WO2017022625A1 - Pile fabric and method for manufacturing same - Google Patents

Pile fabric and method for manufacturing same Download PDF

Info

Publication number
WO2017022625A1
WO2017022625A1 PCT/JP2016/072178 JP2016072178W WO2017022625A1 WO 2017022625 A1 WO2017022625 A1 WO 2017022625A1 JP 2016072178 W JP2016072178 W JP 2016072178W WO 2017022625 A1 WO2017022625 A1 WO 2017022625A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
fiber
modified silicone
ground
fabric
Prior art date
Application number
PCT/JP2016/072178
Other languages
French (fr)
Japanese (ja)
Inventor
道信貴雄
宮木健治
尾西晴彦
見尾渡
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2017532545A priority Critical patent/JP6672307B2/en
Priority to EP16832904.3A priority patent/EP3330434A4/en
Priority to CN201680042824.2A priority patent/CN107849805B/en
Publication of WO2017022625A1 publication Critical patent/WO2017022625A1/en
Priority to US15/883,608 priority patent/US20180155868A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/02Pile fabrics or articles having similar surface features
    • D04B1/025Pile fabrics or articles having similar surface features incorporating loose fibres, e.g. high-pile fabrics or artificial fur
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/02Woven pile fabrics wherein the pile is formed by warp or weft
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/02Pile fabrics or articles having similar surface features
    • D04B1/04Pile fabrics or articles having similar surface features characterised by thread material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C19/00Breaking or softening of fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/11Compounds containing epoxy groups or precursors thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/02Pile fabrics or articles having similar surface features
    • D04B21/04Pile fabrics or articles having similar surface features characterised by thread material
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05CEMBROIDERING; TUFTING
    • D05C15/00Making pile fabrics or articles having similar surface features by inserting loops into a base material
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • D10B2321/101Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide modacrylic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0114Dissimilar front and back faces with one or more yarns appearing predominantly on one face, e.g. plated or paralleled yarns
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0241Fabric incorporating additional compounds enhancing mechanical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0242Fabric incorporating additional compounds enhancing chemical properties

