WO2017020457A1 - 一种超低衰减大有效面积的单模光纤 - Google Patents

一种超低衰减大有效面积的单模光纤 Download PDF

Info

Publication number
WO2017020457A1
WO2017020457A1 PCT/CN2015/096106 CN2015096106W WO2017020457A1 WO 2017020457 A1 WO2017020457 A1 WO 2017020457A1 CN 2015096106 W CN2015096106 W CN 2015096106W WO 2017020457 A1 WO2017020457 A1 WO 2017020457A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
effective area
core layer
ultra
low attenuation
Prior art date
Application number
PCT/CN2015/096106
Other languages
English (en)
French (fr)
Inventor
张磊
朱继红
龙胜亚
吴俊�
王瑞春
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Priority to PL15900226T priority Critical patent/PL3330756T3/pl
Priority to KR1020177036122A priority patent/KR20180006975A/ko
Priority to EP15900226.0A priority patent/EP3330756B1/en
Priority to ES15900226T priority patent/ES2900735T3/es
Priority to JP2018516613A priority patent/JP6529666B2/ja
Publication of WO2017020457A1 publication Critical patent/WO2017020457A1/zh
Priority to US15/866,243 priority patent/US10209437B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03683Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm

Definitions

  • the present invention relates to the field of optical fiber transmission technologies, and in particular to a single mode optical fiber having an ultra-low attenuation large effective area.
  • the receiver uses coherent reception and digital signal processing (DSP) to digitally compensate for the dispersion and polarization mode dispersion (PMD) accumulated throughout the transmission.
  • the signal is modulated by polarization.
  • DSP coherent reception and digital signal processing
  • PMD dispersion and polarization mode dispersion
  • the signal is modulated by polarization.
  • DSP coherent reception and digital signal processing
  • PMD dispersion and polarization mode dispersion
  • PMD dispersion and polarization mode dispersion
  • the signal is modulated by polarization.
  • High-order modulation methods to reduce the baud rate of the signal, such as PM-QPSK, PDM-16QAM, PDM-32QAM, and even PDM-64QAM and CO-OFDM.
  • high-order modulation is very sensitive to nonlinear effects, so higher requirements are imposed on optical signal-to-noise ratio (OSNR).
  • OSNR optical signal-to-noise ratio
  • the nonlinear coefficient is a parameter used to evaluate the performance of the system caused by nonlinear effects. Defined as n2/A eff . Where n2 is the nonlinear refractive index of the transmission fiber and A eff is the effective area of the transmission fiber. Increasing the effective area of the transmission fiber can reduce the nonlinear effects in the fiber.
  • an ordinary single mode fiber for a land transmission system line has an effective area of only about 80 ⁇ m 2 .
  • the effective area of the optical fiber is required to be higher, and the general effective area is 100 ⁇ m 2 or more.
  • the effective area of the transmission fiber is preferably 130 ⁇ m 2 or more.
  • a large effective area is often obtained by increasing the diameter of the optical core layer for transmitting the optical signal. There are certain design difficulties in this type of scheme.
  • the core layer of the optical fiber and the cladding near it mainly determine the basic performance of the optical fiber, and occupy a large proportion in the cost of manufacturing the optical fiber. If the radial dimension of the design is too large, the manufacturing cost of the optical fiber is inevitably increased. Raising the price of fiber will become an obstacle to the widespread application of such fibers.
  • the increase of the effective area of the fiber will bring about deterioration of other parameters of the fiber: for example, the cutoff wavelength of the fiber will increase, and if the cutoff wavelength is too large, it is difficult to ensure that the fiber is in the transmission band.
  • the single-mode state of the optical signal in addition, if the fiber refractive index profile is not properly designed, it may cause deterioration of parameters such as bending performance and dispersion.
  • Another type of fiber that limits long-distance and large-capacity transmission is attenuation.
  • the attenuation of conventional G.652.D fiber is generally 0.20 dB/km, and the laser energy is gradually reduced after long-distance transmission, so relay is required. The form is amplified again for the signal.
  • the equipment and maintenance cost of the relay station is more than 70% of the entire link system. Therefore, if a low-attenuation or ultra-low-attenuation fiber is involved, the transmission distance can be effectively extended, and the construction and construction can be reduced. Maintenance costs. After relevant calculations, if the attenuation of the fiber is reduced from 0.20 to 0.16dB/km, the construction cost of the entire link will be reduced by about 30%.
  • Document US2010022533 proposes a design of a large effective area fiber.
  • a pure silicon core design is adopted, and co-doping of germanium and fluorine is not performed in the core layer, and the design adopts fluorine doping.
  • the silica acts as an outer cladding.
  • this pure silicon core design it requires complex viscosity matching inside the fiber, and requires extremely low speed in the drawing process, avoiding the increase of attenuation caused by defects inside the fiber caused by high-speed wire drawing, and the manufacturing process is extremely complicated.
  • Document EP2312350 proposes a large effective area fiber design with a non-pure silicon core design, which adopts a stepped depressed cladding structure design, and a design uses a pure silica outer cladding structure, and the related performance can reach a large effective area fiber G. .654.B and D requirements.
  • the maximum radius of the fluorine-doped cladding portion is 36 ⁇ m.
  • the cutoff wavelength of the optical fiber can be guaranteed to be less than or equal to 1530 nm, the microscopic and macroscopic bending properties of the optical fiber are deteriorated due to the influence of the smaller fluorine doping radius. Therefore, in the process of fiber-forming cable, the attenuation is increased, and the relevant bending performance is not mentioned in the literature.
  • Document CN10232392A describes an optical fiber having a larger effective area.
  • the effective area of the optical fiber of the invention reaches 150 ⁇ m 2 or more, it is achieved by adopting a conventional core layer design of a ruthenium fluoride co-doping method and by sacrificing the performance index of the cutoff wavelength. It allows the cable cut-off wavelength to be above 1450 nm, and in its described embodiment, the cable cut-off wavelength is even above 1800 nm. In practical applications, too high a cutoff wavelength is difficult to ensure that the fiber is cut off in the application band, and the optical signal cannot be guaranteed to be in a single mode state during transmission. Therefore, this type of fiber may face a series of practical problems in its application.
  • the outer diameter r 3 of the depressed cladding layer is at least 16.3 ⁇ m, which is also excessively large.
  • the invention is not capable of optimally combining fiber parameters (e.g., effective area, cutoff wavelength, etc.) and fiber manufacturing costs.
  • the core layer is co-doped with a larger amount of Ge/F.
  • the relative refractive index of the core layer is generally greater than 0.35%, that is, the core layer is doped with Ge. More, so it will bring greater Rayleigh scattering to increase the attenuation of the fiber.
