WO2017026348A1 - 金属製多孔膜、滅菌判別方法及び洗浄判別方法 - Google Patents

金属製多孔膜、滅菌判別方法及び洗浄判別方法 Download PDF

Info

Publication number
WO2017026348A1
WO2017026348A1 PCT/JP2016/072788 JP2016072788W WO2017026348A1 WO 2017026348 A1 WO2017026348 A1 WO 2017026348A1 JP 2016072788 W JP2016072788 W JP 2016072788W WO 2017026348 A1 WO2017026348 A1 WO 2017026348A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal porous
sterilization
porous membrane
cleaning
organic substance
Prior art date
Application number
PCT/JP2016/072788
Other languages
English (en)
French (fr)
Inventor
近藤 孝志
航 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016565702A priority Critical patent/JP6098774B1/ja
Publication of WO2017026348A1 publication Critical patent/WO2017026348A1/ja
Priority to US15/454,028 priority patent/US10183083B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/081Gamma radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/4609Constructional details of screens in general; Cleaning or heating of screens constructional details of screening surfaces or meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • A61L2/28Devices for testing the effectiveness or completeness of sterilisation, e.g. indicators which change colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/143Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/50Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/226Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating the degree of sterilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations

Definitions

  • the present invention relates to a metal porous membrane that can determine that at least one of sterilization and cleaning is completed, a sterilization determination method that determines that sterilization of a metal porous membrane is completed, and a metal porous membrane
  • the present invention relates to a cleaning determination method for determining that cleaning has been completed.
  • Patent Document 1 a cell trapping system that traps cells in a fluid has been disclosed (for example, see Patent Document 1).
  • the cell capturing system disclosed in Patent Document 1 sterilization and washing of a filter used for capturing cells are performed before capturing the cells.
  • the present invention relates to a metal porous membrane that can determine that at least one of sterilization and cleaning is completed, a sterilization determination method that determines that sterilization of a metal porous membrane is completed, and a metal porous membrane
  • An object of the present invention is to provide a cleaning discrimination method for discriminating that cleaning is completed.
  • the metal porous membrane of one embodiment of the present invention is A metal porous membrane having a plurality of through holes, It has the photosensitive organic substance adhering to at least one part of the said metal porous film.
  • the method for determining sterilization includes: A sterilization determination method for determining whether sterilization of a metal porous membrane is completed, Attaching a photosensitive organic substance to at least a part of the metal porous film; A step of sterilizing the metal porous membrane, and a step of determining that sterilization of the metal porous membrane is completed based on the modification of the photosensitive organic matter, including.
  • the cleaning discrimination method of one aspect of the present invention includes: A cleaning determination method for determining whether cleaning of a metal porous membrane is completed, Attaching a photosensitive organic substance to at least a part of the metal porous film; A step of cleaning the metal porous membrane, and a step of determining that the cleaning of the metal porous membrane is completed based on a change in the amount of the photosensitive organic matter adhering to the metal porous membrane. including.
  • a metal porous membrane that can determine that at least one of sterilization and cleaning has been completed, a sterilization determination method that determines that sterilization of a metal porous membrane has been completed, and metal porous A cleaning discriminating method for discriminating that the cleaning of the film is completed can be provided.
  • FIG. 1 is a schematic configuration diagram of a metal porous membrane according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view of a part of the metal porous membrane shown in FIG. 2 as viewed from the first main surface side. Sectional drawing which cut
  • the flowchart which shows the sterilization discrimination method of Embodiment 1 which concerns on this invention.
  • the metal porous membrane of one embodiment of the present invention is A metal porous membrane having a plurality of through holes, You may have the photosensitive organic substance adhering to at least one part of the said metal porous membrane.
  • the photosensitive organic material may be a radiation-reactive organic material that is denatured by irradiation with radiation.
  • the photosensitive organic material may contain carbon.
  • the photosensitive organic material may adhere to at least a part of the inner walls of the plurality of through holes.
  • the metal porous membrane can be sterilized or washed efficiently.
  • the photosensitive organic material may adhere only to the inner walls of the plurality of through holes.
  • the metal porous membrane can be sterilized or washed efficiently. It is possible to easily determine whether sterilization or cleaning is completed on the inner wall of the through hole of the metal porous membrane that is difficult to sterilize or clean.
  • the method for determining sterilization includes: A sterilization determination method for determining whether sterilization of a metal porous membrane is completed, Attaching a photosensitive organic substance to at least a part of the metal porous film; A step of sterilizing the metal porous membrane, and a step of determining that sterilization of the metal porous membrane is completed based on the modification of the photosensitive organic matter, May be included.
  • the discriminating step measures the absorbance of the photosensitive organic matter before and after the sterilizing step, and sterilization of the metal porous membrane is completed based on the measured absorbance. It may be determined.
  • the attaching step may be performed on at least one metal porous membrane selected from a plurality of metal porous membranes.
  • the cleaning discrimination method of one aspect of the present invention includes: A cleaning determination method for determining whether cleaning of a metal porous membrane is completed, Attaching a photosensitive organic substance to at least a part of the metal porous film; A step of cleaning the metallic porous membrane, and a step of determining that the cleaning of the metallic porous membrane is completed based on the amount of the photosensitive organic material adhering to the metallic porous membrane. May be included.
  • the step of discriminating measures the amount of carbon contained in the photosensitive organic matter before and after the step of washing, and the metal porous membrane is washed based on the measured amount of carbon. You may determine that it is complete.
  • Such a configuration makes it possible to more easily determine that the cleaning of the metal porous film has been completed based on the amount of carbon contained in the photosensitive organic material.
  • the attaching step may be performed on at least one metal porous film selected from a plurality of metal porous films.
  • FIG. 1 is a schematic view of a metal porous membrane 10 according to Embodiment 1 of the present invention.
  • FIG. 2 shows an enlarged view of a portion where the organic matter 20 is adhered in the metal porous membrane 10.
  • the X, Y, and Z directions in FIG. 2 indicate the vertical direction, the horizontal direction, and the thickness direction of the metal porous film 10, respectively.
  • the metal porous film 10 is a metal thin film having a plurality of through holes 11, and an organic substance for determining that sterilization and cleaning have been completed on the first main surface PS ⁇ b> 1. 20 is attached.
  • the metal porous membrane 10 separates the filtration object from the fluid by allowing the fluid containing the filtration object to pass through.
  • the “filtering object” means an object to be filtered by the metal porous membrane 10.
  • the filtering object include biological substances and PM2.5.
  • the “biological substance” means a substance derived from a living organism such as a cell (eukaryotic organism), a bacterium (eubacteria), or a virus.
  • cells include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell masses, suspension cells, and adhesions.
  • bacteria include gram positive bacteria, gram negative bacteria, Escherichia coli, and tuberculosis bacteria.
  • virus include DNA virus, RNA virus, rotavirus, (bird) influenza virus, yellow fever virus, dengue fever virus, encephalitis virus, hemorrhagic fever virus, and immunodeficiency virus.
  • the fluid containing the filtration object may be a liquid or a gas. That is, the metal porous film 10 can be applied to either a liquid or a gas.
  • the metal porous membrane 10 is a circular metal mesh. Further, as shown in FIG. 2, the metal porous film 10 has a first main surface PS1 and a second main surface PS2 facing each other, and has a plurality of through holes 11 penetrating both main surfaces. is there. The plurality of through holes 11 are periodically arranged on the first main surface PS1 and the second main surface PS2 of the metal porous film 10.
  • the metal porous film 10 is made of nickel, for example.
  • the metal porous membrane 10 has, for example, a diameter of 6 mm and a thickness of 1.2 ⁇ m.
  • the material of the metal porous film 10 may be gold, silver, copper, nickel, stainless steel, palladium, titanium, and alloys thereof. In particular, as the material for the metal porous membrane 10, gold, nickel, stainless steel, and titanium are preferable when capturing biological substances.
  • the metal porous membrane 10 is a plate-like structure (lattice-like structure) in which a plurality of through holes 11 are arranged in a matrix at regular intervals.
  • the plurality of through holes 11 have a square shape when viewed from the first main surface PS1 side of the metal porous film 10, that is, when viewed in the Z direction.
  • the plurality of through holes 11 are provided at equal intervals in two arrangement directions parallel to each side of the square, that is, in the X direction and the Y direction in FIG.
  • the through-hole 11 is not limited to a square, For example, a rectangle, a circle
  • the arrangement of the holes is not limited to the square lattice arrangement, and for example, as long as it is a square arrangement, a rectangular arrangement in which the intervals in the two arrangement directions are not equal may be used, or a triangular lattice arrangement or a quasi-periodic arrangement may be used.
  • the through-hole 11 is, for example, a square when viewed from the first main surface PS1 side of the metal porous film 10, that is, when viewed from the Z direction, and is 1 ⁇ m or more and 50 ⁇ m or less in the vertical direction and 1 ⁇ m or more and 50 ⁇ m or less in the horizontal direction.
  • the interval between the through holes 11 is, for example, greater than 1 time and less than or equal to 10 times that of the through holes 11, and more preferably less than or equal to 3 times that of the through holes 11.
  • the aperture ratio is preferably 10% or more.
  • an organic material 20 for determining that sterilization and cleaning are completed is adhered on the first main surface PS1 of the metal porous film 10.
