WO2017022796A1 - リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2017022796A1
WO2017022796A1 PCT/JP2016/072800 JP2016072800W WO2017022796A1 WO 2017022796 A1 WO2017022796 A1 WO 2017022796A1 JP 2016072800 W JP2016072800 W JP 2016072800W WO 2017022796 A1 WO2017022796 A1 WO 2017022796A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
mass
ion secondary
secondary battery
lithium ion
Prior art date
Application number
PCT/JP2016/072800
Other languages
English (en)
French (fr)
Inventor
克典 西浦
雅亮 猿山
佳広 坂田
仁志 大西
昭 江田
楠 房
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2016573639A priority Critical patent/JP6105826B1/ja
Priority to US15/749,519 priority patent/US20180226677A1/en
Priority to CN201680044473.9A priority patent/CN107925060A/zh
Priority to EP16833075.1A priority patent/EP3333943A4/en
Priority to KR1020187002576A priority patent/KR20180022879A/ko
Publication of WO2017022796A1 publication Critical patent/WO2017022796A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite paste for a negative electrode of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a method for producing a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • a secondary battery is a battery that can be charged and discharged, and uses chemical energy generated by a chemical reaction between a positive electrode active material and a negative electrode active material via an electrolyte as electrical energy.
  • lithium ion secondary batteries have been put into practical use as those having a high energy density.
  • a lithium-containing metal composite oxide such as lithium cobalt composite oxide is mainly used as a positive electrode active material of a lithium ion secondary battery, and a carbon material is mainly used as a negative electrode active material.
  • PVdF polyvinylidene fluoride
  • negative electrode active material for lithium ion secondary batteries As a negative electrode active material for lithium ion secondary batteries, development of a next-generation negative electrode active material having a charge / discharge capacity that greatly exceeds the theoretical capacity of a carbon material is underway.
  • negative electrode active materials using silicon atoms, tin atoms, and the like are expected to be put to practical use because they have a large charge / discharge capacity.
  • these negative electrode active materials since the volume change accompanying the insertion and extraction of lithium ions is very large for silicon atoms and tin atoms, these negative electrode active materials have a large degree of expansion and contraction associated with charge / discharge cycles.
  • the active material particles are pulverized or detached from the binder due to expansion and contraction of the active material particles. To do. This pulverization and desorption tends to cause cycle deterioration of the battery.
  • a binder of a lithium ion secondary battery is required to have high heat resistance in order to cope with heat generation of the battery due to rapid ion movement when charging / discharging in a short time. Therefore, an electrode using polyimide, which has excellent mechanical strength and heat resistance, as a binder has been proposed (see Patent Documents 1 to 8).
  • Patent Document 9 a conventional lithium ion secondary battery using a polyimide as a binder is excellent in cycle characteristics and heat resistance, but has a drawback of low initial charge / discharge efficiency (Patent Document 9).
  • Non-patent Document 1 the reason why the initial charge / discharge efficiency of a lithium ion secondary battery using a conventional polyimide binder as a binder is reduced is that polyimide is reduced during charging (Non-patent Document 1).
  • the present invention relates to a composite paste for producing a negative electrode for a lithium ion secondary battery, in which the first charge / discharge efficiency is not easily lowered by reduction of polyimide during charging, a negative electrode having such characteristics, and the An object of the present invention is to provide a lithium ion secondary battery having such a negative electrode.
  • the first of the present invention relates to a composite paste for a negative electrode of a lithium ion secondary battery shown below.
  • a composite paste for a negative electrode of a lithium ion secondary battery Contains a binder resin composition and a negative electrode active material,
  • the composition for binder resin is derived from a polyamic acid having a structural unit derived from a diamine compound and a structural unit derived from tetracarboxylic dianhydride, or a structural unit derived from a diamine compound and tetracarboxylic dianhydride.
  • the structural unit derived from the diamine compound includes a structural unit derived from a diamine compound represented by the following general formula (I) or (II):
  • the negative electrode active material is a composite paste containing silicon oxide and carbon particles represented by SiO x (0.5 ⁇ x ⁇ 1.5).
  • n and two m's are each independently 0 or 1
  • —X— is a divalent group selected from the group consisting of direct bond, —O—, —S—, —SO 2 —, —CO—, and —CH 2 —.
  • the amount of the silicon oxide in the negative electrode active material is 5% by mass or more and 70% by mass or less based on the total mass of the silicon oxide and the carbon particles.
  • a mixture paste [3]
  • the structural unit derived from the tetracarboxylic dianhydride includes a structural unit derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, according to [1] or [2] The described composite paste. [4] The composite paste according to any one of [1] to [3], wherein the binder resin composition further contains an alkali metal ion.
  • the second of the present invention relates to the following negative electrode for a lithium ion secondary battery.
  • a negative electrode for a lithium ion secondary battery Including a laminate of a current collector and a negative electrode active material layer,
  • the negative electrode active material layer contains a binder resin and a negative electrode active material,
  • the binder resin contains a polyimide having a structural unit derived from a diamine compound and a structural unit derived from tetracarboxylic dianhydride,
  • the structural unit derived from the diamine compound includes a structural unit derived from a diamine compound represented by the following general formula (I) or (II):
  • the negative electrode active material contains silicon oxide and carbon particles represented by SiO x (0.5 ⁇ x ⁇ 1.5). Negative electrode.
  • n and two m's are each independently 0 or 1
  • —X— is a divalent group selected from the group consisting of direct bond, —O—, —S—, —SO 2 —, —CO—, and —CH 2 —.
  • the amount of the silicon oxide in the negative electrode active material is 5% by mass or more and 70% by mass or less based on the total mass of the silicon oxide and the carbon particles.
  • Negative electrode. The structural unit derived from the tetracarboxylic dianhydride in the binder resin includes a structural unit derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. [5] Or the negative electrode as described in [6].
  • 3rd of this invention is related with the manufacturing method of the negative electrode for lithium ion secondary batteries shown below.
  • a method for producing a negative electrode for a lithium ion secondary battery. [9] The method for producing a negative electrode according to [8], wherein the heat treatment temperature in the heat treatment step is 200 ° C. or higher and 350 ° C. or lower.
  • a lithium ion secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte
  • the composite paste for the negative electrode of a lithium ion secondary battery contains a binder resin composition and a negative electrode active material.
  • the composite paste may further contain other substances such as a solvent and a conductive aid.
  • composition for binder resin contains the polyamic acid which is a polyimide or its precursor.
  • the binder resin composition may contain a resin other than the polyamic acid or polyimide.
  • the composition for binder resins may contain an alkali metal ion.
  • Polyamic acid or polyimide contained in the binder resin composition includes a structural unit derived from a diamine compound and a structural unit derived from tetracarboxylic dianhydride.
  • the structural unit derived from a diamine compound The structural unit derived from the said polyamic acid or polyimide and a diamine compound is a structural unit derived from the diamine compound represented by the following general formula (I) or general formula (II).
  • n and two m's are each independently 0 or 1
  • —X— is a direct bond, —O—, —S—, —SO 2 —, —CO A divalent group selected from — and —CH 2 —.
  • the term “directly connected” is defined as a bonding form in which the cyclohexane rings or the carbon elements constituting the norbornane ring are directly covalently bonded.
  • the flexibility of the polyimide obtained therefrom is likely to increase. Therefore, it is easier to bind the active material more reliably in the electrode of the lithium ion secondary battery.
  • the diamine represented by the general formula (I) or (II) has a geometric isomer (trans isomer, cis isomer, etc.), any isomer may be used, and the isomer ratio is not particularly limited.
  • the proportion of the structural unit derived from the diamine compound represented by the general formula (I) or the general formula (II) in the polyamic acid or polyimide is usually 20 with respect to the total moles of all the structural units derived from the diamine compound. It is from mol% to 100 mol%, preferably from 50 mol% to 100 mol%, more preferably from 70 mol% to 100 mol%.
  • the polyamic acid or polyimide contains a structural unit derived from a diamine compound other than the diamine compound represented by the general formula (I) or the general formula (II) (hereinafter also simply referred to as “other diamine compound”). Also good.
  • the proportion of structural units derived from other diamine compounds in all structural units derived from the diamine compound in the polyamic acid or polyimide is usually less than 80 mol%, preferably less than 50 mol%, more preferably 30. Less than mol%.
  • the first example of another diamine compound is a diamine having a benzene ring.
  • Examples of the diamine having a benzene ring include the following ⁇ 1> to ⁇ 6>.
  • Diamine having one benzene ring such as p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine;
  • Second examples of other diamine compounds include 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4,4′-dibiphenoxybenzophenone, 3,3′-diamino Diamines having aromatic substituents such as -4-phenoxybenzophenone and 3,3′-diamino-4-biphenoxybenzophenone are included.
  • Third examples of other diamine compounds include 6,6′-bis (3-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6′- Diamines having a spirobiindane ring such as bis (4-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane are included.
  • Examples of other diamine compounds include 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis ( Siloxane diamines such as 3-aminopropyl) polydimethylsiloxane and ⁇ , ⁇ -bis (3-aminobutyl) polydimethylsiloxane are included.
  • Examples of other diamine compounds include bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis [(2-aminomethoxy) ethyl] ether, bis [2- (2-aminoethoxy) ethyl] ether, bis [2- (3-aminoprotoxy) ethyl] ether, 1,2-bis (aminomethoxy) ethane, 1,2-bis (2-aminoethoxy) Ethane, 1,2-bis [2- (aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2-aminoethoxy] ethane, ethylene glycol bis (3-aminopropyl) ether, diethylene glycol bis ( Ethylene glycols such as 3-aminopropyl) ether and triethylene glycol bis (3-aminopropyl) ether They include amines.
  • diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, , 8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and other alkylenediamines.
  • diamine compounds include cyclobutanediamine, diaminooxybicycloheptane, diaminomethyloxybicycloheptane (including oxanorbornanediamine), isophorone diamine, diaminotricyclodecane, diaminomethyltricyclodecane, bis (amino Cyclohexyl) isopropylidene and other alicyclic diamines other than the diamine represented by the general formula (I) or (II) are included.
  • Structural unit derived from tetracarboxylic dianhydride The structural unit derived from tetracarboxylic dianhydride is not particularly limited. For example, as shown in the general formula (III), 4 4 to 27 carbon atoms. Any structural unit derived from a tetracarboxylic dianhydride having a valent organic substituent Y may be used.
  • the organic substituent Y is a monocyclic aromatic group, a condensed polycyclic aromatic group, or a non-condensed polycyclic aromatic group in which aromatic groups are connected to each other directly or via a linking group, etc. Non-fused polycyclic aromatic groups may be preferred.
  • the organic substituent Y preferably has 6 to 27 carbon atoms.
  • the tetracarboxylic dianhydride represented by the general formula (III) is not particularly limited as long as polyamic acid or polyimide can be produced.
  • the tetracarboxylic dianhydride can be, for example, an aromatic tetracarboxylic dianhydride or an alicyclic tetracarboxylic dianhydride.
  • aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride Bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl)- 1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-bis
  • the tetracarboxylic dianhydride includes an aromatic ring such as a benzene ring, some or all of the hydrogen atoms on the aromatic ring are fluoro group, methyl group, methoxy group, trifluoromethyl group, and trifluoromethoxy group. It may be substituted with a group selected from groups and the like.
  • the tetracarboxylic dianhydride contains an aromatic ring such as a benzene ring
  • some or all of the hydrogen atoms on the aromatic ring may be an ethynyl group, benzocyclobuten-4′-yl It may be substituted with a group serving as a crosslinking point selected from a group, a vinyl group, an allyl group, a cyano group, an isocyanate group, a nitrilo group, an isopropenyl group, or the like, or a substituent having these groups.
  • a group that becomes a crosslinking point such as vinylene group, vinylidene group, and ethynylidene group may be incorporated in the main chain skeleton, preferably within a range that does not impair molding processability. .
  • a part of the tetracarboxylic dianhydride may be trimellitic anhydride, hexacarboxylic dianhydride, or octacarboxylic dianhydride.
  • tetracarboxylic dianhydrides can be used alone or in combination of two or more.
  • the polyamic acid or polyimide preferably contains a structural unit derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride among the tetracarboxylic dianhydrides.
  • the polyamic acid or polyimide has a structural unit derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in a total molar amount of the tetracarboxylic dianhydride constituting the polyamic acid or polyimide. On the other hand, it is more preferable to contain 50 mol% or more.
  • the weight average molecular weight of the polyamic acid or polyimide is preferably 1.0 ⁇ 10 3 to 5.0 ⁇ 10 5 .
  • the weight average molecular weight of the polyimide or its precursor polyamic acid can be measured by gel permeation chromatography (GPC).
  • the logarithmic viscosity of the polyamic acid or polyimide is preferably in the range of 0.2 to 3.0 dL / g, for example, from the viewpoint of dispersibility and coatability of the negative electrode mixture paste, and 0.3 to 2.0 dL / g.
  • the range of g is more preferable.
  • the content ratio of the polyamic acid or polyimide to the entire binder resin composition is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the upper limit of the content ratio of the polyamic acid or polyimide may be 100% by mass.
  • a polyamic acid is obtained by reacting the diamine compound represented by the general formula (I) or the general formula (II) with tetracarboxylic dianhydride in the presence of a solvent described below. can get. Any of the diamine compound and tetracarboxylic dianhydride may be used alone or in combination of two or more. At this time, the other diamine compound may be contained in the solvent and reacted at the same time.
  • the tetracarboxylic dianhydride preferably includes a tetracarboxylic dianhydride represented by the general formula (III), but other tetracarboxylic dianhydrides may be used.
  • the polyimide can be obtained by heating the polyamic acid at 150 ° C. to 230 ° C. to cause a dehydration condensation reaction.
  • the dehydration condensation reaction may be performed under heating in the presence or absence of conventionally known catalysts such as acids, tertiary amines, and anhydrides.
  • an aprotic polar solvent is preferable, and an aprotic amide solvent is more preferable.
  • aprotic amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazo Lidinone, N, N-diethylformamide, N-methylcaprolactam, hexamethylphosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, Triglyme, tetraglyme, dioxane, ⁇ -butyrolactone, dioxolane, cyclohexanone, cyclopentanone, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trich
  • solvents may coexist as necessary.
  • examples of other solvents include benzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, o-cresol, m-cresol, p-cresol, o-chloro Toluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene, m-bromotoluene, p-bromotoluene, chlorobenzene, bromobenzene, methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, etc. are included .
  • tertiary amines are preferable, and specifically, trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline and the like, and at least one selected from these A catalyst is used.
  • the amount of the catalyst used is preferably from 0.1 to 100 mol%, more preferably from 1 to 10 mol%, based on the tetracarboxylic dianhydride component in order to make the reaction time as short as possible.
  • M1: M2 0.90: 1.00 to 1.10: 1.00. Is preferred. M1: M2 is more preferably 0.92: 1.00 to 1.08: 1.00, and further preferably 0.95: 1.00 to 1.05: 1.00.
  • Polyimide is produced by another method, for example, a diisocyanate compound corresponding to the diamine compound represented by the general formula (I) or (II) and a tetracarboxylic dianhydride represented by the general formula (III). And may be manufactured by a one-stage method.
  • the polyamic acid includes silane coupling agents such as aminopropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, trimethoxyvinylsilane, and trimethoxyglycidoxysilane, triazine compounds, phenanthroline compounds, and triazole compounds. May be contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of polyamic acid. By containing these, adhesiveness with an active material and a collector can further be improved.
  • silane coupling agents such as aminopropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, trimethoxyvinylsilane, and trimethoxyglycidoxysilane, triazine compounds, phenanthroline compounds, and triazole compounds. May be contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of polyamic acid.
  • the binder resin composition may further contain a resin other than the polyamic acid or the polyimide.
  • the resin other than the polyamic acid or the polyimide is not particularly limited as long as it is compatible with the polyimide or the polyamic acid, but is preferably a resin that does not dissolve in the carbonate that is the main component of the electrolytic solution.
  • the binder resin composition preferably further includes polyvinyl pyrrolidone, polyacrylamide, polyamide, or polyamideimide.
  • the binder resin composition contains polyamide or polyamideimide, the polyamide or polyamideimide preferably has an alicyclic structure from the viewpoint of further improving the initial charge / discharge efficiency.
  • Alkali metal ions are added, for example, as salts of (mono) carboxylic acids in order to disperse them in polyamic acid or polyimide.
  • the permeability of lithium ions to the binder resin obtained by curing the binder resin composition is increased. Therefore, when the composition for a binder resin of the present invention containing an alkali metal ion is used as a binder resin for a negative electrode active material of a negative electrode of a lithium ion battery, the resistance in the negative electrode can be lowered.
  • the binder resin obtained by curing the composition for binder resin of the present invention contains polyimide as a main component, the electrical resistance may be increased. Therefore, it is preferable to suppress an increase in electrical resistance in combination with alkali metal ions.
  • the content of alkali metal ions contained in the binder resin composition is preferably 4 to 20 mol% with respect to 100 mol% of the tetracarboxylic dianhydride.
  • Negative electrode active material The negative electrode active material contained in the composite paste for a negative electrode of the lithium ion secondary battery contains silicon oxide and carbon particles represented by SiO x (0.5 ⁇ x ⁇ 1.5). . Note that the surface of the silicon oxide may be covered with a carbon coating.
  • SiO x (0.5 ⁇ x ⁇ 1.5) is usually silicon dioxide (SiO 2 ) and metallic silicon. It is a general formula that represents a general term for amorphous silicon oxides obtained using (Si) as a raw material.
  • SiO x (0.5 ⁇ x ⁇ 1.5) if x is less than 0.5, the proportion of the Si phase increases, so that the volume change during charging / discharging becomes too large, and the lithium ion secondary The cycle characteristics of the battery deteriorate.
  • x exceeds 1.5, the ratio of the Si phase decreases and the energy density decreases.
  • a more preferable range of x is 0.7 ⁇ x ⁇ 1.2.
  • the particle size D 50 of the silicon oxide who generally small is preferred, there is a case where coarse aggregate when too reduced when the negative electrode formation.
