WO2017030150A1 - 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物 - Google Patents

酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物 Download PDF

Info

Publication number
WO2017030150A1
WO2017030150A1 PCT/JP2016/074032 JP2016074032W WO2017030150A1 WO 2017030150 A1 WO2017030150 A1 WO 2017030150A1 JP 2016074032 W JP2016074032 W JP 2016074032W WO 2017030150 A1 WO2017030150 A1 WO 2017030150A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
oxide film
aluminum
compound
amidinato
Prior art date
Application number
PCT/JP2016/074032
Other languages
English (en)
French (fr)
Inventor
白井 昌志
央 二瓶
貴匡 宮崎
純一 向
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2017535553A priority Critical patent/JPWO2017030150A1/ja
Publication of WO2017030150A1 publication Critical patent/WO2017030150A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present disclosure relates to a method for manufacturing an aluminum oxide film, a raw material for manufacturing an aluminum oxide film, and an aluminum compound.
  • the aluminum oxide film is useful as a gate insulating film and has been widely applied in the semiconductor field. Therefore, an aluminum compound (a raw material for producing an aluminum oxide film) for producing an aluminum oxide film has been studied (see, for example, Patent Documents 1 to 4).
  • Non-Patent Document 1 discloses (ditertiary butyl (methyl) amidinato) dimethylaluminum as a polymerization catalyst. However, no physical property values and characteristics are described.
  • Non-Patent Document 2 discloses a synthesis example of (ditertiary butyl (ethyl) amidinato) diethylaluminum. However, no properties are described.
  • JP 2006-526705 A Japanese Patent No. 4716193 JP 2007-138296 A Korean Registered Patent No. 10-121861
  • a method for manufacturing an aluminum oxide film that can stably manufacture an aluminum oxide film with reduced thickness variation is provided. Moreover, in another side, the manufacturing raw material used suitably for the said manufacturing method and an aluminum compound are provided.
  • the present invention supplies an aluminum compound represented by the following formula (1) onto a heated film formation target, and oxidizes the aluminum compound to form an aluminum oxide film on the film formation target.
  • a method for manufacturing an aluminum oxide film which includes a forming step.
  • R represents a linear alkyl group having 1 to 2 carbon atoms, and a plurality of R may be the same or different from each other.
  • t-Bu represents a tertiary butyl group.
  • an aluminum oxide film with reduced thickness variation can be stably manufactured.
  • the reason for this is presumably because the aluminum compound represented by the above formula (1) can be easily decomposed under heating and can stably deposit aluminum oxide into a film under heating.
  • the film formation target is preferably heated to 300 to 500 ° C. Thereby, the variation in the thickness of the aluminum oxide film can be further reduced.
  • a high-quality aluminum oxide film can be manufactured by sufficiently reducing impurities contained in the aluminum oxide film.
  • the aluminum compound may contain a compound represented by the following formula (1-1).
  • R 1 and R 2 represent different alkyl groups.
  • R 1 and R 2 each independently represent a linear alkyl group having 1 to 2 carbon atoms, and a plurality of R 1 may be the same or different from each other.
  • t-Bu represents a tertiary butyl group.
  • the aluminum compound represented by the above formula (1-1) contains a methyl group, the vapor pressure becomes high and energy required for vaporization can be reduced.
  • an atomic layer deposition method (Atomic Layer Deposition; hereinafter referred to as “ALD method”) or a chemical vapor deposition method (Chemical Vapor Deposition method; hereinafter referred to as “CVD method”). )
  • ALD method atomic layer deposition method
  • CVD method chemical vapor deposition method
  • the present invention provides a raw material for producing an aluminum oxide film containing an aluminum compound represented by the following formula (1).
  • R represents a linear alkyl group having 1 to 2 carbon atoms, and a plurality of R may be the same or different from each other.
  • t-Bu represents a tertiary butyl group.
  • the aluminum compound represented by the above formula (1) is used as a raw material for producing an aluminum oxide film, an aluminum oxide film with reduced thickness variation can be stably produced. This is presumably because the aluminum compound can be easily decomposed by heating in the presence of an oxygen source, and can stably deposit aluminum oxide into a film.
  • the aluminum compound may contain a compound represented by the following formula (1-1).
  • R 1 and R 2 are different alkyl groups.
  • R 1 and R 2 each independently represent a linear alkyl group having 1 to 2 carbon atoms, and a plurality of R 1 may be the same or different from each other.
  • t-Bu represents a tertiary butyl group.
  • the aluminum compound represented by the above formula (1-1) contains a methyl group, the vapor pressure becomes high and energy required for vaporization can be reduced.
  • the present invention provides an aluminum compound represented by the following formula (1-1).
  • R 1 and R 2 represent different alkyl groups.
  • R 1 and R 2 each independently represent a linear alkyl group having 1 to 2 carbon atoms, and a plurality of R 1 may be the same or different from each other.
  • t-Bu represents a tertiary butyl group.
  • the aluminum compound can be easily decomposed under heating, and can stably deposit aluminum oxide into a film even under heating. Therefore, an aluminum oxide film having a predetermined thickness can be stably manufactured.
  • the manufacturing raw material used suitably for the said manufacturing method and an aluminum compound can be provided.
  • the method for manufacturing an aluminum oxide film according to the present embodiment includes a step of supplying an aluminum compound onto a heated film formation target and oxidizing the aluminum compound to form the aluminum oxide film on the film formation target. Have.
  • the aluminum compound used in the method for producing an aluminum oxide film is a (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound represented by the following formula (1).
  • R represents a linear alkyl group having 1 to 2 carbon atoms, and a plurality of R may be the same or different.
  • t-Bu represents a tertiary butyl group.
  • R (alkyl group) in formula (1) include a methyl group and an ethyl group.
  • the (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound represented by the above formula (1) preferably contains a compound represented by the following formula (1-1).
  • R 1 and R 2 are different alkyl groups.
  • R 1 and R 2 each independently represents a linear alkyl group having 1 to 2 carbon atoms.
  • the two R 1 s may be the same or different from each other.
  • it is preferable that two R ⁇ 1 > is the same from a viewpoint of reduction of manufacturing cost and the ease of raw material acquisition.
  • t-Bu represents a tertiary butyl group.
  • suitable aluminum compounds used in the method for producing an aluminum oxide film include compounds represented by the following formulas (2) to (5).
  • t-Bu represents a tertiary butyl group
  • Me and Et represent a methyl group and an ethyl group, respectively. That is, the compound represented by the formula (2) is (ditertiary butyl (methyl) amidinato) dimethylaluminum, and the compound represented by the formula (3) is (ditertiary butyl (ethyl) amidinato) diethylaluminum.
  • the compound represented by the formula (4) is (ditertiary butyl (ethyl) amidinato) dimethylaluminum, and the compound represented by the formula (5) is (ditertiary butyl (methyl) amidinato) diethylaluminum.
  • Each aluminum compound represented by the above formulas (1), (1-1), (2) to (5) can be suitably used for forming an aluminum oxide film on a film formation target. That is, it is suitable for the use of forming an aluminum oxide film on a film formation target. It can also be said that the aluminum compound represented by the above formula (1), (1-1) or (2) to (5) is used for forming the aluminum oxide film.
  • dialkylaluminum compound can be produced, for example, by the following (Method 1) or (Method 2).
  • Method 1 is a method in which ditertiary butyl carbodiimide is reacted with an alkyl alkali metal compound or ditertiary butyl carbodiimide is reacted with an alkyl alkaline earth metal compound to obtain a metal salt of ditertiary butyl (alkyl) amidine.
  • One step and a second step of reacting the obtained metal salt with a dialkylaluminum halide is a method in which ditertiary butyl carbodiimide is reacted with an alkyl alkali metal compound or ditertiary butyl carbodiimide is reacted with an alkyl alkaline earth metal compound to obtain a metal salt of ditertiary butyl (alkyl) amidine.
  • Method 2 has a step of reacting ditertiary butyl carbodiimide and trialkylaluminum.
  • Examples of the metal compound used in Method 1 include methyl lithium, ethyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, diethyl magnesium, ethyl butyl magnesium, and dibutyl magnesium. You may use 1 type of these individually or in combination of 2 or more types. Of the above metal compounds, methyllithium is preferred from the viewpoints of reducing production costs, availability of raw materials, and improving reaction yield.
  • the amount of the alkali metal compound used is preferably 0.4 to 1.4 mol, more preferably 0.6 to 1.2 mol, with respect to 1 mol of ditertiary butylcarbodiimide.
  • the amount of the alkaline earth metal compound used is preferably 0.2 to 0.7 mol, more preferably 0.3 to 0.6 mol, with respect to 1 mol of ditertiary butylcarbodiimide.
  • dialkylaluminum halide examples include dimethylaluminum chloride, dimethylaluminum bromide, diethylaluminum chloride, and diethylaluminum bromide. You may use 1 type of these individually or in combination of 2 or more types. Of the dialkylaluminum halides, diethylaluminum chloride is preferred from the viewpoints of reducing production cost, availability of raw materials, and improving reaction yield.
