first battery, the second battery, and the third battery, and the auxiliary switch includes the first auxiliary switch, the second auxiliary switch, and the third auxiliary switch .
  • the number of batteries and auxiliary switches is not limited to this, and may vary.
  • the temperature of the space where the battery is located can be monitored in real time by the temperature sensing unit. It is possible to compare the temperature value measured by the temperature sensor with a preset temperature value.
  • the set temperature value may be selected from a value between -20 ° C and 0 ° C. If the measured temperature value is larger than the set temperature value, it can be determined that the battery can operate normally because the temperature of the space in which the battery is located is normal temperature. Therefore, it can be determined that it is not necessary to raise the temperature of the battery.
  • the measured temperature value is less than the set temperature value, it can be determined that the output of the battery may be deteriorated because the temperature of the space where the battery is located is low. Therefore, it can be determined that the operation of raising the temperature of the space where the battery or the battery is located should be performed.
  • the first switch 140 and the third switch can be turned off as shown in FIG. That is, the electrical connection between the batteries 110 and the power generation line 51 is cut off, and the electrical connection between the batteries 110 and the power consuming device can be cut off.
  • the second switch 150 may be turned on to electrically connect the battery 110 and the hot air fan 130 installed to supply warm air to a space where the battery 110 is located.
  • the first auxiliary switch 161 may be turned off and the second auxiliary switch 162 and the third auxiliary switch 163 may be turned off. Therefore, only the second battery 112 and the third battery 113 are electrically connected to the hot air fan 130, and the first battery 111 and the hot air fan 130 are not electrically connected. Accordingly, a current discharged from the second battery 112 and the third battery 113 is supplied to the hot air fan 130, so that the hot air fan 130 can be operated.
  • the second battery 112 and the third battery 113 may be discharged to generate heat and the hot air fan 130 may be operated to supply warm air to the space in which the battery 110 is stored.
  • the battery 110 can be doubly heated in the storage space, so that the temperature can be rapidly increased. Accordingly, the power of the second battery 112 and the third battery 113 can be efficiently used to raise the temperature.
  • the second switch 150 can be turned off as shown in FIG. That is, the electrical connection between the battery 110 and the fan 130 can be cut off.
  • the supply of current to the hot air fan 130 is interrupted, and the operation of the hot air fan 130 can be interrupted.
  • a charging / discharging path can be formed between the batteries 110 so that current can be flowed between the batteries 110 to charge and discharge the batteries 110. That is, a current of another battery 110 that is not discharged can be supplied to the discharged battery 110 of the plurality of batteries 110. Accordingly, the battery to be charged and the battery 110 to be discharged heat up, and the temperature of the space where the battery 110 is located can be increased.
  • the third auxiliary switch 163 may be turned off while the first auxiliary switch 161 and the second auxiliary switch 162 are turned on.
  • the first battery 111 and the second battery 112 may be electrically connected to each other and the third battery 113 may not be electrically connected to the first battery 111 and the second battery 112.
  • the third switch can be turned on with the first auxiliary switch 161 turned off.
  • the second battery 112 and the third battery 113 may be electrically connected to each other and the first battery 111 may not be electrically connected to the second battery 112 and the third battery 113.
  • the second battery 112 and the third battery 113 can be heated while the second battery 112 is discharged and the third battery 113 is charged.
  • the supply of current may be interrupted.
  • the second battery 112 Since the voltage of the second battery 112 is lowered to the voltage of the first battery 111, the second battery 112 and the third battery 113 are electrically disconnected from each other, 2 battery 112 can be electrically reconnected. Thus, the current flows from the first battery 111 to the second battery 112, so that the first battery 111 is discharged and the second battery 112 is charged. Accordingly, the first battery 111 and the second battery 112 can generate heat.
  • the temperature raised by the hot air fan 130 can be maintained as the heat generated by the charging / discharging of the batteries 110.
  • the space where the battery 110 is located can maintain the room temperature.
  • the voltage measuring unit may measure the voltage of the batteries 110 and monitor it in real time. It is possible to compare the voltage value measured by the voltage measuring unit with a predetermined set voltage value.
  • the set value can be selected from a value of 40 to 60% of a value of 100% of the voltage of the battery 110 that is fully charged. Accordingly, if the measured voltage value is greater than the set voltage value, it can be determined that there is no danger that the battery 110 is completely discharged. Therefore, it can be determined that there is no need to stop the operation of raising the temperature of the battery 110.
  • the measured voltage value is less than the set voltage value, it can be determined that the battery 110 is completely discharged. Accordingly, it can be determined that the operation of raising the temperature of the battery 110 is stopped, and the battery 110 should be prevented from discharging.
  • the second switch 150 can be turned off when the measured voltage value is equal to or lower than the preset voltage value when the hot air fan 130 is operated. That is, the electrical connection between the battery 110 and the fan 130 can be cut off. Accordingly, the battery 110 can be prevented from discharging current to the hot air fan 130, and the voltage of the battery 110 can be prevented from being lowered.
  • the first switch 140 can be turned on. That is, the batteries 110 and the power generation line 51 can be electrically connected. 6, power is supplied from the generated power line 51 to the battery 110, so that the batteries 110 can be charged before they are all discharged. At this time, the third switch is in a turned-off state.
  • the first switch 140, the second switch 150, Only the third switch can be turned off while the switch 160 is all turned on. Accordingly, the electric power supplied from the power generation line 51 charges the battery 110, and the hot air fan 130 is operated to supply hot air to the space where the battery 110 is located. Therefore, the operation of charging the battery 110 and raising the temperature of the space where the battery 110 is located can be performed at the same time.
  • the temperature of the battery 110 can be easily increased automatically. Accordingly, it is possible to prevent the problem that the output of the battery 110 is lowered due to the low temperature. Further, the energy used to raise the temperature of the battery 110 can be efficiently used. Thus, energy can be prevented from being wasted, and the temperature of the battery can be raised with less energy. Therefore, the efficiency of use of energy can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

발전기와 연결되는 발전 전력라인에 연결되는 복수개의 배터리를 마련하는 과정; 상기 복수개의 배터리가 위치하는 공간의 온도를 측정하는 과정; 및 측정된 온도에 따라, 상기 복수개의 배터리 간의 충방전을 제어하여 배터리의 온도를 상승시키는 과정;을 포함하고, 배터리의 온도 저하를 방지할 수 있다.