  • D 50 refers to a particle diameter corresponding to an integrated value of volume distribution in the particle size distribution measurement by laser diffraction method corresponding to 50%. That is, the D 50, it refers to the median diameter measured by volume.
  • the D 50 of the silicon oxide is in the range of 1 ⁇ m to 15 ⁇ m, more preferably in the range of 2 ⁇ m to 8 ⁇ m.
  • the D 50 of the silicon oxide preferably satisfies a specific relationship with the D 50 of specific carbon particles used at the same time when preparing the negative electrode mixture paste.
  • the silicon oxide it is also possible to use a commercially available silicon oxide having a desired D 50.
  • the compounding amount of the silicon oxide in the composite paste for negative electrode is such that the total of the mass of the silicon oxide as the negative electrode active material and the mass of carbon particles described later is 100% by mass.
  • the mixing ratio is 5% to 70% by weight, preferably 5% to 60% by weight, and more preferably 10% to 50% by weight.
  • the mass of the said silicon oxide be the sum total of the mass of a silicon oxide, and the mass of a carbon film.
  • the lithium ion secondary battery using the negative electrode active material of this blending ratio has a negative electrode capacity deterioration due to the volume change of the active material. Since it can suppress, the increase in resistance by the peeling between active material / binder is suppressed, and it can be set as the lithium ion secondary battery which has favorable cycling characteristics.
  • Carbon film covering the surface of the silicon oxide The surface of the silicon oxide may be coated with a carbon film.
  • a conductive network in the negative electrode mixture layer containing the negative electrode active material can be formed satisfactorily, and the load characteristics of the battery can be improved.
  • Examples of the method for coating the surface of the silicon oxide with the carbon film include a method in which a thermal CVD process is performed at a temperature of 800 ° C. or higher and 1300 ° C. or lower in an atmosphere of an organic gas and / or steam.
  • the carbon coating is formed so that the amount of the carbon coating is usually 3 to 20% by mass, preferably 3 to 15% by mass, more preferably 4 to 10% by mass with respect to the silicon oxide. can do.
  • the carbon coating amount By setting the carbon coating amount to 20% by mass or less, the silicon oxide in the negative electrode mixture paste becomes relatively high, so that a high capacity can be maintained.
  • the amount of carbon coating By setting the amount of carbon coating to 3% by mass or more, the electron conductivity of the silicon oxide can be made sufficient, and the battery capacity can be made sufficient.
  • the time of this thermal CVD process is suitably set in relation to the amount of coating carbon.
  • the silicon oxide is changed (disproportionated) to a silicon-silicon oxide composite by the action of heat by this treatment.
  • the powdery silicon oxide is 600 ° C. to 1300 ° C., preferably in an atmosphere containing hydrocarbon gas, preferably
  • the carbon coating treatment is performed by heating at a temperature of 700 ° C. or higher, more preferably 800 ° C. or higher, particularly preferably 900 ° C. or higher and 1200 ° C. or lower.
  • the higher the treatment temperature the less the remaining impurities, and the formation of a carbon film containing highly conductive carbon.
  • hydrocarbon-based gas a gas that can be thermally decomposed at the above heat treatment temperature to generate carbon (graphite) is selected particularly in a non-oxidizing atmosphere.
  • hydrocarbon gases include hydrocarbons such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, cyclohexane, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, and naphthalene.
  • aromatic hydrocarbons such as phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene and phenanthrene.
  • the apparatus for performing the thermal CVD process is not particularly limited as long as a reaction apparatus having a mechanism for heating a non-processed object in a non-oxidizing atmosphere is used.
  • a reaction apparatus having a mechanism for heating a non-processed object in a non-oxidizing atmosphere is used.
  • continuous or batch processing is possible.
  • a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln, etc. are appropriately selected according to the purpose. be able to.
  • Carbon particles are not particularly limited. Specific examples include natural graphite, artificial graphite, non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), mesocarbon microbeads, graphite particles and a carbonaceous layer present on the surface thereof. (That is, carbon-coated graphite) or particles obtained by attaching carbon fibers to graphite particles.
  • Particle diameter D 50 of the carbon particles is not particularly limited, but is usually 1 ⁇ m or more.
  • D 50 refers to a particle diameter corresponding to a volume distribution integrated value of 50% in particle size distribution measurement by laser diffraction, that is, a median diameter measured on a volume basis.
  • the particle diameter D 50 of the carbon particles is preferably 1.0 to 8.0 times of the particle diameter D 50 of the silicon oxide, more preferably 1.5 to 6.5 times, further Preferably it is more than 2 times and less than 6.0 times.
  • the particle diameter D 50 of the carbon particles wherein by the particle diameter D 50 of the silicon oxide and on the same diameter or less, the charge and discharge cycles the volume change of the negative electrode mixture layer is reduced due to the peeling or the like of the negative electrode material layer Is less likely to occur.
  • the ratio is 8.0 times or less, the specific surface area of the carbon particles is not excessively increased, and the capacity is not easily reduced due to the decomposition reaction of the electrolytic solution.
  • the shape of the carbon particles may be any shape such as a spherical shape, a substantially spherical shape, and a flat shape.
  • a particle having an aspect ratio of less than 10 is defined as a carbon particle.
  • the binder resin includes a polyimide having a structural unit derived from the diamine compound represented by the general formula (I) or the general formula (II), and the negative electrode active material includes the above silicon.
  • a battery containing an oxide and carbon particles is unlikely to have a low initial charge / discharge efficiency.
  • the amount of the carbon particles in the negative electrode mixture layer is preferably more than 30% by mass and 95% by mass or less, with 40 to 95% by mass when the total mass of the silicon oxide and the carbon particles is 100% by mass. More preferably, it is more preferably 50 to 90% by mass.
  • the carbon particles are preferably secondary aggregates formed by aggregating or bonding the primary particles containing the graphite material.
  • the shape of the primary particles of the carbon particles is preferably flat.
  • carbon particles having such a shape are used, good conductivity is maintained even after the charge / discharge cycle, so that an increase in electrode resistance is suppressed and the cycle life of the lithium ion secondary battery can be extended.
  • Examples of carbon particles made of flat primary particles include MAG (registered trademark).
  • the total pore volume of carbon particles measured by the nitrogen gas adsorption method usually satisfies the range of 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 ⁇ 1 cm 3 / g, preferably 1.5 ⁇ 10 10. ⁇ 2 to 9.0 ⁇ 10 ⁇ 2 cm 3 / g, and more preferably 2.0 ⁇ 10 ⁇ 2 to 7.0 ⁇ 10 ⁇ 2 cm 3 / g.
  • the average pore diameter of the carbon particles measured by the nitrogen gas adsorption method usually satisfies the range of 20 to 50 nm, preferably satisfies the range of 25 to 40 nm, and more preferably satisfies the range of 25 to 35 nm.
  • the electrolyte solution When at least one of the total pore volume (v) and the average pore diameter (d) of the carbon particles satisfies the above range, the electrolyte solution easily permeates into the active material, and thus has good ionic conductivity. Hold. Thereby, electrode resistance is suppressed and the charge / discharge capacity and load characteristics of the battery are improved. Furthermore, by having pores, when the silicon oxide undergoes volume expansion during charging, the volume expansion of the silicon oxide is absorbed by the elastic deformation of the carbon particles inside, and the swelling of the electrode is prevented. Suppress. For this reason, the increase in resistance due to the separation between the active material and the binder due to the volume change of the silicon oxide is suppressed, and good cycle characteristics are exhibited.
  • the mixture paste for the negative electrode of the lithium ion secondary battery may contain a solvent.
  • the solvent is not particularly limited as long as it can uniformly dissolve or disperse the binder resin composition for a lithium ion secondary battery and the active material.
  • the solvent is preferably an aprotic polar solvent, and more preferably an aprotic amide solvent.
  • aprotic amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazo Lysinone, etc. are included. These solvents may be used alone or in combination of two or more.
  • solvents may coexist as necessary.
  • examples of other solvents include benzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, o-cresol, m-cresol, p-cresol, o-chloro Toluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene, m-bromotoluene, p-bromotoluene, chlorobenzene, bromobenzene, methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, etc. are included .
  • the amount of solvent in the composite paste for the negative electrode of the lithium ion secondary battery is appropriately set in consideration of the viscosity of the composite paste.
  • the amount of the solvent is preferably 50 to 900 parts by mass, and more preferably 65 to 500 parts by mass with respect to 100 parts by mass of the solid content contained in the composite paste.
  • the composite paste for a negative electrode of the lithium ion secondary battery may contain a conductive aid.
  • the negative electrode active materials conduct each other by making point contact. Therefore, the conductivity between the negative electrode active materials may not be sufficiently increased.
  • a conductive support agent has the function to reduce the high electrical resistance resulting from the point contact of the particles of a negative electrode active material.
  • the conductive aid can be a carbon material.
  • the carbon material is not particularly limited, but may be artificial graphite, graphite such as natural graphite, carbon fiber (carbon nanotube, vapor-grown carbon fiber, etc.), or pyrolysis of organic matter under various pyrolysis conditions. It is possible.
  • a carbon material may be used individually by 1 type, respectively, and may be used in combination of 2 or more type.
  • Examples of pyrolysis products of organic materials include coal-based coke, petroleum-based coke, carbides from coal-based pitch, carbides from petroleum-based pitch, and carbides after oxidation treatment of the pitch, needle coke, pitch coke, phenol resin and crystals
  • Carbonized materials such as cellulose, carbon materials in which these carbides are partially graphitized, furnace black, acetylene black, pitch-based carbon fibers, and the like are included.
  • the conductive additive is preferably graphite.
  • Artificial graphite, purified natural graphite, or various types of graphite produced by subjecting easy-graphite pitches obtained from various raw materials to high-temperature heat treatment are particularly preferred. It is preferable that the surface treatment is performed.
  • the composite paste for the negative electrode of the lithium ion secondary battery may contain a metal oxide such as tin oxide, a sulfide or nitride, a lithium simple substance or a lithium alloy such as a lithium aluminum alloy. Of these, one type may be used alone, or two or more types may be used in combination. Moreover, you may use in combination with the above-mentioned carbon material.
  • the content (mass ratio) of the conductive additive with respect to the total amount (mass) of the solid content in the composite paste for the negative electrode of the lithium ion secondary battery is preferably 0.01% by mass or more, more preferably 0.05% by mass. % Or more, more preferably 0.1% by mass or more. Moreover, 20 mass% or less is preferable normally, More preferably, it is 10 mass% or less.
  • a composite paste for a negative electrode of a lithium ion secondary battery comprises a composition for a binder resin of a lithium ion secondary battery or a varnish containing the composition, and a negative electrode active material If necessary, a conductive additive, a solvent and the like are mixed and stirred or kneaded. Examples of the mixing method of the raw materials include the following two methods, but are not limited thereto.
  • a negative electrode active material and a solvent are added to a composition for a binder resin for a lithium ion secondary battery or a varnish containing the binder resin to obtain an electrode mixture paste.
  • a negative electrode active material is added and kneaded into a binder resin composition for a lithium ion secondary battery or a varnish containing the binder resin composition.
  • a solvent is added to the kneaded material obtained and stirred to obtain an electrode mixture paste.
  • the stirring may be normal stirring using a stirring blade or the like, or stirring using a rotation / revolution mixer or the like.
  • a kneader or the like can be used for the kneading operation.
  • Negative electrode for lithium ion secondary battery is a laminate of a current collector and a negative electrode active material layer.
  • the negative electrode for a lithium ion secondary battery may be a sheet electrode.
  • Negative electrode active material layer is a cured product of the electrode mixture paste for a lithium ion secondary battery described above. That is, the negative electrode active material and the binder resin that binds the negative electrode active material may be contained, and other components (such as a conductive aid) may be further contained.
  • the binder resin contains polyimide obtained by curing the polyamic acid or polyimide of the binder resin composition by heating.
  • the proportion of the structural unit derived from the alicyclic diamine compound represented by the general formula (I) or (II) in the polyamic acid or polyimide is based on the total moles of all the structural units derived from the diamine compound. Usually, it is 20 mol% to 100 mol%, preferably 50 mol% to 100 mol%, more preferably 70 mol% to 100 mol%.
  • the thickness of the negative electrode active material layer is not particularly limited and is preferably, for example, 5 ⁇ m or more, more preferably 10 ⁇ m or more. Moreover, it is preferable to set it as 200 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 75 micrometers or less. If the negative electrode active material layer is too thin, the practicality as an electrode is lacking due to the balance with the particle size of the active material. On the other hand, if the thickness is too thick, it may be difficult to obtain a sufficient Li storage / release function for a high-density current value.
  • the ratio of the binder resin (mass) to the mass of all components constituting the negative electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, and more preferably 5% by mass or more. Moreover, it is 80 mass% or less normally, Preferably it is 60 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 20 mass% or less. If the ratio of the binder resin is too low, the negative electrode active material cannot be sufficiently retained, and the mechanical strength of the positive electrode is insufficient, and battery performance such as cycle characteristics may be deteriorated. On the other hand, if the ratio of the binder resin is too high, the battery capacity and the conductivity may be reduced.
  • the ratio of the amount of the substance other than the solvent in the composite paste for the negative electrode of the lithium ion secondary battery corresponds to the ratio of the amount of each substance in the negative electrode active material layer, and the respective substances in the negative electrode active material layer
  • the ratio of the amount corresponds to the ratio of the amount of substances other than the solvent in the electrode mixture paste for lithium ion secondary batteries.
  • the surface of the negative electrode active material may be treated with a silane coupling agent or the like.
  • the silane coupling agent for treating the surface of the negative electrode active material preferably has an amino group or an epoxy group.
  • Specific examples of the amino group-containing silane coupling agent include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl).
  • epoxy group-containing silane coupling agent examples include 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltri Methoxysilane, 3-glycidoxypropyltriethoxysilane and the like are included.
  • the amount of the silane coupling agent for treating the surface of the negative electrode active material is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the negative electrode active material layer is preferably chemically bonded to the polyimide contained in the binder resin via a silane coupling agent, and the negative electrode active material is more preferably coated with the polyimide. preferable. Since the polyimide has high reduction resistance, it is difficult to be electrolyzed even in contact with the negative electrode active material. Therefore, by covering the negative electrode active material with the polyimide, electrolysis of the binder resin is suppressed, and the initial charge / discharge efficiency is increased.
  • Whether the negative electrode active material is chemically bonded to the polyimide via the silane coupling agent may be confirmed by detecting a reaction residue of the silane coupling agent present in the negative electrode active material layer.
  • the reaction residue of the silane coupling agent can be detected by X-ray photoelectron spectroscopy or the like.
  • the current collector material of the negative electrode is silicon and / or silicon alloy, tin and its alloys, silicon-copper alloy, copper, nickel, stainless steel, nickel-plated steel, etc., carbon cloth, carbon paper Or the like.
  • the shape of the current collector of the negative electrode is a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, etc. in the case of a metal material; in the case of a carbon material, it can be a carbon plate, a carbon thin film, a carbon cylinder, etc.
  • the thickness of the current collector is not particularly limited, but is usually, for example, 5 ⁇ m to 30 ⁇ m, and preferably 9 to 20 ⁇ m.
  • a negative electrode is obtained by applying the above-mentioned negative electrode mixture paste to a current collector and heating and curing it to form a negative electrode active material layer.
  • the application of the negative electrode mixture paste can be performed by methods such as screen printing, roll coating, slit coating, and the like. By applying the negative electrode mixture paste in a pattern, a mesh-like active material layer can be formed.
  • the heat curing of the negative electrode mixture paste can usually be performed under atmospheric pressure, but may be performed under pressure or under vacuum.
  • the atmosphere at the time of heating and drying is not particularly limited, but is usually preferably performed in an atmosphere of air, nitrogen, helium, neon, argon, or the like, and more preferably in an atmosphere of nitrogen or argon as an inert gas.
  • the heating temperature in the heat curing of the negative electrode mixture paste using the resin composition containing polyamic acid as a binder is usually a polyimide precursor by heat treatment at 150 ° C. to 500 ° C. for 1 minute to 24 hours.
  • a reliable negative electrode can be obtained by ring-closing reaction of polyamic acid to polyimide.
  • it is 200 ° C. to 350 ° C. for 5 minutes to 20 hours.
  • the heating temperature in the heat curing of the negative electrode mixture paste using the resin composition containing polyimide as a binder is usually 100 ° C. to 250 ° C. for 1 minute to 24 hours, whereby a reliable negative electrode is obtained. Obtainable.
  • it is 120 ° C. to 200 ° C. for 5 minutes to 20 hours.
  • Lithium ion secondary battery The basic configuration of the lithium ion secondary battery of the present invention is the same as that of a conventionally known lithium ion secondary battery.
  • a typical lithium ion secondary battery includes a pair of electrodes (a negative electrode and a positive electrode) capable of inserting and extracting lithium ions, a separator, and an electrolyte.
  • Negative electrode The negative electrode in the lithium ion secondary battery of the present invention is the negative electrode described above.
  • the positive electrode can be a laminate in which a current collector and a positive electrode active material layer are laminated.
  • a current collector As the material for the current collector of the positive electrode, metal materials such as aluminum, stainless steel, nickel plating, titanium and tantalum, and carbon materials such as carbon cloth and carbon paper are usually used. Of these, metal materials are preferable, and aluminum is particularly preferable.
  • As the shape of the current collector in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc., a carbon material, a carbon plate, a carbon thin film, A carbon cylinder etc. are mentioned. Among these, metal thin films are preferable because they are currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape.
