WO2017017776A1 - Printing machine and printing method - Google Patents

Printing machine and printing method Download PDF

Info

Publication number
WO2017017776A1
WO2017017776A1 PCT/JP2015/071315 JP2015071315W WO2017017776A1 WO 2017017776 A1 WO2017017776 A1 WO 2017017776A1 JP 2015071315 W JP2015071315 W JP 2015071315W WO 2017017776 A1 WO2017017776 A1 WO 2017017776A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
substrate
squeegee
printing
unit
Prior art date
Application number
PCT/JP2015/071315
Other languages
French (fr)
Japanese (ja)
Inventor
佳貴 成田
バート フーガーズ
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2017530510A priority Critical patent/JP6411658B2/en
Priority to PCT/JP2015/071315 priority patent/WO2017017776A1/en
Publication of WO2017017776A1 publication Critical patent/WO2017017776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/40Inking units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices

Definitions

  • the present invention relates to a printing technique for printing a paste through a pattern hole on a substrate facing the mask by sliding a squeegee on the mask having the pattern hole.
  • the printing apparatus of Patent Document 1 performs screen printing in which a paste is printed on a substrate through a pattern hole by bringing the substrate into contact with a mask having a pattern hole and sliding a squeegee on the mask supplied with the paste. .
  • a printing apparatus in order to print the paste on an appropriate portion of the substrate, it is important to align the pattern hole of the mask with the substrate.
  • Patent Document 2 there are cases where the substrate expands and contracts compared to the design dimensions due to thermal deformation or the like in the manufacturing process of the substrate.
  • the mask may be bent over time. In such a case, the pattern hole of the mask and the substrate cannot be properly aligned, and the position of the paste printed on the mask may be shifted.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of suppressing a shift in the position of a paste printed on a mask.
  • the printing machine of the present invention includes a mask holding unit that holds a mask having a pattern hole, and a substrate holding unit that holds the substrate while facing the mask while providing a gap between the mask and the mask. And a printing unit that has a squeegee that contacts the mask on the opposite side of the substrate held by the substrate holding unit, and that prints the paste on the mask on the substrate through the pattern hole by moving the squeegee in the squeegee direction; A control unit that corrects a position at which the paste is printed on the substrate by changing a relative positional relationship between the mask and the substrate in the squeegee direction according to the position of the squeegee with respect to the mask;
  • the printing method of the present invention includes a step of making the substrate face the mask while providing a gap with the mask having the pattern holes, and a squeegee that contacts the mask on the opposite side of the substrate. And a step of printing the paste on the mask on the substrate through the pattern hole by moving in the direction, and in the step of printing the paste on the substrate, the mask and the substrate in the squeegee direction according to the position of the squeegee with respect to the mask The position where the paste is printed on the substrate is corrected by changing the relative positional relationship.
  • the paste is printed on the substrate by changing the relative positional relationship between the mask and the substrate in the squeegee direction according to the position of the squeegee with respect to the mask. Correct the position. Therefore, it is possible to suppress a shift in the position of the paste printed on the mask.
  • control unit may configure the printing machine so as to correct the position where the paste is printed on the substrate by continuously moving the substrate relative to the mask as the squeegee moves. . Thereby, it is possible to suppress the displacement of the position of the paste printed on the mask.
  • control unit moves the substrate relative to the mask at a speed determined based on the positional deviation between the mask pattern hole held in the mask holding unit and the substrate held in the substrate holding unit.
  • a printing machine may be configured.
  • the printer may further include a detection unit that detects based on the result, and the control unit may be configured to move the substrate relative to the mask at a speed determined based on the detection result of the detection unit.
  • the control unit includes: By displacing the substrate relative to the mask during the stop period when the squeegee is paused at the boundary, the paste is printed on the substrate through the area downstream of the boundary where the squeegee is paused in the squeegee direction.
  • the printing press may be configured to correct the position. Thereby, it is possible to suppress the displacement of the position of the paste printed on the mask.
  • control unit may configure the printing machine so that the positional relationship between the substrate and the mask is fixed during the moving period in which the squeegee is moving.
  • the setting unit may configure the printing machine so as to set each region so that the boundary of the region does not overlap the pattern hole of the mask.
  • each region is set so that the position where the squeegee is temporarily stopped does not overlap the pattern hole. Therefore, it is preferable that the squeegee does not stop and the substrate is displaced with respect to the mask while the squeegee pushes the paste into the pattern hole and prints on the substrate.
  • an input operation unit that allows an operator to input an amount for displacing the substrate relative to the mask during the stop period is further provided, and the control unit moves the substrate during the stop period by the amount input to the input operation unit.
  • the printing press may be configured to be displaced relative to the mask.
  • the setting unit sets three or more regions obtained by virtually dividing the mask in the squeegee direction, and the input operation unit inputs, for each boundary, an amount for displacing the substrate relative to the mask during the stop period.
  • the printer may be configured so that it can. In such a configuration, the amount of the substrate to be displaced relative to the mask during the stop period can be optimized for each area printed by the squeegee after the movement is resumed.
  • the mask holding unit holds the mask with the long direction of the mask aligned with the squeegee direction
  • the substrate holding unit holds the substrate with the long direction of the substrate aligned with the squeegee direction.
  • FIG. 2 is a partial plan view schematically showing the configuration of the printing machine of FIG. 1.
  • FIG. 1 is a partial side view schematically showing an example of the configuration of a printing press according to the present invention.
  • the mask 12 is shown in a cross section, and pattern holes 121 are shown.
  • FIG. 2 is a partial plan view schematically showing the configuration of the printing machine of FIG.
  • the XYZ orthogonal coordinate axes in which the X direction and the Y direction are horizontal directions and the Z direction is a vertical direction are shown as appropriate.
  • the printing machine 1 prints paste-like solder on the board 10 carried in from the upstream side in the X direction (opposite the arrow), and carries the printed board 10 downstream in the X direction (arrow side).
  • the printing press 1 includes a pair of carry-in conveyors 21 and 21 arranged in parallel on the upstream side in the X direction, a pair of carry-out conveyors 22 and 22 arranged in parallel on the downstream side in the X direction, and the X direction.
  • the printing stage 3 disposed between the carry-in conveyors 21 and 21 and the carry-out conveyors 22 and 22 is provided. Then, the printing stage 3 receives the substrate 10 carried into the printing machine 1 by the carry-in conveyors 21 and 21 or delivers the printed substrate 10 to the carry-out conveyors 22 and 22.
  • the printing stage 3 includes an XY table 31 that can move in the X direction and the Y direction, a lifting table 32 that can be lifted and lowered relative to the XY table 31, and a substrate holder 35 that is attached to the upper surface of the lifting table 32. Therefore, by appropriately driving the XY table 31 and the lifting table 32, the substrate 10 supported by the substrate holding unit 35 can be freely moved in the X direction, the Y direction, and the Z direction.
  • the substrate holding unit 35 includes a pair of conveyors 351 and 351 arranged in parallel, and a plurality of backup pins 353 arranged between both the conveyors 351 and 351.
  • the printing stage 3 When the printing stage 3 having such a configuration receives the substrate 10 from the carry-in conveyor 21 to the conveyor 351 in a state in which the heights of the carry-in conveyor 21 and the conveyer 351 are aligned, the printing stage 3 supports the substrate 10 with the backup pins 353, while The substrate 10 is fixed with the illustrated fixture. In this way, the substrate 10 is held horizontally on the pair of conveyors 351 and 351. Subsequently, the printing stage 3 raises the substrate 10 to the working position (the position of the substrate 10 in FIG. 1), and brings the front surface (upper surface) of the substrate 10 close to the rear surface (lower surface) of the mask 12. In this working position, the surface of the substrate 10 receives solder printing.
  • the printing stage 3 When printing on the substrate 10 is completed, the printing stage 3 lowers the substrate 10 from the working position, and delivers the substrate 10 from the conveyor 351 to the carry-out conveyor 22 with the heights of the carry-out conveyor 22 and the conveyer 351 being aligned.
  • the carry-out conveyor 22 carries the substrate 10 received from the printing stage 3 out of the printing machine 1.
  • the printing machine 1 includes a mask holding unit 4 that holds the mask 12 and a printing unit 5 that performs printing on the substrate 10 through the mask 12 above the substrate holding unit 35.
  • the mask holding unit 4 has a pair of mask fixtures 41 and 41 arranged at both ends in the X direction, and both ends in the X direction of the mask 12 are fixed to the mask holders 41 and 41.
  • the printing unit 5 includes a fixed rail 51 that is parallel to the X direction, and a print head 52 that is movable along the fixed rail 51 in the X direction.
  • the print head 52 has the same configuration as that of JP 2010-179628 A.
  • the print head 52 has a squeegee 53 parallel to the Y direction at its lower end, and moves the mask 12 by moving the squeegee 53 in the X direction in contact with the surface (upper surface) of the mask 12.
  • the solder 14 supplied to the surface of the mask 12 is printed on the substrate 10.
  • the surface of the substrate 10 at the working position faces the back surface of the mask 12 with a slight gap from the back surface of the mask 12, and the squeegee 53 performs so-called gap printing. Accordingly, the portion of the back surface of the mask 12 that is pressed from the front side by the tip of the squeegee 53 contacts the surface of the substrate 10, while the other portions are slightly separated from the surface of the substrate 10.
  • the printing machine 1 includes a mask imaging camera 61 attached to the printing stage 3 facing upward.
  • the mask imaging camera 61 can move in the X direction and the Y direction along with the printing stage 3. Therefore, the mask imaging camera 61 can be imaged by moving the mask imaging camera 61 directly below the mask fiducial mark F12 (FIG. 4) provided on the back surface of the mask 12.
  • the printing machine 1 includes a substrate imaging camera 62 provided facing downward at a position deviating from the mask 12 held by the mask holding unit 4 in the Y direction.
  • the board imaging camera 62 is movable in the X direction along a fixed rail 63 parallel to the X direction. Accordingly, the substrate imaging camera 62 is moved in the Y direction while the substrate 10 is moved in the Y direction by the printing stage 3, and the substrate imaging camera 62 is moved directly above the substrate fiducial mark F 10 provided on the surface of the substrate 10. By doing so, the substrate fiducial mark F10 can be imaged by the substrate imaging camera 62.
  • FIG. 3 is a block diagram showing an electrical configuration of the printing machine of FIG.
  • the printing machine 1 includes a calculation unit 9 including a CPU (Central Processing Unit) and a RAM (Random Access Memory).
  • the calculation unit 9 executes a predetermined program to construct the main control unit 91, the setting unit 92, the drive control unit 93, and the image processing unit 94 therein.
  • the main control unit 91 has a function of comprehensively controlling the operation of the printing press 1 using the setting unit 92, the drive control unit 93, and the image processing unit 94.
  • the setting unit 92 controls the operation of the printing press 1.
  • the drive control unit 93 has a function of setting necessary control parameter values, the drive control unit 93 has a function of controlling driving of each unit of the printing press 1, and the image processing unit 94 is an image captured by the mask imaging camera 61 and the board imaging camera 62. Responsible for image processing.
  • the printing press 1 includes a display unit 71 configured with, for example, a liquid crystal display, and an input operation unit 72 configured with a keyboard and a mouse. Then, the setting unit 92 displays on the display unit 71 a setting screen for allowing the operator to set the control parameter, the current value of the control parameter, and the like. In addition, the setting unit 92 receives an input operation to the input operation unit 72 by the worker, and updates the value of the control parameter according to the input operation. Note that the display unit 71 and the input operation unit 72 may be integrally configured with, for example, a touch panel.
  • the printing press 1 includes a stage driving unit M3 that drives the printing stage 3, a conveyor driving unit M351 that drives the conveyor 351, and a head driving unit M52 that drives the printing head 52.
  • the stage drive unit M3 includes an X-axis motor that drives the XY table 31 in the X direction, a Y-axis drive motor that drives the XY table 31 in the Y direction, and a Z-axis motor that moves the lifting table 32 up and down.
  • the drive control part 93 adjusts the position in the horizontal surface of the XY table 31, and the height of the raising / lowering table 32 by controlling the stage drive part M3.
  • the conveyor driving unit M351 is configured by a conveyor motor that drives the conveyor 351.
  • the drive control part 93 controls the conveyor drive part M351, and the reception of the board
  • the head drive unit M52 includes an X-axis motor that drives the print head 52 in the X direction.
  • the drive control unit 93 controls the print head 52 to adjust the position of the print head 52 in the X direction.
  • the printing machine 1 includes the mask imaging camera 61 and the board imaging camera 62.
  • the image processing unit 94 measures the position of the mask fiducial mark F12 based on the image of the mask fiducial mark F12 captured by the mask imaging camera 61.
  • the image processing unit 94 measures the position of the substrate fiducial mark F10 based on the image of the substrate fiducial mark F10 captured by the substrate imaging camera 62.
  • the relative positional relationship between the mask 12 and the substrate 10 is adjusted based on the measurement results of the positions of the fiducial marks F10 and F12.
  • FIG. 4 is a plan view schematically showing the positional relationship between the mask and the substrate in the printing operation executed by the printer shown in FIG.
  • the substrate 10 is hidden behind the mask 12 in plan view, but in FIG. 4, the positional relationship between the mask 12 and the substrate 10 in the X direction.
  • the mask 12 and the substrate 10 are displayed while being shifted in the Y direction.
  • the substrate 10 has a rectangular shape that is long in the X direction and short in the Y direction.
  • Substrate fiducial marks F10 are provided at the four corners of the surface of the substrate 10, respectively.
  • a solder print target portion 101 such as a land is provided on the surface of the substrate 10. In FIG. 4, only one print target location 101 is shown, but a plurality of print target locations 101 are provided on the actual substrate 10.
  • the mask 12 also has a rectangular shape corresponding to the substrate 10 and long in the X direction and short in the Y direction. Further, mask fiducial marks F ⁇ b> 12 are provided at the four corners on the back surface of the mask 12 corresponding to the substrate fiducial marks F ⁇ b> 10 provided at the four corners of the substrate 10.
  • the mask fiducial mark F12 is provided on the back surface of the mask 12, the mask fiducial mark F12 is displayed through the mask 12 in FIG.
  • the mask 12 is provided with a pattern hole 121 therethrough. Although only one pattern hole 121 is shown in FIG. 4, the actual mask 12 is provided with a plurality of pattern holes 121 corresponding to the plurality of print target portions 101 of the substrate 10.
  • the mask 12 is formed larger than the substrate 10, and in FIG. 4, a range (substrate corresponding range 120) corresponding to the substrate 10 having the design dimension in the mask 12 is indicated by a virtual line.
  • the substrate 10 may expand and contract compared to the design dimension.
  • the substrate 10 extends in the X direction beyond the design dimension. . Therefore, when the substrate fiducial mark F10 is aligned with the mask fiducial mark F12 at the upstream end in the X direction, the substrate fiducial mark F12 is aligned with the mask fiducial mark F12 at the downstream end in the X direction.
  • the char mark F10 is shifted downstream in the X direction by the shift amount ⁇ F.
  • ⁇ 101 ⁇ F / 2
  • FIG. 5 is a side view schematically showing the influence of the bending of the mask, and particularly shows the substrate corresponding range 120 in the mask 12.
  • the mask 12 without bending is shown on the upper side
  • the mask 12 in a bent state is shown on the lower side.
  • the mask 12 in the bent state is substantially shrunk by a shift amount ⁇ 12 in the X direction as compared with the mask 12 without the bend
  • the pattern hole 121 of the mask 12 in the bent state has the pattern 12 of the mask 12 without the bend.
  • it is shifted in the X direction by a deviation amount ⁇ 121.
  • the main control unit 91 of the present embodiment executes a control that suppresses the displacement of the printing position by executing a predetermined program.
  • FIG. 6 is a flowchart showing a first control example for suppressing the displacement of the printing position.
  • FIG. 7 is a side view schematically showing an operation executed according to the flowchart of FIG. In FIG. 7, only the substrate corresponding range 120 of the mask 12 is shown.
  • the printing operation is performed by moving the squeegee 53 in the squeegee direction D53 parallel to the X direction.
  • the solder printing position on the substrate 10 is corrected by continuously moving the substrate 10 relative to the mask 12 as the squeegee 53 moves.
  • step S101 the main control unit 91 carries in the substrate 10 by controlling the stage driving unit M3 and the conveyor driving unit M351. As a result, the substrate 10 is carried from the carry-in conveyor 21 to the conveyor 351 of the printing stage 3.
  • step S102 the mask imaging camera 61 sequentially moves immediately below each mask fiducial mark F12 of the mask 12 to image each mask fiducial mark F12. Then, the image processing unit 94 calculates the position of each mask fiducial mark F12 based on the captured image of each mask fiducial mark F12. Thus, the position of each mask fiducial mark F12 of the mask 12 is measured.
  • step S103 the substrate imaging camera 62 sequentially moves directly above each substrate fiducial mark F10 on the substrate 10 to image each substrate fiducial mark F10. Then, the image processing unit 94 calculates the position of each substrate fiducial mark F10 based on the captured image of each substrate fiducial mark F10. Thus, the position of each substrate fiducial mark F10 on the substrate 10 is measured.
  • step S104 the main control unit 91 calculates a speed (substrate speed V10) for moving the substrate 10 in the printing operation.
  • a speed substrate speed V10
  • the following equation V10 ⁇ F / T53 (1)
  • the main control unit 91 can calculate the substrate speed V10 by obtaining the shift amount ⁇ F and the inter-mark distance L12 based on the measurement results of the positions of the fiducial marks F10 and F12 and multiplying these ratios by the squeegee speed V53.
  • the substrate speed V10 is set to a negative value. At this time, the substrate 10 moves in the reverse direction (negative direction, left direction in FIG.
  • the substrate speed V10 Set to a positive value.
  • the substrate 10 moves in the forward direction (forward direction, right direction in FIG. 7) with respect to the squeegee direction D53.