Definitions

  • the present invention relates to a pile fabric in which pile fibers are prevented from falling out and the flexibility of the pile fabric is increased, and a method for manufacturing the pile fabric.
  • a pile fabric is known as a fabric having an appearance resembling a fur under the names of imitation fur, fake fur, bore and the like. They are made from pile knitted fabrics and pile fabrics.
  • knitting is mainly performed by a seal milling machine and a sliver knit machine (circular knitting machine), and in both cases, pile fibers are cut.
  • knitting is performed by forming the ground texture double and simultaneously tying the binding yarn between the ground textures and cutting the middle of the binding yarn.
  • Patent Document 1 There are proposals for mixing low-melting fibers with pile fibers (Patent Document 1), proposals for mixing low-melting fibers with ground yarns constituting the ground structure (Patent Documents 2 to 3), etc. .
  • Patent Documents 2 to 3 proposals for mixing low-melting fibers with ground yarns constituting the ground structure.
  • both of these proposals heat the entire fabric at a temperature equal to or higher than the melting point of the low-melting fiber, so that the entire ground texture or the pile fiber is also fused, resulting in a rough texture. is there.
  • Patent Document 4 in a pile fabric using a specific fiber, only a specific portion of the pile fiber on the back surface is fused, thereby preventing the pile fiber from coming off without impairing the texture of the raised surface. Proposed.
  • the present invention improves the flexibility of a pile fabric while preventing the pile fibers from coming off in a pile fabric in which at least a part of the pile fiber is fused on the back surface of the pile fabric.
  • a pile fabric and a method for producing the same are provided.
  • the present invention includes a ground fiber and a pile fiber that is entangled with the ground yarn constituting the ground texture and is raised on the surface of the ground texture, and the pile fiber is at least one selected from the group consisting of acrylic fiber and acrylic fiber.
  • the pile fibers are raised on the surface of the ground texture among the pile fibers entangled with the ground yarn constituting the ground texture.
  • the pile fibers are not fused, and at least a part of the pile fibers arranged outside the ground yarn constituting the ground texture is fused on the back surface of the ground texture,
  • amino-modified silicone softener, epoxy-modified silicone softener and carboxyl-modified silicone softener for 100 parts by weight of pile fiber
  • One or more organic modified silicone softening agent selected from the group consisting relates pile fabric which is characterized in that it is deposited 0.4 parts by weight or more.
  • the present invention is also a method for producing the above-mentioned pile fabric, comprising: a ground structure; and a pile fiber that is entangled with the ground yarn constituting the ground structure and raised on the surface of the ground structure, and the pile fiber is acrylic.
  • the pile fiber includes at least one fiber selected from the group consisting of a fiber and an acrylic fiber, and the pile fiber has a lower softening point than the fiber constituting the ground texture.
  • the pile fiber on the back surface of the pile fabric includes: 0.4 parts by weight of one or more organically modified silicone softeners selected from the group consisting of amino-modified silicone softeners, epoxy-modified silicone softeners and carboxyl-modified silicone softeners per 100 parts by weight of pile fibers Softening of the fibers that are attached to the back side of the pile fabric above the softening point of the pile fibers and that make up the ground structure Of the pile fibers entangled with the ground yarn constituting the ground structure by thermocompression bonding at a temperature lower than that, the pile fibers raised on the surface of the ground texture are not fused, and the ground is formed on the back surface of the ground texture.
  • the present invention relates to a method for manufacturing a pile fabric characterized in that at least a part of pile fibers arranged outside the ground yarn constituting the structure is fused.
  • the organic-modified silicone softener is preferably an amino-modified silicone softener.
  • the pile fiber is preferably an acrylic fiber.
  • the ground yarn is preferably a polyester fiber yarn. It is preferable that 0.4 to 2.5 parts by weight of the organically modified silicone softener is attached to 100 parts by weight of the pile fiber on the back surface of the pile fabric.
  • the present invention can provide a pile fabric that improves the flexibility of the pile fabric while suppressing the hair loss of the pile fibers. Moreover, according to the method for manufacturing a pile fabric of the present invention, it is possible to easily manufacture a pile fabric in which the flexibility of the pile fabric is improved while suppressing the hair loss of the pile fibers.
  • FIG. 1 is a schematic diagram for explaining the positional relationship between a ground yarn and pile fibers entangled with the ground yarn in a high pile fabric according to an embodiment of the pile fabric of the present invention.
  • FIG. 2 is a production process diagram showing an embodiment of a method for producing a pile fabric of the present invention.
  • FIG. 3 is a schematic diagram illustrating a method for measuring the amount of hair loss of a pile fabric in the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view illustrating a method for evaluating the flexibility of a pile fabric in the embodiment of the present invention.
  • the inventors of the present invention use at least one fiber selected from the group consisting of an acrylic fiber and an acrylic fiber as a pile fiber, and among the pile fibers disposed outside the pile fiber ground yarn on the back surface of the pile fabric.
  • the pile fabric in which at least a part of the pile fibers are fused studies have been made on improving the flexibility of the pile fabric while suppressing the hair loss of the pile fibers.
  • the pile fiber on the back surface of the pile fabric has at least one selected from the group consisting of an amino-modified silicone softener, an epoxy-modified silicone softener, and a carboxyl-modified silicone softener with respect to 100 parts by weight of the pile fiber.
  • softeners also referred to as softeners
  • softeners usually impart flexibility, slipperiness, etc. to the surface of the fiber, but surprisingly in this application, certain softeners are applied to the pile fibers on the back of the pile fabric. It has been found that by attaching a predetermined amount to the pile fabric, the flexibility of the pile fabric can be improved while suppressing the hair loss of the pile fibers.
  • the pile fabric of the present invention is a pile fabric that includes a ground fabric and pile fibers that are entangled with the ground yarn constituting the ground texture and are raised on the surface of the ground texture.
  • a high pile fabric, a bore pile, a tuft carpet, etc. are mentioned. It is particularly suitable for a high pile fabric that is prone to hair loss.
  • the high pile fabric is not particularly limited, but for example, the length of the pile fiber in the raised portion is preferably 15 to 100 mm.
  • the high pile fabric is a pile knitted fabric, and the ground organization is a knitted ground organization.
  • the high pile fabric includes a knitted fabric and pile fibers that are tangled with the ground yarn constituting the ground structure and are raised on the surface of the ground structure.
  • a knitted fabric is generally a fabric in which one or more yarns create a loop and continue to make the next new loop by hooking on the loop, and then making the loop continuous in a plane. is there. And weaving what goes in the horizontal direction, such as whether the yarn reciprocates left and right while forming a loop to form a flat fabric, or spirally to form a tubular fabric, etc.
  • a knitted fabric is a warp knitted fabric in which a number of warp yarns arranged in an orderly manner are looped and connected to adjacent left and right warp yarns to form a fabric.
  • flat knitting knitting methods include flat knitting, rubber knitting, pearl knitting and the like
  • warp knitting knitting methods include denby knitting, cord knitting, atlas knitting, chain knitting and the like.
  • weft knitted fabric is preferable from the viewpoint of merchantability and productivity.
  • the pile fibers may be arranged with respect to the knitted fabric of the ground structure so that the pile fibers may be entangled with all the loops of the ground yarn constituting the knitted fabric of the ground structure, or the ground yarn constituting the knitted fabric. Of these loops, the pile fibers may be arranged so as not to be entangled in the wale direction and / or the course direction.
  • the fiber constituting the above ground structure is not particularly limited as long as it has a higher softening point than the pile fiber.
  • a polyester fiber, a cellulosic fiber, etc. are mentioned.
  • the polyester fiber include synthetic fibers obtained by spinning a resin composition containing a polyester resin such as polyethylene terephthalate.
  • the cellulosic fiber include cotton.
  • the ground yarn is preferably a polyester fiber yarn from the viewpoint of more effectively suppressing the hair loss of the pile fiber and increasing the flexibility of the pile fabric.
  • the pile fibers have a lower softening point than the fibers constituting the ground structure, and among the pile fibers entangled with the ground yarn, some or all of the pile fibers arranged outside the ground yarn on the back surface of the ground texture are fused. In addition, the pile fibers raised on the surface of the ground tissue are not fused.
  • the means is not particularly limited, but it is preferable to perform thermocompression bonding at a temperature not lower than the softening point of the pile fiber and lower than the softening point of the fiber constituting the ground structure from the back side of the pile fabric.
  • the pile fiber includes acrylic fiber and / or acrylic fiber.
  • the pile fabric excellent in the texture is obtained.
  • a thermoplastic fiber is used as a pile fiber and polishing is performed at a temperature equal to or higher than the melting point or softening point of the thermoplastic fiber, the pile fiber on the surface of the pile fabric is burnt or melted. A pile fabric having a good appearance and texture cannot be obtained.
  • polishing is performed at a temperature lower than the glass transition point of the thermoplastic fiber, the pile fabric on the surface of the pile fabric does not stretch, and thus a pile fabric having a good appearance and texture cannot be obtained.
  • the crimp of acrylic fiber and acrylic fiber extends even at a temperature below the melting point.
  • polishing can be performed at a temperature below the softening point, for example, 100 to 150 ° C. Furthermore, since the crimps of acrylic fibers and acrylic fibers tend to stretch more easily than fibers of other materials, a pile fabric having a good appearance and texture can be obtained.
  • the pile fiber may include a synthetic fiber or other fiber formed by spinning a resin composition containing a polyester resin such as polyethylene terephthalate or polytrimethylene terephthalate within a range that does not impair the effects of the present invention. .
  • the pile fiber is not particularly limited as long as the softening point is lower than the fiber constituting the ground yarn, but the difference between the softening point of the fiber constituting the ground yarn and the pile fiber is preferably 10 ° C or more, and more Preferably it is 20 degreeC or more, Most preferably, it is 30 degreeC or more. If there is a difference of 10 ° C. or more, only a part or all of the pile fibers arranged outside the ground yarn on the back surface of the pile fabric are fused by thermocompression bonding, and the pile fiber is raised on the surface of the ground structure It is easier not to thermocompression-bond (not fuse).
  • the whole pile fiber may be a fiber softened at a predetermined temperature, or may be a mixed fiber of fibers softened at different temperatures. And when the pile fiber is a mixed fiber of fibers that soften at different temperatures, 20% by weight or more of fibers that soften at a relatively low temperature are mixed, and the fibers that soften at a relatively low temperature are thermocompression bonded. More preferably, 50% by weight or more of fibers that soften at a relatively low temperature are mixed.
  • the softening point is a softening temperature before melting or decomposition.
  • the softening point of acrylic fibers is 190 to 232 ° C.
  • the softening point of acrylic fibers is 150 to 220 ° C. (“Chemical Dictionary”, Kyoritsu Shuppan, pages 727 to 729, issued June 1, 1993, hereinafter “ Literature value ”).
  • the acrylic fiber refers to a fiber composed of a polymer obtained by polymerizing a composition containing 85% by weight or more of acrylonitrile and 15% by weight or less of other copolymerizable monomers.
  • the acrylic fiber is composed of a polymer obtained by polymerizing a composition containing acrylonitrile in an amount of 35% by weight to less than 85% by weight and other copolymerizable monomer in an amount of more than 15% by weight and 65% by weight or less. Refers to the fibers that are made.
  • the other copolymerizable monomer is not particularly limited as long as it is a monomer copolymerizable with acrylonitrile.
  • vinyl halides typified by vinyl chloride and vinyl bromide
  • vinylidene halides typified by vinylidene chloride and vinylidene bromide
  • allyl sulfonic acid methallyl sulfonic acid, styrene sulfonic acid, isoprene sulfonic acid, 2 -Sulphonic acid-containing monomers represented by acrylamido-2-methylpropanesulfonic acid and the like, and metal salts and amine salts of these sulfonic acid-containing monomers
  • Base Vinyl monomers and anionic vinyl monomers such as sodium, potassium or ammonium salts thereof; cationic vinyl typified by quaternized aminoalkyl ester of acrylic acid, quaternized aminoalkyl ester of methacrylic acid, etc.
  • the other copolymerizable monomer it is preferable to use one or more monomers selected from the group consisting of vinyl halides, vinylidene halides and metal salts of sulfonic acid-containing monomers, and vinyl chloride, vinylidene chloride and styrene sulfonic acid are used. It is more preferable to use one or more monomers selected from the group consisting of sodium.
  • the pile fiber is preferably an acrylic fiber, contains 35% by weight to less than 85% by weight of acrylonitrile, and contains a total of more than 15% by weight of vinyl chloride and / or vinylidene chloride and other copolymerizable monomers.
  • An acrylic fiber obtained by polymerizing a composition containing 65% by weight or less is more preferable.
  • the combination of the types of fibers and pile fibers constituting the ground yarn is not particularly limited as long as the above conditions are satisfied, but specific examples thereof are shown below.
  • a polyethylene terephthalate (PET, softening point of about 258 ° C.) fiber is used as a fiber constituting the ground yarn
  • PET polyethylene terephthalate
  • acrylic fiber the following fibers can be preferably used.
  • Vinyl chloride-acrylonitrile fiber for example, Kaneka Corporation, trade name “Kanekaron”, softening point 150 to 220 ° C., literature value
  • Vinylidene chloride-acrylonitrile fiber softening point 150-220 ° C, literature value
  • an acrylic fiber is preferably used as the pile fiber.
  • the acrylic fiber include Exlan Co., Ltd., trade name “Exlan K691” (softening point 190 to 232 ° C., literature value), and the like.
  • One or more organically modified silicone softeners selected from the group consisting of amino-modified silicone softeners, epoxy-modified silicone softeners, and carboxyl-modified silicone softeners are attached to the pile fibers on at least the back surface of the pile fabric. ing.
  • An organically modified silicone softener such as an amino-modified silicone softener may or may not adhere to the pile fibers on the surface of the pile fabric.
  • the adhesion amount of the organically modified silicone softener such as an amino-modified silicone softener on the pile fiber on the back surface of the pile fabric is It is preferably higher than the adhesion amount of organically modified silicone softeners such as amino-modified silicone softeners on pile fibers on the surface of the fabric.
  • organically modified silicone softener means one or more selected from the group consisting of amino-modified silicone softener, epoxy-modified silicone softener, and carboxyl-modified silicone softener. .
  • the amino-modified silicone softener is not particularly limited as long as it is a softener mainly composed of polysiloxane containing an amino functional group.
  • the epoxy-modified silicone softener is not particularly limited as long as it is a softener mainly composed of polysiloxane containing an epoxy functional group.
  • the carboxyl-modified silicone softener is not particularly limited as long as it is a softener mainly composed of polysiloxane containing an epoxy functional group.
  • the “main component” is preferably contained in an amount of 40% by weight or more, more preferably 50% by weight or more, and more preferably 60% by weight or more based on the total weight of the solid content in the softener.
  • softening agents other than an organic modified silicone softening agent may adhere to the pile fiber in the back surface and / or surface of a pile fabric.
  • the organic-modified silicone softener is preferably an amino-modified silicone softener from the viewpoint of more effectively suppressing pile fiber hair loss while enhancing the flexibility of the pile fabric.
  • the amino-modified silicone softener is not particularly limited, and a solution in which amino-modified polysiloxane used as a general fiber softener is dispersed by a method such as emulsification can be used.
  • the amino-modified polysiloxane used here may be attached to one end or both ends of a polysiloxane having an amino functional group as the main chain, and may be attached to both side chains or both ends and side chains. .
  • an amino functional group For example, a monoamine type, a diamine type, a triamine type, a polyamine type etc. are mentioned.
  • the amino-modified silicone softener is not particularly limited.
  • “Matsumoto Silicone Softener N-20” manufactured by Matsumoto Yushi Seiyaku Co., Ltd., “POLON-MF-14” manufactured by Shin-Etsu Chemical Co., Ltd., Momentive Performance Commercially available products such as “TSF4702” manufactured by Materials Japan GK can be used.
  • the acrylic ester resin or the like generally used for the back coating of the pile fabric, etc.
  • an organically modified silicone such as an amino-modified silicone softener is added to the pile fiber on the back surface of the pile fabric.
  • the pile fiber on the back surface of the pile fabric may have 0.4 parts by weight or more of the organically modified silicone softener attached to 100 parts by weight of the pile fiber.
  • the adhesion amount of the organically modified silicone softener is preferably 0.4 to 2.5 parts by weight, more preferably 0.4 to 2.0 parts by weight with respect to parts by weight. More preferably, it is 4 to 1.5 parts by weight.
  • the adhesion amount of organically modified silicone softeners such as amino-modified silicone softeners on pile fibers can be determined, for example, by fluorescent X-ray analysis.
  • the adhesion amount of the amino-modified silicone softener can be calculated from a calibration curve by quantifying Si element by a fluorescent X-ray analysis method using a wavelength dispersive X-ray fluorescence analyzer. Specifically, using an X-ray fluorescence analyzer RIX3100 (manufactured by Rigaku Corporation), Rh tube (tube current 50 mA-tube voltage 50 kV), measurement diameter 30 mm ⁇ , spectral crystal pentaerythritol (PET), 2 ⁇ angle 106 The Si element is analyzed under a condition of ⁇ 112 °, and a calibration curve is first created using a sample whose content of the amino-modified silicone softener is known.
  • RIX3100 manufactured by Rigaku Corporation
  • Rh tube tube current 50 mA-tube voltage 50 kV
  • measurement diameter 30 mm ⁇ measurement diameter 30 mm ⁇
  • PET spectral crystal pentaerythritol
  • Si element was measured in a measurement sample (thickness 3 mm, diameter 30 mm) obtained by pressure-forming a measurement target fiber such as a portion (pile fiber) other than the ground yarn on the back of the pile fabric with a press (tablet molding machine). Perform an analysis. By substituting the obtained Si detection count into the calibration curve equation, the adhesion amount of the amino-modified silicone softener can be calculated.
  • a backing resin can be used as long as the effects of the present invention are not impaired.
  • said backing resin what is generally used for the back coating of a pile fabric should just be used, and it does not specifically limit.
  • an acrylic ester resin, a polyurethane resin, or the like can be used.
  • the impregnation of the backing resin can be performed using a latex, emulsion, dispersion, or the like of a resin such as an acrylic ester resin or a polyurethane resin.
  • the said backing resin may be used by 1 type, and may be used in combination of 2 or more type.
  • FIG. 1 is a schematic diagram for explaining the positional relationship between a ground yarn and pile fibers entangled with the ground yarn in a high pile fabric according to an embodiment of the pile fabric of the present invention.
  • the high pile fabric 5 is spread on the surface 7 of the ground fabric (high pile fabric 5) entangled with the ground yarn 1 constituting the knitted loop 6 and the loop 6 of the ground yarn 1.
  • the pile fiber 2 is formed.
  • FIG. 1 schematically shows a positional relationship in which pile fibers 2 are generally stacked on the lower side of the ground yarn 1, but in this figure, the outside of the ground yarn 1 is generally below the ground yarn 1. Means the side part.
  • a ground structure and the ground structure are configured by a conventional method.
  • a pile fabric including pile fibers that are entangled with the ground yarn to be raised and raised on the surface of the ground structure is produced.
  • the pile fiber is preferably composed of acrylic fiber and / or acrylic fiber.
  • the process to make can also be abbreviate
  • the method for attaching an organically modified silicone softener such as an amino-modified silicone softener to the pile fiber is not particularly limited, and a known method may be appropriately employed.
  • the pile fiber may be dipped in an organically modified silicone softener, or the organically modified silicone softener may be sprayed onto the pile fiber. Due to the simplicity of the process, the adhesion of the organically modified silicone softener to the pile fiber can be performed simultaneously with the dyeing.
  • an organically modified silicone softener after the dyeing process from the viewpoint of improving the flexibility of the pile fabric.
  • the said organic modified silicone type softening agent may be used by 1 type, and may be used in combination of 2 or more type.
  • an organically modified silicone softener may be further attached to the fiber before producing the pile fabric.
  • an organically modified silicone softener such as the amino-modified silicone softener is adhered to the back surface of the pile fabric.
  • the organically modified silicone softener is attached to the pile fiber on the back surface of the pile fabric.
  • the method for adhering an organically modified silicone softener such as an amino-modified silicone softener to the back surface of the pile fabric is not particularly limited, and a known method may be adopted as appropriate.
  • the back surface of the pile fabric may be impregnated with an organically modified silicone softener, or the back surface of the pile fabric may be spray-coated with the organically modified silicone softener.
  • the said organic modified silicone type softening agent may be used by 1 type, and may be used in combination of 2 or more type.
  • the softener usually imparts flexibility and slipperiness to the surface of the fiber, but in the present application, surprisingly, at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber is used as the pile fiber, In the pile fabric in which at least a part of the pile fibers arranged outside the pile fiber ground yarn is fused on the back surface of the fabric, the above-mentioned organically modified silicone softener is piled on the back surface of the pile fabric. Further, by attaching 0.4 part by weight or more to 100 parts by weight of the pile fiber, the pile fiber can be prevented from being loosened while improving the flexibility of the pile fabric.
  • an organically modified silicone softener is attached to the pile fiber on the back side of the pile fabric, and the back side of the pile fabric constitutes the above-mentioned ground texture above the softening point of the pile fiber, as will be described later.
  • functional groups such as terminal amino groups in the organically modified silicone softener adhering to the pile fiber on the back surface of the pile fabric are cross-linked by thermocompression bonding at a temperature lower than the softening point of the fiber. Is done.
  • the pile fiber or the organically modified silicone softener to which the organically modified silicone softener is not attached is attached. After producing a pile fabric using a pile fiber, it is preferable to adhere an organically modified silicone softener to the back side of the pile fabric.
  • the back side of the pile fabric is thermocompression bonded at a temperature not lower than the softening point of the pile fiber and lower than the softening point of the fiber constituting the ground structure.
  • pile fibers raised on the surface of the ground structure are not fused, and a part or all of the pile fibers arranged outside the ground yarn constituting the ground structure is fused on the back surface of the ground structure.
  • the thermocompression treatment can be performed, for example, by placing a pile fabric so that the back surface is in contact with a heating roll or a hot plate, and pressurizing with a rubber roll or the like.
  • thermocompression treatment When a heating roll or a hot plate is used, a short-time thermocompression treatment can be performed, and at least a part of the pile fibers arranged outside the ground yarn can be thermocompression bonded on the back surface of the ground structure. And since the heating which does not melt the pile fiber on the surface of the pile fabric is not performed, the pile fiber raised on the surface of the ground texture is not melted.
  • the pile fiber side raised on the surface of the pile fabric is preferably cooled.
  • the cooling means it is preferable to cool the surface and / or back surface of the pile fabric with a cooling roll in which water having a water temperature of 50 ° C. or less is passed.
  • the water temperature of water passed through the cooling roll is preferably 10 to 40 ° C., more preferably 10 to 35 ° C., and further preferably 15 to 30 ° C. from the viewpoint of cooling efficiency and productivity.
  • thermocompression treatment in an example of the method for producing a pile fabric of the present invention will be described in more detail with reference to the drawings.
  • FIG. 2 is a manufacturing process diagram schematically showing a process of thermocompression-bonding the pile fabric from the back side at a predetermined temperature.
  • the processing apparatus 10 used for the thermocompression treatment pressurizes the heating roll 11 coated with a fluororesin such as polytetrafluoroethylene, and the heating roll 11, and contains 30 ° C. cooling water inside.
  • Cooling rubber roll 12 that passes water
  • metal cooling roll 13 that pressurizes cooling rubber roll 12 and allows 30 ° C. cooling water to flow inside
  • metal cooling roll 14 that allows 30 ° C. cooling water to flow inside
  • guide roll 15 is included.
  • the pile fabric original fabric (high pile fabric to which an organically modified silicone softener is attached) 18 is led out of the container 16, the back surface 18 b comes into contact with the heating roll 11, and the front surface (napped pile side) 18 a comes into contact with the cooling rubber roll 12. To supply. Further, after the thermocompression treatment, the back surface 18 b is cooled by the metal cooling roll 14. The pile fabric 19 that has been processed is stored in the container 17.
  • the thermocompression treatment is not limited to the processing apparatus shown in FIG. 2, and may be performed using an apparatus, a hot plate, and other apparatuses in which a part of the processing apparatus shown in FIG. 2 is changed. .
  • the heating temperature may be not less than the softening point of the pile fiber and less than the softening point of the fiber constituting the ground yarn, and the applied pressure may be 0.01-100 kgf / cm 2 (0.98 KPa-9) in terms of linear pressure. 0.8 MPa)
  • the feed rate of the original fabric is preferably 0.1 to 20 m / min
  • the contact time of the heater (heating roll or the like) is preferably 1 to 60 seconds.
  • the applied pressure is a linear pressure of 2.0 to 50 kgf / cm 2 (0.20 to 4.9 MPa), and the heater contact time is 1 to 10 seconds. Is more preferable.
  • the stretching treatment it is preferable to grip both ends (cloth ears) of the high pile fabric in the wale direction and pull in the wale direction so that the stretch ratio of the length in the wale direction is about 5 to 20%. Preferably it is about 7 to 15%, more preferably about 8 to 12%.
  • the stretching treatment is preferably performed at 90 to 150 ° C., more preferably 100 to 130 ° C., and further preferably 105 to 120 ° C.
  • Such a stretching treatment can be performed using a known device such as a tenter.
  • the tenter is generally used to heat and set the fabric to a predetermined width while holding both the fabric ears while heating at a predetermined temperature. As such, it may be heated or not.
  • the above stretching treatment is performed while heating the high pile fabric, it is preferably performed at the minimum necessary temperature and the minimum necessary air volume so as not to damage the surface of the high pile fabric.
  • the pile fabric of the present invention has suppressed hair loss, and the average amount of hair loss measured by the method described below is preferably 4.0 g / m 2 or less, and preferably 3.0 g / m 2 or less. More preferably, it is more preferably 2.0 g / m 2 or less. Further, the maximum amount of hair loss measured by the method described later is preferably 5.0 g / m 2 or less, more preferably 4.0 g / m 2 or less, and 3.0 g / m 2 or less. Is more preferable.
  • the pile fabric of the present invention preferably has a 90 ° distance measured by the method described below of 50 mm or less, more preferably 45 mm or less.
  • the pile fabric 21 (length: 280 mm, width: 210 mm) is slanted on the slope of the metal plate 22 that is disposed obliquely so that the slope angle a is 30 °.
  • Adhesive tape 23 (manufactured by 3M, Scotch No. 850, 25 mm width), which is arranged to face upward and cut to a length of 100 mm, is attached to the surface of the pile fabric 21, and 1.5 g / After applying a load of cm 2 for 1 minute (not shown), the adhesive tape 23 was continuously peeled from the pile fabric 21 from the end located at the upper part of the slope.
  • the weight (g) of the hair adhering to the adhesive tape was measured, and the weight (g / m 2 ) of the hair per adhesive tape area was calculated and used as the amount of hair loss.
  • the amount of hair loss at any three locations of the pile fabric was measured and calculated as described above, and the average amount of hair loss and the maximum amount of hair loss were determined.
  • hair loss was evaluated in four ranks as follows. S, A evaluation, and B evaluation were set as the pass, and C evaluation was set as the failure. S: The average hair loss is 2.0 g / m 2 or less, and the maximum hair loss is 3.0 g / m 2 or less. A: The average hair loss is more than 2.0 g / m 2 and not more than 3.0 g / m 2 , and the maximum hair loss is more than 3.0 g / m 2 and not more than 4.0 g / m 2 .
  • B The average hair loss is more than 3.0 g / m 2 and not more than 4.0 g / m 2 and the maximum hair loss is more than 4.0 g / m 2 and not more than 5.0 g / m 2 .
  • C The average amount of hair loss exceeds 4.0 g / m 2 and the maximum amount of hair loss exceeds 5.0 g / m 2 .
  • the fabric piece 31 of the pile fabric was slid.
  • Pile fiber (1) Trade name “Kanekalon (registered trademark) ELP” (manufactured by Kaneka Corporation): acrylic fiber (vinyl chloride-acrylonitrile fiber), softening point 180 to 190 ° C., fineness 27 dtex, cut length 102 mm (in the following) , Simply referred to as ELP.) No adhesion of amino-modified silicone softener.
  • X-ray fluorescence analyzer RIX3100 manufactured by Rigaku Corporation
  • Rh tube tube current 50 mA-tube voltage 50 kV
  • measurement diameter 30 mm ⁇ measurement diameter 30 mm ⁇
  • spectral crystal pentaerythritol (PET) 2 ⁇ angle 106
  • the Si element was analyzed under a condition of ⁇ 112 °.
  • a calibration curve was prepared using a sample having a known content of the amino-modified silicone softener.
  • the Si element was analyzed with a measurement sample (thickness 3 mm, diameter 30 mm) obtained by pressure-molding the measurement target fiber with a press (tablet molding machine).
  • the adhesion amount of the amino-modified silicone softener was calculated.
  • Ground tissue constituent fiber ground yarn
  • a multifilament having a total fineness of 334 dtex a fiber yarn in which two filaments having a fineness of 167 dtex made of 50 polyester single fibers were aligned
  • the softening point is 258 ° C.
  • the softening point of the above-mentioned fiber is 1 g of fiber, placed on a hot plate heated to an arbitrary temperature, and pressed with a pressure roll at a pressure (nip pressure) of 0.07 Kgf / cm 2 for 3 seconds. Is the temperature at which the single fibers on the surface in contact with the hot plate soften and bond to form a plate.
  • Example 1 Using a sliver knit machine (circular knitting machine) for producing a faux fur, using the above polyester fiber yarn as the ground yarn, ELP, AH7.8 and AH5.6, ELP / AH7.8 / AH5.
  • a pile fiber sliver (10 to 14 g) uniformly mixed at a mixing ratio of 6 15/35/50 (wt%) was supplied to knit a high pile fabric.
  • the number of loops of the wales of the ground structure was 16 to 17 / inch, and the number of loops of the course was 22 to 33 / inch.
  • the pile fiber on the raised surface of the high pile fabric was prepared by polishing and shearing. Specifically, first, polishing was performed twice at 120 ° C., and then shearing was performed twice.
  • the amino-modified silicone softener (solid-modified softener) (solid content) is attached to the back surface of the high pile fabric obtained above so that 0.2 part by weight of the amino-modified silicone softener (solid content) is attached to 100 parts by weight of the pile fiber on the back surface side.
  • An aqueous solution of Matsumoto Yushi Seiyaku Co., Ltd., trade name “Matsumoto Silicone Softener N-20”, solid content 20% by weight) was applied by spraying. Thereafter, using a pin tenter dryer, the high pile fabric was dried for 3 minutes while stretching the width to 160 cm at a dryer internal temperature of 125 ° C., and cooled to 80 ° C. or lower while maintaining the width at 160 cm.
  • the temperature of the heating roll is 215 ° C. using the thermocompression bonding apparatus shown in FIG. 2 on the back surface of the high pile fabric (width 160 cm) obtained above, the contact time between the heating roll and the high pile fabric is 3 seconds, The thermocompression bonding treatment was performed under the condition that the nip pressure of the cooling rubber roll was 50 kgf / cm 2 (4.9 MPa). At that time, the fabric width of the high pile fabric contracted to 135 cm. Thereafter, using a pin tenter dryer, the high pile fabric was dried for 3 minutes while stretching the width to 160 cm at a dryer internal temperature of 125 ° C., and cooled to 80 ° C. or lower while maintaining the width at 160 cm.
  • the pile fibers on the surface of the pile fabric were prepared by polishing, brushing and shearing. Specifically, brushing is performed twice, followed by polishing once at 155 ° C., 150 ° C., 145 ° C., 130 ° C. and 120 ° C., then shearing twice, and finally at 100 ° C. Polishing was performed twice. Finally, a high pile fabric having a basis weight of 700 g / m 2 and a pile fiber length of 20 mm was obtained.
  • Example 2 Other than spraying an aqueous solution of an amino-modified silicone softener on the back of the pile fabric so that 1 part by weight of the amino-modified silicone softener (solid content) adheres to 100 parts by weight of the pile fiber on the back of the pile fabric Produced a high pile fabric in the same manner as in Example 1.
  • Example 5 A high pile fabric was produced in the same manner as in Example 1 except that the thermocompression treatment was performed without attaching the softening agent to the pile fiber on the back surface of the pile fabric.
  • Example 6 A high pile fabric was produced in the same manner as in Example 1 except that a sliver (10 to 14 g) composed of 100% by weight of AH7.8 was used as the pile fiber sliver.
  • Example 1 The hair removal and softness of the high pile fabrics obtained in Examples 1 and 2 and Comparative Examples 1 to 7 were measured and evaluated by the methods described above. The results are shown in Table 1 below.
  • the amount of the softener attached is the weight ratio of the softener to 100 parts by weight of the pile fiber on the back surface of the pile fabric.
  • Example 1 the amount of the softener attached to the fiber used as the raw material for the pile fiber and the pile fiber on the back surface of the pile fabric additionally in the pile fabric manufacturing process. This is the total amount of the same kind of softening agent adhered, and was calculated as follows.
  • Example 2 and Comparative Examples 1 to 7 the adhesion amounts of various softeners were calculated in the same manner as in Example 1.
  • the amino-modified silicone softener is attached to the pile fiber on the back surface of the pile fabric in an amount of 0.4 part by weight or more based on 100 parts by weight of the pile fiber.
  • the pile fabric had a high flexibility of the pile fabric, and the pile fiber was prevented from being loosened.
  • the total adhesion amount of the amino-modified silicone softener and the unmodified silicone softener attached to the pile fiber on the back surface of the pile fabric is 0.4 parts by weight or more with respect to 100 parts by weight of the pile fiber.
  • the pile fabrics of Comparative Examples 1 and 2 in which the adhesion amount of the amino-modified silicone softener to 100 parts by weight of the pile fibers is less than 0.4 parts by weight, although the pile fabrics have good flexibility, the pile fibers have a fluff The amount was large.
  • the total adhesion amount of the amino-modified silicone softener and the fatty acid softener attached to the pile fiber on the back surface of the pile fabric is 0.4 parts by weight or more with respect to 100 parts by weight of the pile fiber.

