WO2017022784A1 - 異常予兆診断システム及び異常予兆診断方法 - Google Patents

異常予兆診断システム及び異常予兆診断方法 Download PDF

Info

Publication number
WO2017022784A1
WO2017022784A1 PCT/JP2016/072716 JP2016072716W WO2017022784A1 WO 2017022784 A1 WO2017022784 A1 WO 2017022784A1 JP 2016072716 W JP2016072716 W JP 2016072716W WO 2017022784 A1 WO2017022784 A1 WO 2017022784A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
time
cluster
sensor
learning
Prior art date
Application number
PCT/JP2016/072716
Other languages
English (en)
French (fr)
Inventor
統治郎 野田
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Priority to US15/750,117 priority Critical patent/US20180239345A1/en
Priority to EP16833063.7A priority patent/EP3333661B1/en
Publication of WO2017022784A1 publication Critical patent/WO2017022784A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32201Build statistical model of past normal proces, compare with actual process
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks

Definitions

  • the present invention relates to an abnormality sign diagnosis system for diagnosing the presence or absence of an abnormality sign of mechanical equipment.
  • a technique for diagnosing the presence or absence of a sign of abnormality in a mechanical facility based on a detection value of a sensor installed in the mechanical facility is known.
  • Patent Document 1 a machine facility operation schedule is divided into a plurality of time zones, and a time series data is clustered for each time zone, thereby learning a cluster indicating a normal range of the machine equipment.
  • An abnormal sign diagnostic apparatus for diagnosing the presence / absence of an abnormal sign of mechanical equipment is described.
  • Patent Document 2 image data indicating the temperature distribution of the plant to be monitored is acquired as learning data at 15-minute intervals, and based on these learning data, a normal pattern of temperature change is learned using a neural network, Furthermore, it describes a plant monitoring device that identifies the presence / absence of an abnormality in a monitored plant based on the normal pattern.
  • the waveform is also regarded as important. This is because the time series data waveform reflects the chemical reaction process and reaction rate. If one of the two types of waveforms (sudden fluctuation and gentle fluctuation) is “no abnormal sign”, the other should be diagnosed as “abnormal sign”. Therefore, the technique described in Patent Document 1 has room for further improving the diagnostic accuracy.
  • an object of the present invention is to provide an abnormality sign diagnosis system and the like capable of diagnosing the presence or absence of an abnormality sign of mechanical equipment with high accuracy.
  • an abnormality sign diagnosis system includes a sensor data acquisition unit that acquires sensor data including a detection value of a sensor installed in a machine facility in which a predetermined operation process is repeated, and the machine In a time-series waveform of sensor data in a period in which the equipment is known to be normal, the detected value of the sensor when a predetermined time has elapsed since the start of the operation process is specified, and the operation process Using a predetermined function that outputs different values for the passage of time with the passage of time since the start of the operation, the value when the predetermined time has elapsed since the start of the operation process is specified.
  • Learning means for learning a normal model of the waveform based on the specified detected value and the function value, and time series of sensor data to be diagnosed In the waveform, based on the comparison between the detected value of the sensor and the value of the function when the predetermined time has elapsed since the start of the operation process, and the normal model, the presence or absence of an abnormality sign of mechanical equipment is determined. Diagnostic means for making a diagnosis.
  • an abnormality sign diagnosis system or the like that diagnoses the presence or absence of an abnormality sign of mechanical equipment with high accuracy.
  • (A) is explanatory drawing which shows the waveform of learning object data, and the straight line of a linear function
  • (b) is explanatory drawing which shows the waveform of diagnostic object data at the time of the abnormal sign generation
  • (A) is explanatory drawing which shows another example of the waveform of learning object data, and the straight line of a linear function
  • (b) is the waveform of the diagnostic object data at the time of the abnormal sign generation
  • FIG. 1 is a configuration diagram of an abnormality sign diagnosis system 1 according to the present embodiment.
  • the abnormality sign diagnosis system 1 is a system for diagnosing presence / absence of an abnormality sign of the mechanical equipment 2 based on sensor data including a detection value of a sensor (not shown) installed in the mechanical equipment 2.
  • the aforementioned “abnormal sign” is a prelude to the occurrence of an abnormality in the mechanical equipment 2
  • “abnormal sign diagnosis” is a diagnosis of the presence or absence of an abnormal sign.
  • the mechanical equipment 2 is, for example, a chemical plant, and includes a reactor and a device for introducing a chemical substance into the reactor, although not illustrated. Then, by repeating a predetermined “operation process” in the mechanical equipment 2, a predetermined chemical substance is generated in each step.
  • the kind of mechanical equipment 2 is not limited to this, A pharmaceutical plant, a production line, a gas engine, a gas turbine, a power generation equipment, a medical equipment, a communication equipment, etc. may be sufficient.
  • the mechanical equipment 2 is provided with a sensor (not shown) that detects a predetermined physical quantity (temperature, pressure, flow rate, current, voltage, etc.).
  • the physical quantity detected by the sensor is transmitted as sensor data to the abnormality sign diagnosis system 1 via the network N.
  • the sensor data includes, in addition to the detection value of the sensor and the date / time when the physical quantity is detected, the identification information of the mechanical equipment 2, the identification information of the sensor, and the start / end of the “operation process” repeated in the mechanical equipment 2.
  • An indicating signal is also included.
  • FIG. 2 is a waveform diagram showing changes in the detection value of the sensor. Note that the horizontal axis in FIG. 2 is time, and the vertical axis is a detection value of a sensor (not shown) installed in the machine facility 2.
  • the first operation process is executed in the mechanical equipment 2 in the time period from time t01 to time t02, and the second operation process is executed in the time period from time t02 to time t03. Since the predetermined operation process is repeated in this manner, if the mechanical equipment 2 is normal, the detected value of the sensor in each operation process has a similar (that is, very similar) waveform.
  • a time-series waveform of sensor data (a waveform for each operation process) is obtained. Learning is performed as a normal model, and based on this normal model, the presence or absence of an abnormality sign of the mechanical equipment 2 is determined. Details of the normal model will be described later.
  • the abnormality sign diagnosis system 1 includes a communication unit 11, a sensor data acquisition unit 12, a sensor data storage unit 13, a data mining unit 14, a function storage unit 15, and a diagnosis result storage unit 16. Display control means 17 and display means 18.
  • the communication unit 11 receives information including sensor data from the machine facility 2 via the network N.
  • the communication means 11 for example, a router that receives information according to a TCP / IP communication protocol can be used.
  • the sensor data acquisition unit 12 acquires sensor data included in the information received by the communication unit 11 via the network N, and stores the acquired sensor data in the sensor data storage unit 13.
  • the sensor data storage unit 13 stores the sensor data acquired by the sensor data acquisition unit 12 as, for example, a database.
  • a magnetic disk device, an optical disk device, a semiconductor storage device, or the like can be used as the sensor data storage means 13.
  • the data mining means 14 learns a normal waveform of the detection value of the sensor (that is, sensor data) as a normal model by data mining, which is a statistical data classification method, and based on this normal model, Diagnose the presence of abnormal signs. Details of the data mining means 14 will be described later.
  • the function storage means 15 stores a linear function (straight line L shown in FIG. 4) that monotonously increases with the passage of time from the start of the operation process (time t01, t02,... Shown in FIG. 4). ing. The above-described linear function is used in the data mining means 14.
  • the diagnosis result storage means 16 stores the diagnosis result of the data mining means 14.
  • This diagnosis result includes the identification information of the machine facility 2 and the presence / absence of an abnormality sign.
  • the display control unit 17 outputs a control signal for displaying the diagnosis result of the data mining unit 14 to the display unit 18.
  • the display control unit 17 displays the diagnosis result on the display unit 18 in a matrix format with the name of each machine facility 2 as a row and the date of diagnosis as a column.
  • the display unit 18 is, for example, a liquid crystal display, and displays a diagnosis result according to a control signal input from the display control unit 17.
  • FIG. 3 is a configuration diagram of the data mining means 14 provided in the abnormality sign diagnosis system 1.
  • the data mining unit 14 includes a learning unit 141 and a diagnostic unit 142.
  • the learning unit 141 learns a cluster (normal model) representing a normal waveform of the detection value of the sensor by clustering which is one of statistical data classification methods.
  • the above-described cluster is an area specified by a cluster center c (see FIG. 5) and a cluster radius r (see FIG. 5) in a multidimensional vector space, and sensor data acquired during a predetermined learning period (see FIG. 2). Learned based on
  • the learning unit 141 includes a learning target data acquisition unit 141a, a value specifying unit 141b, a value storage unit 141c, a cluster learning unit 141d, and a learning result storage unit 141e.
  • the learning target data acquisition unit 141 a acquires sensor data to be learned (that is, learning target data) from the sensor data storage unit 13. That is, the learning target data acquisition unit 141a acquires sensor data acquired during a learning period in which the mechanical equipment 2 is known to be normal for each operation process repeated in the mechanical equipment 2.
  • the value specifying unit 141b has elapsed predetermined times ⁇ t 1 , ⁇ t 2 , ⁇ t 3 (see FIG. 4) having different lengths since the start of the driving process.
  • the detected value of the sensor and the value of the linear function are specified.
  • the occurrence of an abnormal sign of the mechanical equipment 2 is sensitively reflected in the detection values of the sensors at these predetermined times ⁇ t 1 , ⁇ t 2 , ⁇ t 3 . It is set in advance.
  • FIG. 4 is an explanatory diagram regarding the detection value of the sensor and the straight line L represented by a linear function.
  • the straight line L shown in FIG. 4 is a straight line that increases with the passage of time from the start of the operation process (time t01, time t02,...), And is represented by a linear function.
  • the value specifying unit 141b (see FIG. 3), for example, detects the sensor detection value p 1 (see FIG. 4) when the predetermined time ⁇ t 1 has elapsed from the start of the operation process, and the value q 1 (see FIG. 4) of the straight line L. See).
  • the value specifying unit 141 b specifies the detection value of the sensor and the value of the linear function.