  • step S105 the main control unit 91 controls the stage driving unit M3 to raise the substrate 10 to the working position and perform alignment of the substrate 10 with respect to the mask 12.
  • the surface of the substrate 10 thus raised to the working position faces the back surface of the mask 12 with a slight gap from the back surface of the mask 12.
  • this alignment as shown in the column of “Step S105” in FIG. 7, at the upstream end in the squeegee direction D53, the position of the fiducial mark F12 and the position of the fiducial mark F10 are in the squeegee direction. Matches at D53.
  • the position of the fiducial mark F12 and the position of the fiducial mark F10 are shifted in the squeegee direction D53 by a deviation amount ⁇ F.
  • the substrate 10 extends with respect to the mask 12, and the substrate fiducial mark F10 is shifted to the downstream side in the squeegee direction D53 from the mask fiducial mark F12.
  • step S106 the main control unit 91 controls the head driving unit M52 to move the tip of the squeegee 53 (the end in contact with the mask 12) to the start position.
  • This starting position is set on the upstream side in the squeegee direction D53 from the mask fiducial mark F12 at the upstream end in the squeegee direction D53.
  • step S107 the main control unit 91 starts the movement of the squeegee 53 in the squeegee direction D53 by controlling the head driving unit M52.
  • the squeegee 53 is accelerated to the squeegee speed V53 before reaching the mask fiducial mark F12 at the upstream end in the squeegee direction D53, and thereafter moves at a constant speed at the squeegee speed V53.
  • the main control unit 91 starts moving the substrate 10 by controlling the stage driving unit M3. (Step S109). Thereby, the substrate 10 moves at the substrate speed V10 calculated in step S104.
  • the substrate speed V10 is set to a negative value. Accordingly, the substrate 10 moves in the reverse direction with respect to the squeegee direction D53, and the direction of the squeegee speed V53 and the direction of the substrate speed V10 are opposite to each other, as shown in the column “in the middle of printing” in FIG. In the “printing” column, the tip of the squeegee 53 is shown in the center of the mask fiducial mark F12 at both ends in the squeegee direction D53. The amount of positional deviation between the Schal mark F12 and the substrate fiducial mark F10 is half of the deviation amount ⁇ F in the column of “Step S105”.
  • the substrate 10 continuously moves at the substrate speed V10, so that the position of the pattern hole 121 of the mask 12 and the printing target location 101 of the substrate 10 in the portion where the tip of the squeegee 53 is located.
  • the deviation is corrected.
  • the positional deviation between the position where the solder 14 pushed into the pattern hole 121 by the squeegee 53 is printed and the position of the print target portion 101 corresponding to the pattern hole 121 is corrected.
  • step S110 the main control unit 91 controls the stage driving unit M3 to end the movement of the substrate 10 ( Then, the movement of the squeegee 53 is finished by controlling the head drive unit M52 (step S112).
  • step S113 the main control unit 91 carries out the substrate 10 by controlling the stage driving unit M3 and the conveyor driving unit M351 (step S113). As a result, the substrate 10 is unloaded from the conveyor 351 of the printing stage 3 via the unloading conveyor 22.
  • the solder 14 is attached to the substrate 10 by changing the relative positional relationship between the mask 12 and the substrate 10 in the squeegee direction D53 in accordance with the position of the squeegee 53 with respect to the mask 12. Correct the printing position. Therefore, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
  • the main controller 91 corrects the position where the solder 14 is printed on the substrate 10 by continuously moving the substrate 10 relative to the mask 12 as the squeegee 53 moves. Thereby, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
  • the main control unit 91 sets the substrate speed V10 based on the positional deviation (deviation amount ⁇ F) between the pattern hole 121 of the mask 12 held by the mask holding unit 4 and the substrate 10 held by the substrate holding unit 35. Then, the substrate 10 is moved relative to the mask 12 at the substrate speed V10. By setting the substrate speed V10 in this way, it is possible to more reliably suppress the displacement of the position of the solder 14 printed on the mask 12.
  • the image processing unit 94 obtains the shift amount ⁇ F based on the results of measuring the positions of the mask fiducial mark F12 and the substrate fiducial mark F10.
  • the shift amount ⁇ F can be accurately obtained.
  • the position shift of the solder 14 printed on the mask 12 can be more reliably suppressed.
  • the mask holding unit 4 holds the mask by making the long direction (X direction) of the mask 12 coincide with the squeegee direction D53, and the substrate holding unit 35 sets the long direction (X direction) of the substrate 10 to the squeegee direction. It is held on the substrate in accordance with D53. That is, the influence of the positional deviation between the pattern hole 121 of the mask 12 and the printing target portion 101 of the substrate 10 due to the deformation of the substrate 10 or the bending of the mask 12 is the longitudinal direction (X direction) of the mask 12 and the substrate 10 substrate. Becomes prominent. On the other hand, this configuration can effectively suppress the displacement of the position of the solder 14 printed on the mask 12 in the longitudinal direction (X direction).
  • a printing stage 3 for positioning the substrate 10 carried into the printing machine 1 at a working position is provided, and the main control unit 91 moves the substrate 10 by the printing stage 3 so that the mask 12 is printed during the printing operation.
  • the substrate 10 is moved.
  • the printing stage 3 not only positions the substrate 10 to the working position but also moves the substrate 10 relative to the mask 12 during the printing operation. Therefore, it is not necessary to provide a new mechanism for moving the substrate 10 relative to the mask 12 during the printing operation, and the configuration of the printing press 1 can be simplified and the cost can be reduced.
  • FIG. 8 is a plan view schematically showing the positional relationship between the mask and the substrate in the second control example for suppressing the displacement of the printing position.
  • the substrate 10 is hidden behind the mask 12 in plan view, but in FIG. 8, the positional relationship between the mask 12 and the substrate 10 in the X direction.
  • the mask 12 and the substrate 10 are displayed while being shifted in the Y direction. 8 that are the same as those in FIG. 4 are denoted by the same reference numerals and description thereof is omitted.
  • the setting unit 92 virtually divides the substrate corresponding range 120 of the mask 12 in the squeegee direction D53 to set a plurality of regions 122.
  • the boundary 123 between the adjacent regions 122 has a linear shape parallel to the Y direction.
  • the setting unit 92 is based on the data indicating the position of the pattern hole 121 of the mask 12 or the captured image of the mask 12 by the mask imaging camera 61.
  • a plurality of regions 122 are set so that each boundary 123 does not overlap with the pattern hole 121 of the mask 12.
  • the squeegee 53 performs an intermittent movement in which the movement is resumed after pausing for a predetermined time.
  • the main control unit 91 slides with the squeegee 53 that has resumed movement by displacing the substrate 10 relative to the mask 12 during the stop period in which the squeegee 53 is temporarily stopped at the boundary 123.
  • the position where the solder 14 is printed on the substrate 10 is corrected through the pattern hole 121 in the region 122 to be formed.
  • FIG. 9 is a flowchart showing a second control example for suppressing the displacement of the printing position.
  • FIG. 10 is a side view schematically showing the operation executed according to the flowchart of FIG. In FIG. 10, only the substrate corresponding range 120 of the mask 12 is shown.
  • the main control unit 91 carries in the substrate 10 by controlling the stage driving unit M3 and the conveyor driving unit M351.
  • the image processing unit 94 measures the position of each mask fiducial mark F12 based on the captured image of each mask fiducial mark F12.
  • the image processing unit 94 measures the position of each substrate fiducial mark F10 based on the captured image of each substrate fiducial mark F10.
  • step S204 the setting unit 92 sets the offset amount ⁇ 10 for each boundary 123.
  • the offset amount ⁇ 10 is a displacement amount for displacing the substrate 10 with respect to the mask 12 during the stop period in which the squeegee 53 is temporarily stopped at the boundary 123, and is set for each boundary 123.
  • the setting unit 92 calculates a shift amount ⁇ F between the mask 12 and the substrate 10 based on the measurement results of the positions of the fiducial marks F10 and F12.
  • the deviation amount ⁇ F is multiplied by the ratio (L122 / L12) between the length L122 in the squeegee direction D53 of the region 122 adjacent to the target boundary 123 on the downstream side in the squeegee direction D53 and the inter-mark distance L12.
  • the offset amount ⁇ 10 is set to a negative value.
  • the substrate 10 is displaced in the opposite direction (negative direction, left direction in FIG. 10) with respect to the squeegee direction D53.
  • the offset amount ⁇ 10 Set to a positive value.
  • the substrate 10 is displaced in the forward direction (forward direction, right direction in FIG. 10) with respect to the squeegee direction D53.
  • step S205 the main control unit 91 controls the stage driving unit M3 to raise the substrate 10 to the working position and perform alignment of the substrate 10 with respect to the mask 12.
  • the surface of the substrate 10 thus raised to the working position faces the back surface of the mask 12 with a slight gap from the back surface of the mask 12.
  • this alignment as shown in the column of “Step S205” in FIG. 10, at the upstream end in the squeegee direction D53, the position of the fiducial mark F12 and the position of the fiducial mark F10 are in the squeegee direction. Matches at D53.
  • the position of the fiducial mark F12 and the position of the fiducial mark F10 are shifted in the squeegee direction D53 by a deviation amount ⁇ F.
  • the substrate 10 extends with respect to the mask 12, and the substrate fiducial mark F10 is shifted downstream of the mask fiducial mark F12 in the squeegee direction D53.
  • step S206 the main control unit 91 controls the head drive unit M52 to move the tip of the squeegee 53 to the start position.
  • step S207 the main control unit 91 starts the movement of the squeegee 53 in the squeegee direction D53 by controlling the head driving unit M52.
  • the main control unit 91 controls the head driving unit M52 to temporarily stop the squeegee 53 on the boundary 123 (step S209). ). Subsequently, the main control unit 91 controls the stage driving unit M3 to displace the substrate 10 by the offset amount ⁇ 10 set in step S204 (step S210).
  • the offset amount ⁇ 10 is set to a negative value. Therefore, as shown in the column of “Step S210” in FIG. 10, the substrate 10 is displaced in the opposite direction to the squeegee direction D53.
  • the main control unit 91 controls the head driving unit M52 to resume the movement of the squeegee 53 in the squeegee direction D53 (step S211).
  • the squeegee 53 slides in a region 122 (sliding target region 122) adjacent to the boundary 123 where the tip of the squeegee 53 is in contact with the squeegee 53 in the immediately preceding stop period on the downstream side in the squeegee direction D53.
  • the solder 14 pushed into the pattern hole 121 of 122 is printed on the substrate 10.
  • the positional deviation between the pattern hole 121 of the mask 12 and the printing target portion 101 of the substrate 10 in the sliding target region 122 is caused. It has been corrected. As a result, the positional deviation between the position where the solder 14 pushed into the pattern hole 121 by the squeegee 53 is printed and the position of the print target portion 101 corresponding to the pattern hole 121 is corrected. Note that the positional relationship between the mask 12 and the substrate 10 is fixed during the movement period in which the squeegee 53 slides in the region 122.
  • step S212 the main control unit 91 determines whether the squeegee 53 has reached the end position (the downstream end of the board corresponding range 120 in the squeegee direction D53). If the squeegee 53 has not reached the end position (“NO” in step S212), the process returns to step S208. Accordingly, every time the squeegee 53 reaches the boundary 123 of the region 122, the squeegee 53 is temporarily stopped (step S209), and the substrate 10 is displaced by the offset amount ⁇ 10 during the stop period (step S210).
  • step S212 When the main control unit 91 determines that the squeegee 53 has reached the end position (“YES” in step S212), the main control unit 91 ends the movement of the squeegee 53 by controlling the head driving unit M52 (step S213). In step S214, the main control unit 91 carries out the substrate 10 by controlling the stage drive unit M3 and the conveyor drive unit M351.
  • the solder 14 is attached to the substrate 10 by changing the relative positional relationship between the mask 12 and the substrate 10 in the squeegee direction D53 in accordance with the position of the squeegee 53 with respect to the mask 12. Correct the printing position. Therefore, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
  • the setting unit 92 sets a plurality of regions 122 in which the mask 12 is virtually divided in the squeegee direction D53, and the squeegee 53 performs intermittent movement that resumes movement after suspending when reaching the boundary 123 of the region 122.
  • the main control unit 91 displaces the substrate 10 relative to the mask 12 during the stop period in which the squeegee 53 is temporarily stopped at the boundary 123, thereby squeegeeing the boundary 123 where the squeegee 53 is temporarily stopped.
  • the position where the solder 14 is printed on the substrate 10 through the region on the downstream side of D53 is corrected. Thereby, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
  • the setting unit 92 sets each region 122 so that the boundary 123 of the region 122 does not overlap with the pattern hole 121 of the mask 12.
  • each region 122 is set so that the position where the squeegee 53 is temporarily stopped does not overlap the pattern hole 121. Therefore, it is preferable that the squeegee 53 stops while the squeegee 53 pushes the solder 14 into the pattern hole 121 and is printed on the substrate 10 and the substrate 10 is not displaced with respect to the mask 12.
  • a printing stage 3 for positioning the substrate 10 carried into the printing machine 1 at a working position is provided, and the main control unit 91 moves the substrate 10 by the printing stage 3 so that the squeegee 53 is stopped.
  • the substrate 10 is displaced with respect to the mask 12.
  • the printing stage 3 performs not only the positioning of the substrate 10 to the working position but also the displacement of the substrate 10 with respect to the mask 12. Therefore, it is not necessary to provide a new mechanism for displacing the substrate 10 with respect to the mask 12, and the configuration of the printing press 1 can be simplified and the cost can be reduced.
  • the printing machine 1 corresponds to an example of the “printing machine” of the present invention
  • the mask holding unit 4 corresponds to an example of the “mask holding unit” of the present invention
  • the mask 12 corresponds to the present invention.
  • the pattern hole 121 corresponds to an example of the “pattern hole” of the present invention
  • the substrate holding part 35 corresponds to an example of the “substrate holding part” of the present invention
  • the substrate 10 corresponds to the present invention.
  • the printing section 5 corresponds to an example of the “printing section” of the present invention
  • the squeegee 53 corresponds to an example of the “squeegee” of the present invention
  • the squeegee direction D53 corresponds to the “printing section” of the present invention.
  • the solder 14 corresponds to an example of the “paste” of the present invention
  • the main control unit 91 corresponds to an example of the “control unit” of the present invention
  • the mask imaging camera 61, the board imaging camera. 62 and the image processing unit 94 cooperate with each other in the “detection unit” of the present invention.
  • each of the mask fiducial mark F12 and the substrate fiducial mark F10 corresponds to an example of the “fiducial mark” of the present invention
  • the setting unit 92 is an example of the “setting unit” of the present invention.
  • the region 122 corresponds to an example of the “region” in the present invention
  • the boundary 123 corresponds to an example of the “boundary” in the present invention.
  • the present invention is not limited to the above embodiment, and various modifications can be made to the above without departing from the spirit of the present invention.
  • the method of setting the substrate speed V10 in the first control example may be changed as appropriate. That is, in the first control example, the difference between the distance between the substrate fiducial marks F10 at both ends in the squeegee direction D53 and the distance between the mask fiducial marks F12 at both ends in the squeegee direction D53 is used as the deviation amount ⁇ F.
  • the substrate speed V10 is set based on the obtained deviation amount ⁇ F.
  • the difference between the distance between the print target portions 101 at both ends in the squeegee direction D53 and the distance between the pattern holes 121 at both ends in the squeegee direction D53 is obtained as a shift amount ⁇ F, and the substrate speed V10 is determined based on the shift amount ⁇ F. Can also be set.
  • the main control unit 91 can be configured to set the substrate speed V10 based on the value input by the operator via the input operation unit 72.
  • the method of setting the region 122 may be changed as appropriate.
  • the setting unit 92 may be configured to set the number of regions 122 and the range of each region 122 based on the content input by the operator via the input operation unit 72.
  • the method of setting the offset amount ⁇ 10 may be changed as appropriate. For example, in a region 122 adjacent to the target boundary 123 on the downstream side in the squeegee direction D53, a deviation amount between the pattern hole 121 and the printing target portion 101 is obtained for each pattern hole 121, and the sum of squares of these deviation amounts is obtained.
  • the offset amount ⁇ 10 may be set so that the square root is minimized.
  • step S205 with respect to the region 122 where the squeegee 53 is first slid, a deviation amount between the pattern hole 121 and the print target portion 101 is obtained for each pattern hole 121, and the square sum square root of these deviation amounts. It is preferable to align the mask 12 and the substrate 10 so as to minimize the above.
  • an offset amount ⁇ 10 for displacing the substrate 10 relative to the mask 12 during the stop period of the squeegee 53 may be configured so that the operator can input to the input operation unit 72.
  • the main control unit 91 displays captured images of the mask 12 and the substrate 10 on the display unit 71.
  • the operator can input the offset amount ⁇ 10 to the input operation unit 72 while visually recognizing the shift amount between the pattern hole 121 and the print target portion 101 from these images. Then, the main control unit 91 displaces the substrate 10 with respect to the mask 12 by the offset amount ⁇ 10 input to the input operation unit 72 by the operator.
  • the input operation unit can input the offset amount ⁇ 10 for each boundary 123. 72 may be configured.
  • the offset amount ⁇ 10 for displacing the substrate 10 relative to the mask 12 during the stop period of the squeegee 53 can be optimized for each region 122 printed by the squeegee 53 after the movement is resumed. Is preferred.
  • the relative positional relationship between the mask 12 and the substrate 10 is changed by moving the substrate 10 while fixing the mask 12.
  • the relative positional relationship between the mask 12 and the substrate 10 can be changed by moving the mask 12 while fixing the substrate 10.
  • start position where the squeegee 53 starts to slide and the end position where the squeegee 53 ends sliding can be changed as appropriate.
  • the squeegee direction D53 is parallel to the X direction (substrate transport direction).
  • the squeegee direction D53 may be parallel to the Y direction.
  • the squeegee 53 may be slidable in both the X direction and the Y direction.
  • the type of paste is not limited to solder.
  • Substrate fiducial mark F12 ... Mask fiducial mark [Delta] F ... Deviation amount (mask pattern hole and substrate Misalignment between)
  • V10 Substrate speed (speed for moving the substrate relative to the mask)
  • ⁇ 10 Offset amount (amount of displacement of the substrate with respect to the mask)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Screen Printers (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)