Description

배터리 장치 및 배터리 온도 조절방법
본 발명은 배터리 장치 및 배터리 온도 조절방법에 관한 것으로, 더욱 상세하게는 배터리의 온도 저하를 방지할 수 배터리 장치 및 배터리 온도 조절방법에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리 장치에 대한 연구가 활발히 진행되고 있다. 또한, 최근에 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 저장된 전력을 효율적으로 활용할 수 있는 배터리 장치에 관심과 연구가 집중되고 있다.
배터리 장치에 구비되는 배터리로, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 및 리튬 이온 전지 등이 사용될 수 있다. 이 중에서 리튬 이온 전지는 충방전이 자유롭고, 자가 방전율 매우 낮으며, 에너지 밀도가 높은 장점이 있기 때문에, 각광을 받고 있다.
그러나 리튬 이온 전지는, 충전 또는 방전 과정이 전기 화학적 반응에 의하여 이루어지기 때문에, 주변 온도 환견 조건에 많은 영향을 받는다. 리튬 이온 전지가 고온 환경에 장시간 노출되는 경우, 충방전 효율이 낮아지고, 수명이 단축될 수 있다. 또한, 리튬 이온 전지의 온도가 지나치게 상승하는 경우, 발열로 인한 전해질 분해, 열폭주 형상 등이 발생할 우려가 있다. 이에, 에어컨 등의 냉각기를 가동하여 리튬 이온 전지가 고온 환경에 노출되는 것을 방지하였다.
반대로, 리튬 이온 전지가 저온 환경에 노출되는 경우, 방출되는 전류의 양이 감소하여, 리튬 이온 전지의 능력이 저하되는 문제가 발생할 수 있다. 그러나 리튬 이온 전지의 온도는 낮추는 기술에 비해, 리튬 이온 전지의 온도를 상승시키는 기술에 대한 연구는 미흡한 실정이다.
(선행기술문헌)
한국공개특허 제2016-0125829호
본 발명은 배터리의 온도를 용이하게 상승시킬 수 있는 배터리 장치 및 배터리 온도 조절방법을 제공한다.
본 발명은 배터리의 온도를 조절하는데 사용되는 에너지의 효율을 향상시킬 수 있는 배터리 장치 및 배터리 온도 조절방법을 제공한다.
본 발명은 외부 발전기와 연결되는 발전 전력라인에 연결되는 복수개의 배터리; 및 상기 배터리가 위치하는 공간의 온도에 따라 배터리들 간에 충방전을 제어하여, 배터리의 온도를 상승시킬 수 있는 제어기;를 포함하여 구성되며, 상기 복수개의 배터리는 병렬로 연결되고, 상기 병렬로 연결된 복수개의 배터리의 최종단자가 상기 발전 전력라인에 연결된다.
상기 배터리와 연결되고, 상기 배터리가 위치하는 공간으로 온풍을 공급해주도록 설치되는 온풍기를 더 포함하고, 상기 제어기는, 상기 배터리에서 방전되는 전류 중 적어도 일부를 상기 온풍기로 공급해주도록 상기 배터리의 방전을 제어할 수 있다.
상기 발전 전력라인과 상기 배터리 사이에 설치되는 제1 스위치; 및 상기 온풍기와 상기 배터리 사이에 설치되는 제2 스위치;를 더 포함한다.
상기 복수개의 배터리 간의 전류의 흐름을 제어하도록, 상기 복수개의 배터리 사이에 설치되는 복수개의 보조 스위치를 더 포함한다.
상기 제어기는, 상기 배터리가 위치하는 공간의 온도를 측정할 수 있는 온도 감지부; 상기 온도 감지부에서 측정된 온도값과 미리 설정된 설정 온도값을 비교할 수 있는 제1 비교부; 및 상기 제1 비교부에서 비교한 결과에 따라, 상기 제1 스위치, 상기 제2 스위치, 및 상기 복수개의 보조 스위치의 작동을 제어하는 제어부;를 포함한다.
상기 제어기는, 상기 배터리의 전압을 측정할 수 있는 전압 측정부; 및 상기 전압 측정부에서 측정된 전압값과 미리 설정된 설정 전압값을 비교할 수 있는 제2 비교기;를 더 포함하고, 상기 제어부는, 상기 제2 비교부에서 비교한 결과에 따라, 상기 제1 스위치, 상기 제2 스위치, 및 상기 복수개의 보조 스위치의 작동을 제어한다.
본 발명은 발전기와 연결되는 발전 전력라인에 연결되는 복수개의 배터리를 마련하는 과정; 상기 복수개의 배터리가 위치하는 공간의 온도를 측정하는 과정; 및 측정된 온도에 따라, 상기 복수개의 배터리 간의 충방전을 제어하여 배터리의 온도를 상승시키는 과정;을 포함한다.
상기 복수개의 배터리 간의 충방전을 제어하는 과정은, 상기 복수개의 배터리와 상기 발전 전력라인의 연결을 차단하는 과정; 및 상기 복수개의 배터리 간의 충방전 경로를 형성하여 배터리를 발열시키는 과정;을 포함한다.
상기 복수개의 배터리 간에 충방전을 제어하는 과정은, 상기 배터리와, 상기 배터리가 위치하는 공간으로 온풍을 공급해주도록 설치되는 온풍기를 연결해주는 과정; 및 상기 배터리에서 방전되는 전류 중 적어도 일부를 상기 온풍기에 공급하는 과정;을 더 포함한다.
상기 배터리에서 방전되는 전류 중 적어도 일부를 상기 온풍기에 공급하는 과정은, 복수개의 배터리 중 적어도 일부를 방전시켜 상기 온풍기에 전류를 공급하는 과정; 및 방전되는 배터리를 발열시키는 과정;을 포함한다.
상기 복수개의 배터리 간에 충방전을 제어하는 과정은, 상기 온풍기에 전류를 공급을 중단하는 과정; 복수개의 배터리 중 방전된 배터리로, 다른 배터리의 전류를 공급하는 과정; 및 복수개의 배터리 중 충전되는 배터리와, 방전되는 배터리를 발열시키는 과정;을 포함한다.
상기 복수개의 배터리 간에 충방전을 제어하는 과정은, 상기 배터리의 전압을 측정하는 과정; 측정되는 전압값이 미리 설정된 전압값과 비교하는 과정; 및 측정되는 전압값이 미리 설정된 전압값보다 작으면, 상기 배터리와 상기 온풍기의 연결을 차단하는 과정;을 더 포함한다.
측정되는 전압값이 미리 설정된 전압값과 비교한 후에, 측정되는 전압값이 미리 설정된 전압값보다 작으면, 상기 배터리와 상기 발전 전력라인을 연결하여, 상기 배터리를 충전하는 과정을 더 포함한다.
상기 복수개의 배터리가 위치하는 공간의 온도를 측정하는 과정은, 측정된 온도값과 미리 설정된 설정 온도값을 비교하는 과정을 포함하고, 상기 측정된 온도에 따라 배터리의 온도를 상승시키는 과정은, 측정된 온도값이 상기 설정 온도값 이하이면, 상기 배터리의 온도를 상승시키는 과정을 포함한다.
본 발명의 실시 예들에 따르면, 배터리가 저온 환경에 노출되는 경우, 배터리의 온도를 용이하게 상승시킬 수 있다. 이에, 낮은 온도로 인해 배터리의 출력이 저하되는 문제를 방지할 수 있다.