  • the detected value and the value of the linear function specified by the value specifying unit 141b are stored in association with the predetermined times ⁇ t 1 , ⁇ t 2 , and ⁇ t 3 described above.
  • 3 ⁇ n sets of detected values and linear function values are stored in the value storage unit 141c.
  • the cluster learning unit 141d learns a cluster (normal model) representing a normal waveform of the detection value of the sensor based on information stored in the value storage unit 141c.
  • FIG. 5 is an explanatory diagram of the cluster J learned by the cluster learning unit 141d.
  • the axis ⁇ in FIG. 5 is an axis indicating the numerical value after normalization of the value of the linear function
  • the axis ⁇ is an axis indicating the numerical value after normalization of the detection value of the sensor.
  • the waveform of the sensor data in one operation process is expressed using the detected value of the sensor and the value of the linear function at predetermined times ⁇ t 1 , ⁇ t 2 , ⁇ t 3 (see FIG. 4). That is, the sensor data is represented by a two-dimensional feature vector whose component is a value obtained by normalizing the detection value of the sensor and the value of the linear function.
  • the “normalization process” is a process in which the detection value of the sensor and the value of the linear function are divided by a representative value (average value, standard deviation, etc.) to be dimensionless and can be compared with each other. .
  • Each of the ⁇ marks (n exists) shown in FIG. 5 represents sensor data when a predetermined time ⁇ t 1 , a predetermined time ⁇ t 2 , or a predetermined time ⁇ t 3 (see FIG. 4) has elapsed from the operation process. .
  • one cluster J is illustrated, but actually, at least three clusters are generated corresponding to the predetermined times ⁇ t 1 , ⁇ t 2 , and ⁇ t 3 .
  • the cluster learning unit 141d (see FIG. 3) classifies the n feature vectors indicated by ⁇ marks into groups called clusters. Below, the case where a cluster is learned using the k average method which is non-hierarchical clustering is demonstrated as an example. First, the cluster learning unit 141d randomly assigns clusters to each feature vector, and calculates the center of each cluster (cluster center c: see FIG. 5) based on the assigned data.
  • the cluster center c is, for example, the center of gravity of a plurality of feature vectors belonging to the cluster.
  • the cluster learning unit 141d obtains the distance between the predetermined feature vector and each cluster center c, and reassigns the feature vector to the cluster having the smallest distance.
  • the cluster learning unit 141d executes such processing for all feature vectors.
  • the cluster learning unit 141d ends the cluster generation process when the cluster assignment does not change, and recalculates the cluster center c from the newly allocated cluster otherwise.
  • the cluster learning unit 141d calculates the coordinate value of the cluster center c (see FIG. 5) and the cluster radius r (see FIG. 5) for each cluster.
  • the cluster radius r is, for example, the average value of the distance between the cluster center c and the feature vector belonging to the cluster.
  • the method for calculating the cluster radius r is not limited to this.
  • a feature vector that is farthest from the cluster center c among the feature vectors belonging to the cluster may be specified, and the distance between the feature vector and the cluster center c may be used as the cluster radius r. In this way, the cluster learning unit 141d learns a cluster representing a normal waveform of sensor data.
  • cluster information that is a learning result of the cluster learning unit 141d is stored as a database.
  • the cluster information described above includes the cluster center c, the cluster radius r, and the machine facility 2 identification information.
  • the diagnosis unit 142 shown in FIG. 3 diagnoses the presence / absence of an abnormality sign of the machine facility 2 using the clusters learned by the learning unit 141.
  • the diagnosis unit 142 includes a diagnosis target data acquisition unit 142a, a value specification unit 142b, an abnormality measure calculation unit 142c, and a diagnosis unit 142d.
  • the diagnosis target data acquisition unit 142a acquires sensor data of a diagnosis target (that is, diagnosis target data) from the sensor data storage unit 13. That is, the diagnosis target data acquisition unit 142a acquires sensor data in the diagnosis period (see FIG. 2) after the learning period for each operation process repeated in the machine facility 2.
  • the value specifying unit 142b includes a sensor detection value when a predetermined time ⁇ t 1 , ⁇ t 2 , ⁇ t 3 has elapsed since the start of the driving process in the diagnosis target data acquired by the diagnosis target data acquisition unit 142a, and a primary value Identify function values.
  • Predetermined time Delta] t 1 described above, Delta] t 2, Delta] t 3 a predetermined time Delta] t 1 used in the learning unit 141, ⁇ t 2, ⁇ t 3 is substantially the same.
  • the anomaly measure calculation unit 142c includes the detection value of the sensor specified by the value specifying unit 142b, the value of the linear function, the cluster information (cluster center c, cluster radius r) stored in the learning result storage unit 141e, Based on the above, the abnormality measure u of the diagnosis target data is calculated. First, the abnormality measure calculation unit 142c performs normalization processing on the detected value specified by the value specifying unit 142b and the value of the linear function, and converts the result into a two-dimensional feature vector. Then, the abnormality measure calculation unit 142c refers to the cluster information stored in the learning result storage unit 141e, and identifies the cluster having the cluster center c closest to the diagnosis target data among the clusters. Then, the abnormality measure calculation unit 142c uses the distance d from the cluster center c of the identified cluster to the diagnosis target data (see FIG. 5) and the cluster radius r (see FIG. 5), and ) To calculate the abnormal measure u.
  • the diagnosis unit 142d diagnoses the presence or absence of an abnormality sign of the mechanical equipment 2 based on the abnormality measure u calculated by the abnormality measure calculation unit 142c.
  • the diagnosis unit 142d indicates that there is no abnormality sign for the mechanical equipment 2. Diagnose.
  • the diagnosis unit 142d diagnoses the mechanical equipment 2 as “abnormal sign”.
  • the diagnosis unit 142d stores the diagnosis result in the diagnosis result storage unit 15 in association with the diagnosis target data.
  • diagnosis unit 142d may diagnose the machine facility 2 as “abnormal sign”.
  • FIG. 6 is a flowchart showing the processing of the abnormality sign diagnosis system 1.
  • the abnormality sign diagnosis system 1 executes a learning process by the learning unit 141 (see FIG. 3).
  • FIG. 7 is a flowchart of the learning process executed by the learning unit 141.
  • the learning unit 141 sets the value n to 1. This value n is used to specify the detection value of the sensor and the value of the linear function when there are a plurality of the predetermined times (in the example shown in FIG. 4, three predetermined times ⁇ t 1 , ⁇ t 2 , ⁇ t 3 ). It is a natural number that is incremented (S1017) when selecting a thing.
  • step S1012 the learning unit 141 acquires learning target data from the sensor data storage unit 13 by the learning target data acquisition unit 141a. That is, the learning unit 141 uses the sensor data of the first operation process as the learning target among the sensor data acquired during the learning period (see FIG. 2) in which it is known that the machine facility 2 is operating normally. get.
  • the learning target data includes a signal indicating the start / end of the driving process in addition to the detection value of the sensor. Therefore, based on this signal, the time t01 when the operation process is started can be specified.
  • Learning means 141 in step S1015 includes a detection value p 1 specified in the step S1013, in association with the values q 1 of a linear function specified in step S1014, a predetermined time Delta] t 1, and stores the value storage unit 141c.
  • step S1016 the learning unit 141 determines whether or not the value n has reached the predetermined value N.
  • the predetermined value N is the number of the predetermined time ⁇ t n used for specifying the detection value of the sensor and the linear function (in the present embodiment, three of the predetermined time ⁇ t 1 , ⁇ t 2 , ⁇ t 3 ).
  • the learning unit 141 increments the value of n in step S1017 and returns to the process of step S1012. Then, the learning unit 141, another predetermined time Delta] t 2, and the same applies to Delta] t 3 (see FIG. 4), it identifies the value of the detected value and a linear function of the sensor.
  • step S1018 the learning unit 141 determines whether or not there is another operation process in which the detection value of the sensor and the value of the linear function are not specified in the learning period (see FIG. 2).
  • step S1018 If there is another operation process in step S1018 (S1018: Yes), the process of the learning unit 141 returns to step S1011. That is, the learning unit 141 also specifies the detection value and the value of the linear function when the predetermined time ⁇ t 1 , ⁇ t 2 , ⁇ t 3 has elapsed from the start of the driving process for other driving processes. For example, since the second operation process is started at time t02 shown in FIG. 4, the detected value of the sensor and the primary value when a predetermined time ⁇ t 1 , ⁇ t 2 , ⁇ t 3 has elapsed with reference to this time t02. The function value is specified.
  • step S1018 when there is no other driving process in which the detection value of the sensor and the value of the linear function are not specified (S1018: No), the process of the learning unit 141 proceeds to step S1019.
  • step S1019 the learning unit 141 learns a cluster based on the data stored in the value storage unit 141c. That is, as described above, the learning unit 141 converts the detected value of the sensor and the value of the linear function into a two-dimensional feature vector and clusters each feature vector to represent a normal waveform of the detected value of the sensor. Learn the cluster (normal model).
  • step S1020 the learning unit 141 stores the result learned in step S1019 in the learning result storage unit 141e, and ends the series of learning processes (END).
  • step S102 the abnormality sign diagnosis system 1 executes the diagnosis process by the diagnosis unit 142 (see FIG. 3).
  • FIG. 8 is a flowchart of the diagnostic process executed by the diagnostic unit 142.
  • the diagnostic unit 142 sets the value n to 1. This value n is the same as the value n described in step S1011 of FIG.
  • the diagnosis unit 142 acquires diagnosis target data from the sensor data storage unit 13 by the diagnosis target data acquisition unit 142a. In other words, the diagnosis unit 142 acquires sensor data of the first driving process among the sensor data acquired in the diagnosis period (see FIG. 2) after the learning period as a diagnosis target.
  • the diagnosis unit 142 specifies the value of the linear function by substituting the predetermined time ⁇ t 1 for the linear function by the value specifying unit 142b.
  • the diagnosis unit 142 calculates the abnormality measure u of the diagnosis target data by using the abnormality measure calculation unit 142c. That is, in step S1025, the diagnosis unit 142 first normalizes the detection value specified in step S1023 and the value of the linear function specified in step S1024, and generates a two-dimensional feature vector having each value as a component. The diagnosis unit 142 calculates the abnormality measure u of the diagnosis target data using the above-described (Equation 1) based on the feature vector and the cluster information stored in the learning result storage unit 141e.
  • step S1026 the diagnosis unit 142 determines whether or not the value n has reached the predetermined value N.
  • the predetermined value N is the number of predetermined times ⁇ t n (three in this embodiment), and is the same as the predetermined value N (see FIG. 7) used in the learning process.