Abstract

In the present invention, the position where a solder 14 is to be printed on a substrate 10 is corrected by changing, corresponding to the position of a squeegee 53 with respect to a mask 12, the relative positional relationship between the mask 12 and the substrate 10 in the squeegee direction D53. Consequently, a positional shift of the solder 14 to be printed on the mask 12 can be suppressed.

Description

印刷機、印刷方法Printing machine, printing method
 この発明は、パターン孔を有するマスクにスキージを摺動させることで、マスクに対向する基板にパターン孔を介してペーストを印刷する印刷技術に関する。 The present invention relates to a printing technique for printing a paste through a pattern hole on a substrate facing the mask by sliding a squeegee on the mask having the pattern hole.
 特許文献1の印刷装置は、パターン孔を有するマスクに基板を当接させ、ペーストが供給されたマスクにスキージを摺動させることで、パターン孔を介してペーストを基板に印刷するスクリーン印刷を行う。かかる印刷装置において、基板の適切な箇所にペーストを印刷するためには、マスクのパターン孔と基板との位置合わせが重要となる。 The printing apparatus of Patent Document 1 performs screen printing in which a paste is printed on a substrate through a pattern hole by bringing the substrate into contact with a mask having a pattern hole and sliding a squeegee on the mask supplied with the paste. . In such a printing apparatus, in order to print the paste on an appropriate portion of the substrate, it is important to align the pattern hole of the mask with the substrate.
特開2000-211103号公報JP 2000-2111103 A 特開2012-232536号公報JP 2012-232536 A
 しかしながら、特許文献2でも指摘されているように、基板の製造過程における熱変形等が原因となって、基板が設計寸法に比べて伸縮する場合がある。あるいは、マスクが経年的に撓む場合がある。このような場合、マスクのパターン孔と基板とを適切に位置合わせできず、マスクに印刷されるペーストの位置がずれてしまうおそれがあった。 However, as pointed out in Patent Document 2, there are cases where the substrate expands and contracts compared to the design dimensions due to thermal deformation or the like in the manufacturing process of the substrate. Alternatively, the mask may be bent over time. In such a case, the pattern hole of the mask and the substrate cannot be properly aligned, and the position of the paste printed on the mask may be shifted.
 この発明は上記課題に鑑みなされたものであり、マスクに印刷されるペーストの位置のずれを抑制することを可能とする技術の提供を目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of suppressing a shift in the position of a paste printed on a mask.
 本発明の印刷機は、上記の目的を達成するために、パターン孔を有するマスクを保持するマスク保持部と、マスクとの間に隙間を設けつつマスクに対向させて基板を保持する基板保持部と、基板保持部により保持される基板の反対側でマスクに当接するスキージを有し、スキージ方向へスキージを移動させることでパターン孔を介してマスク上のペーストを基板に印刷する印刷部と、マスクに対するスキージの位置に応じてスキージ方向におけるマスクと基板との相対的な位置関係を変化させることで、ペーストが基板に印刷される位置を補正する制御部とを備える。 In order to achieve the above object, the printing machine of the present invention includes a mask holding unit that holds a mask having a pattern hole, and a substrate holding unit that holds the substrate while facing the mask while providing a gap between the mask and the mask. And a printing unit that has a squeegee that contacts the mask on the opposite side of the substrate held by the substrate holding unit, and that prints the paste on the mask on the substrate through the pattern hole by moving the squeegee in the squeegee direction; A control unit that corrects a position at which the paste is printed on the substrate by changing a relative positional relationship between the mask and the substrate in the squeegee direction according to the position of the squeegee with respect to the mask;
 本発明の印刷方法は、上記の目的を達成するために、パターン孔を有するマスクとの間に隙間を設けつつマスクに基板を対向させる工程と、基板の反対側でマスクに当接するスキージをスキージ方向へ移動させることで、パターン孔を介してマスク上のペーストを基板に印刷する工程とを備え、ペーストを基板に印刷する工程では、マスクに対するスキージの位置に応じてスキージ方向におけるマスクと基板との相対的な位置関係を変化させることで、ペーストが基板に印刷される位置を補正する。 In order to achieve the above object, the printing method of the present invention includes a step of making the substrate face the mask while providing a gap with the mask having the pattern holes, and a squeegee that contacts the mask on the opposite side of the substrate. And a step of printing the paste on the mask on the substrate through the pattern hole by moving in the direction, and in the step of printing the paste on the substrate, the mask and the substrate in the squeegee direction according to the position of the squeegee with respect to the mask The position where the paste is printed on the substrate is corrected by changing the relative positional relationship.
 このように構成された本発明(印刷機、印刷方法)では、マスクに対するスキージの位置に応じてスキージ方向におけるマスクと基板との相対的な位置関係を変化させることで、ペーストが基板に印刷される位置を補正する。したがって、マスクに印刷されるペーストの位置のずれを抑制することが可能となっている。 In the present invention thus configured (printing machine, printing method), the paste is printed on the substrate by changing the relative positional relationship between the mask and the substrate in the squeegee direction according to the position of the squeegee with respect to the mask. Correct the position. Therefore, it is possible to suppress a shift in the position of the paste printed on the mask.
 この際、制御部は、スキージの移動に伴って連続的に基板をマスクに対して相対移動させることで、ペーストが基板に印刷される位置を補正するように、印刷機を構成しても良い。これによって、マスクに印刷されるペーストの位置のずれを抑制することが可能となる。 At this time, the control unit may configure the printing machine so as to correct the position where the paste is printed on the substrate by continuously moving the substrate relative to the mask as the squeegee moves. . Thereby, it is possible to suppress the displacement of the position of the paste printed on the mask.
 この際、制御部は、マスク保持部に保持されたマスクのパターン孔と基板保持部に保持された基板との間の位置ずれに基づき求めた速度で、基板をマスクに対して相対移動させるように、印刷機を構成しても良い。このようにスキージの移動に伴って連続的に基板をマスクに対して相対移動させる速度を設定することで、マスクに印刷されるペーストの位置のずれをより確実に抑制することが可能となる。 At this time, the control unit moves the substrate relative to the mask at a speed determined based on the positional deviation between the mask pattern hole held in the mask holding unit and the substrate held in the substrate holding unit. In addition, a printing machine may be configured. Thus, by setting the speed at which the substrate is continuously moved relative to the mask in accordance with the movement of the squeegee, it is possible to more reliably suppress the displacement of the position of the paste printed on the mask.
 具体的には、マスク保持部に保持されたマスクのパターン孔と基板保持部に保持された基板との間の位置ずれを、マスクおよび基板のそれぞれに設けられたフィデューシャルマークの位置を測定した結果に基づき検出する検出部をさらに備え、制御部は、検出部の検出結果に基づき求めた速度で、基板をマスクに対して相対移動させるように、印刷機を構成すると良い。 Specifically, the positional deviation between the mask pattern hole held in the mask holding part and the substrate held in the substrate holding part is measured, and the position of the fiducial mark provided on each of the mask and the substrate is measured. The printer may further include a detection unit that detects based on the result, and the control unit may be configured to move the substrate relative to the mask at a speed determined based on the detection result of the detection unit.
 あるいは、スキージ方向においてマスクを仮想的に分割した複数の領域を設定する設定部を備え、スキージは、領域の境界に到達すると一時停止した後に移動を再開する間欠移動を実行し、制御部は、スキージが境界で一時停止している停止期間に基板をマスクに対して相対的に変位させることで、スキージが一時停止中の境界のスキージ方向の下流側の領域を介してペーストが基板に印刷される位置を補正するように、印刷機を構成しても良い。これによって、マスクに印刷されるペーストの位置のずれを抑制することが可能となる。 Alternatively, it includes a setting unit that sets a plurality of regions obtained by virtually dividing the mask in the squeegee direction, the squeegee performs intermittent movement that resumes movement after reaching a boundary of the region, and the control unit includes: By displacing the substrate relative to the mask during the stop period when the squeegee is paused at the boundary, the paste is printed on the substrate through the area downstream of the boundary where the squeegee is paused in the squeegee direction. The printing press may be configured to correct the position. Thereby, it is possible to suppress the displacement of the position of the paste printed on the mask.
 この際、制御部は、スキージが移動している移動期間は基板とマスクとの位置関係を固定するように、印刷機を構成しても良い。 At this time, the control unit may configure the printing machine so that the positional relationship between the substrate and the mask is fixed during the moving period in which the squeegee is moving.
 また、設定部は、領域の境界がマスクのパターン孔に重複しないように各領域を設定するように、印刷機を構成しても良い。かかる構成では、スキージが一時停止する位置がパターン孔に重複しないように各領域が設定される。そのため、スキージがパターン孔にペーストを押し込んで基板に印刷している途中でスキージが停止して基板がマスクに対して変位されることが無く、好適である。 Also, the setting unit may configure the printing machine so as to set each region so that the boundary of the region does not overlap the pattern hole of the mask. In such a configuration, each region is set so that the position where the squeegee is temporarily stopped does not overlap the pattern hole. Therefore, it is preferable that the squeegee does not stop and the substrate is displaced with respect to the mask while the squeegee pushes the paste into the pattern hole and prints on the substrate.
 また、停止期間に基板をマスクに対して相対的に変位させる量を作業者が入力可能な入力操作部をさらに備え、制御部は、入力操作部に入力された量だけ、停止期間において基板をマスクに対して相対的に変位させるように、印刷機を構成しても良い。 In addition, an input operation unit that allows an operator to input an amount for displacing the substrate relative to the mask during the stop period is further provided, and the control unit moves the substrate during the stop period by the amount input to the input operation unit. The printing press may be configured to be displaced relative to the mask.
 この際、設定部は、スキージ方向においてマスクを仮想的に分割した3以上の領域を設定し、入力操作部では、停止期間に基板をマスクに対して相対的に変位させる量を境界毎に入力できるように、印刷機を構成しても良い。かかる構成では、停止期間に基板をマスクに対して相対的に変位させる量を、移動再開後のスキージにより印刷される領域毎に適切化することができ、好適である。 At this time, the setting unit sets three or more regions obtained by virtually dividing the mask in the squeegee direction, and the input operation unit inputs, for each boundary, an amount for displacing the substrate relative to the mask during the stop period. The printer may be configured so that it can. In such a configuration, the amount of the substrate to be displaced relative to the mask during the stop period can be optimized for each area printed by the squeegee after the movement is resumed.
 また、マスク保持部は、マスクの長尺方向をスキージ方向に一致させてマスクを保持し、基板保持部は、基板の長尺方向をスキージ方向に一致させて基板を保持するように、印刷機を構成しても良い。つまり、基板の変形やマスクの撓みに起因したマスクのパターン孔と基板との位置ずれの影響は、マスクおよび基板の長尺方向において顕著となる。これに対して、かかる構成は、マスクに印刷されるペーストの位置のずれを当該長尺方向において効果的に抑制することが可能となる。 The mask holding unit holds the mask with the long direction of the mask aligned with the squeegee direction, and the substrate holding unit holds the substrate with the long direction of the substrate aligned with the squeegee direction. May be configured. That is, the influence of the positional deviation between the pattern hole of the mask and the substrate due to the deformation of the substrate or the bending of the mask becomes significant in the longitudinal direction of the mask and the substrate. On the other hand, such a configuration can effectively suppress the displacement of the position of the paste printed on the mask in the longitudinal direction.
 本発明によれば、マスクに印刷されるペーストの位置のずれを抑制することが可能となる。 According to the present invention, it is possible to suppress the displacement of the paste printed on the mask.
本発明に係る印刷機の構成の一例を模式的に示す部分側面図である。It is a partial side view showing typically an example of composition of a printer concerning the present invention. 図1の印刷機の構成を模式的に示す部分平面図である。FIG. 2 is a partial plan view schematically showing the configuration of the printing machine of FIG. 1. 図1の印刷機が備える電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution with which the printing machine of FIG. 1 is provided. 図1に示す印刷機が実行する印刷動作におけるマスクと基板との位置関係を模式的に示す平面図である。It is a top view which shows typically the positional relationship of a mask and a board | substrate in the printing operation which the printing machine shown in FIG. 1 performs. マスクの撓みの影響を模式的に示す側面図である。It is a side view which shows typically the influence of the bending of a mask. 印刷位置のずれを抑制する第1制御例を示すフローチャートである。It is a flowchart which shows the 1st control example which suppresses the shift | offset | difference of a printing position. 図6のフローチャートに従って実行される動作を模式的に示す側面図である。It is a side view which shows typically the operation | movement performed according to the flowchart of FIG. 印刷位置のずれを抑制する第2制御例におけるマスクと基板との位置関係を模式的に示す平面図である。It is a top view which shows typically the positional relationship of the mask and board | substrate in the 2nd control example which suppresses the shift | offset | difference of a printing position. 印刷位置のずれを抑制する第2制御例を示すフローチャートである。It is a flowchart which shows the 2nd control example which suppresses the shift | offset | difference of a printing position. 図9のフローチャートに従って実行される動作を模式的に示す側面図である。It is a side view which shows typically the operation | movement performed according to the flowchart of FIG.
 図1は本発明に係る印刷機の構成の一例を模式的に示す部分側面図である。なお、図1においてマスク12については断面で記載し、パターン孔121を示している。図2は図1の印刷機の構成を模式的に示す部分平面図である。図1、図2および以下の図では、X方向およびY方向を水平方向としてZ方向を鉛直方向とするXYZ直交座標軸を適宜示す。印刷機1は、X方向の上流側(矢印の反対側)から搬入された基板10にペースト状の半田を印刷し、印刷済みの基板10をX方向の下流側(矢印側)に搬出する。 FIG. 1 is a partial side view schematically showing an example of the configuration of a printing press according to the present invention. In FIG. 1, the mask 12 is shown in a cross section, and pattern holes 121 are shown. FIG. 2 is a partial plan view schematically showing the configuration of the printing machine of FIG. In FIG. 1, FIG. 2, and the following figures, the XYZ orthogonal coordinate axes in which the X direction and the Y direction are horizontal directions and the Z direction is a vertical direction are shown as appropriate. The printing machine 1 prints paste-like solder on the board 10 carried in from the upstream side in the X direction (opposite the arrow), and carries the printed board 10 downstream in the X direction (arrow side).
 つまり、印刷機1は、X方向の上流側で並列に配置された1対の搬入コンベア21、21と、X方向の下流側で並列に配置された一対の搬出コンベア22、22と、X方向において搬入コンベア21、21と搬出コンベア22、22の間に配置された印刷ステージ3とを備える。そして、印刷ステージ3は搬入コンベア21、21により印刷機1内に搬入された基板10を受け取り、あるいは印刷済みの基板10を搬出コンベア22、22に受け渡す。 That is, the printing press 1 includes a pair of carry-in conveyors 21 and 21 arranged in parallel on the upstream side in the X direction, a pair of carry-out conveyors 22 and 22 arranged in parallel on the downstream side in the X direction, and the X direction. The printing stage 3 disposed between the carry-in conveyors 21 and 21 and the carry-out conveyors 22 and 22 is provided. Then, the printing stage 3 receives the substrate 10 carried into the printing machine 1 by the carry-in conveyors 21 and 21 or delivers the printed substrate 10 to the carry-out conveyors 22 and 22.
 印刷ステージ3はX方向およびY方向へ移動可能なXYテーブル31と、XYテーブル31に対して昇降可能な昇降テーブル32と、昇降テーブル32の上面に取り付けられた基板保持部35とを有する。したがって、XYテーブル31および昇降テーブル32を適宜駆動することで、基板保持部35により支持された基板10をX方向、Y方向およびZ方向へ自在に移動させることができる。また、基板保持部35は、並列に配置された一対のコンベア351、351と、両コンベア351、351の間に配置された複数のバックアップピン353を有する。 The printing stage 3 includes an XY table 31 that can move in the X direction and the Y direction, a lifting table 32 that can be lifted and lowered relative to the XY table 31, and a substrate holder 35 that is attached to the upper surface of the lifting table 32. Therefore, by appropriately driving the XY table 31 and the lifting table 32, the substrate 10 supported by the substrate holding unit 35 can be freely moved in the X direction, the Y direction, and the Z direction. The substrate holding unit 35 includes a pair of conveyors 351 and 351 arranged in parallel, and a plurality of backup pins 353 arranged between both the conveyors 351 and 351.
 かかる構成を具備する印刷ステージ3は、搬入コンベア21とコンベア351との高さを揃えた状態で搬入コンベア21からコンベア351へ基板10を受け取ると、バックアップピン353で基板10を支持しつつ、不図示の固定器具で基板10を固定する。こうして、基板10は1対のコンベア351、351の上で水平に保持される。続いて、印刷ステージ3は基板10を作業位置(図1の基板10の位置)にまで上昇させて、基板10の表面(上面)をマスク12の裏面(下面)に近接させる。この作業位置において基板10の表面は半田の印刷を受ける。基板10への印刷が完了すると、印刷ステージ3は基板10を作業位置から下降させ、搬出コンベア22とコンベア351との高さを揃えた状態でコンベア351から搬出コンベア22へ基板10を受け渡す。一方、搬出コンベア22は印刷ステージ3から受け取った基板10を印刷機1外に搬出する。 When the printing stage 3 having such a configuration receives the substrate 10 from the carry-in conveyor 21 to the conveyor 351 in a state in which the heights of the carry-in conveyor 21 and the conveyer 351 are aligned, the printing stage 3 supports the substrate 10 with the backup pins 353, while The substrate 10 is fixed with the illustrated fixture. In this way, the substrate 10 is held horizontally on the pair of conveyors 351 and 351. Subsequently, the printing stage 3 raises the substrate 10 to the working position (the position of the substrate 10 in FIG. 1), and brings the front surface (upper surface) of the substrate 10 close to the rear surface (lower surface) of the mask 12. In this working position, the surface of the substrate 10 receives solder printing. When printing on the substrate 10 is completed, the printing stage 3 lowers the substrate 10 from the working position, and delivers the substrate 10 from the conveyor 351 to the carry-out conveyor 22 with the heights of the carry-out conveyor 22 and the conveyer 351 being aligned. On the other hand, the carry-out conveyor 22 carries the substrate 10 received from the printing stage 3 out of the printing machine 1.
 印刷機1は基板保持部35の上方に、マスク12を保持するマスク保持部4と、マスク12を介して基板10に印刷を行う印刷部5とを備える。マスク保持部4はX方向の両端に配置された一対のマスク固定具41、41を有し、マスク12のX方向の両端はマスク保持具41、41に固定される。印刷部5はX方向に平行な固定レール51と、固定レール51に沿ってX方向に移動可能な印刷ヘッド52とを有する。印刷ヘッド52は例えば特開2010-179628号公報と同様の構成を具備している。つまり、印刷ヘッド52は、Y方向に平行なスキージ53をその下端に有しており、スキージ53をマスク12の表面(上面)に当接させた状態でX方向へ移動することで、マスク12の表面を摺動して、マスク12の表面に供給された半田14を基板10に印刷する。なお、作業位置にある基板10の表面は、マスク12の裏面に対して若干のギャップを空けつつマスク12の裏面に対向しており、スキージ53はいわゆるギャップ印刷を実行する。したがって、マスク12の裏面のうち、スキージ53の先端により表側から押圧された部分が基板10の表面に接する一方、その他の部分は基板10の表面から僅かに離れている。 The printing machine 1 includes a mask holding unit 4 that holds the mask 12 and a printing unit 5 that performs printing on the substrate 10 through the mask 12 above the substrate holding unit 35. The mask holding unit 4 has a pair of mask fixtures 41 and 41 arranged at both ends in the X direction, and both ends in the X direction of the mask 12 are fixed to the mask holders 41 and 41. The printing unit 5 includes a fixed rail 51 that is parallel to the X direction, and a print head 52 that is movable along the fixed rail 51 in the X direction. For example, the print head 52 has the same configuration as that of JP 2010-179628 A. That is, the print head 52 has a squeegee 53 parallel to the Y direction at its lower end, and moves the mask 12 by moving the squeegee 53 in the X direction in contact with the surface (upper surface) of the mask 12. The solder 14 supplied to the surface of the mask 12 is printed on the substrate 10. Note that the surface of the substrate 10 at the working position faces the back surface of the mask 12 with a slight gap from the back surface of the mask 12, and the squeegee 53 performs so-called gap printing. Accordingly, the portion of the back surface of the mask 12 that is pressed from the front side by the tip of the squeegee 53 contacts the surface of the substrate 10, while the other portions are slightly separated from the surface of the substrate 10.