또한, 배터리의 온도를 상승시키는데 사용되는 에너지를 효율적으로 사용할 수 있다. 이에, 에너지가 낭비되는 것을 방지할 수 있고, 적은 에너지로 배터리의 온도를 상승시킬 수 있다. 따라서, 에너지의 사용 효율이 향상될 수 있다.
도 1은 본 발명의 실시 예에 따른 배터리 장치의 구조를 나타내는 도면.
도 2는 본 발명의 실시 예에 따른 배터리 온도 조절방법을 나타내는 플로우 차트.
도 3은 본 발명의 실시 예에 따른 배터리에서 온풍기로 전류를 공급하는 구조를 나타내는 도면.
도 4는 본 발명의 실시 예에 따른 일 배터리에서 다른 배터리로 전류를 공급하는 구조를 나타내는 도면.
도 5는 본 발명의 실시 예에 따른 다른 배터리에서 또 다른 배터리로 전류를 공급하는 구조를 나타내는 도면.
도 6은 본 발명의 실시 예에 따른 배터리를 충전하는 구조를 나타내는 도면.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 발명을 상세하게 설명하기 위해 도면은 과장될 수 있고, 도면상에서 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명의 실시 예에 따른 배터리 장치의 구조를 나타내는 도면이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 배터리 장치(100)는, 발전 전력라인(51)과 연결되는 배터리(110), 및 제어기(120)를 포함한다. 또한, 배터리 장치(100)는 온풍기(130), 제1 스위치(140), 제2 스위치(150), 제3 스위치(미도시), 및 복수개의 보조 스위치를 더 포함할 수 있다.
발전기(50)는, 배터리(110)로 전력을 공급하거나, 배터리(110)로부터 공급된 전력을 입력받는다. 이에, 배터리(110) 내 전압이 부족한 경우, 발전 전력라인(51)에서 배터리(110)로 전력을 공급해주어, 배터리(110)가 충전될 수 있다. 배터리(110) 내 전압이 충분한 경우, 배터리(110)가 발전 전력라인(51)으로 전력을 전달해줄 수 있다. 이때, 발전기(50) 대신 변전소, 송전선이 구비될 수도 있다.
발전 전력라인(51)은, 발전기(50)와 배터리(110)를 전기적으로 연결해주는 역할을 한다. 이에, 발전기(50)의 전력이 발전 전력라인(51)을 통해 배터리(110)로 전달될 수 있다.
배터리(110)는 발전 전력라인(51)과 전기적으로 연결된다. 배터리(110)는 발전 전력라인(51)으로부터 공급되는 전력을 저장할 수 있다. 예를 들어, 배터리(110)는 리튬 이온 전지일 수 있다.
또한, 배터리(110)는 복수개가 구비될 수 있다. 복수개의 배터리(110)는 병렬로 연결되어 서로 전기적으로 연결될 수 있다. 이에, 하나의 배터리(110)에 저장된 전류가 다른 배터리(110)로 흐를 수 있다. 따라서, 배터리(110)들 간에 전류가 흐르면서, 배터리(110)가 충방전될 수 있다. 이때, 병렬로 연결된 배터리(110)들의 최종단자가 발전 전력라인(51)과 연결된다.
제1 스위치(140)는 발전 전력라인(51)(또는, 배터리(110)와 발전소(50) 사이)에 설치된다. 이에, 제1 스위치(140)는 발전소(50)와 배터리(110) 사이의 전기적 연결을 차단하거나, 전기적으로 연결해줄 수 있다. 즉, 제1 스위치(140)는 발전 전력라인(51)과 배터리(110) 사이를 온/오프할 수 있다. 따라서, 제1 스위치(140)의 작동을 제어하여, 발전 전력라인(51)에서 배터리(110)로 전력을 공급하거나, 배터리(110)에서 발전 전력라인(51)으로 전력을 전달해주는 것이 중단될 수 있다.
보조 스위치(160)는 복수개의 배터리(110) 간의 전류의 흐름을 제어하는 역할을 한다. 보조 스위치(160)는 복수개가 구비되어, 복수개의 배터리(110) 사이에 설치될 수 있다. 보조 스위치(160)는 배터리(110)가 구비되는 개수만큼 구비될 수 있다. 이에, 보조 스위치(160)의 작동을 제어하여, 병렬로 연결된 배터리(110)들 간에 전류를 흘려 보낼 수 있다.
또한, 복수개의 보조 스위치(160)는 제1 스위치(140)에 연결되는 라인과 연결될 수 있다. 이에, 복수개의 보조 스위치(160)의 작동을 제어하여, 원하는 배터리(110)에만 발전 전력라인(51)의 전력을 공급해주거나, 원하는 배터리(110)에서만 발전 전력라인(51)으로 전력을 전달해줄 수 있다.
온풍기(130)는 배터리(110)가 위치하는 공간으로 온풍을 공급해주는 역할을 한다. 온풍기(130)는 배터리(110)와 전기적으로 연결된다. 이때, 병렬로 연결된 배터리(110)들의 최종단자가 온풍기(130)와 연결될 수 있다. 즉, 병렬로 연결된 배터리(110)들의 최종단자가 발전 전력라인(51) 및 온풍기(130)와 병렬로 연결될 수 있다. 따라서, 배터리(110)에서 공급되는 전력에 의해 온풍기(130)가 작동하여 열풍을 발생시킬 수 있고, 배터리(110)의 온도를 상승시켜줄 수 있다.
또한, 온풍기(130)는 발열체 및 팬을 포함할 수 있다. 발열체는 열을 발생시키는 역할을 하고, 팬은 발열체의 뒤쪽에 설치되어 전방의 배터리(110) 측으로 공기를 밀어보낼 수 있다. 이에, 발열체에서 열을 발생시키는 상태에서, 팬을 작동시키면 따뜻한 바람이 배터리(110)의 저장공간으로 강제적으로 보내질 수 있다.
제2 스위치(150)는 온풍기(130)와 배터리(110)들 사이에 설치된다. 이에, 제2 스위치(150)는 온풍기(130)와 배터리(110) 사이의 전기적 연결을 차단하거나, 전기적으로 연결해줄 수 있다. 즉, 제2 스위치(150)는 온풍기(130)와 배터리(110) 사이를 온/오프할 수 있다. 따라서, 제2 스위치(150)의 작동을 제어하여, 배터리(110)에서 온풍기(130)로 전력을 전달되거나 전달되지 않으면서, 온풍기(130)가 작동하거나 작동하지 않을 수 있다.
이때, 배터리(110)와 발전 전력라인(51)은 전력을 소비하는 장치(미도시)와 전기적으로 연결될 수 있다. 따라서, 배터리(110)에 저장된 전력이나 발전 전력라인(51)이 공급하는 전력이 전력을 소비하는 장치로 공급될 수 있고, 전력을 소비하는 장치가 공급되는 전력에 의해 작동할 수 있다.