Abstract

The pile fabric according to the present invention comprises a ground weave and pile fibers, said pile fibers being twisted around ground yarns constituting the ground weave, rising on the front surface of the ground weave, comprising acrylic fibers and/or acryl-based fibers and having a lower softening point than fibers constituting the ground weave, wherein: the pile fibers rising on the front surface of the ground weave are not fusion-bonded, while at least some of the pile fibers located outside the ground yarns constituting the ground weave on the back surface of the ground weave are fusion-bonded; and, to the pile fibers on the back surface of the pile fabric, 0.4 part by weight or more, per 100 parts by weight of the pile fibers, of one or more kinds of organic modified silicone-based softeners selected from the group consisting of an amino-modified silicone-based softener, an epoxy-modified silicone-based softener and a carboxyl-modified silicone-based softener are stuck. Provided are the pile fabric that shows reduced falling-off of the pile fibers and has an improved softness of pile fabrics and a method for manufacturing the same.

Description

パイル布帛及びその製造方法Pile fabric and manufacturing method thereof
 本発明は、パイル繊維の毛抜けを抑制し、パイル布帛の柔軟性を高めたパイル布帛及びその製造方法に関する。 [Technical Field] The present invention relates to a pile fabric in which pile fibers are prevented from falling out and the flexibility of the pile fabric is increased, and a method for manufacturing the pile fabric.
 従来からパイル布帛は、イミテーションファー又はフェイクファー、ボア等の名称で毛皮に似せた外観の布帛として知られている。これらはパイル編物、パイル織物から作られる。編みパイルの場合は、主としてシールフライス機、スライバーニット機(丸編機)で編み立てられ、いずれもパイル繊維がカットされている。たて編機のダブルラッシェル機で編み立てる場合は、地組織をダブルで形成すると同時に地組織間に接結糸を絡ませて、接結糸の中間をカットすることにより編成される。製織法の場合は、ベルベット織機、モケット織機を使用して上下2枚の地組織とこの間に接結糸を絡ませ、上下の基布の間をナイフでカットすることにより、2枚の織物を同時に織り上げる。しかし、これらの織編物、特にハイパイル布帛等の編物は抜け毛が多いという問題がある。 Conventionally, a pile fabric is known as a fabric having an appearance resembling a fur under the names of imitation fur, fake fur, bore and the like. They are made from pile knitted fabrics and pile fabrics. In the case of a knitted pile, knitting is mainly performed by a seal milling machine and a sliver knit machine (circular knitting machine), and in both cases, pile fibers are cut. When knitting with a double raschel machine of a warp knitting machine, knitting is performed by forming the ground texture double and simultaneously tying the binding yarn between the ground textures and cutting the middle of the binding yarn. In the case of the weaving method, velvet looms and moquette looms are used to intertwine the upper and lower ground fabrics and the binding yarn between them, and the upper and lower base fabrics are cut with a knife so that the two fabrics can be made simultaneously. Weave. However, these woven and knitted fabrics, particularly knitted fabrics such as high pile fabrics, have a problem of having a lot of hair loss.
 パイル布帛の抜け毛を防止するため、パイル繊維に低融点繊維を混合する提案(特許文献1)、地組織を構成する地糸に低融点繊維を混合する提案(特許文献2~3)等がある。しかし、これらの提案はいずれも布帛全体を上記低融点繊維の融点以上の温度にて加熱するため、地組織全体又はパイル繊維も融着してしまい、粗硬な風合いになってしまうという問題がある。 There are proposals for mixing low-melting fibers with pile fibers (Patent Document 1), proposals for mixing low-melting fibers with ground yarns constituting the ground structure (Patent Documents 2 to 3), etc. . However, both of these proposals heat the entire fabric at a temperature equal to or higher than the melting point of the low-melting fiber, so that the entire ground texture or the pile fiber is also fused, resulting in a rough texture. is there.
 そこで、特許文献4では、特定の繊維を用いたパイル布帛において、裏面におけるパイル繊維の特定部分のみを融着させることにより、立毛面の風合いを損なわずにパイル繊維の毛抜けを防止したパイル布帛を提案した。 Therefore, in Patent Document 4, in a pile fabric using a specific fiber, only a specific portion of the pile fiber on the back surface is fused, thereby preventing the pile fiber from coming off without impairing the texture of the raised surface. Proposed.
特開平6-081248号公報Japanese Patent Laid-Open No. 6-081248 特開2000-314048号公報JP 2000-314048 A 特開平7-048765号公報Japanese Unexamined Patent Publication No. 7-048765 国際公開2011/055455号International Publication 2011/055455
 しかし、特許文献4に記載のパイル布帛は、パイル布帛の裏面においてパイル繊維が融着されていることで、パイル布帛の裏面が硬くなり、ひいてはパイル布帛が硬くなる場合があった。 However, in the pile fabric described in Patent Document 4, the pile fiber is fused on the back surface of the pile fabric, so that the back surface of the pile fabric becomes hard and eventually the pile fabric sometimes hardens.
 本発明は、上記問題を解決するため、パイル布帛の裏面においてパイル繊維の少なくとも一部が融着されているパイル布帛において、パイル繊維の毛抜けを抑制しつつ、パイル布帛の柔軟性を向上させたパイル布帛及びその製造方法を提供する。 In order to solve the above problems, the present invention improves the flexibility of a pile fabric while preventing the pile fibers from coming off in a pile fabric in which at least a part of the pile fiber is fused on the back surface of the pile fabric. A pile fabric and a method for producing the same.
 本発明は、地組織と、上記地組織を構成する地糸に絡みかつ上記地組織の表面に立毛するパイル繊維を含み、上記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維を含み、上記パイル繊維は前記地組織を構成する繊維よりも軟化点が低いパイル布帛において、上記地組織を構成する地糸に絡んだパイル繊維のうち、上記地組織の表面に立毛するパイル繊維は融着しておらず、上記地組織の裏面において上記地組織を構成する地糸より外側に配置されているパイル繊維の少なくとも一部は融着されており、上記パイル布帛の裏面におけるパイル繊維には、パイル繊維100重量部に対して、アミノ変性シリコーン系柔軟剤、エポキシ変性シリコーン系柔軟剤及びカルボキシル変性シリコーン系柔軟剤からなる群から選ばれる一種以上の有機変性シリコーン系柔軟剤が0.4重量部以上付着されていることを特徴とするパイル布帛に関する。 The present invention includes a ground fiber and a pile fiber that is entangled with the ground yarn constituting the ground texture and is raised on the surface of the ground texture, and the pile fiber is at least one selected from the group consisting of acrylic fiber and acrylic fiber. In the pile fabric having a lower softening point than the fibers constituting the ground texture, the pile fibers are raised on the surface of the ground texture among the pile fibers entangled with the ground yarn constituting the ground texture. The pile fibers are not fused, and at least a part of the pile fibers arranged outside the ground yarn constituting the ground texture is fused on the back surface of the ground texture, For pile fiber, amino-modified silicone softener, epoxy-modified silicone softener and carboxyl-modified silicone softener for 100 parts by weight of pile fiber One or more organic modified silicone softening agent selected from the group consisting relates pile fabric which is characterized in that it is deposited 0.4 parts by weight or more.
 本発明は、また、上記のパイル布帛の製造方法であって、地組織と、上記地組織を構成する地糸に絡みかつ上記地組織の表面に立毛するパイル繊維を含み、上記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維を含み、上記パイル繊維は上記地組織を構成する繊維よりも軟化点が低いパイル布帛において、上記パイル布帛の裏面におけるパイル繊維には、パイル繊維100重量部に対して、アミノ変性シリコーン系柔軟剤、エポキシ変性シリコーン系柔軟剤及びカルボキシル変性シリコーン系柔軟剤からなる群から選ばれる一種以上の有機変性シリコーン系柔軟剤が0.4重量部以上付着されており、上記パイル布帛の裏面側を上記パイル繊維の軟化点以上かつ上記地組織を構成する繊維の軟化点未満の温度で熱圧着することにより、上記地組織を構成する地糸に絡んだパイル繊維のうち、上記地組織の表面に立毛するパイル繊維は融着させず、上記地組織の裏面において上記地組織を構成する地糸より外側に配置されているパイル繊維の少なくとも一部を融着させることを特徴とするパイル布帛の製造方法に関する。 The present invention is also a method for producing the above-mentioned pile fabric, comprising: a ground structure; and a pile fiber that is entangled with the ground yarn constituting the ground structure and raised on the surface of the ground structure, and the pile fiber is acrylic. The pile fiber includes at least one fiber selected from the group consisting of a fiber and an acrylic fiber, and the pile fiber has a lower softening point than the fiber constituting the ground texture. The pile fiber on the back surface of the pile fabric includes: 0.4 parts by weight of one or more organically modified silicone softeners selected from the group consisting of amino-modified silicone softeners, epoxy-modified silicone softeners and carboxyl-modified silicone softeners per 100 parts by weight of pile fibers Softening of the fibers that are attached to the back side of the pile fabric above the softening point of the pile fibers and that make up the ground structure Of the pile fibers entangled with the ground yarn constituting the ground structure by thermocompression bonding at a temperature lower than that, the pile fibers raised on the surface of the ground texture are not fused, and the ground is formed on the back surface of the ground texture. The present invention relates to a method for manufacturing a pile fabric characterized in that at least a part of pile fibers arranged outside the ground yarn constituting the structure is fused.
 上記有機変性シリコーン系柔軟剤が、アミノ変性シリコーン系柔軟剤であることが好ましい。上記パイル繊維が、アクリル系繊維であることが好ましい。上記地糸は、ポリエステル繊維糸であることが好ましい。上記パイル布帛の裏面におけるパイル繊維100重量部に対して、上記有機変性シリコーン系柔軟剤が0.4~2.5重量部付着されていることが好ましい。 The organic-modified silicone softener is preferably an amino-modified silicone softener. The pile fiber is preferably an acrylic fiber. The ground yarn is preferably a polyester fiber yarn. It is preferable that 0.4 to 2.5 parts by weight of the organically modified silicone softener is attached to 100 parts by weight of the pile fiber on the back surface of the pile fabric.
 本発明は、パイル繊維の毛抜けを抑制しつつ、パイル布帛の柔軟性を向上させたパイル布帛を提供することができる。また、本発明のパイル布帛の製造方法によれば、パイル繊維の毛抜けを抑制しつつと、パイル布帛の柔軟性を向上させたパイル布帛を簡便に製造することができる。 The present invention can provide a pile fabric that improves the flexibility of the pile fabric while suppressing the hair loss of the pile fibers. Moreover, according to the method for manufacturing a pile fabric of the present invention, it is possible to easily manufacture a pile fabric in which the flexibility of the pile fabric is improved while suppressing the hair loss of the pile fibers.
図1は本発明のパイル布帛の一実施形態のハイパイル布帛における地糸と地糸に絡むパイル繊維の位置関係を説明する模式図である。FIG. 1 is a schematic diagram for explaining the positional relationship between a ground yarn and pile fibers entangled with the ground yarn in a high pile fabric according to an embodiment of the pile fabric of the present invention. 図2は本発明のパイル布帛の製造方法の一実施例を示す製造工程図である。FIG. 2 is a production process diagram showing an embodiment of a method for producing a pile fabric of the present invention. 図3は本発明の実施形態においてパイル布帛の毛抜け量の測定方法を説明する模式図である。FIG. 3 is a schematic diagram illustrating a method for measuring the amount of hair loss of a pile fabric in the embodiment of the present invention. 図4は本発明の実施形態においてパイル布帛の柔軟性を評価する方法を説明する模式的断面図である。FIG. 4 is a schematic cross-sectional view illustrating a method for evaluating the flexibility of a pile fabric in the embodiment of the present invention.
 本発明の発明者らは、アクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維をパイル繊維とし、パイル布帛の裏面においてパイル繊維の地糸より外側に配置されているパイル繊維のうち少なくとも一部のパイル繊維を融着させたパイル布帛において、パイル繊維の毛抜けを抑制しつつ、パイル布帛の柔軟性を向上することについて検討を重ねた。その結果、パイル布帛の裏面におけるパイル繊維に、パイル繊維100重量部に対して、アミノ変性シリコーン系柔軟剤、エポキシ変性シリコーン系柔軟剤及びカルボキシル変性シリコーン系柔軟剤からなる群から選ばれる一種以上の有機変性シリコーン系柔軟剤を0.4重量部以上付着させることで、パイル繊維の毛抜けを抑制しつつ、パイル布帛の柔軟性を向上できることを見出し、本発明に至った。柔軟剤(柔軟仕上げ剤とも称される。)は、通常、繊維の表面に柔軟性や滑り性などを付与するが、本願では、驚くことに、特定の柔軟剤をパイル布帛の裏面におけるパイル繊維に所定量付着させることで、パイル繊維の毛抜けを抑制しつつ、パイル布帛の柔軟性を向上できることを見出した。 The inventors of the present invention use at least one fiber selected from the group consisting of an acrylic fiber and an acrylic fiber as a pile fiber, and among the pile fibers disposed outside the pile fiber ground yarn on the back surface of the pile fabric. In the pile fabric in which at least a part of the pile fibers are fused, studies have been made on improving the flexibility of the pile fabric while suppressing the hair loss of the pile fibers. As a result, the pile fiber on the back surface of the pile fabric has at least one selected from the group consisting of an amino-modified silicone softener, an epoxy-modified silicone softener, and a carboxyl-modified silicone softener with respect to 100 parts by weight of the pile fiber. It has been found that by applying 0.4 part by weight or more of the organically modified silicone softener, it is possible to improve the flexibility of the pile fabric while suppressing the hair loss of the pile fiber. Softeners (also referred to as softeners) usually impart flexibility, slipperiness, etc. to the surface of the fiber, but surprisingly in this application, certain softeners are applied to the pile fibers on the back of the pile fabric. It has been found that by attaching a predetermined amount to the pile fabric, the flexibility of the pile fabric can be improved while suppressing the hair loss of the pile fibers.
 本発明のパイル布帛は、地組織と、上記地組織を構成する地糸に絡みかつ上記地組織の表面に立毛するパイル繊維を含むパイル布帛である。上記パイル布帛としては、特に限定されないが、例えば、ハイパイル布帛、ボアパイル及びタフトカーペット等が挙げられる。毛抜けが生じやすいハイパイル布帛に特に好適である。ハイパイル布帛は、特に限定されないが、例えば、立毛部のパイル繊維の長さが15~100mmであることが好ましい。 The pile fabric of the present invention is a pile fabric that includes a ground fabric and pile fibers that are entangled with the ground yarn constituting the ground texture and are raised on the surface of the ground texture. Although it does not specifically limit as said pile fabric, For example, a high pile fabric, a bore pile, a tuft carpet, etc. are mentioned. It is particularly suitable for a high pile fabric that is prone to hair loss. The high pile fabric is not particularly limited, but for example, the length of the pile fiber in the raised portion is preferably 15 to 100 mm.
 上記ハイパイル布帛は、パイル編物であり、地組織はメリヤスの地組織となる。詳細には、上記ハイパイル布帛は、メリヤスの地組織と、該地組織を構成する地糸に絡みつつ上記地組織の表面に立毛するパイル繊維とを含む。ハイパイル布帛の場合、地組織がメリヤスであるので、伸縮性に優れる組織を構成することができる。メリヤスは、一般に、1本又は2本以上の糸がループをつくり、そのループに引っかけて、次の新しいループをつくることを継続し、順次ループを平面状に連続させて布地を形成したものである。そして、糸がループをつくりながら左右に往復して平面状の布地を形成するか、らせん状に進行して筒状の布地を形成するか等により、横方向に進行していくものを横編みメリヤス、整然と配列した多数の各経(たて)糸がループをつくりながら、隣接する左右の経糸とループで連結されて布地を形成するものを経編みメリヤスという。また、横編みメリヤスには、平編み、ゴム編み、パール編み等の編み方があり、経編みメリヤスには、デンビー編み、コード編み、アトラス編み、鎖編み等の編み方がある。ハイパイル布帛の地組織の編み方としては、商品性、生産性の観点から、横編みメリヤスが好ましい。 The high pile fabric is a pile knitted fabric, and the ground organization is a knitted ground organization. Specifically, the high pile fabric includes a knitted fabric and pile fibers that are tangled with the ground yarn constituting the ground structure and are raised on the surface of the ground structure. In the case of a high pile fabric, since the ground structure is knitted, a structure having excellent stretchability can be formed. A knitted fabric is generally a fabric in which one or more yarns create a loop and continue to make the next new loop by hooking on the loop, and then making the loop continuous in a plane. is there. And weaving what goes in the horizontal direction, such as whether the yarn reciprocates left and right while forming a loop to form a flat fabric, or spirally to form a tubular fabric, etc. A knitted fabric is a warp knitted fabric in which a number of warp yarns arranged in an orderly manner are looped and connected to adjacent left and right warp yarns to form a fabric. In addition, flat knitting knitting methods include flat knitting, rubber knitting, pearl knitting and the like, and warp knitting knitting methods include denby knitting, cord knitting, atlas knitting, chain knitting and the like. As a method of knitting the ground structure of the high pile fabric, weft knitted fabric is preferable from the viewpoint of merchantability and productivity.
 本発明では、パイル繊維の地組織のメリヤスに対する配置としては、地組織のメリヤスを構成する地糸の各ループの全てにパイル繊維が絡むように配置しても良いし、メリヤスを構成する地糸の各ループのうち、ウェール方向及び/又はコース方向においてパイル繊維の絡んでいない部分を有するように配置しても良い。 In the present invention, the pile fibers may be arranged with respect to the knitted fabric of the ground structure so that the pile fibers may be entangled with all the loops of the ground yarn constituting the knitted fabric of the ground structure, or the ground yarn constituting the knitted fabric. Of these loops, the pile fibers may be arranged so as not to be entangled in the wale direction and / or the course direction.
 上記地組織を構成する繊維、すなわち地糸を構成する繊維としては、パイル繊維より軟化点が高い繊維であれば良く、特に限定はない。例えば、ポリエステル繊維やセルロース系繊維等が挙げられる。ポリエステル繊維としては、例えば、ポリエチレンテレフタレート等のポリエステル樹脂を含む樹脂組成物を紡糸して得られる合成繊維等が挙げられる。セルロース系繊維としては、例えば、コットン等が挙げられる。より効果的に、パイル繊維の毛抜けを抑制し、パイル布帛の柔軟性を高める観点から、地糸は、ポリエステル繊維糸であることが好ましい。 The fiber constituting the above ground structure, that is, the fiber constituting the ground yarn is not particularly limited as long as it has a higher softening point than the pile fiber. For example, a polyester fiber, a cellulosic fiber, etc. are mentioned. Examples of the polyester fiber include synthetic fibers obtained by spinning a resin composition containing a polyester resin such as polyethylene terephthalate. Examples of the cellulosic fiber include cotton. The ground yarn is preferably a polyester fiber yarn from the viewpoint of more effectively suppressing the hair loss of the pile fiber and increasing the flexibility of the pile fabric.
 パイル繊維は地組織を構成する繊維よりも軟化点が低く、地糸に絡んだパイル繊維のうち、地組織の裏面において地糸より外側に配置されているパイル繊維は一部又は全部が融着され、上記地組織の表面に立毛するパイル繊維は融着していない。この手段としては、特に限定されないが、パイル布帛の裏面側からパイル繊維の軟化点以上、かつ上記地組織を構成する繊維の軟化点未満の温度で熱圧着することが好ましい。 The pile fibers have a lower softening point than the fibers constituting the ground structure, and among the pile fibers entangled with the ground yarn, some or all of the pile fibers arranged outside the ground yarn on the back surface of the ground texture are fused. In addition, the pile fibers raised on the surface of the ground tissue are not fused. The means is not particularly limited, but it is preferable to perform thermocompression bonding at a temperature not lower than the softening point of the pile fiber and lower than the softening point of the fiber constituting the ground structure from the back side of the pile fabric.
 上記パイル繊維は、アクリル繊維及び/又はアクリル系繊維を含む。これにより、風合いに優れたパイル布帛が得られる。一般的には、熱可塑性繊維をパイル繊維として用い、該熱可塑性繊維の融点又は軟化点以上の温度でポリッシング加工を行うと、パイル布帛の表面のパイル繊維は焦げたり、溶融したりしてしまい、良好な外観と風合いを有するパイル布帛が得られない。また、熱可塑性繊維のガラス転移点以下の温度でポリッシング加工を行うと、パイル布帛の表面のパイル繊維の捲縮が伸びないため良好な外観と風合いを有するパイル布帛が得られない。これに対し、アクリル繊維及びアクリル系繊維の捲縮は融点未満の温度でも伸びる。そして、アクリル繊維及びアクリル系繊維のガラス転移点は約100℃、軟化点は約150~230℃であることから、パイル繊維にアクリル繊維及び/又はアクリル系繊維を用いる場合、ガラス転移点以上、軟化点以下の温度、例えば100~150℃でポリッシング加工を行うことができる。さらに、アクリル繊維及びアクリル系繊維の捲縮は、他素材の繊維と比較して伸びやすい傾向にあることから、良好な外観と風合いを有するパイル布帛が得られる。 The pile fiber includes acrylic fiber and / or acrylic fiber. Thereby, the pile fabric excellent in the texture is obtained. In general, when a thermoplastic fiber is used as a pile fiber and polishing is performed at a temperature equal to or higher than the melting point or softening point of the thermoplastic fiber, the pile fiber on the surface of the pile fabric is burnt or melted. A pile fabric having a good appearance and texture cannot be obtained. In addition, when polishing is performed at a temperature lower than the glass transition point of the thermoplastic fiber, the pile fabric on the surface of the pile fabric does not stretch, and thus a pile fabric having a good appearance and texture cannot be obtained. On the other hand, the crimp of acrylic fiber and acrylic fiber extends even at a temperature below the melting point. And since the glass transition point of acrylic fiber and acrylic fiber is about 100 ° C., and the softening point is about 150 to 230 ° C., when acrylic fiber and / or acrylic fiber is used as the pile fiber, Polishing can be performed at a temperature below the softening point, for example, 100 to 150 ° C. Furthermore, since the crimps of acrylic fibers and acrylic fibers tend to stretch more easily than fibers of other materials, a pile fabric having a good appearance and texture can be obtained.
