WO2017016351A1 - 一种上行数据的传输方法及装置 - Google Patents

一种上行数据的传输方法及装置 Download PDF

Info

Publication number
WO2017016351A1
WO2017016351A1 PCT/CN2016/086896 CN2016086896W WO2017016351A1 WO 2017016351 A1 WO2017016351 A1 WO 2017016351A1 CN 2016086896 W CN2016086896 W CN 2016086896W WO 2017016351 A1 WO2017016351 A1 WO 2017016351A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
downlink time
downlink
uplink data
slot
Prior art date
Application number
PCT/CN2016/086896
Other languages
English (en)
French (fr)
Inventor
司倩倩
林亚男
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/747,750 priority Critical patent/US10334574B2/en
Priority to KR1020187005955A priority patent/KR20180034630A/ko
Priority to EP16829718.2A priority patent/EP3331305B1/en
Priority to JP2018504701A priority patent/JP2018525914A/ja
Publication of WO2017016351A1 publication Critical patent/WO2017016351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting uplink data.
  • ITU International Telecommunication Union
  • a shorter time slot (less than 1 ms) can be introduced for data transmission, thereby reducing the processing time of the base station and the user equipment (User Equipment, UE for short) and the time slot transmission time.
  • the UE cannot respond to the uplink scheduling signaling in time, and the base station cannot timely feedback or schedule retransmission of the uplink data.
  • LTE Long Term Evolution
  • a frequency division duplex (FDD) mode and a time division duplex (TDD) mode define a 10 ms radio frame and a 1 ms subframe.
  • FDD frequency division duplex
  • TDD time division duplex
  • Table 1 seven TDD uplink and downlink configurations are defined, as shown in Table 1 below, where D represents a downlink (DL) subframe, U represents an uplink (UL) subframe, and S represents a special TDD system.
  • Subframe The downlink data transmission in one subframe uses a 1 ms slot.
  • PUSCH Physical Uplink Shared Channel
  • the UE has downlink control information (Downlink Control Information, which is detected in the subframe n).
  • the corresponding PUSCH transmission of subframe n+k (k is given by Table 2).
  • the UE detects the PUSCH transmission in the uplink subframe n-4, and the corresponding PHICH resource in the downlink subframe n feeds back the PHICH information.
  • the UE detects the PUSCH transmission in the subframe in the uplink subframe n-k', and the corresponding PHICH resource in the downlink subframe n feeds the PHICH information, where k' Table 3 shows.
  • RTT Round Trip Time
  • RTT is defined as the completion time of a data packet transmission process in the HARQ process, including starting from a data packet at the transmitting end, and receiving feedback processing, and receiving feedback acknowledgement information (ACK) or non-acknowledgement information (NACK) signaling according to the result.
  • ACK feedback acknowledgement information
  • NACK non-acknowledgement information
  • the transmitter demodulates and processes the ACK or NACK signal, it determines the whole process of retransmitting the next frame or transmitting a new data packet.
  • Tp is a unidirectional propagation delay
  • Tue is a processing delay after the UE receives the feedback from the evolved base station (eNB)
  • Tenb is The processing delay after the eNB receives the uplink data.
  • Tdelay1 is the time that the eNB must wait until the latest downlink time slot after processing the uplink transport block in the TDD frame structure.
  • Tdelay2 is the TDD frame structure. After the UE processes the eNB feedback, it must wait until the latest uplink time slot. time.
  • the FDD system has a unified RTT, and the RTT of the TDD system is related to a specific uplink and downlink configuration.
  • the user plane delay of the LTE system is composed of four parts: the base station processing time, the frame alignment time, the slot time and the UE processing time, wherein the frame alignment time is the service arrival to the service. Obtain the waiting time between air interface transmission opportunities. If the system's HARQ retransmission is considered, the user plane delay of the LTE system also includes the time taken for data retransmission.
  • the UE when using short time slots for transmission in an LTE system, since the data packets transmitted at one time are small, the UE can prepare for uplink transmission data more quickly after receiving the scheduling signaling, and the base station can also be more The received data packet is demodulated quickly. If the existing uplink data scheduling and feedback timing are still used, the user cannot respond to the uplink scheduling signaling in time, and the base station feedback and retransmission scheduling time becomes longer.
  • the embodiment of the invention provides a method and a device for transmitting uplink data, which are used to shorten the RTT time in the case of short time slot transmission, thereby reducing user plane delay and improving system performance.
  • the network side determines a time slot size for data transmission, and sends uplink scheduling signaling to the user equipment UE according to the time slot size;
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the network side uses the time slot n to send the uplink scheduling signaling, the network side is in the time slot n. +l receives the uplink data sent by the UE, l ⁇ L, n is an integer greater than or equal to zero, l is an integer greater than or equal to 1, and L represents a set of values of l.
  • the UE in the case of the short-slot transmission can perform the uplink transmission data preparation faster, and the network side can also receive the transmission more quickly.
  • the uplink data packet is demodulated and fed back or retransmitted, thereby shortening the RTT time in the case of transmitting data in a short time slot, reducing the user plane delay and improving system performance.
  • the length of the time slot is 7 orthogonal frequency division multiplexing OFDM symbols
  • the length of the time slot is 3 OFDM symbols;
  • the method further includes:
  • the pre-defined feedback timing is: when the network side receives the uplink data sent by the UE in the time slot mk, k ⁇ K, the network side sends the feedback information of the uplink data in the time slot m.
  • k ⁇ K, m and k are integers greater than or equal to zero, and K represents a set of values of the k.
  • the length of the time slot is 7 OFDM symbols
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • the length of the time slot is 3 OFDM symbols;
  • K ⁇ 10 ⁇
  • K 2 or 3 or 16 or 17 or 22 or 23 or 36 or 37
  • K ⁇ 8 ⁇
  • K 4 or 5 or 12 or 13 or 24 or 25 or 32 or 33
  • the user equipment UE receives the uplink scheduling signaling sent by the network side according to the predefined scheduling sequence, and determines, according to the uplink scheduling signaling, an uplink data transmission time slot used when transmitting the uplink data;
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the network side uses the time slot n to send the uplink scheduling signaling, the UE is in the time slot n+ l Send uplink data to the network side, l ⁇ L, n is an integer greater than or equal to zero, l is an integer greater than or equal to 1, and L represents a set of values of l.
  • the length of the time slot is 7 orthogonal frequency division multiplexing OFDM symbols
  • the length of the time slot is 3 OFDM symbols;
  • the method further includes:
  • the length of the time slot is 7 OFDM symbols
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • the length of the time slot is 3 OFDM symbols;
  • K ⁇ 10 ⁇
  • K 2 or 3 or 16 or 17 or 22 or 23 or 36 or 37
  • K ⁇ 8 ⁇
  • K 4 or 5 or 12 or 13 or 24 or 25 or 32 or 33
  • a determining unit configured to determine a time slot size for data transmission, and send uplink scheduling signaling to the user equipment UE according to the time slot size;
  • a receiving unit configured to receive uplink data sent by the UE according to a predefined scheduling sequence
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the determining unit sends the uplink scheduling signaling by using the time slot n, the receiving unit is in the time slot n. +l receives the uplink data sent by the UE, l ⁇ L, n are integers greater than or equal to zero, l is an integer greater than or equal to 1, and L represents a set of values of l.