제3 스위치는 전력을 소비하는 장치와 배터리(110) 사이에 설치된다. 또한, 제3 스위치는 전력을 소비하는 장치와 발전 전력라인(51) 사이에 설치된다. 이에, 제3 스위치는 전력을 소모하는 장치와 배터리(110) 사이, 및 전력을 소모하는 장치와 발전 전력라인(51) 사이를 전기적으로 연결해 주거나 차단할 수 있다. 따라서, 제3 스위치의 작동을 제어하여, 전력을 소모하는 장치로 전력을 공급해주거나 공급을 중단시킬 수 있다.
제어기(120)는 배터리(110)가 위치하는 공간의 온도에 따라 배터리(110)들 간에 충방전을 제어할 수 있다. 이에, 배터리(110)들 간의 충방전으로 발생하는 열을 이용하여, 배터리(110)의 온도를 상승시킬 수 있다.
또한, 제어기(120)는 배터리(110)에서 방전되는 전류 중 적어도 일부를 온풍기(130)로 공급해주도록, 배터리(110)의 방전을 제어할 수 있다. 이에, 제어기(120)는 배터리(110)를 방전시켜 열을 발생시키면서, 온풍기(130)를 작동시켜 배터리(110)가 위치하는 공간으로 온풍을 공급해줄 수 있다. 따라서, 배터리(110)가 발열될 뿐만 아니라, 배터리(110)가 저장되는 공간도 가열되어, 배터리(110)의 온도가 신속하게 상승할 수 있다.
제어기(120)는, 온도 감지부(121), 제1 비교부(122), 및 제어부(123)를 포함한다. 또한, 제어기(120)는 전압 측정부(124), 및 제2 비교부(125)를 더 포함할 수 있다.
온도 감지부(121)는 배터리(110)가 위치하는 공간의 온도를 측정할 수 있다. 예를 들어, 온도 감지부(121)는 온도 측정센서일 수 있고, 배터리(110)가 위치하는 공간에 설치될 수 있다. 이에, 온도 감지부(121)로 배터리(110)가 위치하는 공간의 온도를 모니터링할 수 있다.
제1 비교부(122)는 온도 감지부(121)와 연결된다. 제1 비교부(122)는 온도 감지부(121)에서 측정된 온도값과 미리 설정된 설정 온도값을 비교할 수 있다. 설정 온도값은 -20℃ 내지 0도 사이의 값 중 어느 하나가 선택될 수 있다. 이에, 측정되는 온도값이 설정 온도값보다 크면, 배터리(110)가 위치하는 공간의 온도가 상온이기 때문에 배터리(110)가 정상적으로 작동할 수 있다고 판단할 수 있다. 따라서, 배터리(110)의 온도를 상승시킬 필요가 없다고 판단할 수 있다.
반면, 측정되는 온도값이 설정 온도값 이하이면, 배터리(110)가 위치하는 공간의 온도가 저온이기 때문에 배터리(110)의 출력이 저하될 수 있다고 판단할 수 있다. 따라서, 배터리(110) 또는 배터리(110)가 위치한 공간의 온도를 상승시키는 작업을 수행해야 한다고 판단할 수 있다.
제어부(123)는 제1 비교부(122)와 연결된다. 이에, 제어부(123)는 제1 비교부(122)에서 비교한 결과에 따라 배터리(110)들 간의 충방전 및 온풍기(130)로 전류 공급해주는 것을 제어할 수 있다. 즉, 제어부(123)는 제1 스위치(140), 제2 스위치(150), 제3 스위치, 및 복수개의 보조 스위치(160)의 작동을 제어할 수 있다.
예를 들어, 배터리(110)가 위치한 공간의 온도가 저온이라도 판단되는 경우, 제어부(123)는 제1 스위치(140)와 제3 스위치를 끌 수 있다. 즉, 배터리(110)와 발전 전력라인(51)의 전기적 연결을 차단하고, 배터리(110)와 전력을 소모하는 장치의 전기적 연결을 차단할 수 있다. 제2 스위치(150)는 켜서 배터리(110)와 온풍기(130)를 전기적으로 연결해줄 수 있다.
그 다음, 제어부(123)는 복수개의 보조 스위치(160) 중 적어도 일부는 키고 다른 일부는 끌 수 있다. 그런 상태에서 제어부(123)가 제2 스위치(150)를 키면, 복수개의 배터리(110) 중 보조 스위치(160)가 켜진 배터리(110)에서 온풍기(130)로 전류를 방전시킬 수 있다. 이에, 방전되는 배터리(110)가 발열할 수 있고, 온풍기(130)가 작동되어 배터리(110)가 저장된 공간으로 온풍을 공급해줄 수 있다. 따라서, 배터리(110)가 저장된 공간의 온도가 신속하게 상승할 수 있다.
그 다음, 보조 스위치(160)가 켜진 배터리(110)가 완전히 방전되면, 제어부(123)는 제2 스위치(150)를 끌 수 있다. 즉, 배터리(110)와 온풍기(130)의 전기적 연결을 차단할 수 있다. 이에, 온풍기(130)의 작동이 중단될 수 있다.
그 다음, 제어부(123)는 보조 스위치(160)의 작동을 제어하여, 방전된 배터리(110)와 방전되지 않은 배터리(110)를 전기적으로 연결해줄 수 있다. 이에, 방전되지 않은 배터리(110)에서 방전된 배터리(110)로 전류가 공급될 수 있다. 방전되지 않은 배터리(110)는 방전되고, 방전된 배터리(110)는 충전되면서 배터리(110)들이 발열할 수 있다. 따라서, 배터리(110)가 상온 상태를 유지할 수 있다.
배터리(110)가 저장된 공간의 온도가 상온으로 상승하면, 배터리(110)들을 충방전시키는 작업을 중단할 수 있다. 이후, 제어부(123)는 제1 스위치(140)나 제3 스위치를 킬 수 있다. 즉, 배터리(110)와 발전 전력라인(51)의 전기적으로 연결해주거나, 배터리(110)와 전력을 소모하는 장치의 전기적으로 연결해줄 수 있다.
전압 측정부(124)는 배터리(110)의 전압을 측정할 수 있다. 예를 들어, 전압 측정부(124)는 배터리(110)의 전압을 검출할 수 있는 검출기일 수 있다. 전압 측정부(124)는 하나가 구비되어 복수개의 배터리(110) 전체 전압을 측정할 수 있다. 또는, 전압 측정부(124)가 복수개가 구비되어 각 배터리(110)의 전압을 측정하고, 측정된 값들의 평균을 산출하여 복수개의 배터리(110) 전체 전압을 측정할 수도 있다. 이에, 전압 측정부(124)로 배터리(110) 전체의 전압 상태를 모니터링할 수 있다.
제2 비교부(125)는 전압 측정부(124)와 연결된다. 제2 비교부(125)는 전압 측정부(124)에서 측정된 전압값과 미리 설정된 설정 전압값을 비교할 수 있다. 설정값은 완충된 배터리(110)의 전압 100%에 대하여, 40~60% 크기의 값 중 어느 하나가 선택될 수 있다. 이에, 측정되는 전압값이 설정 전압값보다 크면, 배터리(110)가 완전히 방전될 위험이 없다고 판단할 수 있다. 따라서, 배터리(110)의 온도를 상승시키는 작업을 중단할 필요가 없다고 판단할 수 있다.