  • Document CN201310394404 proposes an ultra-low attenuation fiber design using an outer cladding design of pure silica, but because it uses a typical step profile structure, there is no use of a depressed inner cladding design to optimize the bending of the fiber, and The core layer is not doped with Ge, so it may cause viscosity mismatch in the preparation of the preform, so the attenuation and bending levels can be found to be relatively poor.
  • the attenuation at 600nm-1600nm is mainly from Rayleigh scattering, and the attenuation ⁇ R caused by Rayleigh scattering can be calculated by the following formula:
  • R is the Rayleigh scattering coefficient (dB/km/ ⁇ m 4 ); P is the light intensity; when the Rayleigh scattering coefficient is confirmed, B is the corresponding constant. Therefore, as long as the Rayleigh scattering coefficient R is determined, the attenuation ⁇ R (dB/km) due to Rayleigh scattering can be obtained. Rayleigh scattering is caused by density fluctuations on the one hand and concentration fluctuations on the other hand. Therefore, the Rayleigh scattering coefficient R can be expressed as:
  • R d and R c respectively represent changes in the Rayleigh scattering coefficient due to density fluctuation and concentration fluctuation.
  • R c is the concentration fluctuation factor, which is mainly affected by the partial doping concentration of the fiber glass. Theoretically, the less Ge and F or other doping, the smaller the R c is . This is also the use of pure silicon core in some foreign companies. Designed to achieve the reason for ultra-low attenuation performance.
  • the Rayleigh scattering coefficient also includes another parameter R d .
  • R d is related to the fictive temperature T F of the glass and varies with structural changes in the glass and temperature changes.
  • the hypothetical temperature T F of the glass is a physical parameter that characterizes the glass structure. It is defined as the temperature at which the glass is rapidly cooled to room temperature from a certain temperature T' and the structure is not adjusted to reach a certain equilibrium state.
  • T F T'
  • T F glass Transition temperature
  • the core portion of the pure silicon core has a relatively high viscosity, and at the same time, the viscosity of the inner portion of the large amount of F-doping is low, thereby causing an imbalance in the viscosity matching of the optical fiber structure, thereby rapidly increasing the virtual temperature of the optical fiber of the pure silicon core structure, resulting in an optical fiber.
  • the R d increases. This not only offsets the benefits of R c reduction, but is more likely to cause fiber optic attenuation reverse anomalies.
  • the core layer viscosity of the pure silicon core fiber matches the viscosity of the outer layer
  • the method of adding an alkali metal to the core layer is used to solve the problem of viscosity mismatch by changing the viscosity of the core portion of the optical fiber and the relaxation time of the core structure while maintaining the pure silicon core of the optical fiber core layer.
  • R d increases, thereby reducing the Rayleigh scattering coefficient of the fiber as a whole.
  • Document CN201310394404 proposes an ultra-low attenuation fiber design using an outer cladding design of pure silica, but because it uses a typical step profile structure, there is no use of a depressed inner cladding design to optimize the bending of the fiber, and The core layer is not doped with Ge, so it may cause viscosity mismatch in the preparation of the preform, so the attenuation and bending levels can be found to be relatively poor.
  • a pure silicon core fiber having improved properties using viscosity changes is proposed in document US Pat. No. 6,917,740. It is doped with a large amount of F and Cl in the core layer, which utilizes the contribution of F and Cl doping to the viscosity of the core layer, and reduces the fiber Rayleigh coefficient.
  • the fiber described in the paper does not involve the cross-sectional design, and there is no Ge doping in the core layer. .
  • Document US2010022533 proposes a fiber optic design in which a pure silicon core design is used to achieve a lower Rayleigh coefficient, no co-doping of germanium and fluorine is performed in the core layer, and the design uses fluorine-doped dioxide. Silicon is used as an outer layer. For the design of this pure silicon core, it is required to carry out complex viscosity matching inside the optical fiber, and requires extremely low speed in the drawing process, avoiding the increase of attenuation caused by defects in the optical fiber caused by high-speed drawing, and the manufacturing process and its complexity. .
  • ultra low attenuation single mode fiber design For a common ultra low attenuation single mode fiber design, it uses a full F doped overclad design. From the perspective of fiber optics, such a design is relatively simple, as long as the refractive index difference between the outer cladding and the core layer is ensured, the total reflection requirement of the fiber can be satisfied.
  • the alkali metal doping process of the core layer requires precise control of the type and concentration of metal ions, so the process manufacturing cost is high.
  • pure doping is adopted. The F-designed preform has a smaller size and a complicated drawing process.
  • the fiber is designed with a pure F-doping, and the manufacturing cost is very high because of the F-doping process.
  • the price of the F-inlaid casing is 5-8 times that of the pure silica casing.
  • the F-doped material is 6 times the cost of the pure silica material, if the thickness of the F-doped layer is appropriately reduced by a reasonable process design, the manufacturing cost of the optical fiber will be significantly reduced. Assuming that only F-doped materials are used from 30 micrometers to 80 micrometers in diameter, and ordinary pure silica is used in 80 to 125 micrometers, this design is superior to traditional ultra-low attenuation fiber designs using full F-doped materials. 40% reduction; if F-doped materials are used from 30 microns to 60 microns, and ordinary pure silica is used from 60 to 125 microns, the material cost is reduced by 65%.
  • the suppression of the fundamental mode cutoff the difference in refractive index between the outer cladding material and the core material is too small, which may cause leakage of the fundamental mode of the optical fiber, thereby affecting the attenuation of the optical fiber. Therefore, an ultra-low attenuation fiber designed with a non-F-clad material must be in the middle of the outer cladding and the core layer to suppress the leakage of the fundamental mode through a reasonable fiber profile design.
  • viscosity matching if there is no viscosity optimization design in the outer cladding material, the viscosity is mismatched with the inner cladding and core viscosity gradient, so we control the viscosity of the core layer by doping with alkali metal ions in the core layer.
  • the viscosity of the glass outside the core layer is optimized by different fluorine doping concentrations of the inner cladding and the depressed inner cladding layer to reduce defects in the interface position and increase in virtual temperature, thereby reducing fiber attenuation.
  • Ultra-low attenuation large effective area fiber design 1.
  • the core layer is a non-pure silicon core with The characteristics of bismuth doping; the doping of alkali metal in the 2 core layer to optimize the viscosity of the core layer; 3.