  • the organic matter 20 is attached to a part of the region where the through hole 11 is provided.
  • FIG. 3 is a schematic view of a part of the metal porous membrane 10 as viewed from the first main surface PS1 side.
  • FIG. 4 shows a cross-sectional view of a part of the metal porous membrane 10 taken along line AA.
  • the organic material 20 is attached on the first main surface PS ⁇ b> 1 of the metal porous film 10. Further, the organic matter 20 is also adhered in the through hole 11 of the metal porous film 10.
  • the organic substance 20 is an organic substance for determining that sterilization and cleaning are completed, and is a photosensitive organic substance.
  • the photosensitive organic substance is a radiation-reactive organic substance that is modified by irradiation with radiation.
  • the photosensitive organic substance is composed of a high molecular compound, and is an organic substance that generates a polymer radical when irradiated with gamma rays.
  • the crystallinity, molecular weight, and the like change by cutting or crosslinking the main chain and side chain of the polymer compound.
  • the modification of the organic substance 20 is, for example, that the color of the organic substance 20 changes due to irradiation with gamma rays.
  • Examples of the organic substance 20 include an organic substance containing a bisazide compound as a photosensitizer and a cyclic rubber, or an organic substance containing a novolac resin as a photosensitizer and a naphthaquinone diazide compound (specific examples include 1,2-naphthoquinone diazide sulfone).
  • organic material 20 examples include an organic material containing a photoacid generator as a photosensitizer and a polyhydroxystyrene resin, an organic material containing a photoacid generator as a photosensitizer and an acrylic resin, and the like.
  • the photoacid generator examples include adamantane and norbornene.
  • the organic substance 20 contains carbon in order to determine completion of cleaning.
  • FIG. 5 shows a flowchart of the sterilization discrimination method according to the first embodiment.
  • step ST11 an organic substance 20 for determining that sterilization is completed is attached to the surface of the metal porous film 10 (attachment step). Specifically, on the first main surface PS1 of the metal porous film 10, the organic substance 20 is attached to a part of the region where the through hole 11 is provided. Further, the organic substance 20 is also deposited in the through hole 11 of the metal porous film 10.
  • step ST12 the metal porous membrane 10 is sterilized (sterilization process). Specifically, sterilization is performed by irradiating gamma rays to the metal porous film 10 to which the organic matter 20 is adhered.
  • step ST13 it is determined whether or not the sterilization processing of the metal porous membrane 10 is completed (discrimination step).
  • the sterilization of the metal porous membrane 10 is completed by measuring the absorbance of the organic matter 20 before and after the sterilization process.
  • completion of sterilization there is an absorbance measurement from the infrared region to the ultraviolet region.
  • the absorbance of organic substances before and after sterilization is measured, and completion of sterilization can be determined by a change in spectrum before and after sterilization, or by a color change indicated by the spectrum change.
  • completion of sterilization may be determined by re-culturing represented by bacterial culture in an agar medium or Gram staining.
  • Examples of the place where the absorbance measurement is performed include the inside of the through-hole 11 of the metal porous membrane 10 which is a place where sterilization is relatively difficult to spread. If it can be confirmed by the absorbance measurement that a portion where sterilization is difficult to spread is sterilized, it can be determined that other portions are also sterilized. For example, if it can be determined that the inside of the through-hole 11 of the metal porous membrane 10 is sterilized by measuring absorbance, it can be determined that the entire metal porous membrane 10 is sterilized.
  • FIG. 6 is a flowchart of the cleaning determination method according to the first embodiment.
  • an organic substance 20 for determining that the cleaning is completed is attached to the surface of the metal porous film 10 (attachment step). Specifically, on the first main surface PS1 of the metal porous film 10, the organic substance 20 is attached to a part of the region where the through hole 11 is provided. Further, the organic substance 20 is also deposited in the through hole 11 of the metal porous film 10.
  • step ST22 the metal porous film 10 is cleaned (cleaning process). Specifically, the metal porous film 10 to which the organic substance 20 is attached is washed with a solution such as acetone or pure water.
  • step ST23 it is determined whether or not the metal porous membrane 10 has been cleaned (discrimination step).
  • determination of completion of cleaning of the metallic porous membrane 10 by measuring the amount of carbon will be specifically described.
  • An XPS (X-ray Photoelectron Spectroscopy) measurement is an example of a method for determining the completion of cleaning by measuring the amount of carbon.
  • Table 1 shows the XPS analysis results before and after the completion of cleaning.
  • XPS analysis was performed using an XPS measuring device (model number Quantum 2000 manufactured by ULVAC-PHI).
  • the X-ray measurement diameter used in XPS measurement was 9 ⁇ m.
  • the X-ray irradiation position was inside (inner wall) the hole 11 at the center of the metal porous membrane 10.
  • sterilization and washing of the metal porous membrane 10 are completed based on the state of the organic matter 20 before and after the sterilization step and the washing step by intentionally attaching the organic matter 20. It is determined whether or not.
  • an organic substance 20 for determining that sterilization and cleaning are completed is attached on the first main surface PS ⁇ b> 1 and also in the through hole 11. With such a configuration, it is possible to easily determine that the sterilization and the cleaning are completed based on the state of the organic substance 20 before and after the sterilization process and the cleaning process of the metal porous membrane 10.
  • a photosensitive organic material specifically, a radiation-reactive organic material that is modified by irradiation with radiation is used as the organic material 20.
  • the organic material 20 is denatured by the irradiation of gamma rays.
  • the completion of sterilization of the metallic porous membrane 10 can be easily determined based on the modification of the organic matter 20 by gamma ray irradiation.
  • the sterilization discrimination method attention is paid to the color change as the denaturation of the organic matter 20 by the irradiation of gamma rays. Based on the absorbance of the organic matter 20 before and after the sterilization process, it is judged that the sterilization of the metal porous membrane 10 is completed is doing. Thereby, in the sterilization discrimination method, since the change in the color of the organic matter 20 can be detected by measuring the absorbance of the organic matter 20, it is more easily discriminated that the sterilization of the metal porous membrane 10 is completed. Can do.
  • the organic substance 20 contains carbon.
  • the cleaning determination method it is possible to more easily determine that the cleaning of the metal porous film 10 has been completed by measuring the amount of carbon contained in the organic substance 20 before and after the cleaning step.
  • the organic substance 20 can be easily peeled off from the metal porous film 10. For this reason, before using the metal porous membrane 10 for filtration of the filtration object, the organic substance 20 can be easily peeled from the metal porous membrane 10. As a result, the metal porous membrane 10 can be easily used for original filtration applications. That is, when filtration is performed using the metal porous membrane 10, the organic matter 20 does not hinder filtration.
  • the organic substance 20 is attached to a part of the region where the through hole 11 is provided on the first main surface PS1, but is not limited thereto.
  • the organic substance 20 may be attached to at least a part of the metal porous film 10.
  • the organic material 20 may be attached to a part of the first main surface PS1, a part of the second main surface PS2, or a part of the inner wall of the through hole 11.
  • the organic substance 20 may adhere over the first main surface PS1.
  • the organic substance 20 is an organic substance for determining that sterilization and cleaning have been completed has been described, but the present invention is not limited thereto.
  • the organic substance 20 may be an organic substance for determining that at least one of sterilization and cleaning has been completed.
  • the organic substance 20 may be a radiation-reactive organic substance that does not contain carbon and is denatured by irradiation with radiation.
  • the organic substance 20 only needs to contain carbon and does not have to be denatured by irradiation with radiation.
  • the organic matter 20 has been described as an example of a radiation-reactive organic matter that is denatured by irradiation with gamma rays, but is not limited thereto.
  • the organic matter 20 may be changed according to the type of sterilization treatment.
  • the organic substance 20 may be a photosensitive organic substance that is modified by ultraviolet rays.
  • the organic substance 20 may be an organic substance that is denatured (oxidized) by ozone.
  • step ST13 for determining that sterilization is completed completion of sterilization is determined by re-culturing represented by bacterial culture in an agar medium, but is not limited thereto. For example, completion of sterilization may be determined by Gram staining or the like.
  • the modification of the organic substance 20 has been described as an example in which the color of the organic substance 20 is changed by irradiating gamma rays, but is not limited thereto.
  • the modification may be a change in the composition of the organic substance 20, a change in viscosity, a change in hardness, or the like.
  • the sterilization step ST12 has been described for the example of sterilization by irradiation with gamma rays, but is not limited thereto.
  • the sterilization step ST12 may include, for example, autoclave sterilization using saturated steam at high temperature and high pressure, ethylene oxide gas sterilization using ethylene oxide gas, or oxidation sterilization using ozone.
  • the organic substance 20 contains carbon in order to easily determine completion of the cleaning process, but may not contain carbon.
  • the completion of the cleaning process is determined based on a change in the weight of the metal porous film 10 before and after the cleaning process, the organic matter 20 may not contain carbon.
  • the step ST23 for determining that the cleaning is completed determines the completion of the cleaning by measuring the amount of carbon contained in the organic matter 20, but is not limited thereto. For example, even if the completion of washing is determined by X-ray structural analysis, AFM (Atomic Force Microscope), visual observation, visible light spectroscopy, infrared spectroscopy, ICP-MS (ICP-Mass Spectrometry) for eluate, measurement of weight change, etc. Good. Further, the organic matter 20 may be arbitrarily changed according to the method for determining the completion of the cleaning in the cleaning determination step ST23. For example, when the completion of cleaning is determined by measuring the weight change of the organic substance 20, the organic substance 20 may not contain carbon.