  • the diagnosis unit 142 increments the value of n in step S1027 and returns to the process of step S1022.
  • step S1028 the diagnosis unit 142 uses the diagnosis unit 142d to diagnose the presence or absence of an abnormality sign of the machine facility 2. That is, the diagnosis unit 142 diagnoses the presence / absence of an abnormality sign of the mechanical facility 2 based on the abnormality measure u calculated in step S1025.
  • step S1029 the diagnosis unit 142 stores the diagnosis result in the diagnosis result storage unit 16, and ends the series of diagnosis processing (END).
  • the diagnosis unit 142 repeats such a diagnosis process for each operation process included in the diagnosis period (see FIG. 2).
  • the information stored in the diagnosis result storage unit 16 is displayed on the display unit 18 (see FIG. 1) by the display control unit 17 (see FIG. 1).
  • FIG. 9A is an explanatory diagram showing a waveform of learning target data and a straight line L of a linear function.
  • the waveform of the detection value shown in FIG. 9A is learning target data (detection value) acquired in one driving process included in the learning period.
  • learning target data detection value
  • a two-dimensional feature having, as components, values obtained by normalizing the detection value p 1 of the sensor when the predetermined time ⁇ t 1 has elapsed from the driving process and the value q 1 of the linear function (straight line L).
  • a vector is generated.
  • feature vectors are also generated for other predetermined times ⁇ t 2 and ⁇ t 3 , and feature vectors are also generated for other driving processes included in the learning period. Based on these feature vectors, clusters J 1 , J 2 and J 3 (see FIG. 10) described below are learned.
  • FIG. 10 is an explanatory diagram of clusters J 1 , J 2 , J 3 as learning results, and feature vectors v 1A , v 2A , v 3A of diagnosis target data.
  • the horizontal axis ⁇ in FIG. 10 is a numerical value after normalization of the value of the linear function
  • the vertical axis ⁇ is a numerical value after normalization of the detection value of the sensor.
  • a cluster J 1 shown in FIG. 10 is a cluster based on the detection value of the sensor when the predetermined time ⁇ t 1 (see FIG. 9A) has elapsed from the start of the operation process and the value of the linear function, and the cluster center c 1 and the cluster radius r 1 .
  • the cluster J 2 is a cluster corresponding to the predetermined time ⁇ t 2 (see FIG. 9A)
  • the cluster J 3 is a cluster corresponding to the predetermined time ⁇ t 3 (see FIG. 9A).
  • a plurality of clusters may be learned in one predetermined time ⁇ t n .
  • FIG. 9B is an explanatory diagram illustrating a waveform of diagnosis target data and a straight line L of a linear function when an abnormality sign is generated in the mechanical facility 2.
  • the maximum value / minimum value of the detected value in one operation process is the learning target data when the mechanical equipment 2 is operating normally (see FIG. 9A).
  • the waveform of the detected value is different from that in the normal state.
  • the diagnosis target data shown in FIG. 9B may be erroneously diagnosed as “no abnormality sign”. .
  • the feature vector specified by the detected value of the sensor and the value of the linear function when the predetermined time ⁇ t 1 , ⁇ t 2 , ⁇ t 3 has elapsed since the start of the driving process is included in the cluster.
  • the presence / absence of an abnormality sign of the mechanical equipment 2 is diagnosed based on whether or not it exists. For example, based on the detected value p 1A at the predetermined time ⁇ t 1 and the linear function value q 1 (value ⁇ 1 after normalization: see FIG. 10) shown in FIG. A feature vector v 1A shown in FIG. Since the feature vector v 1A is not included in the cluster J 1 closest to the feature vector v 1A , the diagnosis unit 142d diagnoses “abnormal sign”.
  • a feature vector v 2A corresponding to a detection value or the like at a predetermined time ⁇ t 2 or a feature vector v 3A corresponding to a detection value or the like at a predetermined time ⁇ t 3 (see FIG. 9B). The same applies to.
  • FIG. 11A is an explanatory diagram showing another example of a waveform of learning target data and a straight line L of a linear function.
  • the detection value of the sensor fluctuates in a sine wave during the learning period when the mechanical equipment 2 is operating normally.
  • two predetermined times ⁇ t 4 and ⁇ t 5 that give the maximum point of the waveform of the detection value are set.
  • a cluster (normal model) representing a normal waveform of the sensor detection value is learned based on the sensor detection value and the value of the linear function when the predetermined times ⁇ t 4 and ⁇ t 5 have elapsed from the start of the operation process.
  • FIG. 11A the detection value of the sensor fluctuates in a sine wave during the learning period when the mechanical equipment 2 is operating normally.
  • two predetermined times ⁇ t 4 and ⁇ t 5 that give the maximum point of the waveform of the detection value are set.
  • a cluster (normal model) representing a normal waveform of the sensor detection value is learned based on the sensor detection value and the value of the linear
  • the detection values p at the predetermined times ⁇ t 4 and ⁇ t 5 are substantially the same, but the linear function values q 4 and q 5 are different (q 4 ⁇ q 5 ).
  • different clusters J 4 and J 5 are learned corresponding to the predetermined times ⁇ t 4 and ⁇ t 5 .
  • FIG. 11B is an explanatory diagram showing a waveform of diagnosis target data and a straight line L of a linear function when an abnormality sign is generated.
  • the waveform amplitude and maximum / minimum values of the diagnosis target data are the same as in the normal state, but the waveform cycle is shorter than that in the normal state.
  • the detection value p 5A at the predetermined time ⁇ t 5 is significantly smaller than the detection value p at the normal time.
  • FIG. 12 is an explanatory diagram of clusters J 4 and J 5 as learning results and feature vectors v 4A and v 5A of diagnosis target data.
  • the horizontal axis ⁇ and the vertical axis ⁇ are the same as those in FIG.
  • Cluster J 4 shown in FIG. 12 the detection value of the sensor when a predetermined time Delta] t 4 from the start of the operation process (which see FIG. 11 (a)) has elapsed, and a cluster based on the values of the linear function.
  • Cluster J 5 the detection value of the sensor when a predetermined time Delta] t 5 from the start of the operation process (which see FIG. 11 (a)) has elapsed, and a cluster based on a linear function.
  • the detected value p 5A at the predetermined time ⁇ t 5 (see FIG. 11B, after normalization, the value ⁇ 5A : see FIG. 12) is significantly smaller than the detected value p at normal time. . Therefore, the feature vector v 5A specified by the detected value and the linear function value at the predetermined time ⁇ t 5 is located outside the nearest cluster J 5 . As a result, the diagnosis unit 142d diagnoses “abnormal sign”.
  • the anomaly measure u detection value p 5A at a given time Delta] t 5 can be calculated on the basis of the cluster J 5 corresponding to the predetermined time Delta] t 5. Thereby, it is possible to diagnose with high accuracy whether or not the waveform of the detection value of the diagnosis target data is abnormal (that is, whether there is a sign of abnormality of the mechanical equipment 2).
  • the detection value when the predetermined time ⁇ t n has elapsed from the start of the driving process and the value of the monotonically increasing linear function are converted into a two-dimensional feature vector, and based on this feature vector, A normal waveform of the detection value of the sensor can be learned as a cluster.
  • a feature vector is generated for the diagnosis target data, and whether or not the waveform is abnormal based on the learning result cluster (that is, whether or not an abnormal symptom has occurred in the mechanical equipment 2). Can be diagnosed with high accuracy.
  • the abnormality sign diagnosis system 1 has been described with the embodiment.
  • the present invention is not limited to these descriptions, and various modifications can be made.
  • the present invention is not limited to this. That is, the number of the predetermined time ⁇ t n may be one, or may be four or more. do it.
  • a linear function that monotonously increases with the passage of time has been described.
  • the present invention is not limited to this.
  • a linear function that monotonously decreases with the passage of time may be used, or a function of a curve that monotonously increases or decreases with the passage of time may be used.
  • a predetermined function that outputs different values over time may be used.
  • the present invention is not limited to this. That is, in the time-series waveform of the sensor data to be learned, waveform data including sensor detection values and linear function values at predetermined times ⁇ t 1 , ⁇ t 2 , and ⁇ t 3 is converted into six-dimensional features by the learning unit 141. You may make it learn a cluster based on the feature vector obtained for every driving process, converting into a vector.
  • waveform data including sensor detection values and linear function values at predetermined times ⁇ t 1 , ⁇ t 2 , ⁇ t 3 is acquired by the diagnostic unit 142, Based on the comparison between the waveform data and the normal model, the presence or absence of an abnormality sign of the mechanical equipment 2 may be diagnosed.
  • the method for calculating the abnormality measure u is the same as in the embodiment.
  • the waveform of the detection value of the sensor in one operation process can be expressed as a six-dimensional feature vector, so the presence or absence of an abnormality in the waveform (that is, an abnormal sign in the mechanical equipment 2) can be diagnosed with high accuracy. it can.
  • the present invention is not limited to this. That is, based on sensor data acquired from a plurality of sensors, the presence or absence of an abnormality sign of the mechanical equipment 2 may be diagnosed.
  • a multidimensional feature vector is generated based on the detection value of each sensor when a predetermined time has elapsed from the start of the operation process and the value of the linear function. You just have to do it. Note that the number of dimensions of the feature vector is (the number of sensors) +1. Thus, by using a plurality of sensors, the user can grasp what abnormality has occurred in which part of the mechanical equipment 2.
  • the present invention is not limited to this. That is, it is only necessary to know the start / end of the operation process of the mechanical equipment 2, and the operation process may be performed with a predetermined downtime.
  • the present invention is not limited to this. That is, the sensor data diagnosed as “no abnormality sign” by the diagnosis unit 142d is added as learning target data, and the cluster center c and the cluster radius r are recalculated based on the learning target data after the addition (that is, the cluster is calculated). (Learn again).
  • the cluster center c and the cluster radius r can be updated to more appropriate values.
  • every time learning target data is added the oldest of the existing learning target data may be excluded from the learning target. As a result, even when the mechanical equipment 2 changes with time due to a seasonal change or the like, the cluster can be updated following this change, and as a result, the diagnostic accuracy of the abnormal sign can be improved.
  • this invention is not limited to what has all the structures demonstrated by each embodiment. Further, a part of the configuration of one embodiment can be replaced with the configuration of the other embodiment, and the configuration of the other embodiment can be added to the configuration of the one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • each of the above-described configurations may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tapes, and files that realize each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