반면, 측정되는 전압값이 설정 전압값 이하이면, 배터리(110)가 완전히 방전될 위험이 있다고 판단할 수 있다. 따라서, 배터리(110)의 온도를 상승시키는 작업을 중단시켜, 배터리(110)가 방전되는 것을 방지해야 한다고 판단할 수 있다.
이때, 제어부(123)는 제2 비교부(125)와도 연결된다. 이에, 제어부(123)는 제2 비교부(125)에서 비교한 결과에 따라 배터리(110)들 간의 충방전 및 온풍기(130)로 전류 공급해주는 것을 제어할 수 있다. 즉, 제어부(123)는 제1 스위치(140), 제2 스위치(150), 제3 스위치, 및 복수개의 보조 스위치(160)의 작동을 제어할 수 있다.
예를 들어, 배터리(110)들 전체가 방전될 위험이 있다고 판단되는 경우, 제어부(123)는 제2 스위치(150)와 제3 스위치를 끌 수 있다. 즉, 배터리(110)와 전력을 소모하는 장치의 전기적 연결을 차단하고, 배터리(110)와 온풍기(130)의 전기적 연결을 차단할 수 있다.
그 다음, 제어부(123)는 보조 스위치(160)들을 모두 킨 상태에서 제1 스위치(140)를 킬 수 있다. 즉, 배터리(110)들을 전기적으로 모두 연결할 상태에서, 배터리(110)들과 발전 전력라인(51)을 전기적으로 연결해줄 수 있다. 이에, 발전 전력라인(51)이 배터리(110)들에 전력을 공급해주어, 배터리(110)들이 충전될 수 있다.
한편, 배터리(110)가 위치한 공간의 온도가 저온이라도 판단되는 동시에, 배터리(110)들 전체가 방전될 위험이 있다고 판단되는 경우, 제어부(123)는 제1 스위치(140), 제2 스위치(150), 및 보조 스위치(160)를 모두 킨 상태에서 제3 스위치만 끌 수 있다. 이에, 발전 전력라인(51)에서 공급해주는 전력이 배터리(110)를 충전시켜주면서, 온풍기(130)를 작동시켜 배터리(110)가 위치한 공간으로 온풍을 공급해줄 수 있다.
이처럼 배터리(110)가 저온 환경에 노출되는 경우, 자동으로 배터리(110)의 온도를 용이하게 상승시킬 수 있다. 이에, 낮은 온도로 인해 배터리(110)의 출력이 저하되는 문제를 방지할 수 있다. 또한, 배터리(110)의 온도를 상승시키는데 사용되는 에너지를 효율적으로 사용할 수 있다. 이에, 에너지가 낭비되는 것을 방지할 수 있고, 적은 에너지로 배터리의 온도를 상승시킬 수 있다. 따라서, 에너지의 사용 효율이 향상될 수 있다.
도 2는 본 발명의 실시 예에 따른 배터리 온도 조절방법을 나타내는 플로우 차트이고, 도 3은 본 발명의 실시 예에 따른 배터리에서 온풍기로 전류를 공급하는 구조를 나타내는 도면이고, 도 4는 본 발명의 실시 예에 따른 일 배터리에서 다른 배터리로 전류를 공급하는 구조를 나타내는 도면이고, 도 5는 본 발명의 실시 예에 따른 다른 배터리에서 또 다른 배터리로 전류를 공급하는 구조를 나타내는 도면이고, 도 6은 본 발명의 실시 예에 따른 배터리를 충전하는 구조를 나타내는 도면이다. 하기에서는 본 발명의 실시 예에 따른 배터리 온도 조절방법에 대해 설명하기로 한다.
도 2를 참조하면, 본 발명의 실시 예에 따른 배터리 온도 조절방법은, 발전기와 연결되는 발전 전력라인에 연결되는 복수개의 배터리를 마련하는 과정(S110), 복수개의 배터리가 위치하는 공간의 온도를 측정하는 과정(S120), 및 측정된 온도에 따라 복수개의 배터리 간의 충방전을 제어하여 배터리의 온도를 상승시키는 과정(S130)을 포함한다.
이때, 배터리의 온도조절은, 휴지기간(Rest)에 수행될 수 있다. 즉, 배터리가 충방전을 하지 않아 배터리의 발열이 없기 때문에, 휴지기간에 배터리가 쉽게 저온 상태가 될 수 있다. 따라서, 휴지기간에 배터리가 위치하는 공간의 온도에 따라, 배터리의 온도를 상승시키는 작업을 수행할 수 있다.
또한, 본 발명의 실시 예는 배터리가 제1 배터리, 제2 배터리, 및 제3 배터리를 포함하고, 보조 스위치가 제1 보조 스위치, 제2 보조 스위치, 및 제3 보조 스위치를 포함하는 경우를 예시하여 설명한다. 그러나 배터리 및 보조 스위치가 구비되는 개수는 이에 한정되지 않고 다양할 수 있다.
온도 감지부로 배터리가 위치하는 공간의 온도를 실시간으로 모니터링할 수 있다. 온도 감지부에서 측정되는 온도값과 미리 설정된 설정 온도값을 비교할 수 있다. 설정 온도값은 -20℃ 내지 0도 사이의 값 중 어느 하나가 선택될 수 있다. 이에, 측정되는 온도값이 설정 온도값보다 크면, 배터리가 위치하는 공간의 온도가 상온이기 때문에 배터리가 정상적으로 작동할 수 있다고 판단할 수 있다. 따라서, 배터리의 온도를 상승시킬 필요가 없다고 판단할 수 있다.
반면, 측정되는 온도값이 설정 온도값 이하이면, 배터리가 위치하는 공간의 온도가 저온이기 때문에 배터리의 출력이 저하될 수 있다고 판단할 수 있다. 따라서, 배터리 또는 배터리가 위치한 공간의 온도를 상승시키는 작업을 수행해야 한다고 판단할 수 있다.
배터리가 위치한 공간의 온도가 저온이라도 판단되는 경우, 도 3과 같이 제1 스위치(140)와 제3 스위치를 끌 수 있다. 즉, 배터리(110)들과 발전 전력라인(51)의 전기적 연결을 차단하고, 배터리(110)들과 전력을 소모하는 장치의 전기적 연결을 차단할 수 있다. 제2 스위치(150)는 켜서 배터리(110)와, 배터리(110)가 위치하는 공간으로 온풍을 공급해주도록 설치되는 온풍기(130)를 전기적으로 연결해줄 수 있다.
이때, 제1 보조 스위치(161)는 끄고, 제2 보조 스위치(162)와 제3 보조 스위치(163)는 킬 수 있다. 따라서, 제2 배터리(112)와 제3 배터리(113)만 온풍기(130)와 전기적으로 연결되고, 제1 배터리(111)와 온풍기(130)는 전기적으로 연결되지 않는다. 이에, 제2 배터리(112)와 제3 배터리(113)에서 방전되는 전류가 온풍기(130)로 공급되어, 온풍기(130)를 작동시킬 수 있다.
제2 배터리(112)와 제3 배터리(113)는 방전되면서 발열할 수 있고, 온풍기(130)가 작동되어 배터리(110)가 저장된 공간으로 온풍을 공급해줄 수 있다. 따라서, 배터리(110)가 저장된 공간의 이중으로 가열되어 온도가 신속하게 상승할 수 있다. 이에, 제2 배터리(112)와 제3 배터리(113)의 전력을 효율적으로 사용하여 온도를 상승시킬 수 있다.