 また、上記パイル繊維は、本発明の効果を阻害しない範囲内において、ポリエチレンテレフタレート、ポリトリメチレンテレタレート等のポリエステル樹脂を含む樹脂組成物を紡糸してなる合成繊維やその他の繊維を含んでもよい。 In addition, the pile fiber may include a synthetic fiber or other fiber formed by spinning a resin composition containing a polyester resin such as polyethylene terephthalate or polytrimethylene terephthalate within a range that does not impair the effects of the present invention. .
 上記パイル繊維は、地糸を構成する繊維よりも軟化点が低ければ良く特に限定されないが、地糸を構成する繊維と上記パイル繊維の軟化点の差は、好ましくは10℃以上であり、より好ましくは20℃以上、特に好ましくは30℃以上である。10℃以上の差があると、パイル布帛の裏面において地糸より外側に配置された一部又は全部のパイル繊維のみを熱圧着することで融着させ、上記地組織の表面に立毛するパイル繊維を熱圧着させない(融着させない)ことがより容易となる。 The pile fiber is not particularly limited as long as the softening point is lower than the fiber constituting the ground yarn, but the difference between the softening point of the fiber constituting the ground yarn and the pile fiber is preferably 10 ° C or more, and more Preferably it is 20 degreeC or more, Most preferably, it is 30 degreeC or more. If there is a difference of 10 ° C. or more, only a part or all of the pile fibers arranged outside the ground yarn on the back surface of the pile fabric are fused by thermocompression bonding, and the pile fiber is raised on the surface of the ground structure It is easier not to thermocompression-bond (not fuse).
 上記パイル繊維は全量所定の温度で軟化する繊維であっても良く、異なる温度で軟化する繊維の混合繊維であっても良い。そして、パイル繊維が異なる温度で軟化する繊維の混合繊維である場合は、相対的に低い温度で軟化する繊維を20重量%以上混合し、相対的に低い温度で軟化する繊維を熱圧着させることが好ましく、より好ましくは相対的に低い温度で軟化する繊維が50重量%以上混合されている。 The whole pile fiber may be a fiber softened at a predetermined temperature, or may be a mixed fiber of fibers softened at different temperatures. And when the pile fiber is a mixed fiber of fibers that soften at different temperatures, 20% by weight or more of fibers that soften at a relatively low temperature are mixed, and the fibers that soften at a relatively low temperature are thermocompression bonded. More preferably, 50% by weight or more of fibers that soften at a relatively low temperature are mixed.
 本発明の実施形態において、軟化点とは、融解又は分解する前の軟化温度である。例えばアクリル繊維の軟化点は190~232℃、アクリル系繊維の軟化点は150~220℃である(「化学大辞典」、共立出版、727~729頁、1993年6月1日発行。以下「文献値」という。)。 In the embodiment of the present invention, the softening point is a softening temperature before melting or decomposition. For example, the softening point of acrylic fibers is 190 to 232 ° C., and the softening point of acrylic fibers is 150 to 220 ° C. (“Chemical Dictionary”, Kyoritsu Shuppan, pages 727 to 729, issued June 1, 1993, hereinafter “ Literature value ”).
 本発明の実施形態において、アクリル繊維とは、アクリロニトリルを85重量%以上と、その他の共重合可能なモノマーを15重量%以下含む組成物を重合して得られる重合体で構成される繊維をいう。また、アクリル系繊維とは、アクリロニトリルを35重量%以上85重量%未満と、その他の共重合可能なモノマーを15重量%より多く65重量%以下含む組成物を重合して得られる重合体で構成される繊維をいう。 In the embodiment of the present invention, the acrylic fiber refers to a fiber composed of a polymer obtained by polymerizing a composition containing 85% by weight or more of acrylonitrile and 15% by weight or less of other copolymerizable monomers. . The acrylic fiber is composed of a polymer obtained by polymerizing a composition containing acrylonitrile in an amount of 35% by weight to less than 85% by weight and other copolymerizable monomer in an amount of more than 15% by weight and 65% by weight or less. Refers to the fibers that are made.
 本発明の実施形態において、その他の共重合可能なモノマーは、アクリロニトリルと共重合可能なモノマーであれば良く、特に限定されない。例えば、塩化ビニル、臭化ビニル等に代表されるハロゲン化ビニル;塩化ビニリデン、臭化ビニリデン等に代表されるハロゲン化ビニリデン;アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、イソプレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等に代表されるスルホン酸含有モノマー及びこれらのスルホン酸含有モノマーの金属塩類、アミン塩類;アクリル酸及びメタクリル酸の低級アルキルエステル、N-アルキル置換したアミノアルキルエステル、N,N-アルキル置換したアミノアルキルエステル及びグリシジルエステル;アクリルアミド、メタクリルアミド及びそれらのN-アルキル置換体、N,N-アルキル置換体;アクリル酸、メタクリル酸、イタコン酸等に代表されるカルボキシル基含有ビニル単量体及びそれらのナトリウム、カリウム又はアンモニウム塩等のアニオン性ビニル単量体;アクリル酸の4級化アミノアルキルエステル、メタクリル酸の4級化アミノアルキルエステル等に代表されるカチオン性ビニル単量体;ビニル基含有低級アルキルエーテル;酢酸ビニルに代表されるビニル基含有低級カルボン酸エステル;及びスチレン等を挙げることができる。これらのモノマーを一種でも用いてもよく、2種以上を組み合わせて用いてもよい。 In the embodiment of the present invention, the other copolymerizable monomer is not particularly limited as long as it is a monomer copolymerizable with acrylonitrile. For example, vinyl halides typified by vinyl chloride and vinyl bromide; vinylidene halides typified by vinylidene chloride and vinylidene bromide; allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, isoprene sulfonic acid, 2 -Sulphonic acid-containing monomers represented by acrylamido-2-methylpropanesulfonic acid and the like, and metal salts and amine salts of these sulfonic acid-containing monomers; lower alkyl esters of acrylic acid and methacrylic acid, N-alkyl substituted aminoalkyl esters N, N-alkyl substituted aminoalkyl esters and glycidyl esters; acrylamide, methacrylamide and their N-alkyl substituted, N, N-alkyl substituted; carboxyls typified by acrylic acid, methacrylic acid, itaconic acid, etc. Base Vinyl monomers and anionic vinyl monomers such as sodium, potassium or ammonium salts thereof; cationic vinyl typified by quaternized aminoalkyl ester of acrylic acid, quaternized aminoalkyl ester of methacrylic acid, etc. Monomers; vinyl group-containing lower alkyl ethers; vinyl group-containing lower carboxylic acid esters typified by vinyl acetate; and styrene. These monomers may be used alone or in combination of two or more.
 その他の共重合可能なモノマーとしては、ハロゲン化ビニル、ハロゲン化ビニリデン及びスルホン酸含有モノマーの金属塩類からなる群から選ばれる一種以上のモノマーを用いることが好ましく、塩化ビニル、塩化ビニリデン及びスチレンスルホン酸ナトリウムからなる群から選ばれる一種以上のモノマーを用いることがより好ましい。 As the other copolymerizable monomer, it is preferable to use one or more monomers selected from the group consisting of vinyl halides, vinylidene halides and metal salts of sulfonic acid-containing monomers, and vinyl chloride, vinylidene chloride and styrene sulfonic acid are used. It is more preferable to use one or more monomers selected from the group consisting of sodium.
 上記パイル繊維は、アクリル系繊維であることが好ましく、アクリロニトリルを35重量%以上85重量%未満含み、塩化ビニル及び/又は塩化ビニリデンと、その他の共重合可能なモノマーを合計で15重量%より多く65重量%以下含む組成物を重合して得られるアクリル系繊維であることがより好ましい。 The pile fiber is preferably an acrylic fiber, contains 35% by weight to less than 85% by weight of acrylonitrile, and contains a total of more than 15% by weight of vinyl chloride and / or vinylidene chloride and other copolymerizable monomers. An acrylic fiber obtained by polymerizing a composition containing 65% by weight or less is more preferable.
 本発明の実施形態において、地糸を構成する繊維とパイル繊維との種類の組み合わせは、上記の条件を満足すれば、特に限定はないが、以下にその具体例を示す。 In the embodiment of the present invention, the combination of the types of fibers and pile fibers constituting the ground yarn is not particularly limited as long as the above conditions are satisfied, but specific examples thereof are shown below.
 地糸を構成する繊維として、例えばポリエチレンテレフタレート(PET、軟化点約258℃)繊維を用いる場合、パイル繊維としては、アクリル系繊維、又は、アクリル系繊維とアクリル繊維の混合繊維を用いることが好ましい。また、アクリル系繊維としては、好ましくは以下の繊維を用いることができる。 For example, when a polyethylene terephthalate (PET, softening point of about 258 ° C.) fiber is used as a fiber constituting the ground yarn, it is preferable to use an acrylic fiber or a mixed fiber of an acrylic fiber and an acrylic fiber as the pile fiber. . As the acrylic fiber, the following fibers can be preferably used.
 (1)塩化ビニル-アクリロニトリル系繊維(例えば、株式会社カネカ製、商品名「カネカロン」、軟化点150~220℃、文献値)
 (2)塩化ビニリデン-アクリロニトリル系繊維(軟化点150~220℃、文献値)
(1) Vinyl chloride-acrylonitrile fiber (for example, Kaneka Corporation, trade name “Kanekaron”, softening point 150 to 220 ° C., literature value)
(2) Vinylidene chloride-acrylonitrile fiber (softening point 150-220 ° C, literature value)
 地糸を構成する繊維として、例えばコットン(木綿、軟化点なし)繊維を用いる場合、パイル繊維としては、アクリル繊維を用いることが好ましい。また、アクリル繊維としては、例えば、株式会社エクスラン製、商品名「エクスランK691」(軟化点190~232℃、文献値)等が挙げられる。 For example, when a cotton (cotton, no softening point) fiber is used as the fiber constituting the ground yarn, an acrylic fiber is preferably used as the pile fiber. Examples of the acrylic fiber include Exlan Co., Ltd., trade name “Exlan K691” (softening point 190 to 232 ° C., literature value), and the like.
 上記パイル布帛の少なくとも裏面におけるパイル繊維には、アミノ変性シリコーン系柔軟剤、エポキシ変性シリコーン系柔軟剤及びカルボキシル変性シリコーン系柔軟剤からなる群から選ばれる一種以上の有機変性シリコーン系柔軟剤が付着されている。パイル布帛の表面におけるパイル繊維にはアミノ変性シリコーン系柔軟剤等の有機変性シリコーン系柔軟剤が付着してもよく、付着しなくても良い。パイル布帛の柔軟性を向上しつつ、毛抜けをより効果的に抑制する観点から、パイル布帛の裏面のパイル繊維におけるアミノ変性シリコーン系柔軟剤等の有機変性シリコーン系柔軟剤の付着量が、パイル布帛の表面のパイル繊維におけるアミノ変性シリコーン系柔軟剤等の有機変性シリコーン系柔軟剤の付着量より高いことが好ましい。以下において、特に指摘がないかぎり、「有機変性シリコーン系柔軟剤」は、アミノ変性シリコーン系柔軟剤、エポキシ変性シリコーン系柔軟剤及びカルボキシル変性シリコーン系柔軟剤からなる群から選ばれる一種以上を意味する。アミノ変性シリコーン系柔軟剤は、アミノ官能基を含有するポリシロキサンを主成分とする柔軟剤であればよく、特に限定されない。エポキシ変性シリコーン系柔軟剤は、エポキシ官能基を含有するポリシロキサンを主成分とする柔軟剤であればよく、特に限定されない。カルボキシル変性シリコーン系柔軟剤は、エポキシ官能基を含有するポリシロキサンを主成分とする柔軟剤であればよく、特に限定されない。ここで、「主成分」とは、柔軟剤における固形分の全体重量に対して、40重量%以上含まれることが好ましく、50重量%以上含まれることがより好ましく、60重量%以上含まれることがさらに好ましく、70重量%以上含まれることがさらにより好ましい。なお、本発明の効果を阻害しない範囲内において、パイル布帛の裏面及び/又は表面において、パイル繊維には有機変性シリコーン系柔軟剤以外の柔軟剤が付着されてもよい。 One or more organically modified silicone softeners selected from the group consisting of amino-modified silicone softeners, epoxy-modified silicone softeners, and carboxyl-modified silicone softeners are attached to the pile fibers on at least the back surface of the pile fabric. ing. An organically modified silicone softener such as an amino-modified silicone softener may or may not adhere to the pile fibers on the surface of the pile fabric. From the viewpoint of more effectively suppressing the hair loss while improving the flexibility of the pile fabric, the adhesion amount of the organically modified silicone softener such as an amino-modified silicone softener on the pile fiber on the back surface of the pile fabric is It is preferably higher than the adhesion amount of organically modified silicone softeners such as amino-modified silicone softeners on pile fibers on the surface of the fabric. In the following, unless otherwise specified, “organically modified silicone softener” means one or more selected from the group consisting of amino-modified silicone softener, epoxy-modified silicone softener, and carboxyl-modified silicone softener. . The amino-modified silicone softener is not particularly limited as long as it is a softener mainly composed of polysiloxane containing an amino functional group. The epoxy-modified silicone softener is not particularly limited as long as it is a softener mainly composed of polysiloxane containing an epoxy functional group. The carboxyl-modified silicone softener is not particularly limited as long as it is a softener mainly composed of polysiloxane containing an epoxy functional group. Here, the “main component” is preferably contained in an amount of 40% by weight or more, more preferably 50% by weight or more, and more preferably 60% by weight or more based on the total weight of the solid content in the softener. Is more preferable, and even more preferably 70% by weight or more. In addition, in the range which does not inhibit the effect of this invention, softening agents other than an organic modified silicone softening agent may adhere to the pile fiber in the back surface and / or surface of a pile fabric.
 有機変性シリコーン系柔軟剤は、パイル布帛の柔軟性を高めつつ、パイル繊維の毛抜けをより効果的に抑制する観点から、アミノ変性シリコーン系柔軟剤であることが好ましい。アミノ変性シリコーン系柔軟剤としては、特に限定されず、一般的な繊維の柔軟仕上げ剤として用いる、アミノ変性ポリシロキサンを乳化等の方法で分散させた溶液を用いることができる。ここで用いられるアミノ変性ポリシロキサンは、アミノ官能基が主鎖であるポリシロキサンの片末端もしくは両末端に付いていてもよく、側鎖についていてもよく、末端と側鎖の両方についていても良い。アミノ官能基の構造としては、特に限定されないが、例えば、モノアミンタイプ、ジアミンタイプ、トリアミンタイプ、ポリアミンタイプなどが挙げられる。アミノ変性シリコーン柔軟剤としては、特に限定されないが、例えば、松本油脂製薬株式会社製の「松本シリコンソフナーN-20」)、信越化学工業株式会社製「POLON-MF-14」、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製「TSF4702」などの市販のものを用いることができる。 The organic-modified silicone softener is preferably an amino-modified silicone softener from the viewpoint of more effectively suppressing pile fiber hair loss while enhancing the flexibility of the pile fabric. The amino-modified silicone softener is not particularly limited, and a solution in which amino-modified polysiloxane used as a general fiber softener is dispersed by a method such as emulsification can be used. The amino-modified polysiloxane used here may be attached to one end or both ends of a polysiloxane having an amino functional group as the main chain, and may be attached to both side chains or both ends and side chains. . Although it does not specifically limit as a structure of an amino functional group, For example, a monoamine type, a diamine type, a triamine type, a polyamine type etc. are mentioned. The amino-modified silicone softener is not particularly limited. For example, “Matsumoto Silicone Softener N-20” manufactured by Matsumoto Yushi Seiyaku Co., Ltd., “POLON-MF-14” manufactured by Shin-Etsu Chemical Co., Ltd., Momentive Performance Commercially available products such as “TSF4702” manufactured by Materials Japan GK can be used.
 パイル布帛の裏面のパイル繊維の地糸より外側に配置されている少なくとも一部のパイル繊維が融着しているパイル布帛において、一般的に、パイル布帛のバックコーティングに用いるアクリル酸エステル系樹脂等のバッキング樹脂をパイル布帛の裏面に付着させることで、パイル布帛の裏面の柔軟性を高めているが、本発明では、パイル布帛の裏面のパイル繊維にアミノ変性シリコーン系柔軟剤等の有機変性シリコーン系柔軟剤を付着させることで、パイル布帛の裏面にバッキング樹脂を付着することなく、パイル布帛の柔軟性を高めることができる。また、パイル布帛の裏面にバッキング樹脂を付着させず、パイル布帛の裏面のパイル繊維に有機変性シリコーン系柔軟剤を付着させることで、パイル布帛裏面の触感(柔軟性、低摩擦性)が良好になる。 In the pile fabric in which at least a part of the pile fibers arranged outside the pile fiber ground yarn on the back surface of the pile fabric is fused, the acrylic ester resin or the like generally used for the back coating of the pile fabric, etc. Although the flexibility of the back surface of the pile fabric is enhanced by attaching the backing resin to the back surface of the pile fabric, in the present invention, an organically modified silicone such as an amino-modified silicone softener is added to the pile fiber on the back surface of the pile fabric. By attaching the system softener, the flexibility of the pile fabric can be increased without attaching a backing resin to the back surface of the pile fabric. In addition, by attaching an organically modified silicone softener to the pile fiber on the back side of the pile fabric without attaching the backing resin to the back side of the pile fabric, the touch feeling (flexibility, low friction) on the back side of the pile fabric is good. Become.
 上記パイル布帛の裏面におけるパイル繊維には、パイル繊維100重量部に対して、上記有機変性シリコーン系柔軟剤が0.4重量部以上付着されていればよいが、パイル布帛の裏面におけるパイル繊維100重量部に対して、上記有機変性シリコーン系柔軟剤の付着量は0.4~2.5重量部であることが好ましく、0.4~2.0重量部であることがより好ましく、0.4~1.5重量部であることがさらに好ましい。有機変性シリコーン系柔軟剤の付着量が上記範囲内であると、より効果的に、パイル布帛の柔軟性を高めつつ、パイル繊維の毛抜けを抑制することができる。パイル繊維におけるアミノ変性シリコーン系柔軟剤などの有機変性シリコーン系柔軟剤の付着量は、例えば、蛍光X線分析法で求めることができる。例えば、アミノ変性シリコーン系柔軟剤の付着量は、波長分散型の蛍光X線分析装置を用いた蛍光X線分析法により、Si元素の定量を行い、検量線により算出することができる。具体的には、蛍光X線分析機RIX3100型(株式会社リガク社製)を用い、Rh管球(管電流50mA-管電圧50kV)、測定径30mmφ、分光結晶ペンタエリトリトール(PET)、2θ角106~112°の条件でSi元素の分析を行い、まず、アミノ変性シリコーン系柔軟剤の含有量既知の試料を用いて検量線を作成する。次にパイル布帛裏面の地糸以外の部分(パイル繊維)等の測定対象繊維をプレス(錠剤成型機)で加圧成形することにより得た測定用サンプル(厚み3mm、直径30mm)にてSi元素の分析を行う。得られたSi検出カウントを検量線式に代入することで、アミノ変性シリコーン系柔軟剤の付着量を算出することができる。 The pile fiber on the back surface of the pile fabric may have 0.4 parts by weight or more of the organically modified silicone softener attached to 100 parts by weight of the pile fiber. The adhesion amount of the organically modified silicone softener is preferably 0.4 to 2.5 parts by weight, more preferably 0.4 to 2.0 parts by weight with respect to parts by weight. More preferably, it is 4 to 1.5 parts by weight. When the adhesion amount of the organic-modified silicone softener is within the above range, the pile fiber can be prevented from coming loose while effectively increasing the flexibility of the pile fabric. The adhesion amount of organically modified silicone softeners such as amino-modified silicone softeners on pile fibers can be determined, for example, by fluorescent X-ray analysis. For example, the adhesion amount of the amino-modified silicone softener can be calculated from a calibration curve by quantifying Si element by a fluorescent X-ray analysis method using a wavelength dispersive X-ray fluorescence analyzer. Specifically, using an X-ray fluorescence analyzer RIX3100 (manufactured by Rigaku Corporation), Rh tube (tube current 50 mA-tube voltage 50 kV), measurement diameter 30 mmφ, spectral crystal pentaerythritol (PET), 2θ angle 106 The Si element is analyzed under a condition of ˜112 °, and a calibration curve is first created using a sample whose content of the amino-modified silicone softener is known. Next, Si element was measured in a measurement sample (thickness 3 mm, diameter 30 mm) obtained by pressure-forming a measurement target fiber such as a portion (pile fiber) other than the ground yarn on the back of the pile fabric with a press (tablet molding machine). Perform an analysis. By substituting the obtained Si detection count into the calibration curve equation, the adhesion amount of the amino-modified silicone softener can be calculated.
 なお、本発明の効果を損なわない範囲で、バッキング樹脂を使用することができる。上記バッキング樹脂としては、一般的にパイル布帛のバックコーティングに用いるものを用いればよく、特に限定されない。例えば、アクリル酸エステル系樹脂、ポリウレタン系樹脂等を使用することができる。また、上記バッキング樹脂を使用する場合は、後述のパイル布帛の製造方法において、熱圧着工程の前にパイル布帛の裏面に含浸させることが好ましい。バッキング樹脂の含浸は、アクリル酸エステル系樹脂、ポリウレタン系樹脂等の樹脂のラテックス、エマルジョン、ディスパージョン等を用いて行うことができる。上記バッキング樹脂は、一種で用いてもよく、二種以上を組み合わせて用いてもよい。 A backing resin can be used as long as the effects of the present invention are not impaired. As said backing resin, what is generally used for the back coating of a pile fabric should just be used, and it does not specifically limit. For example, an acrylic ester resin, a polyurethane resin, or the like can be used. Moreover, when using the said backing resin, in the manufacturing method of the pile fabric mentioned later, it is preferable to impregnate the back surface of a pile fabric before a thermocompression bonding process. The impregnation of the backing resin can be performed using a latex, emulsion, dispersion, or the like of a resin such as an acrylic ester resin or a polyurethane resin. The said backing resin may be used by 1 type, and may be used in combination of 2 or more type.
 以下、図面を用いて本発明のパイル布帛を説明する。図1は本発明のパイル布帛の一実施形態のハイパイル布帛における地糸と地糸に絡むパイル繊維の位置関係を説明する模式図である。図1に示すように、ハイパイル布帛5は、メリヤスのループ6を構成する地糸1と、地糸1のループ6に絡み地組織(ハイパイル布帛5)の表面7に開繊され立毛パイル3を形成しているパイル繊維2で構成される。また、地組織(ハイパイル布帛5)の裏面8において、地糸1の外側に配置されているパイル繊維2の少なくとも一部は熱圧着されて熱圧着部4を構成し、地糸1に熱圧着されている。パイル布帛の裏面に付着している有機変性シリコーン系柔軟剤は省略している。なお、図1は、概ね、地糸1の下側にパイル繊維2を重ねるような位置関係を模式的に示しているが、本図において地糸1の外側とは、概ね地糸1の下側の部分を意味する。 Hereinafter, the pile fabric of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining the positional relationship between a ground yarn and pile fibers entangled with the ground yarn in a high pile fabric according to an embodiment of the pile fabric of the present invention. As shown in FIG. 1, the high pile fabric 5 is spread on the surface 7 of the ground fabric (high pile fabric 5) entangled with the ground yarn 1 constituting the knitted loop 6 and the loop 6 of the ground yarn 1. The pile fiber 2 is formed. In addition, on the back surface 8 of the ground structure (high pile fabric 5), at least a part of the pile fibers 2 arranged outside the ground yarn 1 is thermocompression bonded to form the thermocompression bonding portion 4, and the thermocompression bonding to the ground yarn 1 is performed. Has been. The organically modified silicone softener adhering to the back surface of the pile fabric is omitted. Note that FIG. 1 schematically shows a positional relationship in which pile fibers 2 are generally stacked on the lower side of the ground yarn 1, but in this figure, the outside of the ground yarn 1 is generally below the ground yarn 1. Means the side part.