  • the length of the time slot is 7 orthogonal frequency division multiplexing OFDM symbols
  • the length of the time slot is 3 OFDM symbols;
  • the determining unit is further configured to: after the receiving unit receives the uplink data sent by the UE according to the predefined scheduling sequence, send the feedback information of the uplink data according to a predefined uplink data feedback timing to The UE;
  • the pre-defined feedback timing is: when the receiving unit receives the uplink data sent by the UE in the time slot mk, k ⁇ K, the determining unit sends the feedback information of the uplink data in the time slot m.
  • k ⁇ K, m and k are integers greater than or equal to zero, and K represents the k The collection of values.
  • the length of the time slot is 7 OFDM symbols
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • the length of the time slot is 3 OFDM symbols;
  • K ⁇ 10 ⁇
  • K 2 or 3 or 16 or 17 or 22 or 23 or 36 or 37
  • K ⁇ 8 ⁇
  • K 4 or 5 or 12 or 13 or 24 or 25 or 32 or 33
  • a receiving unit configured to receive uplink scheduling signaling sent by the network side according to a predefined scheduling sequence, And determining, according to the uplink scheduling signaling, an uplink data transmission time slot used when transmitting uplink data;
  • a sending unit configured to send uplink data in the uplink data sending time slot
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the network side uses the time slot n to send the uplink scheduling signaling, the sending unit is in the time slot n. +l sends uplink data to the network side, l ⁇ L, n is an integer greater than or equal to zero, l is an integer greater than or equal to 1, and L represents a set of values of l.
  • the length of the time slot is 7 orthogonal frequency division multiplexing OFDM symbols
  • the length of the time slot is 3 OFDM symbols;
  • the receiving unit is further configured to:
  • the network side Receiving feedback information of the uplink data sent by the network side according to a predefined uplink data feedback timing, where the predefined feedback timing is: when the network side receives the sending unit to send in the time slot mk When the uplink data is k ⁇ K, the network side sends the feedback information of the uplink data to the uplink data transmission device in the time slot m, where k ⁇ K, m and k are integers greater than or equal to zero, and K represents A set of values of the k.
  • the length of the time slot is 7 OFDM symbols
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • the length of the time slot is 3 OFDM symbols;
  • K ⁇ 10 ⁇
  • K 2 or 3 or 16 or 17 or 22 or 23 or 36 or 37
  • K ⁇ 8 ⁇
  • K 4 or 5 or 12 or 13 or 24 or 25 or 32 or 33
  • An uplink data transmission apparatus includes: a processor, a transceiver, and a memory;
  • the processor is configured to read a program in the memory and perform the following process:
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling sequence is: when the uplink data transmission device uses the time slot n to send the uplink scheduling signaling, the uplink data is The transmitting device receives the uplink data sent by the UE in the slot n+1, and l, L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • An uplink data transmission apparatus includes: a processor, a transceiver, and a memory;
  • the processor is configured to read a program in the memory and perform the following process:
  • the transceiver Receiving, by the transceiver, the uplink scheduling signaling sent by the network side according to the predefined scheduling timing, and determining, according to the uplink scheduling signaling, an uplink data sending time slot used when transmitting the uplink data;
  • the time slot is a time unit with a length of less than 1 millisecond.
  • the predefined scheduling sequence is: when the network side uses the time slot n to send the uplink scheduling signaling, the uplink data transmission device is The time slot n+1 sends uplink data to the network side, l ⁇ L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • FIG. 1 is a schematic diagram of an uplink HARQ RTT model in the prior art
  • FIG. 2 is a schematic flowchart of a method for transmitting uplink data on a network side according to an embodiment of the present invention
  • FIG. 3 to FIG. 11 are timing diagrams of uplink HARQ feedback according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method for transmitting uplink data on a UE side according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of an apparatus for transmitting uplink data on a network side according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of an apparatus for transmitting uplink data on a UE side according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of an apparatus for transmitting uplink data on a network side according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of an apparatus for transmitting uplink data on a UE side according to an embodiment of the present invention.
  • the embodiment of the invention provides a method and a device for transmitting uplink data, which are used to shorten the RTT time in the case of short time slot transmission, thereby reducing user plane delay and improving system performance.
  • a method for transmitting uplink data includes:
  • the network side determines a time slot size for data transmission, and sends uplink scheduling signaling to the UE according to the time slot size;
  • the network side receives uplink data sent by the UE according to a predefined scheduling sequence.
  • the time slot for the data transmission is a time unit with a length of less than 1 millisecond.
  • the predefined scheduling timing is: when the network side sends the uplink scheduling signaling in the time slot n, the network side receives the time slot n+1.
  • the uplink data sent by the UE, l ⁇ L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • the UE in the case of the short-slot transmission can perform the uplink transmission data preparation faster, and the network side can also be more
  • the received uplink data packet is demodulated and feedback or retransmission scheduling is quickly performed, thereby shortening the RTT time in the case of transmitting data in a short time slot, reducing the user plane delay and improving system performance.
  • each subframe includes one or more time slots, and the length of each time slot is pre-configured by the system.
  • the defined scheduling sequence is: the base station sends, in the downlink time slot n, uplink scheduling signaling (scheduled initial transmission or retransmission) for the uplink time slot n+1, where l ⁇ L;
  • the defined feedback timing is: the base station feeds back the uplink time slot mk in the downlink time slot m, where k ⁇ K.
  • the scheduling sequence in the embodiment of the present invention indicates the correspondence between the time slot occupied by the uplink scheduling signaling sent by the network side and the time slot required for the uplink data to be received by the UE indicated by the uplink scheduling signaling;
  • the feedback timing in the embodiment of the invention indicates the correspondence between the time slot occupied by the network side transmitting the feedback information of the uplink data and the time slot occupied by the UE transmitting the uplink data after receiving the uplink data.
  • n+1 when n+1 is greater than P, it indicates that the base station performs uplink scheduling on the slot n+1-P in the next frame in the slot n, and P represents the total number of slots included in one radio frame.
  • m-k when m-k is less than zero, it indicates that the base station sends feedback information of the uplink data sent by the UE in the last
  • each radio frame when a time slot occupies 7 OFDM symbols, each radio frame includes 20 time slots, which are numbered from 0 to 19, that is, time slot 0, time slot 1, time slot 2, respectively. ...time slot 19; when the time slot occupies 3 OFDM symbols, each radio frame includes 40 time slots, starting from 0, up to 39, that is, time slot 0, time slot 1, time slot 2, ... Gap 39.
  • the pre-configured time slots in the system occupy 7 OFDM symbols, wherein slot 3, slot 4, slot 5, slot 7, slot 9, slot 13, slot 14, slot 15, slot 17, Time slot 19 is an upstream time slot.
  • the specific uplink HARQ timing is shown in FIG. 3.
  • FIG. 3 shows the specific correspondence of each uplink time slot (ie, time slot 3, time slot 4, time slot 5, time slot 7, time slot 9) in half of the radio frames. Scheduling and feedback timing. Among them, one subframe contains 2 slots and occupies 14 OFDM symbols.
  • the base station sends uplink scheduling signaling to the time slot 10.