  • the positive electrode current collector is a thin film
  • its thickness is arbitrary, but it is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more. Moreover, it is 100 mm or less normally, Preferably it is 1 mm or less, More preferably, it is 50 micrometers or less. If the thickness is less than the above range, the strength required for the current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.
  • the positive electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, and may be a positive electrode active material usually used in lithium ion secondary batteries.
  • lithium-manganese composite oxide such as LiMn 2 O 4
  • lithium-nickel composite oxide such as LiNiO 2
  • lithium-cobalt composite oxide such as LiCoO 2
  • lithium-iron composite oxide such as LiFeO 2 etc.
  • lithium-nickel-manganese composite oxide LiNi 0.5 Mn 0.5 O 2 etc.
  • lithium-nickel-cobalt composite oxide LiNi 0.8 Co 0.2 O 2 etc.
  • lithium-Nickel-cobalt-manganese composite oxides lithium-transition metal phosphate compounds (such as LiFePO 4 ), lithium-transition metal sulfate compounds (Li x Fe 2 (SO 4 ) 3 ), and the like.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is usually 10% by mass or more, preferably 30% by mass or more, and more preferably 50% by mass or more. Moreover, it is 99.9 mass% or less normally, Preferably it is 99 mass% or less.
  • the binder resin that binds the positive electrode active material may be a binder resin obtained from the above-described binder resin composition, but a known binder resin may be arbitrarily selected and used.
  • known binder resins include inorganic compounds such as silicate and water glass, Teflon (registered trademark), polyvinylidene fluoride, and polymers having no unsaturated bond.
  • the lower limit of the weight average molecular weight of these polymers is usually 10,000, preferably 100,000, and the upper limit is usually 3 million, preferably 1 million.
  • the ratio of the binder resin (mass) to the mass of all the components constituting the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, and more preferably 5% by mass or more. Moreover, it is 80 mass% or less normally, Preferably it is 60 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 10 mass% or less.
  • the ratio of the binder resin is too low, the positive electrode active material cannot be sufficiently retained, and the mechanical strength of the positive electrode is insufficient, which may deteriorate battery performance such as cycle characteristics.
  • the ratio of binder resin is too high, there exists a possibility of leading to a battery capacity and electroconductivity fall.
  • the positive electrode active material layer may contain a conductive material in order to improve the conductivity of the electrode.
  • the conductive agent is not particularly limited as long as it can be mixed with an active material in an appropriate amount to impart conductivity, but is usually carbon powder such as acetylene black, carbon black, and graphite, various metal fibers, powder, and foil. Etc.
  • the thickness of the positive electrode active material layer is usually about 10 to 200 ⁇ m.
  • the positive electrode is obtained by depositing a positive electrode active material and a binder resin composition containing the binder resin on a current collector.
  • the positive electrode active material layer is usually formed by pressing a positive electrode material, a binder resin, and, if necessary, a conductive material and a thickener in a dry form into a sheet, and then pressing the positive electrode current collector on the positive electrode current collector.
  • these materials are prepared by dissolving or dispersing them in a liquid medium to form a paste, and applying and drying the positive electrode current collector.
  • the positive electrode active material layer obtained by applying the paste to the positive electrode current collector and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.
  • a positive electrode active material, a binder resin, and a conductive material and a thickener that can be used as necessary can be dissolved or dispersed in the solvent, in particular.
  • the liquid medium may be either an aqueous solvent or an organic solvent.
  • aqueous solvent examples include water and alcohol.
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N , N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. be able to.
  • a dispersant is added in addition to the thickener, and a paste is formed using a latex such as SBR.
  • these solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • a separator is disposed between the positive electrode and the negative electrode. Thereby, a short circuit between the electrodes is prevented.
  • the separator is usually a porous body such as a porous film or a nonwoven fabric.
  • the porosity of the separator is appropriately set according to the permeability of electrons and ions, the material of the separator, and the like, but generally it is preferably 30 to 80%.
  • the separator for example, a microporous film having excellent ion permeability, a glass fiber sheet, a nonwoven fabric, a woven fabric, or the like is used. Further, from the viewpoint of organic solvent resistance and hydrophobicity, as a material for the separator, polypropylene, polyethylene, polyphenylene sulfide, polyethylene terephthalate, polyethylene naphthalate, polymethylpentene, polyamide, polyimide, or the like is used. These may be used alone or in combination of two or more.
  • polypropylene is used, but when reflow resistance is imparted to a lithium ion secondary battery, among these, polypropylene sulfide, polyethylene terephthalate, polyamide, polyimide, etc. having a heat distortion temperature of 230 ° C. or higher should be used. Is preferred.
  • the thickness of the separator is, for example, 10 to 300 ⁇ m.
  • Electrolyte of the lithium ion secondary battery can be a non-aqueous electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent. Further, it may be a gel, rubber, or solid sheet obtained by adding an organic polymer compound or the like to this non-aqueous electrolyte solution.
  • the non-aqueous electrolyte includes a lithium salt and a non-aqueous solvent.
  • the lithium salt can be appropriately selected from known lithium salts. For example, halides such as LiCl and LiBr; perhalogenates such as LiBrO 4 and LiClO 4 ; inorganic fluoride salts such as LiPF 6 , LiBF 4 and LiAsF 6 ; lithium bis (oxalatoborate) LiBC 4 O 8 and the like Inorganic lithium salts; perfluoroalkane sulfonates such as LiCF 3 SO 3 and LiC 4 F 9 SO 3 ; perfluoroalkane sulfonic acid imide salts such as Li trifluorosulfonimide ((CF 3 SO 2 ) 2 NLi); etc. And fluorine-containing organic lithium salts. Lithium salts may be used alone or in combination of two or more. The concentration of the lithium salt in the non-aqueous electrolyte is usually in the range of 0.5
  • non-aqueous solvents examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl Chain carbonates such as methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, and ⁇ -lactones such as ⁇ -butyrolactone 1, 2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide Sid, 1,3-dioxolane, formamide, acetamide, dimethylformamide, di
  • organic polymer compounds include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether polymer compounds; vinyl alcohol polymers such as polyvinyl alcohol and polyvinyl butyral.
  • Compound Insolubilized product of vinyl alcohol polymer compound; Polyepichlorohydrin; Polyphosphazene; Polysiloxane; Vinyl polymer compound such as polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile; Poly ( ⁇ -methoxyoligooxyethylene methacrylate), Examples thereof include polymer copolymers such as poly ( ⁇ -methoxyoligooxyethylene methacrylate-co-methyl methacrylate) and poly (hexafluoropropylene-vinylidene fluoride).
  • the electrolytic solution may further contain a film forming agent.
  • a film forming agent include vinylene carbonate, vinyl ethylene carbonate, vinyl ethyl carbonate, methyl phenyl carbonate and other carbonate compounds, fluoroethylene carbonate, difluoroethylene carbonate, trifluoromethyl ethylene carbonate, bis (trifluoromethyl) ethylene carbonate.
  • the content thereof is usually 10% by mass or less, particularly 8% by mass or less, and more preferably 5% by mass with respect to the total amount (mass) of the components of the electrolytic solution. In the following, it is particularly preferably 2% by mass or less. If the content of the film forming agent is too large, other battery characteristics such as an increase in initial irreversible capacity, low temperature characteristics, and deterioration in rate characteristics of the lithium ion secondary battery may be adversely affected.
  • Form of lithium ion secondary battery The form of the lithium ion secondary battery of the present invention is not particularly limited. Examples of the form of the lithium ion secondary battery include a cylinder type in which the sheet electrode and the separator are spiral, a cylinder type having an inside-out structure in which the pellet electrode and the separator are combined, a coin type in which the pellet electrode and the separator are stacked, and the like. It is done. Moreover, it is good also as arbitrary shapes, such as a coin shape, a cylindrical shape, and a square shape, by accommodating the battery of these forms in arbitrary exterior cases.
  • the procedure for assembling the lithium ion secondary battery is not particularly limited, and may be assembled by an appropriate procedure according to the structure of the battery.
  • a negative electrode is placed on an outer case, an electrolyte and a separator are provided on the outer case, and a positive electrode is placed so as to face the negative electrode.
  • the battery is then caulked together with a gasket and a sealing plate.
  • the initial charge / discharge efficiency of the negative electrode was evaluated using a coin cell.
  • a negative electrode having a diameter of 14.5 mm ⁇ and a positive electrode made of Li foil having a diameter of 15 mm ⁇ were used.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1 mixing) was used.
  • As the separator a polypropylene porous film having a diameter of 16 mm ⁇ and a film thickness of 25 ⁇ m was used.
  • This paste was uniformly applied on a 20 ⁇ m thick aluminum foil so that the mass of the positive electrode mixture after drying was 22 mg / cm 2 per unit area, and dried to form a positive electrode mixture layer.
  • the formed positive electrode mixture layer was pressed at room temperature with a roller press to obtain a positive electrode.
  • a coin cell was produced.
  • the electrodes a negative electrode with a diameter of 14.5 mm ⁇ and a positive electrode with a diameter of 13 mm ⁇ were used.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and methyl ethyl carbonate (volume ratio 3: 7 mixture) was used.
  • the separator a polypropylene porous film having a diameter of 16 mm ⁇ and a film thickness of 25 ⁇ m was used.
  • the coin cell battery was allowed to stand at 25 ° C. for 24 hours, and then charged to 4.2 V at a measurement temperature of 25 ° C. and 0.05 C, and further charged to a current value of 0.01 C at a constant voltage of 4.2 V. . Then, it discharged to 2.3V at 0.05C.
  • the battery was charged at 1 C until 4.2 V, and further charged at 4.2 V constant voltage until the current value reached 0.2 C. Then, it discharged to 2.3V at 1C.
  • the charge / discharge cycle test was performed under the above conditions, and the discharge capacity retention rate at 100 cycles was calculated from the following formula 2.
  • composition 1 for binder resin After removing the oil bath, the mixture was further stirred at room temperature for 18 hours to obtain a varnish (polyamide acid varnish) of composition 1 for binder resin.
  • the resulting varnish of the binder resin composition 1 had a solid content concentration of 18% by mass and a logarithmic viscosity of 0.94 dL / g.
  • the resulting varnish of the binder resin composition 4 had a solid content concentration of 18% by mass and a logarithmic viscosity of 1.2 dL / g.
  • the resulting varnish of the binder resin composition 5 had a solid content concentration of 18% by mass and a logarithmic viscosity of 1.0 dL / g.
  • Example 1 A varnish containing 5 parts by mass of binder resin composition 1 and 3 parts by mass of a conductive additive (Showa Denko, VGCF-H) were mixed with a battery compound stirrer (Primics Co., Ltd., TK Hibismix Model). 2P-03). To the obtained paste, a total of 92 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) and carbon particles (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD-20) was added, and NMP was added and further kneaded. And a negative electrode mixture paste was prepared. The mass ratio between the silicon oxide as the active material and the carbon particles was 20:80.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 4.0 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency and the discharge capacity retention rate were evaluated.
  • Example 2 A varnish containing 10 parts by mass of the binder resin composition 2 and 3 parts by mass of a conductive additive (manufactured by Showa Denko, VGCF-H) were mixed with a battery compound stirrer (Primix Co., Ltd., TK Hibismix Model). 2P-03). To the obtained paste, a total of 87 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) and carbon particles (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD-20) are added, and NMP is added and further kneaded. And a negative electrode mixture paste was prepared. The mass ratio between the silicon oxide as the active material and the carbon particles was 30:70.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the active material mass in the negative electrode mixture layer after drying was 3.8 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • Example 3 A varnish containing 10 parts by mass of the binder resin composition 1 and 3 parts by mass of a conductive additive (manufactured by Showa Denko, VGCF-H) were mixed with a battery compound agitator (Primix Co., Ltd., TK Hibismix Model). 2P-03). To the obtained paste, a total of 87 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) and carbon particles (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD-20) are added, and NMP is added and further kneaded. And a negative electrode mixture paste was prepared. The mass ratio of the silicon oxide as an active material and the carbon particles was 60:40.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 2.0 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • Example 4 A varnish containing 5 parts by mass of the binder resin composition 4 and 3 parts by mass of a conductive additive (manufactured by Showa Denko, VGCF-H) were mixed with a battery compound stirrer (Primix Co., Ltd., TK Hibismix Model). 2P-03). To the obtained paste, a total of 92 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) and carbon particles (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD-20) was added, and NMP was added and further kneaded. And a negative electrode mixture paste was prepared. The mass ratio between the silicon oxide as the active material and the carbon particles was 20:80.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 4.1 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • Example 5 A varnish containing 5 parts by mass of the binder resin composition 5 and 3 parts by mass of a conductive additive (Showa Denko, VGCF-H) were mixed with a battery compound stirrer (Primix Corporation, TK Hibismix Model). 2P-03). To the obtained paste, a total of 92 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) and carbon particles (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD-20) was added, and NMP was added and further kneaded. And a negative electrode mixture paste was prepared. The mass ratio between the silicon oxide as the active material and the carbon particles was 20:80.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 4.2 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • Example 6 A varnish containing 5 parts by weight of the binder resin composition 6 and 3 parts by weight of a conductive additive (Showa Denko, VGCF-H) were mixed with a battery compound stirrer (Primics Co., Ltd., TK Hibismix Model). 2P-03). To the obtained paste, a total of 92 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) and carbon particles (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD-20) was added, and NMP was added and further kneaded. And a negative electrode mixture paste was prepared. The mass ratio between the silicon oxide as the active material and the carbon particles was 20:80.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 4.1 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency and the discharge capacity retention rate were evaluated.
  • Example 7 A varnish containing 5 parts by weight of the binder resin composition 7 and 3 parts by weight of a conductive additive (manufactured by Showa Denko, VGCF-H) were mixed with a battery compound stirrer (Primix Co., Ltd., TK Hibismix Model). 2P-03). To the obtained paste, a total of 92 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) and carbon particles (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD-20) was added, and NMP was added and further kneaded. And a negative electrode mixture paste was prepared. The mass ratio between the silicon oxide as the active material and the carbon particles was 20:80.
  • a conductive additive manufactured by Showa Denko, VGCF-H
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 4.1 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency and the discharge capacity retention rate were evaluated.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 4.0 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 3.7 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 2.1 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 1.4 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the active material mass in the negative electrode mixture layer after drying was 1.0 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated. The results are shown in Table 1.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the mass of the active material in the negative electrode mixture layer after drying was 1.42 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated.
  • This negative electrode mixture paste was applied to a copper foil (thickness: 20 ⁇ m) as a current collector using an applicator, and cured by heat treatment at 300 ° C. for 10 minutes in a nitrogen atmosphere. Thereby, the negative electrode by which the electrical power collector and the negative electrode compound material layer were laminated
  • the active material mass in the negative electrode mixture layer after drying was 1.0 mg / cm 2 per unit area.
  • a coin cell was produced using the obtained negative electrode, and the initial charge / discharge efficiency was evaluated. The results are shown in Table 1.
  • the silicon oxide represented by “SiO” in the table was a silicon oxide having a carbon film having an average particle diameter (D 50 ) of 5 ⁇ m.
  • the Si active material (manufactured by Yamaishi Metal) represented by “Si” in the table was a metal silicon powder having an average particle diameter of 3 ⁇ m and having no carbon coating.
  • Carbon particles represented by “MAGD” in the table have an average particle size (D 50 ) of 20 ⁇ m, a total pore volume of 0.02 cm 3 / g, and an average pore size. Carbon particles with a diameter of 29 nm.
  • the conductive additive represented by “VGCF” in the table was a conductive additive having a fiber diameter of 150 nm and an aspect ratio of 10 or more.
  • ratio of silicon oxide is the ratio (mass%) of the mass of the silicon oxide when the total mass of the silicon oxide and the mass of the carbon particles is 100 mass%.
  • ratio of the diamine represented by the general formula (I) or (II) refers to the general formula (I) when the total of all the structural units derived from the diamine compound is 100 mol%. Or it is the ratio (mol%) of the structural unit derived from the alicyclic diamine compound represented by (II).
  • binder ratio is the ratio (mass%) of the mass of the binder resin composition when the total mass of all materials of the negative electrode mixture paste is 100 mass%.
  • Examples 1 to 7 were all high-capacity lithium ion secondary batteries.
  • Examples 1 to 7 having binders containing a polyimide containing a structural unit derived from the diamine compound represented by the general formula (I) or (II) have the same silicon oxide ratio, and the polyimide Compared with Comparative Examples 1 to 3 having no binder, the initial charge / discharge efficiency was improved.
  • Comparative Examples 4 and 5 use the same type of active material despite having a binder containing a polyimide containing a structural unit derived from the diamine compound represented by the general formula (I) or (II).
  • Example 1 a coin cell was produced using the positive electrode described above as a counter electrode, and the discharge capacity maintenance rate at 100 cycles was evaluated.
  • the discharge capacity maintenance rate of the coin cell using the negative electrode described in Example 1 containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the tetracarboxylic dianhydride was 90%.
  • the discharge capacity retention rate of the coin cell using the negative electrode of Example 6 containing pyromellitic dianhydride in the tetracarboxylic dianhydride was 81%.
  • the composite paste for a negative electrode of a lithium ion secondary battery of the present invention can be used for manufacturing a negative electrode of a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、体積変化によるサイクル劣化が生じにくく、かつ、充電時のポリイミドの還元による初回充放電効率の低下が生じにくいリチウムイオン二次電池用負極を製造するための合材ペーストを提供することを目的とする。上記目的は、ジアミン化合物とテトラカルボン酸二無水物から得られるポリアミド酸および/または対応するポリイミドを含み、前記ジアミン化合物が、下記一般式(I)または(II)で表されるジアミンを含むバインダー樹脂用組成物と、SiO(0.5≦x≦1.5)で表されるケイ素酸化物および炭素粒子を含有する負極活物質と、を含む、リチウムイオン二次電池負極用合材ペーストによって解決される。

