WO2017038299A1 - Sputtering silicon target material - Google Patents

Sputtering silicon target material Download PDF

Info

Publication number
WO2017038299A1
WO2017038299A1 PCT/JP2016/071684 JP2016071684W WO2017038299A1 WO 2017038299 A1 WO2017038299 A1 WO 2017038299A1 JP 2016071684 W JP2016071684 W JP 2016071684W WO 2017038299 A1 WO2017038299 A1 WO 2017038299A1
Authority
WO
WIPO (PCT)
Prior art keywords
target material
layer
sputtering
sio
powder
Prior art date
Application number
PCT/JP2016/071684
Other languages
French (fr)
Japanese (ja)
Inventor
続橋 浩司
希 小西
昌弘 金井
一郎 塩野
正則 除補
Original Assignee
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2017038299A1 publication Critical patent/WO2017038299A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a silicon target material in which silicon as a target component is knocked out by a magnetron sputtering apparatus that forms a thin film of a silicon compound containing oxygen on a substrate surface.
  • the SiO 2 film is generally used industrially as an optical low refractive index material or a barrier film.
  • a sputtering method is known as an example of the manufacturing method (for example, refer to Patent Document 1).
  • a radio frequency (RF) sputtering method a direct current (DC) sputtering method, a sputtering method using a pulse power source, or a sputtering method using an AC power source is used.
  • RF radio frequency
  • DC direct current
  • sputtering method using an AC power source is used.
  • the larger the sputtering power input to the target the faster the film formation rate, which contributes to higher efficiency and improved productivity.
  • the silicon target is formed by the SiO x film deposited on the surface of the non-erosion portion as the sputtering continues.
  • oxygen reactive magnetron sputtering oxygen reactive magnetron sputtering
  • the object of the present invention is to prevent the target material from cracking even when SiO x is deposited on the surface of the non-erosion part and a SiO x film is formed on the non-erosion surface during sputtering, thereby increasing the utilization rate of the target material. It is an object of the present invention to provide a sputtering silicon target material that can be improved and can reduce the maintenance frequency of the film forming apparatus accompanying the replacement of the target material.
  • the surface of the silicon target material is partitioned into a first region that is sputtered and becomes an erosion part and a second region that is a non-sputtered non-erosion part during oxygen reactive magnetron sputtering.
  • a SiO x film is deposited along with sputtering.
  • the SiO x film which has a film itself has high internal stresses, since the thermal expansion coefficient between silicon and SiO x film as a target material are different, thermal stress is generated between the SiO x film and a silicon target material I think that.
  • the present inventors have previously proposed a function of suppressing the transmission of the stress of the SiO x film deposited on the non-erosion portion to the silicon target material without affecting the film quality of the film to be formed before the sputtering.
  • Application to the surface of the target material was studied. As a result, even if oxygen reactive magnetron sputtering is performed until the lifetime of the silicon target material is reached, that is, the erosion depth is close to the thickness of the target material, the silicon target material is not broken.
  • the present invention has been made.
  • a first aspect of the present invention is a silicon target material for sputtering used when performing magnetron sputtering with at least oxygen gas contained in a sputtering atmosphere, and the surface of the silicon target material is sputtered during magnetron sputtering to cause erosion.
  • a first region to be a part and a second region to be a non-erosion part that is not sputtered, and the second region has a layer that prevents cracking of the target material during sputtering.
  • the second aspect of the present invention is the invention based on the first aspect, wherein the surface roughness of the layer that prevents cracking of the target material is within the range of 0.5 to 10 ⁇ m in terms of arithmetic average roughness Ra. It is characterized by being.
  • a third aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing the target material from cracking is a Si sprayed layer.
  • a fourth aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing cracking of the target material is a SiO 2 sprayed layer.
  • a fifth aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing cracking of the target material is a Si powder binding layer in which Si powder is bound by low-melting glass. It is characterized by being.
  • a sixth aspect of the present invention is the invention based on the first or second aspect, wherein the layer for preventing cracking of the target material is SiO 2 , Al 2 O 3 , Ga 2 O 3 , TiO 2 , It is a ceramic powder binding layer in which one or two or more ceramic powders selected from the group consisting of ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5 are bound with a low melting point glass. To do.
  • a seventh aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing the target material from cracking further comprises Si powder, SiO 2 , Al 2 O 3 , Ga 2 O 3. , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5, and Ta 2 O 5 selected from the group consisting of one or two or more ceramic powders mixed with a low melting point glass It is a layered layer.
  • the eighth aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing the target material from cracking is an Al sprayed layer.
  • a ninth aspect of the present invention is the invention based on the first or second aspect, and is characterized in that the layer for preventing the target material from cracking is a porous silicon layer.
  • the second region that becomes the non-erosion portion has a layer (a crack prevention layer) that prevents cracking of the target material being sputtered. Even if SiO x is deposited on the crack prevention layer above and a SiO x film is formed on the surface of the crack prevention layer on the non-erosion part, the stress of the SiO x film deposited on the non-erosion part by the crack prevention layer is reduced. It is considered that the function of suppressing transmission to the silicon target material is exhibited.
  • the silicon target material does not break even if sputtering is performed until the silicon target material reaches its lifetime, that is, the erosion depth is close to the thickness of the target material, so that the utilization rate of the target material can be improved,
  • the maintenance frequency of the film forming apparatus accompanying the replacement of the target material can be reduced.
  • the crack prevention layer has a function to suppress the transmission of the stress of the SiO x film deposited on the non-erosion portion to the silicon target material. Since the surface roughness is relatively large, the stress of the SiO x film deposited on the non-erosion portion is not only in the two-dimensional direction along the surface of the crack prevention layer but also in the three-dimensional direction including the height direction.
  • the surface roughness of the layer that prevents cracking of the target material is in the range of 0.5 to 10 ⁇ m in terms of arithmetic average roughness Ra.
  • the crack prevention layer can suppress the stress generated by the deposition of SiO x and the like from being transmitted to the silicon target material without the occurrence of chipping.
  • the crack preventing layers are respectively a Si sprayed layer, a SiO 2 sprayed layer, a Si powder binding layer formed by binding Si powder at a low melting point, SiO 2 ceramic powder binder layer where the ceramic powder and binder with a low melting point glass such as 2, Si powder and mixed powder binder layer obtained by binding the powder mixture with low-melting glass with the ceramic powder such as SiO 2, Al sprayed layer, since a porous silicon layer, at the time of sputtering, be formed SiO x film SiO x is deposited on the cracking prevention layer, the SiO x film to a relatively large irregularities on the surface of the crack preventing layer is formed the stress is dispersed to the three-dimensional from a two-dimensional plane, and between the various particles of cracking prevention layer (between Si particles of Si sprayed layer, between SiO 2 particles of SiO 2 sprayed layer, the Si powder binder layer Between Si particles, Wel
  • the stress of the SiO x film distorts the bond between particles, and the porous silicon layer has a nano-order Si pillar structure, so the stress of the SiO x film distorts the nano-structured Si pillar structure. From this, it is considered that the function of suppressing the stress of the SiO x film from being transmitted to the silicon target material is exhibited. As a result, the same effect as described above can be obtained.
  • a silicon-based thin film such as a SiO 2 thin film is formed by sputtering, a small amount of a Si sprayed layer, a SiO 2 sprayed layer, Si and its low-melting glass, SiO 2 or the like and its binder are used.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG. 3 showing the silicon target material for sputtering according to the first embodiment of the present invention.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3. It is a top view of the target material. It is a schematic diagram which shows the state which is performing sputtering using the target material.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG. 6 showing a silicon target material for sputtering according to a second embodiment of the present invention. It is a top view of the target material. It is a figure which shows the manufacture procedure of the silicon target material for sputtering of 3rd Embodiment of this invention.
  • the silicon target material 10 of the present embodiment is used when magnetron sputtering is performed with at least oxygen gas contained in the sputtering atmosphere.
  • the silicon target material 10 has a first region 11 whose surface is sputtered during magnetron sputtering and becomes an erosion portion, and a second region 12 that becomes a non-erosion portion that is not sputtered during magnetron sputtering.
  • the target material 10 is formed in a horizontally long rectangular plate shape by cutting silicon. Examples of silicon include, but are not limited to, polycrystalline silicon and single crystal silicon.
  • the first region 11 that becomes an erosion portion is formed in a planar shape
  • the second region 12 that becomes a non-erosion portion is formed in a recess from the planar first region 11.
  • the first region 11 serving as an erosion part is formed in a horizontally long donut-shaped plane.
  • the second region 12 serving as a non-erosion portion is formed in a substantially horizontally long rectangular shape so as to be located inside the first region 11 on the surface of the target material 10 and is a concave groove portion 12 a that is recessed from the plane of the first region 11.
  • an inclined surface portion 12b which is formed in a substantially rectangular frame shape so as to be located on the outer peripheral edge of the first region 11 on the surface of the target material 10 and gradually descends away from the plane of the first region 11. Note that the surface of the target material 10 is inevitably partitioned into a first region 11 that becomes an erosion portion and a second region 12 that becomes a non-erosion portion for reasons of the structure of the sputtering apparatus.
  • a layer 13 (hereinafter referred to as a crack prevention layer 13) for preventing the target material from being cracked during sputtering is formed on the surface of the second region 12 to be a non-erosion portion.
  • the crack preventing layer 13 includes a groove preventing crack layer 13a formed on the surface of the recessed groove portion 12a in the second region 12, and an inclined surface formed on the surface of the inclined surface portion 12b in the second region 12.
  • the crack prevention layer 13b is used.
  • the crack prevention layer 13 is formed by depositing SiO x such as SiO, SiO 2 and the like that is deposited on the surface of the non-erosion part, so that stress is generated on the surface of the non-erosion part.
  • cracking prevention layer 13, Si is preferably a main component a ceramic, or Al, such as SiO 2, Al 2 O 3.
  • the thickness of the crack preventing layer 13 is preferably in the range of 10 to 1000 ⁇ m.
  • the preferable range of the thickness of the crack preventing layer 13 is limited to 10 to 1000 ⁇ m.
  • the surface roughness of the crack preventing layer 13 is preferably in the range of 0.5 to 10 ⁇ m, more preferably in the range of 1 to 5 ⁇ m in terms of arithmetic average roughness Ra.
  • the surface roughness of the crack preventing layer 13 is limited to the arithmetic average roughness Ra in the range of 0.5 to 10 ⁇ m. If the surface roughness is less than 0.5 ⁇ m, the stress generated by the deposition of SiO x or the like is reduced. This is because it is not possible to sufficiently suppress the transmission to the silicon target material by 13 and if the thickness exceeds 10 ⁇ m, it is assumed that the crack prevention layer 13 is chipped.
  • Examples of the crack prevention layer 13 include a Si sprayed layer, a SiO 2 sprayed layer, a Si powder binder layer obtained by binding Si powder with a low melting glass, and a ceramic powder binder obtained by binding ceramic powder such as SiO 2 with a low melting glass.
  • Examples include an adhesion layer, an Al sprayed layer, and a porous silicon layer.
  • Si powder is prepared as a raw material for Si spraying.
  • the Si powder was classified to 30 to 200 ⁇ m after pulverizing the Si lump.
  • the reason why the pulverized Si powder is classified to 30 ⁇ m or more is to improve the fluidity of the supply of the Si powder to the Si spraying apparatus and to enable stable spraying.
  • the reason why the pulverized Si powder is classified to 200 ⁇ m or less is that when it exceeds 200 ⁇ m, the specific heat of the particles becomes large during spraying of the Si powder, so that the binding force between the Si particles becomes poor.
  • a portion other than the second region 12 to be a non-erosion portion is masked with an Al plate or the like, and the Si is sprayed on the surface of the target material 10 in this state, and then the masking is removed.
  • the crack prevention layer 13 is formed in the 2nd area
  • This cooling can be performed by directly blowing a gas such as cold air to the crack prevention layer 13 or by bringing a pipe line through which water or the like flows into contact with the back surface of the target material 10. Further, in order to improve the adhesion strength of the crack prevention layer 13 to the surface of the target material 10, before forming the crack prevention layer 13 on the entire surface of the target material 10, the minimum necessary blast is applied to the entire surface of the target material 10. May be applied. Furthermore, as a thermal spraying apparatus used for the above-mentioned Si thermal spraying, it is preferable to use a plasma spraying apparatus in which the temperature of the plasma gas exceeds 10,000 ° C.
  • Si powder binder layer in which Si powder is bound with low melting point glass as crack preventing layer 13
  • Si paste in which Si powder is dispersed in low melting point glass frit drying and firing
  • a Si powder binder layer is formed by binding Si powder with the low melting glass using a low melting glass as a binder, and this Si powder binder layer becomes the crack preventing layer 13.
  • a Si paste is prepared by dispersing Si powder having an average particle diameter of 1 to 500 ⁇ m in a low melting glass having a softening point of around 550 ° C., and this Si paste is screen printed, dip coated or spin coated.
  • the target material is placed on a hot plate, and the hot plate is heated from 30 ° C. to 150 ° C. at a temperature rising rate of 2 ° C./min, and held at 150 ° C. for 20 minutes, thereby printing or printing on the surface of the target material.
  • the applied Si paste film is dried.
  • the temperature of the hot plate is increased from 150 ° C. to 550 ° C.
  • the average particle size of the Si powder is a particle size measured using a particle size distribution measuring device (LA-950 manufactured by Horiba, Ltd.) and is a volume-based average particle size.
  • the low melting point glass softening point 600 ° C.
  • borosilicate glass phosphosilicate glass, or borophosphosilicate glass, but bismuth oxide, zinc oxide, vanadium oxide, tin oxide, tellurium oxide, alkali Glass using metal oxide, fluorine or the like can also be used.
  • a ceramic powder binder layer by bonding ceramic powder such as SiO 2 with low melting glass as the crack preventing layer 13 SiO 2 , Al 2 O 3 , Ga 2 O 3 using low melting glass as a binder
  • a paste such as SiO 2 powder in which one or more ceramic powders selected from the group consisting of TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5 are dispersed is applied and dried.
  • a ceramic powder binding layer formed by binding ceramic powder such as SiO 2 with low melting point glass is formed, and this ceramic powder binding layer becomes the crack preventing layer 13.
  • a specific method for forming the ceramic powder binder layer is SiO 2 , Al 2 O 3 , Ga 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O instead of the Si powder of (3) above. Except for using one or more ceramic powders selected from the group consisting of 5 and Ta 2 O 5 , “Si powder was bound with low melting point glass as crack prevention layer 13 in (3) above” Since it is substantially the same as the “method for forming the Si powder binder layer”, repeated description is omitted.
  • a method of forming a mixed powder binder layer in which a mixed powder of Si powder and ceramic powder such as SiO 2 is bound as a crack preventing layer 13 with a low-melting glass Using the low-melting glass as a binder, By applying a mixed powder paste in which a mixed powder of Si powder and the ceramic powder of (4) above is dispersed, drying and firing, a mixed powder binding layer in which the mixed powder is bound by low melting glass is formed, This mixed powder binder layer becomes the crack preventing layer 13.
  • the specific method for forming the mixed powder binder layer is that the “cracking prevention layer 13” of (3) is used except that a mixed powder of Si powder and ceramic powder is used instead of the Si powder of (3).
  • the method is substantially the same as the method of forming a Si powder binder layer in which Si powder is bound with a low-melting glass, so that repeated explanation is omitted.
  • a porous silicon layer is formed by anodizing a silicon layer formed by thermal spraying of Si on a target material, and the porous silicon layer is cracked. It becomes the prevention layer 13. Specifically, first, a film having chemical resistance is attached to a portion other than the second region which is a non-erosion portion on the surface of the target material, or is masked with a UV curable resin or the like.
  • the target material and a counter electrode such as platinum are immersed in a hydrofluoric acid solution with a space between them, and the second region which is a non-erosion part on the surface of the target material is used as an anode, and the counter electrode is used as a cathode.
  • the film or masking is removed from the target material. Thereby, the 2nd field used as a non-erosion part becomes porous (porous), and a porous silicon layer is formed.
  • the back surface of the target material 10 in which the crack prevention layer 13 is formed in the second region 12 to be a non-erosion portion is made of copper via a bonding material (not shown) formed of indium, an indium alloy, or the like.
  • Laminate on backing plate 14 In this state, the laminated body is heated to about 200 ° C., so that the target material 10 is bonded to the backing plate 14 via the bonding material.
  • the surface of the target material 10 bonded to the backing plate 14 is opposed to the surface of the base material 16 with a predetermined interval.
  • the SiO x produced by the reaction is deposited on the surface of the non-erosion part, and the SiO x film 17 (enlarged part in FIG. 1) is formed.
  • the crack prevention layer 13 is formed in the second region 12 which becomes the non-erosion part, SiO x is deposited on the crack prevention layer 13 on the non-erosion part during oxygen reactive magnetron sputtering, An SiO x film is formed on the surface of the crack preventing layer 13 on the erosion portion.
  • the crack preventing layer 13 exhibits a function of suppressing transmission of stress of the SiO x film deposited on the non-erosion portion to the silicon target material.
  • the silicon target material 11 is not broken.
  • the maintenance frequency of the sputtering apparatus (film forming apparatus) accompanying the replacement of the target material 11 can be reduced.
  • the horizontally long rectangular plate-shaped target material 10 of this embodiment is suitable for manufacturing a liquid crystal screen of a display, a solar cell, or the like.
  • the crack preventing layer is a Si sprayed layer, a SiO 2 sprayed layer, a Si powder bonded layer formed by bonding Si powder with a low melting point, SiO 2 or the like in each of the above (1) to (7).
  • Sputtering is made of ceramic powder binding layer with ceramic powder bound with low melting glass, mixed powder binding layer with mixed powder of Si powder and ceramic powder bound with low melting glass, Al sprayed layer, porous silicon layer.
  • SiO x is deposited on the crack prevention layer and the SiO x film is formed, the stress of the SiO x film is 3 from the two-dimensional plane because relatively large irregularities are formed on the surface of the crack prevention layer.
  • Si sprayed layer between SiO 2 particles of SiO 2 sprayed layer, between Si particles of Si powder binder layer, a ceramic powder binder Layer of ceramic particles , Among among Si particles of the mixed powder the binder layer and the ceramic particles and between Si particles and ceramic particles, among Al particles in the thermally sprayed Al layer) of SiO x film to is welded by a weak bonding force compared between Si atoms the stress distorts the bonds between the particles, and the like of the stress of the SiO x film to the porous silicon layer is made of Si pillar structure of nanometer order is to distort the Si pillar structure of the nanostructures, the stress of the SiO x film It is considered that the function of suppressing transmission to the silicon target material is exhibited.
  • a silicon-based thin film such as a SiO 2 thin film is formed by sputtering, a small amount of a Si sprayed layer, a SiO 2 sprayed layer, Si and its low-melting glass, SiO 2 or the like and its binder are used. Even if some low melting point glass, Si and SiO 2 and their binder low melting point glass, Al sprayed layer, porous silicon layer are sputtered and mixed into a silicon thin film such as SiO 2 thin film, The impact on quality is small. In particular, since the Si sprayed layer, the SiO 2 sprayed layer, and the porous silicon layer are the same material as the silicon target material, the influence on the quality of the silicon-based thin film is extremely small.
  • the target material 30 is formed in a disk shape. Further, the first region 31 serving as an erosion part is formed in a round donut-shaped plane. In addition, the second region 32 to be a non-erosion part is formed in a circular shape so as to be located inside the first region 31 on the surface of the target material 30 and is a round hole portion 32 a that is recessed from the plane of the first region 31. In addition, the surface of the target material 30 is formed in a circular frame shape so as to be positioned on the outer peripheral edge of the first region 31 and is formed with an inclined surface portion 32b that gradually falls away from the plane of the first region 31.
  • a crack preventing layer 33 is formed on the surface of the second region 32 that becomes a non-erosion portion.
  • the crack preventing layer 33 includes a round hole crack preventing layer 33a formed on the surface of the round hole portion 32a in the second region 32, and an inclined surface formed on the surface of the inclined surface portion 32b in the second region 32.
  • the crack prevention layer 33b is used.
  • Reference numeral 17 in enlarged view of FIG. 5 is a film SiO x where SiO x is formed by depositing the non-erosion part surface.
  • the target material may not be a disc shape, but may be an elliptical plate shape, a quadrangular plate shape with chamfers having predetermined curvature radii at four corners, or another shape plate shape. The configuration other than the above is the same as that of the first embodiment.
  • the sputtering silicon target material 30 thus configured is formed in a disc shape, it is suitable for manufacturing a semiconductor or the like.
  • the formation method of the crack prevention layer 33 to the target material 30, the sputtering method using this target material 30, etc. are substantially the same as 1st Embodiment, repeated description is abbreviate
  • the target material 50 is formed by arranging a plurality of horizontally long rectangular plate-like target pieces 51 to 54 in a line with a gap in the longitudinal direction.
  • one target material 50 is configured by arranging four target element pieces 51 to 54 with a gap in a line, that is, it is regarded as one target material 50.
  • the first region 61 serving as an erosion part is formed on the surface of the target material 50 regarded as one piece in a single horizontally long donut-shaped plane.
  • the second region 62 to be a non-erosion portion is formed in a substantially horizontally long rectangular shape so as to be positioned inside the first region 61 in the surface of the target material 50 regarded as one sheet, and the first region
  • the first groove 61 is formed in a substantially rectangular frame shape so as to be positioned at the outer peripheral edge of the first region 61 of the surface of the target material 50 regarded as one sheet, and the groove portions 51a to 54a recessed from the plane 61. It consists of inclined surface portions 51b to 54b that gradually fall away from the plane of the region 61.
  • a crack prevention layer (not shown) is formed on the surface of the second region 62 that becomes the non-erosion portion.
  • the crack prevention layer includes a groove prevention layer (not shown) for the concave groove formed on the surface of the concave groove portions 51 a to 54 a in the second region 62, and the inclined surface portions 51 b to 54 b in the second region 62. It consists of the crack prevention layer (not shown) for inclined surfaces formed in the surface. The reason why the gap is formed when the four target element pieces 51 to 54 are arranged in a row is that the thermal expansion of each target element piece 51 to 54 is taken into consideration.
  • the target material configured as described above, first, square plate-shaped silicon is cut out from a rectangular columnar polycrystalline silicon or a columnar single crystal silicon. Next, a plurality of strip-shaped target pieces are cut out from the square plate-like silicon. In this embodiment, four strip-shaped target element pieces 51 to 54 are cut out from the square plate-like silicon 55 (FIG. 7A). Next, after forming the groove portions 51a to 54a and the inclined surface portions 51b to 54b in the second region 62 which is the non-erosion portion of the surface of the target element pieces 51 to 54 (FIG. 7B), these A crack prevention layer is formed on the portion.
  • the four target pieces 51 to 54 on which the crack preventing layer is formed are arranged in a line with a gap 57 on the backing plate 56 and bonded with a bonding material (FIGS. 7C and 8).
  • the configuration other than the above is the same as that of the first embodiment.
  • the sputtering silicon target material 50 configured in this way is composed of four target pieces 51 to 54 arranged in a line to form one target material 50, so that a liquid crystal screen of a large display, a large solar cell, etc. It is suitable for manufacturing.
  • the formation method of the crack prevention layer to the target material 50, the sputtering method using this target material 50, etc. are substantially the same as 1st Embodiment, repeated description is abbreviate
  • ⁇ Fourth embodiment> 9 and 10 show a fourth embodiment of the present invention.
  • the target material 80 is formed in a cylindrical shape.
  • the first region 81 serving as an erosion portion is formed in the center portion of the target material 80 in the longitudinal direction.
  • the second regions 82 and 82 that are non-erosion portions are formed at both ends of the target material 30 in the longitudinal direction.
  • crack prevention layers 83 and 83 are formed on the outer peripheral surfaces of the second regions 82 and 82 which are non-erosion portions, respectively.
  • the configuration other than the above is the same as that of the first embodiment.
  • the thus configured cylindrical sputtering silicon target material 80 has a shaft inserted into the hollow portion, and sputtering is performed while rotating the target material 80 about the shaft.
  • the formation method of the crack prevention layer 83 to the target material 80, the sputtering method using this target material 80, etc. are substantially the same as 1st Embodiment, repeated description is abbreviate
  • the second region to be a non-erosion portion is machined into a groove portion and an inclined surface portion, and in the second embodiment, the second region to be a non-erosion portion.
  • the two regions are machined into a round hole portion and an inclined surface portion
  • the second region serving as the non-erosion portion may be formed on a plane on the same plane as the first region serving as the erosion portion.
  • the groove portion 12a and the inclined surface portion 12b were formed by machining on the target material 10 in the second region 12 serving as a non-erosion portion.
  • the groove portion 12a is formed in a substantially horizontally long rectangular shape so as to be located inside the first region 11.
  • the inclined surface portion 12 b is formed in a substantially rectangular frame shape so as to be positioned on the outer peripheral edge of the first region 11, and gradually descends as the distance from the plane of the first region 11 increases.
  • An inclined surface was formed.
  • the crack prevention layer 13 having a thickness of 20 ⁇ m was formed on the entire surface of the target material 10 by spraying Si on the entire surface of the target material 10.
  • the surface roughness of the crack preventing layer 13 was 3 ⁇ m in terms of arithmetic average roughness Ra.
  • the crack prevention layer 13 was removed from the 1st area
  • This target material 10 was taken as Example 1.
  • Example 2 As shown in FIGS. 5 and 6, first, a silicon target material 30 having a diameter and a thickness of 200 mm and 10 mm, respectively, was produced from the same polycrystalline silicon as in Example 1. Next, in order to form the first region 31 serving as the erosion portion in a round donut-shaped plane, the second region 32 serving as the non-erosion portion is provided with a round hole portion 32a positioned inside the first region 31 and the second region 32a. The inclined surface portion 32b located at the outer peripheral edge of the one region 31 was formed by machining. Next, a crack preventing layer having a thickness of 20 ⁇ m was formed on the entire surface of the target material 30 by spraying Si on the entire surface of the target material 30 in the same manner as in Example 1.
  • the surface roughness of the crack preventing layer was 3 ⁇ m in terms of arithmetic average roughness Ra. Further, in the same manner as in Example 1, the crack prevention layer is removed from the first region 31 that becomes the erosion portion by polishing only the first region 31 of the surface of the target material 30 on which the crack prevention layer is formed. did. As a result, the crack preventing layer 33 was formed only in the second region 32 to be a non-erosion portion.
  • This target material 30 was set as Example 2.
  • Example 3 A target material was produced in the same manner as in Example 1 except that a crack preventing layer made of a SiO 2 sprayed layer was used instead of the crack preventing layer made of the Si sprayed layer in Example 1. This target material was designated as Example 3. The surface roughness of the crack preventing layer was 2 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 4 It replaced with the crack prevention layer which consists of a Si sprayed layer of Example 1, and carried out similarly to Example 1 except having used the crack prevention layer which consists of Si powder binding layers which bound Si powder with the low melting glass.
  • a target material was produced. This target material was referred to as Example 4.
  • the Si powder binder layer was formed by the following method. First, a Si paste was prepared by dispersing Si powder having an average particle size of 10 ⁇ m in a low melting point glass having a softening point of about 550 ° C., and this Si paste was printed on the surface of the target material by a screen printing method. Here, the content ratio of the Si powder was 90% by mass when the Si powder binder layer was 100% by mass.
  • the target material is placed on a hot plate, and the hot plate is heated from 30 ° C. to 150 ° C. at a rate of temperature increase of 2 ° C./min and held at 150 ° C. for 20 minutes to be applied to the surface of the target material.
  • the low melting glass film was dried.
  • the temperature of the hot plate is increased from 150 ° C. to 550 ° C. at a temperature increase rate of 2 ° C./min, and this temperature is maintained for 20 minutes, whereby the low melting point glass film is baked, and the surface of the target material An Si powder binder layer was formed on the substrate.
  • the temperature of the hot plate was decreased from 550 ° C. to 60 ° C. at a temperature decreasing rate of 3 ° C./min.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 5 Instead of the crack prevention layer comprising the Si powder binder layer obtained by binding the Si powder of Example 4 with the low melting glass, the ceramic powder binder layer comprising the SiO 2 powder (ceramic powder) bound with the low melting glass.
  • a target material was produced in the same manner as in Example 4 except that a crack preventing layer was used. This target material was designated as Example 5.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 6 The Al 2 O 3 powder (ceramic powder) was bonded with the low-melting glass instead of the crack prevention layer composed of the ceramic powder bonding layer formed by bonding the SiO 2 powder (ceramic powder) of Example 5 with the low-melting glass.
  • a target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 6.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 7 Ga 2 O 3 powder (ceramic powder) was bound with low-melting glass instead of the crack prevention layer composed of the ceramic powder binding layer bound with the SiO 2 powder (ceramic powder) of Example 5 with low-melting glass.
  • a target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 7.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 8 Ceramic powder in which TiO 2 powder (ceramic powder) is bound with low melting glass instead of the crack prevention layer composed of the ceramic powder binding layer in which the SiO 2 powder (ceramic powder) of Example 5 is bound with low melting glass
  • a target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a binder layer was used. This target material was designated as Example 8.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 9 A ceramic powder obtained by binding ZrO 2 powder (ceramic powder) with low-melting glass instead of a crack prevention layer comprising a ceramic powder binding layer obtained by binding SiO 2 powder (ceramic powder) of Example 5 with low-melting glass
  • a target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a binder layer was used. This target material was designated as Example 9.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 10 A ceramic powder obtained by binding HfO 2 powder (ceramic powder) with low melting glass instead of the crack prevention layer comprising the ceramic powder binding layer obtained by binding the SiO 2 powder (ceramic powder) of Example 5 with low melting glass
  • a target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a binder layer was used. This target material was designated as Example 10.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 11 The Nb 2 O 5 powder (ceramic powder) was bonded with the low-melting glass instead of the crack prevention layer composed of the ceramic powder bonding layer formed by bonding the SiO 2 powder (ceramic powder) of Example 5 with the low-melting glass.
  • a target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 11.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 12 The Ta 2 O 5 powder (ceramic powder) was bonded with the low melting glass instead of the crack prevention layer composed of the ceramic powder bonding layer formed by bonding the SiO 2 powder (ceramic powder) of Example 5 with the low melting glass.
  • a target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 12.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 13 A target material was produced in the same manner as in Example 1 except that a crack preventing layer made of an Al sprayed layer was used instead of the crack preventing layer made of the Si sprayed layer of Example 1. This target material was designated as Example 13.
  • the surface roughness of the crack preventing layer was 1 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 14 A target material was produced in the same manner as in Example 1 except that a crack preventing layer made of a porous silicon layer was used instead of the crack preventing layer made of the Si sprayed layer in Example 1. This target material was referred to as Example 14.
  • the crack prevention layer which consists of a porous silicon layer was formed with the following method. First, a portion of the target material surface other than the second region to be a non-erosion portion was masked with a UV curable resin.
  • the target material and the counter electrode of platinum are immersed in a hydrofluoric acid solution with a space therebetween, and the second region that is a non-erosion portion of the surface of the target material is used as an anode, and the counter electrode is used as a cathode.
  • a current was passed between the anode and the cathode.
  • the masking was removed from the target material.
  • the Si sprayed layer in the second region serving as the non-erosion portion became porous (porous), and a porous silicon layer was formed.
  • the surface roughness of the crack preventing layer was 5 ⁇ m in terms of arithmetic average roughness Ra.
  • Example 1 A target material was produced in the same manner as in Example 1 except that the crack prevention layer was not formed in the second region serving as the non-erosion portion, that is, the crack prevention layer was not formed on the surface of the target material. This target material was designated as Comparative Example 1.
  • Comparative Example 2 A target material was produced in the same manner as in Example 2 except that the crack prevention layer was not formed in the second region serving as the non-erosion portion, that is, the crack prevention layer was not formed on the surface of the target material. This target material was referred to as Comparative Example 2.
  • ⁇ Comparative test 1 and evaluation> Using the target materials of Examples 1 to 14 and Comparative Examples 1 and 2, a SiO 2 thin film was formed on the substrate surface by sputtering. Specifically, SPH-2307 manufactured by Showa Vacuum Co., Ltd. was used as the sputtering apparatus (film forming apparatus), and a slide glass was used as the substrate.
  • the sputtering conditions were as follows. The pulse frequency was 20 kHz, the pulse output was DC 1000 W, and the sputtering gas pressure was 0.4 Pa. The flow rate of Ar gas was 6 sccm (standard cc / min), and the flow rate of oxygen gas was 9 sccm. Moreover, the state of the target material surface after performing said sputtering continuously for 380 hours was visually inspected.
  • the silicon target material of the present invention can be used in a sputtering apparatus for forming a silicon thin film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