  • the UE instructs the UE to send uplink data in the time slot 14;
  • the base station sends uplink scheduling signaling to the UE in the time slot 11, instructing the UE to send uplink data in the time slot 15;
  • the base station sends uplink scheduling signaling to the UE in the time slot 12, indicating the UE
  • the uplink data is sent in the time slot 17 and/or the time slot 19;
  • the base station sends the uplink scheduling signaling to the UE in the time slot 18, instructing the UE to send the uplink data in the time slot 3 (ie, 18+5-20) in the next frame, where
  • the time slot 3 is obtained as follows: when n+l is greater than P, it indicates that the base station performs uplink scheduling for the time slot n+lP in the next frame in the
  • the uplink scheduling signaling when the predefined scheduling sequence is applied to the asynchronous HARQ, the uplink scheduling signaling further includes an HARQ process information field, where the HARQ process information field is used to indicate the HARQ process number.
  • the number of bits included in the HARQ process information field is N.
  • the uplink scheduling signaling includes a UL index information field, and the UL index information field is used to indicate multi-slot scheduling.
  • the number of bits included in the UL index information field is
  • the network side uses different PHICH resources for feedback on uplink data of different time slots.
  • the above PHICH resources may be traditional PHICH resources, or may be different from traditional PHICH resources. EPHICH resources for resources.
  • the time slot occupied by the uplink initial transmission or the retransmission scheduling signaling sent by the network side may be determined, and the time required by the UE to send the uplink data indicated by the uplink scheduling signaling needs to be occupied.
  • the time slot corresponding to the subframe 5 to the subframe 9 in the following field is taken as an example (the same as the upper field).
  • the base station sends the UE in the time slot in the time slot 10.
  • m-k when m-k is less than zero, it indicates that the base station sends feedback information of the uplink data sent by the UE in the last
  • the scheduling timing and the feedback timing in this embodiment are not necessarily used at the same time, that is, when the uplink scheduling is performed using the scheduling timing in this embodiment, it is not necessary to use the feedback timing in the embodiment to perform feedback of the uplink data.
  • the following various embodiments are similar and will not be described again.
  • the first uplink time slot in each process represents the initial time slot
  • the subsequent gray square corresponds to The time slot
  • the last time slot represents the time slot occupied by the retransmitted uplink data.
  • the uplink and downlink timeslot configurations in the first half frame and the second half frame are the same,
  • the time slot n and the second half of the first half frame The HARQ timing of the corresponding slot n+10 in the frame is the same.
  • the HARQ timing of the corresponding slot n+20 in the slot n of the first half frame and the second half frame is identical.
  • the uplink HARQ timing in the first half of the radio frame the uplink HARQ timing in the latter half of the radio frame can be obtained.
  • the HARQ timings of slot 3 and slot 13 are the same in FIG.
  • the HARQ timings of slot 4 and slot 14 are the same, the HARQ timing of slot 5 and slot 15 are the same, slot 7 and slot 17
  • the HARQ timing is the same, and the HARQ timing of slot 9 and slot 19 is the same.
  • the understanding of the embodiment described later in the embodiment of the present invention is the same as that of the following, and only the HARQ timing of the first half of the radio frame is given in the schematic diagram, and will not be separately described.
  • the process shown only indicates the HARQ timing relationship in which the uplink data is scheduled or fed back.
  • the number of processes does not represent the actual number of uplink HARQ processes, and the actual number of uplink HARQ processes. It should be determined according to the number of uplink subframes included in the maximum RTT. The following various embodiments are similar and will not be described again.
  • the pre-configured time slots in the system occupy 7 OFDM symbols, wherein slot 3, slot 4, slot 5, slot 7, slot 9, slot 13, slot 14, slot 15, slot 17, Time slot 19 is an upstream time slot.
  • the specific uplink HARQ timing is shown in FIG. 4, and each process includes scheduling and feedback timing of a specific time slot.
  • n 6 for downstream time slot Or 16
  • K ⁇ 7 ⁇ .
  • the pre-configured time slots in the system occupy 7 OFDM symbols, wherein slot 3, slot 4, slot 5, slot 7, slot 9, slot 13, slot 14, slot 15, slot 17, Time slot 19 is an upstream time slot.
  • the specific uplink HARQ timing is shown in FIG. 5, and each process includes scheduling and feedback timing of a specific time slot.
  • the pre-configured time slots in the system occupy 7 OFDM symbols, wherein slot 4, slot 5, slot 6, slot 7, slot 8, slot 9, slot 14, slot 15, slot 16,
  • slot 17, the time slot 18, and the time slot 19 are uplink time slots.
  • the specific uplink HARQ timing is shown in Figure 6. Each process includes the scheduling and feedback timing of the specific time slot.
  • the pre-configured time slots in the system occupy 7 OFDM symbols, TDD and FDD perform carrier aggregation, and TDD is used as the primary carrier.
  • TDD is used as the primary carrier.
  • the scheduling signaling and feedback information of the FDD carrier need to be transmitted on the TDD carrier.
  • the time slot 0, the time slot 1, the time slot 2, the time slot 10, the time slot 11, and the time slot 12 on the TDD carrier can transmit feedback information or retransmission scheduling signaling, and the specific uplink HARQ timing of the FDD carrier is as shown in FIG.
  • Each process includes scheduling and feedback timing of specific time slots.
  • the pre-configured time slots in the system occupy 3 OFDM symbols, wherein slots 6-11, time slot 14, time slot 15, time slot 18, time slot 19, time slots 26-31, time slot 35, time slot 36, The time slot 38 and the time slot 39 are uplink time slots.
  • the specific uplink HARQ timing is shown in Figure 8. Each process includes the scheduling and feedback timing of the specific time slot.
  • the pre-configured time slots in the system occupy 3 OFDM symbols, wherein slots 6-11, time slot 14, time slot 15, time slot 18, time slot 19, time slots 26-31, time slot 35, time slot 36, The time slot 38 and the time slot 39 are uplink time slots.
  • the specific uplink HARQ timing is shown in Figure 9. Each process includes the scheduling and feedback timing of the specific time slot.
  • the pre-configured time slots in the system occupy 3 OFDM symbols, wherein time slots 8-19 and time slots 28-39 are uplink time slots.
  • the specific uplink HARQ timing is shown in FIG. 10, and each process includes scheduling and feedback timing of a specific time slot.
  • the pre-configured time slots in the system occupy 3 OFDM symbols, TDD and FDD perform carrier aggregation, and TDD is used as the primary carrier.
  • TDD is used as the primary carrier.
  • the scheduling signaling and feedback information of the FDD carrier need to be transmitted on the TDD carrier.
  • Time slots 0 to 4 and time slots 20 to 24 on the TDD carrier can transmit feedback information or retransmission scheduling signaling.
  • the specific uplink HARQ timing of the FDD carrier is as shown in FIG. 11, and each process includes a specific time slot. Scheduling and feedback timing.
  • the uplink HARQ timing defined in the embodiment of the present invention may be applied to synchronous HARQ or asynchronous HARQ.
  • the scheduling sequence defined in the embodiment of the present invention is required, and the HARQ process information field is added to the uplink scheduling signaling to indicate the HARQ process number (the number of bits in the HARQ process information field and the specific The number of processes is related, and the number of processes is the maximum number of uplink subframes included in the RTT.