異常予兆診断システムは、センサデータを取得するセンサデータ取得手段と、運転プロセスが開始されてから所定時間が経過したときのセンサの検出値を特定するとともに、時間の経過に伴って時間の経過に対しそれぞれ異なる値を出力する所定の関数を用いて、運転プロセスが開始されてから前記所定時間が経過したときの値を特定し、特定した検出値及び関数の値に基づいて、波形の正常モデルを学習する学習手段と、診断対象のセンサデータの時系列的な波形において、運転プロセスが開始されてから前記所定時間が経過したときのセンサの検出値及び関数の値と、正常モデルと、の比較に基づいて、機械設備の異常予兆の有無を診断する診断手段と、を備えることにより、機械設備の異常予兆の有無を高精度で診断できる。

Description

異常予兆診断システム及び異常予兆診断方法
 本発明は、機械設備の異常予兆の有無を診断する異常予兆診断システム等に関する。
 機械設備に設置されたセンサの検出値等に基づいて、機械設備の異常予兆の有無を診断する技術が知られている。
 例えば、特許文献1には、機械設備の運転スケジュールを複数の時間帯に分割し、各時間帯ごとに時系列データをクラスタリングすることによって、機械設備の正常範囲を示すクラスタを学習し、このクラスタに基づいて機械設備の異常予兆の有無を診断する異常予兆診断装置について記載されている。
 また、特許文献2には、監視対象プラントの温度分布を示す画像データを15分間隔で学習データとして取得し、これらの学習データに基づき、ニューラルネットワークを用いて温度変化の正常パターンを学習し、さらに、前記した正常パターンに基づいて監視対象プラントの異常の有無を識別するプラント監視装置について記載されている。
特許5684941号公報 特開平6-259678号公報
 特許文献1に記載の技術では、前記した複数の時間帯に含まれるひとつひとつの時間帯については、クラスタが一括で学習される。したがって、例えば、ひとつの時間帯において所定範囲内の大きさで時系列データが急激に変動する波形でも、また、前記した所定範囲内の大きさで時系列データが緩やかに変動する波形でも、これらを区別することなく「異常予兆なし」と診断する可能性がある。
 しかしながら、特に化学プラントや製薬プラントでは、時系列データの大きさに加えて、その波形も重要視されている。時系列データの波形には、化学反応の過程や反応速度が反映されるからである。前記した2種類(急激な変動、緩やかな変動)の波形の一方が「異常予兆なし」であるならば、他方は「異常予兆あり」と診断されるべきである。したがって、特許文献1に記載の技術は、診断精度をさらに高める余地がある。
 また、特許文献2に記載の技術では、前記したように、15分間隔で取得される画像データに基づき、正常パターンが学習される。しかしながら、監視対象プラントの温度分布は時々刻々と変動しており、その時系列的な波形を正常パターンに正確に反映させようとすると、ニューラルネットワークにおける計算量が膨大になる。したがって、特許文献2に記載の技術についても、診断精度をさらに高める余地がある。
 そこで、本発明は、機械設備の異常予兆の有無を高精度で診断できる異常予兆診断システム等を提供することを課題とする。
 前記課題を解決するために、本発明に係る異常予兆診断システムは、所定の運転プロセスが繰り返される機械設備に設置されたセンサの検出値を含むセンサデータを取得するセンサデータ取得手段と、前記機械設備が正常であることが既知である期間のセンサデータの時系列的な波形において、前記運転プロセスが開始されてから所定時間が経過したときの前記センサの検出値を特定するとともに、前記運転プロセスが開始されてからの時間の経過に伴って時間の経過に対しそれぞれ異なる値を出力する所定の関数を用いて、前記運転プロセスが開始されてから前記所定時間が経過したときの値を特定し、特定した前記検出値及び前記関数の値に基づいて、前記波形の正常モデルを学習する学習手段と、診断対象のセンサデータの時系列的な波形において、前記運転プロセスが開始されてから前記所定時間が経過したときの前記センサの検出値及び前記関数の値と、前記正常モデルと、の比較に基づいて、機械設備の異常予兆の有無を診断する診断手段と、を備えることを特徴とする。
 本発明によれば、機械設備の異常予兆の有無を高精度で診断する異常予兆診断システム等を提供できる。
本発明の一実施形態に係る異常予兆診断システムの構成図である。 センサの検出値の変化を示す波形図である。 異常予兆診断システムが備えるデータマイニング手段の構成図である。 センサの検出値、及び一次関数で表される直線に関する説明図である。 クラスタ学習部によって学習されるクラスタの説明図である。 異常予兆診断システムの処理を示すフローチャートである。 学習手段が実行する学習処理のフローチャートである。 診断手段が実行する診断処理のフローチャートである。 (a)は学習対象データの波形、及び一次関数の直線を示す説明図であり、(b)は機械設備の異常予兆発生時における診断対象データの波形、及び一次関数の直線を示す説明図である。 学習結果であるクラスタ、及び診断対象データの特徴ベクトルの説明図である。 (a)は学習対象データの波形の別の例、及び一次関数の直線を示す説明図であり、(b)は機械設備の異常予兆発生時における診断対象データの波形、及び一次関数の直線を示す説明図である。 学習結果であるクラスタ、及び診断対象データの特徴ベクトルの説明図である。
≪実施形態≫
 図1は、本実施形態に係る異常予兆診断システム1の構成図である。
 異常予兆診断システム1は、機械設備2に設置されたセンサ(図示せず)の検出値を含むセンサデータに基づいて、機械設備2の異常予兆の有無を診断するシステムである。前記した「異常予兆」とは、機械設備2の異常が発生する前触れであり、「異常予兆診断」とは、異常予兆の有無を診断することである。
 以下では、異常予兆診断システム1の説明に先立って、機械設備2について簡単に説明する。機械設備2は、例えば、化学プラントであり、図示はしないが、反応器や、この反応器に化学物質を投入する装置を備えている。そして、機械設備2において所定の「運転プロセス」が繰り返されることで、各工程において所定の化学物質が生成されるようになっている。なお、機械設備2の種類はこれに限定されず、製薬プラント、生産ライン、ガスエンジン、ガスタービン、発電設備、医療設備、通信設備等であってもよい。
 機械設備2には、図示はしないが、所定の物理量(温度、圧力、流量、電流、電圧等)を検出するセンサが設置されている。センサによって検出された物理量は、センサデータとして、ネットワークNを介して異常予兆診断システム1に送信される。なお、センサデータには、センサの検出値、物理量を検出した日付・時刻の他に、機械設備2の識別情報、センサの識別情報、機械設備2において繰り返される「運転プロセス」の開始・終了を示す信号も含まれる。
 以下では、一例として、機械設備2に設置されている複数のセンサのうち、機械設備2の異常予兆が敏感に反映される1つのセンサの検出値に基づいて、機械設備2の異常予兆の有無を診断する構成について説明する。
 図2は、センサの検出値の変化を示す波形図である。なお、図2の横軸は時刻であり、縦軸は、機械設備2に設置されているセンサ(図示せず)の検出値である。
 図2に示す例では、時刻t01から時刻t02の時間帯で、機械設備2において1回目の運転プロセスが実行され、時刻t02から時刻t03の時間帯で2回目の運転プロセスが実行されている。このように所定の運転プロセスが繰り返されるため、機械設備2が正常であれば、各運転プロセスにおいてセンサの検出値が同様の(つまり、非常に似通った)波形になる。
 本実施形態では、機械設備2が正常であることが既知である所定の学習期間(図2参照)に取得したセンサデータに基づき、センサデータの時系列的な波形(運転プロセスごとの波形)を正常モデルとして学習し、この正常モデルに基づいて、機械設備2の異常予兆の有無を判定するようにしている。なお、正常モデルの詳細については後記する。
<異常予兆診断システムの構成>
 図1に示すように、異常予兆診断システム1は、通信手段11と、センサデータ取得手段12と、センサデータ記憶手段13と、データマイニング手段14と、関数記憶手段15と、診断結果記憶手段16と、表示制御手段17と、表示手段18と、を備えている。
 通信手段11は、機械設備2からネットワークNを介して、センサデータを含む情報を受信するものである。通信手段11として、例えば、TCP/IPの通信プロトコルに従って情報を受信するルータを用いることができる。
 センサデータ取得手段12は、ネットワークNを介して通信手段11が受信した情報に含まれるセンサデータを取得し、取得したセンサデータをセンサデータ記憶手段13に格納する。
 センサデータ記憶手段13には、センサデータ取得手段12によって取得されたセンサデータが、例えば、データベースとして格納されている。なお、センサデータ記憶手段13として、磁気ディスク装置、光ディスク装置、半導体記憶装置等を用いることができる。
 データマイニング手段14は、統計的なデータ分類手法であるデータマイニングによって、センサの検出値(つまり、センサデータ)の正常な波形を正常モデルとして学習し、この正常モデルに基づいて、機械設備2の異常予兆の有無を診断する。なお、データマイニング手段14の詳細については後記する。