Description

リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池に関する。
 近年、電子機器の小型化と軽量化が進み、その電源としてエネルギー密度の高い二次電池が望まれている。二次電池とは、充放電が可能な電池であり、正極活物質と負極活物質とが電解質を介して化学反応することにより生じた化学エネルギーを、電気エネルギーとして繰り返し利用するものである。このような二次電池の中でも、高いエネルギー密度を有するものとして、リチウムイオン二次電池が実用化されている。リチウムイオン二次電池の正極活物質には、リチウムコバルト複合酸化物等のリチウム含有金属複合酸化物が主に用いられており、負極活物質には、炭素材料が主に用いられている。
 また、リチウムイオン二次電池などの二次電池において、活物質を集電体に固定するためのバインダーとして、ポリフッ化ビニリデン(以下「PVdF」と略す)が多用されている。
 リチウムイオン二次電池の負極活物質として、炭素材料の理論容量を大きく超える充放電容量を有する、次世代の負極活物質の開発が進められている。特に、ケイ素原子やスズ原子等を用いた負極活物質は、大きな充放電容量を有するため、実用化が期待されている。しかし、ケイ素原子やスズ原子はリチウムイオンの吸蔵・放出に伴う体積変化が非常に大きいため、これらの負極活物質は、充放電サイクルに伴う、膨張、収縮の度合いが大きい。そのため、負極活物質としてケイ素原子やスズ原子等を用いて、従来のPVdFなどをバインダーとして用いた場合、上記活物質粒子の膨張および収縮により、活物質粒子が微粉化したり、バインダーから脱離したりする。この微粉化および脱離は、電池のサイクル劣化を生じさせやすい。また、リチウムイオン二次電池のバインダーには、短時間に充放電を行う際の、急激なイオンの移動による電池の発熱に対応するため、高い耐熱性が求められている。そこで、機械強度と耐熱性に優れるポリイミドをバインダーに用いた電極が提案されている(特許文献1~8を参照)。
 しかしながら、従来のポリイミドをバインダーとするリチウムイオン二次電池は、サイクル特性および耐熱性に優れるものの、初回充放電効率が低くなるという欠点がある(特許文献9)。
特開平10-312791号公報 特開2011-40326号公報 特開2010-238562号公報 特開2011-86480号公報 国際公開第2010/150513号 国際公開第2011/040308号 特開2011-142068号公報 特開2011-216320号公報 特開2011-60676号公報
J. Mater. Chem, 2010, 20, 5404-5410.
 また、従来のポリイミドバインダーをバインダーとするリチウムイオン二次電池の初回充放電効率が低くなる原因は、充電時にポリイミドが還元されることにあると考えられる(非特許文献1)。
 本発明は、リチウムイオン二次電池用の負極において、充電時のポリイミドの還元による初回充放電効率の低下が生じにくい負極を製造するための合材ペースト、そのような特性を有する負極、およびそのような負極を有するリチウムイオン二次電池を提供することを目的とする。
 本発明の第一は、以下に示すリチウムイオン二次電池の負極用の合材ペーストに関する。
 [1]リチウムイオン二次電池の負極用の合材ペーストであって、
 バインダー樹脂用組成物と負極活物質を含有し、
 前記バインダー樹脂用組成物は、ジアミン化合物に由来する構成単位およびテトラカルボン酸二無水物に由来する構成単位を有するポリアミド酸、またはジアミン化合物に由来する構成単位およびテトラカルボン酸二無水物に由来する構成単位を有するポリイミド、を含有し、
 前記ジアミン化合物に由来する構成単位は、下記一般式(I)または(II)で表されるジアミン化合物に由来する構成単位を含み、
 前記負極活物質は、SiO(0.5≦x≦1.5)で表されるケイ素酸化物および炭素粒子を含有する、合材ペースト。
Figure JPOXMLDOC01-appb-C000003
 (一般式(I)または(II)において、
 nおよび2つのmは、それぞれ独立して0または1であり、
 -X-は、直結、-O-、-S-、-SO-、-CO-、-CH-からなる群から選ばれる二価の基である)
 [2]前記負極活物質における、前記ケイ素酸化物の配合量は、前記ケイ素酸化物と前記炭素粒子との質量の合計に対し、5質量%以上70質量%以下である、[1]に記載の合材ペースト。
 [3]前記テトラカルボン酸二無水物に由来する構成単位は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する構成単位を含む、[1]または[2]に記載の合材ペースト。
 [4]前記バインダー樹脂用組成物は、アルカリ金属イオンをさらに含有する、[1]~[3]のいずれかに記載の合材ペースト。
 本発明の第二は、以下に示すリチウムイオン二次電池用の負極に関する。
 [5]リチウムイオン二次電池用の負極であって、
 集電体と負極活物質層との積層体を含み、
 前記負極活物質層は、バインダー樹脂および負極活物質を含有し、
 前記バインダー樹脂は、ジアミン化合物に由来する構成単位およびテトラカルボン酸二無水物に由来する構成単位を有するポリイミドを含有し、
 前記ジアミン化合物に由来する構成単位は、下記一般式(I)または(II)で表されるジアミン化合物に由来する構成単位を含み、
 前記負極活物質は、SiO(0.5≦x≦1.5)で表されるケイ素酸化物および炭素粒子を含有する、
 負極。
Figure JPOXMLDOC01-appb-C000004
 (一般式(I)または(II)において、
 nおよび2つのmは、それぞれ独立して0または1であり、
 -X-は、直結、-O-、-S-、-SO-、-CO-、-CH-からなる群から選ばれる二価の基である)
 [6]前記負極活物質における、前記ケイ素酸化物の配合量は、前記ケイ素酸化物と前記炭素粒子との質量の合計に対し、5質量%以上70質量%以下である、[5]に記載の負極。
 [7]前記バインダー樹脂における、前記テトラカルボン酸二無水物に由来する構成単位は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する構成単位を含む、[5]または[6]に記載の負極。
 本発明の第三は、以下に示すリチウムイオン二次電池用の負極の製造方法に関する。
 [8][1]~[4]のいずれかに記載の合材ペーストを、集電体上に塗布する工程と、前記合材ペーストが塗布された集電体を加熱処理する工程と、を含む、リチウムイオン二次電池用の負極の製造方法。
 [9]前記加熱処理する工程における加熱処理温度が、200℃以上350℃以下である、[8]に記載の負極の製造方法。
 本発明の第四は、以下に示すリチウムイオン二次電池に関する。
 [10]リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えたリチウムイオン二次電池であって、
 前記負極が、[5]~[7]のいずれかに記載の負極である、リチウムイオン二次電池。
 本発明によれば、リチウムイオン二次電池用の負極において、充電時のポリイミドの還元による初回充放電効率の低下が生じにくい負極を製造するための合材ペースト、そのような特性を有する負極、およびそのような負極を有するリチウムイオン二次電池が提供される。
 以下に、本発明に係る負極を得るための合材ペースト、そのような負極、およびそのような負極を備えたリチウムイオン二次電池について詳説する。
 1.リチウムイオン二次電池の負極用の合材ペースト
 本発明に係るリチウムイオン二次電池の負極用の合材ペーストは、バインダー樹脂用組成物と負極活物質とを含有する。上記合材ペーストは、さらに溶媒および導電助剤などのその他の物質を含有してもよい。
 1-1.バインダー樹脂用組成物
 上記リチウムイオン二次電池の負極用の合材ペーストが含有するバインダー樹脂用組成物は、ポリイミドまたはその前駆体であるポリアミド酸を含有する。バインダー樹脂用組成物は、上記ポリアミド酸またはポリイミド以外の樹脂を含有してもよい。さらに、バインダー樹脂用組成物はアルカリ金属イオンを含有していてもよい。
 1-1-1.ポリアミド酸またはポリイミド
 バインダー樹脂用組成物に含まれるポリアミド酸またはポリイミドは、ジアミン化合物に由来する構成単位と、テトラカルボン酸二無水物に由来する構成単位とを含む。
 1-1-1-1.ジアミン化合物に由来する構成単位
 上記ポリアミド酸またはポリイミド、ジアミン化合物に由来する構成単位は、以下の一般式(I)または一般式(II)で表されるジアミン化合物に由来する構成単位である。
Figure JPOXMLDOC01-appb-C000005
 一般式(I)および(II)において、nおよび2つのmは、それぞれ独立して0または1であり、-X-は、直結、-O-、-S-、-SO-、-CO-、-CH-から選ばれる二価の基である。なお、本発明で「直結」とはシクロヘキサン環同士、あるいはノルボルナン環を構成する炭素元素同士が直接に共有結合している結合形態として定義される。
 2つのmの一方または双方が1であると、それから得られるポリイミドの柔軟性が高まりやすい。そのため、リチウムイオン二次電池の電極において、活物質をより確実に結着しやすい。
 一般式(I)で表されるジアミンは、シクロヘキサンジアミン(m=n=0)であるか、ビスアミノメチルシクロヘキサン(m=1,n=0)であることが好ましく、ビスアミノメチルシクロヘキサンであることがより好ましく、1,4-ビスアミノメチルシクロヘキサンであることがさらに好ましい。
 一般式(II)で表されるジアミンは、ノルボルナンジアミン(m=n=0)であるか、ビスアミノメチルノルボルナン(m=1,n=0)であることが好ましく、ビスアミノメチルノルボルナンであることがより好ましく、2,5-ビスアミノメチルノルボルナンまたは2,6-ビスアミノメチルノルボルナンであることがさらに好ましい。
 一般式(I)または(II)で表されるジアミンが、幾何異性体(トランス体とシス体など)を有するときは、いずれの異性体でもよく、また、その異性体比は特に限定されない。
 ポリアミド酸またはポリイミドにおける、一般式(I)または一般式(II)で表されるジアミン化合物に由来する構成単位の割合は、ジアミン化合物に由来するすべての構成単位の全モルに対し、通常、20モル%~100モル%、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%である。
 一般式(I)または一般式(II)で表されるジアミン化合物に由来する構成単位の割合が多くなると、リチウムやリチウムと合金化した活物質に対するポリイミドの耐還元性が高まる。そのため、電池の初回充放電効率が高まるほか、電極における活物質のバインダーとしての耐久性が高まる。
 ポリアミド酸またはポリイミドは、一般式(I)または一般式(II)で表されるジアミン化合物以外のジアミン化合物(以下、単に「他のジアミン化合物」ともいう。)に由来する構成単位を含んでいてもよい。ポリアミド酸またはポリイミドが有する、ジアミン化合物に由来するすべての構成単位中に、他のジアミン化合物に由来する構成単位の割合は、通常、80モル%未満、好ましくは50モル%未満、より好ましくは30モル%未満である。
 他のジアミン化合物の第一の例は、ベンゼン環を有するジアミンである。ベンゼン環を有するジアミンの例には、以下の<1>~<6>が含まれる。
 <1>p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミンなどのベンゼン環を1つ有するジアミン;
 <2>3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタンなどのベンゼン環を2つ有するジアミン;
 <3>1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジンなどのベンゼン環を3つ有するジアミン;
 <4>4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン環を4つ有するジアミン;
 <5>1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼンなどのベンゼン環を5つ有するジアミン;
 <6>4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホンなどのベンゼン環を6つ有するジアミン。
 他のジアミン化合物の第二の例には、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノンなどの芳香族置換基を有するジアミンが含まれる。
 他のジアミン化合物の第三の例には、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンなどのスピロビインダン環を有するジアミンが含まれる。
 他のジアミン化合物の第四の例には、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサンなどのシロキサンジアミン類が含まれる。
 他のジアミン化合物の第五の例には、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、ビス[(2-アミノメトキシ)エチル]エーテル、ビス[2-(2-アミノエトキシ)エチル]エーテル、ビス[2-(3-アミノプロトキシ)エチル]エーテル、1,2-ビス(アミノメトキシ)エタン、1,2-ビス(2-アミノエトキシ)エタン、1,2-ビス[2-(アミノメトキシ)エトキシ]エタン、1,2-ビス[2-(2-アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、トリエチレングリコールビス(3-アミノプロピル)エーテルなどのエチレングリコールジアミン類が含まれる。
 他のジアミン化合物の第六の例には、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどのアルキレンジアミン類が含まれる。
 他のジアミン化合物の第七の例には、シクロブタンジアミン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン(オキサノルボルナンジアミンを含む)、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロヘキシル)イソプロピリデンなどの前述の一般式(I)または(II)で表されるジアミン以外の脂環族ジアミン類などが含まれる。
 1-1-1-2.テトラカルボン酸二無水物に由来する構成単位
 テトラカルボン酸二無水物に由来する構成単位は、特に限定されず、たとえば、一般式(III)に示されるように、炭素数4~27である4価の有機置換基Yを有するテトラカルボン酸二無水物に由来する構成単位であればよい。
Figure JPOXMLDOC01-appb-C000006
 有機置換基Yは、単環式芳香族基、縮合多環式芳香族基、または芳香族基が直接もしくは連結基を介して相互に連結された非縮合多環式芳香族基などであり、非縮合多環式芳香族基が好ましい場合がある。有機置換基Yの炭素数は、6~27であることが好ましい。
 一般式(III)で表されるテトラカルボン酸二無水物は特に限定されず、ポリアミド酸またはポリイミドを製造できればよい。テトラカルボン酸二無水物は、例えば芳香族テトラカルボン酸二無水物または脂環族テトラカルボン酸二無水物でありうる。
 芳香族テトラカルボン酸二無水物の例には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス[(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)スルフィド二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、1,3-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシベンゾイル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシベンゾイル)ベンゼン二無水物、1,3-ビス(2,3-ジカルボキシベンゾイル)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシベンゾイル)ベンゼン二無水物、4,4’-イソフタロイルジフタリックアンハイドライドジアゾジフェニルメタン-3,3’,4,4’-テトラカルボン酸二無水物、ジアゾジフェニルメタン-2,2’,3,3’-テトラカルボン酸二無水物、2,3,6,7-チオキサントンテトラカルボン酸二無水物、2,3,6,7-アントラキノンテトラカルボン酸二無水物、2,3,6,7-キサントンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物などが含まれる。
 テトラカルボン酸二無水物がベンゼン環などの芳香環を含む場合には、芳香環上の水素原子の一部もしくは全ては、フルオロ基、メチル基、メトキシ基、トリフルオロメチル基、およびトリフルオロメトキシ基などから選ばれる基で置換されていてもよい。また、テトラカルボン酸二無水物がベンゼン環などの芳香環を含む場合には、目的に応じて、芳香環上の水素原子の一部もしくは全ては、エチニル基、ベンゾシクロブテン-4’-イル基、ビニル基、アリル基、シアノ基、イソシアネート基、ニトリロ基、及びイソプロペニル基などから選ばれる架橋点となる基またはこれらの基を有する置換基で置換されていてもよい。テトラカルボン酸二無水物には、好ましくは成形加工性を損なわない範囲内で、ビニレン基、ビニリデン基、およびエチニリデン基などの架橋点となる基を、主鎖骨格中に組み込まれていてもよい。
 なお、テトラカルボン酸二無水物の一部は、トリメリット酸無水物類、ヘキサカルボン酸三無水物類またはオクタカルボン酸四無水物類であってもよい。
 これらテトラカルボン酸二無水物は単独で、あるいは2種以上を組み合わせて用いることができる。
 ポリアミド酸またはポリイミドは、上記テトラカルボン酸二無水物のうち、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する構成単位を含むことが好ましい。また、ポリアミド酸またはポリイミドは、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する構成単位を、ポリアミド酸またはポリイミドを構成するテトラカルボン酸二無水物の全モル量に対し、50モル%以上含有することがより好ましい。
 1-1-1-3.ポリアミド酸またはポリイミドの物性