  • the sterilization discrimination method may be performed using a plurality of metal porous membranes 10.
  • the organic substance 20 may be attached to at least one metal porous film 10 selected from the plurality of metal porous films 10.
  • determination process ST13 with respect to the metal porous film 10 to which the organic substance 20 adhered.
  • the cleaning discrimination method may be performed using a plurality of metal porous membranes 10.
  • the organic substance 20 may be attached to at least one metal porous film 10 selected from the plurality of metal porous films 10. And after performing washing
  • the sterilization discriminating method and the cleaning discriminating method are performed on the metal porous membrane 10 after sterilization or washing at a magnification of 5000 times using an electron microscope (for example, Hitachi S-4800). If the organic matter 20 cannot be confirmed by observing 10 places, it may be determined that sterilization or cleaning can be confirmed.
  • an electron microscope for example, Hitachi S-4800
  • FIG. 7 shows a schematic configuration of the metal porous film 10a of the second embodiment.
  • FIG. 8 shows an enlarged view of the portion of the through hole 11 of the metal porous membrane 10a.
  • the metal porous film 10a of the second embodiment is different from the metal porous film 10 of the first embodiment in that it is attached only to the inner wall of the through hole 11. .
  • the organic substance 20 is attached to the entire inner walls of the plurality of through holes 11 without attaching the organic substance 20 on the first main surface PS1 and the second main surface of the metal porous film 10a. I am letting.
  • the metal porous film 10a does not adhere the organic matter 20 on the first principal surface PS1 and the second principal surface PS2, but adheres the organic matter 20 to the inner wall of the through hole 11. With such a configuration, the metal porous film 10a can reduce the amount of the organic matter 20 attached and reduce the cost as compared with the first embodiment.
  • the inner wall of the through-hole 11 is a place where gamma rays are not easily irradiated in the sterilization process, that is, a place where sterilization is difficult.
  • whether or not sterilization is sufficiently performed is determined by determining completion of sterilization based on a color change before and after the sterilization process of the organic matter 20 attached to the inner wall of the through-hole 11. It can be easily distinguished.
  • the inner wall of the through hole 11 is a place that is difficult to be cleaned in the cleaning process.
  • whether or not the cleaning is sufficiently performed is determined by determining the completion of the cleaning based on the amount of carbon before and after the cleaning process of the organic matter 20 attached to the inner wall of the through hole 11. It can also be easily determined.
  • the organic substance 20 demonstrated the example adhering to the whole inner wall of the several through-hole 11, it is not limited to this.
  • the organic substance 20 may be attached to a part of the inner wall of the through hole 11.
  • FIG. 9 shows a schematic configuration of the metal porous membrane 10b of the third embodiment.
  • FIG. 9 shows an enlarged view of the portion of the through hole 11 of the metal porous film 10b.
  • the metal porous film 10 b of the third embodiment is different from the metal porous film 10 a of the second embodiment in that the organic material 20 is not the entire inner wall of the through hole 11 but the inner wall of the through hole 11. It is different in that it is attached to a part of.
  • the organic substance 20 is adhered to the corner portion of the inner wall of the through hole 11.
  • the organic substance 20 is adhered to the corner portion of the inner wall of the through hole 11.
  • the corner portion of the inner wall of the through hole 11 is a place where gamma rays are hardly irradiated in the sterilization process, that is, a place where sterilization is most difficult. Therefore, in the metal porous membrane 10b, it is possible to easily determine whether the sterilization is sufficiently performed by attaching the organic matter 20 to the corner portion of the inner wall of the through hole 11.
  • the corner portion of the inner wall of the through hole 11 is also a place that is most difficult to be cleaned in the cleaning process. Therefore, it is possible to easily determine whether or not the metal porous film 10b is sufficiently cleaned.
  • the adhesion amount of the organic matter 20 can be reduced, and the cost can be further reduced.
  • the organic substance 20 is attached to the corner portion of the inner wall of the through hole 11
  • the present invention is not limited to this.
  • the organic substance 20 only needs to be attached to at least a part of the inner wall of the through hole 11.
  • the organic substance 20 may be attached to at least one of the four corner portions of the inner wall of the through hole 11.
  • the organic matter 20 may adhere to at least a part of the inner wall of the through hole 11 in the thickness direction of the metal porous membrane 10.
  • Example 1 Example 1 will be described.
  • white polyacetal is adhered as a part of the surface of a nickel metal porous film 10 as an organic substance 20.
  • Comparative Example 1 used for comparison with Example 1 will be described.
  • Comparative Example 1 is a nickel metal porous membrane 10 to which no organic substance 20 is attached.
  • Example 1 and Comparative Example 1 were combined into the same lot and sterilized by gamma irradiation.
  • the radiation source at this time was cobalt 60, and the dose was 28.2 to 29.4 kGy.
  • the white polyacetal turned yellow. Therefore, it was possible to easily determine visually that the entire lot was sterilized.
  • Comparative Example 1 no visible difference was observed before and after the sterilization process. That is, in Comparative Example 1, it was not possible to determine whether sterilization was completed.
  • FIG. 10 shows the results of spectrophotometric analysis of the polyacetal of Example 1 before and after gamma irradiation using an ultraviolet-visible absorptiometer (model number U-4100, manufactured by Hitachi High-Technologies). For detection, an integrating sphere was used, and the total reflectance of light from the ultraviolet light to the near infrared light on the polyacetal surface was calculated. The horizontal axis of FIG. 10 indicates the wavelength (nm), and the vertical axis indicates the reflectance (%).
  • Experimental Example 1 shows the results of absorption analysis of Example 1 before gamma irradiation
  • Experimental Example 2 shows the results of absorption analysis of Example 1 after gamma irradiation.
  • FIG. 10 shows that the reflectance of light in the 200 nm to 400 nm band in Experimental Example 2 is lower than that in Experimental Example 1 due to gamma ray irradiation. This confirms that, in Experimental Example 2, the light absorptance in the 200 nm to 400 nm band is increased and the polyacetal is yellowed.
  • Example 2 In Example 2, a quinonediazide compound, which is a photosensitive organic substance, is used as a photosensitizing agent, and an organic substance 20 containing a novolac resin is directly attached to the entire first main surface PS1 of the metallic porous film 10 made of nickel.
  • Example 2 A manufacturing method of Example 2 will be described. 5 ml of a liquid organic material 20 was dropped on the first main surface PS1 of the metal porous film 10 and applied using a spin coater. At this time, the rotation speed of the spin coater was 1500 rpm (reaching this rotation speed per second), and the rotation time was 1 minute. As a result, the organic matter 20 adhered to the first main surface PS1 and the inside of the through hole 11. The film thickness of the organic material 20 on the first main surface PS1 was 2 ⁇ m.
  • Example 2 and Comparative Example 1 were combined into the same lot and sterilized by gamma irradiation. As a result, in Example 2, the organic matter 20 that was brown was slightly blackened. Therefore, it was possible to easily visually determine that the entire lot was sterilized.
  • Example 2 was subjected to ultrasonic cleaning with acetone (frequency 45 kHz) for 10 minutes. As a result of visual observation of the first main surface PS1 after cleaning, a nickel color was confirmed. This means that the organic substance 20 can be easily peeled from the metallic porous film 10. For this reason, the metal porous membrane 10 can be easily used for the intended filtration application.
  • Example 3 the quinonediazide compound, which is a photosensitive organic substance, is used as a photosensitizer only on the inner wall of the through-hole 11 of the metal porous film 10a, and the organic substance 20 containing a novolac resin is directly attached.
  • Example 3 A manufacturing method of Example 3 will be described.
  • a process for attaching the organic matter 20 only to the inner wall of the through hole 11 is added to the manufacturing process of Example 2.
  • the metal porous film 10a to which the organic substance 20 was adhered was heated at a set temperature of 130 degrees in a nitrogen gas atmosphere for 5 minutes to remove a part of the solvent component. Volatilized. And the light of the energy density 2500J / m ⁇ 2 > containing wavelength 365nm was irradiated for 0.25 second, and the hardness of organic substance was adjusted.
  • Example 3 and Comparative Example 1 were combined into the same lot and sterilized by gamma irradiation. Then, the result of having performed microspectroscopy with respect to the inner wall of the through-hole 11 of Example 3 is shown in FIG.
  • FIG. 11 shows the results of absorption analysis of the organic substance 20 of Example 3 before and after gamma ray irradiation using an ultraviolet-visible absorptiometer (manufactured by Hitachi High-Technologies, model number U-4100). Note that an integrating sphere was used for detection, and the absorbance of light from the ultraviolet light to the near infrared light in the organic substance 20 of Example 3 was calculated.
  • the horizontal axis in FIG. 11 indicates the wavelength (nm), and the vertical axis indicates the absorbance.
  • FIG. 11 shows only the region of wavelengths from 300 nm to 600 nm.
  • Experimental Example 3 shows the results of absorption analysis of Example 3 before gamma irradiation
  • Experimental Example 4 shows the results of absorption analysis of Example 3 after gamma irradiation.
  • Example 4 in the fourth embodiment, as in the third embodiment, the organic substance 20 is attached only to the inner wall of the through hole 11 of the metal porous membrane 10a.
  • Example 4 and Comparative Example 1 were combined into the same lot, and washed with rocking for 10 minutes in the order of acetone, ethanol, pure water, and ethanol. As a result of observation with a microscope after washing, the organic matter 20 was not observed on the inner wall of the through hole 11. This indicates that the entire lot has been cleaned.
  • the present invention is excellent in that it is determined that sterilization or cleaning is completed by attaching an organic substance to a metal porous membrane.
  • it is useful in fields such as chemical analysis, drug discovery / pharmaceuticals, clinical testing, public health management, and environmental measurement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Filtering Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