  • Ultra-low attenuation performance The outermost glass material of the optical fiber is silica glass without fluorine doping.
  • the layer defined as the closest to the axis is the core layer according to the change of the refractive index, and the outermost layer of the fiber, that is, the pure silicon dioxide layer is defined as the outer layer of the fiber.
  • the relative refractive index difference ⁇ n i of each layer of the optical fiber is defined by the following equation.
  • n i is the refractive index of the core and n c is the refractive index of the outer cladding, ie the refractive index of pure silica.
  • the relative refractive index difference contribution ⁇ Ge of the fiber core Ge doping is defined by the following equation.
  • n Ge is a hypothetical core Ge dopant, which is caused by a change in the refractive index of the silica glass in the pure silica doped with no other dopant, wherein n c is the outermost cladding refractive index, That is, the refractive index of pure silica.
  • E is the electric field associated with propagation and r is the distance from the axis to the distribution point of the electric field.
  • the IEC (International Electrotechnical Commission) standard 60793-1-44 defines: the cable cut-off wavelength ⁇ cc is the wavelength at which the optical signal no longer propagates as a single-mode signal after it has propagated for 22 meters in the fiber.
  • the data should be obtained by winding a fiber around a circle with a radius of 14 cm and two circles with a radius of 4 cm.
  • the microbend test method is tested according to the method of Method B specified in IEC TR 62221-2012. Since the long wavelength is more sensitive to bending and increases in exponential form, and the test wavelength range is from 1250 nm to 1700 nm, it is mainly examined in the present invention. The long wavelength position is slightly curved, and the microbend property of a certain design is calibrated at a microbend value at 1700 nm.
  • the technical problem to be solved by the invention is to design an ultra-low attenuation large effective area optical fiber with lower fiber manufacturing cost, the cable cut-off wavelength is less than 1530 nm, and has better bending loss and dispersion performance.
  • the technical solution adopted by the present invention to solve the above-mentioned problems is to include a core layer and a cladding layer, characterized in that the core layer radius r 1 is 4.8 to 6.5 ⁇ m, and the core layer relative refractive index difference ⁇ n 1 is - 0.06% ⁇ 0.10%, the outer layer of the core layer is covered from the inside to the outside, and the inner cladding layer is depressed, and the outer cladding layer and the outer cladding layer are assisted.
  • the inner cladding radius r 2 is 9-15 ⁇ m, and the relative refractive index difference ⁇ n 2 is - 0.40% ⁇ 0.15%, the depressed inner cladding radius r 3 is 12-17 ⁇ m, the relative refractive index difference ⁇ n 3 is ⁇ 0.8% ⁇ 0.3, and the auxiliary outer cladding radius r 4 is 37-50 ⁇ m, relative The refractive index difference ⁇ n 4 ranges from -0.6% to -0.25%; the outer cladding is a pure silica glass layer.
  • the core layer is a fluorinated fluorine and alkali metal co-doped silica glass layer, or a silica glass layer in which cerium is mixed with an alkali metal, wherein the relative refractive index contribution of cerium is 0.02%. 0.10%, the alkali metal content is 5 to 5000 ppm.
  • the alkali metal in the core layer is one or more of lithium, sodium, potassium, rubidium, cesium, and strontium alkali metal ions.
  • the effective area of the optical fiber at a wavelength of 1550 nm is 100 to 140 ⁇ m 2 , preferably 119 to 140 ⁇ m 2 .
  • the cable cut-off wavelength of the optical fiber is equal to or less than 1530 nm.
  • the dispersion of the optical fiber at a wavelength of 1550 nm is equal to or less than 23 ps/nm*km, and the dispersion of the optical fiber at a wavelength of 1625 nm is equal to or less than 27 ps/nm*km.
  • the attenuation of the optical fiber at a wavelength of 1550 nm is equal to or less than 0.184 dB/km; preferably, it is equal to or less than 0.170 dB/km.
  • the microbend loss of the optical fiber at a wavelength of 1700 nm is equal to or less than 5 dB/km.
  • Microbend refers to the distortion of the fiber that has a radius of curvature comparable to the cross-sectional dimension of the fiber.
  • the macrobend loss of the optical fiber at a wavelength of 1550 nm, the bending radius of R15 mm is 10 turns is equal to or less than 0.25 dB, and the macrobend loss of one turn of the bending radius of R10 mm is equal to or less than 0.75 dB.
  • the mode field diameter (MFD) of the optical fiber at a wavelength of 1550 nm is 11 ⁇ m to 13 ⁇ m.
  • the beneficial effects of the invention are as follows: 1.
  • the core layer design of erbium-doped and alkali metal is used, the viscosity matching inside the fiber is reasonably designed, the defects in the fiber preparation process are reduced, and the attenuation parameters of the fiber are reduced.
  • a reasonable fiber-fluorine-doped sag structure is designed, and the fiber has an effective area equal to or greater than 100 ⁇ m 2 by rationally designing the cross-section of each core layer of the fiber. Under the preferred parameter range, it can be equal to or greater than 130 ⁇ m 2 , even greater than the effective area of 140 ⁇ m 2 . 3.
  • the comprehensive performance parameters such as cut-off wavelength, bending loss and dispersion of the present invention are good in the application band, and the cable cut-off wavelength is small enough to ensure the single-mode state of the optical signal of the optical fiber in the C-band transmission application, and the fiber profile
  • the multi-layer stepped depressed cladding structure has a wide depressed trap structure for limiting the leakage of the fundamental mode, and has a better improvement effect on the bending loss of the optical fiber. 4.
  • the outermost layer of the outer layer structure adopts the design of pure silica, which reduces the specific gravity of the fluorine-doped glass in the fiber, thereby reducing the manufacturing cost of the fiber.
  • Figure 1 is a cross-sectional view of a refractive index profile of an embodiment of the present invention.
  • the core layer comprises a core layer and a cladding layer
  • the core layer is a silica glass layer which is co-doped with fluorine and an alkali metal, or a silica glass layer which is co-doped with an alkali metal, and the core layer is sequentially from the inside to the outside. Covering the inner cladding, sinking the inner cladding, assisting the outer cladding and the outer cladding.
  • the outer cladding is a pure silica glass layer and the outer cladding has a diameter of 125 ⁇ m.
  • Table 1 lists the refractive index profile parameters of a preferred embodiment of the invention, wherein ⁇ 1-Ge is the refractive index contribution of Ge doping in the core layer and K is the potassium element content of the core layer.
  • Table 2 shows the optical transmission characteristics corresponding to the optical fibers in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种超低衰减大有效面积的单模光纤,包括有芯层和包层。芯层半径r1为4.8~6.5μm,芯层相对折射率差Δn1为-0.06%~0.10%。芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层。光纤的内包层半径r2为9~15μm,相对折射率差Δn2为-0.40%~-0.15%;下陷内包层半径r3为12~17μm,相对折射率差Δn3为-0.8%~-0.3;辅助外包层半径r4为37~50μm,相对折射率差Δn4范围为-0.6%~-0.25%;外包层为纯二氧化硅玻璃层。该光纤的芯层中加入碱金属掺杂以对芯层粘度进行优化,不仅具有较低衰减系数和较大有效面积,制造成本低,而且光纤的截止波长、弯曲损耗、色散等性能参数在应用波段良好。