A sputtering silicon target material (10) according to the present invention is used when magnetron sputtering is performed in cases where the sputtering atmosphere contains at least oxygen gas. The target material (10) has a first region (11) and a second region (12) that respectively become, when magnetron sputtering is performed, an erosion section because of the surface of the silicon target material (10) being sputtered and a non-erosion section that is not sputtered. A layer (13) that prevents cracking of the target material during sputtering is included in the second region (12).

Description

スパッタリング用シリコンターゲット材Silicon target material for sputtering
 本発明は、基材表面に、酸素を含むシリコン化合物の薄膜を形成するマグネトロンスパッタリング装置にてターゲット成分であるシリコンが叩き出されるシリコンターゲット材に関するものである。なお、本国際出願は、2015年8月28日に出願した日本国特許出願第168549号(特願2015-168549)に基づく優先権を主張するものであり、特願2015-168549の全内容を本国際出願に援用する。 The present invention relates to a silicon target material in which silicon as a target component is knocked out by a magnetron sputtering apparatus that forms a thin film of a silicon compound containing oxygen on a substrate surface. Note that this international application claims priority based on Japanese Patent Application No. 168549 (Japanese Patent Application No. 2015-168549) filed on August 28, 2015. Incorporated into this international application.
 従来よりSiO2膜は、光学用低屈折率材料やバリア膜として工業的に一般的に使用されている。その製造方法の一例としてスパッタリング法が知られている(例えば、特許文献1参照。)。このスパッタリング法でSiO2膜を形成する場合、高周波(RF)スパッタリング法、直流(DC)スパッタリング法、パルス電源を用いたスパッタリング法、或いは交流電源を用いたスパッタリング法が利用されている。このとき、ターゲットに投入するスパッタリング電力は、大きい方が成膜速度は速くなり、高能率化と生産性向上に寄与する。 Conventionally, the SiO 2 film is generally used industrially as an optical low refractive index material or a barrier film. A sputtering method is known as an example of the manufacturing method (for example, refer to Patent Document 1). When the SiO 2 film is formed by this sputtering method, a radio frequency (RF) sputtering method, a direct current (DC) sputtering method, a sputtering method using a pulse power source, or a sputtering method using an AC power source is used. At this time, the larger the sputtering power input to the target, the faster the film formation rate, which contributes to higher efficiency and improved productivity.
特開2004-84033号公報(段落[0002]、段落[0003])JP 2004-84033 A (paragraph [0002], paragraph [0003])
 しかし、上記従来のスパッタリング法のうち、酸素ガスを用いるシリコンターゲットの反応性マグネトロンスパッタリング(酸素反応性マグネトロンスパッタリング)では、スパッタリングの継続に伴い、非エロージョン部表面に堆積するSiOx膜により、シリコンターゲット材がその寿命(板厚)の大半を残した状態で割れに至ってしまう問題点があった。このため、酸素反応性マグネトロンスパッタリングによりシリコン薄膜を量産すると、本来期待されるシリコンターゲット材の寿命より短い周期でシリコンターゲット材の交換を余儀なくされるため、シリコンターゲット材の利用率が低くなるとともに、割れたシリコンターゲット材の交換に伴う成膜装置のメンテナンス頻度が多くなって、生産性が低下する問題点があった。 However, among the above-described conventional sputtering methods, in the reactive magnetron sputtering of the silicon target using oxygen gas (oxygen reactive magnetron sputtering), the silicon target is formed by the SiO x film deposited on the surface of the non-erosion portion as the sputtering continues. There was a problem that the material would crack in a state where most of its life (sheet thickness) was left. For this reason, mass production of silicon thin films by oxygen reactive magnetron sputtering necessitates replacement of the silicon target material in a cycle shorter than the expected life of the silicon target material, resulting in a lower utilization rate of the silicon target material, The maintenance frequency of the film forming apparatus accompanying the replacement of the broken silicon target material is increased, and there is a problem that productivity is lowered.
 本発明の目的は、スパッタリング時に、非エロージョン部表面にSiOxが堆積して、非エロージョン表面にSiOx膜が形成されても、ターゲット材の割れを防止でき、これによりターゲット材の利用率を向上できるとともに、ターゲット材の交換に伴う成膜装置のメンテナンス頻度を低減できる、スパッタリング用シリコンターゲット材を提供することにある。 The object of the present invention is to prevent the target material from cracking even when SiO x is deposited on the surface of the non-erosion part and a SiO x film is formed on the non-erosion surface during sputtering, thereby increasing the utilization rate of the target material. It is an object of the present invention to provide a sputtering silicon target material that can be improved and can reduce the maintenance frequency of the film forming apparatus accompanying the replacement of the target material.
 シリコンターゲット材の表面は、酸素反応性マグネトロンスパッタリング時に、スパッタされてエロージョン部となる第1領域と、スパッタされない非エロージョン部となる第2領域とに区画される。この非エロージョン部には、スパッタリングに伴いSiOx膜が堆積する。このSiOx膜は、膜自体が高い内部応力を有するとともに、ターゲット材であるシリコンとSiOx膜との熱膨張係数が異なることから、SiOx膜とシリコンターゲット材との間に熱応力が発生すると考えられる。そこで本発明者らは、成膜する膜の膜質に影響を与えることなく、非エロージョン部に堆積するSiOx膜の応力をシリコンターゲット材に伝達することを抑制する機能を、スパッタ前に予めシリコンターゲット材の表面に付与することを検討した。この結果、シリコンターゲット材をその寿命まで、即ちエロージョン深さがターゲット材の板厚に近い値になるまで酸素反応性マグネトロンスパッタリングを行っても、シリコンターゲット材が割れないという成果を得ることができ、本発明をなすに至った。 The surface of the silicon target material is partitioned into a first region that is sputtered and becomes an erosion part and a second region that is a non-sputtered non-erosion part during oxygen reactive magnetron sputtering. In this non-erosion portion, a SiO x film is deposited along with sputtering. The SiO x film, which has a film itself has high internal stresses, since the thermal expansion coefficient between silicon and SiO x film as a target material are different, thermal stress is generated between the SiO x film and a silicon target material I think that. Accordingly, the present inventors have previously proposed a function of suppressing the transmission of the stress of the SiO x film deposited on the non-erosion portion to the silicon target material without affecting the film quality of the film to be formed before the sputtering. Application to the surface of the target material was studied. As a result, even if oxygen reactive magnetron sputtering is performed until the lifetime of the silicon target material is reached, that is, the erosion depth is close to the thickness of the target material, the silicon target material is not broken. The present invention has been made.
 本発明の第1の観点は、スパッタリング雰囲気に少なくとも酸素ガスを含んでマグネトロンスパッタリングを行うときに使用されるスパッタリング用シリコンターゲット材であって、マグネトロンスパッタリング時に、シリコンターゲット材の表面がスパッタされてエロージョン部となる第1領域と、スパッタされない非エロージョン部となる第2領域とを有し、第2領域にスパッタリング中のターゲット材の割れを防止する層を有することを特徴とする。 A first aspect of the present invention is a silicon target material for sputtering used when performing magnetron sputtering with at least oxygen gas contained in a sputtering atmosphere, and the surface of the silicon target material is sputtered during magnetron sputtering to cause erosion. A first region to be a part and a second region to be a non-erosion part that is not sputtered, and the second region has a layer that prevents cracking of the target material during sputtering.
 本発明の第2の観点は、第1の観点に基づく発明であって、更にターゲット材の割れを防止する層の表面粗さが、算術平均粗さRaで0.5~10μmの範囲内にあることを特徴とする。 The second aspect of the present invention is the invention based on the first aspect, wherein the surface roughness of the layer that prevents cracking of the target material is within the range of 0.5 to 10 μm in terms of arithmetic average roughness Ra. It is characterized by being.
 本発明の第3の観点は、第1又は第2の観点に基づく発明であって、更にターゲット材の割れを防止する層がSi溶射層であることを特徴とする。 A third aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing the target material from cracking is a Si sprayed layer.
 本発明の第4の観点は、第1又は第2の観点に基づく発明であって、更にターゲット材の割れを防止する層がSiO2溶射層であることを特徴とする。 A fourth aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing cracking of the target material is a SiO 2 sprayed layer.
 本発明の第5の観点は、第1又は第2の観点に基づく発明であって、更にターゲット材の割れを防止する層が、Si粉末を低融点ガラスで結着したSi粉末結着層であることを特徴とする。 A fifth aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing cracking of the target material is a Si powder binding layer in which Si powder is bound by low-melting glass. It is characterized by being.
 本発明の第6の観点は、第1又は第2の観点に基づく発明であって、更にターゲット材の割れを防止する層が、SiO2,Al23,Ga23,TiO2,ZrO2,HfO2,Nb25及びTa25からなる群より選ばれた1種又は2種以上のセラミック粉末を低融点ガラスで結着したセラミック粉末結着層であることを特徴とする。 A sixth aspect of the present invention is the invention based on the first or second aspect, wherein the layer for preventing cracking of the target material is SiO 2 , Al 2 O 3 , Ga 2 O 3 , TiO 2 , It is a ceramic powder binding layer in which one or two or more ceramic powders selected from the group consisting of ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5 are bound with a low melting point glass. To do.
 本発明の第7の観点は、第1又は第2の観点に基づく発明であって、更にターゲット材の割れを防止する層が、Si粉末と、SiO2,Al23,Ga23,TiO2,ZrO2,HfO2,Nb25及びTa25からなる群より選ばれた1種又は2種以上のセラミック粉末との混合粉末を低融点ガラスで結着した混合粉末結着層であることを特徴とする。 A seventh aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing the target material from cracking further comprises Si powder, SiO 2 , Al 2 O 3 , Ga 2 O 3. , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5, and Ta 2 O 5 selected from the group consisting of one or two or more ceramic powders mixed with a low melting point glass It is a layered layer.
 本発明の第8の観点は、第1又は第2の観点に基づく発明であって、更にターゲット材の割れを防止する層がAl溶射層であることを特徴とする。 The eighth aspect of the present invention is an invention based on the first or second aspect, wherein the layer for preventing the target material from cracking is an Al sprayed layer.
 本発明の第9の観点は、第1又は第2の観点に基づく発明であって、更にターゲット材の割れを防止する層がポーラスシリコン層であることを特徴とする。 A ninth aspect of the present invention is the invention based on the first or second aspect, and is characterized in that the layer for preventing the target material from cracking is a porous silicon layer.
 本発明の第1の観点のスパッタリング用シリコンターゲット材では、非エロージョン部となる第2領域にスパッタリング中のターゲット材の割れを防止する層(割れ防止層)を有するので、スパッタリング時に、非エロージョン部上の上記割れ防止層にSiOxが堆積して、非エロージョン部上の割れ防止層表面にSiOx膜が形成されても、上記割れ防止層が非エロージョン部に堆積するSiOx膜の応力をシリコンターゲット材に伝達することを抑制する機能を発揮すると考えられる。この結果、シリコンターゲット材をその寿命まで、即ちエロージョン深さがターゲット材の板厚に近い値になるまでスパッタリングを行ってもシリコンターゲット材は割れないので、ターゲット材の利用率を向上できるとともに、ターゲット材の交換に伴う成膜装置のメンテナンス頻度を低減できる。ここで、上記割れ防止層が非エロージョン部に堆積するSiOx膜の応力をシリコンターゲット材に伝達することを抑制する機能を発揮するのは、割れ防止層はその表面に比較的大きな凹凸が形成され、その表面粗さが比較的大きく形成されているため、非エロージョン部に堆積するSiOx膜の応力が割れ防止層の表面に沿う2次元方向だけでなく高さ方向を含む3次元方向にも応力が分散されるためと推測される。更に、Si粒子やSiO2粒子を溶着させた溶射層、Si粒子やセラミック粒子を低融点ガラスで結着させた結着層、或いはSiターゲット材表面をポーラスに浸食させたポーラスシリコン層では、その上に堆積したSiOx膜による応力が上記膜、或いは上記層内の組織が歪むことでSiOx膜の応力をシリコンターゲット材に伝達することを抑制する効果も期待されると推測した。 In the silicon target material for sputtering according to the first aspect of the present invention, the second region that becomes the non-erosion portion has a layer (a crack prevention layer) that prevents cracking of the target material being sputtered. Even if SiO x is deposited on the crack prevention layer above and a SiO x film is formed on the surface of the crack prevention layer on the non-erosion part, the stress of the SiO x film deposited on the non-erosion part by the crack prevention layer is reduced. It is considered that the function of suppressing transmission to the silicon target material is exhibited. As a result, the silicon target material does not break even if sputtering is performed until the silicon target material reaches its lifetime, that is, the erosion depth is close to the thickness of the target material, so that the utilization rate of the target material can be improved, The maintenance frequency of the film forming apparatus accompanying the replacement of the target material can be reduced. Here, the crack prevention layer has a function to suppress the transmission of the stress of the SiO x film deposited on the non-erosion portion to the silicon target material. Since the surface roughness is relatively large, the stress of the SiO x film deposited on the non-erosion portion is not only in the two-dimensional direction along the surface of the crack prevention layer but also in the three-dimensional direction including the height direction. It is presumed that the stress is also dispersed. Furthermore, in a thermal spray layer in which Si particles or SiO 2 particles are deposited, a binder layer in which Si particles or ceramic particles are bound with low-melting glass, or a porous silicon layer in which the surface of the Si target material is eroded porously, It was speculated that the effect of suppressing the transmission of the stress of the SiO x film to the silicon target material due to the stress caused by the SiO x film deposited thereon distorting the film or the structure in the layer was expected.
 本発明の第2の観点のスパッタリング用シリコンターゲット材では、ターゲット材の割れを防止する層の表面粗さが、算術平均粗さRaで0.5~10μmの範囲内にあるので、割れ防止層の欠けが発生することなく、SiOx等の堆積により発生する応力がシリコンターゲット材に伝達されるのを割れ防止層により抑制できる。 In the silicon target material for sputtering according to the second aspect of the present invention, the surface roughness of the layer that prevents cracking of the target material is in the range of 0.5 to 10 μm in terms of arithmetic average roughness Ra. The crack prevention layer can suppress the stress generated by the deposition of SiO x and the like from being transmitted to the silicon target material without the occurrence of chipping.