滅菌と洗浄とのうち少なくとも一方が完了したことを判別することができる金属製多孔膜、金属製多孔膜の滅菌が完了したことを判別する滅菌判別方法、及び金属製多孔膜の洗浄が完了したことを判別する洗浄判別方法を提供する。本発明の金属製多孔膜は、複数の貫通孔を有する金属製多孔膜であって、金属製多孔膜の少なくとも一部に付着した感光性有機物を有している。このような構成により、金属製多孔膜に付着した感光性有機物に基づいて金属製多孔膜の滅菌と洗浄とのうち少なくとも一方が完了したことを容易に判別することができる。

Description

金属製多孔膜、滅菌判別方法及び洗浄判別方法
 本発明は、滅菌と洗浄とのうち少なくとも一方が完了したことを判別することができる金属製多孔膜、金属製多孔膜の滅菌が完了したことを判別する滅菌判別方法、及び金属製多孔膜の洗浄が完了したことを判別する洗浄判別方法に関する。
 近年、流体中の細胞を捕捉する細胞捕捉システムが開示されている(例えば、特許文献1参照。)。特許文献1に開示された細胞捕捉システムでは、細胞を捕捉する前に、細胞を捕捉するために使用されるフィルターの滅菌及び洗浄が行われている。
国際公開第2015/019889号
 しかしながら、特許文献1の細胞捕捉システムにおいては、フィルターの滅菌及び洗浄の前後においてフィルター自体の状態に違いが生じにくく、滅菌及び洗浄が完了しているかを判別することは困難である。
 本発明は、滅菌と洗浄とのうち少なくとも一方が完了したことを判別することができる金属製多孔膜、金属製多孔膜の滅菌が完了したことを判別する滅菌判別方法、及び金属製多孔膜の洗浄が完了したことを判別する洗浄判別方法を提供することを目的とする。
 本発明の一態様の金属製多孔膜は、
 複数の貫通孔を有する金属製多孔膜であって、
 前記金属製多孔膜の少なくとも一部に付着した感光性有機物を有する。
 本発明の一態様の滅菌判別方法は、
 金属製多孔膜の滅菌が完了しているかを判別する滅菌判別方法であって、
 前記金属製多孔膜の少なくとも一部に感光性有機物を付着させる工程、
 前記金属製多孔膜を滅菌する工程、および
 前記感光性有機物の変性に基づいて前記金属製多孔膜の滅菌が完了していることを判別する工程、
を含む。
 本発明の一態様の洗浄判別方法は、
 金属製多孔膜の洗浄が完了しているかを判別する洗浄判別方法であって、
 前記金属製多孔膜の少なくとも一部に感光性有機物を付着させる工程、
 前記金属製多孔膜を洗浄する工程、および
 前記金属製多孔膜に付着している前記感光性有機物の量の変化に基づいて前記金属製多孔膜の洗浄が完了していることを判別する工程、
を含む。
 本発明によれば、滅菌と洗浄とのうち少なくとも一方が完了したことを判別することができる金属製多孔膜、金属製多孔膜の滅菌が完了したことを判別する滅菌判別方法、及び金属製多孔膜の洗浄が完了したことを判別する洗浄判別方法を提供することができる。
本発明に係る実施の形態1の金属製多孔膜の概略構成図 本発明に係る実施の形態1の金属製多孔膜において有機物が付着した部分の拡大図 図2の金属製多孔膜の一部を第1主面側から見た概略図 図3の金属製多孔膜の一部をA-A線で切断した断面図 本発明に係る実施の形態1の滅菌判別方法を示すフローチャート 本発明に係る実施の形態1の洗浄判別方法を示すフローチャート 本発明に係る実施の形態2の金属製多孔膜の一部の概略図 本発明に係る実施の形態2の金属製多孔膜における貫通孔部分の拡大図 本発明に係る実施の形態3の金属製多孔膜における貫通孔部分の拡大図 ガンマ線照射前とガンマ線照射後の実施例1をそれぞれ吸光分析した結果を示す図 ガンマ線照射前とガンマ線照射後の実施例3をそれぞれ吸光分析した結果を示す図
 本発明の一態様の金属製多孔膜は、
 複数の貫通孔を有する金属製多孔膜であって、
 前記金属製多孔膜の少なくとも一部に付着した感光性有機物を有していてもよい。
 このような構成により、金属製多孔膜の滅菌と洗浄とのうち少なくとも一方が完了したことを容易に判別することができる。
 前記感光性有機物は、放射線を照射することによって変性する放射線反応有機物であってもよい。
 このような構成により、放射線を照射することによって変性した感光性有機物により金属製多孔膜の滅菌が完了したことを更に容易に判別することができる。
 前記感光性有機物は、炭素を含んでもよい。
 このような構成により、金属製多孔膜の洗浄が完了したことを更に容易に判別することができる。
 前記感光性有機物が、前記複数の貫通孔の内壁の少なくとも一部に付着してもよい。
 このような構成により、金属製多孔膜の滅菌又は洗浄を効率良く行うことができる。また、滅菌又は洗浄がしにくい金属製多孔膜の貫通孔の内壁において、滅菌又は洗浄が完了しているかを容易に判別することができる。
 前記感光性有機物が、前記複数の貫通孔の内壁のみに付着してもよい。
 このような構成により、金属製多孔膜の滅菌又は洗浄を効率良く行うことができる。滅菌又は洗浄がしにくい金属製多孔膜の貫通孔の内壁において、滅菌又は洗浄が完了しているかを容易に判別することができる。
 本発明の一態様の滅菌判別方法は、
 金属製多孔膜の滅菌が完了しているかを判別する滅菌判別方法であって、
 前記金属製多孔膜の少なくとも一部に感光性有機物を付着させる工程、
 前記金属製多孔膜を滅菌する工程、および
 前記感光性有機物の変性に基づいて前記金属製多孔膜の滅菌が完了していることを判別する工程、
を含んでもよい。
 このような構成により、金属製多孔膜に付着した感光性有機物の変性に基づいて金属製多孔膜の滅菌が完了したことを容易に判別することができる。
 前記滅菌判別方法において、前記判別する工程は、前記滅菌する工程前後における前記感光性有機物の吸光度を測定し、測定された前記吸光度に基づいて前記金属製多孔膜の滅菌が完了していることを判別してもよい。
 このような構成により、感光性有機物の吸光度に基づいて、金属製多孔膜の滅菌が完了したことを更に容易に判別することができる。
 前記滅菌判別方法において、前記付着させる工程は、複数の金属製多孔膜から選択された少なくとも1つ以上の金属製多孔膜に対して行われてもよい。
 このような構成により、複数の金属製多孔膜のうち少なくとも1つ以上の金属製多孔膜に対して感光性有機物を付着することによって滅菌の完了の判別を行うことができるため、効率良く判別することができる。
 本発明の一態様の洗浄判別方法は、
 金属製多孔膜の洗浄が完了しているかを判別する洗浄判別方法であって、
 前記金属製多孔膜の少なくとも一部に感光性有機物を付着させる工程、
 前記金属製多孔膜を洗浄する工程、および
 前記金属製多孔膜に付着している前記感光性有機物の量に基づいて前記金属製多孔膜の洗浄が完了していることを判別する工程、
を含んでもよい。
 このような構成により、金属製多孔膜に付着した感光性有機物の量に基づいて金属製多孔膜の洗浄が完了したことを容易に判別することができる。
 前記洗浄判別方法において、前記判別する工程は、前記洗浄する工程前後において前記感光性有機物に含まれる炭素の量を測定し、測定された前記炭素の量に基づいて前記金属製多孔膜の洗浄が完了していることを判別してもよい。
 このような構成により、感光性有機物に含まれる炭素の量に基づいて金属製多孔膜の洗浄が完了したことを更に容易に判別することができる。
 前記洗浄判別方法において、前記付着させる工程は、複数の金属製多孔膜から選択された少なくとも1つ以上の金属製多孔膜に対して行われてもよい。
 このような構成により、複数の金属製多孔膜のうち少なくとも1つ以上の金属製多孔膜に対して感光性有機物を付着することによって洗浄の完了の判別を行うことができるため、効率良く判別することができる。
 以下、本発明に係る実施の形態について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。
(実施の形態1)
[全体構成]
 図1は、本発明に係る実施の形態1の金属製多孔膜10の概略図を示す。図2は、金属製多孔膜10において有機物20が付着した部分の拡大図を示す。図2中のX、Y、Z方向は、それぞれ金属製多孔膜10の縦方向、横方向、厚み方向を示している。図1及び図2に示すように、金属製多孔膜10は、複数の貫通孔11を有する金属製薄膜であり、第1主面PS1上に滅菌及び洗浄が完了したことを判別するための有機物20を付着させている。
 金属製多孔膜10は、濾過対象物を含む流体を通過させることによって、流体中から濾過対象物を分離するものである。本明細書において、「濾過対象物」とは、金属製多孔膜10によって濾過する対象物を意味する。濾過対象物の例としては、生物由来物質やPM2.5等が含まれる。「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、卵、***、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、リンパ球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類を含む。細菌(真性細菌)としては、例えば、グラム陽性菌、グラム陰性菌、大腸菌、結核菌を含む。ウィルスとしては、例えば、DNAウィルス、RNAウィルス、ロタウィルス、(鳥)インフルエンザウィルス、黄熱病ウィルス、デング熱病ウィルス、脳炎ウィルス、出血熱ウィルス、免疫不全ウィルスを含む。なお、濾過対象物を含む流体は、液体であってもよいし、気体であってもよい。即ち、金属製多孔膜10は、流体が液体の場合、気体の場合のいずれでも適用可能である。
 図1に示すように、金属製多孔膜10は、円形の金属メッシュである。また、金属製多孔膜10は、図2に示すように、互いに対向する第1主面PS1と第2主面PS2を有し、両主面を貫通する複数の貫通孔11を有する構造体である。複数の貫通孔11は、金属製多孔膜10の第1主面PS1及び第2主面PS2上に周期的に配置されている。金属製多孔膜10は、例えば、ニッケルで形成されている。金属製多孔膜10の寸法は、例えば、直径6mm、厚さ1.2μmである。金属製多孔膜10の材料は、金、銀、銅、ニッケル、ステンレス鋼、パラジウム、チタン、およびこれらの合金であってもよい。特に、金属製多孔膜10の材料としては、生物由来物質を捕捉する場合、金、ニッケル、ステンレス、チタンが好ましい。
 図2に示すように、金属製多孔膜10は、マトリックス状に一定の間隔で複数の貫通孔11が配置された板状構造体(格子状構造体)である。複数の貫通孔11は、金属製多孔膜10の第1主面PS1側から見て、即ちZ方向に見て正方形の形状を有する。複数の貫通孔11は、正方形の各辺と平行な2つの配列方向、即ち図2中のX方向とY方向に等しい間隔で設けられている。なお、貫通孔11は、正方形に限定されず、例えば長方形や円や楕円などでもよい。また、孔の配列も正方格子配列に限定されず、例えば方形配列であれば、2つの配列方向の間隔は等しくない長方形配列でもよく、三角格子配列や準周期配列などでもよい。
実施の形態1において、貫通孔11は、例えば、金属製多孔膜10の第1主面PS1側から見て、即ちZ方向から見て正方形であり、縦1μm以上50μm以下、横1μm以上50μm以下に設計される。貫通孔11間の間隔は、例えば、貫通孔11の1倍より大きく10倍以下であり、より好ましくは貫通孔11の3倍以下である。あるいは、開口率にして10%以上が好ましい。上記寸法は、金属製多孔膜10の滅菌又は洗浄を効率良く行うことができるという効果、及び滅菌又は洗浄がしにくい貫通孔11の内壁において、滅菌又は洗浄が完了しているかを容易に判別することができるという効果を得るために、特に有効である。
 金属製多孔膜10の第1主面PS1上には、滅菌及び洗浄が完了したことを判別するための有機物20を付着させている。実施の形態1において、有機物20は、貫通孔11が設けられている領域の一部に付着している。