 以下、本発明のパイル布帛の製造方法を説明する。 Hereinafter, the manufacturing method of the pile fabric of this invention is demonstrated.
 まず、アクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維を含むパイル繊維と、上記パイル繊維より軟化点が高い地糸を用い、常法により、地組織と、上記地組織を構成する地糸に絡みかつ上記地組織の表面に立毛するパイル繊維を含むパイル布帛を作製する。パイル繊維は、好ましくはアクリル繊維及び/又はアクリル系繊維で構成される。この工程において、上記パイル繊維として、有機変性シリコーン系柔軟剤を付着したパイル繊維を用いた場合は、後述するパイル布帛の裏面に上記アミノ変性シリコーン系柔軟剤などの有機変性シリコーン系柔軟剤を付着させる工程を省略することもできるし、更に有機変性シリコーン系柔軟剤を塗布しても良い。パイル繊維へのアミノ変性シリコーン系柔軟剤などの有機変性シリコーン系柔軟剤の付着方法は、特に限定されず、公知の方法を適宜採用すればよい。例えば、パイル繊維を有機変性シリコーン系柔軟剤に浸漬してもよく、パイル繊維に有機変性シリコーン系柔軟剤を噴霧塗布してもよい。工程の簡便性から、パイル繊維への有機変性シリコーン系柔軟剤の付着は、染色と同時に行うことができる。もちろん、染色とは別工程で行ってもよいが、染色と別工程で行う場合は、パイル布帛の柔軟性を向上させる観点から、染色工程後に有機変性シリコーン系柔軟剤を付着させることが好ましい。上記有機変性シリコーン系柔軟剤は、一種で用いてもよく、二種以上を組み合わせて用いてもよい。なお、パイル布帛の原料として市販の有機変性シリコーン系柔軟剤(アミノ変性シリコーン系柔軟剤など)が付着している繊維を用いてもよい。市販の有機変性シリコーン系柔軟剤が付着している繊維をパイル繊維として用いる場合、パイル布帛を製造する前に、さらに繊維に有機変性シリコーン系柔軟剤を付着させてもよい。 First, using a pile fiber containing at least one fiber selected from the group consisting of an acrylic fiber and an acrylic fiber, and a ground yarn having a softening point higher than that of the pile fiber, a ground structure and the ground structure are configured by a conventional method. A pile fabric including pile fibers that are entangled with the ground yarn to be raised and raised on the surface of the ground structure is produced. The pile fiber is preferably composed of acrylic fiber and / or acrylic fiber. In this step, when a pile fiber to which an organically modified silicone softener is attached is used as the pile fiber, an organically modified silicone softener such as the above amino modified silicone softener is attached to the back surface of the pile fabric described later. The process to make can also be abbreviate | omitted and you may apply | coat an organic modified silicone type softening agent further. The method for attaching an organically modified silicone softener such as an amino-modified silicone softener to the pile fiber is not particularly limited, and a known method may be appropriately employed. For example, the pile fiber may be dipped in an organically modified silicone softener, or the organically modified silicone softener may be sprayed onto the pile fiber. Due to the simplicity of the process, the adhesion of the organically modified silicone softener to the pile fiber can be performed simultaneously with the dyeing. Of course, it may be carried out in a separate process from dyeing, but when it is carried out in a separate process from dyeing, it is preferable to attach an organically modified silicone softener after the dyeing process from the viewpoint of improving the flexibility of the pile fabric. The said organic modified silicone type softening agent may be used by 1 type, and may be used in combination of 2 or more type. In addition, you may use the fiber to which the commercially available organic modified silicone softener (Amino modified silicone softener etc.) has adhered as a raw material of a pile fabric. When using a fiber to which a commercially available organically modified silicone softener is attached as a pile fiber, an organically modified silicone softener may be further attached to the fiber before producing the pile fabric.
 次に、パイル布帛の裏面に上記アミノ変性シリコーン系柔軟剤などの有機変性シリコーン系柔軟剤を付着させる。これにより、パイル布帛の裏面において、パイル繊維に有機変性シリコーン系柔軟剤が付着されることになる。パイル布帛の裏面へのアミノ変性シリコーン系柔軟剤などの有機変性シリコーン系柔軟剤の付着方法は、特に限定されず、公知の方法を適宜採用すればよい。例えば、パイル布帛の裏面に有機変性シリコーン系柔軟剤を含浸させてもよく、パイル布帛の裏面に有機変性シリコーン系柔軟剤を噴霧塗布してもよい。上記有機変性シリコーン系柔軟剤は、一種で用いてもよく、二種以上を組み合わせて用いてもよい。 Next, an organically modified silicone softener such as the amino-modified silicone softener is adhered to the back surface of the pile fabric. As a result, the organically modified silicone softener is attached to the pile fiber on the back surface of the pile fabric. The method for adhering an organically modified silicone softener such as an amino-modified silicone softener to the back surface of the pile fabric is not particularly limited, and a known method may be adopted as appropriate. For example, the back surface of the pile fabric may be impregnated with an organically modified silicone softener, or the back surface of the pile fabric may be spray-coated with the organically modified silicone softener. The said organic modified silicone type softening agent may be used by 1 type, and may be used in combination of 2 or more type.
 柔軟剤は、通常、繊維の表面に柔軟性や滑り性などを付与するが、本願では、驚くことに、アクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維をパイル繊維とし、パイル布帛の裏面においてパイル繊維の地糸より外側に配置されているパイル繊維のうち少なくとも一部のパイル繊維を融着させるパイル布帛において、上述した有機変性シリコーン系柔軟剤をパイル布帛の裏面におけるパイル繊維に、パイル繊維100重量部に対して0.4重量部以上付着させることで、パイル布帛の柔軟性を向上しつつ、パイル繊維の毛抜けも抑制することができる。その理由は明確ではないが、パイル布帛の裏面におけるパイル繊維に有機変性シリコーン系柔軟剤を付着させ、後述するように、パイル布帛の裏面側を上記パイル繊維の軟化点以上かつ上記地組織を構成する繊維の軟化点未満の温度で熱圧着することで、パイル布帛の裏面においてパイル繊維に付着している有機変性シリコーン系柔軟剤における末端アミノ基等の官能基が架橋されるためであると推測される。パイル布帛の柔軟性を向上しつつ、パイル繊維の毛抜けをより効果的に抑制する観点から、有機変性シリコーン系柔軟剤が付着していないパイル繊維又は有機変性シリコーン系柔軟剤が付着されているパイル繊維を用いてパイル布帛を作製した後、パイル布帛の裏面側に有機変性シリコーン系柔軟剤を付着させることが好ましい。 The softener usually imparts flexibility and slipperiness to the surface of the fiber, but in the present application, surprisingly, at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber is used as the pile fiber, In the pile fabric in which at least a part of the pile fibers arranged outside the pile fiber ground yarn is fused on the back surface of the fabric, the above-mentioned organically modified silicone softener is piled on the back surface of the pile fabric. Further, by attaching 0.4 part by weight or more to 100 parts by weight of the pile fiber, the pile fiber can be prevented from being loosened while improving the flexibility of the pile fabric. The reason for this is not clear, but an organically modified silicone softener is attached to the pile fiber on the back side of the pile fabric, and the back side of the pile fabric constitutes the above-mentioned ground texture above the softening point of the pile fiber, as will be described later. Presumed to be because functional groups such as terminal amino groups in the organically modified silicone softener adhering to the pile fiber on the back surface of the pile fabric are cross-linked by thermocompression bonding at a temperature lower than the softening point of the fiber. Is done. From the viewpoint of more effectively suppressing pile fiber hair removal while improving the flexibility of the pile fabric, the pile fiber or the organically modified silicone softener to which the organically modified silicone softener is not attached is attached. After producing a pile fabric using a pile fiber, it is preferable to adhere an organically modified silicone softener to the back side of the pile fabric.
 次に、上記パイル布帛の裏面側を上記パイル繊維の軟化点以上かつ上記地組織を構成する繊維の軟化点未満の温度で熱圧着する。これにより、上記地組織の表面に立毛するパイル繊維は融着させず、上記地組織の裏面において上記地組織を構成する地糸より外側に配置されているパイル繊維の一部又は全部を融着させる。熱圧着処理は、例えば、パイル布帛を裏面が加熱ロール又はホットプレートに接触するように配置し、ゴムロールなどにより加圧することにより行うことができる。加熱ロール又はホットプレートを用いる場合、短時間の熱圧着処理を行うことができ、地組織の裏面において、地糸より外側に配置されているパイル繊維の少なくとも一部を熱圧着することができる。そして、パイル布帛の表面のパイル繊維が溶融するほどの加熱はしないため、地組織の表面に立毛するパイル繊維は溶融しない。 Next, the back side of the pile fabric is thermocompression bonded at a temperature not lower than the softening point of the pile fiber and lower than the softening point of the fiber constituting the ground structure. As a result, pile fibers raised on the surface of the ground structure are not fused, and a part or all of the pile fibers arranged outside the ground yarn constituting the ground structure is fused on the back surface of the ground structure. Let The thermocompression treatment can be performed, for example, by placing a pile fabric so that the back surface is in contact with a heating roll or a hot plate, and pressurizing with a rubber roll or the like. When a heating roll or a hot plate is used, a short-time thermocompression treatment can be performed, and at least a part of the pile fibers arranged outside the ground yarn can be thermocompression bonded on the back surface of the ground structure. And since the heating which does not melt the pile fiber on the surface of the pile fabric is not performed, the pile fiber raised on the surface of the ground texture is not melted.
 上記パイル布帛の裏面側から熱圧着処理する際及び/又は熱圧着処理した後、パイル布帛の表面に立毛するパイル繊維側は冷却することが好ましい。また、上記パイル布帛の裏面側から熱圧着処理した後、上記パイル布帛の裏面側を冷却することが好ましい。上記冷却手段として、パイル布帛の表面及び/又は裏面を水温50℃以下の水を通水させた冷却ロールで冷却することが好ましい。上記冷却ロールに通水させる水の水温は、冷却効率及び生産性の観点から、好ましくは10~40℃であり、より好ましくは10~35℃であり、さらに好ましくは15~30℃である。このような冷却を行うと、パイル布帛の寸法安定性が保持でき、かつパイル繊維への熱ダメージも軽減させることができる。 When the thermocompression treatment is performed from the back side of the pile fabric and / or after the thermocompression treatment, the pile fiber side raised on the surface of the pile fabric is preferably cooled. Moreover, it is preferable to cool the back surface side of the pile fabric after performing the thermocompression treatment from the back surface side of the pile fabric. As the cooling means, it is preferable to cool the surface and / or back surface of the pile fabric with a cooling roll in which water having a water temperature of 50 ° C. or less is passed. The water temperature of water passed through the cooling roll is preferably 10 to 40 ° C., more preferably 10 to 35 ° C., and further preferably 15 to 30 ° C. from the viewpoint of cooling efficiency and productivity. When such cooling is performed, the dimensional stability of the pile fabric can be maintained, and thermal damage to the pile fiber can be reduced.
 本発明のパイル布帛の製造方法の一例における熱圧着処理を、図を用いてさらに詳細に説明する。 The thermocompression treatment in an example of the method for producing a pile fabric of the present invention will be described in more detail with reference to the drawings.
 図2は、パイル布帛を裏面側から所定温度で熱圧着処理する工程を模式的に示した製造工程図である。熱圧着処理、具体的には熱圧着処理に使用する加工装置10は、ポリテトラフルオロエチレン等のフッ素樹脂をコーティングした加熱ロール11と、加熱ロール11に加圧し、内部に30℃の冷却水が通水する冷却ゴムロール12と、冷却ゴムロール12に加圧し、内部に30℃の冷却水が通水する金属冷却ロール13、内部に30℃の冷却水が通水する金属冷却ロール14と、ガイドロール15を含む。パイル布帛原反(有機変性シリコーン系柔軟剤を付着させたハイパイル布帛)18は容器16から導き出され、裏面18bが加熱ロール11に接触し、表面(立毛パイル側)18aが冷却ゴムロール12に接触するように供給する。また、熱圧着処理された後、裏面18bは、金属冷却ロール14で冷却される。加工の終了したパイル布帛19は、容器17に収納される。なお、熱圧着処理は、図2に示した加工装置に限定されず、図2に示した加工装置の一部の構成を変更した装置、ホットプレート、及びその他の装置を用いて行っても良い。例えば、冷却ゴムロール12の代わりに冷却しないゴムロールを用いることが可能であり、金属冷却ロール13は省略しても良い。熱圧着処理において、加熱温度はパイル繊維の軟化点以上かつ地糸を構成する繊維の軟化点未満であれば良く、加圧力は線圧で0.01~100Kgf/cm(0.98KPa~9.8MPa)、原反の供給速度は0.1~20m/分、ヒーター(加熱ロールなど)接触時間は1~60秒間であることが好ましい。また、パイル布帛の表面のダメージを軽減するという観点から、加圧力は線圧で2.0~50Kgf/cm(0.20~4.9MPa)、ヒーター接触時間は1~10秒間であることがより好ましい。 FIG. 2 is a manufacturing process diagram schematically showing a process of thermocompression-bonding the pile fabric from the back side at a predetermined temperature. The processing apparatus 10 used for the thermocompression treatment, specifically, the thermocompression treatment, pressurizes the heating roll 11 coated with a fluororesin such as polytetrafluoroethylene, and the heating roll 11, and contains 30 ° C. cooling water inside. Cooling rubber roll 12 that passes water, metal cooling roll 13 that pressurizes cooling rubber roll 12 and allows 30 ° C. cooling water to flow inside, metal cooling roll 14 that allows 30 ° C. cooling water to flow inside, and guide roll 15 is included. The pile fabric original fabric (high pile fabric to which an organically modified silicone softener is attached) 18 is led out of the container 16, the back surface 18 b comes into contact with the heating roll 11, and the front surface (napped pile side) 18 a comes into contact with the cooling rubber roll 12. To supply. Further, after the thermocompression treatment, the back surface 18 b is cooled by the metal cooling roll 14. The pile fabric 19 that has been processed is stored in the container 17. The thermocompression treatment is not limited to the processing apparatus shown in FIG. 2, and may be performed using an apparatus, a hot plate, and other apparatuses in which a part of the processing apparatus shown in FIG. 2 is changed. . For example, instead of the cooling rubber roll 12, a rubber roll that is not cooled can be used, and the metal cooling roll 13 may be omitted. In the thermocompression treatment, the heating temperature may be not less than the softening point of the pile fiber and less than the softening point of the fiber constituting the ground yarn, and the applied pressure may be 0.01-100 kgf / cm 2 (0.98 KPa-9) in terms of linear pressure. 0.8 MPa), the feed rate of the original fabric is preferably 0.1 to 20 m / min, and the contact time of the heater (heating roll or the like) is preferably 1 to 60 seconds. Also, from the viewpoint of reducing damage to the surface of the pile fabric, the applied pressure is a linear pressure of 2.0 to 50 kgf / cm 2 (0.20 to 4.9 MPa), and the heater contact time is 1 to 10 seconds. Is more preferable.
 ハイパイル布帛の場合、熱圧着処理の際、ハイパイル布帛がウェール方向に収縮することから、熱圧着処理後、ウェール方向に延伸処理しても良い。 In the case of a high pile fabric, since the high pile fabric contracts in the wale direction during the thermocompression treatment, it may be stretched in the wale direction after the thermocompression treatment.
 延伸処理としては、ハイパイル布帛のウェール方向の両側端部(布耳部)を把持して、ウェール方向長さの延伸率が5~20%程度になるようにウェール方向に引張ることが好ましく、より好ましくは7~15%程度、さらに好ましくは8~12%程度である。ウェール方向長さの延伸率は、下記式で示されるものである。
ウェール方向長さの延伸率(%)={(延伸後のウェール方向長さ-延伸前のウェール方向長さ)/延伸前のウェール方向長さ}×100
As the stretching treatment, it is preferable to grip both ends (cloth ears) of the high pile fabric in the wale direction and pull in the wale direction so that the stretch ratio of the length in the wale direction is about 5 to 20%. Preferably it is about 7 to 15%, more preferably about 8 to 12%. The stretch ratio of the length in the wale direction is represented by the following formula.
Stretch ratio (%) of length in the wale direction = {(length in the wale direction after stretching−length in the wale direction before stretching) / length in the wale direction before stretching} × 100
 また、延伸処理の際に加熱する場合は、90~150℃で延伸処理することが好ましく、100~130℃がより好ましく、105~120℃がさらに好ましい。 Further, when heating is performed during the stretching treatment, the stretching treatment is preferably performed at 90 to 150 ° C., more preferably 100 to 130 ° C., and further preferably 105 to 120 ° C.
 このような延伸処理は、例えばテンター等の公知の装置を用いて行うことができる。テンターは、一般的には、所定の温度で加熱しながら、布帛の両布耳部を保持して布帛を所定の幅に拡幅して熱セットするのに用いられるが、本発明では、上記のように、加熱しても加熱しなくても良い。また、テンターでは、布帛の布耳部を保持する方式としてクリップテンター方式とピンテンター方式があり、いずれを採用しても良いが、工程の安定性及び/又は生産性の観点から、ピンテンター方式を採用するのが好ましい。 Such a stretching treatment can be performed using a known device such as a tenter. The tenter is generally used to heat and set the fabric to a predetermined width while holding both the fabric ears while heating at a predetermined temperature. As such, it may be heated or not. In addition, in the tenter, there are a clip tenter method and a pin tenter method as a method for holding the cloth ear part of the fabric, either of which can be adopted, but from the viewpoint of process stability and / or productivity, the pin tenter method is adopted. It is preferable to do this.
 上記延伸処理を、ハイパイル布帛を加熱しながら行う場合は、ハイパイル布帛の表面にダメージを与えないよう、必要最小限の温度、必要最小限の風量で行うことが好ましい。 When the above stretching treatment is performed while heating the high pile fabric, it is preferably performed at the minimum necessary temperature and the minimum necessary air volume so as not to damage the surface of the high pile fabric.
 本発明のパイル布帛は、毛抜けが抑制されており、後述する方法で測定した平均毛抜け量が4.0g/m以下であることが好ましく、3.0g/m以下であることがより好ましく、2.0g/m以下であることがさらに好ましい。また、後述する方法で測定した最大毛抜け量が5.0g/m以下であることが好ましく、4.0g/m以下であることがより好ましく、3.0g/m以下であることがさらに好ましい。 The pile fabric of the present invention has suppressed hair loss, and the average amount of hair loss measured by the method described below is preferably 4.0 g / m 2 or less, and preferably 3.0 g / m 2 or less. More preferably, it is more preferably 2.0 g / m 2 or less. Further, the maximum amount of hair loss measured by the method described later is preferably 5.0 g / m 2 or less, more preferably 4.0 g / m 2 or less, and 3.0 g / m 2 or less. Is more preferable.
 本発明のパイル布帛は、柔軟性に優れる観点から、後述する方法で測定した90°距離が50mm以下であることが好ましく、45mm以下であることがより好ましい。 From the viewpoint of excellent flexibility, the pile fabric of the present invention preferably has a 90 ° distance measured by the method described below of 50 mm or less, more preferably 45 mm or less.
 以下実施例により本発明をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.
 <測定方法>
1.毛抜け量
 図3に示すように、パイル布帛21(長さ280mm、幅210mm)を斜面の角度aが30°になるように斜めに配置されている金属板22の斜面上に毛並み方向が斜面上方へ向かうように配置し、100mmの長さにカットした粘着テープ23(スリーエム社製、Scotch No.850、25mm幅)をパイル布帛21の表面に張り付け、粘着テープ23の上から1.5g/cmの荷重を1分間かけた(図示なし)後、パイル布帛21から粘着テープ23を斜面上部に配置されている端部から連続的に剥離した。粘着テープに付着した毛の重量(g)を計測し、粘着テープ面積当たりの毛の重量(g/m)を算出し、毛抜け量とした。パイル布帛の任意の3箇所の毛抜け量を上記のように計測・算出し、平均毛抜け量と最大毛抜け量を求めた。
<Measurement method>
1. 3. Hair loss amount As shown in FIG. 3, the pile fabric 21 (length: 280 mm, width: 210 mm) is slanted on the slope of the metal plate 22 that is disposed obliquely so that the slope angle a is 30 °. Adhesive tape 23 (manufactured by 3M, Scotch No. 850, 25 mm width), which is arranged to face upward and cut to a length of 100 mm, is attached to the surface of the pile fabric 21, and 1.5 g / After applying a load of cm 2 for 1 minute (not shown), the adhesive tape 23 was continuously peeled from the pile fabric 21 from the end located at the upper part of the slope. The weight (g) of the hair adhering to the adhesive tape was measured, and the weight (g / m 2 ) of the hair per adhesive tape area was calculated and used as the amount of hair loss. The amount of hair loss at any three locations of the pile fabric was measured and calculated as described above, and the average amount of hair loss and the maximum amount of hair loss were determined.
2.毛抜け評価
 毛抜け量に基いて、以下のように4段階のランクで毛抜け評価を行った。S、A評価及びB評価を合格とし、C評価を不合格とした。
S:平均毛抜け量が2.0g/m以下であり、かつ、最大毛抜け量が3.0g/m以下である。
A:平均毛抜け量が2.0g/m超3.0g/m以下であり、かつ、最大毛抜け量が3.0g/m超4.0g/m以下である。
B:平均毛抜け量が3.0g/m超4.0g/m以下であり、かつ、最大毛抜け量が4.0g/m超5.0g/m以下である。
C:平均毛抜け量が4.0g/mを超えており、かつ、最大毛抜け量が5.0g/mを超えている。(不合格レベル)