  • the scheduling timing and the feedback timing defined in the embodiment of the present invention are simultaneously included, and the existing PHICH resources or the new EPHICH resources may be defined during the feedback.
  • an uplink index (UL index) information field may be added in the corresponding uplink scheduling signaling to indicate multi-slot scheduling.
  • the number of UL index bits for performing multi-slot scheduling may be determined according to the maximum number of slots carried in all downlink time slots; or may be determined according to time slots, and determined according to the number of uplink slots carried by each downlink time slot.
  • UE side behavior receiving uplink scheduling signaling sent by the base station side, then transmitting uplink data according to a predefined scheduling timing, and detecting feedback information of the base station in the time slot according to a predefined feedback timing or The device retransmits the scheduling signaling.
  • a method for transmitting uplink data includes:
  • the user equipment UE receives the uplink scheduling signaling sent by the network side according to the predefined scheduling sequence, and determines, according to the uplink scheduling signaling, an uplink data transmission time slot used when transmitting the uplink data.
  • the UE sends uplink data in an uplink data transmission time slot.
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the network side uses the time slot n to send the uplink scheduling signaling, the UE sends the uplink data to the network side in the time slot n+1, l ⁇ L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • L ⁇ 14, 15 ⁇ .
  • the method further includes:
  • the UE receives the feedback information of the uplink data sent by the network side according to the predefined uplink data feedback timing, where the predefined feedback timing is: when the network side receives the uplink data sent by the UE in the time slot mk, k ⁇ K, the network The side sends feedback information of the uplink data to the UE in the slot m, k ⁇ K, m and k are integers greater than or equal to zero, and K represents a set of values of k.
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • K ⁇ 10 ⁇
  • Line time slot m 2 or 3 or 16 or 17 or 22 or 23 or 36 or 37
  • K ⁇ 8 ⁇
  • K ⁇ 6 ⁇
  • an uplink data transmission apparatus includes:
  • the determining unit 11 is configured to determine a time slot size for data transmission, and send uplink scheduling signaling to the UE according to the time slot size;
  • the receiving unit 12 is configured to receive uplink data sent by the UE according to a predefined scheduling sequence.
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the determining unit sends the uplink scheduling signaling by using the time slot n, the receiving unit receives the uplink data sent by the UE in the time slot n+1, ⁇ L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • the determining unit is further configured to: after the receiving unit receives the uplink data sent by the UE according to the predefined scheduling sequence, send the feedback information of the uplink data to the UE according to the predefined uplink data feedback timing.
  • the predefined feedback timing is: when the receiving unit receives the uplink data sent by the UE in the time slot mk, k ⁇ K, the determining unit sends the feedback information of the uplink data to the UE in the time slot m, k ⁇ K, m and k Both are integers greater than or equal to zero, and K represents a set of values of k.
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • an apparatus for transmitting uplink data includes:
  • the receiving unit 21 is configured to receive uplink scheduling signaling sent by the network side according to a predefined scheduling sequence, and determine, according to the uplink scheduling signaling, uplink data transmission used when sending uplink data.
  • Time slot
  • the sending unit 22 is configured to send uplink data in an uplink data transmission time slot.
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the network side uses the time slot n to send the uplink scheduling signaling, the UE sends the uplink data to the network side in the time slot n+1, l ⁇ L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • the receiving unit is further configured to:
  • the predefined feedback timing is: when the network side receives the uplink data sent by the sending unit in the time slot mk, k ⁇ K, the network The side transmits feedback information of the uplink data to the uplink data transmission device in the slot m, k ⁇ K, m and k are integers greater than or equal to zero, and K represents a set of values of k.
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • another uplink data transmission apparatus provided by the embodiment of the present invention includes:
  • the processor 500 is configured to read a program in the memory 520 and perform the following process:
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the uplink data transmission device side uses the time slot n to send the uplink scheduling signaling, the uplink data transmission device receives the time slot n+1.
  • the uplink data sent by the UE, l ⁇ L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • the gap n 1 or 11
  • L ⁇ 5, 6 ⁇ ;
  • L ⁇ 6, 7 ⁇ .
  • the processor 500 is further configured to: send, by using the transceiver 510, feedback information of the uplink data to the UE according to the predefined uplink data feedback timing. .
  • the predefined feedback timing is: when the uplink transmission device receives the uplink data sent by the UE in the time slot mk, k ⁇ K, the uplink transmission device sends the feedback information of the uplink data to the UE in the time slot m, k ⁇ K , m and k are integers greater than or equal to zero, and K represents a set of values of k.
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 510 can be a plurality of components. That is, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • another uplink data transmission apparatus provided by the embodiment of the present invention includes:
  • the processor 600 is configured to read a program in the memory 620 and perform the following process:
  • the transceiver 610 Receiving, by the transceiver 610, the uplink scheduling signaling sent by the network side according to the predefined scheduling timing, and determining, according to the uplink scheduling signaling, an uplink data transmission time slot used when transmitting the uplink data;
  • the uplink data is sent by the transceiver 610;
  • the time slot is a time unit whose length is less than 1 millisecond.
  • the predefined scheduling timing is: when the network side uses the time slot n to send the uplink scheduling signaling, the uplink transmitting device sends the uplink data to the network side in the time slot n+1.
  • l ⁇ L, n and l are integers greater than or equal to zero, and L represents a set of values of l.
  • the processor 600 is further configured to:
  • the feedback information of the uplink data sent by the network side is received by the transceiver 610 according to the predefined uplink data feedback timing, where the predefined feedback timing is: when the network side receives the uplink data sent by the uplink transmission device in the time slot mk , k ⁇ K, the network side sends feedback information of the uplink data to the uplink transmission device in the slot m, k ⁇ K, m and k are integers greater than or equal to zero, and K represents a set of values of k.
  • K ⁇ 6 ⁇
  • K ⁇ 5 ⁇
  • K ⁇ 7 ⁇
  • the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the embodiment of the present invention provides a method and a device for transmitting uplink data, so that a UE in a short-slot transmission situation can perform uplink transmission data preparation more quickly after receiving scheduling signaling.
  • the base station can demodulate the received data packet and perform feedback or retransmission scheduling.