 図3は、金属製多孔膜10の一部を第1主面PS1側から見た概略図を示す。図4は、金属製多孔膜10の一部をA-A線で切断した断面図を示す。図3及び図4に示すように、有機物20は、金属製多孔膜10の第1主面PS1上に付着している。また、有機物20は、金属製多孔膜10の貫通孔11内にも付着している。
 有機物20は、滅菌及び洗浄が完了したことを判別するための有機物であり、感光性有機物である。実施の形態1において、感光性有機物は、放射線を照射することによって変性する放射線反応有機物である。例えば、感光性有機物は、高分子化合物から構成されており、ガンマ線を照射することによってポリマーラジカルを発生する有機物である。有機物20は、ガンマ線を照射されると、高分子化合物の主鎖や側鎖を切断されること又は架橋されることによって結晶化度や分子量等が変化する。実施の形態1において、有機物20の変性とは、例えば、ガンマ線の照射によって有機物20の色が変化することである。
 有機物20の例としては、ビスアジド化合物を感光剤とし、環状系ゴムを含有する有機物や、ナフタキノンジアジド化合物を感光剤とし、ノボラック系樹脂を含有する有機物(具体例として、1,2-ナフトキノンジアジドスルホン酸エステル系化合物を感光剤とし、ノボラック樹脂を含有する有機物)や、ポリアセタールや、ポリエーテルイミドや、ポリエチレンや、ポリスチレン、ポリプロピレンや、ポリカーボネート等がある。この他に、有機物20の例として、光酸発生剤を感光剤とし、ポリヒドロキシスチレン系樹脂を含有する有機物や、光酸発生剤を感光剤とし、アクリル系樹脂を含有する有機物等がある。また、光酸発生剤の例として、アダマンタンやノルボルネン等がある。
 また、実施の形態1において、有機物20は、洗浄の完了を判別するために炭素を含んでいる。
[滅菌判別方法]
 本発明の実施の形態1に係る滅菌判別方法について、図5を用いて説明する。図5は、実施の形態1に係る滅菌判別方法のフローチャートを示す。
 図5に示すように、ステップST11において、滅菌が完了したことを判別するための有機物20を金属製多孔膜10の表面に付着させる(付着工程)。具体的には、金属製多孔膜10の第1主面PS1上において、貫通孔11が設けられている領域の一部に有機物20を付着させる。また、金属製多孔膜10の貫通孔11内にも有機物20を付着させる。
 ステップST12において、金属製多孔膜10を滅菌処理する(滅菌工程)。具体的には、有機物20を付着させた金属製多孔膜10にガンマ線を照射することによって滅菌処理を行う。
 ステップST13において、金属製多孔膜10の滅菌処理が完了しているか否かを判別する(判別工程)。実施の形態1においては、滅菌処理の完了を判別するため、滅菌工程前後における有機物20の色の変化に着目している。そのため、ステップST13においては、滅菌工程前後における有機物20の吸光度を測定することによって、金属製多孔膜10の滅菌が完了しているか否かを判別する。以下、吸光度を用いた金属製多孔膜10の滅菌完了の判別について具体的に説明する。
 滅菌完了の判別方法として、赤外線領域から紫外線領域にかけての吸光度測定が挙げられる。具体的には、滅菌前と滅菌後の有機物の吸光度測定を行い、滅菌前後におけるスペクトルの変化によって、あるいは、スペクトル変化が示す呈色変化によって、滅菌完了を判別することができる。あるいは、滅菌完了の判別方法として、寒天培地中での細菌培養に代表される再培養やグラム染色などで滅菌の完了を判別してもよい。
 吸光度測定を行う箇所としては、滅菌処理が比較的行き渡りにくい箇所である金属製多孔膜10の貫通孔11の内部が挙げられる。吸光度測定によって滅菌処理が行き渡りにくい箇所が滅菌されていることが確認できれば、他の箇所も滅菌されていると判定することができる。例えば、吸光度測定によって金属製多孔膜10の貫通孔11内部が滅菌されていることを判定することができれば、金属製多孔膜10全体が滅菌されていることを判定することができる。
[洗浄判別方法]
 本発明の実施の形態1に係る洗浄判別方法について、図6を用いて説明する。図6は、実施の形態1に係る洗浄判別方法のフローチャートを示す。
 図6に示すように、ステップST21において、洗浄が完了したことを判別するための有機物20を金属製多孔膜10の表面に付着させる(付着工程)。具体的には、金属製多孔膜10の第1主面PS1上において、貫通孔11が設けられている領域の一部に有機物20を付着させる。また、金属製多孔膜10の貫通孔11内にも有機物20を付着させる。
 ステップST22において、金属製多孔膜10を洗浄処理する(洗浄工程)。具体的には、有機物20を付着させた金属製多孔膜10をアセトンや純水などの溶液によって洗浄する。
 ステップST23において、金属製多孔膜10の洗浄処理が完了しているか否かを判別する(判別工程)。実施の形態1においては、洗浄工程前後の有機物20の炭素の量を測定することによって、金属製多孔膜10の洗浄が完了しているか否かを判別する。以下、炭素の量の測定による金属製多孔膜10の洗浄完了の判別について具体的に説明する。
 炭素の量の測定による洗浄完了の判別方法として、XPS(X-ray Photoelectron Spectroscopy)測定が挙げられる。表1は、洗浄完了前と洗浄完了後のXPS分析結果である。XPS分析は、XPS測定装置(アルバック・ファイ製 型番Quantum2000)を用いて行った。尚、XPS測定で用いられるX線の測定径は9μmであった。X線の照射位置は、金属製多孔膜10の中央部の孔11の内部(内壁)であった。
Figure JPOXMLDOC01-appb-T000001
 表1より、洗浄前は多くの炭素(C)が検出されているが、洗浄完了後には炭素の量が低減し、金属製多孔膜10の主成分であるニッケル(Ni)よりも低濃度となっている。即ち、XPSにより、金属製多孔膜10の表面において、金属(ニッケル)濃度よりも炭素濃度を低濃度化したことにより洗浄完了を判別することができる。
 以上のように、金属製多孔膜10では、意図的に有機物20を付着させることによって、滅菌工程及び洗浄工程の前後における有機物20の状態に基づいて、金属製多孔膜10の滅菌及び洗浄が完了したか否かを判別している。
[効果]
 実施の形態1に係る金属製多孔膜10によれば、以下の効果を奏することができる。
 金属製多孔膜10においては、滅菌及び洗浄が完了したことを判別するための有機物20を第1主面PS1上に付着させると共に、貫通孔11内に付着させている。このような構成により、金属製多孔膜10の滅菌工程及び洗浄工程の前後における有機物20の状態に基づいて、滅菌及び洗浄が完了したことを容易に判別することができる。
 金属製多孔膜10においては、有機物20として、感光性有機物、具体的には放射線を照射することによって変性する放射線反応有機物を用いている。例えば、ガンマ線を照射して滅菌処理を行う場合、ガンマ線の照射によって有機物20が変性する。このため、金属製多孔膜10においては、ガンマ線照射による有機物20の変性に基づいて、金属製多孔膜10の滅菌の完了を容易に判別することができる。
 滅菌判別方法においては、ガンマ線の照射による有機物20の変性として色の変化に着目しており、滅菌工程の前後における有機物20の吸光度に基づいて、金属製多孔膜10の滅菌が完了したことを判別している。これにより、滅菌判別方法では、有機物20の吸光度を測定することにより、有機物20の色の変化を検出することができるため、金属製多孔膜10の滅菌が完了したことをより簡単に判別することができる。
 金属製多孔膜10において、有機物20は、炭素を含んでいる。このため、洗浄判別方法においては、洗浄工程の前後における有機物20に含まれる炭素の量を測定することによって、金属製多孔膜10の洗浄が完了したことをより簡単に判別することができる。
 有機物20は、金属製多孔膜10から容易に剥離可能である。このため、金属製多孔膜10を濾過対象物の濾過に使用する前に、金属製多孔膜10から有機物20を容易に剥離することができる。その結果、金属製多孔膜10を本来の濾過用途に容易に使用できる。即ち、金属製多孔膜10を用いて濾過する場合に、有機物20が濾過を妨げることがない。
 なお、実施の形態1において、有機物20は、第1主面PS1上において貫通孔11が設けられている領域の一部に付着しているが、これに限定されない。有機物20は、金属製多孔膜10の少なくとも一部に付着していればよい。例えば、有機物20は、第1主面PS1の一部、第2主面PS2の一部、又は貫通孔11の内壁の一部などに付着させてもよい。また、有機物20は、第1主面PS1全域にわたって付着していてもよい。第1主面PS1全域にわたって有機物20を付着させることにより、滅菌工程において有機物20の変性が生じていない場所を特定し、滅菌処理が不十分な箇所を特定することができる。同様に、洗浄工程においても、有機物20に含まれる炭素の量を測定し、洗浄処理が不十分な箇所を特定することができる。
 実施の形態1において、有機物20は、滅菌及び洗浄が完了したことを判別するための有機物である例について説明したが、これに限定されない。有機物20は、滅菌と洗浄のうち少なくとも一方が完了したことを判別するための有機物であってもよい。例えば、滅菌の完了のみを判別する場合、有機物20は、炭素を含まず、放射線の照射による変性する放射線反応有機物であってもよい。洗浄の完了のみを判別する場合、有機物20は、炭素を含んでいればよく、放射線の照射により変性しなくてもよい。
 実施の形態1において、有機物20は、ガンマ線を照射することによって変性する放射線反応有機物を例として説明したが、これに限定されない。有機物20は、滅菌の処理の種類に応じて変更してもよい。例えば、紫外線等を用いる場合、有機物20は、紫外線によって変性する感光性有機物であってもよい。あるいは、オゾンを用いる場合、有機物20はオゾンによって変性(酸化)する有機物であってもよい。滅菌が完了したことを判別する工程ST13は、寒天培地中での細菌培養に代表される再培養によって滅菌の完了を判別しているが、これに限定されない。例えば、グラム染色などで滅菌の完了を判別してもよい。
 実施の形態1において、有機物20の変性とは、ガンマ線を照射することによって有機物20の色が変化することを例として説明したが、これに限定されない。例えば、変性としては、有機物20の組成の変化、粘性の変化、又は硬度の変化等であってもよい。
 実施の形態1において、滅菌工程ST12は、ガンマ線を照射することによって滅菌する例について説明したが、これに限定されない。滅菌工程ST12は、例えば、高温高圧の飽和水蒸気によるオートクレーブ滅菌、又は酸化エチレンガスを用いた酸化エチレンガス滅菌、又はオゾンによる酸化滅菌、などを含んでもよい。
 実施の形態1において、有機物20は、洗浄工程の完了を容易に判別するために炭素を含んでいるが、炭素を含まなくてもよい。例えば、洗浄工程の前後における金属製多孔膜10の重量変化等に基づいて洗浄工程の完了の判別が行われる場合、有機物20は炭素を含まなくてもよい。
 実施の形態1において、洗浄が完了したことを判別する工程ST23は、有機物20に含まれる炭素の量を測定することによって洗浄の完了を判別しているが、これに限定されない。例えば、X線構造分析、AFM(Atomic Force Microscope)、目視、可視光分光、赤外線分光、溶出物に対するICP-MS(ICP-Mass Spectrometry)、重量変化の測定などで洗浄の完了を判別してもよい。また、有機物20は、洗浄判別工程ST23の洗浄の完了の判別の方法に応じて、任意に変更してもよい。例えば、有機物20の重量変化の測定により洗浄の完了の判別を行う場合、有機物20は、炭素を含まなくてもよい。