 また、印刷機1は、上方を向いて印刷ステージ3に取り付けられたマスク撮像カメラ61を備える。マスク撮像カメラ61は印刷ステージ3に伴ってX方向およびY方向へ移動可能である。したがってマスク12の裏面に設けられたマスクフィデューシャルマークF12(図4)の直下へマスク撮像カメラ61を移動させることで、マスクフィデューシャルマークF12をマスク撮像カメラ61により撮像できる。 Further, the printing machine 1 includes a mask imaging camera 61 attached to the printing stage 3 facing upward. The mask imaging camera 61 can move in the X direction and the Y direction along with the printing stage 3. Therefore, the mask imaging camera 61 can be imaged by moving the mask imaging camera 61 directly below the mask fiducial mark F12 (FIG. 4) provided on the back surface of the mask 12.
 さらに、印刷機1は、マスク保持部4により保持されたマスク12からY方向に外れた位置で下方を向いて設けられた基板撮像カメラ62を備える。基板撮像カメラ62は、X方向に平行な固定レール63に沿ってX方向に移動可能である。したがって、印刷ステージ3により基板10をY方向へ移動させつつ基板撮像カメラ62をY方向へ移動させて、基板10の表面に設けられた基板フィデューシャルマークF10の直上へ基板撮像カメラ62を移動させることで、基板フィデューシャルマークF10を基板撮像カメラ62により撮像できる。 Furthermore, the printing machine 1 includes a substrate imaging camera 62 provided facing downward at a position deviating from the mask 12 held by the mask holding unit 4 in the Y direction. The board imaging camera 62 is movable in the X direction along a fixed rail 63 parallel to the X direction. Accordingly, the substrate imaging camera 62 is moved in the Y direction while the substrate 10 is moved in the Y direction by the printing stage 3, and the substrate imaging camera 62 is moved directly above the substrate fiducial mark F 10 provided on the surface of the substrate 10. By doing so, the substrate fiducial mark F10 can be imaged by the substrate imaging camera 62.
 図3は図1の印刷機が備える電気的構成を示すブロック図である。印刷機1は、CPU(Central Processing Unit)やRAM(Random Access Memory)で構成された演算部9を備える。演算部9は所定のプログラムを実行することで、主制御部91、設定部92、駆動制御部93および画像処理部94を内部に構築する。主制御部91は設定部92、駆動制御部93および画像処理部94を用いて印刷機1での動作を統括的に制御する機能を担い、設定部92は印刷機1での動作の制御に必要な制御パラメーターの値を設定する機能を担い、駆動制御部93は印刷機1の各部の駆動を制御する機能を担い、画像処理部94はマスク撮像カメラ61や基板撮像カメラ62が撮像した画像に画像処理を施す機能を担う。 FIG. 3 is a block diagram showing an electrical configuration of the printing machine of FIG. The printing machine 1 includes a calculation unit 9 including a CPU (Central Processing Unit) and a RAM (Random Access Memory). The calculation unit 9 executes a predetermined program to construct the main control unit 91, the setting unit 92, the drive control unit 93, and the image processing unit 94 therein. The main control unit 91 has a function of comprehensively controlling the operation of the printing press 1 using the setting unit 92, the drive control unit 93, and the image processing unit 94. The setting unit 92 controls the operation of the printing press 1. The drive control unit 93 has a function of setting necessary control parameter values, the drive control unit 93 has a function of controlling driving of each unit of the printing press 1, and the image processing unit 94 is an image captured by the mask imaging camera 61 and the board imaging camera 62. Responsible for image processing.
 印刷機1は、例えば液晶ディスプレイで構成された表示部71と、キーボードやマウスで構成された入力操作部72とを備える。そして、設定部92は、制御パラメーターを作業者に設定させる設定画面や、制御パラメーターの現在値等を表示部71に表示する。また、設定部92は、作業者による入力操作部72への入力操作を受け付けて、当該入力操作に応じて制御パラメーターの値を更新する。なお、表示部71および入力操作部72は例えばタッチパネル等で一体的に構成しても構わない。 The printing press 1 includes a display unit 71 configured with, for example, a liquid crystal display, and an input operation unit 72 configured with a keyboard and a mouse. Then, the setting unit 92 displays on the display unit 71 a setting screen for allowing the operator to set the control parameter, the current value of the control parameter, and the like. In addition, the setting unit 92 receives an input operation to the input operation unit 72 by the worker, and updates the value of the control parameter according to the input operation. Note that the display unit 71 and the input operation unit 72 may be integrally configured with, for example, a touch panel.
 印刷機1は、印刷ステージ3を駆動するステージ駆動部M3と、コンベア351を駆動するコンベア駆動部M351と、印刷ヘッド52を駆動するヘッド駆動部M52とを備える。ステージ駆動部M3は、XYテーブル31をX方向に駆動するX軸モーター、XYテーブル31をY方向に駆動するY軸駆動モーター、および昇降テーブル32を昇降させるZ軸モーターで構成される。そして、駆動制御部93がステージ駆動部M3を制御することで、XYテーブル31の水平面内での位置および昇降テーブル32の高さを調整する。コンベア駆動部M351は、コンベア351を駆動するコンベアモーターで構成される。そして、駆動制御部93がコンベア駆動部M351を制御することで、搬入コンベア21からコンベア351への基板10の受け取りや、コンベア351から搬出コンベア22への基板10の受け渡しを実行する。ヘッド駆動部M52は、印刷ヘッド52をX方向に駆動するX軸モーターで構成される。そして、駆動制御部93が印刷ヘッド52を制御することで、印刷ヘッド52のX方向への位置を調整する。 The printing press 1 includes a stage driving unit M3 that drives the printing stage 3, a conveyor driving unit M351 that drives the conveyor 351, and a head driving unit M52 that drives the printing head 52. The stage drive unit M3 includes an X-axis motor that drives the XY table 31 in the X direction, a Y-axis drive motor that drives the XY table 31 in the Y direction, and a Z-axis motor that moves the lifting table 32 up and down. And the drive control part 93 adjusts the position in the horizontal surface of the XY table 31, and the height of the raising / lowering table 32 by controlling the stage drive part M3. The conveyor driving unit M351 is configured by a conveyor motor that drives the conveyor 351. And the drive control part 93 controls the conveyor drive part M351, and the reception of the board | substrate 10 from the carrying-in conveyor 21 to the conveyor 351 and the delivery of the board | substrate 10 from the conveyor 351 to the carrying-out conveyor 22 are performed. The head drive unit M52 includes an X-axis motor that drives the print head 52 in the X direction. The drive control unit 93 controls the print head 52 to adjust the position of the print head 52 in the X direction.
 上述の通り印刷機1はマスク撮像カメラ61および基板撮像カメラ62を備える。そして、画像処理部94はマスク撮像カメラ61が撮像したマスクフィデューシャルマークF12の画像に基づき、マスクフィデューシャルマークF12の位置を測定する。また、画像処理部94は基板撮像カメラ62が撮像した基板フィデューシャルマークF10の画像に基づき、基板フィデューシャルマークF10の位置を測定する。そして、印刷動作では、フィデューシャルマークF10、F12の位置の測定結果に基づき、マスク12と基板10との相対的な位置関係が調整される。 As described above, the printing machine 1 includes the mask imaging camera 61 and the board imaging camera 62. The image processing unit 94 measures the position of the mask fiducial mark F12 based on the image of the mask fiducial mark F12 captured by the mask imaging camera 61. The image processing unit 94 measures the position of the substrate fiducial mark F10 based on the image of the substrate fiducial mark F10 captured by the substrate imaging camera 62. In the printing operation, the relative positional relationship between the mask 12 and the substrate 10 is adjusted based on the measurement results of the positions of the fiducial marks F10 and F12.
 図4は図1に示す印刷機が実行する印刷動作におけるマスクと基板との位置関係を模式的に示す平面図である。実際の印刷動作では、マスク12の裏面に基板10の表面を対向させるため、平面視においてマスク12の裏側に基板10は隠れるが、図4ではX方向へのマスク12と基板10との位置関係を示すために、マスク12と基板10とをY方向にずらして表示する。 FIG. 4 is a plan view schematically showing the positional relationship between the mask and the substrate in the printing operation executed by the printer shown in FIG. In the actual printing operation, since the front surface of the substrate 10 is opposed to the back surface of the mask 12, the substrate 10 is hidden behind the mask 12 in plan view, but in FIG. 4, the positional relationship between the mask 12 and the substrate 10 in the X direction. In order to indicate, the mask 12 and the substrate 10 are displayed while being shifted in the Y direction.
 基板10はX方向に長尺でY方向に短尺な長方形状を有する。基板10の表面の四隅のそれぞれには基板フィデューシャルマークF10が設けられている。さらに、基板10の表面には、例えばランドといった半田の印刷対象箇所101が設けられている。なお、図4では1個の印刷対象箇所101のみが示されているが、実際の基板10には複数の印刷対象箇所101が設けられている。 The substrate 10 has a rectangular shape that is long in the X direction and short in the Y direction. Substrate fiducial marks F10 are provided at the four corners of the surface of the substrate 10, respectively. Further, a solder print target portion 101 such as a land is provided on the surface of the substrate 10. In FIG. 4, only one print target location 101 is shown, but a plurality of print target locations 101 are provided on the actual substrate 10.
 マスク12も基板10に対応して、X方向に長尺でY方向に短尺な長方形状を有する。また、基板10の四隅に設けられた基板フィデューシャルマークF10に対応して、マスク12の裏面の四隅のそれぞれには、マスクフィデューシャルマークF12が設けられている。ここで、マスクフィデューシャルマークF12はマスク12の裏面に設けられていることから、図4においてマスクフィデューシャルマークF12はマスク12を透かして表示されている。さらに、マスク12にはパターン孔121が貫通して設けられている。なお、図4では1個のパターン孔121のみが示されているが、実際のマスク12には、基板10の複数の印刷対象箇所101に対応して複数のパターン孔121が設けられている。ちなみに、マスク12は基板10よりも大きく形成されており、図4では、マスク12のうち設計寸法を有する基板10に対応する範囲(基板対応範囲120)が仮想線で示されている。 The mask 12 also has a rectangular shape corresponding to the substrate 10 and long in the X direction and short in the Y direction. Further, mask fiducial marks F <b> 12 are provided at the four corners on the back surface of the mask 12 corresponding to the substrate fiducial marks F <b> 10 provided at the four corners of the substrate 10. Here, since the mask fiducial mark F12 is provided on the back surface of the mask 12, the mask fiducial mark F12 is displayed through the mask 12 in FIG. Further, the mask 12 is provided with a pattern hole 121 therethrough. Although only one pattern hole 121 is shown in FIG. 4, the actual mask 12 is provided with a plurality of pattern holes 121 corresponding to the plurality of print target portions 101 of the substrate 10. Incidentally, the mask 12 is formed larger than the substrate 10, and in FIG. 4, a range (substrate corresponding range 120) corresponding to the substrate 10 having the design dimension in the mask 12 is indicated by a virtual line.
 ところで、基板10の製造過程における熱変形等が原因となって、基板10が設計寸法に比べて伸縮する場合があり、図4の例では、基板10がX方向において設計寸法よりも伸びている。そのため、X方向の上流側の端においてマスクフィデューシャルマークF12に対して基板フィデューシャルマークF10を一致させると、X方向の下流側の端においてマスクフィデューシャルマークF12に対して基板フィデューシャルマークF10がずれ量ΔFだけX方向の下流側にずれる。その結果、例えばX方向の中央では、印刷対象箇所101が対応するパターン孔121に対してずれ量Δ101(=ΔF/2)だけX方向の下流側へずれる。このように、互いに対応するパターン孔121と印刷対象箇所101とがずれた状態では、パターン孔121を介して半田が印刷される位置が印刷対象箇所101からずれてしまう。 By the way, due to thermal deformation in the manufacturing process of the substrate 10, the substrate 10 may expand and contract compared to the design dimension. In the example of FIG. 4, the substrate 10 extends in the X direction beyond the design dimension. . Therefore, when the substrate fiducial mark F10 is aligned with the mask fiducial mark F12 at the upstream end in the X direction, the substrate fiducial mark F12 is aligned with the mask fiducial mark F12 at the downstream end in the X direction. The char mark F10 is shifted downstream in the X direction by the shift amount ΔF. As a result, for example, at the center in the X direction, the printing target portion 101 is shifted to the downstream side in the X direction by a deviation amount Δ101 (= ΔF / 2) with respect to the corresponding pattern hole 121. As described above, when the pattern hole 121 and the print target location 101 corresponding to each other are shifted, the position where the solder is printed via the pattern hole 121 is shifted from the print target location 101.
 また、同様の状況は、基板10が設計寸法に比べて伸びた場合のみならず、マスク12が経年的に撓んだ場合にも起こりうる。図5はマスクの撓みの影響を模式的に示す側面図であり、特にマスク12のうちの基板対応範囲120を示す。なお、同図においては、撓みのないマスク12が上側に示され、撓んだ状態のマスク12が下側に示されている。撓んだ状態のマスク12は、撓みのないマスク12に比べて実質的にX方向にずれ量Δ12だけ縮んでおり、撓んだ状態のマスク12のパターン孔121は、撓みのないマスク12のパターン孔121に比べてずれ量Δ121だけX方向にずれる。したがって、撓んだ状態のマスク12を用いて印刷動作を行った場合、図4に示した基板10が伸びた場合と同様の印刷位置のずれが生じる。そこで、本実施形態の主制御部91は所定のプログラムを実行することで、印刷位置のずれを抑制する制御を実行する。 A similar situation can occur not only when the substrate 10 is stretched compared to the design dimension but also when the mask 12 is bent over time. FIG. 5 is a side view schematically showing the influence of the bending of the mask, and particularly shows the substrate corresponding range 120 in the mask 12. In the figure, the mask 12 without bending is shown on the upper side, and the mask 12 in a bent state is shown on the lower side. The mask 12 in the bent state is substantially shrunk by a shift amount Δ12 in the X direction as compared with the mask 12 without the bend, and the pattern hole 121 of the mask 12 in the bent state has the pattern 12 of the mask 12 without the bend. Compared to the pattern hole 121, it is shifted in the X direction by a deviation amount Δ121. Therefore, when a printing operation is performed using the mask 12 in a bent state, the same printing position shift occurs as when the substrate 10 shown in FIG. 4 is extended. Therefore, the main control unit 91 of the present embodiment executes a control that suppresses the displacement of the printing position by executing a predetermined program.
 図6は印刷位置のずれを抑制する第1制御例を示すフローチャートである。図7は図6のフローチャートに従って実行される動作を模式的に示す側面図である。図7では、マスク12のうち基板対応範囲120のみが示されている。図6および図7に示す第1制御例では、X方向に平行なスキージ方向D53にスキージ53を移動させることで印刷動作を行う。特に、スキージ53への移動に伴って、マスク12に対して基板10を連続的に移動させることで、基板10における半田の印刷位置を補正する。 FIG. 6 is a flowchart showing a first control example for suppressing the displacement of the printing position. FIG. 7 is a side view schematically showing an operation executed according to the flowchart of FIG. In FIG. 7, only the substrate corresponding range 120 of the mask 12 is shown. In the first control example shown in FIGS. 6 and 7, the printing operation is performed by moving the squeegee 53 in the squeegee direction D53 parallel to the X direction. In particular, the solder printing position on the substrate 10 is corrected by continuously moving the substrate 10 relative to the mask 12 as the squeegee 53 moves.
 ステップS101では、主制御部91はステージ駆動部M3およびコンベア駆動部M351を制御することで、基板10を搬入する。これによって、搬入コンベア21から印刷ステージ3のコンベア351へ基板10が搬入される。ステップS102では、マスク撮像カメラ61がマスク12の各マスクフィデューシャルマークF12の直下に順に移動して、各マスクフィデューシャルマークF12を撮像する。また、そして、画像処理部94が各マスクフィデューシャルマークF12の撮像画像に基づき、各マスクフィデューシャルマークF12の位置を算出する。こうして、マスク12の各マスクフィデューシャルマークF12の位置が計測される。ステップS103では、基板撮像カメラ62が基板10の各基板フィデューシャルマークF10の直上に順に移動して、各基板フィデューシャルマークF10を撮像する。そして、画像処理部94が各基板フィデューシャルマークF10の撮像画像に基づき、各基板フィデューシャルマークF10の位置を算出する。こうして、基板10の各基板フィデューシャルマークF10の位置が計測される。 In step S101, the main control unit 91 carries in the substrate 10 by controlling the stage driving unit M3 and the conveyor driving unit M351. As a result, the substrate 10 is carried from the carry-in conveyor 21 to the conveyor 351 of the printing stage 3. In step S102, the mask imaging camera 61 sequentially moves immediately below each mask fiducial mark F12 of the mask 12 to image each mask fiducial mark F12. Then, the image processing unit 94 calculates the position of each mask fiducial mark F12 based on the captured image of each mask fiducial mark F12. Thus, the position of each mask fiducial mark F12 of the mask 12 is measured. In step S103, the substrate imaging camera 62 sequentially moves directly above each substrate fiducial mark F10 on the substrate 10 to image each substrate fiducial mark F10. Then, the image processing unit 94 calculates the position of each substrate fiducial mark F10 based on the captured image of each substrate fiducial mark F10. Thus, the position of each substrate fiducial mark F10 on the substrate 10 is measured.
 ステップS104では、主制御部91が印刷動作において基板10を移動させる速度(基板速度V10)を算出する。具体的には、スキージ53がX方向の両端のマスクフィデューシャルマークF12の間を移動するのに要する時間をスキージ時間T53とすると、次式
 V10=ΔF/T53 …式(1)
が成立するように基板速度V10を定める。この際、スキージ53がスキージ方向D53へ移動する速度をスキージ速度V53とし、X方向の両端のマスクフィデューシャルマークF12の間の距離をマーク間距離L12とすると、次式
 T53=L12/V53 …式(2)
が成立する。よって、式(1)は、次式
 V10=(ΔF/L12)×V53 …式(3)
に変形できる。
In step S104, the main control unit 91 calculates a speed (substrate speed V10) for moving the substrate 10 in the printing operation. Specifically, assuming that the time required for the squeegee 53 to move between the mask fiducial marks F12 at both ends in the X direction is the squeegee time T53, the following equation V10 = ΔF / T53 (1)
The substrate speed V10 is determined so that At this time, if the speed at which the squeegee 53 moves in the squeegee direction D53 is the squeegee speed V53, and the distance between the mask fiducial marks F12 at both ends in the X direction is the inter-mark distance L12, the following expression T53 = L12 / V53. Formula (2)
Is established. Therefore, the equation (1) is expressed by the following equation: V10 = (ΔF / L12) × V53 (Equation (3)
Can be transformed into
 つまり、主制御部91は、フィデューシャルマークF10、F12の位置の測定結果に基づきずれ量ΔFおよびマーク間距離L12を求め、これらの比をスキージ速度V53に乗ずることで基板速度V10を算出できる。なお、スキージ方向D53の図中矢印側を正方向として、X方向両端の基板フィデューシャルマークF10の距離がX方向両端のマスクフィデューシャルマークF12の間の距離より長い場合(すなわち基板10が相対的に伸びている場合)は、基板速度V10を負の値に設定する。この際、基板10はスキージ方向D53に対して逆方向(負方向、図7の左方向)へ移動する。一方、X方向両端の基板フィデューシャルマークF10の距離がX方向両端のマスクフィデューシャルマークF12の間の距離より短い場合(すなわち基板10が相対的に縮んでいる場合)は、基板速度V10を正の値に設定する。この場合、基板10はスキージ方向D53に対して順方向(正方向、図7の右方向)へ移動する。 That is, the main control unit 91 can calculate the substrate speed V10 by obtaining the shift amount ΔF and the inter-mark distance L12 based on the measurement results of the positions of the fiducial marks F10 and F12 and multiplying these ratios by the squeegee speed V53. . When the arrow side in the drawing of the squeegee direction D53 is a positive direction, the distance between the substrate fiducial marks F10 at both ends in the X direction is longer than the distance between the mask fiducial marks F12 at both ends in the X direction (that is, the substrate 10 is In the case of relative elongation), the substrate speed V10 is set to a negative value. At this time, the substrate 10 moves in the reverse direction (negative direction, left direction in FIG. 7) with respect to the squeegee direction D53. On the other hand, when the distance between the substrate fiducial marks F10 at both ends in the X direction is shorter than the distance between the mask fiducial marks F12 at both ends in the X direction (that is, when the substrate 10 is relatively contracted), the substrate speed V10. Set to a positive value. In this case, the substrate 10 moves in the forward direction (forward direction, right direction in FIG. 7) with respect to the squeegee direction D53.