  • dialkylaluminum halide used is preferably 0.1 to 1.6 mol, more preferably 0.5 mol, per 1 mol of ditertiary butyl (alkyl) amidine in the metal salt of ditertiary butyl (alkyl) amidine. ⁇ 1.2 mol.
  • trialkylaluminum used in Method 2 examples include trimethylaluminum and triethylaluminum.
  • the amount of trialkylaluminum used is preferably 0.1 to 1.6 mol, more preferably 0.5 to 1.2 mol, per 1 mol of ditertiary butylcarbodiimide.
  • Method 1 and Method 2 are each preferably performed in an organic solvent.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction. Examples include ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane, and dioxane; aliphatic hydrocarbons such as hexane, heptane, cyclohexane, methylcyclohexane, and ethylcyclohexane; aromatic hydrocarbons such as toluene and xylene. Of these, ethers, aliphatic hydrocarbons, and mixed solvents of ethers and aliphatic hydrocarbons are preferable. In addition, these organic solvents may be used independently and may be used in combination of 2 or more types.
  • the amount of the organic solvent used in Method 1 and Method 2 is preferably 1 to 100 g, more preferably 5 to 50 g based on 1 g of dialkylaluminum halide or 1 g of trialkylaluminum.
  • the reaction of Method 1 can be performed, for example, by the following procedure.
  • first step ditertiary butyl carbodiimide, an alkyl alkali metal compound and an organic solvent are mixed and reacted with stirring to give an alkali metal salt of ditertiary butyl (alkyl) amidine (ditertiary butyl (alkyl) amidinato. Compound).
  • second step a dialkylaluminum halide is added and further reacted with stirring.
  • the reaction temperature in the first step and the second step is preferably ⁇ 100 to 100 ° C., more preferably ⁇ 80 to 40 ° C.
  • the reaction pressure at this time is not particularly limited.
  • the ditertiary butyl (alkyl) amidinato compound obtained in the first step may be once isolated or used as it is before the reaction with the dialkylaluminum halide in the second step.
  • the reaction of the method 2 includes, for example, a step of mixing and reacting ditertiary butylcarbodiimide, trialkylaluminum, and an organic solvent.
  • the reaction temperature at that time is preferably ⁇ 100 to 100 ° C., more preferably ⁇ 80 to 40 ° C.
  • the reaction pressure at this time is not particularly limited.
  • a dialkylaluminum compound can be obtained by the reaction of Method 1 or Method 2 (ditertiary butyl (alkyl) amidinato). After completion of the reaction, the (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound may be isolated or purified by a known method. Known methods include extraction, filtration, concentration, distillation, sublimation, recrystallization, column chromatography, and the like. One of these may be used alone or in combination of two or more.
  • dialkylaluminum compounds are often unstable to moisture and oxygen in the atmosphere. For this reason, it is preferable to perform each process of Method 1 or Method 2, and post-treatment of the reaction solution as necessary under anhydrous conditions or inert gas conditions.
  • (Ditertiary butyl (alkyl) amidinato) dialkylaluminum compound is suitably used as a production raw material (production raw material) for producing an aluminum oxide film.
  • the production raw material (production raw material) for producing the aluminum oxide film is preferably composed only of (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound.
  • the above production raw material (production raw material) is a small amount of impurities (aluminum compound, etc.) other than (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound as long as the quality of the formed aluminum oxide film is not greatly affected. ) May be included.
  • Examples of a method for forming an aluminum oxide film on a film formation target include a chemical vapor deposition method (CVD method) and an atomic layer deposition method (ALD method).
  • the ALD method is more preferably used in terms of easy control of the film thickness and easy formation of a thin film.
  • the step of forming the aluminum oxide film on the film formation target is performed, for example, according to the following procedure.
  • a gas containing (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound and a reactive gas are supplied onto the heated film formation target.
  • the reactive gas has oxygen as a constituent element. Examples thereof include oxidizing gases such as oxygen and ozone; water; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, and n-butanol.
  • the (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound is oxidized by the reactive gas. Thereby, aluminum oxide is vapor-deposited on the film formation target, and an aluminum oxide film is formed.
  • the gas containing (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound may be a gas (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound diluted with an inert gas or the like. Further, the (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound contained in the gas may be in the form of a mist (droplet).
  • the step of forming an aluminum oxide film on the film formation target may be performed by a plasma CVD method instead of the ALD method.
  • an aluminum oxide film can be formed on the film formation target by supplying the same raw material onto the film formation target.
  • a method of vaporizing a (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound by filling or transporting it into a vaporizing chamber can be mentioned.
  • the (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound is diluted in a suitable solvent to prepare a solution.
  • a method (solution method) in which this solution is introduced into a vaporizing chamber with a liquid transfer pump and vaporized is exemplified.
  • solvent used here examples include aliphatic hydrocarbons such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, and octane; aromatic hydrocarbons such as toluene, ethylbenzene, and xylene; glyme, diglyme, triglyme, dioxane, Examples include ethers such as tetrahydrofuran. One of these may be used alone or in combination of two or more.
  • the pressure in the reaction system when forming an aluminum oxide film by vapor-depositing aluminum oxide using a (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa. .
  • the temperature of the film formation target when forming an aluminum oxide film using (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound is preferably 200 to 600 ° C., more preferably 300 to 500 ° C. Thereby, the variation in the thickness of the aluminum oxide film can be further reduced. In addition, a high-quality aluminum oxide film can be manufactured by sufficiently reducing impurities contained in the aluminum oxide film. Further, when the temperature is 300 to 500 ° C., it is possible to suppress the change in the film thickness even if there is some variation in the temperature on the film formation target. Therefore, an aluminum oxide film having excellent film thickness uniformity can be easily manufactured.
  • the temperature at which the (ditertiary butyl (alkyl) amidinato) dialkylaluminum compound is vaporized is preferably 30 to 250 ° C., more preferably 60 to 200 ° C.
  • an oxygen source for example, oxidizing gas, water vapor or alcohol vapor, or these
  • the content ratio of the reactive gas to be a mixed gas is preferably 3 to 99% by volume, more preferably 5 to 98% by volume.
  • the aluminum oxide film of this embodiment is formed on a film formation target by supplying an aluminum compound onto the heated film formation target and oxidizing the aluminum compound.
  • the aluminum oxide film has a thickness of, for example, 1 to 100 nm, preferably 5 to 50 mm.
  • the aluminum oxide film can have a satisfactory quality by sufficiently reducing the impurity concentration.
  • the content of aluminum oxide in the aluminum oxide film is, for example, 95% by mass or more, preferably 98% by mass or more, and more preferably 99% by mass or more.
  • Such a high-quality aluminum oxide film having a high purity and a small thickness is useful in the semiconductor field.
  • the aluminum oxide film may be composed only of aluminum oxide, or may be composed only of aluminum oxide and aluminum carbide. In the present specification, an aluminum oxide content of 90% by mass or more is referred to as an “aluminum oxide film”.
  • the variation in thickness of the aluminum oxide film is, for example, less than 10 nm.
  • the variation in the thickness of the aluminum oxide film is a difference in film thickness (maximum value ⁇ minimum value) measured at an arbitrarily selected location.
  • the film formation target includes a substrate containing an inorganic oxide. By forming an aluminum oxide film on such a substrate, a stacked body having the aluminum oxide film on the substrate and the substrate can be obtained.
  • (Ditertiary butyl (methyl) amidinato) dimethylaluminum is a compound in which R in the above formula (1) is a methyl group (a compound in the above formula (2)).
  • the physical properties of the obtained (ditertiary butyl (methyl) amidinato) dimethylaluminum were as follows.
  • reaction solution was concentrated, and the concentrate was distilled under reduced pressure (oil bath temperature: 80 ° C., pressure in the flask: 133.3 Pa) to give a colorless transparent liquid (ditertiary butyl (ethyl) amidinato) diethyl. 4.43 g of aluminum was obtained (isolation yield: 94%).
  • (Ditertiary butyl (ethyl) amidinato) diethylaluminum is a compound in which R in the above formula (1) is an ethyl group (compound of the above formula (3)).
  • the physical properties of the obtained (ditertiary butyl (ethyl) amidinato) diethylaluminum were as follows.
  • (Ditertiary butyl (ethyl) amidinato) dimethylaluminum is a compound of the above formula (4).
  • the physical properties of the obtained (ditertiary butyl (ethyl) amidinato) dimethylaluminum were as follows.
  • Example 5 [Production of aluminum oxide film] An aluminum oxide film was formed on the substrate by the ALD method using (ditertiary butyl (ethyl) amidinato) diethylaluminum synthesized in Example 2 as the aluminum compound, that is, the compound represented by the above formula (3). . The aluminum oxide film was formed using the apparatus shown in FIG.