 関数記憶手段15には、前記した運転プロセスの開始時(図4に示す時刻t01,t02,…)からの時間の経過に伴って単調増加する一次関数(図4に示す直線L)が格納されている。前記した一次関数は、データマイニング手段14において用いられる。
 診断結果記憶手段16には、データマイニング手段14の診断結果が格納されている。この診断結果には、機械設備2の識別情報、及び異常予兆の有無が含まれる。
 表示制御手段17は、データマイニング手段14の診断結果を表示するための制御信号を表示手段18に出力する。例えば、表示制御手段17は、各機械設備2の名称を行とし、診断日の日付を列として、診断結果をマトリクス形式で表示手段18に表示する。
 表示手段18は、例えば、液晶ディスプレイであり、表示制御手段17から入力される制御信号に従って診断結果を表示する。
 図3は、異常予兆診断システム1が備えるデータマイニング手段14の構成図である。
 図3に示すように、データマイニング手段14は、学習手段141と、診断手段142と、を備えている。
 学習手段141は、統計的なデータ分類手法の一つであるクラスタリングによって、センサの検出値の正常な波形を表すクラスタ(正常モデル)を学習する。前記したクラスタとは、多次元ベクトル空間においてクラスタ中心c(図5参照)及びクラスタ半径r(図5参照)で特定される領域であり、所定の学習期間(図2参照)に取得したセンサデータに基づいて学習される。
 図3に示すように、学習手段141は、学習対象データ取得部141aと、値特定部141bと、値記憶部141cと、クラスタ学習部141dと、学習結果記憶部141eと、を備えている。
 学習対象データ取得部141aは、学習対象のセンサデータ(つまり、学習対象データ)を、センサデータ記憶手段13から取得する。すなわち、学習対象データ取得部141aは、機械設備2が正常であることが既知である学習期間に取得されたセンサデータを、機械設備2で繰り返される運転プロセスごとに取得する。
 値特定部141bは、学習対象データ取得部141aによって取得された学習対象データにおいて、運転プロセスが開始されてからの長さの異なる所定時間Δt,Δt,Δt(図4参照)が経過したときのセンサの検出値、及び一次関数の値をそれぞれ特定する。前記した所定時間Δt,Δt,Δtは、機械設備2の異常予兆の発生が、これらの所定時間Δt,Δt,Δtにおけるセンサの検出値に敏感に反映されるように、事前に設定されている。
 図4は、センサの検出値、及び一次関数で表される直線Lに関する説明図である。
 図4に示すように、機械設備2において1回目、2回目、…の運転プロセスが繰り返され、それに伴ってセンサの検出値が変動する。図4に示す直線Lは、前記したように、運転プロセスの開始時(時刻t01、時刻t02、…)からの時間の経過に伴って増大する直線であり、一次関数で表される。値特定部141b(図3参照)は、例えば、運転プロセスの開始時から所定時間Δtが経過したときのセンサの検出値p(図4参照)と、直線Lの値q(図4参照)と、を特定する。所定時間Δt,Δtについても同様にして、値特定部141bは、センサの検出値及び一次関数の値をそれぞれ特定する。
 図3に示す値記憶部141cには、値特定部141bによって特定された検出値及び一次関数の値が、前記した所定時間Δt,Δt,Δtに対応付けて格納されている。なお、学習期間においてn回の運転プロセスが繰り返された場合、値記憶部141cには、(3×n)組の検出値及び一次関数の値が格納される。
 クラスタ学習部141dは、値記憶部141cに格納されている情報に基づいて、センサの検出値の正常な波形を表すクラスタ(正常モデル)を学習する。
 図5は、クラスタ学習部141dによって学習されるクラスタJの説明図である。なお、図5の軸αは、一次関数の値の正規化後の数値を示す軸であり、軸βは、センサの検出値の正規化後の数値を示す軸である。一回の運転プロセスにおけるセンサデータの波形は、所定時間Δt,Δt,Δt(図4参照)でのセンサの検出値、及び一次関数の値を用いて表される。つまり、センサデータは、センサの検出値及び一次関数の値に正規化処理を施した値を成分とする2次元の特徴ベクトルで表される。ここで「正規化処理」とは、センサの検出値及び一次関数の値を代表値(平均値、標準偏差等)で除算するなどして無次元量化して、互いに比較可能とする処理である。
 図5に示す●印(n個存在する)のひとつひとつが、運転プロセスから所定時間Δt、所定時間Δt、又は所定時間Δt(図4参照)が経過したときのセンサデータを表している。なお、図5では、一つのクラスタJを図示しているが、実際には、所定時間Δt,Δt,Δtに対応して、少なくとも3個のクラスタが生成される。
 クラスタ学習部141d(図3参照)は、●印で示すn個の特徴ベクトルを、クラスタと呼ばれるグループに分類する。以下では、一例として、非階層的クラスタリングであるk平均法を用いてクラスタを学習する場合について説明する。クラスタ学習部141dは、まず、各特徴ベクトルに対してランダムにクラスタを割り振り、割り振ったデータに基づいて各クラスタの中心(クラスタ中心c:図5参照)を算出する。クラスタ中心cは、例えば、クラスタに属する複数の特徴ベクトルの重心である。
 次に、クラスタ学習部141dは、所定の特徴ベクトルと各クラスタ中心cとの距離を求め、この距離が最も小さくなるクラスタに当該特徴ベクトルを割り当て直す。クラスタ学習部141dは、このような処理を全ての特徴ベクトルについて実行する。そして、クラスタ学習部141dは、クラスタの割り当てが変化しなかった場合にはクラスタの生成処理を終了し、それ以外の場合には、新しく割り振られたクラスタからクラスタ中心cを再計算する。
 そして、クラスタ学習部141dは、各クラスタについてクラスタ中心c(図5参照)の座標値と、クラスタ半径r(図5参照)と、を算出する。クラスタ半径rは、例えば、クラスタ中心cと、そのクラスタに属する特徴ベクトルと、の距離の平均値である。なお、クラスタ半径rの算出方法はこれに限定されない。例えば、クラスタに属する特徴ベクトルのうちクラスタ中心cから最も離れている特徴ベクトルを特定し、この特徴ベクトルとクラスタ中心cとの距離をクラスタ半径rとしてもよい。このようにしてクラスタ学習部141dは、センサデータの正常な波形を表すクラスタを学習する。
 図3に示す学習結果記憶部141eには、クラスタ学習部141dの学習結果であるクラスタ情報が、データベースとして格納されている。前記したクラスタ情報には、クラスタ中心c、クラスタ半径r、及び機械設備2の識別情報が含まれる。
 図3に示す診断手段142は、学習手段141によって学習されたクラスタを用いて、機械設備2の異常予兆の有無を診断する。診断手段142は、診断対象データ取得部142aと、値特定部142bと、異常測度算出部142cと、診断部142dと、を備えている。
 診断対象データ取得部142aは、診断対象のセンサデータ(つまり、診断対象データ)をセンサデータ記憶手段13から取得する。すなわち、診断対象データ取得部142aは、学習期間後の診断期間(図2参照)におけるセンサデータを、機械設備2で繰り返される運転プロセスごとに取得する。
 値特定部142bは、診断対象データ取得部142aによって取得された診断対象データにおいて、運転プロセスが開始されてから所定時間Δt,Δt,Δtが経過したときのセンサの検出値、及び一次関数の値を特定する。前記した所定時間Δt,Δt,Δtは、学習手段141で用いられる所定時間Δt,Δt,Δtと略同一である。また、診断手段142で用いる一次関数(y=aΔt+b)についても、学習手段141で用いる一次関数(y=aΔt+b)と略同一である。
 異常測度算出部142cは、値特定部142bによって特定されたセンサの検出値、及び一次関数の値と、学習結果記憶部141eに格納されているクラスタ情報(クラスタ中心c、クラスタ半径r)と、に基づいて、診断対象データの異常測度uを算出する。まず、異常測度算出部142cは、値特定部142bによって特定された検出値、及び一次関数の値に正規化処理を施して2次元の特徴ベクトルに変換する。そして、異常測度算出部142cは、学習結果記憶部141eに格納されているクラスタ情報を参照し、各クラスタのうち、診断対象データに最も近いクラスタ中心cを有するものを特定する。そして、異常測度算出部142cは、特定したクラスタのクラスタ中心cから診断対象データまでの距離d(図5参照)と、クラスタ半径r(図5参照)と、を用いて、以下の(数式1)に基づき異常測度uを算出する。
 u=d/r・・・(数式1)
 診断部142dは、異常測度算出部142cによって算出される異常測度uに基づいて、機械設備2の異常予兆の有無を診断する。その一例を挙げると、異常測度u≦1である場合、診断対象データがクラスタ内(つまり、正常範囲内)に存在しているため、診断部142dは、機械設備2について「異常予兆なし」と診断する。一方、異常測度u>1である場合、診断対象データがクラスタ外(つまり、正常範囲外)に存在しているため、診断部142dは、機械設備2について「異常予兆あり」と診断する。診断部142dは、その診断結果を診断対象データに対応付けて、診断結果記憶手段15に格納する。
 なお、例えば、診断期間において異常測度uが所定閾値を超えた診断対象データが所定個数以上存在する場合、診断部142dによって、機械設備2に「異常予兆あり」と診断するようにしてもよい。
<異常予兆診断システムの動作>
 図6は、異常予兆診断システム1の処理を示すフローチャートである。