  • the solution provided by the embodiment of the invention can shorten the uplink RTT time, further reduce the user plane delay, and improve the overall system performance.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行数据的传输方法及装置,用以缩短在短时隙传输情况下的RTT时间,从而降低用户面时延,提高***性能。本发明实施例提供的一种上行数据的传输方法,包括:网络侧确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给用户设备UE;所述网络侧根据预定义的调度时序接收所述UE发送的上行数据;其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述网络侧在时隙n+l接收所述UE发送的上行数据,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。

Description

一种上行数据的传输方法及装置
本申请要求在2015年7月28日提交中国专利局、申请号为201510451485.0、发明名称为“一种上行数据的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种上行数据的传输方法及装置。
背景技术
随着移动通信业务需求的发展变化,国际电信联盟(International Telecommunication Union,简称ITU)等多个组织对未来移动通信***定义了更高的用户面延时性能要求。为了降低用户面时延,可以引入更短的时隙(小于1ms)进行数据传输,从而降低基站和用户设备(User Equipment,简称UE)的处理时间以及时隙传输时间。如果仍然使用现有的上行调度及反馈时序,会使UE不能及时响应上行调度信令,基站也不能及时对上行数据进行反馈或调度重传。
长期演进(Long Term Evolution,简称LTE)***中的帧结构:
在LTE***中,频分双工(Frequency Division Duplex,简称FDD)模式和时分双工(Time Division Duplex,简称TDD)模式中均定义了10ms的无线帧,以及1ms的子帧。对于TDD模式的无线帧,定义了七种TDD上下行配置,具体如下面的表1所示,其中D代表下行(DL)子帧,U代表上行(UL)子帧,S代表TDD***的特殊子帧。一个子帧中的下行数据传输使用1ms时隙。
表1 TDD上下行配置
Figure PCTCN2016086896-appb-000001
Figure PCTCN2016086896-appb-000002
LTE中的物理上行链路共享信道(Physical Uplink Shared Channel,简称PUSCH)调度时序:
在LTE TDD***中,对于TDD上下行配置1-6和常规混合自动重传(Hybrid Automatic Repeat reQuest,简称HARQ)操作,UE根据在子帧n中检测到的具有下行控制信息(Downlink Control Information,简称DCI)格式0或格式4的物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)和/或物理混合自动重传指示信道(Physical HARQ Indicator Channel,PHICH)传输,根据PDCCH和PHICH指示,调整在子帧n+k(k由表2给出)的相应PUSCH传输。
对于TDD上下行配置0和常规HARQ操作,如果DCI格式0中的上行索引的最高有效位(Most Significant Bit,简称MSB)设置为1,或者在子帧n=0或5中相应的资源IPHICH=0接收到PHICH,调整在子帧n+k中(k值在表2中给出)相应的PUSCH传输。对于TDD上下行配置0和常规HARQ操作,如果在子帧n中DCI格式0的上行索引的最低有效位(Least Significant Bit,简称LSB)设置为1,或者在子帧n=0或5中相应资源IPHICH=1接收到PHICH,或者在子帧n=1或6接收到PHICH,UE调整在子帧n+7中相应的PUSCH传输。对于TDD上下行配置0,如果在子帧n中DCI格式0中的上行索引的两个MSB和LSB都为1,那么UE调整在两个子帧n+k(k值在表2中给出)和n+7中相应的PUSCH传输。
表2 TDD上行调度相关k值
Figure PCTCN2016086896-appb-000003
Figure PCTCN2016086896-appb-000004
在LTE***中,多个无线帧顺序排列,表2中仅以一个无线帧为例给出了每个下行子帧所对应的k的情况,其中n+k>9则表示后一无线帧中的第n+k-9个下行子帧。
LTE中的PUSCH HARQ反馈时序:
在LTE FDD***中,UE在上行子帧n-4中检测PUSCH传输,在下行子帧n中对应的PHICH资源反馈PHICH信息。
在LTE TDD***中,对于TDD上下行配置1-6,UE在子帧在上行子帧n-k'中检测PUSCH传输,在下行子帧n中对应的PHICH资源反馈PHICH信息,其中k'如表3所示。
在LTE TDD***中,对于TDD上下行配置0,UE在子帧在上行子帧n-k'中检测PUSCH传输,在下行子帧n中对应于IPHICH=0的PHICH资源反馈对应的PHICH信息,其中k'如表3所示;或者UE在子帧在上行子帧n-6中检测PUSCH传输,在下行子帧n中对应于IPHICH=1的PHICH资源反馈对应的PHICH信息。
表3 TDD上行反馈相关k'值
Figure PCTCN2016086896-appb-000005
LTE***中的往返时间(Round Trip Time,简称RTT):
RTT定义为HARQ过程中一次数据包传输过程的完成时间,包括从一个数据包在发送端开始发送,接收端接收处理后,根据结果反馈确认信息(ACK)或非确认信息(NACK)信令,发射端解调处理ACK或NACK信号后,确定下一帧进行重传或传送新的数据包的全过程。如图1中所示,其中Tp为单向传播时延,Tue为UE接收到演进型基站(eNB)反馈后的处理时延,Tenb为 eNB接收到上行数据后的处理时延。Tdelay1是TDD帧结构中,eNB处理完上行传输块后,到最近的一个下行时隙必须等待的时间;Tdelay2是TDD帧结构中,UE处理完eNB反馈后,到最近的一个上行时隙必须等待的时间。
FDD***具有统一的RTT,TDD***的RTT与具体的上下行配置有关。
LTE***的用户面延时:
根据3GPP TR36.912附录B.2章节的定义,LTE***的用户面时延由基站处理时间、帧对齐时间、时隙时间和UE处理时间四部分构成,其中帧对齐时间为业务到达至业务能够获得空口子帧传输机会之间的等待时间。如果考虑***的HARQ重传时,LTE***的用户面时延还包括数据重传所占用的时间。
综上所述,在LTE***中使用短时隙进行传输时,由于一次传输的数据包较小,UE在接收到调度信令之后,可以更快的进行上行传输数据准备,同时基站也能更快的对接收到的数据包进行解调,如果仍然使用现有的上行数据调度及反馈时序,会使用户不能及时响应上行调度信令,且使基站的反馈及重传调度时间变长。
发明内容
本发明实施例提供了一种上行数据的传输方法及装置,用以缩短在短时隙传输情况下的RTT时间,从而降低用户面时延,提高***性能。
本发明实施例提供的一种上行数据的传输方法,包括:
网络侧确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给用户设备UE;
所述网络侧根据预定义的调度时序接收所述UE发送的上行数据;
其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述网络侧在时隙n+l接收所述UE发送的上行数据,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
通过该方法,使在短时隙传输情况下的UE,在接收到网络侧发送的上行调度信令之后,可以更快的进行上行传输数据准备,并且使得网络侧也能更快的对接收到的上行数据包进行解调并进行反馈或者重传调度,进而缩短了在短时隙传输数据的情况下的RTT时间,降低了用户面时延,提高了***性能。
可选地,所述时隙的长度为7个正交频分复用OFDM符号;
对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5};
或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11};
或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21, L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,所述网络侧根据预定义的调度时序接收所述UE发送的上行数据之后,该方法还包括:
所述网络侧根据预定义的上行数据反馈时序发送所述上行数据的反馈信息给所述UE;
其中,所述预定义的反馈时序为:当所述网络侧在时隙m-k接收所述UE发送的上行数据时,k∈K,所述网络侧在时隙m发送所述上行数据的反馈信息给所述UE,k∈K,m和k均为大于或等于零的整数,K表示所述k的取值的集合。
可选地,所述时隙的长度为7个OFDM符号;
对于下行时隙m=0或1或10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4};
或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23, K={9,8};对于下行时隙m=4或24,K={6,5};
或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
本发明实施例提供的一种上行数据的传输方法,包括:
用户设备UE接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
所述UE在所述上行数据发送时隙,发送上行数据;
其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述UE在时隙n+l发送上行数据给所述网络侧,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