  • the apparatus shown in FIG. 1 includes a vaporizer 1 (SUS ampule) that vaporizes an aluminum compound 2, a vaporizer 6 (SUS ampule) that vaporizes water 7 and supplies water vapor as a reactive gas, and a substrate 15. And a reactor 11 having a heater 14 for heating the substrate 15 and reacting the aluminum compound 2 with water vapor to form an aluminum oxide film on the substrate 15.
  • a vacuum pump is connected to the reactor 11 via a flow path.
  • a pressure gauge 13, a pressure control valve 12 and a trap 16 are provided in the flow path. Thereby, the pressure in the reactor 11 is adjusted to a predetermined range. The gas led out from the reactor 11 is exhausted to the atmosphere through the trap 16 and the vacuum pump.
  • the aluminum compound 2 and the water 7 synthesized in Example 2 were accommodated in the vaporizer 1 and the vaporizer 6 respectively including the heater 3 and the constant temperature bath 8.
  • the vaporizer 1 was supplied with argon gas whose flow rate was adjusted by the mass flow controller 4 and preheated by the preheater 5. As a result, argon gas containing the aluminum compound 2 was introduced into the reactor 11 from the vaporizer 1.
  • water vapor that was vaporized by being adjusted to a constant temperature by the thermostatic chamber 8 was introduced into the reactor 11 from the vaporizer 6.
  • the argon gas containing the aluminum compound 2 from the vaporizer 1 and the water vapor from the vaporizer 6 were alternately introduced into the reactor 11.
  • the introduction amounts of argon gas and water vapor containing the aluminum compound 2 were adjusted by a valve 17 and a valve 18, respectively.
  • the argon gas and water vapor containing the aluminum compound 2 were each adjusted in flow rate by the mass flow controller 9 and introduced into the reactor 11 along with the dilution argon gas preheated by the preheater 10.
  • Aluminum compound 2 and water 7 were alternately supplied to the reactor 11 to form an aluminum oxide film 20 on the substrate 15 heated to a predetermined temperature by the heater 14.
  • the operating conditions of the apparatus of FIG. 1 were as follows.
  • the vaporization temperature of the aluminum compound 2 (vaporizer 1): 90 ° C Ar gas (carrier gas) flow rate: 5 mL / min (adjusted with mass flow controller 4)
  • Aluminum compound 2 supply time 1 second
  • Aluminum compound 2 purge time 5 seconds
  • Water 7 vaporization temperature 10 ° C.
  • Water 7 supply time 1 second
  • Ar gas flow rate for dilution 50 mL / min.
  • Material of substrate 15: SiO 2 / Si Size of substrate 15: vertical x horizontal 20 mm x 20 mm
  • the temperature of the substrate 15 300 ° C. Pressure in the reactor 11: 1333 Pa Number of cycles: 500 times (introduction of argon gas containing aluminum compound 2 and introduction of water vapor from the vaporizer 6 were repeated 500 times)
  • the aluminum oxide film 20 was formed on the substrate 15 under the above conditions.
  • the thickness of the formed aluminum oxide film 20 was measured using a reflection spectral film thickness meter.
  • the composition of the aluminum oxide film 20 was analyzed using an XPS (X-ray photoelectron spectroscopy) measuring apparatus. The results of thickness and composition analysis were as shown in Table 1.
  • the thickness of the aluminum oxide film 20 was performed at five arbitrarily selected locations, and the maximum value and the minimum value were obtained.
  • the maximum value ⁇ the minimum value ⁇ 10 nm the arithmetic average value is shown in the table.
  • the maximum value ⁇ minimum value ⁇ 10 nm the maximum value and the minimum value were shown.
  • Example 6 to 10 [Production of aluminum oxide film] An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example 5 except that the temperature of the substrate 15 was changed as shown in Table 1. The analysis results of the thickness and composition of the formed aluminum oxide film 20 were as shown in Table 1.
  • the aluminum oxide films of Examples 5 to 10 had no thickness variation and excellent thickness uniformity. Further, it was confirmed that when the temperature of the substrate 15 is in the range of 300 to 500 ° C., the thickness of the aluminum oxide film does not change much. From this, it was confirmed that the aluminum oxide film can be formed stably by using (ditertiary butyl (ethyl) amidinato) diethylaluminum synthesized in Example 2.
  • the aluminum oxide content in the aluminum oxide film of Example 10 was 95% by mass or more, and the aluminum carbide content was 5% by mass or less.
  • Example 11 [Production of aluminum oxide film]
  • the aluminum compound (ditertiary butyl (methyl) amidinato) diethylaluminum synthesized in Example 3, that is, the compound represented by the above formula (5) was used.
  • An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example 5 except that this aluminum compound was used and the vaporization temperature of the aluminum compound in the vaporizer 1 was set to 80 ° C.
  • the analysis results of the thickness and composition of the formed aluminum oxide film 20 were as shown in Table 2.
  • Example 12 to 16 [Production of aluminum oxide film] An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example 11 except that the temperature of the substrate 15 was changed as shown in Table 2. The analysis results of the thickness and composition of the formed aluminum oxide film 20 were as shown in Table 2.
  • the aluminum oxide films of Examples 11 to 16 had no thickness variation and were excellent in thickness uniformity. Further, it was confirmed that when the temperature of the substrate 15 is in the range of 300 to 500 ° C., the thickness of the aluminum oxide film does not change much. From this, it was confirmed that by using (ditertiary butyl (methyl) amidinato) diethylaluminum synthesized in Example 3, an aluminum oxide film can be formed stably.
  • Example 17 [Production of aluminum oxide film]
  • the aluminum compound (ditertiary butyl (ethyl) amidinato) dimethylaluminum synthesized in Example 4, that is, the compound represented by the formula (4) was used.
  • An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example 5 except that this aluminum compound was used and the vaporization temperature of the aluminum compound in the vaporizer 1 was set to 70 ° C.
  • the analysis results of the thickness and composition of the formed aluminum oxide film 20 are as shown in Table 3.
  • Example 18 to 20 [Production of aluminum oxide film] An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example 17 except that the temperature of the substrate 15 was changed as shown in Table 3. The analysis results of the thickness and composition of the formed aluminum oxide film 20 are as shown in Table 3.
  • the aluminum oxide films of Examples 17 to 20 had no thickness variation and excellent thickness uniformity. Further, it was confirmed that the thickness of the aluminum oxide film did not change when the temperature of the substrate 15 was in the range of 300 to 500 ° C. From this, it was confirmed that the aluminum oxide film can be stably formed by using (ditertiary butyl (ethyl) amidinato) dimethylaluminum synthesized in Example 4.
  • Example 21 [Production of aluminum oxide film]
  • the aluminum compound (ditertiary butyl (methyl) amidinato) dimethylaluminum synthesized in Example 1, that is, the compound represented by the formula (2) was used.
  • An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example 5 except that this aluminum compound was used and the vaporization temperature of the aluminum compound in the vaporizer 1 was set to 70 ° C.
  • the analysis results of the thickness and composition of the formed aluminum oxide film 20 are as shown in Table 4.
  • Example 22 to 24 [Production of aluminum oxide film] An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example 21 except that the temperature of the substrate 15 was changed as shown in Table 4. The analysis results of the thickness and composition of the formed aluminum oxide film 20 are as shown in Table 4.
  • the aluminum oxide films of Examples 21 to 24 had no thickness variation and were excellent in thickness uniformity. Further, it was confirmed that the thickness of the aluminum oxide film did not change when the temperature of the substrate 15 was in the range of 300 to 500 ° C. From this, it was confirmed that the aluminum oxide film can be stably formed by using the ditertiary butyl (methyl) amidinato) dimethylaluminum synthesized in Example 1.
  • reaction solution was concentrated, and the concentrate was distilled under reduced pressure (oil bath temperature 70 ° C., pressure in the flask: 133.3 Pa) to obtain 4.94 g of a transparent liquid (diisopropyl (methyl) amidinato) dimethylaluminum. Obtained (isolation yield: 90% by mass).
  • (Diisopropyl (methyl) amidinato) dimethylaluminum is represented by the following chemical formula.
  • the physical properties of the obtained (diisopropyl (methyl) amidinato) dimethylaluminum were as follows.
  • the obtained concentrate was distilled under reduced pressure (oil bath temperature 90 ° C., pressure in the flask: 133.3 Pa) to obtain 3.02 g of (dimethylamido) diethylaluminum as a transparent liquid (isolated yield: 82% by mass). ).
  • the thickness variation of the aluminum oxide film of Comparative Example 5 was small.
  • the aluminum compounds represented by the above formulas (2) to (5) used in the above examples were sufficiently excellent in safety. Further, since the aluminum thin film was formed under the above conditions, the aluminum compounds represented by the formulas (2) to (5) had good reactivity with the reactive gas. It has also been found that the vapor containing the aluminum compound represented by the above formulas (2) to (5) has excellent adsorptivity to the substrate surface. Furthermore, by setting the temperature of the substrate to 300 to 500 ° C., an aluminum oxide film with high aluminum oxide purity can be formed while reducing the change in thickness. That is, a high quality aluminum oxide film can be manufactured.
  • a method for producing an aluminum oxide film capable of stably producing an aluminum oxide film with reduced thickness variation. Production raw materials and aluminum compounds that are suitably used in the production method are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