 ポリアミド酸またはポリイミドの重量平均分子量は、1.0×10~5.0×10であることが好ましい。重量平均分子量が1.0×10未満であると、バインダー樹脂用組成物を硬化して得られるバインダーの機械強度が低下することがある。重量平均分子量が5.0×10を超えると塗工が困難となることがある。ポリイミドまたはその前駆体であるポリアミド酸の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定され得る。
 ポリアミド酸またはポリイミドの対数粘度は、例えば負極合材ペーストの分散性や塗布性などの観点から、0.2~3.0dL/gの範囲であることが好ましく、0.3~2.0dL/gの範囲であることがより好ましい。
 ポリアミド酸またはポリイミドの対数粘度は、以下の方法で測定されうる。即ち、ポリアミド酸またはポリイミドを含有するバインダー樹脂用組成物を、濃度が0.5g/dL(溶媒はNMP)になるように希釈する。この希釈液を35℃にて、ラウダ社製 自動動粘度測定装置PVSを用いて流下時間(T1)を測定する。対数粘度は、ブランクのNMPの流下時間(T0)を用いて、次式から算出する。
 対数粘度[dL/g]={ln(T1/T0)}/0.5
 1-1-1-4.ポリアミド酸またはポリイミドの含有比率
 ポリアミド酸またはポリイミドの、バインダー樹脂用組成物全体に対する含有比率は、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上としうる。上記ポリアミド酸またはポリイミドの含有比率を一定以上とすることで、当該バインダー樹脂用組成物を用いて得られる負極活物質層において良好な結着性と耐還元性が得られやすい。上記ポリアミド酸またはポリイミドの含有比率の上限は、100質量%としうる。
 1-1-1-5.ポリアミド酸またはポリイミドの製造
 ポリアミド酸は、前記一般式(I)または一般式(II)で表されるジアミン化合物と、テトラカルボン酸二無水物とを、以下に記載の溶剤存在下で反応させて得られる。ジアミン化合物およびテトラカルボン酸二無水物は、いずれも、単独で用いてもよいし、二種類以上組み合わせてもよい。このとき、前記他のジアミン化合物が溶剤に含有され、同時に反応されてもよい。テトラカルボン酸二無水物は、一般式(III)で表されるテトラカルボン酸二無水物を含むことが好ましいが、それ以外のテトラカルボン酸二無水物でもよい。
 ポリイミドは、前記ポリアミド酸を150℃~230℃で加熱し、脱水縮合反応させて得られる。脱水縮合反応は、酸、三級アミン類、無水物などの従来公知の触媒の存在下または不存在下、加熱下で行ってもよい。
 溶剤としては、非プロトン性極性溶媒が好ましく、非プロトン性アミド系溶媒がより好ましい。非プロトン性アミド系溶媒の例には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、および1,3-ジメチル-2-イミダゾリジノン、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジブロモメタン、トリブロモメタン、1,2-ジブロモエタン、1,1,2-トリブロモエタンなどが含まれる。これらの溶媒は、単独で用いてもよいし、二種類以上組み合わせてもよい。
 これらの溶媒以外にも、必要に応じて他の溶媒を共存させてもよい。他の溶媒の例には、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、1,2,4-トリメチルベンゼン、o-クレゾール、m-クレゾール、p-クレゾール、o-クロロトルエン、m-クロロトルエン、p-クロロトルエン、o-ブロモトルエン、m-ブロモトルエン、p-ブロモトルエン、クロロベンゼン、ブロモベンゼン、メタノール、エタノール、n-プロパノール、イソプロピルアルコールおよびn-ブタノール等が含まれる。
 上記方法でポリイミドを製造するための触媒としては、三級アミン類が好ましく、具体的にはトリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリンなどが挙げられ、これらから選ばれる少なくとも一種の触媒が用いられる。触媒の使用量は、少量でなるべく短い反応時間とするためには、テトラカルボン酸二無水物成分に対して0.1~100モル%が好ましく、1~10モル%がより好ましい。
 テトラカルボン酸二無水物の仕込みモル量(M1)とジアミン化合物の仕込みモル量(M2)との比率を、M1:M2=0.90:1.00~1.10:1.00とすることが好ましい。M1:M2は、0.92:1.00~1.08:1.00であることがより好ましく、0.95:1.00~1.05:1.00であることがさらに好ましい。
 なお、ポリイミドは、別の方法、たとえば、前記一般式(I)または(II)で表されるジアミン化合物に対応するジイソシアネート化合物と、前記一般式(III)で表されるテトラカルボン酸二無水物との一段法によって製造されてもよい。
 また、上記ポリアミド酸は、アミノプロピルトリメトキシシラン、グリシドキシプロピルトリメトキシシラン、トリメトキシビニルシラン、トリメトキシグリシドキシシランなどのシランカップリング剤、トリアジン系化合物、フェナントロリン系化合物、トリアゾール系化合物などを、ポリアミド酸の総量100質量部に対して0.1~20質量部含有してもよい。これらを含有することにより、活物質や集電体との接着性をさらに高めることができる。
 1-1-2.その他の樹脂
 バインダー樹脂用組成物は、上記ポリアミド酸またはポリイミド以外の樹脂をさらに含んでいてもよい。上記ポリアミド酸またはポリイミド以外の樹脂は、上記ポリイミドまたは上記ポリアミド酸と相溶可能であれば特に限定はないが、電解液の主成分であるカーボネートに溶解しない樹脂であることが好ましい。バインダー樹脂用組成物が、上記ポリアミド酸またはポリイミド以外の樹脂をさらに含むことで、電池の初回充放電効率がより高まる。このような観点からは、バインダー樹脂用組成物は、ポリビニルピロリドン、ポリアクリルアミド、ポリアミド、またはポリアミドイミドをさらに含むことが好ましい。バインダー樹脂用組成物がポリアミドまたはポリアミドイミドを含むとき、初回充放電効率をより高める観点からは、上記ポリアミドまたはポリアミドイミドは、脂環構造を有していることが好ましい。
 1-1-3.アルカリ金属イオン
 アルカリ金属イオンは、ポリアミド酸またはポリイミド中に分散させるため、例えば(モノ)カルボン酸の塩として添加される。
 バインダー樹脂用組成物にアルカリ金属イオンを含有させることで、上記バインダー樹脂用組成物を硬化してなるバインダー樹脂へのリチウムイオンの透過性が高まる。そのため、アルカリ金属イオンを含有する本発明のバインダー樹脂用組成物を、リチウムイオン電池の負極の負極活物質のバインダー樹脂として用いると、負極内の抵抗を下げることができる。特に、本発明のバインダー樹脂用組成物を硬化してなるバインダー樹脂はポリイミドを主成分とするため、電気抵抗が高くなることがある。そのため、アルカリ金属イオンと組み合わせて電気抵抗の上昇を抑制することが好ましい。
 バインダー樹脂用組成物に含まれるアルカリ金属イオンの含有量は、前記テトラカルボン酸二無水物100モル%に対し4~20モル%であることが好ましい。
 1-2.負極活物質
 上記リチウムイオン二次電池の負極用の合材ペーストが含有する負極活物質は、SiO(0.5≦x≦1.5)で表されるケイ素酸化物および炭素粒子を含有する。なお、ケイ素酸化物の表面は、炭素被膜によって被覆されていてもよい。
 1-2-1.SiO(0.5≦x≦1.5)で表されるケイ素酸化物
 本発明において、SiO(0.5≦x≦1.5)は、通常、二酸化ケイ素(SiO)と金属ケイ素(Si)とを原料として得られる非晶質のケイ素酸化物の総称を表す一般式である。SiOx(0.5≦x≦1.5)において、xが0.5未満であると、Si相の占める比率が高くなるため充放電時の体積変化が大きくなりすぎて、リチウムイオン二次電池のサイクル特性が低下する。またxが1.5を超えると、Si相の比率が低下してエネルギー密度が低下するようになる。さらに好ましいxの範囲は、0.7≦x≦1.2である。
 上記ケイ素酸化物の粒径D50は一般に小さい方が好ましいが、あまりにも小さくなると負極形成時に凝集して粗大化する場合がある。D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を指す。つまり、D50とは、体積基準で測定したメディアン径を指す。通常、上記ケイ素酸化物のD50は1μm~15μm、より好ましくは2μm~8μmの範囲にある。後述するように、本願発明においては、上記ケイ素酸化物のD50は、負極用合材ペースト調製時に、同時に使用する特定の炭素粒子のD50との間で特定の関係を満たすことが好ましい。なお、上記ケイ素酸化物は、所望のD50を有する市販のケイ素酸化物を用いることも可能である。
 負極用合材ペースト中の上記ケイ素酸化物の配合量は、負極活物質である上記ケイ素酸化物の質量と後述する炭素粒子の質量との合計を100質量%としたときの上記ケイ素酸化物の配合割合が5質量%~70質量%、好ましくは5質量%~60質量%、より好ましくは10質量%~50質量%となる量である。なお、後述するようにケイ素酸化物の表面が炭素被膜で被覆されている場合、上記ケイ素酸化物の質量は、ケイ素酸化物の質量と炭素被膜の質量との合計とする。この配合割合の負極活物質を用いたリチウムイオン二次電池は、ケイ素酸化物のみを負極活物質として用いたリチウムイオン二次電池に比べて、活物質の体積変化に起因する負極の容量劣化を抑制することができるため、活物質/バインダー間の剥離による抵抗増大が抑制され、良好なサイクル特性を有するリチウムイオン二次電池とすることが出来る。
 1-2-2.上記ケイ素酸化物の表面を被覆する炭素被膜
 上記ケイ素酸化物は、表面が炭素被膜で被覆されていてもよい。上記ケイ素酸化物の表面を炭素被膜で被覆することによって、負極活物質を含む負極合材層中の導電ネットワークを良好に形成し、電池の負荷特性を向上させることができる。上記ケイ素酸化物の表面に炭素被膜を被覆する方法としては、有機物ガス及び/又は蒸気の雰囲気下、温度800℃以上1300℃以下で熱CVD処理する方法が挙げられる。熱CVD法による場合、炭素被膜の量が、上記ケイ素酸化物に対して通常3~20質量%、好ましくは3~15質量%、より好ましくは4~10質量%となるように炭素被膜を形成することができる。炭素被膜量を20質量%以下とすることで、負極用合材ペースト中の上記ケイ素酸化物が相対的に高くなるため、高容量を維持することができる。炭素被膜量を3質量%以上とすることで、上記ケイ素酸化物の電子伝導性を十分にして、電池容量を十分にすることができる。なお、この熱CVD処理の時間は、被覆炭素量との関係で適宜設定される。なお、上記ケイ素酸化物は、この処理による熱の作用でケイ素-ケイ素酸化物系複合体に変化(不均化)する。
 より具体的に説明する。粉末状の上記ケイ素酸化物に対して、不活性ガス気流下で800℃以上1300℃で加熱した反応装置を用いて、炭化水素系ガスを含む雰囲気下で、600℃以上1300℃以下、好ましくは700℃以上、より好ましくは800℃以上、特に好ましくは900℃以上1200℃以下の温度で加熱することで炭素被覆処理を行う。一般的に、処理温度が高い方が不純物の残存が少なく、且つ導電性の高い炭素を含む炭素被膜を形成できる。
 本発明において、炭化水素系ガスとしては、特に非酸化性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが好適に選択される。このような炭化水素系ガスとしては、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の芳香族炭化水素が挙げられる。
 この熱CVD処理を行う装置は、非酸化性雰囲気において非処理物を加熱するための機構を有する反応装置を用いればよく、特に限定されない。例えば、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じて適宜選択することができる。
 1-2-3.炭素粒子
 炭素粒子は、特に制限されない。具体例として、天然黒鉛、人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)、メソカーボンマイクロビーズ、黒鉛粒子とその表面に存在する炭素質層とからなる粒子(すなわち、炭素被覆黒鉛)、または黒鉛粒子に炭素繊維を付着させてなる粒子等が挙げられる。
 炭素粒子の粒径D50は特に制限されないが、通常1μm以上である。D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径、つまり、体積基準で測定したメディアン径を指す。また、炭素粒子の粒径D50は、ケイ素酸化物の粒径D50の1.0~8.0倍であることが好ましく、1.5~6.5倍であることがより好ましく、さらに好ましくは2倍超6.0倍未満である。炭素粒子の粒径D50を、前記ケイ素酸化物の粒径D50と同径以上とすることで、充放電サイクルに伴う負極合材層の体積変化が小さくなり、負極合材層の剥離等が生じ難くなる。一方、上記比が8.0倍以下であると、炭素粒子の比表面積が過度に高まらず、電解液の分解反応による容量低下が生じ難くなる。
 なお、炭素粒子の形状は、球状、略球状、扁平状等のいずれの形状でもありうるが、本発明では、アスペクト比が10未満である粒子を、炭素粒子とする。
 本発明者らの知見によれば、バインダー樹脂に前記一般式(I)または一般式(II)で表されるジアミン化合物に由来する構成単位を有するポリイミドを含み、かつ、負極活物質に上記ケイ素酸化物および炭素粒子を含有する電池は、初回充放電効率が低下しにくい。
 負極合材層における炭素粒子の量は、ケイ素酸化物と炭素粒子との合計質量を100質量%としたときに、30質量%超95質量%以下であることが好ましく、40~95質量%であることがより好ましく、50~90質量%であることがさらに好ましい。
 炭素粒子は、前記黒鉛材料を含む一次粒子が集合または結合してなる二次凝集体であることが好ましい。このときの、炭素粒子の一次粒子の形状としては扁平状が望ましい。このような形状を有する炭素粒子を使用すると、充放電サイクル後も良好な導電性を保持するため、電極抵抗の増大が抑制され、リチウムイオン二次電池のサイクル寿命を延ばすことが出来る。扁平状の一次粒子からなる炭素粒子としては、MAG(登録商標)等が挙げられる。
 炭素粒子の、窒素ガス吸着法で測定された全細孔容積は、通常1.0×10-2~1.0×10-1 cm/gの範囲を満たし、好ましくは1.5×10-2~9.0×10-2cm/gの範囲を満たし、より好ましくは2.0×10-2~7.0×10-2cm/gの範囲を満たす。炭素粒子の、窒素ガス吸着法で測定された平均細孔直径は、通常20~50 nmの範囲を満たし、好ましくは25~40nmの範囲を満たし、より好ましくは25~35nmの範囲を満たす。炭素粒子の全細孔容積(v)と平均細孔直径(d)の少なくともいずれかが、上記範囲を満たすことによって、電解液が活物質中に浸透しやすくなるため、良好なイオン導電性を保持する。これにより、電極抵抗が抑制され、電池の充放電容量並びに負荷特性が向上する。さらに、細孔を有していることで、充電時に上記ケイ素酸化物が体積膨張した際、上記ケイ素酸化物の体積膨張分を炭素粒子が内部で弾性変形することによって吸収し、電極の膨れを抑制する。このため、上記ケイ素酸化物の体積変化による、活物質/バインダー間の剥離による抵抗増大が抑制され、良好なサイクル特性を示す。
 1-3.溶媒
 上記リチウムイオン二次電池の負極用の合材ペーストは、溶媒を含有しうる。溶媒は、リチウムイオン二次電池用のバインダー樹脂用組成物と活物質等とを均一に溶解もしくは分散可能なものであれば特に制限されない。溶剤は、非プロトン性極性溶媒が好ましく、非プロトン性アミド系溶媒がより好ましい。非プロトン性アミド系溶媒の例には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、および1,3-ジメチル-2-イミダゾリジノン、などが含まれる。これらの溶媒は、単独で用いてもよいし、二種類以上組み合わせてもよい。
 これらの溶媒以外にも、必要に応じて他の溶媒を共存させてもよい。他の溶媒の例には、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、1,2,4-トリメチルベンゼン、o-クレゾール、m-クレゾール、p-クレゾール、o-クロロトルエン、m-クロロトルエン、p-クロロトルエン、o-ブロモトルエン、m-ブロモトルエン、p-ブロモトルエン、クロロベンゼン、ブロモベンゼン、メタノール、エタノール、n-プロパノール、イソプロピルアルコールおよびn-ブタノール等が含まれる。
 リチウムイオン二次電池の負極用の合材ペーストにおける溶媒量は、合材ペーストの粘度等を考慮して適宜設定される。上記溶媒量は、合材ペーストに含まれる固形分100質量部に対して、50~900質量部配合することが好ましく、より好ましくは65~500質量部である。
 1-4.導電助剤
 上記リチウムイオン二次電池の負極用の合材ペーストは、導電助剤を含有しうる。負極活物質は、点接触することによって互いを導通させている。そのため、負極活物質間の導通性が十分に高まらないことがある。導電助剤は、負極活物質の粒子同士の点接触に起因する高い電気抵抗を、低下させる機能を有する。
 導電助剤は、炭素材料でありうる。炭素材料は特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、炭素繊維(カーボンナノチューブ、気相成長炭素繊維など)や、様々な熱分解条件での有機物の熱分解物などでありうる。炭素材料は、それぞれ一種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 有機物の熱分解物の例には、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物および上記ピッチを酸化処理した後の炭化物、ニードルコークス、ピッチコークス、フェノール樹脂および結晶セルロース等の炭化物、ならびにこれらの炭化物を一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ならびにピッチ系炭素繊維等が含まれる。
 これらのうち、導電助剤は黒鉛であることが好ましく、特に種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又はこれらの黒鉛に種々の表面処理を施したものであることが好ましい。
 リチウムイオン二次電池の負極用の合材ペーストには、酸化錫などの金属酸化物、硫化物や窒化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金などが含まれていてもよい。これらのうち、1種を単独で用いても良いし、2種以上を組み合わせて用いてもよい。また、上述の炭素材料と組み合わせて用いてもよい。