 実施の形態1において、滅菌判別方法は、複数の金属製多孔膜10を用いて行われてもよい。例えば、滅菌判別方法における付着工程ST11は、複数の金属製多孔膜10のうちから選択された少なくとも1つ以上の金属製多孔膜10に有機物20を付着させてもよい。そして、複数の金属製多孔膜10に対して滅菌工程ST12を行った後、有機物20を付着した金属製多孔膜10に対して判別工程ST13を行ってもよい。このような構成により、複数の金属製多孔膜10の滅菌が完了したことを効率良く判別することができる。
 同様に、洗浄判別方法においても、複数の金属製多孔膜10を用いて行われてもよい。洗浄判別方法における付着工程ST21についても、複数の金属製多孔膜10のうちから選択された少なくとも1つ以上の金属製多孔膜10に有機物20を付着させてもよい。そして、複数の金属製多孔膜10に対して洗浄工程ST22を行った後、有機物20を付着した金属製多孔膜10に対して判別工程ST23を行ってもよい。このような構成により、複数の金属製多孔膜10の洗浄が完了したことを効率良く判別することができる。
 実施の形態1において、滅菌判別方法及び洗浄判別方法は、電子顕微鏡(例えば、日立製S-4800)を使用して5000倍の倍率下で、滅菌後または洗浄後の金属製多孔膜10上を10箇所観察し、該有機物20を確認することができない場合、滅菌または洗浄が確認できていると判断してもよい。
(実施の形態2)
[全体構成]
 本発明に係る実施の形態2の金属製多孔膜について図7及び図8を用いて説明する。
 図7は、実施の形態2の金属製多孔膜10aの概略構成を示す。図8は、金属製多孔膜10aの貫通孔11の部分を拡大した図を示す。
 実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。
 図7及び図8に示すように、実施の形態2の金属製多孔膜10aは、実施の形態1の金属製多孔膜10と比べて、貫通孔11の内壁のみに付着させている点で異なる。
 金属製多孔膜10aにおいては、金属製多孔膜10aの第1主面PS1上及び第2主面上に有機物20を付着させずに、複数の貫通孔11のそれぞれの内壁全体に有機物20を付着させている。
[効果]
 実施の形態2に係る金属製多孔膜10aによれば、以下の効果を奏することができる。
 金属製多孔膜10aは、第1主面PS1上及び第2主面PS2上に有機物20を付着させず、貫通孔11の内壁に有機物20を付着させている。このような構成により、金属製多孔膜10aは、実施の形態1に比べて、有機物20の付着量を減少させ、コストを低減することができる。
 貫通孔11の内壁は、滅菌工程においてガンマ線が照射されにくい場所、即ち滅菌されにくい場所である。金属製多孔膜10aにおいては、貫通孔11の内壁に付着させた有機物20の滅菌工程の前後における色の変化に基づいて滅菌の完了の判別を行うことで、滅菌が十分に行われているかを容易に判別することができる。同様に、貫通孔11の内壁は、洗浄工程において洗浄されにくい場所でもある。金属製多孔膜10aにおいては、貫通孔11の内壁に付着させた有機物20の洗浄工程の前後における炭素の量に基づいて洗浄の完了の判別を行うことで、洗浄が十分に行われているかを容易に判別することもできる。
 なお、実施の形態2において、有機物20は、複数の貫通孔11の内壁全体に付着する例について説明したが、これに限定されない。例えば、有機物20は、貫通孔11の内壁の一部に付着させてもよい。
(実施の形態3)
[全体構成]
 本発明に係る実施の形態3の金属製多孔膜について図9を用いて説明する。
 図9は、実施の形態3の金属製多孔膜10bの概略構成を示す。なお、図9は、金属製多孔膜10bの貫通孔11の部分を拡大した図を示している。
 実施の形態3では、主に実施の形態2と異なる点について説明する。実施の形態3においては、実施の形態2と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態3では、実施の形態2と重複する記載は省略する。
 図9に示すように、実施の形態3の金属製多孔膜10bは、実施の形態2の金属製多孔膜10aと比べて、有機物20を貫通孔11の内壁全体ではなく、貫通孔11の内壁の一部に付着させている点で異なる。
 金属製多孔膜10bにおいては、貫通孔11の内壁の隅部分に有機物20を付着させている。
[効果]
 実施の形態3に係る金属製多孔膜10bによれば、以下の効果を奏することができる。
 金属製多孔膜10bにおいては、貫通孔11の内壁の隅部分に有機物20を付着させている。貫通孔11の内壁の隅部分は、滅菌工程においてガンマ線が最も照射されにくい場所、即ち最も滅菌されにくい場所である。そのため、金属製多孔膜10bにおいては、貫通孔11の内壁の隅部分に有機物20を付着させることによって、滅菌が十分に行われているかを容易に判別することができる。同様に、貫通孔11の内壁の隅部分は、洗浄工程において最も洗浄されにくい場所でもある。そのため、金属製多孔膜10bにおいては、洗浄が十分に行われているかについても容易に判別することもできる。
 金属製多孔膜10bにおいては、実施の形態2に比べて、有機物20の付着量を減少させ、更にコストを低減することができる。
 なお、実施の形態3において、有機物20は、貫通孔11の内壁の隅部分に付着させる例について説明したが、これに限定されない。有機物20は、貫通孔11の内壁の少なくとも一部に付着されていればよい。例えば、有機物20は、貫通孔11の内壁の4つの隅部分のうち少なくとも1つに付着していてもよい。有機物20は、金属製多孔膜10の厚み方向において貫通孔11の内壁の少なくとも一部に付着していてもよい。
 以下、本発明の実施例について説明する。
(実施例1)
 実施例1について説明する。
 実施例1は、ニッケル製の金属製多孔膜10の表面の一部に、有機物20として白色のポリアセタールを付着させたものである。
 次に、実施例1と比較するために用いた比較例1について説明する。
 比較例1は、有機物20を付着させていないニッケル製の金属製多孔膜10である。
 実施例1と比較例1を合わせて同ロットとして、ガンマ線照射による滅菌を行った。このときの線源は、コバルト60、線量は28.2~29.4kGyであった。その結果、実施例1において、白色であったポリアセタールが黄色化した。そのため、このロット全体が滅菌完了していることを目視によって容易に判別することができた。比較例1においては、滅菌工程前後で目視可能な違いは見られなかった。即ち、比較例1では、滅菌が完了したかどうかを判別することができなかった。
 図10は、ガンマ線照射前とガンマ線照射後の実施例1のポリアセタールをそれぞれ紫外-可視吸光光度計(日立ハイテクノロジーズ製 型番U-4100)を使用して吸光分析した結果を示す。尚、検出には積分球を使用し、ポリアセタール表面における紫外光から近赤外光にかけての光の全反射率を算出した。図10の横軸は波長(nm)を示し、縦軸は反射率(%)を示す。図10中の実験例1はガンマ線照射前の実施例1の吸光分析結果、実験例2はガンマ線照射後の実施例1の吸光分析結果を示す。
 図10より、実験例2は、実験例1と比べて、ガンマ線照射によって200nmから400nm帯における光の反射率が低下していることがわかる。このことから、実験例2において、200nmから400nm帯における光の吸収率が大きくなって、ポリアセタールが黄色化したことが裏付けられている。
(実施例2)
 実施例2は、ニッケル製の金属製多孔膜10の第1主面PS1全体に、感光性有機物であるキノンジアジド化合物を感光剤とし、ノボラック樹脂を含有する有機物20を直接付着させたものである。
 実施例2の作製方法について説明する。
 金属製多孔膜10の第1主面PS1上に液体状の有機物20を、5ml滴下し、スピンコーターを使用して塗布した。このとき、スピンコーターの回転数は1500rpm(1秒間にこの回転数に到達)、回転時間は1分間であった。この結果、有機物20が第1主面PS1上と貫通孔11内部とに付着した。第1主面PS1上の有機物20の膜厚は、2μmであった。実施例2と比較例1を合わせて同ロットとして、ガンマ線照射による滅菌を行った。その結果、実施例2において、茶色であった有機物20が僅かに黒色化した。そのため、このロット全体が滅菌完了していることを、目視によって容易に判別することができた。
 その後、実施例2に対して、アセトンで10分間超音波洗浄(周波数45kHz)した。洗浄後、第1主面PS1を目視観察した結果、ニッケル色を確認できた。これは、有機物20が金属製多孔膜10から容易に剥離可能なことを意味する。このため、金属製多孔膜10を、本来の目的である濾過用途に使用することが容易にできた。
(実施例3)
 実施例3は、金属製多孔膜10aの貫通孔11の内壁のみに、感光性有機物であるキノンジアジド化合物を感光剤とし、ノボラック樹脂を含有する有機物20を直接付着させたものである。
 実施例3の作製方法について説明する。
 実施例3の作製方法においては、実施例2の作製工程に、貫通孔11の内壁のみに有機物20を付着させるための工程を追加する。実施例3の作製において、実施例2の作製工程の後、有機物20を付着させた金属製多孔膜10aを設定温度130度、窒素ガス雰囲気中で5分間加温して溶剤成分の一部を揮発させた。そして、波長365nmを含んだエネルギー密度2500J/mの光線を0.25秒間照射して、有機物の硬度を調整した。最後に、アセトンで3秒間超音波洗浄(周波数45kHz)し、第1主面PS1や貫通孔11内部の一部の有機物20を剥離し、有機物20を貫通孔11の内壁のみに付着させた。このとき、貫通孔11の内壁に付着した有機物20の厚みは0.7μm以下と推測される。なお、さらにもう一度アセトンで7秒間超音波洗浄(周波数45kHz)したところ、貫通孔11の内壁に有機物20は見られなくなった。
 実施例3と比較例1を合わせて同ロットとして、ガンマ線照射による滅菌を行った。その後、実施例3の貫通孔11の内壁に対して顕微分光を行った結果を図11に示す。図11は、ガンマ線照射前とガンマ線照射後の実施例3の有機物20をそれぞれ紫外-可視吸光光度計(日立ハイテクノロジーズ製 型番U-4100)を使用して吸光分析した結果を示す。尚、検出には積分球を使用し、実施例3の有機物20における紫外光から近赤外光にかけての光の吸光度を算出した。図11の横軸は波長(nm)を示し、縦軸は吸光度を示す。尚、図11は波長300nmから600nmの領域のみを示している。実験例3はガンマ線照射前の実施例3の吸光分析結果、実験例4がガンマ線照射後の実施例3の吸光分析結果を示す。
 図11より、実験例4は、実験例3と比べて、ガンマ線照射によって390nmから580nm帯における光の吸光度が増加していることがわかる。このことから、実験例4において、ガンマ線の照射によって有機物20が変色したことが裏付けられている。
 その後、実施例3に対してアセトンで5分間超音波洗浄(周波数45kHz)した後、貫通孔11の内壁に対してさらに顕微分光を行った結果、ニッケル色を確認できた。これは、有機物20が金属製多孔膜10aから容易に剥離可能なことを意味する。このため、金属製多孔膜10aを、本来の目的である濾過用途に使用することが容易にできた。
(実施例4)
 実施例4は、実施例3と同様に金属製多孔膜10aの貫通孔11の内壁のみに有機物20を付着させたものである。
 実施例4と比較例1を合わせて同ロットとして、アセトン、エタノール、純水、エタノール、の順番で各10分間揺動洗浄を行った。洗浄後、顕微鏡で観察した結果、貫通孔11の内壁に有機物20が観察されなかった。このことは、このロット全体が洗浄完了していることを示している。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明は、金属製多孔膜に有機物を付着させており、滅菌又は洗浄が完了したことを判別する点で優れている。例えば、化学分析、創薬・製薬、臨床検査、公衆衛生管理、環境計測等の分野に有用である。
  10 金属製多孔膜
  11 貫通孔
  20 有機物
  PS1 第1主面
  PS2 第2主面