 本発明の第3~第9の観点のスパッタリング用シリコンターゲット材では、割れ防止層が、それぞれ、Si溶射層、SiO2溶射層、Si粉末を低融点で結着したSi粉末結着層、SiO2等のセラミック粉末を低融点ガラスで結着したセラミック粉末結着層、Si粉末とSiO2等のセラミック粉末との混合粉末を低融点ガラスで結着した混合粉末結着層、Al溶射層、ポーラスシリコン層であるので、スパッタリング時に、割れ防止層にSiOxが堆積してSiOx膜が形成されても、割れ防止層の表面に比較的大きな凹凸が形成されているためにSiOx膜の応力が2次元平面内から3次元に分散されること、及び割れ防止層中の各種の粒子間(Si溶射層のSi粒子間、SiO2溶射層のSiO2粒子間、Si粉末結着層のSi粒子間、セラミック粉末結着層のセラミック粒子間、混合粉末結着層のSi粒子間及びセラミック粒子間並びにSi粒子及びセラミック粒子間、Al溶射層のAl粒子間)はSi原子間に比べ弱い結合力で溶着しているためにSiOx膜の応力が粒子間の結合を歪ませること、ポーラスシリコン層がナノオーダーのSi柱構造からなるためにSiOx膜の応力がナノ構造のSi柱構造を歪ませることなどから、SiOx膜の応力がシリコンターゲット材に伝達することを抑制する機能を発揮すると考えられる。この結果、上記と同様の効果が得られる。また、スパッタリングによりSiO2薄膜等のシリコン系薄膜を成膜する場合であれば、仮に微量のSi溶射層、SiO2溶射層、Si及びそのバインダである低融点ガラス、SiO2等及びそのバインダである低融点ガラス、Si及びSiO2等並びにそれらのバインダである低融点ガラス、Al溶射層、ポーラスシリコン層がスパッタされてSiO2薄膜等のシリコン系薄膜に混入しても、このシリコン系薄膜の品質への影響は小さい。特に、上記Si溶射層、SiO2溶射層、ポーラスシリコン層はシリコンターゲット材と同じ材料であるので、シリコン系薄膜の品質への影響は極めて小さい。 In the silicon target material for sputtering according to the third to ninth aspects of the present invention, the crack preventing layers are respectively a Si sprayed layer, a SiO 2 sprayed layer, a Si powder binding layer formed by binding Si powder at a low melting point, SiO 2 ceramic powder binder layer where the ceramic powder and binder with a low melting point glass such as 2, Si powder and mixed powder binder layer obtained by binding the powder mixture with low-melting glass with the ceramic powder such as SiO 2, Al sprayed layer, since a porous silicon layer, at the time of sputtering, be formed SiO x film SiO x is deposited on the cracking prevention layer, the SiO x film to a relatively large irregularities on the surface of the crack preventing layer is formed the stress is dispersed to the three-dimensional from a two-dimensional plane, and between the various particles of cracking prevention layer (between Si particles of Si sprayed layer, between SiO 2 particles of SiO 2 sprayed layer, the Si powder binder layer Between Si particles, Welding between ceramic particles in the laminar powder binder layer, between Si particles and ceramic particles in the mixed powder binder layer, between Si particles and ceramic particles, and between Al particles in the Al sprayed layer) with a weaker bond strength than between Si atoms. Therefore, the stress of the SiO x film distorts the bond between particles, and the porous silicon layer has a nano-order Si pillar structure, so the stress of the SiO x film distorts the nano-structured Si pillar structure. From this, it is considered that the function of suppressing the stress of the SiO x film from being transmitted to the silicon target material is exhibited. As a result, the same effect as described above can be obtained. In addition, if a silicon-based thin film such as a SiO 2 thin film is formed by sputtering, a small amount of a Si sprayed layer, a SiO 2 sprayed layer, Si and its low-melting glass, SiO 2 or the like and its binder are used. Even if some low melting point glass, Si and SiO 2 and their binder low melting point glass, Al sprayed layer, porous silicon layer are sputtered and mixed into a silicon thin film such as SiO 2 thin film, The impact on quality is small. In particular, since the Si sprayed layer, the SiO 2 sprayed layer, and the porous silicon layer are the same material as the silicon target material, the influence on the quality of the silicon-based thin film is extremely small.
本発明の第1実施形態のスパッタリング用シリコンターゲット材を示す図3のA-A線断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 3 showing the silicon target material for sputtering according to the first embodiment of the present invention. 図3のB-B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. そのターゲット材の平面図である。It is a top view of the target material. そのターゲット材を用いてスパッタリングを行っている状態を示す模式図である。It is a schematic diagram which shows the state which is performing sputtering using the target material. 本発明の第2実施形態のスパッタリング用シリコンターゲット材を示す図6のC-C線断面図である。FIG. 7 is a cross-sectional view taken along the line CC of FIG. 6 showing a silicon target material for sputtering according to a second embodiment of the present invention. そのターゲット材の平面図である。It is a top view of the target material. 本発明の第3実施形態のスパッタリング用シリコンターゲット材の製造手順を示す図である。It is a figure which shows the manufacture procedure of the silicon target material for sputtering of 3rd Embodiment of this invention. 図7(c)のD-D線断面図である。It is the DD sectional view taken on the line of FIG.7 (c). 本発明の第4実施形態のスパッタリング用シリコンターゲット材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the silicon target material for sputtering of 4th Embodiment of this invention. そのスパッタリング用シリコンターゲット材の斜視図である。It is a perspective view of the silicon target material for sputtering.
 次に本発明を実施するための形態を図面に基づいて説明する。 Next, modes for carrying out the present invention will be described with reference to the drawings.
 <第1の実施の形態>
 図1~図3に示すように、本実施形態のシリコンターゲット材10は、スパッタリング雰囲気に少なくとも酸素ガスを含んでマグネトロンスパッタリングを行うときに使用される。このシリコンターゲット材10は、その表面が、マグネトロンスパッタリング時にスパッタされてエロージョン部となる第1領域11と、マグネトロンスパッタリング時にスパッタされない非エロージョン部となる第2領域12とを有する。ターゲット材10は、この実施の形態では、シリコンを削り出すことにより、横長の長方形板状に形成される。シリコンとしては多結晶シリコンや単結晶シリコン等が挙げられるが、これらに限定されるものではない。また、ターゲット材10は、エロージョン部となる第1領域11は平面状に形成され、非エロージョン部となる第2領域12は平面状の第1領域11より凹んで形成される。具体的には、エロージョン部となる第1領域11は横長のドーナツ状の平面に形成される。また非エロージョン部となる第2領域12は、ターゲット材10表面のうち第1領域11の内側に位置するように略横長四角形状に形成されるとともに第1領域11の平面より凹む凹溝部分12aと、ターゲット材10表面のうち第1領域11の外周縁に位置するように略四角枠状に形成されるとともに第1領域11の平面から離れるに従って次第に下る傾斜面部分12bとからなる。なお、ターゲット材10の表面は、スパッタリング装置の構造上の理由から、エロージョン部となる第1領域11と非エロージョン部となる第2領域12に必然的に区画される。
<First Embodiment>
As shown in FIGS. 1 to 3, the silicon target material 10 of the present embodiment is used when magnetron sputtering is performed with at least oxygen gas contained in the sputtering atmosphere. The silicon target material 10 has a first region 11 whose surface is sputtered during magnetron sputtering and becomes an erosion portion, and a second region 12 that becomes a non-erosion portion that is not sputtered during magnetron sputtering. In this embodiment, the target material 10 is formed in a horizontally long rectangular plate shape by cutting silicon. Examples of silicon include, but are not limited to, polycrystalline silicon and single crystal silicon. Further, in the target material 10, the first region 11 that becomes an erosion portion is formed in a planar shape, and the second region 12 that becomes a non-erosion portion is formed in a recess from the planar first region 11. Specifically, the first region 11 serving as an erosion part is formed in a horizontally long donut-shaped plane. In addition, the second region 12 serving as a non-erosion portion is formed in a substantially horizontally long rectangular shape so as to be located inside the first region 11 on the surface of the target material 10 and is a concave groove portion 12 a that is recessed from the plane of the first region 11. And an inclined surface portion 12b which is formed in a substantially rectangular frame shape so as to be located on the outer peripheral edge of the first region 11 on the surface of the target material 10 and gradually descends away from the plane of the first region 11. Note that the surface of the target material 10 is inevitably partitioned into a first region 11 that becomes an erosion portion and a second region 12 that becomes a non-erosion portion for reasons of the structure of the sputtering apparatus.
 一方、非エロージョン部となる第2領域12の表面には、スパッタリング中のターゲット材の割れを防止する層13(以下、割れ防止層13という)が形成される。この割れ防止層13は、第2領域12のうち凹溝部分12aの表面に形成された凹溝用割れ防止層13aと、第2領域12のうち傾斜面部分12bの表面に形成された傾斜面用割れ防止層13bとからなる。この割れ防止層13は、スパッタリング時に派生するSiO、SiO2等のSiOxの堆積物が非エロージョン部の表面に堆積するため、非エロージョン部の表面に応力が発生するけれども、この応力をシリコンターゲット材に伝達することを抑制するために第2領域12表面に形成される。また、割れ防止層13は、Si、SiO2、Al23等のセラミック、又はAlを主成分とすることが好ましい。具体的には、割れ防止層13の厚さは10~1000μmの範囲内にあることが好ましい。ここで、割れ防止層13の厚さの好ましい範囲を10~1000μmに限定したのは、10μm未満ではSiOx等の堆積により発生する応力を割れ防止層13により十分にシリコンターゲット材に伝達することを抑制することができず、1000μmを超えると既に上記応力をシリコンターゲット材に伝達することを抑制する性能を十分に発揮しており経済的でなく、またスパッタリング中に異常放電の原因になったり、成膜している膜への混入が懸念されると推測されるからである。更に、割れ防止層13の表面粗さは、算術平均粗さRaで0.5~10μmの範囲内にあることが好ましく、1~5μmの範囲内にあることが更に好ましい。ここで、割れ防止層13の表面粗さを算術平均粗さRaで0.5~10μmの範囲内に限定したのは、0.5μm未満ではSiOx等の堆積により発生する応力を割れ防止層13により十分にシリコンターゲット材に伝達することを抑制することができず、10μmを超えると割れ防止層13の欠けが発生してしまうと推測されるからである。 On the other hand, a layer 13 (hereinafter referred to as a crack prevention layer 13) for preventing the target material from being cracked during sputtering is formed on the surface of the second region 12 to be a non-erosion portion. The crack preventing layer 13 includes a groove preventing crack layer 13a formed on the surface of the recessed groove portion 12a in the second region 12, and an inclined surface formed on the surface of the inclined surface portion 12b in the second region 12. The crack prevention layer 13b is used. The crack prevention layer 13 is formed by depositing SiO x such as SiO, SiO 2 and the like that is deposited on the surface of the non-erosion part, so that stress is generated on the surface of the non-erosion part. In order to suppress the transmission to the material, it is formed on the surface of the second region 12. Also, cracking prevention layer 13, Si, is preferably a main component a ceramic, or Al, such as SiO 2, Al 2 O 3. Specifically, the thickness of the crack preventing layer 13 is preferably in the range of 10 to 1000 μm. Here, the preferable range of the thickness of the crack preventing layer 13 is limited to 10 to 1000 μm. When the thickness is less than 10 μm, the stress generated by the deposition of SiO x or the like is sufficiently transmitted to the silicon target material by the crack preventing layer 13. When the thickness exceeds 1000 μm, the performance of suppressing the transmission of the stress to the silicon target material has been sufficiently exhibited, which is not economical and may cause abnormal discharge during sputtering. This is because it is presumed that there is a concern of mixing into the film being formed. Further, the surface roughness of the crack preventing layer 13 is preferably in the range of 0.5 to 10 μm, more preferably in the range of 1 to 5 μm in terms of arithmetic average roughness Ra. Here, the surface roughness of the crack preventing layer 13 is limited to the arithmetic average roughness Ra in the range of 0.5 to 10 μm. If the surface roughness is less than 0.5 μm, the stress generated by the deposition of SiO x or the like is reduced. This is because it is not possible to sufficiently suppress the transmission to the silicon target material by 13 and if the thickness exceeds 10 μm, it is assumed that the crack prevention layer 13 is chipped.
 上記割れ防止層13としては、Si溶射層、SiO2溶射層、Si粉末を低融点ガラスで結着したSi粉末結着層、SiO2等のセラミック粉末を低融点ガラスで結着したセラミック粉末結着層、Al溶射層、ポーラスシリコン層などが挙げられる。 Examples of the crack prevention layer 13 include a Si sprayed layer, a SiO 2 sprayed layer, a Si powder binder layer obtained by binding Si powder with a low melting glass, and a ceramic powder binder obtained by binding ceramic powder such as SiO 2 with a low melting glass. Examples include an adhesion layer, an Al sprayed layer, and a porous silicon layer.
 (1) 割れ防止層13としてSi溶射層を形成する方法
 ターゲット材10の表面にSiを溶射することによりSi溶射層を形成し、このSi溶射層が割れ防止層13となる。具体的なSi溶射層からなる割れ防止層の形成方法を説明する。先ず、Si溶射の原料としてSi粉末を用意する。このSi粉末は、Si塊を粉砕した後に、30~200μmに分級した。ここで、粉砕したSi粉末を30μm以上に分級したのは、Si溶射装置へのSi粉末の供給の流動性を高め、安定した溶射を可能にするためである。また、粉砕したSi粉末を200μm以下に分級したのは、200μmを超えると、Si粉末が溶射噴霧時にその粒子の比熱が大きくなるため、Si粒子間の結着力が劣ってしまうからである。次に、非エロージョン部となる第2領域12以外の部分をAl板等でマスキングし、この状態でターゲット材10の表面に上記Siを溶射した後に、マスキングを取外す。これによりターゲット材10の表面のうち非エロージョン部となる第2領域12に割れ防止層13が形成される。なお、Siの溶射時に、割れ防止層13を冷却しながら形成することが好ましい。この冷却は、割れ防止層13に冷えた空気等のガスを直接吹き付けるか、或いはターゲット材10の裏面に水等の流れる管路を接触させることにより行うことができる。また、割れ防止層13のターゲット材10表面への密着強度を向上させるために、ターゲット材10の表面全体に割れ防止層13を形成する前に、ターゲット材10の表面全体に必要最低限のブラストを施してもよい。更に、上記Si溶射に用いられる溶射装置としては、プラズマガスの温度が10000℃を超えるプラズマ溶射装置を用いることが好ましい。
(1) Method of forming a Si sprayed layer as the crack preventing layer 13 A silicon sprayed layer is formed by spraying Si on the surface of the target material 10, and this Si sprayed layer becomes the crack preventing layer 13. A specific method for forming a crack prevention layer made of a Si sprayed layer will be described. First, Si powder is prepared as a raw material for Si spraying. The Si powder was classified to 30 to 200 μm after pulverizing the Si lump. Here, the reason why the pulverized Si powder is classified to 30 μm or more is to improve the fluidity of the supply of the Si powder to the Si spraying apparatus and to enable stable spraying. Further, the reason why the pulverized Si powder is classified to 200 μm or less is that when it exceeds 200 μm, the specific heat of the particles becomes large during spraying of the Si powder, so that the binding force between the Si particles becomes poor. Next, a portion other than the second region 12 to be a non-erosion portion is masked with an Al plate or the like, and the Si is sprayed on the surface of the target material 10 in this state, and then the masking is removed. Thereby, the crack prevention layer 13 is formed in the 2nd area | region 12 used as the non-erosion part among the surfaces of the target material 10. FIG. In addition, it is preferable to form the crack prevention layer 13 while cooling during the thermal spraying of Si. This cooling can be performed by directly blowing a gas such as cold air to the crack prevention layer 13 or by bringing a pipe line through which water or the like flows into contact with the back surface of the target material 10. Further, in order to improve the adhesion strength of the crack prevention layer 13 to the surface of the target material 10, before forming the crack prevention layer 13 on the entire surface of the target material 10, the minimum necessary blast is applied to the entire surface of the target material 10. May be applied. Furthermore, as a thermal spraying apparatus used for the above-mentioned Si thermal spraying, it is preferable to use a plasma spraying apparatus in which the temperature of the plasma gas exceeds 10,000 ° C.
 (2) 割れ防止層13としてSiO2溶射層を形成する方法
 ターゲット材10の表面にSiO2を溶射することによりSiO2溶射層を形成し、このSiO2溶射層が割れ防止層13となる。具体的なSiO2溶射層からなる割れ防止層の形成方法は、上記(1)の『Si溶射層からなる割れ防止層13の形成方法』と略同様であるので、繰返しの説明を省略する。
(2) By spraying the SiO 2 on the surface of the methods target material 10 to form a SiO 2 thermal sprayed layer as a break preventing layer 13 was formed an SiO 2 thermal sprayed layer, the SiO 2 thermal sprayed layer becomes prevention layer 13 cracks. A specific method for forming the crack preventing layer made of the SiO 2 sprayed layer is substantially the same as the “method for forming the crack preventing layer 13 made of the Si sprayed layer” in the above (1), so that repeated description is omitted.
 (3) 割れ防止層13としてSi粉末を低融点ガラスで結着したSi粉末結着層を形成する方法