可选地,所述时隙的长度为7个正交频分复用OFDM符号;
对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5};
或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11};
或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,所述UE在所述上行数据发送时隙发送上行数据之后,该方法还包括:
所述UE根据预定义的上行数据反馈时序,接收所述网络侧发送的所述上行数据的反馈信息,其中,所述预定义的反馈时序为:当所述网络侧在时隙m-k接收所述UE发送的上行数据时,k∈K,所述网络侧在时隙m发送所述上行数据的反馈信息给所述UE,k∈K,m和k均为大于或等于零的整数,K表示所述k的取值的集合。
可选地,所述时隙的长度为7个OFDM符号;
对于下行时隙m=0或1或10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11, K={6,5};对于下行时隙m=2或12,K={5,4};
或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5};
或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
本发明实施例提供的一种上行数据的传输装置,包括:
确定单元,用于确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给用户设备UE;
接收单元,用于根据预定义的调度时序接收所述UE发送的上行数据;
其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述确定单元采用时隙n发送所述上行调度信令时,所述接收单元在时隙n+l接收所述UE发送的上行数据,l∈L,n均为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
可选地,所述时隙的长度为7个正交频分复用OFDM符号;
对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5};
或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11};
或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,所述确定单元还用于:在所述接收单元根据预定义的调度时序接收所述UE发送的上行数据之后,根据预定义的上行数据反馈时序发送所述上行数据的反馈信息给所述UE;
其中,所述预定义的反馈时序为:当所述接收单元在时隙m-k接收所述UE发送的上行数据时,k∈K,所述确定单元在时隙m发送所述上行数据的反馈信息给所述UE,k∈K,m和k均为大于或等于零的整数,K表示所述k 的取值的集合。
可选地,所述时隙的长度为7个OFDM符号;
对于下行时隙m=0、1、10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4};
或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5};
或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
本发明实施例提供的一种上行数据的传输装置,包括:
接收单元,用于接收网络侧根据预定义的调度时序发送的上行调度信令, 并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
发送单元,用于在所述上行数据发送时隙,发送上行数据;
其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述发送单元在时隙n+l发送上行数据给所述网络侧,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
可选地,所述时隙的长度为7个正交频分复用OFDM符号;
对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5};
或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11};
或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,在所述发送单元在所述上行数据发送时隙发送上行数据之后,所述接收单元还用于:
根据预定义的上行数据反馈时序,接收所述网络侧发送的所述上行数据的反馈信息,其中,所述预定义的反馈时序为:当所述网络侧在时隙m-k接收所述发送单元发送的上行数据时,k∈K,所述网络侧在时隙m发送所述上行数据的反馈信息给所述上行数据传输装置,k∈K,m和k均为大于或等于零的整数,K表示所述k的取值的集合。
可选地,所述时隙的长度为7个OFDM符号;
对于下行时隙m=0或1或10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4};
或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,所述时隙的长度为3个OFDM符号;
对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23, K={9,8};对于下行时隙m=4或24,K={6,5};
或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
本发明实施例提供的一种上行数据的传输装置,包括:处理器、收发机和存储器;
所述处理器,用于读取存储器中的程序,执行下列过程:
确定用于数据传输的时隙大小,并根据该时隙大小通过收发机发送上行调度信令给用户设备UE;
根据预定义的调度时序通过收发机接收所述UE发送的上行数据;
其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述上行数据的传输装置采用时隙n发送所述上行调度信令时,所述上行数据的传输装置在时隙n+l接收所述UE发送的上行数据,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
本发明实施例提供的一种上行数据的传输装置,包括:处理器、收发机、存储器;
所述处理器,用于读取存储器中的程序,执行下列过程:
通过收发机接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
在所述上行数据发送时隙,通过收发机发送上行数据;
其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述上行数据的传输装置在时隙n+l发送上行数据给所述网络侧,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
附图说明
图1为现有技术中上行HARQ RTT模型示意图;
图2为本发明实施例提供的网络侧的一种上行数据的传输方法的流程示意图;
图3至图11为本发明实施例提供的上行HARQ反馈时序图;
图12为本发明实施例提供的UE侧的上行数据的传输方法的流程示意图;
图13为本发明实施例提供的网络侧的上行数据的传输装置的结构示意图;
图14为本发明实施例提供的UE侧的上行数据的传输装置的结构示意图;
图15为本发明实施例提供的网络侧的上行数据的传输装置的结构示意图;
图16为本发明实施例提供的UE侧的上行数据的传输装置的结构示意图。
具体实施方式
本发明实施例提供了一种上行数据的传输方法及装置,用以缩短在短时隙传输情况下的RTT时间,从而降低用户面时延,提高***性能。
参见图2,在网络侧,例如是基站侧,本发明实施例提供的一种上行数据的传输方法,包括:
S101、网络侧确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给UE;
S102、网络侧根据预定义的调度时序接收UE发送的上行数据;
其中,所述用于数据传输的时隙为长度小于1毫秒的时间单位,预定义的调度时序为:当网络侧在时隙n发送上行调度信令时,网络侧在时隙n+l接收UE发送的上行数据,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
通过该方法,使在短时隙传输情况下的UE,在接收到网络侧发送的上行调度信令之后,可以更快的进行上行传输数据准备,并且使得网络侧也能更 快的对接收到的上行数据包进行解调并进行反馈或者重传调度,进而缩短了在短时隙传输数据的情况下的RTT时间,降低了用户面时延,提高了***性能。
本发明实施例中每个子帧中包含一个或者多个时隙,每个时隙的长度由***预配置。在本发明的实施例中,所定义的调度时序为:基站在下行时隙n中,发送针对上行时隙n+l的上行调度信令(调度初传或者重传),其中l∈L;所定义的反馈时序为:基站在下行时隙m中,对上行时隙m-k进行反馈,其中k∈K。本发明的每个实施例中给出了L值和K值的集合,不再分别说明L和K的具体含义。本发明实施例中的调度时序,表明了网络侧发送的上行调度信令所占用的时隙,与该上行调度信令所指示的UE发送上行数据需要占用的时隙之间的对应关系;本发明实施例中的反馈时序,表明了网络侧在接收到上行数据后,发送该上行数据的反馈信息所占用的时隙,与该UE发送该上行数据所占用的时隙之间的对应关系。
需要说明的是:
本发明实施例中,当n+l大于P时,表示基站在时隙n对下一帧中的时隙n+l-P进行上行调度,P表示一个无线帧中包括的时隙的总数。
本发明实施例中,当m-k小于零时,表示基站在时隙m发送UE在上一帧中的倒数第|m-k|个时隙发送的上行数据的反馈信息。
以下本发明实施例中,当时隙占用7个OFDM符号时,每一个无线帧中包括20个时隙,从0开始编号,直到19,即分别为时隙0、时隙1、时隙2……时隙19;当时隙占用3个OFDM符号时,每一个无线帧中包括40个时隙,从0开始编号,直到39,即分别为时隙0、时隙1、时隙2……时隙39。
实施例1:
***中预配置的时隙占用7个OFDM符号,其中时隙3、时隙4、时隙5、时隙7、时隙9、时隙13、时隙14、时隙15、时隙17、时隙19为上行时隙。具体上行HARQ时序如图3所示,图3中示出了半个无线帧中每个上行时隙(即时隙3、时隙4、时隙5、时隙7、时隙9)对应的具体调度及反馈时序。 其中,一个子帧中包含2个时隙,占用14个OFDM符号。
调度时序:对于下行时隙n=0、1、10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5}。
也就是说,参见图3,以下半帧中的子帧5至子帧9对应的时隙为例(上半帧同理),本实施例中,基站在时隙10发送上行调度信令给UE,指示UE在时隙14发送上行数据;基站在时隙11发送上行调度信令给UE,指示UE在时隙15发送上行数据;基站在时隙12发送上行调度信令给UE,指示UE在时隙17和/或时隙19发送上行数据;基站在时隙18发送上行调度信令给UE,指示UE在下一帧中的时隙3(即18+5-20)发送上行数据,其中,时隙3是这样得出的:当n+l大于P时,表示基站在时隙n对下一帧中的时隙n+l-P进行上行调度,P表示一个无线帧中包括的时隙的总数,本实施例中P等于20,当然,P的值也可以设置为其他值,本实施例中不作限定。
本发明实施例中,当预定义的调度时序应用于异步HARQ时,上行调度信令中还包含HARQ进程信息域,HARQ进程信息域用于指示HARQ进程编号。
当上行HARQ进程数为N时,HARQ进程信息域包含的比特数为
Figure PCTCN2016086896-appb-000006
当在一个下行时隙中调度多个上行时隙时,上行调度信令中包含UL index信息域,UL index信息域用于指示多时隙调度。
一个下行时隙中最多调度M个上行时隙时,UL index信息域包含的比特数为
Figure PCTCN2016086896-appb-000007
反馈时序:对于下行时隙m=0、1、10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
当网络侧在一个下行时隙中反馈多个上行时隙时,网络侧针对不同时隙的上行数据使用不同的PHICH资源进行反馈。
上述PHICH资源可以是传统的PHICH资源,也可以是不同于传统PHICH 资源的EPHICH资源。
需要说明的是:
根据本发明实施例中所提供的调度时序,可以确定网络侧发送的上行初传或者重传调度信令所占用的时隙,与该上行调度信令所指示的UE发送上行数据需要占用的时隙之间的对应关系;同时还能够确定网络侧发送的反馈信息所占用的时隙,与UE根据反馈信息发送上行数据重传所占用的时隙之间的对应关系。
在本实施例中,对于同一个上行时隙,它的下行调度时隙n和下行反馈时隙m为不同的时隙,对于不同的上行时隙,调度时隙n和反馈时隙m有可能为同一时隙。以下各实施例同理,不再赘述。
也就是说,参见图3,以下半帧中的子帧5至子帧9对应的时隙为例(上半帧同理),本实施例中,基站在时隙10中发送UE在时隙3中发送的上行数据的反馈信息;基站在时隙11中发送UE在时隙4中发送的上行数据的反馈信息;基站在时隙12中发送UE在时隙5和/或时隙7中发送的上行数据的反馈信息;基站在时隙18中发送UE在时隙9中发送的上行数据的反馈信息。
本发明实施例中,当m-k小于零时,表示基站在时隙m发送UE在上一帧中的倒数第|m-k|个时隙发送的上行数据的反馈信息。
本实施例中的调度时序和反馈时序不是必须同时使用,即在使用本实施例中的调度时序进行上行调度时,不是必须要使用本实施例中的反馈时序进行上行数据的反馈。以下各个实施例同理,不再赘述。
另外,在本发明实施例提供各个示意图中,每个进程中第一个上行时隙(图中第一个带U的方块)代表初传的时隙,紧接着的后面的灰色方块所对应的时隙代表上行数据的反馈信息所占用的时隙或者重传调度信令所占用的时隙,最后的时隙(图中最后一个带U的方块)代表重传的上行数据占用的时隙。在本发明实施例提供的各个示意图中,仅画出了前半个无线帧对应的HARQ时序,在一个无线帧中,由于前半帧和后半帧中的上下行时隙配置是相同的,因此当一个时隙长度为7个OFDM符号时,前半帧的时隙n和后半 帧中对应的时隙n+10的HARQ时序是相同的,当一个时隙长度为3个OFDM符号时,前半帧的时隙n和后半帧中对应的时隙n+20的HARQ时序是相同的。根据前半个无线帧中的上行HARQ时序,可以得到后半个无线帧中的上行HARQ时序。例如在图3中时隙3和时隙13的HARQ时序相同,此外,时隙4和时隙14的HARQ时序相同,时隙5和时隙15的HARQ时序相同,时隙7和时隙17的HARQ时序相同,时隙9和时隙19的HARQ时序相同。本发明实施例中后述实施例的理解和此处相同,示意图中仅给出前半个无线帧的HARQ时序,不再分别进行说明。
在本发明实施例提供的各个示意图中,所画出的进程仅表示上行数据进行调度或者反馈的HARQ时序关系,其中的进程个数并不代表实际的上行HARQ进程数,实际的上行HARQ进程数应该根据最大RTT中所包含的上行子帧个数确定。以下各个实施例同理,不再赘述。
实施例2:
***中预配置的时隙占用7个OFDM符号,其中时隙3、时隙4、时隙5、时隙7、时隙9、时隙13、时隙14、时隙15、时隙17、时隙19为上行时隙。具体上行HARQ时序如图4所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
反馈时序:对于下行时隙n=0或1或10或11,K={6};对于下行时隙n=2或8或12或18,K={5};对于下行时隙n=6或16,K={7}。
实施例3:
***中预配置的时隙占用7个OFDM符号,其中时隙3、时隙4、时隙5、时隙7、时隙9、时隙13、时隙14、时隙15、时隙17、时隙19为上行时隙。具体上行HARQ时序如图5所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或10,L={4};对于下行时隙n=1或11, L={4,6};对于下行时隙n=2或12,L={7,11};
反馈时序:对于下行时隙n=0或10,K={11};对于下行时隙n=2或12,K={5,7};对于下行时隙n=1或11,K={7,8}。
实施例4:
***中预配置的时隙占用7个OFDM符号,其中时隙4、时隙5、时隙6、时隙7、时隙8、时隙9、时隙14、时隙15、时隙16、时隙17、时隙18、时隙19为上行时隙。具体上行HARQ时序如图6所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
反馈时序:对于下行时隙n=0或10,K={11,6};对于下行时隙n=1或11,K={6,5};对于下行时隙n=2或12,K={5,4}。
实施例5:
***中预配置的时隙占用7个OFDM符号,TDD和FDD进行载波聚合,TDD作为主载波,跨载波调度时,FDD载波的调度信令和反馈信息需要在TDD载波上传输。TDD载波上的时隙0、时隙1、时隙2、时隙10、时隙11、时隙12可以传输反馈信息或者重传调度信令,FDD载波的具体上行HARQ时序如图7所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11};
反馈时序:对于下行时隙n=0或10,K={11,10,9};对于下行时隙n=1或11,K={9,8,7};对于下行时隙n=2或12,K={7,6,5,4}。
实施例6:
***中预配置的时隙占用3个OFDM符号,其中时隙6~11、时隙14、时隙15、时隙18、时隙19、时隙26~31、时隙35、时隙36、时隙38、时隙39为上行时隙。具体上行HARQ时序如图8所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
反馈时序:对于下行时隙n=0或1或20或21,K={10};对于下行时隙n=2或3或16或17或22或23或36或37,K={8};对于下行时隙n=4或5或12或13或24或25或32或33,K={6}。
实施例7:
***中预配置的时隙占用3个OFDM符号,其中时隙6~11、时隙14、时隙15、时隙18、时隙19、时隙26~31、时隙35、时隙36、时隙38、时隙39为上行时隙。具体上行HARQ时序如图9所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
反馈时序:对于下行时隙n=0或20,K={14,13};对于下行时隙n=1或21,K={13,12};对于下行时隙n=2或22,K={12,11};对于下行时隙n=3或23,K={9,8};对于下行时隙n=4或24,K={6,5}。
实施例8:
***中预配置的时隙占用3个OFDM符号,其中时隙8~19、时隙28~39为上行时隙。具体上行HARQ时序如图10所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
反馈时序:对于下行时隙n=0或20,K={12,11};对于下行时隙n=1或21,K={11,10};对于下行时隙n=2或22,K={10,9};对于下行时隙n=3或23,K={9,8,7};对于下行时隙n=4或24,K={7,6,5}。
实施例9:
***中预配置的时隙占用3个OFDM符号,TDD和FDD进行载波聚合,TDD作为主载波,跨载波调度时,FDD载波的调度信令和反馈信息需要在TDD载波上传输。TDD载波上的时隙0~4、时隙20~24可以传输反馈信息或者重传调度信令,FDD载波的具体上行HARQ时序如图11所示,每个进程中都包含了具体时隙的调度及反馈时序。
调度时序:对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19};
反馈时序:对于下行时隙n=0或20,K={19,18,17,16};对于下行时隙n=1或21,K={16,15,14,13};对于下行时隙n=2或22,K={13,12,11,10};对于下行时隙n=3或23,K={10,9,8,7};对于下行时隙n=4或24,K={7,6,5,4}。
需要进一步说明的是,本发明实施例中所定义的上行HARQ时序可应用于同步HARQ或者异步HARQ。当应用于异步HARQ时,仅需要取本发明实施例中所定义的调度时序,同时在上行调度信令中增加HARQ进程信息域用于指示HARQ进程编号(HARQ进程信息域的比特数和具体的进程数相关,进程数为RTT中所包含的最大上行子帧个数)。当应用于同步HARQ时,同时包括本发明实施例中定义的调度时序和反馈时序,反馈时可使用现有的PHICH资源或者定义新的EPHICH资源。