 ステップS105では、主制御部91はステージ駆動部M3を制御することで、基板10を作業位置にまで上昇させて、マスク12に対して基板10の位置合わせを実行する。こうして作業位置に上昇した基板10の表面は、マスク12の裏面に対して若干のギャップを空けて、マスク12の裏面に対向する。また、この位置合わせにより、図7の「ステップS105」の欄に示すように、スキージ方向D53の上流側の端では、フィデューシャルマークF12の位置とフィデューシャルマークF10の位置とがスキージ方向D53において一致する。一方、スキージ方向D53の下流側の端では、フィデューシャルマークF12の位置とフィデューシャルマークF10との位置とがスキージ方向D53にずれ量ΔFだけずれる。なお、図7の例では、基板10がマスク12に対して伸びており、基板フィデューシャルマークF10がマスクフィデューシャルマークF12よりスキージ方向D53の下流側へずれている。 In step S105, the main control unit 91 controls the stage driving unit M3 to raise the substrate 10 to the working position and perform alignment of the substrate 10 with respect to the mask 12. The surface of the substrate 10 thus raised to the working position faces the back surface of the mask 12 with a slight gap from the back surface of the mask 12. Further, by this alignment, as shown in the column of “Step S105” in FIG. 7, at the upstream end in the squeegee direction D53, the position of the fiducial mark F12 and the position of the fiducial mark F10 are in the squeegee direction. Matches at D53. On the other hand, at the downstream end in the squeegee direction D53, the position of the fiducial mark F12 and the position of the fiducial mark F10 are shifted in the squeegee direction D53 by a deviation amount ΔF. In the example of FIG. 7, the substrate 10 extends with respect to the mask 12, and the substrate fiducial mark F10 is shifted to the downstream side in the squeegee direction D53 from the mask fiducial mark F12.
 ステップS106では、主制御部91はヘッド駆動部M52を制御することで、スキージ53の先端(マスク12に接する端)を開始位置へ移動させる。この開始位置はスキージ方向D53の上流端のマスクフィデューシャルマークF12よりスキージ方向D53の上流側に設定されている。そして、ステップS107では、主制御部91はヘッド駆動部M52を制御することでスキージ53のスキージ方向D53への移動を開始する。これによって、スキージ53は、スキージ方向D53の上流端のマスクフィデューシャルマークF12に到るまでにスキージ速度V53まで加速され、その後はスキージ速度V53で等速移動する。 In step S106, the main control unit 91 controls the head driving unit M52 to move the tip of the squeegee 53 (the end in contact with the mask 12) to the start position. This starting position is set on the upstream side in the squeegee direction D53 from the mask fiducial mark F12 at the upstream end in the squeegee direction D53. In step S107, the main control unit 91 starts the movement of the squeegee 53 in the squeegee direction D53 by controlling the head driving unit M52. As a result, the squeegee 53 is accelerated to the squeegee speed V53 before reaching the mask fiducial mark F12 at the upstream end in the squeegee direction D53, and thereafter moves at a constant speed at the squeegee speed V53.
 そして、スキージ53がスキージ方向D53の上流側のマスクフィデューシャルマークF12に到達すると(ステップS108で「YES」)、主制御部91はステージ駆動部M3を制御することで基板10の移動を開始する(ステップS109)。これによって、基板10はステップS104で算出された基板速度V10で移動する。 When the squeegee 53 reaches the mask fiducial mark F12 on the upstream side in the squeegee direction D53 (“YES” in step S108), the main control unit 91 starts moving the substrate 10 by controlling the stage driving unit M3. (Step S109). Thereby, the substrate 10 moves at the substrate speed V10 calculated in step S104.
 なお、図7の例では、基板10がマスク12に対して伸びているため、基板速度V10は負の値に設定されている。したがって、基板10はスキージ方向D53に対して逆方向へ移動し、図7の「印刷途中」の欄に示すように、スキージ速度V53の向きと基板速度V10の向きは互いに逆となる。また、「印刷途中」の欄では、スキージ53の先端がスキージ方向D53の両端のマスクフィデューシャルマークF12の中央に位置した状態が示されており、スキージ方向D53の両端それぞれにおいて、マスクフィデューシャルマークF12と基板フィデューシャルマークF10との位置ずれの量は、「ステップS105」の欄におけるずれ量ΔFの半分となっている。 In the example of FIG. 7, since the substrate 10 extends with respect to the mask 12, the substrate speed V10 is set to a negative value. Accordingly, the substrate 10 moves in the reverse direction with respect to the squeegee direction D53, and the direction of the squeegee speed V53 and the direction of the substrate speed V10 are opposite to each other, as shown in the column “in the middle of printing” in FIG. In the “printing” column, the tip of the squeegee 53 is shown in the center of the mask fiducial mark F12 at both ends in the squeegee direction D53. The amount of positional deviation between the Schal mark F12 and the substrate fiducial mark F10 is half of the deviation amount ΔF in the column of “Step S105”.
 こうしてスキージ53の移動に伴って基板10が基板速度V10で連続的に移動することで、スキージ53の先端が位置する部分において、マスク12のパターン孔121と基板10の印刷対象箇所101との位置ずれが補正される。その結果、スキージ53によりパターン孔121に押し込まれた半田14が印刷される位置と、当該パターン孔121に対応する印刷対象箇所101との位置との間の位置ずれが補正される。 As the squeegee 53 moves, the substrate 10 continuously moves at the substrate speed V10, so that the position of the pattern hole 121 of the mask 12 and the printing target location 101 of the substrate 10 in the portion where the tip of the squeegee 53 is located. The deviation is corrected. As a result, the positional deviation between the position where the solder 14 pushed into the pattern hole 121 by the squeegee 53 is printed and the position of the print target portion 101 corresponding to the pattern hole 121 is corrected.
 スキージ53がスキージ方向D53の下流側のマスクフィデューシャルマークF12に到達すると(ステップS110で「YES」)、主制御部91はステージ駆動部M3を制御することで基板10の移動を終了し(ステップS111)、続いてヘッド駆動部M52を制御することでスキージ53の移動を終了する(ステップS112)。こうして基板10およびスキージ53の移動が停止すると、ステップS113において主制御部91はステージ駆動部M3およびコンベア駆動部M351を制御することで、基板10を搬出する(ステップS113)。これによって、印刷ステージ3のコンベア351から搬出コンベア22を介して基板10が搬出される。 When the squeegee 53 reaches the mask fiducial mark F12 on the downstream side in the squeegee direction D53 (“YES” in step S110), the main control unit 91 controls the stage driving unit M3 to end the movement of the substrate 10 ( Then, the movement of the squeegee 53 is finished by controlling the head drive unit M52 (step S112). When the movement of the substrate 10 and the squeegee 53 is stopped in this way, in step S113, the main control unit 91 carries out the substrate 10 by controlling the stage driving unit M3 and the conveyor driving unit M351 (step S113). As a result, the substrate 10 is unloaded from the conveyor 351 of the printing stage 3 via the unloading conveyor 22.
 このように、以上に説明した実施形態では、マスク12に対するスキージ53の位置に応じてスキージ方向D53におけるマスク12と基板10との相対的な位置関係を変化させることで、半田14が基板10に印刷される位置を補正する。したがって、マスク12に印刷される半田14の位置のずれを抑制することが可能となっている。 As described above, in the embodiment described above, the solder 14 is attached to the substrate 10 by changing the relative positional relationship between the mask 12 and the substrate 10 in the squeegee direction D53 in accordance with the position of the squeegee 53 with respect to the mask 12. Correct the printing position. Therefore, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
 特に主制御部91は、スキージ53の移動に伴って連続的に基板10をマスク12に対して相対移動させることで、半田14が基板10に印刷される位置を補正する。これによって、マスク12に印刷される半田14の位置のずれを抑制することが可能となっている。 Particularly, the main controller 91 corrects the position where the solder 14 is printed on the substrate 10 by continuously moving the substrate 10 relative to the mask 12 as the squeegee 53 moves. Thereby, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
 さらに、主制御部91は、マスク保持部4に保持されたマスク12のパターン孔121と基板保持部35に保持された基板10との間の位置ずれ(ずれ量ΔF)に基づき基板速度V10を算出し、基板10をマスク12に対して基板速度V10で相対移動させる。このように基板速度V10を設定することで、マスク12に印刷される半田14の位置のずれをより確実に抑制することが可能となっている。 Further, the main control unit 91 sets the substrate speed V10 based on the positional deviation (deviation amount ΔF) between the pattern hole 121 of the mask 12 held by the mask holding unit 4 and the substrate 10 held by the substrate holding unit 35. Then, the substrate 10 is moved relative to the mask 12 at the substrate speed V10. By setting the substrate speed V10 in this way, it is possible to more reliably suppress the displacement of the position of the solder 14 printed on the mask 12.
 具体的には、画像処理部94がマスクフィデューシャルマークF12および基板フィデューシャルマークF10それぞれの位置を測定した結果に基づき、ずれ量ΔFを求める。こうして、各フィデューシャルマークF10、F12の位置の実測結果を用いることで、ずれ量ΔFを的確に求めることができる。その結果、マスク12に印刷される半田14の位置のずれをより確実に抑制することが可能となっている。 Specifically, the image processing unit 94 obtains the shift amount ΔF based on the results of measuring the positions of the mask fiducial mark F12 and the substrate fiducial mark F10. Thus, by using the actual measurement results of the positions of the fiducial marks F10 and F12, the shift amount ΔF can be accurately obtained. As a result, the position shift of the solder 14 printed on the mask 12 can be more reliably suppressed.
 また、マスク保持部4は、マスク12の長尺方向(X方向)をスキージ方向D53に一致させてマスクを保持し、基板保持部35は、基板10の長尺方向(X方向)をスキージ方向D53に一致させて基板に保持する。つまり、基板10の変形やマスク12の撓みに起因したマスク12のパターン孔121と基板10の印刷対象箇所101との位置ずれの影響は、マスク12および基板10基板の長尺方向(X方向)において顕著となる。これに対して、かかる構成は、マスク12に印刷される半田14の位置のずれを当該長尺方向(X方向)において効果的に抑制することが可能となる。 The mask holding unit 4 holds the mask by making the long direction (X direction) of the mask 12 coincide with the squeegee direction D53, and the substrate holding unit 35 sets the long direction (X direction) of the substrate 10 to the squeegee direction. It is held on the substrate in accordance with D53. That is, the influence of the positional deviation between the pattern hole 121 of the mask 12 and the printing target portion 101 of the substrate 10 due to the deformation of the substrate 10 or the bending of the mask 12 is the longitudinal direction (X direction) of the mask 12 and the substrate 10 substrate. Becomes prominent. On the other hand, this configuration can effectively suppress the displacement of the position of the solder 14 printed on the mask 12 in the longitudinal direction (X direction).
 また、印刷機1内に搬入された基板10を作業位置に位置決めする印刷ステージ3が具備されており、主制御部91は印刷ステージ3により基板10を移動させることで、印刷動作中においてマスク12に対して基板10を移動させている。かかる構成では、印刷ステージ3が作業位置への基板10への位置決めのみならず、印刷動作中におけるマスク12に対する基板10の移動も実行する。よって、印刷動作中にマスク12に対して基板10を移動させるために新たな機構を設ける必要が無く、印刷機1の構成の簡素化および低コスト化を図ることができる。 In addition, a printing stage 3 for positioning the substrate 10 carried into the printing machine 1 at a working position is provided, and the main control unit 91 moves the substrate 10 by the printing stage 3 so that the mask 12 is printed during the printing operation. The substrate 10 is moved. In such a configuration, the printing stage 3 not only positions the substrate 10 to the working position but also moves the substrate 10 relative to the mask 12 during the printing operation. Therefore, it is not necessary to provide a new mechanism for moving the substrate 10 relative to the mask 12 during the printing operation, and the configuration of the printing press 1 can be simplified and the cost can be reduced.
 図8は印刷位置のずれを抑制する第2制御例におけるマスクと基板との位置関係を模式的に示す平面図である。実際の印刷動作では、マスク12の裏面に基板10の表面を対向させるため、平面視においてマスク12の裏側に基板10は隠れるが、図8ではX方向へのマスク12と基板10との位置関係を示すために、マスク12と基板10とをY方向にずらして表示する。なお、図8のうち図4と共通する部分については相当符号を付して説明を省略する。 FIG. 8 is a plan view schematically showing the positional relationship between the mask and the substrate in the second control example for suppressing the displacement of the printing position. In the actual printing operation, since the front surface of the substrate 10 is opposed to the back surface of the mask 12, the substrate 10 is hidden behind the mask 12 in plan view, but in FIG. 8, the positional relationship between the mask 12 and the substrate 10 in the X direction. In order to indicate, the mask 12 and the substrate 10 are displayed while being shifted in the Y direction. 8 that are the same as those in FIG. 4 are denoted by the same reference numerals and description thereof is omitted.
 第2制御例では、設定部92は、スキージ方向D53においてマスク12の基板対応範囲120を仮想的に分割して複数の領域122を設定する。互いに隣接する領域122の境界123はY方向に平行な直線形状を有し、特に設定部92は、マスク12のパターン孔121の位置を示すデータあるいはマスク撮像カメラ61によるマスク12の撮像画像に基づき、各境界123がマスク12のパターン孔121に重複しないように、複数の領域122を設定する。そして、スキージ53は領域122の境界123に到達すると所定時間だけ一時停止した後に移動を再開する間欠移動を実行する。これに対して、主制御部91は、スキージ53が境界123で一時停止している停止期間に基板10をマスク12に対して相対的に変位させることで、移動を再開したスキージ53により摺動される領域122のパターン孔121を介して半田14が基板10に印刷される位置を補正する。 In the second control example, the setting unit 92 virtually divides the substrate corresponding range 120 of the mask 12 in the squeegee direction D53 to set a plurality of regions 122. The boundary 123 between the adjacent regions 122 has a linear shape parallel to the Y direction. In particular, the setting unit 92 is based on the data indicating the position of the pattern hole 121 of the mask 12 or the captured image of the mask 12 by the mask imaging camera 61. A plurality of regions 122 are set so that each boundary 123 does not overlap with the pattern hole 121 of the mask 12. Then, when the squeegee 53 reaches the boundary 123 of the area 122, the squeegee 53 performs an intermittent movement in which the movement is resumed after pausing for a predetermined time. On the other hand, the main control unit 91 slides with the squeegee 53 that has resumed movement by displacing the substrate 10 relative to the mask 12 during the stop period in which the squeegee 53 is temporarily stopped at the boundary 123. The position where the solder 14 is printed on the substrate 10 is corrected through the pattern hole 121 in the region 122 to be formed.
 図9は印刷位置のずれを抑制する第2制御例を示すフローチャートである。図10は図9のフローチャートに従って実行される動作を模式的に示す側面図である。図10では、マスク12のうち基板対応範囲120のみが示されている。ステップS201では、主制御部91はステージ駆動部M3およびコンベア駆動部M351を制御することで、基板10を搬入する。ステップS202では、画像処理部94が各マスクフィデューシャルマークF12の撮像画像に基づき、各マスクフィデューシャルマークF12の位置を計測する。ステップS203では、画像処理部94が各基板フィデューシャルマークF10の撮像画像に基づき、各基板フィデューシャルマークF10の位置を計測する。 FIG. 9 is a flowchart showing a second control example for suppressing the displacement of the printing position. FIG. 10 is a side view schematically showing the operation executed according to the flowchart of FIG. In FIG. 10, only the substrate corresponding range 120 of the mask 12 is shown. In step S201, the main control unit 91 carries in the substrate 10 by controlling the stage driving unit M3 and the conveyor driving unit M351. In step S202, the image processing unit 94 measures the position of each mask fiducial mark F12 based on the captured image of each mask fiducial mark F12. In step S203, the image processing unit 94 measures the position of each substrate fiducial mark F10 based on the captured image of each substrate fiducial mark F10.
 ステップS204では、設定部92がオフセット量Δ10を各境界123について設定する。ここで、オフセット量Δ10は、スキージ53が境界123で一時停止している停止期間に基板10をマスク12に対して変位させる変位量であり、各境界123について設定される。具体的には、設定部92は、各フィデューシャルマークF10、F12の位置の測定結果に基づきマスク12と基板10との間のずれ量ΔFを算出する。そして、対象となる境界123にスキージ方向D53の下流側で隣接する領域122のスキージ方向D53への長さL122とマーク間距離L12との比(L122/L12)をずれ量ΔFに乗じる。こうして求められた値(=ΔF×L122/L12)が、対象となる境界123でのオフセット量Δ10として設定される。 In step S204, the setting unit 92 sets the offset amount Δ10 for each boundary 123. Here, the offset amount Δ10 is a displacement amount for displacing the substrate 10 with respect to the mask 12 during the stop period in which the squeegee 53 is temporarily stopped at the boundary 123, and is set for each boundary 123. Specifically, the setting unit 92 calculates a shift amount ΔF between the mask 12 and the substrate 10 based on the measurement results of the positions of the fiducial marks F10 and F12. Then, the deviation amount ΔF is multiplied by the ratio (L122 / L12) between the length L122 in the squeegee direction D53 of the region 122 adjacent to the target boundary 123 on the downstream side in the squeegee direction D53 and the inter-mark distance L12. The value thus obtained (= ΔF × L122 / L12) is set as the offset amount Δ10 at the target boundary 123.
 なお、スキージ方向D53の図中矢印側を正方向として、X方向両端の基板フィデューシャルマークF10の距離がX方向両端のマスクフィデューシャルマークF12の間の距離より長い場合(すなわち基板10が相対的に伸びている場合)は、オフセット量Δ10を負の値に設定する。この際、基板10はスキージ方向D53に対して逆方向(負方向、図10の左方向)へ変位する。一方、X方向両端の基板フィデューシャルマークF10の距離がX方向両端のマスクフィデューシャルマークF12の間の距離より短い場合(すなわち基板10が相対的に縮んでいる場合)は、オフセット量Δ10を正の値に設定する。この場合、基板10はスキージ方向D53に対して順方向(正方向、図10の右方向)へ変位する。 When the arrow side in the drawing of the squeegee direction D53 is a positive direction, the distance between the substrate fiducial marks F10 at both ends in the X direction is longer than the distance between the mask fiducial marks F12 at both ends in the X direction (that is, the substrate 10 is In the case of relative elongation), the offset amount Δ10 is set to a negative value. At this time, the substrate 10 is displaced in the opposite direction (negative direction, left direction in FIG. 10) with respect to the squeegee direction D53. On the other hand, when the distance between the substrate fiducial marks F10 at both ends in the X direction is shorter than the distance between the mask fiducial marks F12 at both ends in the X direction (that is, when the substrate 10 is relatively contracted), the offset amount Δ10. Set to a positive value. In this case, the substrate 10 is displaced in the forward direction (forward direction, right direction in FIG. 10) with respect to the squeegee direction D53.
 ステップS205では、主制御部91はステージ駆動部M3を制御することで、基板10を作業位置にまで上昇させて、マスク12に対して基板10の位置合わせを実行する。こうして作業位置に上昇した基板10の表面は、マスク12の裏面に対して若干のギャップを空けて、マスク12の裏面に対向する。また、この位置合わせにより、図10の「ステップS205」の欄に示すように、スキージ方向D53の上流側の端では、フィデューシャルマークF12の位置とフィデューシャルマークF10の位置とがスキージ方向D53において一致する。一方、スキージ方向D53の下流側の端では、フィデューシャルマークF12の位置とフィデューシャルマークF10との位置とがスキージ方向D53にずれ量ΔFだけずれる。なお、図10の例では、基板10がマスク12に対して伸びており、基板フィデューシャルマークF10がマスクフィデューシャルマークF12よりスキージ方向D53の下流側へずれている。 In step S205, the main control unit 91 controls the stage driving unit M3 to raise the substrate 10 to the working position and perform alignment of the substrate 10 with respect to the mask 12. The surface of the substrate 10 thus raised to the working position faces the back surface of the mask 12 with a slight gap from the back surface of the mask 12. Further, by this alignment, as shown in the column of “Step S205” in FIG. 10, at the upstream end in the squeegee direction D53, the position of the fiducial mark F12 and the position of the fiducial mark F10 are in the squeegee direction. Matches at D53. On the other hand, at the downstream end in the squeegee direction D53, the position of the fiducial mark F12 and the position of the fiducial mark F10 are shifted in the squeegee direction D53 by a deviation amount ΔF. In the example of FIG. 10, the substrate 10 extends with respect to the mask 12, and the substrate fiducial mark F10 is shifted downstream of the mask fiducial mark F12 in the squeegee direction D53.