Description

一种超低衰减大有效面积的单模光纤 技术领域
本发明涉及光纤传输技术领域,具体涉及一种具有超低衰减大有效面积的单模光纤。
背景技术
随着IP网络数据业务的迅速增长,运营商对于传输容量的需求不断提高,现网中单纤容量已逐渐在逼近极限值100Tbps。100G传输***已开始进入商用元年。如何在100G传输信号的基础上进一步增加传输容量,是各***设备商和运营商关注的焦点。
在100G和超100G***中,接收端采用相干接收及数字信号处理技术(DSP),能够在电域中数字补偿整个传输过程中累积的色散和偏振模色散(PMD);信号通过采用偏振模复用和各种高阶调制方式来降低信号的波特率,例如PM-QPSK、PDM-16QAM、PDM-32QAM,甚至PDM-64QAM和CO-OFDM。然而高阶调制方式对非线性效应非常敏感,因此对光信噪比(OSNR)提出了更高的要求。引入低损耗大有效面积光纤,能为***带来提高OSNR和降低非线性效应的效果当采用高功率密度***时,非线性系数是用于评估非线性效应造成的***性能优劣的参数,其定义为n2/Aeff。其中,n2是传输光纤的非线性折射指数,Aeff是传输光纤的有效面积。增加传输光纤的有效面积,能够降低光纤中的非线性效应。
目前,用于陆地传输***线路的普通单模光纤,其有效面积仅约80μm2左右。而在陆地长距离传输***中,对光纤的有效面积要求更高,一般的有效面积在100μm2以上。为了降低铺设成本,尽可能的减少中继器的使用,在无中继传输***,如海底传输***,传输光纤的有效面积最好在130μm2以上。然而,目前大有效面积光纤的折射率剖面的设计中,往往通过增大用于传输光信号的光学芯层的直径来获得大的有效面积。该类方案存在着一定的设计难点。一方面,光纤的芯层和靠近它的包层主要决定光纤的基本性能,并在光纤制造的成本中占据较大的比重,如果设计的径向尺寸过大,必然会提高光纤的制造成本,抬高光纤价格,将成为此类光纤普遍应用的障碍。另一方面,相比普通单模光纤,光纤有效面积的增大,会带来光纤其它一些参数的恶化:比如,光纤截止波长会增大,如果截止波长过大则难以保证光纤在传输波段中光信号的单模状态;此外,光纤折射率剖面如果设计不当,还会导致弯曲性能、色散等参数的恶化。
另一种限制长距离大容量传输的光纤特性就是衰减,目前常规的G.652.D光纤的衰减一般在0.20dB/km,激光能量在经过长距离传输后逐渐减小,所以需要采用中继的形式对信号再次放大。而相对与光纤光缆的成本,中继站相关设备和维护成本在整个链路***的70%以上,所以如果涉及一种低衰减或者超低衰减光纤,就可以有效的延长传输距离,减少建设和 维护成本。经过相关计算,如果将光纤的衰减从0.20降低到0.16dB/km,整个链路的建设成本将总体降低30%左右。
综上所述,开发设计一种超低衰减大有效面积光纤成为光纤制造领域的一个重要课题。文献US2010022533提出了一种大有效面积光纤的设计,为了得到更低的瑞利系数,其采用纯硅芯的设计,在芯层中没有进行锗和氟的共掺杂,并且其设计采用掺氟的二氧化硅作为外包层。对于这种纯硅芯的设计,其要求光纤内部必须进行复杂的粘度匹配,并要求在拉丝过程中采用极低的速度,避免高速拉丝造成光纤内部的缺陷引起的衰减增加,制造工艺极其复杂。
文献EP2312350提出了一种非纯硅芯设计的大有效面积光纤设计,其采用阶梯状下陷包层结构设计,且有一种设计采用纯二氧化硅外包层结构,相关性能能够达到大有效面积光纤G.654.B和D的要求。但在其设计中氟掺杂的包层部分最大半径为36μm,虽然可以保证光纤的截止波长小于等于1530nm,但受到其较小氟掺杂半径的影响,光纤的微观和宏观弯曲性能变差,所以在光纤成缆过程中,会导致衰减增加,在其文献中也未提及相关弯曲性能。
文献CN10232392A描述了一种具有更大有效面积的光纤。该发明所述光纤的有效面积虽然达到了150μm2以上,但却因为采用了常规的锗氟共掺方式的芯层设计,且通过牺牲了截止波长的性能指标实现的。其允许光缆截止波长在1450nm以上,在其所述实施例中,成缆截止波长甚至达到了1800nm以上。在实际应用当中,过高的截止波长难以保证光纤在应用波段中得到截止,便无法保证光信号在传输时呈单模状态。因此,该类光纤在应用中可能面临一系列实际问题。此外,该发明所列举的实施例中,下陷包层外径r3最小为16.3μm,同样有所偏大。该发明没有能够在光纤参数(如,有效面积、截止波长等)和光纤制造成本中得到最优组合。
在常规光纤的剖面设计及制造方法中,芯层使用较大量的Ge/F共掺,为了获得最优的宏弯性能,芯层的相对折射率一般都大于0.35%,即芯层Ge掺杂较多,因此会带来较大的瑞利散射从而增加光纤的衰减。
文献CN201310394404提出一种超低衰减光纤的设计,其使用了纯二氧化硅的外包层设计,但因为其使用的是典型的阶跃剖面结构,没有使用下陷内包层设计优化光纤的弯曲,且其芯层没有使用Ge进行掺杂,所以可能造成预制棒制备时出现粘度失配,所以可以发现其衰减和弯曲水平,相对较差。
对于石英光纤在600nm-1600nm的衰减主要来自于瑞利散射,由瑞利散射所引起的衰减αR可由下式计算:
Figure PCTCN2015096106-appb-000001
式中,λ为波长(μm),R为瑞利散射系数(dB/km/μm4);P为光强;当瑞利散射系数确认时,B为相对应的常数。因而只要确定了瑞利散射系数R就可得到因瑞利散射所引起的衰减αR(dB/km)。瑞利散射一方面是由于密度波动引起的,另一方面是由于浓度波动引起的。因而瑞利散射系数R可表示为:
R=Rd+Rc
上式中,Rd和Rc分别表示由于密度波动和浓度波动所引起的瑞利散射系数变化。其中Rc为浓度波动因子,其主要受到光纤玻璃部分掺杂浓度的影响,理论上采用越少的Ge和F或者其他掺杂,Rc越小,这也是目前国外某些企业采用纯硅芯设计,实现超低衰减性能的原因。
但是我们需要注意到,瑞利散射系数中还包括另外一个参数Rd。Rd与玻璃的假想温度TF相关,且伴随玻璃的结构变化和温度变化而变化。玻璃的假想温度TF是表征玻璃结构一个物理参数,定义为从某温度T‘将玻璃迅速冷却到室温玻璃的结构不再调整而达到某平衡状态对应的温度。当T’>Tf(玻璃的软化温度),由于玻璃的粘度较小,玻璃结构易于调整,因而每一瞬间玻璃均处于平衡状态,故TF=T’;当T’<Tg(玻璃的转变温度),由于玻璃的粘度较大,玻璃结构难于调整,玻璃的结构调整滞后于温度变化,故TF>T’;当Tg<T’<Tf(玻璃的软化温度),玻璃趋向于平衡所需要的时间较短一些,具体与玻璃的组分和冷却速度有关,故TF>T’或TF<T’。
在使用纯硅芯设计时,为了保证光纤的全反射,必须使用相对较低折射率的F掺杂内包层进行匹配,以保证芯层和内包层之间保持足够的折射率差异。这样纯硅芯的芯层部分粘度相对较高,而同时大量F掺杂的内包层部分粘度较低,从而造成光纤结构粘度匹配失衡,从而使纯硅芯结构的光纤虚拟温度迅速增加,造成光纤的Rd增加。这样就不仅抵消掉Rc降低带来的好处,更可能造成光纤衰减反向异常。
为了保证纯硅芯光纤的芯层粘度与外包层粘度匹配,我们可以利用在芯层中进行碱金属掺杂的方法对芯层粘度进行优化。文献US20100195999A1中采用在芯层中添加碱金属的方法,在保持光纤芯层纯硅芯的情况下,通过改变光纤芯层部分的粘度以及芯层结构弛豫的时间,来解决粘度失配造成的Rd增加,从而整体降低光纤的瑞利散射系数。但是该种方法虽然可以有效的降低光纤衰减,但相对工艺制备复杂,需要分多批次对芯棒进行处理,且对碱金属掺杂浓度控制要求极高,不利于光纤大规模制备。
文献CN201310394404提出一种超低衰减光纤的设计,其使用了纯二氧化硅的外包层设计,但因为其使用的是典型的阶跃剖面结构,没有使用下陷内包层设计优化光纤的弯曲,且其芯层没有使用Ge进行掺杂,所以可能造成预制棒制备时出现粘度失陪,所以可以发现其衰减和弯曲水平,相对较差。
文献US6917740中提出了一种利用粘度变化获得性能改进的纯硅芯光纤。其在芯层中掺杂大量的F和Cl,利用了F和Cl掺杂对芯层粘度的贡献,降低光纤瑞利系数,文中所述光纤没有涉及剖面设计,且芯层中没有Ge掺杂。
文献US2010022533提出了一种光纤的设计,为了得到更低的瑞利系数,其采用纯硅芯的设计,在芯层中没有进行锗和氟的共掺杂,并且其设计采用掺氟的二氧化硅作为外包层。对于这种纯硅芯的设计,其要求光纤内部必须进行复杂的粘度匹配,并要求在拉丝过程中采用极低的速度,避免高速拉丝造成光纤内部的缺陷引起的衰减增加,制造工艺及其复杂。
对于常见的超低衰减单模光纤设计,其使用的全F掺杂的外包层设计。从光纤光学的角度上来说,这样的设计相对简单,只要保证了外包层和芯层的折射率差值,就能满足光纤的全反射要求。但是目前限制超低衰减光纤制造成本的主要因素有三个:第一,芯层的碱金属掺杂工艺要求对金属离子的种类和浓度进行精确控制,所以工艺制造成本高;第二,采用纯掺F设计的预制棒尺寸较小,拉丝工艺复杂;第三,采用纯F掺杂设计的光纤,因为使用F掺杂工艺,制造成本非常高。按照目前市场价格进行初步估算,掺F套管价格是纯二氧化硅套管价格的5-8倍。按照F掺杂材料是纯二氧化硅材料成本6倍的初步关系计算,如果通过合理的工艺设计,适当减少F掺杂层的厚度,光纤制造成本将显著降低。假设只是从光纤直径30微米到80微米位置使用F掺杂材料,80到125微米使用普通纯二氧化硅,则这种设计相对于传统使用全F掺杂材料的超低衰减光纤设计,材料成本降低40%;如果从30微米到60微米使用F掺杂材料,60到125微米使用普通纯二氧化硅,则材料成本降低65%。
从上面的分析我们可以发现,存在使用非纯硅芯和部分氟掺杂包层进行超低衰减光纤工艺设计的可行性。但是受到前面两个限制因素的影响,如何在这样的设计下,控制光纤的光学参数,是我们面临的的最后一个挑战。
因为如果使用没有氟掺杂的纯二氧化硅作为外包层材料,会面临3个问题。
第一,抑制基模截止:外包层材料和芯层材料折射率差值太小,会造成光纤基模泄露,从而影响光纤的衰减。所以采用非掺F外包层材料设计的超低衰减光纤,必须在外包层和芯层中间位置,通过合理的光纤剖面设计,抑制基模泄露。
第二,考虑粘度匹配:如果外包层材料中没有做任何的粘度优化设计,其粘度与内包层和芯层粘度梯度失配,所以我们通过芯层中碱金属离子掺杂对芯层粘度进行控制;通过内包层和下陷内包层的不同氟掺杂浓度对芯层外部的玻璃粘度进行优化,以减少界面位置的缺陷以及虚拟温度升高等问题,从而降低光纤衰减。
第三,考虑光学剖面匹配:如果使用纯二氧化硅玻璃作为外包层材料,在考虑负责粘度匹配设计时,就限定了各个部分掺杂的浓度,而为了证光纤的光学参数满足G652或G654光 纤的参数要求,即保证光纤的MFD,色散和弯曲性能符合标准要求,又要求我们必须考虑光学剖面设计。这就要求我们在进行粘度设计时,综合考虑光纤的光学设计,增加了工艺实现的难度。
综上所述,目前没有相关专利披露同时具有以下特点的,可以满足ITU-T G654.B或D标准要求的,超低衰减大有效面积光纤设计:1.芯层为非纯硅芯,具有锗掺杂的特点;2芯层中具有碱金属进行掺杂以对芯层粘度进行优化;3.在芯层和外包层中间具有下陷结构,抑制基模截止;4.具有超低衰减性能的光纤,其最外侧玻璃材料为没有氟掺杂的二氧化硅玻璃。