 低融点ガラスフリットにSi粉末を分散させたSiペーストを塗布し乾燥し焼成することにより、低融点ガラスをバインダとしてSi粉末を低融点ガラスで結着したSi粉末結着層を形成し、このSi粉末結着層が割れ防止層13となる。具体的には、先ず、平均粒径1~500μmのSi粉末を軟化点550℃前後の低融点ガラスに分散させてSiペーストを調製し、このSiペーストをスクリーン印刷法、ディップコート法又はスピンコート法によりターゲット材表面に印刷又は塗布する。ここで、低融点ガラスの融点を所定値まで下げるために、上記低融点ガラスにはB(ホウ素)又はP(リン)の何れか一方又は双方を添加することが好ましい。また、Si粉末の含有割合は、Si粉末結着層を100質量%とするとき、80~90質量%であることが好ましい。次いで、このターゲット材をホットプレートに載せ、このホットプレートを2℃/分の昇温速度で30℃から150℃に昇温し、150℃に20分間保持することにより、ターゲット材表面に印刷又は塗布されたSiペーストの膜を乾燥させる。次に、上記ホットプレートを2℃/分の昇温速度で150℃から550℃まで昇温し、この温度に20分間保持することにより、上記Siペーストの膜を焼成して、ターゲット材表面にSi粉末結着層を形成する。更に、上記ホットプレートを3℃/分の降温速度で550℃から60℃まで降温する。なお、上記Si粉末の平均粒径は、粒度分布測定装置(堀場製作所製LA-950)を用いて測定した粒径であり、体積基準平均粒径である。また、ここで使用する低融点ガラス(軟化点600℃以下)は、硼珪酸ガラス、燐酸珪酸ガラス、硼燐珪酸ガラスが好ましいが、酸化ビスマス、酸化亜鉛、酸化バナジウム、酸化スズ、酸化テルル、アルカリ金属酸化物、フッ素等を用いたガラスも使用可能である。
(3) Method for forming Si powder binder layer in which Si powder is bound with low melting point glass as crack preventing layer 13 By applying Si paste in which Si powder is dispersed in low melting point glass frit, drying and firing, A Si powder binder layer is formed by binding Si powder with the low melting glass using a low melting glass as a binder, and this Si powder binder layer becomes the crack preventing layer 13. Specifically, first, a Si paste is prepared by dispersing Si powder having an average particle diameter of 1 to 500 μm in a low melting glass having a softening point of around 550 ° C., and this Si paste is screen printed, dip coated or spin coated. Print or apply on the surface of the target material by the method Here, in order to lower the melting point of the low melting point glass to a predetermined value, it is preferable to add either or both of B (boron) and P (phosphorus) to the low melting point glass. The content ratio of the Si powder is preferably 80 to 90% by mass when the Si powder binder layer is 100% by mass. Next, the target material is placed on a hot plate, and the hot plate is heated from 30 ° C. to 150 ° C. at a temperature rising rate of 2 ° C./min, and held at 150 ° C. for 20 minutes, thereby printing or printing on the surface of the target material. The applied Si paste film is dried. Next, the temperature of the hot plate is increased from 150 ° C. to 550 ° C. at a temperature increase rate of 2 ° C./min, and kept at this temperature for 20 minutes, thereby firing the Si paste film on the surface of the target material. A Si powder binder layer is formed. Further, the temperature of the hot plate is decreased from 550 ° C. to 60 ° C. at a temperature decreasing rate of 3 ° C./min. The average particle size of the Si powder is a particle size measured using a particle size distribution measuring device (LA-950 manufactured by Horiba, Ltd.) and is a volume-based average particle size. The low melting point glass (softening point 600 ° C. or lower) used here is preferably borosilicate glass, phosphosilicate glass, or borophosphosilicate glass, but bismuth oxide, zinc oxide, vanadium oxide, tin oxide, tellurium oxide, alkali Glass using metal oxide, fluorine or the like can also be used.
 (4) 割れ防止層13としてSiO2等のセラミック粉末を低融点ガラスで結着したセラミック粉末結着層を形成する方法
 低融点ガラスをバインダとして、SiO2,Al23,Ga23,TiO2,ZrO2,HfO2,Nb25及びTa25からなる群より選ばれた1種又は2種以上のセラミック粉末を分散させたSiO2粉末等のペーストを塗布し乾燥し焼成することにより、SiO2等のセラミック粉末を低融点ガラスで結着したセラミック粉末結着層を形成し、このセラミック粉末結着層が割れ防止層13となる。このセラミック粉末結着層の具体的な形成方法は、上記(3)のSi粉末に替えて、SiO2,Al23,Ga23,TiO2,ZrO2,HfO2,Nb25及びTa25からなる群より選ばれた1種又は2種以上のセラミック粉末を用いたこと以外は、上記(3)の『割れ防止層13としてSi粉末を低融点ガラスで結着したSi粉末結着層を形成する方法』と略同様であるので、繰返しの説明を省略する。
(4) Method for forming a ceramic powder binder layer by bonding ceramic powder such as SiO 2 with low melting glass as the crack preventing layer 13 SiO 2 , Al 2 O 3 , Ga 2 O 3 using low melting glass as a binder A paste such as SiO 2 powder in which one or more ceramic powders selected from the group consisting of TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5 are dispersed is applied and dried. By firing, a ceramic powder binding layer formed by binding ceramic powder such as SiO 2 with low melting point glass is formed, and this ceramic powder binding layer becomes the crack preventing layer 13. A specific method for forming the ceramic powder binder layer is SiO 2 , Al 2 O 3 , Ga 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O instead of the Si powder of (3) above. Except for using one or more ceramic powders selected from the group consisting of 5 and Ta 2 O 5 , “Si powder was bound with low melting point glass as crack prevention layer 13 in (3) above” Since it is substantially the same as the “method for forming the Si powder binder layer”, repeated description is omitted.
 (5) 割れ防止層13としてSi粉末とSiO2等のセラミック粉末との混合粉末を低融点ガラスで結着した混合粉末結着層を形成する方法
 低融点ガラスをバインダとして、上記(3)のSi粉末及び上記(4)のセラミック粉末の混合粉末を分散させた混合粉末のペーストを塗布し乾燥し焼成することにより、混合粉末を低融点ガラスで結着した混合粉末結着層を形成し、この混合粉末結着層が割れ防止層13となる。この混合粉末結着層の具体的な形成方法は、上記(3)のSi粉末に替えて、Si粉末及びセラミック粉末の混合粉末を用いたこと以外は、上記(3)の『割れ防止層13としてSi粉末を低融点ガラスで結着したSi粉末結着層を形成する方法』と略同様であるので、繰返しの説明を省略する。
(5) A method of forming a mixed powder binder layer in which a mixed powder of Si powder and ceramic powder such as SiO 2 is bound as a crack preventing layer 13 with a low-melting glass. Using the low-melting glass as a binder, By applying a mixed powder paste in which a mixed powder of Si powder and the ceramic powder of (4) above is dispersed, drying and firing, a mixed powder binding layer in which the mixed powder is bound by low melting glass is formed, This mixed powder binder layer becomes the crack preventing layer 13. The specific method for forming the mixed powder binder layer is that the “cracking prevention layer 13” of (3) is used except that a mixed powder of Si powder and ceramic powder is used instead of the Si powder of (3). The method is substantially the same as the method of forming a Si powder binder layer in which Si powder is bound with a low-melting glass, so that repeated explanation is omitted.
 (6) 割れ防止層13としてAl溶射層を形成する方法
 ターゲット材10の表面にAlを溶射することによりAl溶射層を形成し、このAl溶射層が割れ防止層13となる。具体的なAl溶射層からなる割れ防止層の形成方法は、上記(1)の『Si溶射層からなる割れ防止層13の形成方法』と略同様であるので、繰返しの説明を省略する。
(6) Method of forming an Al sprayed layer as the crack preventing layer 13 An Al sprayed layer is formed by spraying Al on the surface of the target material 10, and this Al sprayed layer becomes the crack preventing layer 13. A specific method for forming a crack prevention layer made of an Al sprayed layer is substantially the same as the “method for forming the crack prevention layer 13 made of an Si sprayed layer” in the above (1), and therefore, repeated description is omitted.
 (7) 割れ防止層13としてポーラスシリコン層を形成する方法
 ターゲット材へのSiの溶射により形成されたシリコン層を陽極化成することによりポーラス状のポーラスシリコン層を形成し、このポーラスシリコン層が割れ防止層13となる。具体的には、先ず、ターゲット材表面のうち非エロージョン部となる第2領域以外の部分に耐薬品性のあるフィルムを貼付けるか、又はUV硬化樹脂等によりマスキングする。次に、ターゲット材と白金などの対向電極とを間隔をあけてフッ化水素酸溶液中に浸漬し、上記ターゲット材表面のうち非エロージョン部となる第2領域を陽極とし、上記対向電極を陰極として、陽極及び陰極間に電流を流す。更に、ターゲット材を洗浄した後に、ターゲット材からフィルム又はマスキングを取外す。これにより、非エロージョン部となる第2領域がポーラス状(多孔質状)になって、ポーラスシリコン層が形成される。
(7) Method of forming a porous silicon layer as the crack preventing layer 13 A porous silicon layer is formed by anodizing a silicon layer formed by thermal spraying of Si on a target material, and the porous silicon layer is cracked. It becomes the prevention layer 13. Specifically, first, a film having chemical resistance is attached to a portion other than the second region which is a non-erosion portion on the surface of the target material, or is masked with a UV curable resin or the like. Next, the target material and a counter electrode such as platinum are immersed in a hydrofluoric acid solution with a space between them, and the second region which is a non-erosion part on the surface of the target material is used as an anode, and the counter electrode is used as a cathode. Current flows between the anode and the cathode. Furthermore, after cleaning the target material, the film or masking is removed from the target material. Thereby, the 2nd field used as a non-erosion part becomes porous (porous), and a porous silicon layer is formed.
 このように構成されたシリコンターゲット材10をスパッタリング装置(成膜装置)に取付けてスパッタリングを行う方法を図4に基づいて説明する。先ず、非エロージョン部となる第2領域12に割れ防止層13が形成されたターゲット材10の裏面を、インジウムやインジウム合金等にて形成されたボンディング材(図示せず)を介して、銅製のバッキングプレート14に積層する。この状態で積層体を200℃程度に加熱することにより、ターゲット材10をバッキングプレート14にボンディング材を介して接着する。次にこのバッキングプレート14に接着されたターゲット材10の表面を、基材16の表面に所定の間隔をあけて対向させる。そして、成膜装置内を十分に排気した後、所定のArガスと酸素ガスを導入し、ターゲット材にスパッタ電力を印加することで反応性スパッタリングが実現され、基材16表面にSiO2膜(図示せず)を形成する。 A method of performing sputtering by attaching the silicon target material 10 thus configured to a sputtering apparatus (film forming apparatus) will be described with reference to FIG. First, the back surface of the target material 10 in which the crack prevention layer 13 is formed in the second region 12 to be a non-erosion portion is made of copper via a bonding material (not shown) formed of indium, an indium alloy, or the like. Laminate on backing plate 14. In this state, the laminated body is heated to about 200 ° C., so that the target material 10 is bonded to the backing plate 14 via the bonding material. Next, the surface of the target material 10 bonded to the backing plate 14 is opposed to the surface of the base material 16 with a predetermined interval. Then, after sufficiently evacuating the film forming apparatus, by introducing a predetermined Ar gas and oxygen gas, reactive sputtering by applying a sputtering power to the target material is realized, SiO 2 film on the substrate 16 surface ( (Not shown).
 その際、反応して生成したSiOxが非エロージョン部表面に堆積してSiOxの膜17(図1の拡大部)が形成される。しかし、非エロージョン部となる第2領域12には、割れ防止層13が形成されているため、酸素反応性マグネトロンスパッタリング時に、非エロージョン部上の割れ防止層13にSiOxが堆積して、非エロージョン部上の割れ防止層13表面にSiOx膜が形成される。しかし、上記割れ防止層13が非エロージョン部に堆積するSiOx膜の応力をシリコンターゲット材に伝達することを抑制する機能を発揮すると考えられる。この結果、シリコンターゲット材11をその寿命まで、即ちエロージョン深さがターゲット材11の板厚に近い値になるまでスパッタリングを行ってもシリコンターゲット材11は割れないので、ターゲット材11の利用率を向上できるとともに、ターゲット材11の交換に伴うスパッタリング装置(成膜装置)のメンテナンス頻度を低減できる。なお、この実施の形態の横長の長方形板状のターゲット材10は、ディスプレイの液晶画面や太陽電池などの作製に好適である。 At this time, the SiO x produced by the reaction is deposited on the surface of the non-erosion part, and the SiO x film 17 (enlarged part in FIG. 1) is formed. However, since the crack prevention layer 13 is formed in the second region 12 which becomes the non-erosion part, SiO x is deposited on the crack prevention layer 13 on the non-erosion part during oxygen reactive magnetron sputtering, An SiO x film is formed on the surface of the crack preventing layer 13 on the erosion portion. However, it is considered that the crack preventing layer 13 exhibits a function of suppressing transmission of stress of the SiO x film deposited on the non-erosion portion to the silicon target material. As a result, even if sputtering is performed until the silicon target material 11 reaches its lifetime, that is, until the erosion depth reaches a value close to the plate thickness of the target material 11, the silicon target material 11 is not broken. In addition to the improvement, the maintenance frequency of the sputtering apparatus (film forming apparatus) accompanying the replacement of the target material 11 can be reduced. In addition, the horizontally long rectangular plate-shaped target material 10 of this embodiment is suitable for manufacturing a liquid crystal screen of a display, a solar cell, or the like.
 次に、各割れ防止層の具体的な作用及び効果について説明する。本実施形態では、割れ防止層が、上記(1)~(7)のそれぞれにおいて、Si溶射層、SiO2溶射層、Si粉末を低融点で結着したSi粉末結着層、SiO2等のセラミック粉末を低融点ガラスで結着したセラミック粉末結着層、Si粉末及びセラミック粉末の混合粉末を低融点ガラスで結着した混合粉末結着層、Al溶射層、ポーラスシリコン層であるので、スパッタリング時に、割れ防止層にSiOxが堆積してSiOx膜が形成されても、割れ防止層の表面に比較的大きな凹凸が形成されているためにSiOx膜の応力が2次元平面内から3次元に分散されること、及び割れ防止層中の各種の粒子間(Si溶射層のSi粒子間、SiO2溶射層のSiO2粒子間、Si粉末結着層のSi粒子間、セラミック粉末結着層のセラミック粒子間、混合粉末結着層のSi粒子間及びセラミック粒子間並びにSi粒子及びセラミック粒子間、Al溶射層のAl粒子間)はSi原子間に比べ弱い結合力で溶着しているためにSiOx膜の応力が粒子間の結合を歪ませること、ポーラスシリコン層がナノオーダーのSi柱構造からなるためにSiOx膜の応力がナノ構造のSi柱構造を歪ませることなどから、SiOx膜の応力がシリコンターゲット材に伝達することを抑制する機能を発揮すると考えられる。この結果、上記と同様の効果が得られる。また、スパッタリングによりSiO2薄膜等のシリコン系薄膜を成膜する場合であれば、仮に微量のSi溶射層、SiO2溶射層、Si及びそのバインダである低融点ガラス、SiO2等及びそのバインダである低融点ガラス、Si及びSiO2等並びにそれらのバインダである低融点ガラス、Al溶射層、ポーラスシリコン層がスパッタされてSiO2薄膜等のシリコン系薄膜に混入しても、このシリコン系薄膜の品質への影響は小さい。特に、上記Si溶射層、SiO2溶射層、ポーラスシリコン層はシリコンターゲット材と同じ材料であるので、シリコン系薄膜の品質への影響は極めて小さい。 Next, specific actions and effects of each crack preventing layer will be described. In this embodiment, the crack preventing layer is a Si sprayed layer, a SiO 2 sprayed layer, a Si powder bonded layer formed by bonding Si powder with a low melting point, SiO 2 or the like in each of the above (1) to (7). Sputtering is made of ceramic powder binding layer with ceramic powder bound with low melting glass, mixed powder binding layer with mixed powder of Si powder and ceramic powder bound with low melting glass, Al sprayed layer, porous silicon layer. Sometimes, even if SiO x is deposited on the crack prevention layer and the SiO x film is formed, the stress of the SiO x film is 3 from the two-dimensional plane because relatively large irregularities are formed on the surface of the crack prevention layer. It is distributed to the dimension, and between Si particles between the various particles of cracking prevention layer (Si sprayed layer, between SiO 2 particles of SiO 2 sprayed layer, between Si particles of Si powder binder layer, a ceramic powder binder Layer of ceramic particles , Among among Si particles of the mixed powder the binder layer and the ceramic particles and between Si particles and ceramic particles, among Al particles in the thermally sprayed Al layer) of SiO x film to is welded by a weak bonding force compared between Si atoms the stress distorts the bonds between the particles, and the like of the stress of the SiO x film to the porous silicon layer is made of Si pillar structure of nanometer order is to distort the Si pillar structure of the nanostructures, the stress of the SiO x film It is considered that the function of suppressing transmission to the silicon target material is exhibited. As a result, the same effect as described above can be obtained. In addition, if a silicon-based thin film such as a SiO 2 thin film is formed by sputtering, a small amount of a Si sprayed layer, a SiO 2 sprayed layer, Si and its low-melting glass, SiO 2 or the like and its binder are used. Even if some low melting point glass, Si and SiO 2 and their binder low melting point glass, Al sprayed layer, porous silicon layer are sputtered and mixed into a silicon thin film such as SiO 2 thin film, The impact on quality is small. In particular, since the Si sprayed layer, the SiO 2 sprayed layer, and the porous silicon layer are the same material as the silicon target material, the influence on the quality of the silicon-based thin film is extremely small.