 リチウムイオン二次電池の負極用の合材ペーストにおける、固形分の総量(質量)に対する導電助剤の含有量(質量比)は、0.01質量%以上が好ましく、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。また通常20質量%以下が好ましく、より好ましくは10質量%以下である。
 1-5.リチウムイオン二次電池の負極用の合材ペーストの製造
 リチウムイオン二次電池の負極用の合材ペーストは、リチウムイオン二次電池のバインダー樹脂用組成物もしくはこれを含有するワニスと、負極活物質と、必要に応じて導電助剤、溶剤等を混合し、撹拌ないし混錬して製造し得る。各原料の混合方法としては、以下の2つの方法が挙げられるが、これに限定されない。
 i)リチウムイオン二次電池用のバインダー樹脂用組成物もしくはこれを含有するワニスに、負極活物質および溶媒を加えて電極合材ペーストとする。
 ii)リチウムイオン二次電池用のバインダー樹脂用組成物もしくはこれを含有するワニスに、負極活物質を添加して混練する。得られた混練物に溶媒を加えて撹拌して電極合材ペーストとする。
 上記攪拌は、攪拌羽根等を用いた通常撹拌や、自転・公転ミキサー等を用いた撹拌であればよい。混練操作は、混練機などを用いることができる。
 2.リチウムイオン二次電池用の負極
 本発明のリチウムイオン二次電池用の負極は、集電体と負極活物質層との積層体である。リチウムイオン二次電池用の負極は、シート状電極であってもよい。
 2-1.負極活物質層
 負極活物質層は、前述のリチウムイオン二次電池用電極合材ペーストの硬化物である。つまり、前記負極活物質と、それを結着するバインダー樹脂とを含有し、さらにその他の成分(導電助剤など)を含有していてもよい。上記バインダー樹脂は、前記バインダー樹脂用組成物のポリアミド酸またはポリイミドが、加熱により硬化した、ポリイミドを含有する。
 前記ポリアミド酸またはポリイミドにおける、前記一般式(I)または(II)で表される脂環式ジアミン化合物に由来する構成単位の割合は、ジアミン化合物に由来するすべての構成単位の全モルに対し、通常、20モル%~100モル%、好ましくは50モル%~100モル%、より好ましくは70モル%~100モル%である。
 負極活物質層の厚みは特に制限なく、例えば5μm以上であることが好ましく、より好ましくは10μm以上である。また200μm以下とすることが好ましく、より好ましくは100μm以下、更に好ましくは75μm以下である。負極活物質層が薄すぎると、活物質の粒径との兼ね合いから電極としての実用性に欠ける。一方、厚みが厚すぎると、高密度の電流値に対する十分なLiの吸蔵・放出の機能が得られにくい場合がある。
 負極活物質層を構成する全ての成分の質量に対するバインダー樹脂(質量)の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは5質量%以上である。また、通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、特に好ましくは20質量%以下である。バインダー樹脂の割合が低すぎると、負極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまうおそれがある。一方で、バインダー樹脂の割合が高すぎると、電池容量や導電性の低下につながるおそれがある。
 なお、リチウムイオン二次電池用電極合材ペーストが硬化する際、溶媒以外の物質は反応系から失われない。そのため、前記リチウムイオン二次電池の負極用の合材ペーストにおける溶媒以外の物質の量の比率は、負極活物質層におけるそれぞれの物質の量の比率に対応し、負極活物質層におけるそれぞれの物質の量の比率は、リチウムイオン二次電池用電極合材ペーストにおける溶媒以外の物質の量の比率に対応する。このとき、ポリアミド酸およびポリイミドについては、反応前のそれぞれの材料の量の合計を、反応後のポリイミドの量とすることができる。
 負極活物質の表面は、シランカップリング剤などによって処理が施されていてもよい。負極活物質の表面を処理するシランカップリング剤は、アミノ基またはエポキシ基を有することが好ましい。アミノ基含有シランカップリング剤の具体例には、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシランなどが含まれる。エポキシ基含有シランカップリング剤の具体例には、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランなどが含まれる。
 負極活物質の表面を処理するシランカップリング剤の量は、負極活物質100質量部に対して、0.05~10質量部であることが好ましい。
 負極活物質層において、負極活物質は、シランカップリング剤を介して、上記バインダー樹脂が含有するポリイミドと化学結合していることが好ましく、負極活物質が上記ポリイミドで被覆されていることがより好ましい。上記ポリイミドは耐還元性が高いため、負極活物質を接触していても電気分解されにくい。そのため、上記ポリイミドで負極活物質を被覆することで、バインダー樹脂の電気分解が抑制され、初回充放電効率が高まる。
 負極活物質が、ポリイミドとシランカップリング剤を介して化学結合しているかどうかは、負極活物質層に存在するシランカップリング剤の反応残基を検出することで確認すればよい。シランカップリング剤の反応残基の検出は、X線光電子分光法等によって行うことができる。
 2-2.集電体
 負極の集電体の材質は、ケイ素及び/又はケイ素合金、スズおよびその合金、ケイ素-銅合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料などでありうる。
 負極の集電体の形状は、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等であり;炭素材料の場合、炭素板、炭素薄膜、炭素円柱等でありうる。集電体の厚みは、特に制限はないが、例えば通常5μm~30μmであり、好ましくは9~20μmである。
 2-3.リチウムイオン二次電池用の負極の製造方法
 負極は、前述の負極合材ペーストを集電体に塗布し、それを加熱硬化させて負極活物質層とすることで得られる。
 負極合材ペーストの塗布は、例えばスクリーン印刷、ロールコート、スリットコート等の方法で行い得る。負極合材ペーストをパターン状に塗布することで、メッシュ状の活物質層が形成されうる。
 負極合材ペーストの加熱硬化は、通常、大気圧下で行うことが可能であるが、加圧下、ないしは真空下で行ってもよい。また加熱乾燥時の雰囲気は、特に制限されないが、通常、空気、窒素、ヘリウム、ネオンまたはアルゴン等の雰囲気下で行うことが好ましく、より好ましくは不活性気体である窒素またはアルゴン雰囲気下で行う。
 また、ポリアミド酸を含有する樹脂用組成物をバインダーに用いた負極合材ペーストの加熱硬化における加熱温度は、通常150℃~500℃で1分間~24時間熱処理することにより、ポリイミド前駆体であるポリアミド酸のポリイミドへの閉環反応を行い、信頼性のある負極を得ることができる。好ましくは200℃~350℃で5分間~20時間である。一方、ポリイミドを含有する樹脂用組成物をバインダーに用いた負極合材ペーストの加熱硬化における加熱温度は、通常100℃~250℃で1分間~24時間熱処理することにより、信頼性のある負極を得ることができる。好ましくは120℃~200℃で5分間~20時間である。
 3.リチウムイオン二次電池
 本発明のリチウムイオン二次電池の基本構成は、従来公知のリチウムイオン二次電池と同様である。通常のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出可能な一対の電極(負極と正極)、セパレータ、および電解質を備える。
 3-1.負極
 本発明のリチウムイオン二次電池における負極は、前述の負極である。
 3-2.正極
 正極は、集電体と、正極活物質層とが積層された積層体とし得る。正極の集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料が好ましく、アルミニウムが特に好ましい。集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
 正極集電体が薄膜である場合、その厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上である。また、通常100mm以下、好ましくは1mm以下、より好ましくは50μm以下である。上記範囲よりも薄いと、集電体として必要な強度が不足する虞がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる恐れがある。
 正極活物質は、リチウムの吸蔵放出が可能な材料であれば特に限定されず、リチウムイオン二次電池に通常用いられる正極活物質でありうる。具体的には、リチウム-マンガン複合酸化物(LiMnなど)、リチウム-ニッケル複合酸化物(LiNiOなど)、リチウム-コバルト複合酸化物(LiCoOなど)、リチウム-鉄複合酸化物(LiFeOなど)、リチウム-ニッケル-マンガン複合酸化物(LiNi0.5Mn0.5など)、リチウム-ニッケル-コバルト複合酸化物(LiNi0.8Co0.2など)、リチウム-ニッケル-コバルト-マンガン複合酸化物、リチウム-遷移金属リン酸化合物(LiFePOなど)、およびリチウム-遷移金属硫酸化合物(LiFe(SO)などが挙げられる。
 これらの正極活物質は、単独で用いても複数を混合して用いてもよい。正極活物質層中の正極活物質の含有割合は、通常10質量%以上、好ましくは30質量%以上、更に好ましくは50質量%以上である。また、通常99.9質量%以下、好ましくは99質量%以下である。
 正極活物質を結着するバインダー樹脂は、上述したバインダー樹脂用組成物から得られるバインダー樹脂であってもよいが、公知のバインダー樹脂を任意に選択して用いてもよい。公知のバインダー樹脂の例には、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン、不飽和結合を有さない高分子などが含まれる。これらの高分子の重量平均分子量は、下限が、通常1万、好ましくは10万、上限が、通常300万、好ましくは100万である。
 正極活物質層を構成する全ての成分の質量に対するバインダー樹脂(質量)の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは5質量%以上である。また、通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、特に好ましくは10質量%以下である。バインダー樹脂の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう虞がある。一方で、バインダー樹脂の割合が高すぎると、電池容量や導電性の低下につながる虞がある。
 正極活物質層には、電極の導電性を向上させるために、導電材を含有させてもよい。導電剤としては、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
 正極活物質層の厚さは、通常10~200μm程度である。
 正極は、正極活物質及び上記バインダー樹脂を含有するバインダー樹脂用組成物を、集電体上に成膜させて得られる。
 正極活物質層は、通常、正極材料と、バインダー樹脂と、更に必要に応じて導電材及び増粘剤などを、乾式で混合してシート状にしたものを正極集電体に圧着する。または、これらの材料を液体媒体中に溶解又は分散させてペースト状にして、正極集電体に塗布、乾燥することにより作製される。正極集電体へのペーストの塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
 ペーストを形成するための液体媒体としては、正極活物質、バインダー樹脂、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はない。液体媒体は、水系溶媒または有機系溶媒のいずれでもよい。
 水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてペースト化する。なお、これらの溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 3-3.セパレータ
 正極と負極との間に、通常、セパレータを配置する。それにより、電極間の短絡を防止する。
 セパレータは、通常、多孔膜や不織布などの多孔性体である。セパレータの空孔率は、電子やイオンの透過性、セパレータの素材などに応じて適宜設定されるが、一般的に30~80%であることが望ましい。
 セパレータには、例えば、優れたイオン透過性を有する微多孔性フィルム、ガラス繊維シート、不織布、織布などが用いられる。また、耐有機溶剤性と疎水性の観点から、セパレータの材料としては、ポリプロピレン、ポリエチレン、ポリフェニレンスルフイド、ポリエチレンテレフタレート、ポリエチレナフタレート、ポリメチルペンテン、ポリアミド、ポリイミドなどが用いられる。これらを単独で用いてもよく、2種以上組み合わせて用いてもよい。
 通常は、安価なポリプロピレンが用いられるが、リチウムイオン二次電池に耐リフロー性を付与する場合には、この中でも熱変形温度が230℃以上のポリプロピレンスルフィド、ポリエチレンテレフタレート、ポリアミド、ポリイミドなどを用いることが好ましい。
 セパレータの厚みは、例えば10~300μmである。
 3-4.電解質
 リチウムイオン二次電池の電解質は、非水系溶媒にリチウム塩を溶解させた非水系電解液でありうる。また、この非水系電解液に有機高分子化合物等を添加して、ゲル状、ゴム状、固体シート状にしたものなどでありうる。
 非水系電解液には、リチウム塩と非水溶媒とが含まれる。リチウム塩は、公知のリチウム塩の中から、適宜選択して用いることができる。例えば、LiCl、LiBrなどのハロゲン化物;LiBrO、LiClOなどの過ハロゲン酸塩;LiPF、LiBF、LiAsFなどの無機フッ化物塩;リチウムビス(オキサラトホウ酸塩)LiBCなどの無機リチウム塩;LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩;Liトリフルオロスルフォンイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩;などの含フッ素有機リチウム塩などが挙げられる。リチウム塩は、単独で用いても、2種以上を混合して用いてもよい。非水系電解液中におけるリチウム塩の濃度は、通常0.5M以上、2.0M以下の範囲である。
 非水系溶媒の例には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンサルトン、アニソール、ジメチルスルホキシド、N-メチルピロリドン、ブチルジグライム、メチルテトラグライムなどの非プロトン性有機溶媒が挙げられ、これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、電解液に有機高分子化合物を含有させることで、ゲル状、ゴム状、或いは固体シート状の電解質とすることも可能である。このような有機高分子化合物の具体例には、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω-メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω-メトキシオリゴオキシエチレンメタクリレート-co-メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン-フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
 電解液は、更に被膜形成剤を含んでいてもよい。被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート、ビス(トリフルオロメチル)エチレンカーボネート、1-フルオロエチルメチルカーボネート、エチル1-フルオロエチルカーボネート、フルオロメチルメチルカーボネート、ビス(1-フルオロエチル)カーボネート、ビス(フルオロメチル)カーボネート、エチル2-フルオロエチルカーボネート、ビス(2-フルオロエチル)カーボネート、メチル1,1,1-トリフルオロプロパン-2-イルカーボネート、エチル1,1,1-トリフルオロプロパン-2-イルカーボネート、メチル2,2,2-トリフルオロエチルカーボネート、ビス(1,1,1-トリフルオロプロパン-2-イル)カーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、エチル3,3,3-トリフルオロプロピルカーボネート、ビス(3,3,3-トリフルオロプロピル)カーボネートなどのフッ素系カーボネート化合物、エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3-プロパンスルトン、1,4-ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが含まれる。
 電解液に被膜形成剤が含まれる場合、その含有量は、電解液の構成成分全量(質量)に対して、被膜形成剤を通常10質量%以下、中でも8質量%以下、更には5質量%以下、特に2質量%以下とすることが好ましい。被膜形成剤の含有量が多過ぎると、リチウムイオン二次電池の初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼす場合がある。
 3-5.リチウムイオン二次電池の形態
 本発明のリチウムイオン二次電池の形態は特に制限されない。リチウムイオン二次電池の形態の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状としてもよい。
 リチウムイオン二次電池を組み立てる手順も特に制限されず、電池の構造に応じて適切な手順で組み立てればよい。一例を挙げると、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
 以下、本発明を実施例を参照してより詳細に説明するが、本発明の範囲は、これらの実施例によって限定されない。
 本実施例および比較例で用いた化合物の略称を示す。
 14BAC:1,4-ビスアミノメチルシクロヘキサン
 NBDA:ノルボルナンジアミン
 mBP:4,4'-ビス(3-アミノフェノキシ)ビフェニル
 pPD:パラフェニレンジアミン
 DMAc:ジメチルアセトアミド
 NMP:N-メチル-2-ピロリドン
 BPDA :3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 PVP: ポリビニルピロリドン
 PMDA:ピロメリット酸二無水物
 実施例で用いた特性の測定方法を以下に示す。
 <固形分濃度>