发明内容
以下为本发明中涉及的一些术语的定义和说明:
相对折射率差Δni
从光纤纤芯轴线开始算起,根据折射率的变化,定义为最靠近轴线的那层为纤芯层,光纤的最外层即纯二氧化硅层定义为光纤外包层。
光纤各层相对折射率差Δni由以下方程式定义,
Figure PCTCN2015096106-appb-000002
其中ni为纤芯的折射率,而nc为外包层折射率,即纯二氧化硅的折射率。
光纤芯层Ge掺杂的相对折射率差贡献量ΔGe由以下方程式定义,
Figure PCTCN2015096106-appb-000003
其中nGe为假设纤芯的Ge掺杂物,在掺杂到没有其他掺杂物的纯二氧化硅中,引起二氧化硅玻璃折射率的变化量,其中nc为最外包层折射率,即纯二氧化硅的折射率。
光纤的有效面积Aeff
Figure PCTCN2015096106-appb-000004
其中,E是与传播有关的电场,r为轴心到电场分布点之间的距离。
光缆截止波长λcc
IEC(国际电工委员会)标准60793-1-44中定义:光缆截止波长λcc是光信号在光纤中传播了22米之后不再作为单模信号进行传播的波长。在测试时需通过对光纤绕一个半径14cm 的圈,两个半径4cm的圈来获取数据。
微弯测试方法参照IEC TR 62221-2012中规定Method B的方法进行测试,由于长波长对于弯曲更为敏感,且为指数形式增加,且测试波长范围为1250nm至1700nm,所以在本发明中重点考察长波长位置微弯,且以1700nm处微弯值核量某种设计的光纤微弯性能。
本发明所要解决的技术问题旨在设计一种具有较低光纤制造成本的超低衰减大有效面积的光纤,其成缆截止波长小于1530nm,并且具有较好的弯曲损耗、色散性能。
本发明为解决上述提出的问题所采用的技术方案为:包括有芯层和包层,其特征在于所述的芯层半径r1为4.8~6.5μm,芯层相对折射率差Δn1为-0.06%~0.10%,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层,所述的内包层半径r2为9~15μm,相对折射率差Δn2为-0.40%~-0.15%,所述的下陷内包层半径r3为12~17μm,相对折射率差Δn3为-0.8%~-0.3,所述的辅助外包层半径r4为37~50μm,相对折射率差Δn4范围为-0.6%~-0.25%;所述外包层为纯二氧化硅玻璃层。
按上述方案,所述的芯层为锗氟及碱金属共掺的二氧化硅玻璃层,或为锗与碱金属共掺的二氧化硅玻璃层,其中锗的相对折射率贡献量0.02%~0.10%,碱金属含量为5~5000ppm。
按上述方案,所述芯层中的碱金属为锂、钠、钾、铷、铯、钫碱金属离子中的一种或多种。
按上述方案,所述光纤在1550nm波长的有效面积为100~140μm2,优选条件下为119~140μm2
按上述方案,所述光纤的成缆截止波长等于或小于1530nm。
按上述方案,所述光纤在波长1550nm处的色散等于或小于23ps/nm*km,所述光纤在波长1625nm处的色散等于或小于27ps/nm*km。
按上述方案,所述光纤在波长1550nm处的衰耗等于或小于0.184dB/km;优选条件下等于或小于0.170dB/km。
按上述方案,所述光纤在波长1700nm处的微弯损耗等于或小于5dB/km。微弯是指光纤发生一些曲率半径可以与光纤横截面尺寸相比拟的畸变。
按上述方案,所述光纤在波长1550nm处,R15mm弯曲半径弯曲10圈的宏弯损耗等于或小于0.25dB,R10mm弯曲半径弯曲1圈的宏弯损耗等于或小于0.75dB。
按上述方案,所述光纤在1550nm波长处的模场直径(MFD)为11μm~13μm。
本发明的有益效果在于:1、采用掺锗及碱金属的芯层设计,合理的设计了光纤内部的粘度匹配,减少光纤制备过程中缺陷,降低光纤的衰减参数。2、设计了合理的光纤氟掺杂下陷 结构,并通过对光纤各纤芯层剖面的合理设计,使光纤具有等于或大于100μm2的有效面积,在较佳参数范围下,可以达到等于或大于130μm2,甚至大于140μm2的有效面积。3、本发明的截止波长、弯曲损耗、色散等综合性能参数在应用波段良好,足够小的的成缆截止波长,以保证该类光纤在C波段传输应用中光信号的单模状态,光纤剖面采用多层阶梯状下陷包层结构,具有较宽的下陷包层结构用于限制基模泄露,对光纤的弯曲损耗具有较好的改进作用。4、最外层的外包层结构采用了纯二氧化硅的设计,降低了氟掺杂玻璃在光纤中比重,从而降低了光纤制造生产成本。
附图说明
图1本发明一个实施例的折射率剖面结构分布图。
具体实施方式
以下结合实施例进行详细描述。
包括有芯层和包层,所述的芯层为锗氟及碱金属共掺的二氧化硅玻璃层,或为锗与碱金属共掺的二氧化硅玻璃层,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层。所述外包层为纯二氧化硅玻璃层,外包层的直径为125μm。
表一所列为本发明优选的实施例的折射率剖面参数,其中Δ1-Ge为芯层中Ge掺杂的折射率贡献量,K为芯层钾元素含量。表二为表一所述光纤所对应的光传输特性。
表一、本发明实施例的光纤剖面参数
Figure PCTCN2015096106-appb-000005
表二、本发明实施例的光纤参数
Figure PCTCN2015096106-appb-000006
Figure PCTCN2015096106-appb-000007