 <第2の実施の形態>
 図5及び図6は本発明の第2の実施の形態を示す。この実施の形態では、ターゲット材30が円板状に形成される。また、エロージョン部となる第1領域31は丸いドーナツ状の平面に形成される。また、非エロージョン部となる第2領域32は、ターゲット材30表面のうち第1領域31の内側に位置するように円形状に形成されるとともに第1領域31の平面より凹む丸穴部分32aと、ターゲット材30表面のうち第1領域31の外周縁に位置するように円形枠状に形成されるとともに第1領域31の平面から離れるに従って次第に下る傾斜面部分32bとからなる。更に、非エロージョン部となる第2領域32の表面には割れ防止層33が形成される。この割れ防止層33は、第2領域32のうち丸穴部分32aの表面に形成された丸穴用割れ防止層33aと、第2領域32のうち傾斜面部分32bの表面に形成された傾斜面用割れ防止層33bとからなる。なお、図5の拡大図中の符号17は、SiOxが非エロージョン部表面に堆積して形成されたSiOxの膜である。また、ターゲット材は、円板状ではなく、楕円板状、四隅に所定の曲率半径の面取りを施した四角板状、又は他の形の板状であってもよい。上記以外は第1の実施の形態と同一に構成される。
<Second Embodiment>
5 and 6 show a second embodiment of the present invention. In this embodiment, the target material 30 is formed in a disk shape. Further, the first region 31 serving as an erosion part is formed in a round donut-shaped plane. In addition, the second region 32 to be a non-erosion part is formed in a circular shape so as to be located inside the first region 31 on the surface of the target material 30 and is a round hole portion 32 a that is recessed from the plane of the first region 31. In addition, the surface of the target material 30 is formed in a circular frame shape so as to be positioned on the outer peripheral edge of the first region 31 and is formed with an inclined surface portion 32b that gradually falls away from the plane of the first region 31. Further, a crack preventing layer 33 is formed on the surface of the second region 32 that becomes a non-erosion portion. The crack preventing layer 33 includes a round hole crack preventing layer 33a formed on the surface of the round hole portion 32a in the second region 32, and an inclined surface formed on the surface of the inclined surface portion 32b in the second region 32. The crack prevention layer 33b is used. Reference numeral 17 in enlarged view of FIG. 5 is a film SiO x where SiO x is formed by depositing the non-erosion part surface. Further, the target material may not be a disc shape, but may be an elliptical plate shape, a quadrangular plate shape with chamfers having predetermined curvature radii at four corners, or another shape plate shape. The configuration other than the above is the same as that of the first embodiment.
 このように構成されたスパッタリング用シリコンターゲット材30は、円板状に形成されるので、半導体等の作製に好適である。なお、ターゲット材30への割れ防止層33の形成方法や、このターゲット材30を用いたスパッタリング方法等は、第1の実施の形態と略同様であるので、繰返しの説明を省略する。 Since the sputtering silicon target material 30 thus configured is formed in a disc shape, it is suitable for manufacturing a semiconductor or the like. In addition, since the formation method of the crack prevention layer 33 to the target material 30, the sputtering method using this target material 30, etc. are substantially the same as 1st Embodiment, repeated description is abbreviate | omitted.
 <第3の実施の形態>
 図7及び図8は本発明の第3の実施の形態を示す。この実施の形態では、ターゲット材50が、横長の長方形板状のターゲット素片51~54を複数枚長手方向に隙間をあけて一列に並べることにより形成される。この実施の形態では、4枚のターゲット素片51~54を一列に隙間をあけて並べることにより1枚のターゲット材50が構成される、即ち1枚のターゲット材50とみなされる。また、エロージョン部となる第1領域61は、上記1枚とみなされたターゲット材50の表面に、1つの横長のドーナツ状の平面に形成される。また、非エロージョン部となる第2領域62は、上記1枚とみなされたターゲット材50の表面のうち第1領域61の内側に位置するように略横長四角形状に形成されるとともに第1領域61の平面より凹む凹溝部分51a~54aと、上記1枚とみなされたターゲット材50の表面のうち第1領域61の外周縁に位置するように略四角枠状に形成されるとともに第1領域61の平面から離れるに従って次第に下る傾斜面部分51b~54bとからなる。更に、非エロージョン部となる第2領域62の表面には割れ防止層(図示せず)が形成される。この割れ防止層は、第2領域62のうち凹溝部分51a~54aの表面に形成された凹溝用割れ防止層(図示せず)と、第2領域62のうち傾斜面部分51b~54bの表面に形成された傾斜面用割れ防止層(図示せず)とからなる。なお、4枚のターゲット素片51~54を一列に並べるときに隙間をあけたのは、各ターゲット素片51~54の熱膨張を考慮したものである。
<Third Embodiment>
7 and 8 show a third embodiment of the present invention. In this embodiment, the target material 50 is formed by arranging a plurality of horizontally long rectangular plate-like target pieces 51 to 54 in a line with a gap in the longitudinal direction. In this embodiment, one target material 50 is configured by arranging four target element pieces 51 to 54 with a gap in a line, that is, it is regarded as one target material 50. In addition, the first region 61 serving as an erosion part is formed on the surface of the target material 50 regarded as one piece in a single horizontally long donut-shaped plane. In addition, the second region 62 to be a non-erosion portion is formed in a substantially horizontally long rectangular shape so as to be positioned inside the first region 61 in the surface of the target material 50 regarded as one sheet, and the first region The first groove 61 is formed in a substantially rectangular frame shape so as to be positioned at the outer peripheral edge of the first region 61 of the surface of the target material 50 regarded as one sheet, and the groove portions 51a to 54a recessed from the plane 61. It consists of inclined surface portions 51b to 54b that gradually fall away from the plane of the region 61. Further, a crack prevention layer (not shown) is formed on the surface of the second region 62 that becomes the non-erosion portion. The crack prevention layer includes a groove prevention layer (not shown) for the concave groove formed on the surface of the concave groove portions 51 a to 54 a in the second region 62, and the inclined surface portions 51 b to 54 b in the second region 62. It consists of the crack prevention layer (not shown) for inclined surfaces formed in the surface. The reason why the gap is formed when the four target element pieces 51 to 54 are arranged in a row is that the thermal expansion of each target element piece 51 to 54 is taken into consideration.
 このように構成されたターゲット材を製造するには、先ず四角柱状の多結晶シリコン又は円柱状の単結晶シリコンから正方形板状のシリコンを切り出す。次いでこの正方形板状のシリコンから複数枚の短冊状のターゲット素片を切り出す。この実施の形態では、正方形板状のシリコン55から4枚の短冊状のターゲット素片51~54を切り出す(図7(a))。次にこれらのターゲット素片51~54の表面のうち非エロージョン部となる第2領域62に凹溝部分51a~54a及び傾斜面部分51b~54bを形成した後に(図7(b))、これらの部分に割れ防止層を形成する。更に割れ防止層が形成された4枚のターゲット素片51~54をバッキングプレート56に隙間57をあけて一列に並べてボンディング材により接着する(図7(c)、図8)。上記以外は第1の実施の形態と同一に構成される。 In order to manufacture the target material configured as described above, first, square plate-shaped silicon is cut out from a rectangular columnar polycrystalline silicon or a columnar single crystal silicon. Next, a plurality of strip-shaped target pieces are cut out from the square plate-like silicon. In this embodiment, four strip-shaped target element pieces 51 to 54 are cut out from the square plate-like silicon 55 (FIG. 7A). Next, after forming the groove portions 51a to 54a and the inclined surface portions 51b to 54b in the second region 62 which is the non-erosion portion of the surface of the target element pieces 51 to 54 (FIG. 7B), these A crack prevention layer is formed on the portion. Further, the four target pieces 51 to 54 on which the crack preventing layer is formed are arranged in a line with a gap 57 on the backing plate 56 and bonded with a bonding material (FIGS. 7C and 8). The configuration other than the above is the same as that of the first embodiment.
 このように構成されたスパッタリング用シリコンターゲット材50は、4枚のターゲット素片51~54を一列に並べて1枚のターゲット材50を構成したので、大型のディスプレイの液晶画面や大型の太陽電池などの作製に好適である。なお、ターゲット材50への割れ防止層の形成方法や、このターゲット材50を用いたスパッタリング方法等は、第1の実施の形態と略同様であるので、繰返しの説明を省略する。 The sputtering silicon target material 50 configured in this way is composed of four target pieces 51 to 54 arranged in a line to form one target material 50, so that a liquid crystal screen of a large display, a large solar cell, etc. It is suitable for manufacturing. In addition, since the formation method of the crack prevention layer to the target material 50, the sputtering method using this target material 50, etc. are substantially the same as 1st Embodiment, repeated description is abbreviate | omitted.
 <第4の実施の形態>
 図9及び図10は本発明の第4の実施の形態を示す。この実施の形態では、ターゲット材80が、円筒状に形成される。また、エロージョン部となる第1領域81はターゲット材80の長手方向の中央部に形成される。また、非エロージョン部となる第2領域82,82は、ターゲット材30の長手方向の両端部にそれぞれ形成される。更に、非エロージョン部となる第2領域82,82の外周面には、割れ防止層83,83がそれぞれ形成される。上記以外は第1の実施の形態と同一に構成される。
<Fourth embodiment>
9 and 10 show a fourth embodiment of the present invention. In this embodiment, the target material 80 is formed in a cylindrical shape. Further, the first region 81 serving as an erosion portion is formed in the center portion of the target material 80 in the longitudinal direction. In addition, the second regions 82 and 82 that are non-erosion portions are formed at both ends of the target material 30 in the longitudinal direction. Further, crack prevention layers 83 and 83 are formed on the outer peripheral surfaces of the second regions 82 and 82 which are non-erosion portions, respectively. The configuration other than the above is the same as that of the first embodiment.
 このように構成された円筒状のスパッタリング用シリコンターゲット材80は、その中空部に軸が挿通され、この軸を中心にターゲット材80を回転させながらスパッタリングが行われる。なお、ターゲット材80への割れ防止層83の形成方法や、このターゲット材80を用いたスパッタリング方法等は、第1の実施の形態と略同様であるので、繰返しの説明を省略する。 The thus configured cylindrical sputtering silicon target material 80 has a shaft inserted into the hollow portion, and sputtering is performed while rotating the target material 80 about the shaft. In addition, since the formation method of the crack prevention layer 83 to the target material 80, the sputtering method using this target material 80, etc. are substantially the same as 1st Embodiment, repeated description is abbreviate | omitted.
 なお、上記第1及び第3の実施の形態では、非エロージョン部となる第2領域を凹溝部分及び傾斜面部分に機械加工し、上記第2の実施の形態では、非エロージョン部となる第2領域を丸穴部分及び傾斜面部分に機械加工したが、非エロージョン部となる第2領域を、エロージョン部となる第1領域と同一平面上の平面に形成してもよい。 In the first and third embodiments, the second region to be a non-erosion portion is machined into a groove portion and an inclined surface portion, and in the second embodiment, the second region to be a non-erosion portion. Although the two regions are machined into a round hole portion and an inclined surface portion, the second region serving as the non-erosion portion may be formed on a plane on the same plane as the first region serving as the erosion portion.
 次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
 <実施例1>
 図1~図3に示すように、先ず、多結晶シリコンを削り出すことにより、縦、横及び厚さがそれぞれ126mm、178mm及び6mmであるシリコンターゲット材10を作製した。次いで、このターゲット材10に、非エロージョン部となる第2領域12に、凹溝部分12a及び傾斜面部分12bを機械加工により形成した。具体的には、エロージョン部となる第1領域11を横長のドーナツ状の平面に形成するために、凹溝部分12aを第1領域11の内側に位置するように略横長四角形状に形成するとともに第1領域11の平面より凹む溝状に形成し、傾斜面部分12bを第1領域11の外周縁に位置するように略四角枠状に形成するとともに第1領域11の平面から離れるに従って次第に下る傾斜面状に形成した。次に、上記ターゲット材10の表面全体に、Siを溶射することにより、ターゲット材10の表面全体に厚さ20μmの割れ防止層13を形成した。この割れ防止層13の表面粗さは算術平均粗さRaで3μmであった。更に、上記割れ防止層13の形成されたターゲット材10の表面のうち第1領域11のみを研磨することにより、エロージョン部となる第1領域11から割れ防止層13を除去した。これにより非エロージョン部となる第2領域12にのみ割れ防止層13が形成された。このターゲット材10を実施例1とした。
<Example 1>
As shown in FIGS. 1 to 3, first, a silicon target material 10 having a length, width, and thickness of 126 mm, 178 mm, and 6 mm, respectively, was produced by cutting polycrystalline silicon. Next, the groove portion 12a and the inclined surface portion 12b were formed by machining on the target material 10 in the second region 12 serving as a non-erosion portion. Specifically, in order to form the first region 11 serving as an erosion portion on a horizontally long donut-shaped plane, the groove portion 12a is formed in a substantially horizontally long rectangular shape so as to be located inside the first region 11. It is formed in a groove shape that is recessed from the plane of the first region 11, and the inclined surface portion 12 b is formed in a substantially rectangular frame shape so as to be positioned on the outer peripheral edge of the first region 11, and gradually descends as the distance from the plane of the first region 11 increases. An inclined surface was formed. Next, the crack prevention layer 13 having a thickness of 20 μm was formed on the entire surface of the target material 10 by spraying Si on the entire surface of the target material 10. The surface roughness of the crack preventing layer 13 was 3 μm in terms of arithmetic average roughness Ra. Furthermore, the crack prevention layer 13 was removed from the 1st area | region 11 used as an erosion part by grind | polishing only the 1st area | region 11 among the surfaces of the target material 10 in which the said crack prevention layer 13 was formed. Thereby, the crack prevention layer 13 was formed only in the 2nd area | region 12 used as a non-erosion part. This target material 10 was taken as Example 1.
 <実施例2>
 図5及び図6に示すように、先ず、実施例1と同じ多結晶シリコンから、直径及び厚さがそれぞれ200mm及び10mmであるシリコンターゲット材30を作製した。次に、エロージョン部となる第1領域31を丸いドーナツ状の平面に形成するために、非エロージョン部となる第2領域32に、第1領域31の内側に位置する丸穴部分32aと、第1領域31の外周縁に位置する傾斜面部分32bとを機械加工により形成した。次に、上記ターゲット材30の表面全体に、実施例1と同様にして、Siを溶射することにより、ターゲット材30の表面全体に厚さ20μmの割れ防止層を形成した。この割れ防止層の表面粗さは算術平均粗さRaで3μmであった。更に、実施例1と同様にして、上記割れ防止層の形成されたターゲット材30の表面のうち第1領域31のみを研磨することにより、エロージョン部となる第1領域31から割れ防止層を除去した。これにより非エロージョン部となる第2領域32にのみ割れ防止層33が形成された。このターゲット材30を実施例2とした。
<Example 2>