 試料溶液(その質量をw1とする)を、熱風乾燥機中250℃で60分間加熱処理して、加熱処理後の質量(その質量をw2とする)を測定する。固形分濃度[質量%]は、次式によって算出した。
 固形分濃度[質量%]=(w2/w1)×100
 <対数粘度>
 試料溶液を、固形分濃度に基づいて濃度が0.5g/dL(溶媒はNMP)になるように希釈した。この希釈液を35℃にて、ラウダ社製 自動動粘度測定装置PVSを用いて流下時間(T1)を測定した。対数粘度は、ブランクのNMPの流下時間(T0)を用いて、次式から算出した。
 対数粘度[dL/g]={ln(T1/T0)}/0.5
<負極の初回充放電効率>
 負極の初回充放電効率は、コインセルを用いて評価した。電極には、各実施例及び比較例で作製した直径14.5mmΦの負極と、直径15mmΦのLi箔からなる正極を用いた。電解液には、エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1混合)にLiPFを1mol/lの濃度で溶解したものを用いた。セパレータには、直径16mmΦ、膜厚25μmのポリプロピレン多孔質膜を使用した。
 これらのセルを25℃にて24時間放置後、測定温度25℃、0.05Cで0.05Vになるまで定電流放電、その後0.01Cになるまで定電圧放電を行った。次に、0.05C、CCモードで1.2Vまで定電流充電を行った。当該充放電時の放電容量を負極へのLi挿入時容量、充電容量をLi脱離時容量とした。そして、初回充放電効率を以下の式により算出した。
 初回充放電効率(%)= B/A*100
 A:Li挿入時容量(mAh/g)
 B:Li脱離時容量(mAh/g)
 <放電容量維持率>
 <正極の作製>
 93質量部のLiCo1/3i1/3Mn1/3に、3質量部のポリフッ化ビニリデンをNMPに溶解させた溶液と4質量部の導電助剤(電気化学製、デンカブラック)を加えて混合し、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練し、正極合材ペーストを得た。このペーストを、厚み20μmのアルミニウム箔上に、乾燥後の正極合材質量が単位面積当たり22mg/cmとなるように均一に塗布し、乾燥させて正極合材層を形成した。形成した正極合材層をローラープレス機により常温プレスして、正極を得た。
 <電池の作製>
 上記負極を含む電池の電池特性評価を行うために、コインセルを作製した。電極には、直径14.5mmΦの負極と、直径13mmΦの正極とを用いた。電解液には、エチレンカーボネートとメチルエチルカーボネートの混合溶媒(体積比3:7混合)にLiPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、直径16mmΦ、膜厚25μmのポリプロピレン多孔質膜を使用した。
 上記コインセル電池を25℃にて24時間放置後、測定温度25℃、0.05Cで4.2Vになるまで充電し、さらに4.2V定電圧で、電流値が0.01Cになるまで充電した。その後、0.05Cで2.3Vまで放電した。
 2サイクル目以降、1Cで4.2Vになるまで充電し、さらに4.2V定電圧で、電流値が0.2Cになるまで充電した。その後、1Cで2.3Vまで放電した。上記条件で充放電サイクル試験を行い、下記式2から100サイクル時の放電容量維持率を算出した。
Figure JPOXMLDOC01-appb-M000007
 (合成例1)
 温度計、攪拌機、窒素導入管、滴下ロートを備えた5つ口セパラブルフラスコに、14BAC15.7g(0.110モル)と、有機溶媒としてDMAc198gとを加えて撹拌した。14BACのシス/トランス比は、9/91であった。ここに、粉状のBPDA32.4g(0.110モル)を装入し、反応容器を120℃に保持したオイルバス中に5分間浴した。BPDA装入後、約3分で塩の析出が生じた。その後、速やかに再溶解していく様子を確認した。オイルバスを外してから、さらに18時間室温で攪拌し、バインダー樹脂用組成物1のワニス(ポリアミド酸ワニス)を得た。得られたバインダー樹脂用組成物1のワニスは、固形分濃度が18質量%であり、対数粘度は、0.94dL/gであった。
 (合成例2)
 温度計、攪拌機、窒素導入管、滴下ロートを備えた5つ口セパラブルフラスコに、NBDA18.5g(0.12モル)と、有機溶媒としてNMP155gとを加えて撹拌した。ここに、粉状のBPDA35.3g(0.12モル)を装入し、さらにNMP67gを加え、反応容器を80℃に保持したオイルバス中に5分間浴した。約30秒で塩の析出が生じ、その後速やかに再溶解していく様子を確認した。オイルバスを外してから、さらに18時間室温で攪拌し、バインダー樹脂用組成物2のワニスを得た。得られたバインダー樹脂用組成物2のワニスは、固形分濃度が18質量%であり、対数粘度は、0.47dL/gであった。
 (合成例3)
 温度計、攪拌機、窒素導入管、滴下ロートを備えた5つ口セパラブルフラスコに、32.44g(0.3モル)のpPDと、36.84gのmBP(0.1モル)と、溶媒として532.7gのNMPとを装入し、溶液の温度を50℃に昇温してpPDおよびmBPが溶解するまで撹拌した。溶液の温度を室温まで下げた後、115.33g(0.392モル)のBPDAを約30分かけて投入し、228.3gのNMPをさらに加えて、20時間攪拌してバインダー樹脂用組成物3のワニスを得た。得られたバインダー樹脂用組成物3のワニスは、固形分濃度が18質量%であり、対数粘度は0.89dL/gであった。
 (合成例4)
 温度計、攪拌機、窒素導入管、滴下ロートを備えた5つ口セパラブルフラスコに、14BAC11.73g(0.0825モル)と、有機溶媒としてNMP225gとを加えて撹拌した。14BACのシス/トランス比は、9/91であった。ここに、粉状のBPDA32.4g(0.110モル)を装入し、反応容器を120℃に保持したオイルバス中に5分間浴した。BPDA装入後、約3分で塩の析出が生じた。その後、速やかに再溶解していく様子を確認した。オイルバスを外し、系内温度が室温付近まで低下した後に、10.13gのmBP(0.0275モル)を10分かけて投入し、さらに18時間室温で攪拌し、バインダー樹脂用組成物4のワニス(ポリアミド酸ワニス)を得た。得られたバインダー樹脂用組成物4のワニスは、固形分濃度が18質量%であり、対数粘度は、1.2dL/gであった。
 (合成例5)
 温度計、攪拌機、窒素導入管、滴下ロートを備えた5つ口セパラブルフラスコに、14BAC7.82g(0.0550モル)と、有機溶媒としてNMP223gとを加えて撹拌した。14BACのシス/トランス比は、9/91であった。ここに、粉状のBPDA32.4g(0.110モル)を装入し、反応容器を120℃に保持したオイルバス中に5分間浴した。BPDA装入後、約3分で塩の析出が生じた。その後、速やかに再溶解していく様子を確認した。オイルバスを外し、系内温度が室温付近まで低下した後に、20.26gのmBP(0.0550モル)を10分かけて投入し、さらに18時間室温で攪拌し、バインダー樹脂用組成物5のワニス(ポリアミド酸ワニス)を得た。得られたバインダー樹脂用組成物5のワニスは、固形分濃度が18質量%であり、対数粘度は、1.0dL/gであった。
 (合成例6)
 温度計、攪拌機、窒素導入管、滴下ロートを備えた5つ口セパラブルフラスコに、PMDA32.7g(0.15モル)とNMP90gを装入し、窒素気流下、室温で攪拌した。ここへNBDA23.1g(0.15モル)およびNMP40gの混合溶液を60分間で徐々に滴下した。その後60℃まで昇温し、更に10時間攪拌し、バインダー樹脂用組成物6のワニス(ポリアミド酸ワニス)を得た。バインダー樹脂用組成物6のワニスは、固形分濃度が27質量%であり、対数粘度は、0.70dL/gであった。 
 (合成例7)
 NMP92gに、PVPを18gを撹拌しながら少量ずつ添加することで、18質量%のPVP溶液を調製した。合成例1で調製したバインダー樹脂用組成物1のワニス40gに、上記18質量%のPVP溶液10gを加え撹拌して、バインダー樹脂用組成物7のワニスを得た。バインダー樹脂用組成物7のワニスは、固形分濃度が18質量%であった。
 〔実施例1〕
 5質量部のバインダー樹脂用組成物1を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計92質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は20:80とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり4.0mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率と、放電容量維持率を評価した。
 〔実施例2〕
 10質量部のバインダー樹脂用組成物2を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり3.8mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔実施例3〕
 10質量部のバインダー樹脂用組成物1を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は60:40とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり2.0mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔実施例4〕
 5質量部のバインダー樹脂用組成物4を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計92質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は20:80とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり4.1mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔実施例5〕
 5質量部のバインダー樹脂用組成物5を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計92質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は20:80とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり4.2mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔実施例6〕
 5質量部のバインダー樹脂用組成物6を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計92質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は20:80とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり4.1mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率と放電容量維持率を評価した。
 〔実施例7〕
 5質量部のバインダー樹脂用組成物7を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計92質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は20:80とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり4.1mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率と放電容量維持率を評価した。
 〔比較例1〕
 5質量部のバインダー樹脂用組成物3を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計92質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は20:80とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり4.0mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔比較例2〕
 10質量部のバインダー樹脂用組成物3を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は30:70とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり3.7mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔比較例3〕
 10質量部のバインダー樹脂用組成物3を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)、炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)を合計87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。活物質であるケイ素酸化物と炭素粒子の質量比率は60:40とした。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり2.1mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔比較例4〕
 10質量部のバインダー樹脂用組成物1を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)を87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり1.4mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔比較例5〕
 10質量部のバインダー樹脂用組成物1を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、Si活物質(山石金属製、平均粒径3μmの金属シリコン粉)を87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり1.0mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。結果を表1に示す。
 〔比較例6〕
 10質量部のバインダー樹脂用組成物3を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)を87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり1.42mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。
 〔比較例7〕
 10質量部のバインダー樹脂用組成物3を含有するワニスと、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、Si活物質(山石金属製、平均粒径3μmの金属シリコン粉)を87質量部添加し、NMPを加えてさらに混練を行って、負極合材ペーストを調製した。
 この負極合材ペーストを、集電体としての銅箔(厚さ:20μm)にアプリケータを用いて塗布し、窒素雰囲気下で300℃、10分間熱処理を行って硬化させた。これにより、集電体と負極合材層とが積層された負極が得られた。乾燥後の負極合材層中の活物質質量は単位面積当たり1.0mg/cmであった。
 得られた負極を用いてコインセルを作製し、初回充放電効率を評価した。結果を表1に示す。
 なお、表中に「SiO」で表すケイ素酸化物(信越化学工業製、KSC-1064)は、平均粒径(D50)が5μmである、炭素被膜を有するケイ素酸化物だった。表中に「Si」で表すSi活物質(山石金属製)は、平均粒径が3μmである、炭素被膜を有さない金属シリコン粉だった。
 表中に「MAGD」で表す炭素粒子(黒鉛:日立化成株式会社製、MAGD-20)は、平均粒径(D50)が20μm、全細孔容積が0.02cm/g、平均細孔直径が29nmの炭素粒子だった。
 表中に「VGCF」で表す導電助剤(昭和電工製、VGCF-H)は、繊維径が150nm、アスペクト比が10以上の導電助剤だった。
 表中、「ケイ素酸化物の割合」は、上記ケイ素酸化物の質量と炭素粒子の質量の合計を100質量%としたときの、上記ケイ素酸化物の質量の割合(質量%)である。表中、「一般式(I)または(II)で表されるジアミンの割合」は、ジアミン化合物に由来するすべての構成単位の合計を100モル%としたときの、対し前記一般式(I)または(II)で表される脂環式ジアミン化合物に由来する構成単位の割合(モル%)である。表中、「バインダーの割合」は、負極合材ペーストの全材料の質量の合計を100質量%としたときの、バインダー樹脂用組成物の質量の割合(質量%)である。
Figure JPOXMLDOC01-appb-T000008
 実施例1~7は、いずれも高容量のリチウムイオン二次電池であった。一般式(I)または(II)で表されるジアミン化合物に由来する構成単位を含むポリイミドを含有するバインダーを有する実施例1~7は、ケイ素酸化物の割合が同じであり、且つ上記ポリイミドを含有するバインダーを有さない比較例1~3に比べ、初回充放電効率が向上した。また、比較例4、5は、一般式(I)または(II)で表されるジアミン化合物に由来する構成単位を含むポリイミドを含有するバインダーを有するにもかかわらず、同種の活物質を使用し、且つ一般式(I)または(II)で表されるジアミン化合物に由来する構成単位を含むポリイミドを含有するバインダーを有さない比較例6、7と比較して、初回充放電効率が向上しなかった。
 実施例1、6について、対極に上記記載の正極を用いてコインセルを作製し、100サイクル時の放電容量維持率を評価した。前記テトラカルボン酸二無水物に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含有する実施例1記載の負極を用いたコインセルの放電容量維持率は90%だったのに対し、前記テトラカルボン酸二無水物に、ピロメリット酸二無水物を含有する実施例6の負極を用いたコインセルの放電容量維持率は81%だった。
 本出願は、2015年8月4日出願の日本国出願番号2015-154573号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲および明細書に記載された内容は本出願に援用される。
 本発明のリチウムイオン二次電池の負極用の合材ペーストは、リチウムイオン二次電池の負極の製造に用いることができる。