 ステップS101において異常予兆診断システム1は、学習手段141(図3参照)によって、学習処理を実行する。
 図7は、学習手段141が実行する学習処理のフローチャートである。
 ステップS1011において学習手段141は、値nを1に設定する。この値nは、前記した所定時間(図4に示す例では、3つの所定時間Δt,Δt,Δt)が複数存在する場合において、センサの検出値及び一次関数の値の特定に用いるものを選択する際にインクリメント(S1017)される自然数である。
 ステップS1012において学習手段141は、学習対象データ取得部141aによって、センサデータ記憶手段13から学習対象データを取得する。つまり、学習手段141は、機械設備2が正常に稼動していることが既知である学習期間(図2参照)に取得されたセンサデータのうち、1回目の運転プロセスのセンサデータを学習対象として取得する。
 ステップS1013において学習手段141は、値特定部141bによって、運転プロセスの開始時(図4に示す時刻t01)から所定時間Δtが経過したときのセンサの検出値pを特定する。前記したように、学習対象データには、センサの検出値の他、運転プロセスの開始・終了を示す信号も含まれている。したがって、この信号に基づき、運転プロセスが開始された時刻t01を特定できる。
 ステップS1014において学習手段141は、値特定部141bによって、所定時間Δtにおける一次関数の値q1を特定する(図4参照)。つまり、学習手段141は、所定時間Δtを一次関数:y=aΔt+bに代入することによって、一次関数の値(図4では、y=q1)を特定する。
 ステップS1015において学習手段141は、ステップS1013で特定した検出値p1と、ステップS1014で特定した一次関数の値q1と、を所定時間Δtに対応付けて、値記憶部141cに格納する。
 ステップS1016において学習手段141は、値nが所定値Nに達している否かを判定する。この所定値Nは、センサの検出値及び一次関数の特定に使用する所定時間Δtの個数(本実施形態では、所定時間Δt,Δt,Δtの3個)である。
 値nが所定値Nに達していない場合(S1016:No)、ステップS1017において学習手段141は、nの値をインクリメントし、ステップS1012の処理に戻る。そして、学習手段141は、他の所定時間Δt,Δt(図4参照)についても同様にして、センサの検出値及び一次関数の値を特定する。
 一方、ステップS1016において値nが所定値Nに達している場合(S1016:Yes)、学習手段141の処理はステップS1018に進む。
 ステップS1018において学習手段141は、学習期間(図2参照)において、センサの検出値及び一次関数の値が特定されていない他の運転プロセスが存在するか否かを判定する。
 ステップS1018において他の運転プロセスが存在する場合(S1018:Yes)、学習手段141の処理はステップS1011に戻る。つまり、学習手段141は、他の運転プロセスについても、運転プロセスの開始時から所定時間Δt,Δt,Δtが経過したときの検出値及び一次関数の値を特定する。例えば、2回目の運転プロセスは、図4に示す時刻t02から開始されているため、この時刻t02を基準として、所定時間Δt,Δt,Δtが経過したときのセンサの検出値及び一次関数の値が特定される。
 一方、ステップS1018において、センサの検出値及び一次関数の値が特定されていない他の運転プロセスが存在しない場合(S1018:No)、学習手段141の処理はステップS1019に進む。
 ステップS1019において学習手段141は、値記憶部141cに格納されているデータに基づいて、クラスタを学習する。つまり、学習手段141は、前記したように、センサの検出値及び一次関数の値を2次元の特徴ベクトルに変換し、各特徴ベクトルをクラスタリングすることによって、センサの検出値の正常な波形を表すクラスタ(正常モデル)を学習する。
 ステップS1020において学習手段141は、ステップS1019で学習した結果を学習結果記憶部141eに格納して、一連の学習処理を終了する(END)。
 図6に示すステップS101の学習処理を行ったのち、ステップS102において異常予兆診断システム1は、診断手段142(図3参照)によって、診断処理を実行する。
 図8は、診断手段142が実行する診断処理のフローチャートである。
 ステップS1021において診断手段142は、値nを1に設定する。この値nは、図7のステップS1011で説明した値nと同様である。
 ステップS1022において診断手段142は、診断対象データ取得部142aによって、センサデータ記憶手段13から診断対象データを取得する。つまり、診断手段142は、学習期間後の診断期間(図2参照)に取得されたセンサデータのうち、1回目の運転プロセスのセンサデータを診断対象として取得する。
 ステップS1023において診断手段142は、値特定部142bによって、運転プロセスの開始時から所定時間Δtが経過したときのセンサの検出値を特定する。
 ステップS1024において診断手段142は、値特定部142bによって、所定時間Δtを一次関数に代入して、一次関数の値を特定する。
 ステップS1025において診断手段142は、異常測度算出部142cによって、診断対象データの異常測度uを算出する。すなわち、ステップS1025において診断手段142は、まず、ステップS1023で特定した検出値、及びステップS1024で特定した一次関数の値を正規化し、各値を成分とする2次元の特徴ベクトルを生成する。そして、診断手段142は、この特徴ベクトルと、学習結果記憶部141eに格納されているクラスタ情報と、に基づき、前記した(数式1)を用いて診断対象データの異常測度uを算出する。
 ステップS1026において診断手段142は、値nが所定値Nに達している否かを判定する。この所定値Nは、所定時間Δtの個数(本実施形態では、3個)であり、学習処理で用いた所定値N(図7参照)と同様である。値nが所定値Nに達していない場合(S1026:No)、診断手段142は、ステップS1027においてnの値をインクリメントし、ステップS1022の処理に戻る。
 一方、ステップS1026において値nが所定値Nに達している場合(S1026:Yes)、診断手段142の処理はステップS1028に進む。
 ステップS1028において診断手段142は、診断部142dによって、機械設備2の異常予兆の有無を診断する。つまり、診断手段142は、ステップS1025で算出した異常測度uに基づいて、機械設備2の異常予兆の有無を診断する。
 ステップS1029において診断手段142は、診断結果を診断結果記憶手段16に格納し、一連の診断処理を終了する(END)。診断手段142は、このような診断処理を、診断期間(図2参照)に含まれる運転プロセスごとに繰り返す。
 なお、診断結果記憶手段16に格納された情報は、表示制御手段17(図1参照)によって、表示手段18(図1参照)に表示される。
 図9(a)は、学習対象データの波形、及び一次関数の直線Lを示す説明図である。
 図9(a)に示す検出値の波形は、学習期間に含まれる1回分の運転プロセスにおいて取得された学習対象データ(検出値)である。前記したように、運転プロセスから所定時間Δtが経過したときのセンサの検出値pと、一次関数(直線L)の値qと、を正規化した値を成分とする2次元の特徴ベクトルが生成される。また、他の所定時間Δt,Δtについても特徴ベクトルが生成され、学習期間に含まれる他の運転プロセスについても特徴ベクトルが生成される。それらの特徴ベクトルに基づいて、次に説明するクラスタJ,J,J(図10参照)が学習される。
 図10は、学習結果であるクラスタJ,J,J、及び診断対象データの特徴ベクトルv1A,v2A,v3Aの説明図である。図10の横軸αは、一次関数の値の正規化後の数値であり、縦軸βは、センサの検出値の正規化後の数値である。図10に示すクラスタJは、運転プロセスの開始時から所定時間Δt(図9(a)参照)が経過したときのセンサの検出値、及び一次関数の値に基づくクラスタであり、クラスタ中心c及びクラスタ半径rによって表される。同様に、クラスタJは所定時間Δt(図9(a)参照)に対応するクラスタであり、クラスタJは所定時間Δt(図9(a)参照)に対応するクラスタである。ちなみに、一つの所定時間Δtにおいて、複数のクラスタが学習されることもある。
 図9(b)は、機械設備2の異常予兆発生時における診断対象データの波形、及び一次関数の直線Lを示す説明図である。
 図9(b)に示す例では、1回の運転プロセスにおける検出値の最大値・最小値が、機械設備2が正常に稼動しているときの学習対象データ(図9(a)参照)と同様になっているが、検出値の波形が正常時とは異なっている。従来の異常予兆診断では、センサの検出値のみに基づいて異常予兆の有無が診断されていたため、図9(b)に示す診断対象データについて「異常予兆なし」と誤診断する可能性があった。
 これに対して本実施形態では、運転プロセスが開始されてから所定時間Δt,Δt,Δtが経過したときのセンサの検出値、及び一次関数の値で特定される特徴ベクトルがクラスタ内に存在するか否かに基づいて、機械設備2の異常予兆の有無が診断される。例えば、図9(b)に示す所定時間Δtにおける検出値p1Aと、一次関数の値q(正規化後は、値α:図10参照)と、に基づき、図10の●印で示す特徴ベクトルv1Aが生成される。特徴ベクトルv1Aは、この特徴ベクトルv1Aに最も近いクラスタJに含まれないため、診断部142dによって「異常予兆あり」と診断される。なお、所定時間Δt(図9(b)参照)の検出値等に対応する特徴ベクトルv2Aや、所定時間Δt(図9(b)参照)の検出値等に対応する特徴ベクトルv3Aについても同様である。