加熱されている成膜対象物上に下記式(1)で示されるアルミニウム化合物を供給し、前記アルミニウム化合物を酸化することにより成膜対象物上に酸化アルミニウム膜を形成する工程を有する、酸化アルミニウム膜の製造方法を提供する。下記式(1)中、Rは炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。

Description

酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物
 本開示は、酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物に関する。
 酸化アルミニウム膜は、ゲート絶縁膜等として有用であり、半導体分野において幅広く応用展開がなされている。そこで、酸化アルミニウム膜を製造するためのアルミニウム化合物(酸化アルミニウム膜の製造原料)が検討されている(例えば、特許文献1~4参照)。
 一方で、非特許文献1には、重合触媒として(ジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウムが開示されている。しかしながら、物性値及び特性については何ら記載されていない。また、非特許文献2には、(ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウムの合成例が開示されている。しかしながら、特性については何ら記載されていない。
特表2006-526705号公報 特許第4716193号公報 特開2007-138296号公報 韓国登録特許第10-1221861号公報
J. Phys. Chem. A,105,3867-3874(2001) Organometallics,17,1595-1601(1998)
 酸化アルミニウム膜を安定的に製造し得る新たな酸化アルミニウム膜の製造方法が求められている。
 そこで、本開示では、一つの側面において、厚みのばらつきが低減された酸化アルミニウム膜を安定的に製造し得る酸化アルミニウム膜の製造方法を提供する。また、別の側面において、当該製造方法に好適に用いられる製造原料、及びアルミニウム化合物を提供する。
 本発明は、一つの側面において、加熱されている成膜対象物上に下記式(1)で示されるアルミニウム化合物を供給し、アルミニウム化合物を酸化することにより成膜対象物上に酸化アルミニウム膜を形成する工程を有する、酸化アルミニウム膜の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000006
 上式(1)中、Rは炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。)
 上記製造方法では、厚みのばらつきが低減された酸化アルミニウム膜を安定的に製造することができる。この理由は、上記式(1)で表されるアルミニウム化合物が、加熱下で容易に分解できるとともに、加熱下で安定的に酸化アルミニウムを膜状に析出できるためであると推察される。
 幾つかの実施形態において、上記成膜対象物は300~500℃に加熱されていることが好ましい。これによって、酸化アルミニウム膜の厚みのばらつきを一層低減することができる。また、酸化アルミニウム膜に含まれる不純物を十分に低減して、高品位な酸化アルミニウム膜を製造することができる。
 上記アルミニウム化合物は、下記式(1-1)で示される化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000007
 上式(1-1)中、R及びRは互いに異なるアルキル基を示す。R及びRは、それぞれ独立に炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。
 上式(1-1)で示されるアルミニウム化合物は、メチル基を含むことによって、蒸気圧が高くなり、気化させる際に必要なエネルギーを低減することができる。
 上記工程では、原子層堆積法(Atomic Layer Deposition;以下、「ALD法」と称することもある。)又は化学気相蒸着法(Chemical Vapor Deposition法;以下、「CVD法」と称することもある。)により酸化アルミニウム膜を形成することが好ましい。これによって、一層高品位な酸化アルミニウム膜を形成することができる。
 本発明は、別の側面において、下記式(1)で示されるアルミニウム化合物を含む、酸化アルミニウム膜の製造原料を提供する。
Figure JPOXMLDOC01-appb-C000008
 上式(1)中、Rは炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。
 上記式(1)で表されるアルミニウム化合物を酸化アルミニウム膜の製造原料として用いる方法であれば、厚みのばらつきが低減された酸化アルミニウム膜を安定的に製造することができる。この理由は、上記アルミニウム化合物が、酸素源の存在下、加熱することにより容易に分解できるとともに、安定的に酸化アルミニウムを膜状に析出することができるためと推察される。
 上記アルミニウム化合物は、下記式(1-1)で示される化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000009
 上式(1-1)中、R及びRは互いに異なるアルキル基である。R及びRは、それぞれ独立に炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。)
 上式(1-1)で示されるアルミニウム化合物は、メチル基を含むことによって、蒸気圧が高くなり、気化させる際に必要なエネルギーを低減することができる。
 本発明は、さらに別の側面において、下記の式(1-1)で示される、アルミニウム化合物を提供する。
Figure JPOXMLDOC01-appb-C000010
 式(1-1)中、R及びRは互いに異なるアルキル基を示す。R及びRは、それぞれ独立に炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。
 上記アルミニウム化合物は、加熱下で容易に分解できるとともに、加熱下でも安定的に酸化アルミニウムを膜状に析出することができる。したがって、所定の厚みを有する酸化アルミニウム膜を安定的に製造することができる。
 本開示では、一つの側面において、厚みのばらつきが低減された酸化アルミニウム膜を安定的に製造し得る酸化アルミニウム膜の製造方法を提供することができる。また、別の側面において、当該製造方法に好適に用いられる製造原料、及びアルミニウム化合物を提供することができる。
酸化アルミニウム膜の製造装置の模式図である。
 本発明の一実施形態を以下に説明する。本実施形態の酸化アルミニウム膜の製造方法は、加熱されている成膜対象物上にアルミニウム化合物を供給し、当該アルミニウム化合物を酸化することにより成膜対象物上に酸化アルミニウム膜を形成する工程を有する。
 酸化アルミニウム膜の製造方法に使用されるアルミニウム化合物は、下記式(1)で示される(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物である。
Figure JPOXMLDOC01-appb-C000011
 上式(1)中、Rは炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。式(1)中のR(アルキル基)としては、例えば、メチル基、エチル基が挙げられる。
 上記式(1)で示される(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物は、下記式(1-1)に示される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上式(1-1)中、R及びRは互いに異なるアルキル基である。R及びRは、それぞれ独立に炭素原子数1~2の直鎖状のアルキル基を示す。ふたつのRは互いに同一又は異なっていてもよい。ただし、製造コストの低減、原料入手の容易性の観点から、ふたつのRは同一であることが好ましい。t-Buはターシャリーブチル基を示す。
 酸化アルミニウム膜の製造方法に使用されるアルミニウム化合物の好適な具体例としては、下記式(2)~(5)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 下記式(2)~(5)におけるt-Buはターシャリーブチル基を示し、Me及びEtはそれぞれメチル基及びエチル基を示す。すなわち、式(2)で示される化合物は、(ジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウムであり、式(3)で示される化合物は、(ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウムである。式(4)で示される化合物は、(ジターシャリーブチル(エチル)アミジナト)ジメチルアルミニウムであり、式(5)で示される化合物は、(ジターシャリーブチル(メチル)アミジナト)ジエチルアルミニウムである。
 上記式(1)、(1-1)、(2)~(5)で示される各アルミニウム化合物は、成膜対象物上に酸化アルミニウム膜を形成するために好適に使用することができる。すなわち、成膜対象物上における酸化アルミニウム膜の形成用途に適している。酸化アルミニウム膜を形成するための上記式(1)、(1-1)又は(2)~(5)で示されるアルミニウム化合物の使用ということもできる。
 (ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物は、例えば、下記の(方法1)又は(方法2)等によって製造することができる。
 方法1は、ジターシャリーブチルカルボジイミドとアルキルアルカリ金属化合物とを反応させて、又はジターシャリーブチルカルボジイミドとアルキルアルカリ土類金属化合物とを反応させて、ジターシャリーブチル(アルキル)アミジンの金属塩を得る第1工程と、得られた金属塩とジアルキルアルミニウムハライドとを反応させる第2工程と、を有する。
 方法2は、ジターシャリーブチルカルボジイミドとトリアルキルアルミニウムとを反応させる工程を有する。
 方法1において使用する金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、ジエチルマグネシウム、エチルブチルマグネシウム、及びジブチルマグネシウム等が挙げられる。これらのうちの一種を単独で又は二種以上を組み合わせて用いてもよい。上記金属化合物のうち、製造コストの低減、原料の入手容易性、反応収率向上の観点から、好ましくはメチルリチウムである。