As shown in FIGS. 5 and 6, first, a silicon target material 30 having a diameter and a thickness of 200 mm and 10 mm, respectively, was produced from the same polycrystalline silicon as in Example 1. Next, in order to form the first region 31 serving as the erosion portion in a round donut-shaped plane, the second region 32 serving as the non-erosion portion is provided with a round hole portion 32a positioned inside the first region 31 and the second region 32a. The inclined surface portion 32b located at the outer peripheral edge of the one region 31 was formed by machining. Next, a crack preventing layer having a thickness of 20 μm was formed on the entire surface of the target material 30 by spraying Si on the entire surface of the target material 30 in the same manner as in Example 1. The surface roughness of the crack preventing layer was 3 μm in terms of arithmetic average roughness Ra. Further, in the same manner as in Example 1, the crack prevention layer is removed from the first region 31 that becomes the erosion portion by polishing only the first region 31 of the surface of the target material 30 on which the crack prevention layer is formed. did. As a result, the crack preventing layer 33 was formed only in the second region 32 to be a non-erosion portion. This target material 30 was set as Example 2.
 <実施例3>
 実施例1のSi溶射層からなる割れ防止層に替えて、SiO2溶射層からなる割れ防止層を用いたこと以外は、実施例1と同様にしてターゲット材を作製した。このターゲット材を実施例3とした。なお、割れ防止層の表面粗さは算術平均粗さRaで2μmであった。
<Example 3>
A target material was produced in the same manner as in Example 1 except that a crack preventing layer made of a SiO 2 sprayed layer was used instead of the crack preventing layer made of the Si sprayed layer in Example 1. This target material was designated as Example 3. The surface roughness of the crack preventing layer was 2 μm in terms of arithmetic average roughness Ra.
 <実施例4>
 実施例1のSi溶射層からなる割れ防止層に替えて、Si粉末を低融点ガラスで結着したSi粉末結着層からなる割れ防止層を用いたこと以外は、実施例1と同様にしてターゲット材を作製した。このターゲット材を実施例4とした。なお、Si粉末結着層は次の方法で形成した。先ず、平均粒径10μmのSi粉末を軟化点550℃程度の低融点ガラスに分散させてSiペーストを調製し、このSiペーストをスクリーン印刷法によりターゲット材表面に印刷した。ここで、Si粉末の含有割合は、Si粉末結着層を100質量%とするとき90質量%であった。次いで、このターゲット材をホットプレートに載せ、このホットプレートを2℃/分の昇温速度で30℃から150℃に昇温し、150℃に20分間保持することにより、ターゲット材表面に塗布された低融点ガラスの膜を乾燥させた。次に、上記ホットプレートを2℃/分の昇温速度で150℃から550℃まで昇温し、この温度に20分間保持することにより、上記低融点ガラスの膜を焼成して、ターゲット材表面にSi粉末結着層を形成した。更に、上記ホットプレートを3℃/分の降温速度で550℃から60℃まで降温した。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 4>
It replaced with the crack prevention layer which consists of a Si sprayed layer of Example 1, and carried out similarly to Example 1 except having used the crack prevention layer which consists of Si powder binding layers which bound Si powder with the low melting glass. A target material was produced. This target material was referred to as Example 4. The Si powder binder layer was formed by the following method. First, a Si paste was prepared by dispersing Si powder having an average particle size of 10 μm in a low melting point glass having a softening point of about 550 ° C., and this Si paste was printed on the surface of the target material by a screen printing method. Here, the content ratio of the Si powder was 90% by mass when the Si powder binder layer was 100% by mass. Next, the target material is placed on a hot plate, and the hot plate is heated from 30 ° C. to 150 ° C. at a rate of temperature increase of 2 ° C./min and held at 150 ° C. for 20 minutes to be applied to the surface of the target material. The low melting glass film was dried. Next, the temperature of the hot plate is increased from 150 ° C. to 550 ° C. at a temperature increase rate of 2 ° C./min, and this temperature is maintained for 20 minutes, whereby the low melting point glass film is baked, and the surface of the target material An Si powder binder layer was formed on the substrate. Furthermore, the temperature of the hot plate was decreased from 550 ° C. to 60 ° C. at a temperature decreasing rate of 3 ° C./min. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例5>
 実施例4のSi粉末を低融点ガラスで結着したSi粉末結着層からなる割れ防止層に替えて、SiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例4と同様にしてターゲット材を作製した。このターゲット材を実施例5とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 5>
Instead of the crack prevention layer comprising the Si powder binder layer obtained by binding the Si powder of Example 4 with the low melting glass, the ceramic powder binder layer comprising the SiO 2 powder (ceramic powder) bound with the low melting glass. A target material was produced in the same manner as in Example 4 except that a crack preventing layer was used. This target material was designated as Example 5. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例6>
 実施例5のSiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層に替えて、Al23粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例5と同様にしてターゲット材を作製した。このターゲット材を実施例6とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 6>
The Al 2 O 3 powder (ceramic powder) was bonded with the low-melting glass instead of the crack prevention layer composed of the ceramic powder bonding layer formed by bonding the SiO 2 powder (ceramic powder) of Example 5 with the low-melting glass. A target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 6. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例7>
 実施例5のSiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層に替えて、Ga23粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例5と同様にしてターゲット材を作製した。このターゲット材を実施例7とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 7>
Ga 2 O 3 powder (ceramic powder) was bound with low-melting glass instead of the crack prevention layer composed of the ceramic powder binding layer bound with the SiO 2 powder (ceramic powder) of Example 5 with low-melting glass. A target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 7. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例8>
 実施例5のSiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層に替えて、TiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例5と同様にしてターゲット材を作製した。このターゲット材を実施例8とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 8>
Ceramic powder in which TiO 2 powder (ceramic powder) is bound with low melting glass instead of the crack prevention layer composed of the ceramic powder binding layer in which the SiO 2 powder (ceramic powder) of Example 5 is bound with low melting glass A target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a binder layer was used. This target material was designated as Example 8. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例9>
 実施例5のSiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層に替えて、ZrO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例5と同様にしてターゲット材を作製した。このターゲット材を実施例9とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 9>
A ceramic powder obtained by binding ZrO 2 powder (ceramic powder) with low-melting glass instead of a crack prevention layer comprising a ceramic powder binding layer obtained by binding SiO 2 powder (ceramic powder) of Example 5 with low-melting glass A target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a binder layer was used. This target material was designated as Example 9. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例10>
 実施例5のSiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層に替えて、HfO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例5と同様にしてターゲット材を作製した。このターゲット材を実施例10とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 10>
A ceramic powder obtained by binding HfO 2 powder (ceramic powder) with low melting glass instead of the crack prevention layer comprising the ceramic powder binding layer obtained by binding the SiO 2 powder (ceramic powder) of Example 5 with low melting glass A target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a binder layer was used. This target material was designated as Example 10. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例11>
 実施例5のSiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層に替えて、Nb25粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例5と同様にしてターゲット材を作製した。このターゲット材を実施例11とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 11>
The Nb 2 O 5 powder (ceramic powder) was bonded with the low-melting glass instead of the crack prevention layer composed of the ceramic powder bonding layer formed by bonding the SiO 2 powder (ceramic powder) of Example 5 with the low-melting glass. A target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 11. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例12>
 実施例5のSiO2粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層に替えて、Ta25粉末(セラミック粉末)を低融点ガラスで結着したセラミック粉末結着層からなる割れ防止層を用いたこと以外は、実施例5と同様にしてターゲット材を作製した。このターゲット材を実施例12とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 12>
The Ta 2 O 5 powder (ceramic powder) was bonded with the low melting glass instead of the crack prevention layer composed of the ceramic powder bonding layer formed by bonding the SiO 2 powder (ceramic powder) of Example 5 with the low melting glass. A target material was produced in the same manner as in Example 5 except that a crack preventing layer composed of a ceramic powder binder layer was used. This target material was designated as Example 12. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例13>
 実施例1のSi溶射層からなる割れ防止層に替えて、Al溶射層からなる割れ防止層を用いたこと以外は、実施例1と同様にしてターゲット材を作製した。このターゲット材を実施例13とした。なお、割れ防止層の表面粗さは算術平均粗さRaで1μmであった。
<Example 13>
A target material was produced in the same manner as in Example 1 except that a crack preventing layer made of an Al sprayed layer was used instead of the crack preventing layer made of the Si sprayed layer of Example 1. This target material was designated as Example 13. The surface roughness of the crack preventing layer was 1 μm in terms of arithmetic average roughness Ra.
 <実施例14>
 実施例1のSi溶射層からなる割れ防止層に替えて、ポーラスシリコン層からなる割れ防止層を用いたこと以外は、実施例1と同様にしてターゲット材を作製した。このターゲット材を実施例14とした。なお、ポーラスシリコン層からなる割れ防止層は次の方法で形成した。先ず、ターゲット材表面のうち非エロージョン部となる第2領域以外の部分にUV硬化樹脂によりマスキングした。次に、ターゲット材と白金の対向電極とを間隔をあけてフッ化水素酸溶液中に浸漬し、上記ターゲット材表面のうち非エロージョン部となる第2領域を陽極とし、上記対向電極を陰極として、陽極及び陰極間に電流を流した。更に、ターゲット材を洗浄した後に、ターゲット材からマスキングを取外した。これにより、非エロージョン部となる第2領域のSi溶射層がポーラス状(多孔質状)になって、ポーラスシリコン層が形成された。また、割れ防止層の表面粗さは算術平均粗さRaで5μmであった。
<Example 14>
A target material was produced in the same manner as in Example 1 except that a crack preventing layer made of a porous silicon layer was used instead of the crack preventing layer made of the Si sprayed layer in Example 1. This target material was referred to as Example 14. In addition, the crack prevention layer which consists of a porous silicon layer was formed with the following method. First, a portion of the target material surface other than the second region to be a non-erosion portion was masked with a UV curable resin. Next, the target material and the counter electrode of platinum are immersed in a hydrofluoric acid solution with a space therebetween, and the second region that is a non-erosion portion of the surface of the target material is used as an anode, and the counter electrode is used as a cathode. A current was passed between the anode and the cathode. Furthermore, after cleaning the target material, the masking was removed from the target material. As a result, the Si sprayed layer in the second region serving as the non-erosion portion became porous (porous), and a porous silicon layer was formed. Further, the surface roughness of the crack preventing layer was 5 μm in terms of arithmetic average roughness Ra.
 <比較例1>
 非エロージョン部となる第2領域に割れ防止層を形成しなかった、即ちターゲット材の表面に割れ防止層を形成しなかったこと以外は、実施例1と同様にしてターゲット材を作製した。このターゲット材を比較例1とした。
<Comparative Example 1>
A target material was produced in the same manner as in Example 1 except that the crack prevention layer was not formed in the second region serving as the non-erosion portion, that is, the crack prevention layer was not formed on the surface of the target material. This target material was designated as Comparative Example 1.
 <比較例2>
 非エロージョン部となる第2領域に割れ防止層を形成しなかった、即ちターゲット材の表面に割れ防止層を形成しなかったこと以外は、実施例2と同様にしてターゲット材を作製した。このターゲット材を比較例2とした。
<Comparative Example 2>
A target material was produced in the same manner as in Example 2 except that the crack prevention layer was not formed in the second region serving as the non-erosion portion, that is, the crack prevention layer was not formed on the surface of the target material. This target material was referred to as Comparative Example 2.
 <比較試験1及び評価>
 実施例1~14と比較例1及び2のターゲット材を用いて、スパッタリングにより基材表面にSiO2薄膜を形成した。具体的には、スパッタリング装置(成膜装置)として、株式会社 昭和真空製のSPH-2307を用い、基材としてスライドガラスを用いた。スパッタ条件は次の通りであった。パルス周波数は20kHzであり、パルス出力はDC1000Wであり、スパッタガス圧は0.4Paであった。また、Arガスの流量は6sccm(standard cc/min)であり、酸素ガスの流量は9sccmであった。また、上記スパッタリングを連続380時間行った後のターゲット材表面の状態を目視により検査した。
<Comparative test 1 and evaluation>
Using the target materials of Examples 1 to 14 and Comparative Examples 1 and 2, a SiO 2 thin film was formed on the substrate surface by sputtering. Specifically, SPH-2307 manufactured by Showa Vacuum Co., Ltd. was used as the sputtering apparatus (film forming apparatus), and a slide glass was used as the substrate. The sputtering conditions were as follows. The pulse frequency was 20 kHz, the pulse output was DC 1000 W, and the sputtering gas pressure was 0.4 Pa. The flow rate of Ar gas was 6 sccm (standard cc / min), and the flow rate of oxygen gas was 9 sccm. Moreover, the state of the target material surface after performing said sputtering continuously for 380 hours was visually inspected.
 その結果、比較例1及び2のターゲット材は、連続180時間のスパッタリング後に表面に複数の割れが発生したのに対し、実施例1~14のターゲット材は、連続380時間のスパッタリングを行っても表面に割れは全く発生せず、ターゲット材を使い切り、ターゲット材のエロージョン部となる第1領域はターゲット材背面のバッキングプレートまで貫通した。 As a result, in the target materials of Comparative Examples 1 and 2, a plurality of cracks occurred on the surface after the sputtering for 180 hours, whereas the target materials of Examples 1 to 14 were subjected to the sputtering for 380 hours continuously. No cracks occurred on the surface, the target material was used up, and the first region that became the erosion part of the target material penetrated to the backing plate on the back of the target material.
 本発明のシリコンターゲット材は、シリコンの薄膜を形成するためのスパッタリング装置に利用できる。 The silicon target material of the present invention can be used in a sputtering apparatus for forming a silicon thin film.