 図11(a)は、学習対象データの波形の別の例、及び一次関数の直線Lを示す説明図である。
 図11(a)に示す例では、機械設備2が正常に稼動している学習期間において、センサの検出値が正弦波状に変動している。また、検出値の波形の極大点を与える2つの所定時間Δt,Δtが設定されている。そして、運転プロセスの開始時から所定時間Δt,Δtが経過したときのセンサの検出値及び一次関数の値に基づき、センサの検出値の正常な波形を表すクラスタ(正常モデル)が学習される。図11(a)に示すように、所定時間Δt,Δtにおける検出値pは略同一であるが、一次関数の値q,qが異なっている(q<q)。その結果、所定時間Δt,Δtに対応して、異なるクラスタJ,J(図12参照)が学習される。
 ちなみに、センサの検出値のみに基づいてクラスタを学習する従来技術では、所定時間Δtにおける検出値pと、所定時間Δtにおける検出値pと、を区別するような学習処理は行われていなかった。これに対して本実施形態では、検出値pが同一であっても、所定時間Δt,Δtが異なっていれば、それらを区別して学習できる。この学習結果は、後記するように、異常予兆診断の高精度化に寄与するものである。
 図11(b)は、異常予兆発生時における診断対象データの波形、及び一次関数の直線Lを示す説明図である。
 図11(b)に示す例では、診断対象データの波形の振幅や最大値・最小値は正常時と同様であるが、波形の周期が正常時よりも短くなっている。その結果、例えば、所定時間Δtにおける検出値p5Aが、正常時の検出値pよりも大幅に小さくなっている。
 図12は、学習結果であるクラスタJ,J、及び診断対象データの特徴ベクトルv4A,v5Aの説明図である。なお、横軸α、縦軸βについては、図10と同様である。
 図12に示すクラスタJは、運転プロセスの開始時から所定時間Δt(図11(a)参照)が経過したときのセンサの検出値、及び一次関数の値に基づくクラスタである。クラスタJは、運転プロセスの開始時から所定時間Δt(図11(a)参照)が経過したときセンサの検出値、及び一次関数に基づくクラスタである。
 前記したように、所定時間Δtにおける検出値p5A(図11(b)参照、正規化後は値β5A:図12参照)は、正常時の検出値pよりも大幅に小さくなっている。したがって、所定時間Δtの検出値及び一次関数の値で特定される特徴ベクトルv5Aが、最近傍のクラスタJの外側に位置している。その結果、診断部142dによって「異常予兆あり」と診断される。
 なお、所定時間Δt,Δtにおける一次関数の値q,q(図11(a)参照)の大きさが異なっているため、図12に示すクラスタJ,Jが、α軸方向において比較的離れている。また、診断対象データである特徴ベクトルv5A(図12参照)は、α軸方向の値αが、クラスタ中心cのα成分に略等しくなっている。学習対象データであっても、診断対象データであっても、所定時間Δtにおける一次関数の値qは同一だからである(図11(a)、(b)参照)。その結果、特徴ベクトルv5Aに最も近いクラスタ中心を有するものが、クラスタJではなく、クラスタJになる。したがって、所定時間Δtにおける検出値p5Aの異常測度uを、この所定時間Δtに対応するクラスタJに基づいて算出できる。これによって、診断対象データの検出値の波形が異常であるか否か(つまり、機械設備2の異常予兆の有無)を高精度で診断できる。
<効果>
 本実施形態によれば、運転プロセスの開始時から所定時間Δtが経過したときの検出値、及び単調増加する一次関数の値を2次元の特徴ベクトルに変換し、この特徴ベクトルに基づいて、センサの検出値の正常な波形をクラスタとして学習できる。
 また、診断対象データについても同様にして特徴ベクトルを生成し、学習結果であるクラスタに基づいて、波形が異常であるか否か(つまり、機械設備2に異常予兆が発生しているか否か)を高精度で診断できる。
≪変形例≫
 以上、本発明に係る異常予兆診断システム1について実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、実施形態では、検出値及び一次関数の値を特定するために、2つ又は3つの所定時間Δt(図9、図11参照)を設定する場合について説明したが、これに限らない。すなわち、所定時間Δtの個数は一つであってもよいし、4つ以上であってもよい。すればよい。
 また、実施形態では、時間の経過とともに単調増加する一次関数を用いる場合について説明したが、これに限らない。例えば、時間の経過とともに単調減少する一次関数を用いてもよいし、時間の経過とともに単調増加又は単調減少する曲線の関数を用いてもよい。より一般的には、時間の経過に対してそれぞれ異なる値を出力する所定の関数を用いてもよい。
 また、実施形態は、センサの検出値及び一次関数の値に基づく2次元の特徴ベクトルを、所定時間Δt,Δt,Δtのそれぞれについて個別で求める場合について説明したが、これに限らない。すなわち、学習対象のセンサデータの時系列的な波形において、所定時間Δt,Δt,Δtにおけるセンサの検出値、及び一次関数の値を含む波形データを、学習手段141によって6次元の特徴ベクトルに変換し、運転プロセスごとに得られる特徴ベクトルに基づいてクラスタを学習するようにしてもよい。そして、診断対象のセンサデータの時系列的な波形において、所定時間Δt,Δt,Δtにおけるセンサの検出値、及び一次関数の値を含む波形データを、診断手段142によって取得し、当該波形データと正常モデルとの比較に基づいて、機械設備2の異常予兆の有無を診断するようにしてもよい。なお、異常測度uの算出方法等については、実施形態と同様である。これによって、1回分の運転プロセスにおけるセンサの検出値の波形を、6次元の特徴ベクトルとして表すことができるため、その波形の異常(つまり、機械設備2における異常予兆)の有無を高精度で診断できる。
 また、実施形態では、一つのセンサから取得されるセンサデータに基づいて、機械設備2の異常予兆の有無を診断する場合について説明したが、これに限らない。すなわち、複数のセンサから取得されるセンサデータに基づいて、機械設備2の異常予兆の有無を診断するようにしてもよい。この場合には、実施形態で説明したように、運転プロセスの開始時から所定時間が経過したときの各センサの検出値と、一次関数の値と、に基づいて、多次元の特徴ベクトルを生成するようにすればよい。なお、特徴ベクトルの次元数は、(センサの個数)+1である。このように複数のセンサを用いることで、機械設備2のどの箇所にどのような異常が発生したのかを、ユーザが把握できる。
 また、実施形態では、機械設備2の運転プロセスが間断なく繰り返される場合について説明したが、これに限らない。すなわち、機械設備2の運転プロセスの開始・終了が把握できればよく、所定の休止時間を挟んで運転プロセスを行うようにしてもよい。
 また、実施形態では、学習したクラスタをその後も保持(記憶)する構成について説明したが、これに限らない。すなわち、診断部142dによって「異常予兆なし」と診断されたセンサデータを学習対象データとして追加し、追加後の学習対象データに基づいてクラスタ中心c及びクラスタ半径rを再計算する(つまり、クラスタを再学習する)ようにしてもよい。このようにクラスタを再学習することで、機械設備2の正常状態に関する情報を徐々に増加させ、クラスタ中心c及びクラスタ半径rをより適切な値に更新できる。
 また、前記したように、学習対象データを追加するたびに、既存の学習対象データのうち最も古いものを学習対象から除外するようにしてもよい。これによって、季節変化等に伴って機械設備2が経時的に変化した場合でも、この変化に追従してクラスタを更新することができ、ひいては異常予兆の診断精度を高めることができる。
 なお、本発明は、各実施形態で説明した全ての構成を備えるものに限定されない。また、一の実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、一の実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成を追加・削除・置換することも可能である。
 また、図1、図3に示す各構成は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、前記の各構成は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テープ、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1 異常予兆診断システム
 2 機械設備
 11 通信手段
 12 センサデータ取得手段
 13 センサデータ記憶手段
 14 データマイニング手段
 15 関数記憶手段
 16 診断結果記憶手段
 17 表示制御手段
 18 表示手段
 141 学習手段
 141a 学習対象データ取得部
 141b 値特定部
 141c 値記憶部
 141d クラスタ学習部
 141e 学習結果記憶部
 142 診断手段
 142a 診断対象データ取得部
 142b 値特定部
 142c 異常測度算出部
 142d 診断部