 アルカリ金属化合物の使用量は、ジターシャリーブチルカルボジイミド1モルに対して、好ましくは0.4~1.4モル、より好ましくは0.6~1.2モルである。また、アルカリ土類金属化合物の使用量は、ジターシャリーブチルカルボジイミド1モルに対して、好ましくは0.2~0.7モル、より好ましくは0.3~0.6モルである。
 方法1において使用するジアルキルアルミニウムハライドとしては、例えば、ジメチルアルミニウムクロライド、ジメチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、及びジエチルアルミニウムブロマイド等が挙げられる。これらのうちの一種を単独で又は二種以上を組み合わせて用いてもよい。上記ジアルキルアルミニウムハライドのうち、製造コストの低減、原料の入手容易性、及び反応収率向上の観点から、好ましくはジエチルアルミニウムクロライドである。
 ジアルキルアルミニウムハライドの使用量は、ジターシャリーブチル(アルキル)アミジンの金属塩中のジターシャリーブチル(アルキル)アミジン1モルに対して、好ましくは0.1~1.6モル、より好ましくは0.5~1.2モルである。
 方法2において使用するトリアルキルアルミニウムは、トリメチルアルミニウム及びトリエチルアルミニウム等が挙げられる。
 トリアルキルアルミニウムの使用量は、ジターシャリーブチルカルボジイミド1モルに対して、好ましくは0.1~1.6モル、より好ましくは0.5~1.2モルである。
 方法1及び方法2は、それぞれ、有機溶媒中で行うことが好ましい。有機溶媒としては、反応を阻害しないものであれば特に限定されない。例えば、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサン等のエーテル類;ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類が挙げられる。これらのうち、好ましくはエーテル類、脂肪族炭化水素類、エーテル類と脂肪族炭化水素類との混合溶媒である。なお、これらの有機溶媒は単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 方法1及び方法2における有機溶媒の使用量は、ジアルキルアルミニウムハライド1g又はトリアルキルアルミニウム1gに対して、好ましくは1~100g、更に好ましくは5~50gである。
 (方法1による合成方法)
 方法1の反応は、例えば、次の手順で行うことができる。最初の工程(第1工程)でジターシャリーブチルカルボジイミド、アルキルアルカリ金属化合物及び有機溶媒を混合し、攪拌しながら反応させてジターシャリーブチル(アルキル)アミジンのアルカリ金属塩(ジターシャリーブチル(アルキル)アミジナト化合物)を合成する。次の工程(第2工程)で、ジアルキルアルミニウムハライドを加えて、更に攪拌しながら反応させる。第1工程及び第2工程における反応温度は、好ましくは-100~100℃、より好ましくは-80~40℃である。このときの反応圧力は特に制限されない。なお、第1工程で得られるジターシャリーブチル(アルキル)アミジナト化合物は、第2工程におけるジアルキルアルミニウムハライドとの反応前に、一旦単離してもよいし、そのまま使用してもよい。
 (方法2による合成方法)
 方法2の反応は、例えば、ジターシャリーブチルカルボジイミド、トリアルキルアルミニウム及び有機溶媒を混合し反応させる工程を有する。その際の反応温度は、好ましくは-100~100℃、より好ましくは-80~40℃である。このときの反応圧力は特に制限されない。
 方法1又は方法2の反応により(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を得ることができる。反応終了後、(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物は、公知の方法によって単離又は精製してもよい。公知の方法としては、抽出、濾過、濃縮、蒸留、昇華、再結晶及びカラムクロマトグラフィー等が挙げられる。これらのうちの一種を単独で又は二種以上を組み合わせてもよい。
 (ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物は、大気中の水分及び酸素に対して不安定な場合が多い。このため、無水条件下又は不活性ガス条件下にて、方法1又は方法2の各工程、及び必要に応じて反応液の後処理等を行うことが好ましい。
 (ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物は、酸化アルミニウム膜を製造するための製造原料(製造用原料)として好適に使用される。酸化アルミニウム膜を製造するための製造原料(製造用原料)は、(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物のみからなることが好ましい。ただし、上記製造原料(製造用原料)は、形成される酸化アルミニウム膜の品質に大きな影響を及ぼさない範囲で、(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物以外の少量の不純物(アルミニウム化合物等)を含んでもよい。
 成膜対象物上への酸化アルミニウム膜の形成方法としては、例えば、化学気相蒸着法(CVD法)及び原子層堆積法(ALD法)が挙げられる。これらのうち、膜厚を制御しやすく、薄膜の成膜が容易である点で、ALD法がより好ましく用いられる。ALD法の場合、成膜対象物上に酸化アルミニウム膜を形成する工程は、例えば以下の手順で行われる。
 常圧又は減圧下にて、(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を含むガスと、反応性ガスとを、加熱した成膜対象物上に供給する。反応性ガスは、構成元素として酸素を有する。例えば、酸素、オゾン等の酸化性ガス;水;メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール等のアルコール類が挙げられる。上記反応性ガスによって、(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を酸化する。これによって、成膜対象物上に酸化アルミニウムが蒸着され、酸化アルミニウム膜が形成される。
 (ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を含むガスは、ガス状の(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物が不活性ガス等で希釈されたものであってもよい。また、ガスに含まれる(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物は、霧状(液滴状)であってもよい。
 ALD法の代わりにプラズマCVD法によって、成膜対象物上に酸化アルミニウム膜を形成する工程を行ってもよい。この場合、同様の原料を成膜対象物上に供給して、酸化アルミニウム膜を成膜対象物上に形成することができる。
 CVD法の場合、薄膜(酸化アルミニウム膜)形成のために(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を気化させる必要がある。(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を気化させる方法としては、例えば、次のような方法が挙げられる。
 すなわち、(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を気化室に充填又は搬送して気化させる方法が挙げられる。別の方法としては、(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を適当な溶媒に希釈して溶液を調製する。この溶液を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)が挙げられる。
 ここで用いられる溶媒としては、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;トルエン、エチルベンゼン、キシレン等の芳香族炭化水素類;グライム、ジグライム、トリグライム、ジオキサン、テトラヒドロフラン等のエーテル類等が例示される。これらのうちの一種を単独で又は二種以上を組み合わせてもよい。
 (ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を用いて酸化アルミニウムを蒸着して酸化アルミニウム膜を形成するときの反応系内の圧力は、好ましくは1Pa~200kPa、より好ましくは10Pa~110kPaである。
 (ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を用いて酸化アルミニウム膜を形成するときの成膜対象物の温度は、好ましくは200~600℃、より好ましくは300~500℃である。これによって、酸化アルミニウム膜の厚みのばらつきを一層低減することができる。また、酸化アルミニウム膜に含まれる不純物を十分に低減して、高品位な酸化アルミニウム膜を製造することができる。さらに、300~500℃であれば、成膜対象物上の温度に多少のばらつきがあったとしても膜厚が変化することを抑制できる。したがって、膜厚の均一性に優れる酸化アルミニウム膜を容易に製造することができる。
 (ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を気化させるときの温度は、好ましくは30~250℃、より好ましくは60~200℃である。酸化アルミニウム膜を形成する際、全供給ガス量[反応性ガス+(ジターシャリーブチル(アルキル)アミジナト)ジアルキルアルミニウム化合物を含むガス]に対する酸素源(例えば、酸化性ガス、水蒸気又はアルコール蒸気、あるいはこれらの混合ガス)となる反応性ガスの含有割合は、好ましくは3~99容量%、より好ましくは5~98容量%である。
 本実施形態の酸化アルミニウム膜は、加熱されている成膜対象物上にアルミニウム化合物を供給し、当該アルミニウム化合物を酸化することにより成膜対象物上に形成される。酸化アルミニウム膜は、例えば、1~100nm、好ましくは5~50mmの厚みを有する。