2. Evaluation of hair loss Based on the amount of hair loss, hair loss was evaluated in four ranks as follows. S, A evaluation, and B evaluation were set as the pass, and C evaluation was set as the failure.
S: The average hair loss is 2.0 g / m 2 or less, and the maximum hair loss is 3.0 g / m 2 or less.
A: The average hair loss is more than 2.0 g / m 2 and not more than 3.0 g / m 2 , and the maximum hair loss is more than 3.0 g / m 2 and not more than 4.0 g / m 2 .
B: The average hair loss is more than 3.0 g / m 2 and not more than 4.0 g / m 2 and the maximum hair loss is more than 4.0 g / m 2 and not more than 5.0 g / m 2 .
C: The average amount of hair loss exceeds 4.0 g / m 2 and the maximum amount of hair loss exceeds 5.0 g / m 2 . (Failed level)
 (パイル布帛の柔軟性)
(1)パイル布帛を縦方向へ20mm幅に切り、長さ200 mm、幅20mmの生地片を得た。
(2)図4Aに示しているように、パイル布帛の生地片31をメラミン樹脂製の水平な台32(幅600mm、長さ600mm)の上に配置した。次に、パイル布帛の毛並み方向に沿って、パイル布帛の生地片31を水平な台32から少しずつ水平な台32の外へスライドさせた。
(3)図4Bに示しているように、水平な台32から外に出たパイル布帛の生地片31の先端に引いた接線41と、水平な台32との角度aが90°になるまでパイル布帛の生地片31をスライドさせた。
(4)パイル布帛の生地片31が水平な台32からスライドした距離L(90°距離)を計測し、下記の基準で柔軟性を評価した。
A:90°距離が50mm未満である(パイル布帛がかなり柔らかい)
B:90°距離が50mm以上55mm以下である(パイル布帛が柔らかい)
C:90°距離が55mmを超えている(パイル布帛が硬い)
(Pile fabric flexibility)
(1) The pile fabric was cut into a width of 20 mm in the vertical direction to obtain a fabric piece having a length of 200 mm and a width of 20 mm.
(2) As shown in FIG. 4A, a pile fabric dough piece 31 was placed on a horizontal base 32 (width 600 mm, length 600 mm) made of melamine resin. Next, the fabric pieces 31 of the pile fabric were slid little by little from the horizontal table 32 to the outside of the horizontal table 32 along the line direction of the pile fabric.
(3) As shown in FIG. 4B, until the angle a between the tangent line 41 drawn to the tip of the fabric piece 31 of the pile fabric that has come out of the horizontal base 32 and the horizontal base 32 reaches 90 °. The fabric piece 31 of the pile fabric was slid.
(4) The distance L (90 ° distance) by which the fabric piece 31 of the pile fabric slid from the horizontal base 32 was measured, and the flexibility was evaluated according to the following criteria.
A: 90 ° distance is less than 50 mm (pile fabric is quite soft)
B: 90 ° distance is 50 mm or more and 55 mm or less (pile fabric is soft)
C: 90 ° distance exceeds 55 mm (pile fabric is hard)
 <繊維>
1.パイル繊維
(1)商品名「カネカロン(登録商標)ELP」(株式会社カネカ製):アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度27dtex、カット長102mm(以下において、単にELPと記す。)、アミノ変性シリコーン系柔軟剤の付着無し。
(2)商品名「カネカロン(登録商標)AH」(株式会社カネカ製):アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度7.8dtex、カット長76mm(以下において、単にAH7.8と記す。)、繊維100重量部に対してアミノ変性シリコーン系柔軟剤が0.3重量部付着している(蛍光X線分析法から求められた分析値)。
(3)商品名「カネカロン(登録商標)AH」(株式会社カネカ製):アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度5.6dtex、カット長51mm(以下において、単にAH5.6と記す。)、繊維100重量部に対してアミノ変性シリコーン系柔軟剤が0.3重量部付着している(蛍光X線分析法から求められた分析値)。
(4)商品名「カネカロン(登録商標)MCS」株式会社カネカ製):アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度4.4dtex、カット長32mm(以下において、単にMCSと記す。)、アミノ変性シリコーン系柔軟剤の付着無し。
 なお、上記において、アクリル系繊維におけるアミノ変性シリコーン系柔軟剤の付着量は、波長分散型の蛍光X線分析装置を用いた蛍光X線分析法により、Si元素の定量を行い、検量線により算出した。具体的には、蛍光X線分析機RIX3100型(株式会社リガク社製)を用い、Rh管球(管電流50mA-管電圧50kV)、測定径30mmφ、分光結晶ペンタエリトリトール(PET)、2θ角106~112°の条件でSi元素の分析を行い、まず、アミノ変性シリコーン系柔軟剤の含有量既知の試料を用いて検量線を作成した。次に測定対象繊維をプレス(錠剤成型機)で加圧成形することにより得た測定用サンプル(厚み3mm、直径30mm)にてSi元素の分析を行った。得られたSi検出カウントを検量線式に代入することで、アミノ変性シリコーン系柔軟剤の付着量を算出した。
2.地組織構成繊維(地糸)
 トータル繊度334dtexのマルチフィラメント(50本のポリエステル単繊維からなる繊度167dtexのフィラメントを2本引き揃えた繊維糸)を使用した。軟化点は258℃である。
 なお、上述した繊維の軟化点は、繊維1gを開繊し、任意の温度に加熱したホットプレート上に置き、加圧ロールで0.07Kgf/cmの圧力(ニップ圧)で3秒間加圧した時に、ホットプレートと接触した面の単繊維がそれぞれ軟化して結合し板状になる時の温度である。
<Fiber>
1. Pile fiber (1) Trade name “Kanekalon (registered trademark) ELP” (manufactured by Kaneka Corporation): acrylic fiber (vinyl chloride-acrylonitrile fiber), softening point 180 to 190 ° C., fineness 27 dtex, cut length 102 mm (in the following) , Simply referred to as ELP.) No adhesion of amino-modified silicone softener.
(2) Trade name “Kanekaron (registered trademark) AH” (manufactured by Kaneka Corporation): acrylic fiber (vinyl chloride-acrylonitrile fiber), softening point 180-190 ° C., fineness 7.8 dtex, cut length 76 mm (in the following) , Simply referred to as AH7.8), and 0.3 parts by weight of the amino-modified silicone softening agent is attached to 100 parts by weight of the fiber (analytical value determined by X-ray fluorescence analysis).
(3) Trade name “Kanekaron (registered trademark) AH” (manufactured by Kaneka Corporation): acrylic fiber (vinyl chloride-acrylonitrile fiber), softening point 180-190 ° C., fineness 5.6 dtex, cut length 51 mm (in the following) , Simply referred to as AH5.6), and 0.3 parts by weight of the amino-modified silicone softening agent is attached to 100 parts by weight of the fibers (analytical value determined by X-ray fluorescence analysis).
(4) Trade name “Kanekaron (registered trademark) MCS” manufactured by Kaneka Corporation): acrylic fiber (vinyl chloride-acrylonitrile fiber), softening point 180-190 ° C., fineness 4.4 dtex, cut length 32 mm (in the following, Simply written as MCS), no adhesion of amino-modified silicone softener.
In the above, the adhesion amount of the amino-modified silicone softener on the acrylic fiber is calculated from a calibration curve by quantifying the Si element by fluorescent X-ray analysis using a wavelength dispersion type fluorescent X-ray analyzer. did. Specifically, using an X-ray fluorescence analyzer RIX3100 (manufactured by Rigaku Corporation), Rh tube (tube current 50 mA-tube voltage 50 kV), measurement diameter 30 mmφ, spectral crystal pentaerythritol (PET), 2θ angle 106 The Si element was analyzed under a condition of ˜112 °. First, a calibration curve was prepared using a sample having a known content of the amino-modified silicone softener. Next, the Si element was analyzed with a measurement sample (thickness 3 mm, diameter 30 mm) obtained by pressure-molding the measurement target fiber with a press (tablet molding machine). By substituting the obtained Si detection count into a calibration curve equation, the adhesion amount of the amino-modified silicone softener was calculated.
2. Ground tissue constituent fiber (ground yarn)
A multifilament having a total fineness of 334 dtex (a fiber yarn in which two filaments having a fineness of 167 dtex made of 50 polyester single fibers were aligned) was used. The softening point is 258 ° C.
In addition, the softening point of the above-mentioned fiber is 1 g of fiber, placed on a hot plate heated to an arbitrary temperature, and pressed with a pressure roll at a pressure (nip pressure) of 0.07 Kgf / cm 2 for 3 seconds. Is the temperature at which the single fibers on the surface in contact with the hot plate soften and bond to form a plate.
 (実施例1)
 フェイクファーを作製するためのスライバーニット機(丸編機)を使用して、地糸として上記のポリエステル繊維糸を使い、ELP、AH7.8及びAH5.6を、ELP/AH7.8/AH5.6=15/35/50(重量%)の混率にて均一に混合したパイル繊維スライバー(10~14g)を供給し、ハイパイル布帛を編み立てた。地組織のウェールのループ数は16~17個/インチ、コースのループ数は22~33個/インチとした。次に、ハイパイル布帛の立毛面のパイル繊維をポリッシング及びシャーリングにより整えた。具体的には、先ずは120℃でポリッシングを2回行い、次いでシャーリングを2回行った。
Example 1
Using a sliver knit machine (circular knitting machine) for producing a faux fur, using the above polyester fiber yarn as the ground yarn, ELP, AH7.8 and AH5.6, ELP / AH7.8 / AH5. A pile fiber sliver (10 to 14 g) uniformly mixed at a mixing ratio of 6 = 15/35/50 (wt%) was supplied to knit a high pile fabric. The number of loops of the wales of the ground structure was 16 to 17 / inch, and the number of loops of the course was 22 to 33 / inch. Next, the pile fiber on the raised surface of the high pile fabric was prepared by polishing and shearing. Specifically, first, polishing was performed twice at 120 ° C., and then shearing was performed twice.
 上記で得られたハイパイル布帛の裏面に、アミノ変性シリコーン系柔軟剤(固形分)が裏面側のパイル繊維100重量部に対して0.2重量部付着するように、アミノ変性シリコーン系柔軟剤(松本油脂製薬株式会社製、商品名「松本シリコンソフナーN-20」、固形分20重量%)の水溶液を噴霧塗布した。その後、ピンテンター乾燥機を用いて、乾燥機内温度125℃で、幅を160cmに延伸しながら、ハイパイル布帛を3分間乾燥させ、幅を160cmに保持したまま80℃以下に冷却した。 The amino-modified silicone softener (solid-modified softener) (solid content) is attached to the back surface of the high pile fabric obtained above so that 0.2 part by weight of the amino-modified silicone softener (solid content) is attached to 100 parts by weight of the pile fiber on the back surface side. An aqueous solution of Matsumoto Yushi Seiyaku Co., Ltd., trade name “Matsumoto Silicone Softener N-20”, solid content 20% by weight) was applied by spraying. Thereafter, using a pin tenter dryer, the high pile fabric was dried for 3 minutes while stretching the width to 160 cm at a dryer internal temperature of 125 ° C., and cooled to 80 ° C. or lower while maintaining the width at 160 cm.
 上記で得られたハイパイル布帛(幅160cm)の裏面に対して図2に示した熱圧着装置を用いて加熱ロールの温度が215℃、加熱ロールとハイパイル布帛の接触時間が3秒、加熱ロールと冷却ゴムロールのニップ圧が50Kgf/cm(4.9MPa)の条件で熱圧着処理を行なった。その際、ハイパイル布帛の生地幅は135cmに収縮した。その後、ピンテンター乾燥機を用いて、乾燥機内温度125℃で、幅を160cmに延伸しながら、ハイパイル布帛を3分間乾燥させ、幅を160cmに保持したまま80℃以下に冷却した。 The temperature of the heating roll is 215 ° C. using the thermocompression bonding apparatus shown in FIG. 2 on the back surface of the high pile fabric (width 160 cm) obtained above, the contact time between the heating roll and the high pile fabric is 3 seconds, The thermocompression bonding treatment was performed under the condition that the nip pressure of the cooling rubber roll was 50 kgf / cm 2 (4.9 MPa). At that time, the fabric width of the high pile fabric contracted to 135 cm. Thereafter, using a pin tenter dryer, the high pile fabric was dried for 3 minutes while stretching the width to 160 cm at a dryer internal temperature of 125 ° C., and cooled to 80 ° C. or lower while maintaining the width at 160 cm.
 得られたハイパイル布帛において、パイル布帛の表面のパイル繊維をポリッシング、ブラッシング及びシャーリングにより整えた。具体的には、先ずはブラッシングを2回行ない、続いて155℃、150℃、145℃、130℃及び120℃でそれぞれ1回ずつポリッシングを行い、その後シャーリングを2回行い、最後に100℃でポリッシングを2回行った。最終的に、目付700g/m、立毛部のパイル繊維の長さ20mmのハイパイル布帛を得た。 In the obtained high pile fabric, the pile fibers on the surface of the pile fabric were prepared by polishing, brushing and shearing. Specifically, brushing is performed twice, followed by polishing once at 155 ° C., 150 ° C., 145 ° C., 130 ° C. and 120 ° C., then shearing twice, and finally at 100 ° C. Polishing was performed twice. Finally, a high pile fabric having a basis weight of 700 g / m 2 and a pile fiber length of 20 mm was obtained.
 (実施例2)
 パイル布帛の裏面におけるパイル繊維100重量部に対してアミノ変性シリコーン系柔軟剤(固形分)が1重量部付着するように、パイル布帛の裏面にアミノ変性シリコーン系柔軟剤の水溶液を噴霧塗布した以外は、実施例1と同様にして、ハイパイル布帛を作製した。
(Example 2)
Other than spraying an aqueous solution of an amino-modified silicone softener on the back of the pile fabric so that 1 part by weight of the amino-modified silicone softener (solid content) adheres to 100 parts by weight of the pile fiber on the back of the pile fabric Produced a high pile fabric in the same manner as in Example 1.
 (比較例1)
 アミノ変性シリコーン系柔軟剤に代えて、未変性シリコーン系柔軟剤(松本油脂製薬株式会社製、商品名「ジメチルシリコーンK」、固形分20重量%)を用いた以外は、実施例1と同様にして、ハイパイル布帛を作製した。
(Comparative Example 1)
Instead of the amino-modified silicone softener, an unmodified silicone softener (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., trade name “dimethylsilicone K”, solid content 20% by weight) was used in the same manner as in Example 1. Thus, a high pile fabric was produced.
 (比較例2)
 アミノ変性シリコーン系柔軟剤に代えて、未変性シリコーン系柔軟剤(松本油脂製薬株式会社製、商品名「ジメチルシリコーンK」、固形分20重量%)を用いた以外は、実施例2と同様にして、ハイパイル布帛を作製した。
(Comparative Example 2)
Instead of the amino-modified silicone softener, an unmodified silicone softener (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., trade name “dimethylsilicone K”, solid content 20% by weight) was used in the same manner as in Example 2. Thus, a high pile fabric was produced.
 (比較例3)
 アミノ変性シリコーン系柔軟剤に代えて、脂肪酸系柔軟剤(塩城市嘉業紡織材料有限公司(Yancheng jiaye textile materials co,.LTD)製「PK-608」、固形分20重量%)を用いた以外は、実施例1と同様にして、ハイパイル布帛を作製した。
(Comparative Example 3)
Instead of using an amino-modified silicone softener, a fatty acid softener (“PK-608” manufactured by Yancheng jiaye textile materials co., LTD, solid content 20% by weight) is used. Produced a high pile fabric in the same manner as in Example 1.
 (比較例4)
 アミノ変性シリコーン系柔軟剤に代えて、脂肪酸系柔軟剤(塩城市嘉業紡織材料有限公司(Yancheng jiaye textile materials co,.LTD)製「PK-608」、固形分20重量%)を用いた以外は、実施例2と同様にして、ハイパイル布帛を作製した。
(Comparative Example 4)
Instead of using an amino-modified silicone softener, a fatty acid softener (“PK-608” manufactured by Yancheng jiaye textile materials co., LTD, solid content 20% by weight) is used. Produced a high pile fabric in the same manner as in Example 2.
 (比較例5)
 パイル布帛の裏面におけるパイル繊維に柔軟剤を付着させずに熱圧着処理を行った以外は、実施例1と同様にして、ハイパイル布帛を作製した。
(Comparative Example 5)
A high pile fabric was produced in the same manner as in Example 1 except that the thermocompression treatment was performed without attaching the softening agent to the pile fiber on the back surface of the pile fabric.
 (比較例6)
 パイル繊維スライバーとして、100重量%のAH7.8からなるスライバー(10~14g)を用いた以外は、実施例1と同様にして、ハイパイル布帛を作製した。
(Comparative Example 6)
A high pile fabric was produced in the same manner as in Example 1 except that a sliver (10 to 14 g) composed of 100% by weight of AH7.8 was used as the pile fiber sliver.
 (比較例7)
 パイル繊維スライバーとして、ELPとMCSを、ELP/MCS=20/80(重量%)の混率にて均一に混合したスライバー(10~14g)を用いた以外は、実施例1と同様にして、ハイパイル布帛を作製した。
(Comparative Example 7)
The pile pile sliver was the same as in Example 1 except that a sliver (10 to 14 g) in which ELP and MCS were uniformly mixed at a mixing ratio of ELP / MCS = 20/80 (wt%) was used. A fabric was prepared.
 実施例1~2、比較例1~7で得られたハイパイル布帛の毛抜け及び柔軟性を上述した方法で測定評価した。その結果を下記表1に示す。下記表1において、柔軟剤の付着量は、パイル布帛の裏面におけるパイル繊維100重量部に対する柔軟剤の重量割合である。具体的には、実施例1において、柔軟剤の付着量は、パイル繊維の原料として用いた繊維に付着されている柔軟剤と、パイル布帛の製造工程において追加でパイル布帛の裏面におけるパイル繊維に付着させた同じ種類の柔軟剤の付着量の合計であり、下記のように算出した。実施例2及び比較例1~7でも、実施例1の場合と同様の方法で各種柔軟剤の付着量を算出した。
実施例1:パイル繊維の原料として用いた繊維100重量部に付着されているアミノ変性シリコーン系柔軟剤=AH7.8及びAH5.6由来=3(重量部)×85(重量%)=0.255重量部
 パイル布帛の製造工程において追加でパイル布帛の裏面におけるパイル繊維100重量部に付着させたアミノ変性シリコーン系柔軟剤の付着量=0.2重量部
パイル布帛の裏面におけるパイル繊維100重量部に対するアミノ変性シリコーン系柔軟剤の付着量=0.255+0.2(重量部)=0.455重量部
The hair removal and softness of the high pile fabrics obtained in Examples 1 and 2 and Comparative Examples 1 to 7 were measured and evaluated by the methods described above. The results are shown in Table 1 below. In the following Table 1, the amount of the softener attached is the weight ratio of the softener to 100 parts by weight of the pile fiber on the back surface of the pile fabric. Specifically, in Example 1, the amount of the softener attached to the fiber used as the raw material for the pile fiber and the pile fiber on the back surface of the pile fabric additionally in the pile fabric manufacturing process. This is the total amount of the same kind of softening agent adhered, and was calculated as follows. In Example 2 and Comparative Examples 1 to 7, the adhesion amounts of various softeners were calculated in the same manner as in Example 1.
Example 1: Amino-modified silicone softener adhering to 100 parts by weight of fibers used as a raw material for pile fibers = derived from AH7.8 and AH5.6 = 3 (parts by weight) × 85 (% by weight) = 0. 255 parts by weight Amount of amino-modified silicone softener adhered to 100 parts by weight of pile fibers on the back side of the pile fabric in the manufacturing process of the pile fabrics = 0.2 parts by weight 100 parts by weight of pile fibers on the back side of the pile fabric Amount of amino-modified silicone softener attached to 0.25 + 0.2 (parts by weight) = 0.455 parts by weight
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から分かるように、パイル布帛の裏面におけるパイル繊維にアミノ変性シリコーン系柔軟剤が、パイル繊維100重量部に対して0.4重量部以上付着している実施例1及び2のパイル布帛は、パイル布帛の柔軟性が高く、パイル繊維の毛抜けも抑制されていた。 As can be seen from the results in Table 1 above, the amino-modified silicone softener is attached to the pile fiber on the back surface of the pile fabric in an amount of 0.4 part by weight or more based on 100 parts by weight of the pile fiber. The pile fabric had a high flexibility of the pile fabric, and the pile fiber was prevented from being loosened.
 一方、パイル布帛の裏面におけるパイル繊維に付着されているアミノ変性シリコーン系柔軟剤及び未変性シリコーン系柔軟剤の合計付着量がパイル繊維100重量部に対して0.4重量部以上であるが、パイル繊維100重量部に対するアミノ変性シリコーン系柔軟剤の付着量が0.4重量部未満である比較例1及び2のパイル布帛は、パイル布帛の柔軟性は良好であるものの、パイル繊維の毛抜け量が多かった。また、パイル布帛の裏面におけるパイル繊維に付着されているアミノ変性シリコーン系柔軟剤及び脂肪酸系柔軟剤の合計付着量がパイル繊維100重量部に対して0.4重量部以上であるが、パイル繊維100重量部に対するアミノ変性シリコーン系柔軟剤の付着量が0.4重量部未満である比較例3及び4のパイル布帛も、パイル布帛の柔軟性は良好であるものの、パイル繊維の毛抜け量が多かった。また、パイル布帛の裏面におけるパイル繊維に付着しているアミノ変性シリコーン系柔軟剤の付着量がパイル繊維100重量部に対して0.4重量部未満である比較例5及び6、パイル布帛の裏面におけるパイル繊維にアミノ変性シリコーン系柔軟剤が付着されていない比較例7のパイル布帛は、パイル繊維の毛抜けは抑制されているものの、パイル布帛が硬かった。 On the other hand, the total adhesion amount of the amino-modified silicone softener and the unmodified silicone softener attached to the pile fiber on the back surface of the pile fabric is 0.4 parts by weight or more with respect to 100 parts by weight of the pile fiber. In the pile fabrics of Comparative Examples 1 and 2 in which the adhesion amount of the amino-modified silicone softener to 100 parts by weight of the pile fibers is less than 0.4 parts by weight, although the pile fabrics have good flexibility, the pile fibers have a fluff The amount was large. Further, the total adhesion amount of the amino-modified silicone softener and the fatty acid softener attached to the pile fiber on the back surface of the pile fabric is 0.4 parts by weight or more with respect to 100 parts by weight of the pile fiber. The pile fabrics of Comparative Examples 3 and 4 in which the adhesion amount of the amino-modified silicone softener with respect to 100 parts by weight is less than 0.4 parts by weight are also excellent in the flexibility of the pile fabrics, but the pile fibers have a hair loss amount. There were many. In addition, Comparative Examples 5 and 6 in which the adhesion amount of the amino-modified silicone softener adhering to the pile fiber on the back surface of the pile fabric is less than 0.4 parts by weight with respect to 100 parts by weight of the pile fiber, the back surface of the pile fabric In the pile fabric of Comparative Example 7 in which the amino-modified silicone softener was not attached to the pile fiber, the pile fabric was hard although the pile fiber was prevented from coming off.
1 地糸
2 パイル繊維
3 立毛パイル
4 熱圧着部
5 ハイパイル布帛
6 ループ
7 表面
8 裏面
10 加工装置
11 加熱ロール
12 冷却ゴムロール
13、14 金属冷却ロール
15 ガイドロール
16、17 容器
18 パイル布帛原反
18a パイル布帛原反表面
18b パイル布帛原反裏面
19、21 パイル布帛
22 金属板
23 粘着テープ
31 パイル布帛の生地片
32 水平な台
41 パイル布帛の生地片の先端に引いた接線
DESCRIPTION OF SYMBOLS 1 Ground yarn 2 Pile fiber 3 Napped pile 4 Thermocompression bonding part 5 High pile fabric 6 Loop 7 Front surface 8 Back surface 10 Processing apparatus 11 Heating roll 12 Cooling rubber roll 13, 14 Metal cooling roll 15, Guide roll 16, 17 Container 18 Pile fabric original fabric 18a Pile fabric original fabric surface 18b Pile fabric original fabric rear surface 19, 21 Pile fabric 22 Metal plate 23 Adhesive tape 31 Pile fabric fabric piece 32 Horizontal base 41 Tangential line drawn on tip of fabric fabric fabric piece