Claims (6)

  1.  所定の運転プロセスが繰り返される機械設備に設置されたセンサの検出値を含むセンサデータを取得するセンサデータ取得手段と、
     前記機械設備が正常であることが既知である期間のセンサデータの時系列的な波形において、前記運転プロセスが開始されてから所定時間が経過したときの前記センサの検出値を特定するとともに、前記運転プロセスが開始されてからの時間の経過に伴って時間の経過に対しそれぞれ異なる値を出力する所定の関数を用いて、前記運転プロセスが開始されてから前記所定時間が経過したときの値を特定し、特定した前記検出値及び前記関数の値に基づいて、前記波形の正常モデルを学習する学習手段と、
     診断対象のセンサデータの時系列的な波形において、前記運転プロセスが開始されてから前記所定時間が経過したときの前記センサの検出値及び前記関数の値と、前記正常モデルと、の比較に基づいて、前記機械設備の異常予兆の有無を診断する診断手段と、を備えること
     を特徴とする異常予兆診断システム。
  2.  請求項1において、
     前記所定の関数は、単調増加又は単調減少する関数であること、
     を特徴とする異常予兆診断システム。
  3.  請求項1において、
     前記学習手段は、学習対象のセンサデータの時系列的な波形において、前記運転プロセスが開始されてからの長さの異なる複数の前記所定時間における前記検出値及び前記関数の値を含む波形データに基づいて、前記正常モデルを学習し、
     前記診断手段は、診断対象のセンサデータの時系列的な波形において、前記運転プロセスが開始されてからの長さの異なる複数の前記所定時間における前記検出値及び前記関数の値を含む波形データを取得し、当該波形データと前記正常モデルとの比較に基づいて、前記機械設備の異常予兆の有無を診断すること
     を特徴とする異常予兆診断システム。
  4.  請求項1において、
     前記学習手段は、特定した前記検出値及び前記関数の値を無次元量化して互いに比較可能とする正規化処理を施した値を成分とする特徴ベクトルをクラスタリングすることによって、クラスタ中心及びクラスタ半径で表される少なくとも一つのクラスタを前記正常モデルとして学習し、
     前記診断手段は、診断対象のセンサデータに正規化処理を施して特徴ベクトルに変換し、前記クラスタのうち、当該特徴ベクトルに最も近いクラスタ中心を有するものを特定し、当該クラスタのクラスタ中心と当該特徴ベクトルとの距離がクラスタ半径に対して占める割合を異常測度として算出し、前記異常測度に基づいて、前記機械設備の異常予兆の有無を診断すること
     を特徴とする異常予兆診断システム。
  5.  請求項1において、
     前記学習手段は、前記診断手段によって異常予兆なしと診断されたセンサデータを学習対象として追加し、追加したセンサデータを含めて前記正常モデルを再学習すること
     を特徴とする異常予兆診断システム。
  6.  所定の運転プロセスが繰り返される機械設備に設置されたセンサの検出値を含むセンサデータを取得し、
     前記機械設備が正常であることが既知である期間のセンサデータの時系列的な波形において、前記運転プロセスが開始されてから所定時間が経過したときの前記センサの検出値を特定するとともに、前記運転プロセスが開始されてからの時間の経過に伴って時間の経過に対しそれぞれ異なる値を出力する所定の関数を用いて、前記運転プロセスが開始されてから前記所定時間が経過したときの値を特定し、特定した前記検出値及び前記関数の値に基づいて、前記波形の正常モデルを学習し、
     診断対象のセンサデータの時系列的な波形において、前記運転プロセスが開始されてから前記所定時間が経過したときの前記センサの検出値及び前記関数の値と、前記正常モデルと、の比較に基づいて、前記機械設備の異常予兆の有無を診断すること
     を特徴とする異常予兆診断方法。
PCT/JP2016/072716 2015-08-05 2016-08-03 異常予兆診断システム及び異常予兆診断方法 WO2017022784A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/750,117 US20180239345A1 (en) 2015-08-05 2016-08-03 Abnormality predictor diagnosis system and abnormality predictor diagnosis method
EP16833063.7A EP3333661B1 (en) 2015-08-05 2016-08-03 Abnormality predictor diagnosis system and abnormality predictor diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015155489A JP5845374B1 (ja) 2015-08-05 2015-08-05 異常予兆診断システム及び異常予兆診断方法
JP2015-155489 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022784A1 true WO2017022784A1 (ja) 2017-02-09

Family

ID=55169184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072716 WO2017022784A1 (ja) 2015-08-05 2016-08-03 異常予兆診断システム及び異常予兆診断方法

Country Status (4)

Country Link
US (1) US20180239345A1 (ja)
EP (1) EP3333661B1 (ja)
JP (1) JP5845374B1 (ja)
WO (1) WO2017022784A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167375A1 (ja) * 2018-03-01 2019-09-06 株式会社日立製作所 診断装置および診断方法
US10525563B2 (en) 2016-08-10 2020-01-07 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Abnormality-detecting device and method for tool of machine tool
CN110774318A (zh) * 2018-07-24 2020-02-11 佳能株式会社 处理装置及处理部分的处理方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183790B2 (ja) * 2016-09-14 2022-12-06 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
JP2018077764A (ja) * 2016-11-11 2018-05-17 東京エレクトロン株式会社 異常検知装置
JP6809882B2 (ja) * 2016-11-29 2021-01-06 ファナック株式会社 ファンの故障予測を学習する機械学習器、機械学習器を含む装置および機械学習方法
US10304263B2 (en) * 2016-12-13 2019-05-28 The Boeing Company Vehicle system prognosis device and method
JP6545728B2 (ja) * 2017-01-11 2019-07-17 株式会社東芝 異常検知装置、異常検知方法、および異常検知プログラム
JP6876589B2 (ja) * 2017-09-29 2021-05-26 アンリツ株式会社 異常検知装置及び異常検知方法並びに異常検知プログラム
JP6887361B2 (ja) * 2017-10-31 2021-06-16 三菱重工業株式会社 監視対象選定装置、監視対象選定方法、およびプログラム
WO2019239607A1 (ja) * 2018-06-15 2019-12-19 三菱電機株式会社 診断装置、診断方法及びプログラム
WO2020121429A1 (ja) * 2018-12-12 2020-06-18 株式会社Fuji 異常検出装置,工作機械,異常検出方法及びプログラム
JP6975188B2 (ja) 2019-02-07 2021-12-01 ファナック株式会社 状態判定装置及び状態判定方法
JP7408366B2 (ja) 2019-12-06 2024-01-05 キヤノンメディカルシステムズ株式会社 機器管理装置、機器管理システム及び機器管理方法
US20230038415A1 (en) * 2020-02-07 2023-02-09 Fanuc Corporation Diagnosis device
US20230061688A1 (en) * 2021-08-31 2023-03-02 Rockwell Automation Technologies, Inc. Automated diagnosis of augmented acoustic measurement in industrial environments
CN114325022B (zh) * 2021-11-24 2024-04-12 浙江中控技术股份有限公司 一种监测ao正弦信号跳变的方法、***、设备以及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090864A (ja) * 2003-09-17 2005-04-07 Toshiba Kyaria Kk 空気調和機の点検作業支援システムおよび点検作業支援方法
JP2010191556A (ja) * 2009-02-17 2010-09-02 Hitachi Ltd 異常検知方法及び異常検知システム
JP2013107417A (ja) * 2011-11-17 2013-06-06 Hitachi Ltd 鉄道車両用保守システム
JP2015108886A (ja) * 2013-12-03 2015-06-11 株式会社日立パワーソリューションズ 異常予兆診断装置及び異常予兆診断方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099066B2 (ja) * 2009-04-10 2012-12-12 オムロン株式会社 エネルギー監視装置およびその制御方法、ならびにエネルギー監視プログラム
JP5297272B2 (ja) * 2009-06-11 2013-09-25 株式会社日立製作所 装置異常監視方法及びシステム
JP5431235B2 (ja) * 2009-08-28 2014-03-05 株式会社日立製作所 設備状態監視方法およびその装置
JP5363927B2 (ja) * 2009-09-07 2013-12-11 株式会社日立製作所 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム
EP2752722B1 (en) * 2011-08-31 2019-11-06 Hitachi Power Solutions Co., Ltd. Facility state monitoring method and device for same
JP6330922B2 (ja) * 2015-01-21 2018-05-30 三菱電機株式会社 情報処理装置および情報処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090864A (ja) * 2003-09-17 2005-04-07 Toshiba Kyaria Kk 空気調和機の点検作業支援システムおよび点検作業支援方法
JP2010191556A (ja) * 2009-02-17 2010-09-02 Hitachi Ltd 異常検知方法及び異常検知システム
JP2013107417A (ja) * 2011-11-17 2013-06-06 Hitachi Ltd 鉄道車両用保守システム
JP2015108886A (ja) * 2013-12-03 2015-06-11 株式会社日立パワーソリューションズ 異常予兆診断装置及び異常予兆診断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333661A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525563B2 (en) 2016-08-10 2020-01-07 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Abnormality-detecting device and method for tool of machine tool
WO2019167375A1 (ja) * 2018-03-01 2019-09-06 株式会社日立製作所 診断装置および診断方法
CN110774318A (zh) * 2018-07-24 2020-02-11 佳能株式会社 处理装置及处理部分的处理方法
CN110774318B (zh) * 2018-07-24 2023-09-19 佳能株式会社 处理装置及处理部分的处理方法
US11789437B2 (en) 2018-07-24 2023-10-17 Canon Kabushiki Kaisha Processing apparatus and processing method for processing portion

Also Published As

Publication number Publication date
JP5845374B1 (ja) 2016-01-20
EP3333661B1 (en) 2021-03-31
US20180239345A1 (en) 2018-08-23
EP3333661A4 (en) 2019-04-03
EP3333661A1 (en) 2018-06-13
JP2017033472A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
JP5845374B1 (ja) 異常予兆診断システム及び異常予兆診断方法
JP5946573B1 (ja) 異常予兆診断システム及び異常予兆診断方法
JP5946572B1 (ja) 異常予兆診断システム及び異常予兆診断方法
JP6361175B2 (ja) 異常診断装置及びプログラム
US10977568B2 (en) Information processing apparatus, diagnosis method, and program
WO2016079972A1 (ja) 要因分析装置、要因分析方法と記録媒体、及び、要因分析システム
JP5480440B1 (ja) 異常予兆診断装置及び異常予兆診断方法
JP2016033778A (ja) 異常予兆診断装置及び異常予兆診断方法
WO2021220358A1 (ja) 異常診断方法、異常診断装置および異常診断プログラム
JP6708203B2 (ja) 情報処理装置、情報処理方法、及び、プログラム
JP6200833B2 (ja) プラントと制御装置の診断装置
JP7493930B2 (ja) 情報処理方法、情報処理装置、生産システム、プログラム、記録媒体
JP5498540B2 (ja) 異常検知方法及びシステム
JP6647473B1 (ja) 異常検知装置および異常検知方法
WO2018073960A1 (ja) 表示方法、表示装置、および、プログラム
US20190265088A1 (en) System analysis method, system analysis apparatus, and program
JP6915693B2 (ja) システム分析方法、システム分析装置、および、プログラム
Baek et al. Abnormal vibration detection in the bearing-shaft system via semi-supervised classification of accelerometer signal patterns
JP6973445B2 (ja) 表示方法、表示装置、および、プログラム
JP7052914B1 (ja) 異常診断システム、異常診断装置、異常診断方法、及びプログラム
WO2023119598A1 (ja) 情報処理システム
EP4237923A1 (en) Assistance apparatus and method for automatically identifying failure types of a technical system
JP2024100928A (ja) 情報処理方法、情報処理装置、生産システム、物品の製造方法、プログラム、記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016833063

Country of ref document: EP