 酸化アルミニウム膜は不純物濃度を十分に低減して良好な品質にすることができる。酸化アルミニウム膜における酸化アルミニウムの含有量は例えば95質量%以上であり、好ましくは98質量%以上であり、より好ましくは99質量%以上である。このように純度が高く且つ厚みの小さい高品位の酸化アルミニウム膜は、半導体分野において有用である。酸化アルミニウム膜は酸化アルミニウムのみからなるものであってもよいし、酸化アルミニウムと炭化アルミニウムのみからなるものであってもよい。本明細書では、酸化アルミニウムの含有量が90質量%以上のものを、「酸化アルミニウム膜」という。酸化アルミニウム膜の膜みのばらつきは、例えば10nm未満である。なお、酸化アルミニウム膜の厚みのばらつきとは、任意に選択した箇所で測定される膜厚の差違(最大値-最小値)である。
 成膜対象物としては、無機酸化物を含む基板が挙げられる。このような基板の上に酸化アルミニウム膜を形成することによって、基板と基板の上に酸化アルミニウム膜を有する積層体を得ることができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。
 実施例及び比較例を参照して本発明の内容をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。
[実施例1][(ジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウムの合成]
 攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、トリメチルアルミニウム1.26g(17.5mmol)、及びヘキサン20mLを加えて冷却した。ここにジターシャリーブチルカルボジイミド2.73g(17.5mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温(25℃)下において15時間攪拌した。反応終了後、その反応液を濃縮し、濃縮物を減圧蒸留(オイルバスの温度:70℃、フラスコ内の圧力:133.3Pa)して、白色固体の(ジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウム3.44g得た(単離収率:87%)。
 (ジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウムは、上記式(1)のRがメチル基である化合物(上記式(2)の化合物)である。得られた(ジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウムの物性値は以下のとおりであった。
H-NMR(C,δ(ppm));-0.14(6H,s),1.05(18H,s),3.14(3H,s)
[実施例2][(ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウムの合成]
 攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、トリエチルアルミニウム2.00g(17.5mmol)、及びヘキサン20mLを加えて冷却した。ここにジターシャリーブチルカルボジイミド2.73g(17.5mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温下において15時間攪拌した。反応終了後、その反応液を濃縮し、濃縮物を減圧蒸留(オイルバス温度:80℃、フラスコ内の圧力:133.3Pa)して、無色透明液体の(ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウム4.43g得た(単離収率:94%)。
 (ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウムは、上記式(1)のRがエチル基である化合物(上記式(3)の化合物)である。得られた(ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウムの物性値は以下のとおりであった。
H-NMR(C,δ(ppm));0.35(4H,q),0.98(3H,t),1.14(18H,s),1.40(6H,t),2.14(2H,q)
[実施例3][ジターシャリーブチル(メチル)アミジナト)ジエチルアルミニウムの合成]
 攪拌装置、温度計及び滴下漏斗を備えた内容積100mlのフラスコに、メチルリチウムのエーテル溶液(1.08M, 29.7mmol)を加えて冷却した。ここにジターシャリーブチルカルボジイミド4.50g(29.2mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温下において1時間攪拌した。次に、その反応液にジエチルアルミニウムクロライド3.50g(29.0mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温下において15時間攪拌した。反応終了後、得られた反応液をセライト濾過して得られた濾液を濃縮し、濃縮物を得た。この濃縮物の減圧蒸留(オイルバス温度:70℃、フラスコ内の圧力:133.3Pa)を行って、無色透明液体の(ジターシャリーブチル(メチル)アミジナト)ジエチルアルミニウム6.29g得た(単離収率:85%)。
 (ジターシャリーブチル(メチル)アミジナト)ジエチルアルミニウムは、上記式(5)の化合物に相当する。得られた(ジターシャリーブチル(メチル)アミジナト)ジエチルアルミニウムの物性値は以下のとおりであった。
 H-NMR(C,δ(ppm));0.35(4H,q),1.10(18H,s),1.41(6H,t),1.70(3H,s)
[実施例4][(ジターシャリーブチル(エチル)アミジナト)ジメチルアルミニウムの合成]
 攪拌装置、温度計及び滴下漏斗を備えた内容積100mlのフラスコに、エチルリチウムのベンゼン/シクロヘキサン溶液(0.50M,30.0mmol)を加えて冷却した。ここにジターシャリーブチルカルボジイミド4.63g(30.0mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温下において1時間攪拌した。次に、その反応液にジメチルアルミニウムクロライド2.83g(30.6mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温下において15時間攪拌した。反応終了後、得られた反応液をセライト濾過して得られた濾液を濃縮し、濃縮物を得た。この濃縮物の減圧蒸留(オイルバス温度60℃、133.3Pa)を行って、無色透明液体の(ジターシャリーブチル(エチル)アミジナト)ジメチルアルミニウム5.40g得た(単離収率:75%)。
 (ジターシャリーブチル(エチル)アミジナト)ジメチルアルミニウムは上記式(4)の化合物である。得られた(ジターシャリーブチル(エチル)アミジナト)ジメチルアルミニウムの物性値は以下のとおりであった。
 H-NMR(C,δ(ppm));-0.23(6H,s),0.95(3H,t),1.14(18H,s),2.13(2H,q)
[実施例5][酸化アルミニウム膜の製造]
 アルミニウム化合物として、実施例2において合成した(ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウム、すなわち上記式(3)で表される化合物を用いて、ALD法により基板上に酸化アルミニウム膜を成膜した。酸化アルミニウム膜の成膜は、図1に示す装置を用いて行った。
 図1に示す装置は、アルミニウム化合物2を気化する気化器1(SUS製アンプル)と、水7を気化して反応性ガスである水蒸気を供給する気化器6(SUS製アンプル)と、基板15及び当該基板15を加熱するヒータ14を有し、アルミニウム化合物2と水蒸気とを反応させて基板15上に酸化アルミニウム膜を形成する反応器11と、を備える。反応器11には流路を介して真空ポンプが接続されている。当該流路には圧力計13、圧力調節バルブ12及びトラップ16が設けられている。これによって、反応器11内の圧力は所定の範囲に調節される。反応器11から導出されたガスは、トラップ16及び真空ポンプを経て、大気中に排気される。
 ヒータ3及び恒温槽8をそれぞれ備える気化器1及び気化器6に、上記実施例2で合成されたアルミニウム化合物2及び水7をそれぞれ収容した。気化器1には、マスフローコントローラ4によって流量調節され、予熱器5によって予熱されたアルゴンガスを供給した。これによって、気化器1から、アルミニウム化合物2を含むアルゴンガスが、反応器11に導入された。
 一方、気化器6から、恒温槽8によって一定温度に調整されて気化された水蒸気が、反応器11に導入された。気化器1からのアルミニウム化合物2を含むアルゴンガスと、気化器6からの水蒸気は、交互に反応器11に導入された。アルミニウム化合物2を含むアルゴンガス及び水蒸気の導入量は、バルブ17及びバルブ18によってそれぞれ調節した。アルミニウム化合物2を含むアルゴンガス及び水蒸気は、それぞれ、マスフローコントローラ9によって流量調節され、予熱器10によって予熱された希釈用のアルゴンガスに同伴されて反応器11に導入された。
 アルミニウム化合物2及び水7を反応器11に交互に供給して、ヒータ14で所定の温度に加熱された基板15の上に酸化アルミニウム膜20を形成した。図1の装置の運転条件は、以下のとおりとした。
 アルミニウム化合物2の気化温度(気化器1):90℃
 Arガス(キャリアーガス)流量:5mL/min(マスフローコントローラ4で調整)
 アルミニウム化合物2の供給時間:1秒間
 アルミニウム化合物2のパージ時間:5秒間
 水7の気化温度:10℃
 水7の供給時間:1秒間
 水7のパージ時間:5秒間
 希釈用のArガス流量:50mL/min.
 基板15の材質:SiO/Si
 基板15のサイズ:縦×横=20mm×20mm
 基板15の温度:300℃
 反応器11内の圧力:1333Pa
 サイクル回数:500回(アルミニウム化合物2を含むアルゴンガスの導入と、気化器6からの水蒸気の導入を500回繰り返した。)
 上述の条件で基板15上に酸化アルミニウム膜20を形成した。形成した酸化アルミニウム膜20の厚みを、反射分光膜厚計を用いて測定した。また、XPS(X線光電子分光)測定装置を用いて酸化アルミニウム膜20の組成を分析した。厚み及び組成分析の結果は、表1に示すとおりであった。
 酸化アルミニウム膜20の厚みは、任意に選択した5箇所について行い、最大値と最小値を求めた。最大値-最小値<10nmであった場合には、その算術平均値を表に示した。一方、最大値-最小値≧10nmであった場合には、最大値と最小値を示した。
[実施例6~10][酸化アルミニウム膜の製造]
 基板15の温度を表1に示すとおりに変更したこと以外は、実施例5と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000014