Claims (6)

  1.  地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含み、前記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維を含み、前記パイル繊維は前記地組織を構成する繊維よりも軟化点が低いパイル布帛において、
     前記地組織を構成する地糸に絡んだパイル繊維のうち、前記地組織の表面に立毛するパイル繊維は融着しておらず、前記地組織の裏面において前記地組織を構成する地糸より外側に配置されているパイル繊維の少なくとも一部は融着されており、
     前記パイル布帛の裏面におけるパイル繊維には、パイル繊維100重量部に対して、アミノ変性シリコーン系柔軟剤、エポキシ変性シリコーン系柔軟剤及びカルボキシル変性シリコーン系柔軟剤からなる群から選ばれる一種以上の有機変性シリコーン系柔軟剤が0.4重量部以上付着されていることを特徴とするパイル布帛。
    And a pile fiber that is entangled with the ground yarn constituting the ground tissue and raised on the surface of the ground tissue, and the pile fiber includes at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber In the pile fabric, the pile fiber has a lower softening point than the fiber constituting the ground structure,
    Of the pile fibers entangled with the ground yarn constituting the ground texture, the pile fibers raised on the surface of the ground texture are not fused, and are outside the ground yarn constituting the ground texture on the back surface of the ground texture. At least a part of the pile fibers arranged in the
    The pile fiber on the back surface of the pile fabric is one or more organic compounds selected from the group consisting of an amino-modified silicone softener, an epoxy-modified silicone softener, and a carboxyl-modified silicone softener with respect to 100 parts by weight of the pile fiber. A pile fabric characterized in that a modified silicone softener is attached in an amount of 0.4 parts by weight or more.
  2.  前記有機変性シリコーン系柔軟剤が、アミノ変性シリコーン系柔軟剤である請求項1に記載のパイル布帛。 The pile fabric according to claim 1, wherein the organically modified silicone softener is an amino-modified silicone softener.
  3.  前記パイル繊維が、アクリル系繊維である請求項1又は2に記載のパイル布帛。 The pile fabric according to claim 1 or 2, wherein the pile fiber is an acrylic fiber.
  4.  前記地糸が、ポリエステル繊維糸である請求項1~3のいずれか1項に記載のパイル布帛。 The pile fabric according to any one of claims 1 to 3, wherein the ground yarn is a polyester fiber yarn.
  5.  前記パイル布帛の裏面におけるパイル繊維100重量部に対して、前記有機変性シリコーン系柔軟剤が0.4~2.5重量部付着されている請求項1~4のいずれか1項に記載のパイル布帛。 The pile according to any one of claims 1 to 4, wherein 0.4 to 2.5 parts by weight of the organically modified silicone softener is attached to 100 parts by weight of the pile fiber on the back surface of the pile fabric. Fabric.
  6.  請求項1~5のいずれか1項に記載のパイル布帛の製造方法であって、
     地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含み、前記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維を含み、前記パイル繊維は前記地組織を構成する繊維よりも軟化点が低いパイル布帛において、
     前記パイル布帛の裏面におけるパイル繊維には、パイル繊維100重量部に対して、アミノ変性シリコーン系柔軟剤、エポキシ変性シリコーン系柔軟剤及びカルボキシル変性シリコーン系柔軟剤からなる群から選ばれる一種以上の有機変性シリコーン系柔軟剤が0.4重量部以上付着されており、
     前記パイル布帛の裏面側を前記パイル繊維の軟化点以上かつ前記地組織を構成する繊維の軟化点未満の温度で熱圧着することにより、前記地組織を構成する地糸に絡んだパイル繊維のうち、前記地組織の表面に立毛するパイル繊維は融着させず、前記地組織の裏面において前記地組織を構成する地糸より外側に配置されているパイル繊維の少なくとも一部を融着させることを特徴とするパイル布帛の製造方法。
    A method for producing a pile fabric according to any one of claims 1 to 5,
    And a pile fiber that is entangled with the ground yarn constituting the ground tissue and raised on the surface of the ground tissue, and the pile fiber includes at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber In the pile fabric, the pile fiber has a lower softening point than the fiber constituting the ground structure,
    The pile fiber on the back surface of the pile fabric is one or more organic compounds selected from the group consisting of an amino-modified silicone softener, an epoxy-modified silicone softener, and a carboxyl-modified silicone softener with respect to 100 parts by weight of the pile fiber. 0.4 parts by weight or more of the modified silicone softener is attached,
    Among the pile fibers entangled with the ground yarn constituting the ground structure by thermocompression bonding the back side of the pile fabric at a temperature equal to or higher than the softening point of the pile fiber and less than the softening point of the fiber constituting the ground structure The pile fibers raised on the surface of the ground texture are not fused, and at least a part of the pile fibers arranged outside the ground yarn constituting the ground texture is fused on the back surface of the ground texture. A method for producing a pile fabric characterized.
PCT/JP2016/072178 2015-07-31 2016-07-28 Pile fabric and method for manufacturing same WO2017022625A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017532545A JP6672307B2 (en) 2015-07-31 2016-07-28 Pile fabric and manufacturing method thereof
EP16832904.3A EP3330434A4 (en) 2015-07-31 2016-07-28 Pile fabric and method for manufacturing same
CN201680042824.2A CN107849805B (en) 2015-07-31 2016-07-28 Pile fabric and process for producing the same
US15/883,608 US20180155868A1 (en) 2015-07-31 2018-01-30 Pile fabric and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015152598 2015-07-31
JP2015-152598 2015-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/883,608 Continuation US20180155868A1 (en) 2015-07-31 2018-01-30 Pile fabric and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017022625A1 true WO2017022625A1 (en) 2017-02-09