그 다음, 제2 배터리(112)와 제3 배터리(113)가 방전되면, 도 4와 같이 제2 스위치(150)를 끌 수 있다. 즉, 배터리(110)와 온풍기(130)의 전기적 연결을 차단할 수 있다. 이에, 온풍기(130)에 전류 공급이 중단되어 온풍기(130)의 작동이 중단될 수 있다.
그 다음, 배터리(110)들 간에 전류를 흘려 보내어 배터리(110)들을 충방전시킬 수 있도록, 배터리(110)들 간에 충방전 경로를 형성할 수 있다. 즉, 복수개의 배터리(110) 중 방전된 배터리(110)로, 방전되지 않은 다른 배터리(110)의 전류를 흘려 보낼 수 있다. 이에, 충전되는 배터리와, 방전되는 배터리(110)가 발열하여, 배터리(110)가 위치하는 공간의 온도가 상승할 수 있다.
예를 들어, 제1 보조 스위치(161)와 제2 보조 스위치(162)를 킨 상태에서 제3 보조 스위치(163)를 끌 수 있다. 이에, 제1 배터리(111)와 제2 배터리(112)는 전기적으로 연결되고, 제3 배터리(113)는 제1 배터리(111) 및 제2 배터리(112)와 전기적으로 연결되지 않을 수 있다.
방전되지 않은 제1 배터리(111) 내부의 전압이, 방전된 제2 배터리(112)의 내부 전압보다 높기 때문에, 제1 배터리(111)에서 제2 배터리(112)로 전류가 흘러간다. 이에, 제1 배터리(111)는 방전되고 제2 배터리(112)는 충전되면서, 제1 배터리(111)와 제2 배터리(112)가 발열할 수 있다. 제1 배터리(111)와 제2 배터리(112)의 전압이 같아지면, 전류의 공급이 중단될 수 있다.
그 다음, 도 5와 같이 제1 보조 스위치(161)를 끈 상태에서 제3 스위치를 킬 수 있다. 이에, 제2 배터리(112)와 제3 배터리(113)는 전기적으로 연결되고, 제1 배터리(111)는 제2 배터리(112) 및 제3 배터리(113)와 전기적으로 연결되지 않을 수 있다.
제1 배터리(111)에 의해 충전된 제2 배터리(112) 내 전압이, 방전된 제3 배터리(113) 내부의 전압보다 높기 때문에, 제2 배터리(112)에서 제3 배터리(113)로 전류가 흘러간다. 이에, 제2 배터리(112)는 방전되고 제3 배터리(113)는 충전되면서, 제2 배터리(112)와 제3 배터리(113)가 발열할 수 있다. 제2 배터리(112)와 제3 배터리(113)의 전압이 같아지면, 전류의 공급이 중단될 수 있다.
제2 배터리(112)의 전압이 제1 배터리(111)의 전압이 낮아졌기 때문에, 제2 배터리(112)와 제3 배터리(113)의 전기적 연결을 차단하고, 제1 배터리(111)와 제2 배터리(112)를 전기적으로 다시 연결해줄 수 있다. 이에, 제1 배터리(111)에서 제2 배터리(112)로 전류가 흐르면서 제1 배터리(111)는 방전되고 제2 배터리(112)는 충전된다. 따라서, 제1 배터리(111)와 제2 배터리(112)가 발열할 수 있다.
이후로 이러한 충방전을 반복하여, 배터리(110)들을 발열시킬 수 있다. 따라서, 온풍기(130)로 상승된 온도를, 배터리(110)들 간의 충방전으로 발생하는 열로 유지시켜줄 수 있다. 이에, 배터리(110)가 위치하는 공간이 상온을 유지할 수 있다. 배터리(110)가 저장된 공간의 온도가 일정 온도까지 상승하거나, 일정 온도로 유지되면, 배터리(110)들을 충방전시키는 작업을 중단시킬 수 있다.
한편, 배터리(110)의 온도를 상승시키는 작업을 수행할 때, 전압 측정부에서 배터리(110)들의 전압을 측정하여, 실시간으로 모니터링할 수 있다. 전압 측정부에서 측정된 전압값과 미리 설정된 설정 전압값을 비교할 수 있다. 설정값은 완충된 배터리(110)의 전압 100%에 대하여, 40~60% 크기의 값 중 어느 하나가 선택될 수 있다. 이에, 측정되는 전압값이 설정 전압값보다 크면, 배터리(110)가 완전히 방전될 위험이 없다고 판단할 수 있다. 따라서, 배터리(110)의 온도를 상승시키는 작업을 중단할 필요가 없다고 판단할 수 있다.
반면, 측정되는 전압값이 설정 전압값 이하이면, 배터리(110)가 완전히 방전될 위험이 있다고 판단할 수 있다. 따라서, 배터리(110)의 온도를 상승시키는 작업을 중단시켜, 배터리(110)가 방전되는 것을 방지해야 한다고 판단할 수 있다.
온풍기(130)를 작동시킬 때, 측정되는 전압값이 설정 전압값 이하이면, 제2 스위치(150)를 끌 수 있다. 즉, 배터리(110)와 온풍기(130)의 전기적 연결을 차단할 수 있다. 이에, 배터리(110)에서 온풍기(130)로 전류가 방전되지 않을 수 있고, 배터리(110)의 전압이 낮아지는 것을 방지할 수 있다.
그 다음, 보조 스위치(160)들을 모두 킨 상태에서, 제1 스위치(140)를 킬 수 있다. 즉, 배터리(110)들과 발전 전력라인(51)을 전기적으로 연결해줄 수 있다. 이에, 도 6과 같이 발전 전력라인(51)에서 배터리(110)로 전력을 공급해주어, 배터리(110)들이 모두 방전되기 전에 충전될 수 있다. 이때, 제3 스위치는 꺼진 상태에 있다.
또한, 배터리(110)가 위치한 공간의 온도가 저온이라도 판단되는 동시에, 배터리(110)들 전체가 방전될 위험이 있다고 판단되는 경우, 제1 스위치(140), 제2 스위치(150), 및 보조 스위치(160)를 모두 킨 상태에서 제3 스위치만 끌 수 있다. 이에, 발전 전력라인(51)에서 공급해주는 전력이 배터리(110)를 충전시켜주면서, 온풍기(130)를 작동시켜 배터리(110)가 위치한 공간으로 온풍을 공급해줄 수 있다. 따라서, 배터리(110)의 충전과, 배터리(110)가 위치한 공간의 온도를 상승시키는 작업이 동시에 수행될 수 있다.
이처럼 배터리(110)가 저온 환경에 노출되는 경우, 자동으로 배터리(110)의 온도를 용이하게 상승시킬 수 있다. 이에, 낮은 온도로 인해 배터리(110)의 출력이 저하되는 문제를 방지할 수 있다. 또한, 배터리(110)의 온도를 상승시키는데 사용되는 에너지를 효율적으로 사용할 수 있다. 이에, 에너지가 낭비되는 것을 방지할 수 있고, 적은 에너지로 배터리의 온도를 상승시킬 수 있다. 따라서, 에너지의 사용 효율이 향상될 수 있다.
이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 아래에 기재될 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (14)