 実施例5~10の酸化アルミニウム膜は、いずれも、厚みのばらつきがなく、厚みの均一性に優れていた。また、基板15の温度が300~500℃の範囲内であれば、酸化アルミニウム膜の厚みはあまり変化しないことが確認された。このことから、実施例2において合成した(ジターシャリーブチル(エチル)アミジナト)ジエチルアルミニウムを用いることによって、酸化アルミニウム膜を安定して形成できることが確認された。実施例10の酸化アルミニウム膜における酸化アルミニウムの含有量は95質量%以上であり、炭化アルミニウムの含有量は5質量%以下であった。
[実施例11][酸化アルミニウム膜の製造]
 アルミニウム化合物として、実施例3において合成した(ジターシャリーブチル(メチル)アミジナト)ジエチルアルミニウム、すなわち上記式(5)で表される化合物を用いた。このアルミニウム化合物を用いたこと、及び、気化器1におけるアルミニウム化合物の気化温度を80℃にしたこと以外は、実施例5と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表2に示すとおりであった。
[実施例12~16][酸化アルミニウム膜の製造]
 基板15の温度を表2に示すとおりに変更したこと以外は、実施例11と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000015
 実施例11~16の酸化アルミニウム膜は、いずれも、厚みのばらつきがなく、厚みの均一性に優れていた。また、基板15の温度が300~500℃の範囲内であれば、酸化アルミニウム膜の厚みはあまり変化しないことが確認された。このことから、実施例3において合成した(ジターシャリーブチル(メチル)アミジナト)ジエチルアルミニウムを用いることによって、酸化アルミニウム膜を安定して形成できることが確認された。
[実施例17][酸化アルミニウム膜の製造]
 アルミニウム化合物として、実施例4において合成した(ジターシャリーブチル(エチル)アミジナト)ジメチルアルミニウム、すなわち式(4)で表される化合物を用いた。このアルミニウム化合物を用いたこと、及び、気化器1におけるアルミニウム化合物の気化温度を70℃にしたこと以外は、実施例5と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表3に示すとおりであった。
[実施例18~20][酸化アルミニウム膜の製造]
 基板15の温度を表3に示すとおりに変更したこと以外は、実施例17と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表3に示すとおりであった。
Figure JPOXMLDOC01-appb-T000016
 実施例17~20の酸化アルミニウム膜は、いずれも、厚みのばらつきがなく、厚みの均一性に優れていた。また、基板15の温度が300~500℃の範囲内において、酸化アルミニウム膜の厚みは変化しないことが確認された。このことから、実施例4において合成した(ジターシャリーブチル(エチル)アミジナト)ジメチルアルミニウムを用いることによって、酸化アルミニウム膜を安定して形成できることが確認された。
[実施例21][酸化アルミニウム膜の製造]
 アルミニウム化合物として、実施例1において合成した(ジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウム、すなわち式(2)で表される化合物を用いた。このアルミニウム化合物を用いたこと、及び、気化器1におけるアルミニウム化合物の気化温度を70℃にしたこと以外は、実施例5と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表4に示すとおりであった。
[実施例22~24][酸化アルミニウム膜の製造]
 基板15の温度を表4に示すとおりに変更したこと以外は、実施例21と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表4に示すとおりであった。
Figure JPOXMLDOC01-appb-T000017
 実施例21~24の酸化アルミニウム膜は、いずれも、厚みのばらつきがなく、厚みの均一性に優れていた。また、基板15の温度が300~500℃の範囲内において、酸化アルミニウム膜の厚みは変化しないことが確認された。このことから、実施例1において合成したジターシャリーブチル(メチル)アミジナト)ジメチルアルミニウムを用いることによって、酸化アルミニウム膜を安定して形成できることが確認された。
[比較例1][(ジイソプロピル(メチル)アミジナト)ジメチルアルミニウムの合成]
 攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、トリメチルアルミニウム2.00g(27.7mmol)、及びヘキサン25mLを加えて冷却した。ここにジイソプロピルカルボジイミド3.50g(27.7mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温下において15時間攪拌した。反応終了後、その反応液を濃縮し、濃縮物を減圧蒸留(オイルバス温度70℃、フラスコ内の圧力:133.3Pa)して、透明液体の(ジイソプロピル(メチル)アミジナト)ジメチルアルミニウム4.94g得た(単離収率:90質量%)。
 (ジイソプロピル(メチル)アミジナト)ジメチルアルミニウムは、下記の化学式で表される。得られた(ジイソプロピル(メチル)アミジナト)ジメチルアルミニウムの物性値は以下のとおりであった。
Figure JPOXMLDOC01-appb-C000018
 H-NMR(C,δ(ppm));-0.23(6H,s),0.96(12H,d)1.26(3H,t),3.09-3.15(2H,m)
[比較例2][酸化アルミニウム膜の製造]
 アルミニウム化合物として、比較例1において合成した(ジイソプロピル(メチル)アミジナト)ジメチルアルミニウムを用いた。このアルミニウム化合物を用いたこと、及び、気化器1におけるアルミニウム化合物の気化温度を50℃にしたこと以外は、実施例5と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表5に示すとおりであった。
[比較例3][酸化アルミニウム膜の製造]
 基板15の温度を表5に示すとおりに変更したこと以外は、比較例2と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表5に示すとおりであった。
Figure JPOXMLDOC01-appb-T000019
 比較例2,3の酸化アルミニウム膜は、どちらも厚みのばらつきが大きく、各実施例よりも厚みの均一性が劣っていた。このように厚みのばらつきが大きい原因としては、アルミニウム化合物の熱安定性が低いため、熱分解が不均一に進行し、成膜速度のばらつきが大きくなっていることが考えられる。
[比較例4][(ジメチルアミド)ジエチルアルミニウムの合成]
 攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、ジメチルアミドリチウム1.36g(26.7mmol)、及びペンタン25mLを加えて冷却した。ここにジエチルアルミニウムクロライド3.20g(26.5mmol)を内温が0~6℃になるようにゆるやかに滴下した。滴下終了後、室温下において15時間攪拌した。反応終了後、得られた白色懸濁液を濾過し、その濾液を濃縮した。得られた濃縮物を減圧蒸留(オイルバス温度90℃、フラスコ内の圧力:133.3Pa)して、透明液体として(ジメチルアミド)ジエチルアルミニウム3.02g得た(単離収率:82質量%)。
 得られた(ジメチルアミド)ジエチルアルミニウムの物性値は以下のとおりであった。
H-NMR(C,δ(ppm));0.10(4H,q),1.27(6H,t)2.10(6H,s)
[比較例5][酸化アルミニウム膜の製造]
 アルミニウム化合物として、比較例4において合成した(ジメチルアミド)ジエチルアルミニウムを用いた。このアルミニウム化合物を用いたこと、及び、気化器1におけるアルミニウム化合物の気化温度を70℃にしたこと以外は、実施例5と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表6に示すとおりであった。
[比較例6,7][酸化アルミニウム膜の製造]
 基板15の温度を表6に示すとおりに変更したこと以外は、比較例5と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表6に示すとおりであった。
Figure JPOXMLDOC01-appb-T000020
 比較例5の酸化アルミニウム膜は、厚みのばらつきが小さかった。しかしながら、比較例6,7の酸化アルミニウム膜は、どちらも、厚みのばらつきが大きく、各実施例よりも厚みの均一性が劣っていた。このように厚みのばらつきが大きい原因としては、アルミニウム化合物の熱安定性が低いため、熱分解が不均一に進行し、成膜速度のばらつきが大きくなっていることが考えられる。表6に示す結果から、比較例4のアルミニウム化合物では、基板の温度が変動した場合に酸化アルミニウム膜の厚さのばらつきが大きくなることが確認された。このため、厚みのばらつきが低減された酸化アルミニウム膜を安定的に製造することができない。
 上述の各実施例において用いられた上記式(2)~(5)で表されるアルミニウム化合物は、安全性にも十分に優れていた。また、上述の条件で、アルミニウム薄膜を形成したことから、式(2)~(5)で表されるアルミニウム化合物は、反応性ガスとの反応性が良好であった。上記式(2)~(5)で表されるアルミニウム化合物を含有する蒸気は、基板表面への吸着性に優れることも分かった。さらに、基板の温度を300~500℃とすることによって、厚みの変化を低減しつつ、酸化アルミニウムの純度が高い酸化アルミニウム膜を形成することができる。すなわち、品質の良い酸化アルミニウム膜を製造することができる。
 厚みのばらつきが低減された酸化アルミニウム膜を安定的に製造し得る酸化アルミニウム膜の製造方法が提供される。当該製造方法に好適に用いられる製造原料、及びアルミニウム化合物が提供される。
 1,6…気化器、2…アルミニウム化合物、3,14…ヒータ、4,9…マスフローコントローラ、5,10…予熱器、8…恒温槽、11…反応器、12…圧力調節バルブ、13…圧力計、15…基板、16…トラップ、17,18…バルブ,20…酸化アルミニウム膜。