Claims (11)

  1.  複数の貫通孔を有する金属製多孔膜であって、
     前記金属製多孔膜の少なくとも一部に付着した感光性有機物を有する、金属製多孔膜。
  2.  前記感光性有機物は、放射線を照射することによって変性する放射線反応有機物である、請求項1に記載の金属製多孔膜。
  3.  前記感光性有機物は、炭素を含む、請求項1または2に記載の金属製多孔膜。
  4.  前記感光性有機物が、前記複数の貫通孔の内壁の少なくとも一部に付着した、請求項1~3のいずれか一項に記載の金属製多孔膜。
  5.  前記感光性有機物が、前記複数の貫通孔の内壁のみに付着した請求項1~4のいずれか一項に記載の金属製多孔膜。
  6.  金属製多孔膜の滅菌が完了しているかを判別する滅菌判別方法であって、
     前記金属製多孔膜の少なくとも一部に感光性有機物を付着させる工程、
     前記金属製多孔膜を滅菌する工程、および
     前記感光性有機物の変性に基づいて前記金属製多孔膜の滅菌が完了していることを判別する工程、
    を含む、滅菌判別方法。
  7.  前記判別する工程は、前記滅菌する工程前後における前記感光性有機物の吸光度を測定し、測定された前記吸光度に基づいて前記金属製多孔膜の滅菌が完了していることを判別する、請求項6に記載の滅菌判別方法。
  8.  前記付着させる工程は、複数の金属製多孔膜から選択された少なくとも1つ以上の金属製多孔膜に対して行われる、請求項6又は7に記載の滅菌判別方法。
  9.  金属製多孔膜の洗浄が完了しているかを判別する洗浄判別方法であって、
     前記金属製多孔膜の少なくとも一部に感光性有機物を付着させる工程、
     前記金属製多孔膜を洗浄する工程、および
     前記金属製多孔膜に付着している前記感光性有機物の量に基づいて前記金属製多孔膜の洗浄が完了していることを判別する工程、
    を含む、洗浄判別方法。
  10.  前記判別する工程は、前記洗浄する工程前後において前記感光性有機物に含まれる炭素の量を測定し、測定された前記炭素の量に基づいて前記金属製多孔膜の洗浄が完了していることを判別する、請求項9に記載の洗浄判別方法。
  11.  前記付着させる工程は、複数の金属製多孔膜から選択された少なくとも1つ以上の金属製多孔膜に対して行われる、請求項9又は10に記載の洗浄判別方法。
PCT/JP2016/072788 2015-08-07 2016-08-03 金属製多孔膜、滅菌判別方法及び洗浄判別方法 WO2017026348A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016565702A JP6098774B1 (ja) 2015-08-07 2016-08-03 金属製多孔膜
US15/454,028 US10183083B2 (en) 2015-08-07 2017-03-09 Metal mesh, sterilization determination method, and cleaning determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-156775 2015-08-07
JP2015156775 2015-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/454,028 Continuation US10183083B2 (en) 2015-08-07 2017-03-09 Metal mesh, sterilization determination method, and cleaning determination method