Claims (9)

  1.  スパッタリング雰囲気に少なくとも酸素ガスを含んでマグネトロンスパッタリングを行うときに使用されるスパッタリング用シリコンターゲット材であって、
     マグネトロンスパッタリング時に、前記シリコンターゲット材の表面がスパッタされてエロージョン部となる第1領域と、スパッタされない非エロージョン部となる第2領域とを有し、
     前記第2領域にスパッタリング中のターゲット材の割れを防止する層を有する
     ことを特徴とするスパッタリング用シリコンターゲット材。
    A silicon target material for sputtering used when performing magnetron sputtering including at least oxygen gas in a sputtering atmosphere,
    During magnetron sputtering, the surface of the silicon target material is sputtered to have a first region that becomes an erosion portion, and a second region that becomes a non-erosion portion that is not sputtered,
    A silicon target material for sputtering, comprising: a layer for preventing cracking of the target material during sputtering in the second region.
  2.  前記ターゲット材の割れを防止する層の表面粗さが、算術平均粗さRaで0.5~10μmの範囲内にある請求項1記載のスパッタリング用シリコンターゲット材。 2. The silicon target material for sputtering according to claim 1, wherein the surface roughness of the layer for preventing cracking of the target material is in the range of 0.5 to 10 μm in terms of arithmetic average roughness Ra.
  3.  前記ターゲット材の割れを防止する層がSi溶射層である請求項1又は2記載のスパッタリング用シリコンターゲット材。 3. The silicon target material for sputtering according to claim 1 or 2, wherein the layer for preventing cracking of the target material is a Si sprayed layer.
  4.  前記ターゲット材の割れを防止する層がSiO2溶射層である請求項1又は2記載のスパッタリング用シリコンターゲット材。 Claim 1 or 2 for sputtering silicon target material according layers to prevent cracking is SiO 2 sprayed layer of the target material.
  5.  前記ターゲット材の割れを防止する層がSi粉末を低融点ガラスで結着したSi粉末結着層である請求項1又は2記載のスパッタリング用シリコンターゲット材。 3. The silicon target material for sputtering according to claim 1, wherein the layer for preventing the target material from cracking is a Si powder binder layer obtained by binding Si powder with a low melting point glass.
  6.  前記ターゲット材の割れを防止する層が、SiO2,Al23,Ga23,TiO2,ZrO2,HfO2,Nb25及びTa25からなる群より選ばれた1種又は2種以上のセラミック粉末を低融点ガラスで結着したセラミック粉末結着層である請求項1又は2記載のスパッタリング用シリコンターゲット材。 The layer for preventing the target material from cracking is selected from the group consisting of SiO 2 , Al 2 O 3 , Ga 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5. The silicon target material for sputtering according to claim 1 or 2, which is a ceramic powder binding layer obtained by binding seeds or two or more ceramic powders with low-melting glass.
  7.  前記ターゲット材の割れを防止する層が、Si粉末と、SiO2,Al23,Ga23,TiO2,ZrO2,HfO2,Nb25及びTa25からなる群より選ばれた1種又は2種以上のセラミック粉末との混合粉末を低融点ガラスで結着した混合粉末結着層である請求項1又は2記載のスパッタリング用シリコンターゲット材。 The layer for preventing the target material from cracking is made of Si powder and a group consisting of SiO 2 , Al 2 O 3 , Ga 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 and Ta 2 O 5. The silicon target material for sputtering according to claim 1 or 2, wherein the silicon target material for sputtering is a mixed powder binding layer obtained by binding a mixed powder of one or more selected ceramic powders with a low melting point glass.
  8.  前記ターゲット材の割れを防止する層がAl溶射層である請求項1又は2記載のスパッタリング用シリコンターゲット材。 3. The silicon target material for sputtering according to claim 1, wherein the layer for preventing the target material from cracking is an Al sprayed layer.
  9.  前記ターゲット材の割れを防止する層がポーラスシリコン層である請求項1又は2記載のスパッタリング用シリコンターゲット材。 3. The silicon target material for sputtering according to claim 1, wherein the layer for preventing the target material from cracking is a porous silicon layer.
PCT/JP2016/071684 2015-08-28 2016-07-25 Sputtering silicon target material WO2017038299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015168549A JP6116632B2 (en) 2015-08-28 2015-08-28 Silicon target material for sputtering and method of forming a crack prevention layer on the target material
JP2015-168549 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038299A1 true WO2017038299A1 (en) 2017-03-09