Claims (10)

  1. 一种超低衰减大有效面积的单模光纤,包括有芯层和包层,其特征在于所述的芯层半径r1为4.8~6.5μm,芯层相对折射率差Δn1为-0.06%~0.10%,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层,所述的内包层半径r2为9~15μm,相对折射率差Δn2为-0.40%~-0.15%,所述的下陷内包层半径r3为12~17μm,相对折射率差Δn3为-0.8%~-0.3,所述的辅助外包层半径r4为37~50μm,相对折射率差Δn4范围为-0.6%~-0.25%;所述外包层为纯二氧化硅玻璃层。
  2. 按权利要求1所述的超低衰减大有效面积的单模光纤,其特征在于所述的芯层为锗氟及碱金属共掺的二氧化硅玻璃层,或为锗与碱金属共掺的二氧化硅玻璃层,其中锗的相对折射率贡献量0.02%~0.10%,碱金属含量为5~5000ppm。
  3. 按权利要求2所述的超低衰减大有效面积的单模光纤,其特征在于所述芯层中的碱金属为锂、钠、钾、铷、铯、钫碱金属离子中的一种或多种。
  4. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在1550nm波长的有效面积为100~140μm2
  5. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤的成缆截止波长等于或小于1530nm。
  6. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1550nm处的色散等于或小于23ps/nm*km,所述光纤在波长1625nm处的色散等于或小于27ps/nm*km
  7. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1550nm处的衰耗等于或小于0.185dB/km。
  8. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1700nm处的微弯损耗等于或小于5dB/km。
  9. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1550nm处,R15mm弯曲半径弯曲10圈的宏弯损耗等于或小于0.25dB,R10mm弯曲半径弯曲1圈的宏弯损耗等于或小于0.75dB。
  10. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在1550nm波长处的模场直径为11μm~13μm。
PCT/CN2015/096106 2015-07-31 2015-12-01 一种超低衰减大有效面积的单模光纤 WO2017020457A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL15900226T PL3330756T3 (pl) 2015-07-31 2015-12-01 Światłowód jednomodowy o ultraniskim tłumieniu i dużej efektywnej powierzchni
KR1020177036122A KR20180006975A (ko) 2015-07-31 2015-12-01 초저 감쇠 대유효 면적의 단일 모드 광섬유
EP15900226.0A EP3330756B1 (en) 2015-07-31 2015-12-01 Ultra-low attenuation large effective area single-mode optical fiber
ES15900226T ES2900735T3 (es) 2015-07-31 2015-12-01 Fibra óptica monomodo de atenuación ultrabaja y área efectiva amplia
JP2018516613A JP6529666B2 (ja) 2015-07-31 2015-12-01 極低減衰で大有効面積の単一モード光ファイバ
US15/866,243 US10209437B2 (en) 2015-07-31 2018-01-09 Single-mode optical fiber with ultra low attenuation and large effective area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510464355.0 2015-07-31
CN201510464355.0A CN104991307A (zh) 2015-07-31 2015-07-31 一种超低衰减大有效面积的单模光纤

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/866,243 Continuation US10209437B2 (en) 2015-07-31 2018-01-09 Single-mode optical fiber with ultra low attenuation and large effective area

Publications (1)

Publication Number Publication Date
WO2017020457A1 true WO2017020457A1 (zh) 2017-02-09

Family

ID=54303142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096106 WO2017020457A1 (zh) 2015-07-31 2015-12-01 一种超低衰减大有效面积的单模光纤

Country Status (8)

Country Link
US (1) US10209437B2 (zh)
EP (1) EP3330756B1 (zh)
JP (1) JP6529666B2 (zh)
KR (1) KR20180006975A (zh)
CN (1) CN104991307A (zh)
ES (1) ES2900735T3 (zh)
PL (1) PL3330756T3 (zh)
WO (1) WO2017020457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009284A1 (ja) * 2017-07-03 2019-01-10 日本電信電話株式会社 光ファイバ及び光伝送システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991307A (zh) 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN106291808B (zh) * 2016-09-18 2019-05-24 长飞光纤光缆股份有限公司 一种超低衰减大有效面积单模光纤
JP7069566B2 (ja) * 2017-05-11 2022-05-18 住友電気工業株式会社 光ファイバ
CN107422415B (zh) * 2017-06-15 2020-05-05 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN107490819B (zh) * 2017-08-22 2020-05-05 长飞光纤光缆股份有限公司 具有超低衰减大有效面积的单模光纤
CN107678088A (zh) * 2017-11-09 2018-02-09 长飞光纤光缆股份有限公司 低衰减大有效面积的单模光纤
CN109445023B (zh) * 2018-11-07 2020-06-16 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤
CN111289021A (zh) * 2020-03-16 2020-06-16 中天科技光纤有限公司 一种光纤传感装置及探测***
US11776833B2 (en) 2020-12-22 2023-10-03 Canon Kabushiki Kaisha Method for improving accuracy of imprint force application in imprint lithography