 ステップS206では、主制御部91はヘッド駆動部M52を制御することで、スキージ53の先端を開始位置へ移動させる。そして、ステップS207では、主制御部91はヘッド駆動部M52を制御することでスキージ53のスキージ方向D53への移動を開始する。 In step S206, the main control unit 91 controls the head drive unit M52 to move the tip of the squeegee 53 to the start position. In step S207, the main control unit 91 starts the movement of the squeegee 53 in the squeegee direction D53 by controlling the head driving unit M52.
 そして、スキージ53が領域122の境界123に到達すると(ステップS208で「YES」)、主制御部91はヘッド駆動部M52を制御することで、スキージ53を境界123上に一時停止させる(ステップS209)。続いて、主制御部91はステージ駆動部M3を制御することで、ステップS204で設定されたオフセット量Δ10だけ基板10を変位させる(ステップS210)。なお、図10の例では、基板10がマスク12に対して伸びているため、オフセット量Δ10は負の値に設定されている。したがって、図10の「ステップS210」の欄に示すように、基板10はスキージ方向D53に対して逆方向へ変位する。 When the squeegee 53 reaches the boundary 123 of the area 122 (“YES” in step S208), the main control unit 91 controls the head driving unit M52 to temporarily stop the squeegee 53 on the boundary 123 (step S209). ). Subsequently, the main control unit 91 controls the stage driving unit M3 to displace the substrate 10 by the offset amount Δ10 set in step S204 (step S210). In the example of FIG. 10, since the substrate 10 extends with respect to the mask 12, the offset amount Δ10 is set to a negative value. Therefore, as shown in the column of “Step S210” in FIG. 10, the substrate 10 is displaced in the opposite direction to the squeegee direction D53.
 基板10の変位が完了すると、主制御部91はヘッド駆動部M52を制御することで、スキージ方向D53へのスキージ53の移動を再開する(ステップS211)。これによって、直前の停止期間でスキージ53の先端が当接していた境界123にスキージ方向D53の下流側で隣接する領域122(摺動対象領域122)をスキージ53が摺動し、摺動対象領域122のパターン孔121に押し込まれた半田14が基板10に印刷される。しかも、直前の停止期間において基板10がオフセット量Δ10だけマスク12に対して変位しているため、摺動対象領域122においてマスク12のパターン孔121と基板10の印刷対象箇所101との位置ずれが補正されている。その結果、スキージ53によりパターン孔121に押し込まれた半田14が印刷される位置と、当該パターン孔121に対応する印刷対象箇所101との位置との間の位置ずれが補正される。なお、スキージ53が領域122を摺動している移動期間は、マスク12と基板10との位置関係は固定されている。 When the displacement of the substrate 10 is completed, the main control unit 91 controls the head driving unit M52 to resume the movement of the squeegee 53 in the squeegee direction D53 (step S211). As a result, the squeegee 53 slides in a region 122 (sliding target region 122) adjacent to the boundary 123 where the tip of the squeegee 53 is in contact with the squeegee 53 in the immediately preceding stop period on the downstream side in the squeegee direction D53. The solder 14 pushed into the pattern hole 121 of 122 is printed on the substrate 10. In addition, since the substrate 10 is displaced with respect to the mask 12 by the offset amount Δ10 in the immediately preceding stop period, the positional deviation between the pattern hole 121 of the mask 12 and the printing target portion 101 of the substrate 10 in the sliding target region 122 is caused. It has been corrected. As a result, the positional deviation between the position where the solder 14 pushed into the pattern hole 121 by the squeegee 53 is printed and the position of the print target portion 101 corresponding to the pattern hole 121 is corrected. Note that the positional relationship between the mask 12 and the substrate 10 is fixed during the movement period in which the squeegee 53 slides in the region 122.
 ステップS212では、主制御部91は、終了位置(基板対応範囲120のスキージ方向D53の下流端)にスキージ53が到達したかを判断する。そして、スキージ53が終了位置に到達していない場合(ステップS212で「NO」の場合)はステップS208に戻る。これにより、スキージ53が領域122の境界123に到達する度に、スキージ53が一時停止し(ステップS209)、その停止期間に基板10がオフセット量Δ10だけ変位する(ステップS210)。 In step S212, the main control unit 91 determines whether the squeegee 53 has reached the end position (the downstream end of the board corresponding range 120 in the squeegee direction D53). If the squeegee 53 has not reached the end position (“NO” in step S212), the process returns to step S208. Accordingly, every time the squeegee 53 reaches the boundary 123 of the region 122, the squeegee 53 is temporarily stopped (step S209), and the substrate 10 is displaced by the offset amount Δ10 during the stop period (step S210).
 主制御部91は、終了位置にスキージ53が到達したと判断すると(ステップS212で「YES」)、ヘッド駆動部M52を制御することでスキージ53の移動を終了する(ステップS213)。そして、ステップS214において主制御部91はステージ駆動部M3およびコンベア駆動部M351を制御することで、基板10を搬出する。 When the main control unit 91 determines that the squeegee 53 has reached the end position (“YES” in step S212), the main control unit 91 ends the movement of the squeegee 53 by controlling the head driving unit M52 (step S213). In step S214, the main control unit 91 carries out the substrate 10 by controlling the stage drive unit M3 and the conveyor drive unit M351.
 このように、以上に説明した実施形態では、マスク12に対するスキージ53の位置に応じてスキージ方向D53におけるマスク12と基板10との相対的な位置関係を変化させることで、半田14が基板10に印刷される位置を補正する。したがって、マスク12に印刷される半田14の位置のずれを抑制することが可能となっている。 As described above, in the embodiment described above, the solder 14 is attached to the substrate 10 by changing the relative positional relationship between the mask 12 and the substrate 10 in the squeegee direction D53 in accordance with the position of the squeegee 53 with respect to the mask 12. Correct the printing position. Therefore, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
 特に設定部92が、スキージ方向D53においてマスク12を仮想的に分割した複数の領域122を設定し、スキージ53は、領域122の境界123に到達すると一時停止した後に移動を再開する間欠移動を実行する。そして、主制御部91は、スキージ53が境界123で一時停止している停止期間に基板10をマスク12に対して相対的に変位させることで、スキージ53が一時停止中の境界123のスキージ方向D53の下流側の領域を介して半田14が基板10に印刷される位置を補正する。これによって、マスク12に印刷される半田14の位置のずれを抑制することが可能となっている。 In particular, the setting unit 92 sets a plurality of regions 122 in which the mask 12 is virtually divided in the squeegee direction D53, and the squeegee 53 performs intermittent movement that resumes movement after suspending when reaching the boundary 123 of the region 122. To do. The main control unit 91 displaces the substrate 10 relative to the mask 12 during the stop period in which the squeegee 53 is temporarily stopped at the boundary 123, thereby squeegeeing the boundary 123 where the squeegee 53 is temporarily stopped. The position where the solder 14 is printed on the substrate 10 through the region on the downstream side of D53 is corrected. Thereby, it is possible to suppress the displacement of the position of the solder 14 printed on the mask 12.
 また、設定部92は、領域122の境界123がマスク12のパターン孔121に重複しないように各領域122を設定する。かかる構成では、スキージ53が一時停止する位置がパターン孔121に重複しないように各領域122が設定される。そのため、スキージ53が半田14をパターン孔121に押し込んで基板10に印刷している途中でスキージ53が停止して基板10がマスク12に対して変位されることが無く、好適である。 Also, the setting unit 92 sets each region 122 so that the boundary 123 of the region 122 does not overlap with the pattern hole 121 of the mask 12. In such a configuration, each region 122 is set so that the position where the squeegee 53 is temporarily stopped does not overlap the pattern hole 121. Therefore, it is preferable that the squeegee 53 stops while the squeegee 53 pushes the solder 14 into the pattern hole 121 and is printed on the substrate 10 and the substrate 10 is not displaced with respect to the mask 12.
 また、印刷機1内に搬入された基板10を作業位置に位置決めする印刷ステージ3が具備されており、主制御部91は印刷ステージ3により基板10を移動させることで、スキージ53の停止期間に基板10をマスク12に対して変位させている。かかる構成では、印刷ステージ3が作業位置への基板10への位置決めのみならず、マスク12に対する基板10の変位も実行する。よって、マスク12に対して基板10を変位させるために新たな機構を設ける必要が無く、印刷機1の構成の簡素化および低コスト化を図ることができる。 In addition, a printing stage 3 for positioning the substrate 10 carried into the printing machine 1 at a working position is provided, and the main control unit 91 moves the substrate 10 by the printing stage 3 so that the squeegee 53 is stopped. The substrate 10 is displaced with respect to the mask 12. In such a configuration, the printing stage 3 performs not only the positioning of the substrate 10 to the working position but also the displacement of the substrate 10 with respect to the mask 12. Therefore, it is not necessary to provide a new mechanism for displacing the substrate 10 with respect to the mask 12, and the configuration of the printing press 1 can be simplified and the cost can be reduced.
 このように上記実施形態では、印刷機1が本発明の「印刷機」の一例に相当し、マスク保持部4が本発明の「マスク保持部」の一例に相当し、マスク12が本発明の「マスク」の一例に相当し、パターン孔121が本発明の「パターン孔」の一例に相当し、基板保持部35が本発明の「基板保持部」の一例に相当し、基板10が本発明の「基板」の一例に相当し、印刷部5が本発明の「印刷部」の一例に相当し、スキージ53が本発明の「スキージ」の一例に相当し、スキージ方向D53が本発明の「スキージ方向」の一例に相当し、半田14が本発明の「ペースト」の一例に相当し、主制御部91が本発明の「制御部」の一例に相当し、マスク撮像カメラ61、基板撮像カメラ62および画像処理部94が協働して本発明の「検出部」の一例として機能し、マスクフィデューシャルマークF12および基板フィデューシャルマークF10のそれぞれが本発明の「フィデューシャルマーク」の一例に相当し、設定部92が本発明の「設定部」の一例に相当し、領域122が本発明の「領域」の一例に相当し、境界123が本発明の「境界」の一例に相当する。 Thus, in the above embodiment, the printing machine 1 corresponds to an example of the “printing machine” of the present invention, the mask holding unit 4 corresponds to an example of the “mask holding unit” of the present invention, and the mask 12 corresponds to the present invention. The pattern hole 121 corresponds to an example of the “pattern hole” of the present invention, the substrate holding part 35 corresponds to an example of the “substrate holding part” of the present invention, and the substrate 10 corresponds to the present invention. The printing section 5 corresponds to an example of the “printing section” of the present invention, the squeegee 53 corresponds to an example of the “squeegee” of the present invention, and the squeegee direction D53 corresponds to the “printing section” of the present invention. The solder 14 corresponds to an example of the “paste” of the present invention, the main control unit 91 corresponds to an example of the “control unit” of the present invention, the mask imaging camera 61, the board imaging camera. 62 and the image processing unit 94 cooperate with each other in the “detection unit” of the present invention. It functions as an example, and each of the mask fiducial mark F12 and the substrate fiducial mark F10 corresponds to an example of the “fiducial mark” of the present invention, and the setting unit 92 is an example of the “setting unit” of the present invention. The region 122 corresponds to an example of the “region” in the present invention, and the boundary 123 corresponds to an example of the “boundary” in the present invention.
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、第1制御例における基板速度V10の設定の仕方を適宜変更しても良い。つまり、第1制御例では、スキージ方向D53の両端の基板フィデューシャルマークF10の間の距離と、スキージ方向D53の両端のマスクフィデューシャルマークF12の間の距離との差をずれ量ΔFとして求め、当該ずれ量ΔFに基づき基板速度V10を設定していた。しかしながら、スキージ方向D53の両端の印刷対象箇所101の間の距離と、スキージ方向D53の両端のパターン孔121の間の距離との差をずれ量ΔFとして求め、当該ずれ量ΔFに基づき基板速度V10を設定することもできる。あるいは、入力操作部72を介して作業者が入力した値を、主制御部91が基板速度V10に設定するように構成することもできる。 The present invention is not limited to the above embodiment, and various modifications can be made to the above without departing from the spirit of the present invention. For example, the method of setting the substrate speed V10 in the first control example may be changed as appropriate. That is, in the first control example, the difference between the distance between the substrate fiducial marks F10 at both ends in the squeegee direction D53 and the distance between the mask fiducial marks F12 at both ends in the squeegee direction D53 is used as the deviation amount ΔF. The substrate speed V10 is set based on the obtained deviation amount ΔF. However, the difference between the distance between the print target portions 101 at both ends in the squeegee direction D53 and the distance between the pattern holes 121 at both ends in the squeegee direction D53 is obtained as a shift amount ΔF, and the substrate speed V10 is determined based on the shift amount ΔF. Can also be set. Alternatively, the main control unit 91 can be configured to set the substrate speed V10 based on the value input by the operator via the input operation unit 72.
 また、第2制御例において、領域122を設定する仕方を適宜変更しても良い。例えば、入力操作部72を介して作業者が入力した内容に基づき、設定部92が領域122の個数や各領域122の範囲を設定するように構成しても良い。 Further, in the second control example, the method of setting the region 122 may be changed as appropriate. For example, the setting unit 92 may be configured to set the number of regions 122 and the range of each region 122 based on the content input by the operator via the input operation unit 72.
 また、オフセット量Δ10を設定する仕方を適宜変更しても良い。例えば、対象となる境界123に対してスキージ方向D53の下流側で隣接する領域122において、パターン孔121と印刷対象箇所101とのずれ量を各パターン孔121について求め、これらのずれ量の二乗和平方根が最小となるように、オフセット量Δ10を設定しても良い。この場合、ステップS205では、最初にスキージ53の摺動が実行される領域122に関し、パターン孔121と印刷対象箇所101とのずれ量を各パターン孔121について求め、これらのずれ量の二乗和平方根が最小となるように、マスク12と基板10との位置合わせを行うと良い。 Further, the method of setting the offset amount Δ10 may be changed as appropriate. For example, in a region 122 adjacent to the target boundary 123 on the downstream side in the squeegee direction D53, a deviation amount between the pattern hole 121 and the printing target portion 101 is obtained for each pattern hole 121, and the sum of squares of these deviation amounts is obtained. The offset amount Δ10 may be set so that the square root is minimized. In this case, in step S205, with respect to the region 122 where the squeegee 53 is first slid, a deviation amount between the pattern hole 121 and the print target portion 101 is obtained for each pattern hole 121, and the square sum square root of these deviation amounts. It is preferable to align the mask 12 and the substrate 10 so as to minimize the above.
 さらに、スキージ53の停止期間に基板10をマスク12に対して相対的に変位させるオフセット量Δ10を、作業者が入力操作部72に入力可能であるように構成しても良い。かかる構成では例えば、主制御部91は、マスク12および基板10それぞれの撮像画像を表示部71に表示する。一方、作業者はこれらの画像からパターン孔121と印刷対象箇所101とのずれ量を視認しつつ、入力操作部72にオフセット量Δ10を入力できる。そして、主制御部91は、作業者により入力操作部72に入力されたオフセット量Δ10だけ、基板10をマスク12に対して変位させる。 Furthermore, an offset amount Δ10 for displacing the substrate 10 relative to the mask 12 during the stop period of the squeegee 53 may be configured so that the operator can input to the input operation unit 72. In such a configuration, for example, the main control unit 91 displays captured images of the mask 12 and the substrate 10 on the display unit 71. On the other hand, the operator can input the offset amount Δ10 to the input operation unit 72 while visually recognizing the shift amount between the pattern hole 121 and the print target portion 101 from these images. Then, the main control unit 91 displaces the substrate 10 with respect to the mask 12 by the offset amount Δ10 input to the input operation unit 72 by the operator.
 この際、第2制御例で例示したように、スキージ方向D53においてマスク12を仮想的に分割した3以上の領域122を設定した場合、オフセット量Δ10を境界123毎に入力できるように入力操作部72を構成しても良い。かかる構成では、スキージ53の停止期間に基板10基板をマスク12に対して相対的に変位させるオフセット量Δ10を、移動再開後のスキージ53により印刷される領域122毎に適切化することができ、好適である。 At this time, as illustrated in the second control example, when three or more regions 122 in which the mask 12 is virtually divided in the squeegee direction D53 is set, the input operation unit can input the offset amount Δ10 for each boundary 123. 72 may be configured. In such a configuration, the offset amount Δ10 for displacing the substrate 10 relative to the mask 12 during the stop period of the squeegee 53 can be optimized for each region 122 printed by the squeegee 53 after the movement is resumed. Is preferred.
 また、上記の第1・第2制御例では、マスク12を固定しつつ基板10を動かすことで、マスク12と基板10との相対的な位置関係を変化させていた。しかしながら、基板10を固定しつつマスク12を動かすことで、マスク12と基板10との相対的な位置関係を変化させることもできる。この場合、スキージ53とマスク12との位置関係が保たれるように、マスク12の移動の際にはスキージ53もマスク12と一体的に動かすことが好適となる。 In the first and second control examples, the relative positional relationship between the mask 12 and the substrate 10 is changed by moving the substrate 10 while fixing the mask 12. However, the relative positional relationship between the mask 12 and the substrate 10 can be changed by moving the mask 12 while fixing the substrate 10. In this case, it is preferable to move the squeegee 53 integrally with the mask 12 when the mask 12 is moved so that the positional relationship between the squeegee 53 and the mask 12 is maintained.
 また、スキージ53の摺動を開始する開始位置、およびスキージ53の摺動を終了する終了位置についても適宜変更が可能である。 Also, the start position where the squeegee 53 starts to slide and the end position where the squeegee 53 ends sliding can be changed as appropriate.
 また、上記実施形態では、スキージ方向D53はX方向(基板搬送方向)に平行であった。しかしながら、スキージ方向D53はY方向に平行であっても構わない。あるいは、X方向およびY方向の両方向にスキージ53を摺動できるように構成しても構わない。 In the above embodiment, the squeegee direction D53 is parallel to the X direction (substrate transport direction). However, the squeegee direction D53 may be parallel to the Y direction. Alternatively, the squeegee 53 may be slidable in both the X direction and the Y direction.
 また、ペーストの種類は半田に限られない。 Also, the type of paste is not limited to solder.
 1…印刷機
 3…印刷ステージ
 35…基板保持部
 4…マスク保持部
 41…マスク固定具
 5…印刷部
 53…スキージ
 D53…スキージ方向
 61…マスク撮像カメラ(検出部)
 62…基板撮像カメラ(検出部)
 72…入力操作部
 91…主制御部(制御部)
 92…設定部
 94…画像処理部(検出部)
 10…基板
 101…印刷対象箇所
 12…マスク
 121…パターン孔
 122…領域
 123…境界
 14…半田
 F10…基板フィデューシャルマーク
 F12…マスクフィデューシャルマーク
 ΔF…ずれ量(マスクのパターン孔と基板との間の位置ずれ)
 V10…基板速度(基板をマスクに対して相対移動させる速度)
 Δ10…オフセット量(基板をマスクに対して変位させる量)
DESCRIPTION OF SYMBOLS 1 ... Printing machine 3 ... Printing stage 35 ... Board | substrate holding part 4 ... Mask holding part 41 ... Mask fixing tool 5 ... Printing part 53 ... Squeegee D53 ... Squeegee direction 61 ... Mask imaging camera (detection part)
62 ... Board imaging camera (detection unit)
72 ... Input operation unit 91 ... Main control unit (control unit)
92: Setting unit 94 ... Image processing unit (detection unit)
DESCRIPTION OF SYMBOLS 10 ... Board | substrate 101 ... Print location 12 ... Mask 121 ... Pattern hole 122 ... Area | region 123 ... Boundary 14 ... Solder F10 ... Substrate fiducial mark F12 ... Mask fiducial mark [Delta] F ... Deviation amount (mask pattern hole and substrate Misalignment between)
V10: Substrate speed (speed for moving the substrate relative to the mask)
Δ10: Offset amount (amount of displacement of the substrate with respect to the mask)