Family

ID=58187156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071684 WO2017038299A1 (en) 2015-08-28 2016-07-25 Sputtering silicon target material

Country Status (2)

Country Link
JP (1) JP6116632B2 (en)
WO (1) WO2017038299A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375365A (en) * 1989-08-17 1991-03-29 Mitsubishi Kasei Corp Sputtering target
JPH06306596A (en) * 1993-04-23 1994-11-01 Mitsubishi Materials Corp Si target material for magnetron sputtering
JPH09176842A (en) * 1995-12-22 1997-07-08 Mitsubishi Materials Corp Titanium target for magnetron sputtering
JPH09272965A (en) * 1996-04-09 1997-10-21 Toshiba Corp Parts for vacuum film forming device, vacuum film forming device using the same, target and backing plate
JP2000319776A (en) * 1999-05-06 2000-11-21 Sti Technology Kk Target for sputtering and production of black matrix for color filter using the same
WO2002040733A1 (en) * 2000-11-17 2002-05-23 Nikko Materials Company, Limited Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
JP2013007109A (en) * 2011-06-27 2013-01-10 Ulvac Japan Ltd Target for sputtering, and method for sputtering using the same
JP2013079420A (en) * 2011-10-03 2013-05-02 Japan Steel Works Ltd:The Sputtering apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610877B2 (en) * 2010-06-25 2014-10-22 株式会社日本セラテック Sputtering target, manufacturing method thereof and target material raw material
WO2013034181A1 (en) * 2011-09-07 2013-03-14 Applied Materials, Inc. Method and system for manufacturing a transparent body for use in a touch panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375365A (en) * 1989-08-17 1991-03-29 Mitsubishi Kasei Corp Sputtering target
JPH06306596A (en) * 1993-04-23 1994-11-01 Mitsubishi Materials Corp Si target material for magnetron sputtering
JPH09176842A (en) * 1995-12-22 1997-07-08 Mitsubishi Materials Corp Titanium target for magnetron sputtering
JPH09272965A (en) * 1996-04-09 1997-10-21 Toshiba Corp Parts for vacuum film forming device, vacuum film forming device using the same, target and backing plate
JP2000319776A (en) * 1999-05-06 2000-11-21 Sti Technology Kk Target for sputtering and production of black matrix for color filter using the same
WO2002040733A1 (en) * 2000-11-17 2002-05-23 Nikko Materials Company, Limited Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
JP2013007109A (en) * 2011-06-27 2013-01-10 Ulvac Japan Ltd Target for sputtering, and method for sputtering using the same
JP2013079420A (en) * 2011-10-03 2013-05-02 Japan Steel Works Ltd:The Sputtering apparatus

Also Published As

Publication number Publication date
JP6116632B2 (en) 2017-04-19
JP2017043812A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US20150357169A1 (en) Silicon sputtering target with enhanced surface profile and improved performance and methods of making the same
US6902814B2 (en) Quartz glass parts, ceramic parts and process of producing those
KR101103821B1 (en) A manufacturing method of a high purity electrostatic chuck using glass bonding process and an electrostatic chuck using the same
KR101920170B1 (en) Target material for sputtering and method for manufacturing same
TWI662001B (en) Quartz glass element and manufacturing method of quartz glass element
JP2007070175A (en) Thermal spray film-coated member having excellent plasma erosion resistance and method of manufacturing the same
JP2007131951A (en) Spray deposit film covered member having excellent plasma erosion resistance, and its manufacturing method
EP2653585B1 (en) Laminated structure body and fabrication method for same
JP5766771B2 (en) Method for manufacturing upper electrode of dry etching reaction chamber
WO2017038299A1 (en) Sputtering silicon target material
JP7101717B2 (en) Sputtering target and its manufacturing method
KR101980465B1 (en) Sputtering target and method for producing same
TWI737839B (en) Silicon target
JP6273734B2 (en) Flat plate sputtering target and manufacturing method thereof
JP2004084033A (en) METHOD FOR DEPOSITING SiO2 FILM AND ARTICLE WITH SiO2 FILM DEPOSITED BY THE METHOD
KR20120096198A (en) Ceramic coating method for corrosion resistant member and corrosion resistant member coated by ceramic
JP5739173B2 (en) Manufacturing method of ceramic sprayed member
JP4811324B2 (en) Sputtering target
JP6297620B2 (en) Sputtering target and manufacturing method thereof
JP2017150089A (en) Sputtering target and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841331

Country of ref document: EP

Kind code of ref document: A1