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603179A (zh) * 2011-01-20 2012-07-25 住友电气工业株式会社 光纤预制件、光纤和光纤预制件的制备方法
CN104360434A (zh) * 2014-11-12 2015-02-18 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN104765098A (zh) * 2015-04-28 2015-07-08 长飞光纤光缆股份有限公司 一种具有较低衰减系数的单模光纤
CN104777551A (zh) * 2015-04-28 2015-07-15 长飞光纤光缆股份有限公司 一种低衰减大有效面积的单模光纤
CN104777553A (zh) * 2015-04-28 2015-07-15 长飞光纤光缆股份有限公司 一种超低衰减单模光纤
CN104991307A (zh) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146534A (en) * 1991-11-12 1992-09-08 At&T Bell Laboratories SiO2 -based alkali-doped optical fiber
US6917740B2 (en) 2003-05-30 2005-07-12 Corning Incorporated Optical fiber having reduced viscosity mismatch
EP1663890B1 (en) * 2003-08-29 2020-09-23 Corning Incorporated Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US7088900B1 (en) * 2005-04-14 2006-08-08 Corning Incorporated Alkali and fluorine doped optical fiber
US20070003198A1 (en) * 2005-06-29 2007-01-04 Lance Gibson Low loss optical fiber designs and methods for their manufacture
FR2914751B1 (fr) * 2007-04-06 2009-07-03 Draka Comteq France Fibre optique monomode
JP5013964B2 (ja) 2007-05-23 2012-08-29 キヤノン株式会社 撮像装置及びその制御方法
US8315495B2 (en) * 2009-01-30 2012-11-20 Corning Incorporated Large effective area fiber with Ge-free core
US7689085B1 (en) 2009-01-30 2010-03-30 Corning Incorporated Large effective area fiber with GE-free core
FR2951282B1 (fr) 2009-10-13 2012-06-15 Draka Comteq France Fibre optique monomode a tranchee enterree
CN102156323B (zh) * 2011-05-05 2012-06-06 长飞光纤光缆有限公司 一种单模光纤
EP2533082B1 (en) * 2011-06-09 2013-12-25 Draka Comteq BV Single mode optical fiber
US8687932B2 (en) * 2011-09-21 2014-04-01 Ofs Fitel, Llc Optimized ultra large area optical fibers
JP5974455B2 (ja) * 2011-11-21 2016-08-23 住友電気工業株式会社 光ファイバ母材、光ファイバ製造方法および光ファイバ
US8666214B2 (en) * 2011-11-30 2014-03-04 Corning Incorporated Low bend loss optical fiber
JP5831189B2 (ja) * 2011-12-09 2015-12-09 住友電気工業株式会社 光ファイバおよび光伝送システム
CN103454719B (zh) 2013-09-03 2015-09-30 长飞光纤光缆股份有限公司 一种单模光纤
CN104749691B (zh) * 2015-04-28 2018-05-01 长飞光纤光缆股份有限公司 一种超低衰耗弯曲不敏感单模光纤
CN104898200B (zh) * 2015-06-25 2018-03-16 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603179A (zh) * 2011-01-20 2012-07-25 住友电气工业株式会社 光纤预制件、光纤和光纤预制件的制备方法
CN104360434A (zh) * 2014-11-12 2015-02-18 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN104765098A (zh) * 2015-04-28 2015-07-08 长飞光纤光缆股份有限公司 一种具有较低衰减系数的单模光纤
CN104777551A (zh) * 2015-04-28 2015-07-15 长飞光纤光缆股份有限公司 一种低衰减大有效面积的单模光纤
CN104777553A (zh) * 2015-04-28 2015-07-15 长飞光纤光缆股份有限公司 一种超低衰减单模光纤
CN104991307A (zh) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3330756A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009284A1 (ja) * 2017-07-03 2019-01-10 日本電信電話株式会社 光ファイバ及び光伝送システム
US11366266B2 (en) 2017-07-03 2022-06-21 Nippon Telegraph And Telephone Corporation Optical fiber and optical transmission system

Also Published As

Publication number Publication date
EP3330756A4 (en) 2018-08-15
CN104991307A (zh) 2015-10-21
ES2900735T3 (es) 2022-03-18
PL3330756T3 (pl) 2022-04-11
US20180128968A1 (en) 2018-05-10
JP6529666B2 (ja) 2019-06-12
EP3330756A1 (en) 2018-06-06
EP3330756B1 (en) 2021-09-15
US10209437B2 (en) 2019-02-19
JP2018517185A (ja) 2018-06-28
KR20180006975A (ko) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2017020457A1 (zh) 一种超低衰减大有效面积的单模光纤
US10151873B2 (en) Single mode optical fiber with ultra-low attenuation and bend insensibility
WO2016074602A1 (zh) 一种超低衰减大有效面积的单模光纤
CN106772788B (zh) 一种截止波长位移单模光纤
US10018779B2 (en) Bending-insensitive single-mode fiber with ultra low attenuation
CN107422415B (zh) 一种超低衰减大有效面积的单模光纤
WO2014135054A1 (zh) 一种低衰减单模光纤
WO2016206308A1 (zh) 一种掺杂优化的超低衰减单模光纤
CN109298482B (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
CN107678087A (zh) 一种低衰减大有效面积单模光纤
KR102106677B1 (ko) 초저감쇠 단일모드 광섬유
CN107490819B (zh) 具有超低衰减大有效面积的单模光纤
CN107678088A (zh) 低衰减大有效面积的单模光纤
CN106443875A (zh) 一种超低衰减弯曲不敏感单模光纤
CN104898201B (zh) 一种超低衰减大有效面积的单模光纤
CN107193079A (zh) 一种低衰减大有效面积的单模光纤
WO2023240881A1 (zh) 一种陆地用g.654.e光纤及其制作工艺
WO2023240880A1 (zh) 一种多波段衰减平坦光纤
CN109683233A (zh) 一种具有超低衰减大有效面积的单模光纤
CN104880766B (zh) 一种超低衰减单模光纤
CN109683232A (zh) 具有超低衰减大有效面积的单模光纤
CN110244402B (zh) 一种超低损耗大有效面积单模光纤设计及其制造方法
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications
CN116908957A (zh) 一种g.654.e光纤及其制备方法
Khrapko et al. Quasi Single-Mode Fiber with Record-Low Attenuation of 0.1400 dB/km

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018516613

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177036122

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015900226

Country of ref document: EP