Claims (11)

  1.  パターン孔を有するマスクを保持するマスク保持部と、
     前記マスクとの間に隙間を設けつつ前記マスクに対向させて基板を保持する基板保持部と、
     前記基板保持部により保持される前記基板の反対側で前記マスクに当接するスキージを有し、スキージ方向へ前記スキージを移動させることで前記パターン孔を介して前記マスク上のペーストを前記基板に印刷する印刷部と、
     前記マスクに対する前記スキージの位置に応じて前記スキージ方向における前記マスクと前記基板との相対的な位置関係を変化させることで、前記ペーストが前記基板に印刷される位置を補正する制御部と
    を備える印刷機。
    A mask holding unit for holding a mask having a pattern hole;
    A substrate holding unit that holds the substrate so as to face the mask while providing a gap between the mask and the mask;
    It has a squeegee that contacts the mask on the opposite side of the substrate held by the substrate holding unit, and the paste on the mask is printed on the substrate through the pattern hole by moving the squeegee in the squeegee direction. Printing section to
    A control unit that corrects a position where the paste is printed on the substrate by changing a relative positional relationship between the mask and the substrate in the squeegee direction according to a position of the squeegee with respect to the mask; Printer.
  2.  前記制御部は、前記スキージの移動に伴って連続的に前記基板を前記マスクに対して相対移動させることで、前記ペーストが前記基板に印刷される位置を補正する請求項1に記載の印刷機。 2. The printing machine according to claim 1, wherein the control unit corrects a position where the paste is printed on the substrate by continuously moving the substrate relative to the mask as the squeegee moves. .
  3.  前記制御部は、前記マスク保持部に保持された前記マスクの前記パターン孔と前記基板保持部に保持された前記基板との間の位置ずれに基づき求めた速度で、前記基板を前記マスクに対して相対移動させる請求項2に記載の印刷機。 The control unit moves the substrate relative to the mask at a speed determined based on a positional deviation between the pattern hole of the mask held by the mask holding unit and the substrate held by the substrate holding unit. The printing machine according to claim 2, wherein the printing machine is relatively moved.
  4.  前記マスク保持部に保持された前記マスクの前記パターン孔と前記基板保持部に保持された前記基板との間の位置ずれを、前記マスクおよび前記基板のそれぞれに設けられたフィデューシャルマークの位置を測定した結果に基づき検出する検出部をさらに備え、
     前記制御部は、前記検出部の検出結果に基づき求めた速度で、前記基板を前記マスクに対して相対移動させる請求項3に記載の印刷機。
    The positional deviation between the pattern hole of the mask held by the mask holding unit and the substrate held by the substrate holding unit is determined by the position of fiducial marks provided on the mask and the substrate, respectively. Further comprising a detection unit for detecting based on the measurement result,
    The printing machine according to claim 3, wherein the control unit moves the substrate relative to the mask at a speed obtained based on a detection result of the detection unit.
  5.  前記スキージ方向において前記マスクを仮想的に分割した複数の領域を設定する設定部を備え、
     前記スキージは、前記領域の境界に到達すると一時停止した後に移動を再開する間欠移動を実行し、
     前記制御部は、前記スキージが前記境界で一時停止している停止期間に前記基板を前記マスクに対して相対的に変位させることで、前記スキージが一時停止中の前記境界の前記スキージ方向の下流側の前記領域を介して前記ペーストが前記基板に印刷される位置を補正する請求項1に記載の印刷機。
    A setting unit that sets a plurality of areas obtained by virtually dividing the mask in the squeegee direction;
    When the squeegee reaches the boundary of the area, the squeegee performs intermittent movement to resume movement after pausing,
    The control unit displaces the substrate relative to the mask during a stop period in which the squeegee is temporarily stopped at the boundary, thereby downstream of the boundary where the squeegee is temporarily stopped in the squeegee direction. The printing machine according to claim 1, wherein the position where the paste is printed on the substrate is corrected through the region on the side.
  6.  前記制御部は、前記スキージが移動している移動期間は前記基板と前記マスクとの位置関係を固定する請求項5に記載の印刷機。 6. The printing machine according to claim 5, wherein the control unit fixes a positional relationship between the substrate and the mask during a moving period in which the squeegee is moving.
  7.  前記設定部は、前記領域の前記境界が前記マスクの前記パターン孔に重複しないように前記各領域を設定する請求項5または6に記載の印刷機。 The printing machine according to claim 5 or 6, wherein the setting unit sets each area so that the boundary of the area does not overlap the pattern hole of the mask.
  8.  前記停止期間に前記基板を前記マスクに対して相対的に変位させる量を作業者が入力可能な入力操作部をさらに備え、
     前記制御部は、前記入力操作部に入力された量だけ、前記停止期間において前記基板を前記マスクに対して相対的に変位させる請求項5ないし7のいずれか一項に記載の印刷機。
    An input operation unit that allows an operator to input an amount of displacement of the substrate relative to the mask during the stop period;
    The printing machine according to any one of claims 5 to 7, wherein the control unit displaces the substrate relative to the mask during the stop period by an amount input to the input operation unit.
  9.  前記設定部は、前記スキージ方向において前記マスクを仮想的に分割した3以上の前記領域を設定し、
     前記入力操作部では、前記停止期間に前記基板を前記マスクに対して相対的に変位させる量を前記境界毎に入力できる請求項8に記載の印刷機。
    The setting unit sets three or more regions obtained by virtually dividing the mask in the squeegee direction,
    The printing press according to claim 8, wherein the input operation unit can input, for each boundary, an amount for displacing the substrate relative to the mask during the stop period.
  10.  前記マスク保持部は、前記マスクの長尺方向を前記スキージ方向に一致させて前記マスクを保持し、
     前記基板保持部は、前記基板の長尺方向を前記スキージ方向に一致させて前記基板を保持する請求項1ないし9のいずれか一項に記載の印刷機。
    The mask holding unit holds the mask by making the longitudinal direction of the mask coincide with the squeegee direction,
    10. The printing press according to claim 1, wherein the substrate holding unit holds the substrate with a longitudinal direction of the substrate being aligned with the squeegee direction.
  11.  パターン孔を有するマスクとの間に隙間を設けつつ前記マスクに基板を対向させる工程と、
     前記基板の反対側で前記マスクに当接するスキージをスキージ方向へ移動させることで、前記パターン孔を介して前記マスク上のペーストを前記基板に印刷する工程と
    を備え、
     ペーストを前記基板に印刷する工程では、前記マスクに対する前記スキージの位置に応じて前記スキージ方向における前記マスクと前記基板との相対的な位置関係を変化させることで、前記ペーストが前記基板に印刷される位置を補正する印刷方法。
    A step of facing the substrate to the mask while providing a gap with the mask having a pattern hole;
    Printing the paste on the mask on the substrate through the pattern hole by moving a squeegee in contact with the mask on the opposite side of the substrate in the squeegee direction,
    In the step of printing the paste on the substrate, the paste is printed on the substrate by changing a relative positional relationship between the mask and the substrate in the squeegee direction according to the position of the squeegee with respect to the mask. Printing method to correct the position.
PCT/JP2015/071315 2015-07-28 2015-07-28 Printing machine and printing method WO2017017776A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017530510A JP6411658B2 (en) 2015-07-28 2015-07-28 Printing machine, printing method
PCT/JP2015/071315 WO2017017776A1 (en) 2015-07-28 2015-07-28 Printing machine and printing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071315 WO2017017776A1 (en) 2015-07-28 2015-07-28 Printing machine and printing method