  1. 외부 발전기와 연결되는 발전 전력라인에 연결되는 복수개의 배터리; 및
    상기 배터리가 위치하는 공간의 온도에 따라 배터리들 간에 충방전을 제어하여, 배터리의 온도를 상승시킬 수 있는 제어기;를 포함하여 구성되며,
    상기 복수개의 배터리는 병렬로 연결되고, 상기 병렬로 연결된 복수개의 배터리의 최종단자가 상기 발전 전력라인에 연결되는 배터리 장치.
  2. 청구항 1에 있어서,
    상기 배터리와 연결되고, 상기 배터리가 위치하는 공간으로 온풍을 공급해주도록 설치되는 온풍기를 더 포함하고,
    상기 제어기는, 상기 배터리에서 방전되는 전류 중 적어도 일부를 상기 온풍기로 공급해주도록 상기 배터리의 방전을 제어할 수 있는 배터리 장치.
  3. 청구항 2에 있어서,
    상기 발전 전력라인에 설치되는 제1 스위치; 및
    상기 온풍기와 상기 배터리 사이에 설치되는 제2 스위치;를 더 포함하는 배터리 장치.
  4. 청구항 3에 있어서,
    상기 복수개의 배터리 간의 전류의 흐름을 제어하도록, 상기 복수개의 배터리 사이에 설치되는 복수개의 보조 스위치를 더 포함하는 배터리 장치.
  5. 청구항 4에 있어서,
    상기 제어기는,
    상기 배터리가 위치하는 공간의 온도를 측정할 수 있는 온도 감지부;
    상기 온도 감지부에서 측정된 온도값과 미리 설정된 설정 온도값을 비교할 수 있는 제1 비교부; 및
    상기 제1 비교부에서 비교한 결과에 따라, 상기 제1 스위치, 상기 제2 스위치, 및 상기 복수개의 보조 스위치의 작동을 제어하는 제어부;를 포함하는 배터리 장치.
  6. 청구항 5에 있어서,
    상기 제어기는,
    상기 배터리의 전압을 측정할 수 있는 전압 측정부; 및
    상기 전압 측정부에서 측정된 전압값과 미리 설정된 설정 전압값을 비교할 수 있는 제2 비교기;를 더 포함하고,
    상기 제어부는, 상기 제2 비교부에서 비교한 결과에 따라, 상기 제1 스위치, 상기 제2 스위치, 및 상기 복수개의 보조 스위치의 작동을 제어하는 배터리 장치.
  7. 외부 발전기와 연결되는 발전 전력라인에 연결되는 복수개의 배터리를 마련하는 과정;
    상기 복수개의 배터리가 위치하는 공간의 온도를 측정하는 과정; 및
    측정된 온도에 따라, 상기 복수개의 배터리 간의 충방전을 제어하여 배터리의 온도를 상승시키는 과정;을 포함하는 배터리 온도 조절방법.
  8. 청구항 7에 있어서,
    상기 복수개의 배터리 간의 충방전을 제어하는 과정은,
    상기 복수개의 배터리와 상기 발전 전력라인의 연결을 차단하는 과정; 및
    상기 복수개의 배터리 간의 충방전 경로를 형성하여 배터리를 발열시키는 과정;을 포함하는 온도 조절방법.
  9. 청구항 8에 있어서,
    상기 복수개의 배터리 간에 충방전을 제어하는 과정은,
    상기 배터리와, 상기 배터리가 위치하는 공간으로 온풍을 공급해주도록 설치되는 온풍기를 연결해주는 과정; 및
    상기 배터리에서 방전되는 전류 중 적어도 일부를 상기 온풍기에 공급하는 과정;을 더 포함하는 배터리 온도 조절방법.
  10. 청구항 9에 있어서,
    상기 배터리에서 방전되는 전류 중 적어도 일부를 상기 온풍기에 공급하는 과정은,
    복수개의 배터리 중 적어도 일부를 방전시켜 상기 온풍기에 전류를 공급하는 과정; 및
    방전되는 배터리를 발열시키는 과정;을 포함하는 배터리 온도 조절방법.
  11. 청구항 10에 있어서,
    상기 복수개의 배터리 간에 충방전을 제어하는 과정은,
    상기 온풍기에 전류를 공급을 중단하는 과정;
    복수개의 배터리 중 방전된 배터리로, 다른 배터리의 전류를 공급하는 과정; 및
    복수개의 배터리 중 충전되는 배터리와, 방전되는 배터리를 발열시키는 과정;을 포함하는 배터리 온도 조절방법.
  12. 청구항 9에 있어서,
    상기 복수개의 배터리 간에 충방전을 제어하는 과정은,
    상기 배터리의 전압을 측정하는 과정;
    측정되는 전압값이 미리 설정된 전압값과 비교하는 과정; 및
    측정되는 전압값이 미리 설정된 전압값보다 작으면, 상기 배터리와 상기 온풍기의 연결을 차단하는 과정;을 더 포함하는 배터리 온도 조절방법.
  13. 청구항 12에 있어서,
    측정되는 전압값이 미리 설정된 전압값과 비교한 후에,
    측정되는 전압값이 미리 설정된 전압값보다 작으면, 상기 배터리와 상기 발전 전력라인을 연결하여, 상기 배터리를 충전하는 과정을 더 포함하는 배터리 온도 조절방법.
  14. 청구항 7 내지 청구항 13 중 어느 한 항이 있어서,
    상기 복수개의 배터리가 위치하는 공간의 온도를 측정하는 과정은, 측정된 온도값과 미리 설정된 설정 온도값을 비교하는 과정을 포함하고,
    상기 측정된 온도에 따라 배터리의 온도를 상승시키는 과정은, 측정된 온도값이 상기 설정 온도값 이하이면, 상기 배터리의 온도를 상승시키는 과정을 포함하는 배터리 온도 조절방법.
PCT/KR2018/014154 2017-11-24 2018-11-16 배터리 장치 및 배터리 온도 조절방법 WO2019103412A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020514487A JP7091449B2 (ja) 2017-11-24 2018-11-16 バッテリー装置及びバッテリーにおける温度の調節方法
EP18881490.9A EP3614485B1 (en) 2017-11-24 2018-11-16 Battery device and battery temperature adjusting method
US16/629,446 US11688893B2 (en) 2017-11-24 2018-11-16 Battery device and battery temperature adjusting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0158761 2017-11-24
KR1020170158761A KR102375845B1 (ko) 2017-11-24 2017-11-24 배터리 장치 및 배터리 온도 조절방법