Claims (7)

  1.  加熱されている成膜対象物上に下記式(1)で示されるアルミニウム化合物を供給し、前記アルミニウム化合物を酸化することにより前記成膜対象物上に酸化アルミニウム膜を形成する工程を有する、酸化アルミニウム膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。)
  2.  前記成膜対象物は300~500℃に加熱されている、請求項1に記載の酸化アルミニウム膜の製造方法。
  3.  前記アルミニウム化合物は、下記式(1-1)で示される化合物を含む、請求項1又は2に記載の酸化アルミニウム膜の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (式中、R及びRは互いに異なるアルキル基を示す。R及びRは、それぞれ独立に炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。)
  4.  前記工程では、原子層堆積法又は化学気相蒸着法により前記酸化アルミニウム膜を形成する、請求項1~3のいずれか一項に記載の酸化アルミニウム膜の製造方法。
  5.  下記式(1)で示されるアルミニウム化合物を含む、酸化アルミニウム膜の製造原料。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。)
  6.  前記アルミニウム化合物は、下記式(1-1)で示される化合物を含む、請求項5に記載の酸化アルミニウム膜の製造原料。
    Figure JPOXMLDOC01-appb-C000004
     (式中、R及びRは互いに異なるアルキル基である。R及びRは、それぞれ独立に炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。)
  7.  下記の式(1-1)で示される、アルミニウム化合物。
    Figure JPOXMLDOC01-appb-C000005
     (式中、R及びRは互いに異なるアルキル基を示す。R及びRは、それぞれ独立に炭素原子数1~2の直鎖状のアルキル基を示し、複数のRは互いに同一又は異なっていてもよい。t-Buはターシャリーブチル基を示す。)
     
PCT/JP2016/074032 2015-08-20 2016-08-17 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物 WO2017030150A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017535553A JPWO2017030150A1 (ja) 2015-08-20 2016-08-17 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015162347 2015-08-20
JP2015-162347 2015-08-20
JP2015232462 2015-11-27
JP2015-232462 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017030150A1 true WO2017030150A1 (ja) 2017-02-23

Family

ID=58052161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074032 WO2017030150A1 (ja) 2015-08-20 2016-08-17 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物

Country Status (3)

Country Link
JP (1) JPWO2017030150A1 (ja)
TW (1) TW201716417A (ja)
WO (1) WO2017030150A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080169A1 (ja) * 2020-10-12 2022-04-21 東京エレクトロン株式会社 埋め込み方法及び成膜装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015436A1 (ja) * 2005-08-04 2007-02-08 Tosoh Corporation 金属含有化合物、その製造方法、金属含有薄膜及びその形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015436A1 (ja) * 2005-08-04 2007-02-08 Tosoh Corporation 金属含有化合物、その製造方法、金属含有薄膜及びその形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG, CHUNG-CHENG ET AL.: "Carbodiimide Insertion into Organoaluminum Compounds and Thermal Rearrangement of the Products", ORGANOMETALLICS, vol. 17, no. 8, April 1998 (1998-04-01), pages 1595 - 1601, XP055365794 *
MEIER, ROBERT J. ET AL.: "A Role for Dinuclear Aluminum Amidinate Complexes in Ethlene Polymerization?", J. PHYS. CHEM. A, vol. 105, no. 15, April 2001 (2001-04-01), pages 3867 - 3874, XP055365791 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080169A1 (ja) * 2020-10-12 2022-04-21 東京エレクトロン株式会社 埋め込み方法及び成膜装置

Also Published As

Publication number Publication date
JPWO2017030150A1 (ja) 2018-05-31
TW201716417A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
JP6065840B2 (ja) トリス(ジアルキルアミド)アルミニウム化合物及び当該アルミニウム化合物を用いるアルミニウム含有薄膜の製造方法
JP5857970B2 (ja) (アミドアミノアルカン)金属化合物、及び当該金属化合物を用いた金属含有薄膜の製造方法
JP6871161B2 (ja) ケイ素含有膜の堆積のための組成物及びそれを使用した方法
WO2007015436A1 (ja) 金属含有化合物、その製造方法、金属含有薄膜及びその形成方法
JP5860454B2 (ja) ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
JP2015224227A (ja) (アセチレン)ジコバルトヘキサカルボニル化合物の製造方法
KR101965219B1 (ko) 알루미늄 화합물 및 이를 이용한 알루미늄-함유 막의 형성 방법
WO2017030150A1 (ja) 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物
JP5776555B2 (ja) 金属アルコキシド化合物及び当該化合物を用いた金属含有薄膜の製造法
JP5919882B2 (ja) コバルト化合物の混合物、及び当該コバルト化合物の混合物を用いたコバルト含有薄膜の製造方法
JP6565448B2 (ja) 酸化アルミニウム膜の製造方法及び酸化アルミニウム膜の製造原料
WO2017150212A1 (ja) 酸化アルミニウム膜の製造方法及び酸化アルミニウム膜の製造原料
JP2018027921A (ja) アミジナート配位子を有するジアルキルアルミニウム化合物の製造方法
JP5817727B2 (ja) マグネシウムビス(ジアルキルアミド)化合物、及び当該マグネシウム化合物を用いるマグネシウム含有薄膜の製造方法
JP5842687B2 (ja) コバルト膜形成用原料及び当該原料を用いたコバルト含有薄膜の製造方法
CN115279940B (zh) 铝前体化合物、其制备方法和使用其形成含铝膜的方法
KR20140075024A (ko) 알칼리 금속 디아자부타디엔 화합물 및 알칼리 금속-함유 필름 침착을 위한 그의 용도
JP2016108247A (ja) ビス(シリルアミドアミノアルカン)マンガン化合物及び当該マンガン化合物を用いたマンガン含有膜の製造方法
JP2007070236A (ja) ビス(エチルシクロペンタジエニル)トリヒドロタンタルおよびその製造方法ならびにそれを用いた炭化タンタル膜または炭窒化タンタル膜の形成方法
JP2009137862A (ja) 有機ルテニウム錯体混合物及び当該錯体混合物を用いた金属ルテニウム含有薄膜の製造法
JP2013204048A (ja) コバルト含有薄膜の製造方法
JP2017110268A (ja) 酸化アルミニウム膜の製造原料及び酸化アルミニウム膜の製造方法
US20100189898A1 (en) MANUFACTURING OF ADDUCT FREE ALKALINE-EARTH METAL Cp COMPLEXES
JP2009127082A (ja) 有機ルテニウム錯体及び当該錯体を用いた金属ルテニウム含有薄膜の製造法
JP2006183069A (ja) 金属酸化膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837139

Country of ref document: EP

Kind code of ref document: A1