Publications (1)

Publication Number Publication Date
WO2017026348A1 true WO2017026348A1 (ja) 2017-02-16

Family

ID=57983190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072788 WO2017026348A1 (ja) 2015-08-07 2016-08-03 金属製多孔膜、滅菌判別方法及び洗浄判別方法

Country Status (3)

Country Link
US (1) US10183083B2 (ja)
JP (3) JP6098774B1 (ja)
WO (1) WO2017026348A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173928A1 (ja) * 2017-03-21 2018-09-27 株式会社村田製作所 細胞捕捉用フィルタ、細胞捕捉用フィルタの製造方法、および細胞捕捉用フィルタの劣化判定方法
CN108795723A (zh) * 2017-04-26 2018-11-13 株式会社村田制作所 用于过滤有核细胞的过滤器和使用了其的过滤方法
CN109070019A (zh) * 2017-03-01 2018-12-21 株式会社村田制作所 过滤滤除器
CN109415674A (zh) * 2017-03-10 2019-03-01 株式会社村田制作所 细胞过滤滤除器
CN112775099A (zh) * 2021-01-27 2021-05-11 南京工业职业技术大学 一种新能源汽车生产用零部件清洗装置
JP2022516477A (ja) * 2018-12-28 2022-02-28 エイエスピー・グローバル・マニュファクチャリング・ゲーエムベーハー 処理インジケータ、その製造方法、およびその使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837433Y1 (ja) * 1968-08-22 1973-11-07
JPH0543827A (ja) * 1991-08-20 1993-02-23 Hogi Medical:Kk 電子線滅菌用インジケータインキ
JP2000065934A (ja) * 1998-08-20 2000-03-03 Nichiyu Giken Kogyo Co Ltd 放射線照射量インジケータ
JP2005508664A (ja) * 2001-06-15 2005-04-07 ユーブイ−ソルーションズ・エルエルシー バンデージを通して領域を滅菌または消毒する方法および器具
JP2008055282A (ja) * 2006-08-30 2008-03-13 Toshiba Corp ろ過システム
JP2009143731A (ja) * 2007-12-11 2009-07-02 Dainippon Printing Co Ltd 反応膜、水素製造装置および燃料電池
WO2013054786A1 (ja) * 2011-10-14 2013-04-18 日立化成株式会社 金属フィルターの製造方法
JP2014125652A (ja) * 2012-12-26 2014-07-07 Hitachi Chemical Co Ltd 金属フィルターの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424613B2 (ja) * 1999-08-31 2003-07-07 日本電気株式会社 多孔状感光体およびその製造方法
JP5925462B2 (ja) 2011-10-12 2016-05-25 ヤンマー株式会社 走行作業機械又は船舶の遠隔監視端末装置
CN105452439B (zh) 2013-08-09 2018-06-08 日立化成株式会社 细胞捕获设备、细胞捕获***及细胞捕获设备的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837433Y1 (ja) * 1968-08-22 1973-11-07
JPH0543827A (ja) * 1991-08-20 1993-02-23 Hogi Medical:Kk 電子線滅菌用インジケータインキ
JP2000065934A (ja) * 1998-08-20 2000-03-03 Nichiyu Giken Kogyo Co Ltd 放射線照射量インジケータ
JP2005508664A (ja) * 2001-06-15 2005-04-07 ユーブイ−ソルーションズ・エルエルシー バンデージを通して領域を滅菌または消毒する方法および器具
JP2008055282A (ja) * 2006-08-30 2008-03-13 Toshiba Corp ろ過システム
JP2009143731A (ja) * 2007-12-11 2009-07-02 Dainippon Printing Co Ltd 反応膜、水素製造装置および燃料電池
WO2013054786A1 (ja) * 2011-10-14 2013-04-18 日立化成株式会社 金属フィルターの製造方法
JP2014125652A (ja) * 2012-12-26 2014-07-07 Hitachi Chemical Co Ltd 金属フィルターの製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933361B2 (en) 2017-03-01 2021-03-02 Murata Manufacturing Co., Ltd. Filtration filter
CN109070019A (zh) * 2017-03-01 2018-12-21 株式会社村田制作所 过滤滤除器
CN109070019B (zh) * 2017-03-01 2021-06-08 株式会社村田制作所 过滤滤除器
CN109415674B (zh) * 2017-03-10 2021-10-26 株式会社村田制作所 细胞过滤滤除器
CN109415674A (zh) * 2017-03-10 2019-03-01 株式会社村田制作所 细胞过滤滤除器
CN109414657A (zh) * 2017-03-21 2019-03-01 株式会社村田制作所 细胞捕捉用过滤器、细胞捕捉用过滤器的制造方法、以及细胞捕捉用过滤器的劣化判定方法
US10918999B2 (en) 2017-03-21 2021-02-16 Murata Manufacturing Co., Ltd. Cell-capturing filter, method for manufacturing cell-capturing filter, and degradation determination method for cell-capturing filter
JPWO2018173928A1 (ja) * 2017-03-21 2019-11-07 株式会社村田製作所 細胞捕捉用フィルタ、細胞捕捉用フィルタの製造方法、および細胞捕捉用フィルタの劣化判定方法
WO2018173928A1 (ja) * 2017-03-21 2018-09-27 株式会社村田製作所 細胞捕捉用フィルタ、細胞捕捉用フィルタの製造方法、および細胞捕捉用フィルタの劣化判定方法
CN108795723A (zh) * 2017-04-26 2018-11-13 株式会社村田制作所 用于过滤有核细胞的过滤器和使用了其的过滤方法
CN108795723B (zh) * 2017-04-26 2022-06-10 株式会社村田制作所 用于过滤有核细胞的过滤器和使用了其的过滤方法
JP2022516477A (ja) * 2018-12-28 2022-02-28 エイエスピー・グローバル・マニュファクチャリング・ゲーエムベーハー 処理インジケータ、その製造方法、およびその使用方法
JP7520846B2 (ja) 2018-12-28 2024-07-23 エイエスピー・グローバル・マニュファクチャリング・ゲーエムベーハー 処理インジケータ、その製造方法、およびその使用方法
CN112775099A (zh) * 2021-01-27 2021-05-11 南京工业职业技术大学 一种新能源汽车生产用零部件清洗装置

Also Published As

Publication number Publication date
US10183083B2 (en) 2019-01-22
JP2017038965A (ja) 2017-02-23
JP6098774B1 (ja) 2017-03-22
JP2017038966A (ja) 2017-02-23
US20170173194A1 (en) 2017-06-22
JP6098756B2 (ja) 2017-03-22
JPWO2017026348A1 (ja) 2017-08-10
JP6090526B2 (ja) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6098756B2 (ja) 金属製多孔膜の洗浄判別方法
Kelleher et al. Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features
Hasan et al. Antiviral nanostructured surfaces reduce the viability of SARS-CoV-2
George et al. Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos
Galante et al. Superhemophobic and antivirofouling coating for mechanically durable and wash-stable medical textiles
Mallakpour et al. The latest strategies in the fight against the COVID-19 pandemic: the role of metal and metal oxide nanoparticles
Banaee et al. Blood biochemical changes in common carp (Cyprinus carpio) upon co-exposure to titanium dioxide nanoparticles and paraquat
Wu et al. Potential of superhydrophobic surface for blood-contacting medical devices
Singh et al. Designing photocatalytic nanostructured antibacterial surfaces: why is black silica better than black silicon?
Reina et al. Graphene: a disruptive opportunity for COVID‐19 and future pandemics?
Lee et al. Carbon nanotube mask filters and their hydrophobic barrier and hyperthermic antiviral effects on SARS-CoV-2
Pandey et al. Architectured therapeutic and diagnostic nanoplatforms for combating SARS-CoV-2: role of inorganic, organic, and radioactive materials
Francone et al. Impact of surface topography on the bacterial attachment to micro-and nano-patterned polymer films
Huang et al. Implications of the coffee-ring effect on virus infectivity
Josset et al. Photocatalytic treatment of bioaerosols: impact of the reactor design
Czapka et al. Fabrication of photoactive electrospun cellulose acetate nanofibers for antibacterial applications
Demaude et al. Atmospheric pressure plasma deposition of hydrophilic/phobic patterns and thin film laminates on any surface
Alayande et al. Antiviral nanomaterials for designing mixed matrix membranes
Singh et al. Antimicrobial nanomaterials as advanced coatings for self-sanitizing of textile clothing and personal protective equipment
Tian et al. Strategy to enhance the wettability of bioacive paper-based sensors
Velazco-Medel et al. Simultaneous grafting polymerization of acrylic acid and silver aggregates formation by direct reduction using γ radiation onto silicone surface and their antimicrobial activity and biocompatibility
JP6443604B1 (ja) 細胞濾過フィルタ
Yan et al. Reusing face covering masks: probing the impact of heat treatment
Aldebasi et al. Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity
Jeon et al. Hierarchically self-organized monolithic nanoporous membrane for excellent virus enrichment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016565702

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835045

Country of ref document: EP

Kind code of ref document: A1