Family

ID=57943070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072178 WO2017022625A1 (en) 2015-07-31 2016-07-28 Pile fabric and method for manufacturing same

Country Status (5)

Country Link
US (1) US20180155868A1 (en)
EP (1) EP3330434A4 (en)
JP (1) JP6672307B2 (en)
CN (1) CN107849805B (en)
WO (1) WO2017022625A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200248345A1 (en) * 2019-02-06 2020-08-06 Sobel Westex Terry fabric having surfaces with varying pile weights

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282379A (en) * 1987-05-12 1988-11-18 カネボウ株式会社 Raised product and its production
JPH05345377A (en) * 1992-06-15 1993-12-27 Toray Ind Inc Raised sheetlike article
WO2006008933A1 (en) * 2004-07-16 2006-01-26 Kaneka Corporation Pile fabric
JP2007262630A (en) * 2006-03-29 2007-10-11 Kaneka Corp Pile fabric excellent in texture and method for producing the same
JP2012233284A (en) * 2011-05-06 2012-11-29 Kaneka Corp High pile fabric and method for manufacturing the same
WO2014054543A1 (en) * 2012-10-02 2014-04-10 株式会社カネカ High-pile fabric and process for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035954A1 (en) * 2000-02-29 2003-02-20 Masaaki Miyoshi Synthetic fiber improved in slimness and method for producing the same
CN100535219C (en) * 2004-07-16 2009-09-02 钟渊化学工业株式会社 Pile fabric
CN104695159B (en) * 2009-11-09 2017-04-12 株式会社钟化 Processing device for pile textiles
EP2500455B1 (en) * 2009-11-09 2020-05-06 Kaneka Corporation Pile fabric and process for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282379A (en) * 1987-05-12 1988-11-18 カネボウ株式会社 Raised product and its production
JPH05345377A (en) * 1992-06-15 1993-12-27 Toray Ind Inc Raised sheetlike article
WO2006008933A1 (en) * 2004-07-16 2006-01-26 Kaneka Corporation Pile fabric
JP2007262630A (en) * 2006-03-29 2007-10-11 Kaneka Corp Pile fabric excellent in texture and method for producing the same
JP2012233284A (en) * 2011-05-06 2012-11-29 Kaneka Corp High pile fabric and method for manufacturing the same
WO2014054543A1 (en) * 2012-10-02 2014-04-10 株式会社カネカ High-pile fabric and process for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3330434A4 *

Also Published As

Publication number Publication date
JP6672307B2 (en) 2020-03-25
CN107849805B (en) 2020-07-03
US20180155868A1 (en) 2018-06-07
EP3330434A4 (en) 2019-02-13
CN107849805A (en) 2018-03-27
EP3330434A1 (en) 2018-06-06
JPWO2017022625A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
TWI604097B (en) Stretch wovens with a control yarn system and perparation method thereof
KR100688899B1 (en) Electric conduction strong metal complex thread manufacturing method and electric conduction strong metal complex thread using the method
WO2011055455A1 (en) Pile fabric and process for producing same
CN1257557A (en) Pile fabric
US6716774B2 (en) Knitted fabric for insect screening
WO2017022625A1 (en) Pile fabric and method for manufacturing same
US10947665B2 (en) Cork yarn, production method and uses
JP2012233284A (en) High pile fabric and method for manufacturing the same
JPH05125633A (en) Chenille yarn and sheet material using the same
RU2178470C2 (en) Cutting-resistant yarn, material and clothing piece
WO2014054543A1 (en) High-pile fabric and process for producing same
JP6092560B2 (en) Dust-free garment and method for producing the same
JP3201101U (en) Polyester spun yarn
CN209274105U (en) A kind of fabric that stretch-proof effect is good
JP2008127705A (en) Fiber product using polypropylene multifilament fiber, and method for producing the same
WO2021261491A1 (en) Ultrafine carbon fiber yarn obtained by subjecting opened carbon fiber yarn from carbon fiber raw yarn to twisting processing, and method for producing same
WO2017209062A1 (en) Laminated fabric and method for manufacturing same
CN104695159B (en) Processing device for pile textiles
KR102542019B1 (en) Nanofiber complex yarn for high strength wig raw yarn using electrospinning and manufacturing method thereof
JP7428054B2 (en) textiles and clothing
JP5968604B2 (en) Adhesive non-woven fabric for inside belt and composite inside belt
JP7429401B2 (en) Composite monofilament
JP2018150633A (en) Resin-reinforcing woven fabric and resin molding using the same
CN205416549U (en) Prevent static pine needle matte material
CN114450367A (en) Filament-like adhesive body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016832904

Country of ref document: EP