Publications (1)

Publication Number Publication Date
WO2017017776A1 true WO2017017776A1 (en) 2017-02-02

Family

ID=57885120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071315 WO2017017776A1 (en) 2015-07-28 2015-07-28 Printing machine and printing method

Country Status (2)

Country Link
JP (1) JP6411658B2 (en)
WO (1) WO2017017776A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146540A (en) * 1984-12-20 1986-07-04 Fujitsu Ltd Screen printing method
JPH03187746A (en) * 1989-12-18 1991-08-15 Sony Corp Screen printing machine
JP2011151222A (en) * 2010-01-22 2011-08-04 Yamaha Motor Co Ltd Printer and printing method
JP2011201023A (en) * 2010-03-24 2011-10-13 Panasonic Corp Screen printing machine and screen printing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146540A (en) * 1984-12-20 1986-07-04 Fujitsu Ltd Screen printing method
JPH03187746A (en) * 1989-12-18 1991-08-15 Sony Corp Screen printing machine
JP2011151222A (en) * 2010-01-22 2011-08-04 Yamaha Motor Co Ltd Printer and printing method
JP2011201023A (en) * 2010-03-24 2011-10-13 Panasonic Corp Screen printing machine and screen printing method

Also Published As

Publication number Publication date
JPWO2017017776A1 (en) 2018-02-08
JP6411658B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
US11007768B2 (en) Board work device having support member conveyance section for conveying board support member
KR100848854B1 (en) Scribing apparatus of fragile substrate and method thereof
JP2007320207A (en) Screen printing method and screen printing apparatus
JP5877328B2 (en) SCREEN PRINTING APPARATUS AND METHOD FOR SETTING BOARD CLAMP POSITION IN SCREEN PRINTING APPARATUS
JP6293866B2 (en) Mounting deviation correction device and component mounting system
JP2014083787A (en) Screen printing method and screen printing apparatus
JP5681695B2 (en) Substrate printing device
JP6209741B2 (en) Component mounting method and component mounting system
JPWO2017022127A1 (en) Printing system and printing method
JP6411658B2 (en) Printing machine, printing method
JPWO2018127966A1 (en) Screen printing machine
JP6087376B2 (en) Viscous fluid printing device
JP6513229B2 (en) Printing device, substrate position adjustment method
JP5229244B2 (en) Electronic component mounting apparatus and work method by electronic component mounting apparatus
JP2015018888A (en) Pitch error correction method, component mounting device, and component mounting system
JP4648060B2 (en) Printing apparatus and printing method
CN111093996B (en) Screen printing machine
JP5146473B2 (en) Screen printing machine and screen printing method
JP2011143548A (en) Screen printing machine and screen printing method
JPWO2019069438A1 (en) Substrate work system
WO2019244264A1 (en) Control method, electronic component mounting device, and correction substrate
JPWO2014049688A1 (en) Component placement machine and component holding device elevation control method
TWI460420B (en) Wire drawing device and wire drawing method
WO2023095213A1 (en) Component mounting machine and method for calculating correction value
JP2023170361A (en) Work device and camera check method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899609

Country of ref document: EP

Kind code of ref document: A1