Publications (1)

Publication Number Publication Date
WO2019103412A1 true WO2019103412A1 (ko) 2019-05-31

Family

ID=66631124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014154 WO2019103412A1 (ko) 2017-11-24 2018-11-16 배터리 장치 및 배터리 온도 조절방법

Country Status (5)

Country Link
US (1) US11688893B2 (ko)
EP (1) EP3614485B1 (ko)
JP (1) JP7091449B2 (ko)
KR (1) KR102375845B1 (ko)
WO (1) WO2019103412A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364785A (zh) * 2019-06-12 2019-10-22 爱驰汽车有限公司 用于电动车辆的控温装置及电动车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112455290A (zh) * 2020-10-28 2021-03-09 东风汽车集团有限公司 一种动力电池加热保护电路、方法和装置
US20220149454A1 (en) * 2020-11-12 2022-05-12 Polestar Performance Ab Resilient battery cooling systems and methods
WO2024092446A1 (zh) * 2022-10-31 2024-05-10 宁德时代新能源科技股份有限公司 电池加热的控制方法和控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044895A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 電源装置の温度調節装置
KR20140092978A (ko) * 2013-01-16 2014-07-25 삼성에스디아이 주식회사 배터리 온도 제어 시스템 및 그 제어 방법
KR20150030501A (ko) * 2013-09-12 2015-03-20 주식회사 엘지화학 배터리 예열 시스템 및 이를 이용한 배터리 예열방법
KR20160060967A (ko) * 2014-11-21 2016-05-31 주식회사 엘지화학 저온 및 고온에서의 충전 성능이 향상된 전지팩
KR20160112073A (ko) * 2015-03-17 2016-09-28 세방전지(주) 저온 배터리를 가열할 수 있는 전기자동차용 에너지저장장치 및 제어방법
KR20160125829A (ko) 2015-04-22 2016-11-01 주식회사 엘지화학 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562718A (ja) 1991-09-04 1993-03-12 Nec Eng Ltd 蓄電池の充電方式
JPH077866A (ja) 1993-06-16 1995-01-10 Sanyo Electric Co Ltd 二次電池の充電回路
JP2001251780A (ja) 2000-03-07 2001-09-14 Sharp Corp 二次電池の充電装置
US6574082B2 (en) * 2001-10-09 2003-06-03 Ericsson Inc. Methods and systems for operating temperature controls for electronic equipment
JP4707346B2 (ja) * 2004-08-16 2011-06-22 三洋電機株式会社 車両用の電源装置
JP5162100B2 (ja) * 2006-03-07 2013-03-13 プライムアースEvエナジー株式会社 二次電池の温度制御装置及び車両用電池パック並びに二次電池の温度制御プログラム
JP5314235B2 (ja) * 2006-03-07 2013-10-16 プライムアースEvエナジー株式会社 二次電池の温度制御装置、二次電池の加温システム、およびプログラム
WO2008095313A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery thermal management system
JP4353305B2 (ja) * 2008-03-21 2009-10-28 トヨタ自動車株式会社 電源制御回路
JP4661895B2 (ja) * 2008-04-02 2011-03-30 株式会社デンソー 電池冷却装置
JP5272610B2 (ja) * 2008-09-24 2013-08-28 株式会社デンソー 車載用電池装置
CN102246338B (zh) * 2008-10-10 2014-06-11 迪亚能源股份有限公司 液流电池元电池的热控制
KR101036061B1 (ko) * 2009-04-21 2011-05-19 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
JP5257220B2 (ja) * 2009-04-23 2013-08-07 株式会社デンソー 電池システム
KR101036037B1 (ko) * 2009-08-26 2011-05-19 에스비리모티브 주식회사 이차 전지
JP5845639B2 (ja) 2011-06-03 2016-01-20 トヨタ自動車株式会社 電動車両の充電システムおよび充電制御方法
JP5644691B2 (ja) 2011-06-21 2014-12-24 株式会社豊田自動織機 セルバランス制御装置およびセルバランス制御方法
US20130020302A1 (en) * 2011-07-21 2013-01-24 Tzu-Chin Chiu Heating module for maintaining battery working temperature
JP2013046559A (ja) 2011-08-26 2013-03-04 Toshiba Corp 蓄電制御装置、蓄電システム及び制御プログラム
TWM421607U (en) * 2011-08-30 2012-01-21 Asia Vital Components Co Ltd Heating and cooling module for battery
WO2013082439A1 (en) * 2011-11-30 2013-06-06 Maxon Industries, Inc. Controlled battery box
JP6245789B2 (ja) * 2012-02-20 2017-12-13 日産自動車株式会社 電気自動車のバッテリパック温調構造
JP6201434B2 (ja) * 2012-07-18 2017-09-27 株式会社デンソー 冷凍サイクル装置
JP6036236B2 (ja) 2012-12-03 2016-11-30 住友電気工業株式会社 蓄電システム及び蓄電池の劣化診断方法
KR101485347B1 (ko) 2012-12-05 2015-01-27 한국전기연구원 배터리 관리 시스템,및 배터리 관리 시스템을 이용하는 배터리 모듈의 셀 밸런싱 방법
KR101579569B1 (ko) 2012-12-10 2015-12-22 주식회사 엘지화학 배터리 모듈 가열 시스템 및 방법
KR101301559B1 (ko) * 2013-01-16 2013-09-04 주식회사 이브텍 배터리 케이스
JP2014151802A (ja) * 2013-02-11 2014-08-25 Denso Corp 温調装置
WO2014128753A1 (ja) 2013-02-19 2014-08-28 三洋電機株式会社 蓄電システム
CN105190987B (zh) 2013-05-08 2018-06-22 株式会社Lg化学 电池预热***和使用其的电池预热方法
CN105637699B (zh) * 2013-10-03 2017-07-11 日产自动车株式会社 蓄电池调温装置
KR20150108603A (ko) * 2014-03-18 2015-09-30 현대모비스 주식회사 친환경 자동차의 배터리 모듈 승온장치 및 그 방법
US20160023532A1 (en) * 2014-07-25 2016-01-28 Atieva, Inc. EV Integrated Temperature Control System
EP3208882B1 (en) * 2014-10-17 2021-01-06 Mitsubishi Electric Corporation Charge-discharge control device
JP6098610B2 (ja) * 2014-10-17 2017-03-22 トヨタ自動車株式会社 蓄電装置
US10587021B2 (en) * 2014-12-01 2020-03-10 Ec Power, Llc All solid state lithium battery
KR102456811B1 (ko) * 2015-10-27 2022-10-20 엘지전자 주식회사 에너지 저장 장치의 히터 구동 방법
US10886583B2 (en) * 2016-03-02 2021-01-05 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
US10608291B2 (en) * 2016-05-20 2020-03-31 Spiers New Technologies, Inc. Battery pack having a supplemental power supply
KR20200024227A (ko) * 2017-06-15 2020-03-06 에이일이삼 시스템즈, 엘엘씨 듀얼 배터리 시스템을 동작시키기 위한 시스템 및 방법
US11495839B2 (en) * 2017-10-18 2022-11-08 Textron Innovations, Inc. Internal battery heating
US10622607B2 (en) * 2017-11-07 2020-04-14 Ford Global Technologies, Llc Electrified vehicle battery packs designed with sacrificial components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044895A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 電源装置の温度調節装置
KR20140092978A (ko) * 2013-01-16 2014-07-25 삼성에스디아이 주식회사 배터리 온도 제어 시스템 및 그 제어 방법
KR20150030501A (ko) * 2013-09-12 2015-03-20 주식회사 엘지화학 배터리 예열 시스템 및 이를 이용한 배터리 예열방법
KR20160060967A (ko) * 2014-11-21 2016-05-31 주식회사 엘지화학 저온 및 고온에서의 충전 성능이 향상된 전지팩
KR20160112073A (ko) * 2015-03-17 2016-09-28 세방전지(주) 저온 배터리를 가열할 수 있는 전기자동차용 에너지저장장치 및 제어방법
KR20160125829A (ko) 2015-04-22 2016-11-01 주식회사 엘지화학 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364785A (zh) * 2019-06-12 2019-10-22 爱驰汽车有限公司 用于电动车辆的控温装置及电动车辆

Also Published As

Publication number Publication date
JP7091449B2 (ja) 2022-06-27
US20200212512A1 (en) 2020-07-02
US11688893B2 (en) 2023-06-27
EP3614485A1 (en) 2020-02-26
KR20190060497A (ko) 2019-06-03
EP3614485A4 (en) 2020-08-19
KR102375845B1 (ko) 2022-03-17
EP3614485B1 (en) 2023-09-20
JP2020521428A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2019103412A1 (ko) 배터리 장치 및 배터리 온도 조절방법
WO2019216532A1 (ko) 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2019212128A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 상기 배터리 관리 장치를 포함하는 에너지 저장 시스템
WO2011152639A2 (ko) 배터리 팩 그리고 배터리 팩의 충전 방법
WO2012033254A1 (en) Energy storage system and controlling method of the same
WO2018143562A1 (ko) 배터리 팩 및 배터리 팩의 충전 제어 방법
WO2014054874A2 (ko) 멀티 bms 기동 장치
WO2012144674A1 (ko) 착탈 가능한 배터리 모듈, 이를 이용한 배터리 스트링을 위한 전하 균일 방법 및 장치
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2020105903A1 (ko) 무선 제어 시스템, 무선 제어 방법 및 배터리 팩
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2017188633A1 (ko) 배터리 팩 및 배터리 팩의 충전 방법
WO2013051863A2 (ko) 배터리 충전 장치 및 방법
WO2022015025A1 (ko) 배터리 밸브 및 이를 포함하는 배터리
CN113517750A (zh) 多模块便携式发电站
WO2022092612A1 (ko) 충전 관리 장치, 충전 관리 방법, 및 전기 차량
CN111816956A (zh) 电池加热控制方法、装置及设备
WO2013057821A1 (ja) 蓄電装置管理システム
WO2021060761A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차
WO2017090978A1 (ko) 배터리 팩 상태 병렬 모니터링 장치
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2023177137A1 (ko) 배터리 팩, 그 관리 장치 및 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514487

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018881490

Country of ref document: EP

Effective date: 20191121

NENP Non-entry into the national phase

Ref country code: DE