Claims (10)

  1.  リチウムイオン二次電池の負極用の合材ペーストであって、
     バインダー樹脂用組成物と負極活物質を含有し、
     前記バインダー樹脂用組成物は、ジアミン化合物に由来する構成単位およびテトラカルボン酸二無水物に由来する構成単位を有するポリアミド酸、またはジアミン化合物に由来する構成単位およびテトラカルボン酸二無水物に由来する構成単位を有するポリイミド、を含有し、
     前記ジアミン化合物に由来する構成単位は、下記一般式(I)または(II)で表されるジアミン化合物に由来する構成単位を含み、
     前記負極活物質は、SiO(0.5≦x≦1.5)で表されるケイ素酸化物および炭素粒子を含有する、合材ペースト。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(I)または(II)において、
     nおよび2つのmは、それぞれ独立して0または1であり、
     -X-は、直結、-O-、-S-、-SO-、-CO-、-CH-からなる群から選ばれる二価の基である)
  2.  前記負極活物質における、前記ケイ素酸化物の配合量は、前記ケイ素酸化物と前記炭素粒子との質量の合計に対し、5質量%以上70質量%以下である、請求項1に記載の合材ペースト。
  3.  前記テトラカルボン酸二無水物に由来する構成単位は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する構成単位を含む、請求項1または2に記載の合材ペースト。
  4.  前記バインダー樹脂用組成物は、アルカリ金属イオンをさらに含有する、請求項1~3のいずれか1項に記載の合材ペースト。
  5.  リチウムイオン二次電池用の負極であって、
     集電体と負極活物質層との積層体を含み、
     前記負極活物質層は、バインダー樹脂および負極活物質を含有し、
     前記バインダー樹脂は、ジアミン化合物に由来する構成単位およびテトラカルボン酸二無水物に由来する構成単位を有するポリイミドを含有し、
     前記ジアミン化合物に由来する構成単位は、下記一般式(I)または(II)で表されるジアミン化合物に由来する構成単位を含み、
     前記負極活物質は、SiO(0.5≦x≦1.5)で表されるケイ素酸化物および炭素粒子を含有する、
     負極。
    Figure JPOXMLDOC01-appb-C000002
     (一般式(I)または(II)において、
     nおよび2つのmは、それぞれ独立して0または1であり、
     -X-は、直結、-O-、-S-、-SO-、-CO-、-CH-からなる群から選ばれる二価の基である)
  6.  前記負極活物質における、前記ケイ素酸化物の配合量は、前記ケイ素酸化物と前記炭素粒子との質量の合計に対し、5質量%以上70質量%以下である、請求項5に記載の負極。
  7.  前記バインダー樹脂における、前記テトラカルボン酸二無水物に由来する構成単位は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する構成単位を含む、請求項5または6に記載の負極。
  8.  請求項1~4のいずれか1項に記載の合材ペーストを、集電体上に塗布する工程と、前記合材ペーストが塗布された集電体を加熱処理する工程と、を含む、リチウムイオン二次電池用の負極の製造方法。
  9.  前記加熱処理する工程における加熱処理温度が、200℃以上350℃以下である、請求項8に記載の負極の製造方法。
  10.  リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えたリチウムイオン二次電池であって、
     前記負極が、請求項5~7のいずれか1項に記載の負極である、リチウムイオン二次電池。
PCT/JP2016/072800 2015-08-04 2016-08-03 リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池 WO2017022796A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016573639A JP6105826B1 (ja) 2015-08-04 2016-08-03 リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池
US15/749,519 US20180226677A1 (en) 2015-08-04 2016-08-03 Mixture paste for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN201680044473.9A CN107925060A (zh) 2015-08-04 2016-08-03 锂离子二次电池负极用的复合材料糊剂、锂离子二次电池用负极、锂离子二次电池用负极的制造方法及锂离子二次电池
EP16833075.1A EP3333943A4 (en) 2015-08-04 2016-08-03 Mixture paste for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR1020187002576A KR20180022879A (ko) 2015-08-04 2016-08-03 리튬 이온 이차 전지의 음극용의 합재 페이스트, 리튬 이온 이차 전지용의 음극, 리튬 이온 이차 전지용의 음극의 제조 방법 및 리튬 이온 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-154573 2015-08-04
JP2015154573 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017022796A1 true WO2017022796A1 (ja) 2017-02-09

Family

ID=57943606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072800 WO2017022796A1 (ja) 2015-08-04 2016-08-03 リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池

Country Status (7)

Country Link
US (1) US20180226677A1 (ja)
EP (1) EP3333943A4 (ja)
JP (1) JP6105826B1 (ja)
KR (1) KR20180022879A (ja)
CN (1) CN107925060A (ja)
TW (1) TWI692902B (ja)
WO (1) WO2017022796A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163877A (ja) * 2017-03-24 2018-10-18 ユニチカ株式会社 バインダ溶液および塗液
WO2019225717A1 (ja) * 2018-05-24 2019-11-28 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
JP2019204786A (ja) * 2019-06-06 2019-11-28 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944111B2 (en) * 2016-10-28 2021-03-09 Nec Corporation Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP7035344B2 (ja) * 2017-06-16 2022-03-15 日産自動車株式会社 リチウムイオン二次電池用負極及びこれを用いたリチウムイオン二次電池
KR102621697B1 (ko) * 2018-08-16 2024-01-04 현대자동차주식회사 전고체 전지용 바인더 용액, 이를 포함하는 전극 슬러리 및 이를 사용한 전고체 전지의 제조방법
JP7074203B2 (ja) * 2018-10-17 2022-05-24 株式会社村田製作所 リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2020169200A1 (fr) * 2019-02-21 2020-08-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrolyte à base de solvant nitrile pour batterie organique
CN111952550A (zh) * 2019-05-16 2020-11-17 贝特瑞新材料集团股份有限公司 一种核壳型复合负极材料、其制备方法及应用
JP7438783B2 (ja) * 2020-02-18 2024-02-27 太陽誘電株式会社 磁性基体、コイル部品、及び電子機器
KR20210156361A (ko) * 2020-06-17 2021-12-27 김재광 유기 이차전극 및 유기 이차전지
US20220209236A1 (en) * 2020-12-30 2022-06-30 Kokam Co., Ltd. Elastic Anode Binder For Secondary Lithium Ion Battery
KR102561630B1 (ko) * 2021-04-22 2023-08-01 피아이첨단소재 주식회사 폴리아믹산 조성물
CN114709420B (zh) * 2022-03-10 2023-11-14 江苏环峰电工材料有限公司 一种改性聚酰亚胺二次电池黏合剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069688A1 (ja) * 2007-11-30 2009-06-04 Mitsui Chemicals, Inc. ポリイミド系複合材料およびそのフィルム
JP2012204203A (ja) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
WO2013008437A1 (ja) * 2011-07-08 2013-01-17 三井化学株式会社 ポリイミド樹脂組成物およびそれを含む積層体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714315A (zh) * 2009-08-09 2012-10-03 美洲锂能公司 电活性颗粒及由其组成的电极和电池
JP5626644B2 (ja) * 2010-11-18 2014-11-19 三洋電機株式会社 リチウム二次電池負極用バインダー、リチウム二次電池用負極、リチウム二次電池、リチウム二次電池負極用バインダー前駆体溶液及びリチウム二次電池用負極の製造方法
JP5338924B2 (ja) * 2010-11-30 2013-11-13 東レ株式会社 リチウムイオン電池電極用バインダー、リチウムイオン電池負極用ペーストおよびリチウムイオン電池負極の製造方法
JP5099394B1 (ja) * 2012-05-31 2012-12-19 Jsr株式会社 蓄電デバイスの電極用バインダー組成物
JP6031935B2 (ja) * 2012-10-11 2016-11-24 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
JP6390622B2 (ja) * 2013-09-26 2018-09-19 宇部興産株式会社 蓄電デバイス用ポリイミドバインダー、それを用いた電極シート及び蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069688A1 (ja) * 2007-11-30 2009-06-04 Mitsui Chemicals, Inc. ポリイミド系複合材料およびそのフィルム
JP2012204203A (ja) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
WO2013008437A1 (ja) * 2011-07-08 2013-01-17 三井化学株式会社 ポリイミド樹脂組成物およびそれを含む積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333943A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163877A (ja) * 2017-03-24 2018-10-18 ユニチカ株式会社 バインダ溶液および塗液
JP7075656B2 (ja) 2017-03-24 2022-05-26 ユニチカ株式会社 バインダ溶液および塗液
WO2019225717A1 (ja) * 2018-05-24 2019-11-28 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
KR20210006467A (ko) * 2018-05-24 2021-01-18 우베 고산 가부시키가이샤 전극용 결합제 수지 조성물, 전극 합제 페이스트, 및 전극
KR20210148369A (ko) * 2018-05-24 2021-12-07 우베 고산 가부시키가이샤 전극용 결합제 수지 조성물, 전극 합제 페이스트, 및 전극
KR102360593B1 (ko) * 2018-05-24 2022-02-10 우베 고산 가부시키가이샤 전극용 결합제 수지 조성물, 전극 합제 페이스트, 및 전극
US11532819B2 (en) 2018-05-24 2022-12-20 Ube Corporation Electrode binder resin composition, electrode mix paste, and electrode
KR102634562B1 (ko) * 2018-05-24 2024-02-08 유비이 가부시키가이샤 전극용 결합제 수지 조성물, 전극 합제 페이스트, 및 전극
JP2019204786A (ja) * 2019-06-06 2019-11-28 宇部興産株式会社 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極

Also Published As

Publication number Publication date
TWI692902B (zh) 2020-05-01
JPWO2017022796A1 (ja) 2017-08-03
TW201721940A (zh) 2017-06-16
JP6105826B1 (ja) 2017-03-29
US20180226677A1 (en) 2018-08-09
EP3333943A1 (en) 2018-06-13
EP3333943A4 (en) 2019-01-02
CN107925060A (zh) 2018-04-17
KR20180022879A (ko) 2018-03-06

Similar Documents

Publication Publication Date Title
JP6105826B1 (ja) リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池
TWI692901B (zh) 鋰離子二次電池用負極及含有其之鋰離子二次電池,暨鋰離子二次電池用負極之製造方法
JP5684620B2 (ja) 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
JP6396343B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極用合材ペーストおよびリチウムイオン二次電池用負極の製造方法
JP6529506B2 (ja) 二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池
WO2016125718A1 (ja) リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池
JP6891818B2 (ja) 二次電池用バインダ
JPWO2018003150A1 (ja) シリコンナノ粒子含有水素ポリシルセスキオキサン、その焼成物、及びそれらの製造方法
JP5754856B2 (ja) 非水電解液二次電池用負極材及び非水電解液二次電池
TWI692904B (zh) 鋰離子二次電池用負極活性物質及其製造方法
JP5358754B1 (ja) リチウムイオン二次電池用電極合材ペースト及び電極、並びにリチウムイオン二次電池
JP5559757B2 (ja) リチウム二次電池用バインダー樹脂組成物、これを用いた電極ペースト、及びリチウムイオン二次電池
JP2018170251A (ja) 非水電解質二次電池用負極の製造方法、非水電解質二次電池の製造方法、および非水電解質二次電池用負極活物質の製造方法
JP2015173048A (ja) リチウムイオン二次電池電極用電極およびリチウムイオン二次電池
TW201826600A (zh) 含有矽奈米粒子的氫聚倍半矽氧烷燒結體、鋰離子電池用負極活性物質、鋰離子電池用負極以及鋰離子電池
JP2015109254A (ja) リチウムイオン二次電池用バインダー樹脂組成物およびそれを含む負極合材ペースト、リチウムイオン二次電池用負極およびそれを含む二次電池
TW202041642A (zh) 蓄電裝置用聚醯亞胺系黏結劑、電極合劑膏、負極活性物質層、蓄電裝置用負極片及蓄電裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016573639

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002576

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15749519

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016833075

Country of ref document: EP