当在一个下行时隙中调度多个上行时隙时,可通过在相应的上行调度信令中增加上行链路索引(UL index)信息域用于指示多时隙调度。进行多时隙调度的UL index比特数可根据全部下行时隙中所承载最大的时隙个数确定;或者,可以按时隙设置,根据各下行时隙所承载的上行时隙数分别确定。在一个下行时隙中反馈多个上行时隙时,可通过使用不同的PHICH或EPHICH资源来确定具体反馈的是哪个上行时隙。
UE侧行为:接收基站侧发送的上行调度信令,然后按照预定义的调度时序传输上行数据,并按照预定义的反馈时序在时隙中检测基站的反馈信息或 者重传调度信令。
因此,相应地,在UE侧,参见图12,本发明实施例提供的一种上行数据的传输方法,包括:
S201、用户设备UE接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
S202、UE在上行数据发送时隙,发送上行数据;
其中,时隙为长度小于1毫秒的时间单位,预定义的调度时序为:当网络侧采用时隙n发送上行调度信令时,UE在时隙n+l发送上行数据给网络侧,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
可选地,一个时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙n=0、1、10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5}。
在另外一些实施例中,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};。
在另外一些实施例中,。
对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,一个时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6}。
在另外一些实施例中,对于下行时隙n=0或20,L={6,7};对于下行时 隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,UE在上行数据发送时隙发送上行数据之后,该方法还包括:
UE根据预定义的上行数据反馈时序,接收网络侧发送的上行数据的反馈信息,其中,预定义的反馈时序为:当网络侧在时隙m-k接收UE发送的上行数据时,k∈K,网络侧在时隙m发送上行数据的反馈信息给UE,k∈K,m和k均为大于或等于零的整数,K表示k的取值的集合。
可选地,一个时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙m=0、1、10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9}。
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
在另外一些实施例中,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4}。
在另外一些实施例中,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,一个时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙m=0或1或20或21,K={10};对于下 行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6}。
在另外一些实施例中,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
参见图13,在网络侧,例如基站侧,本发明实施例提供的一种上行数据的传输装置,包括:
确定单元11,用于确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给UE;
接收单元12,用于根据预定义的调度时序接收UE发送的上行数据;
其中,时隙为长度小于1毫秒的时间单位,预定义的调度时序为:当确定单元采用时隙n发送上行调度信令时,接收单元在时隙n+l接收UE发送的上行数据,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
可选地,时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙n=0、1、10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5}。
在另外一些实施例中,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};。
在一些实施例中,
对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6}; 对于下行时隙n=2或12,L={7,11}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6}。
在另外一些实施例中,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,确定单元还用于:在接收单元根据预定义的调度时序接收UE发送的上行数据之后,根据预定义的上行数据反馈时序发送上行数据的反馈信息给UE。
其中,预定义的反馈时序为:当接收单元在时隙m-k接收UE发送的上行数据时,k∈K,确定单元在时隙m发送上行数据的反馈信息给UE,k∈K,m和k均为大于或等于零的整数,K表示k的取值的集合。
可选地,时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙m=0、1、10或11,K={7};对于下行 时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9}。
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
在另外一些实施例中,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4}。
在另外一些实施例中,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6}。
在另外一些实施例中,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
相应地,在UE侧,参见图14,本发明实施例提供的一种上行数据的传输装置,包括:
接收单元21,用于接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送 时隙;
发送单元22,用于在上行数据发送时隙,发送上行数据;
其中,时隙为长度小于1毫秒的时间单位,预定义的调度时序为:当网络侧采用时隙n发送上行调度信令时,UE在时隙n+l发送上行数据给网络侧,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
可选地,时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙n=0、1、10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5}。
在另外一些实施例中,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};。
在另外一些实施例中,
对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6}。
在另外一些实施例中,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,在发送单元在上行数据发送时隙发送上行数据之后,接收单元还用于:
根据预定义的上行数据反馈时序,接收网络侧发送的上行数据的反馈信息,其中,预定义的反馈时序为:当网络侧在时隙m-k接收发送单元发送的上行数据时,k∈K,网络侧在时隙m发送上行数据的反馈信息给该上行数据传输装置,k∈K,m和k均为大于或等于零的整数,K表示k的取值的集合。
可选地,时隙的长度为7个OFDM符号时;;
在一些实施例中,对于下行时隙m=0、1、10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9}。
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
在另外一些实施例中,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4}。
在另外一些实施例中,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6}。
在另外一些实施例中,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下 行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
参见图15,在网络侧,例如基站侧,本发明实施例提供的另一种上行数据的传输装置,包括:
处理器500,用于用于读取存储器520中的程序,执行下列过程:
确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给UE;
根据预定义的调度时序,通过收发机510接收UE发送的上行数据;
其中,时隙为长度小于1毫秒的时间单位,预定义的调度时序为:当该上行数据传输装置侧采用时隙n发送上行调度信令时,该上行数据传输装置在时隙n+l接收UE发送的上行数据,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
可选地,时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙n=0、1、10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5}。
在另外一些实施例中,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};。
在另外一些实施例中,
对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5};对于下行时 隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6}。
在另外一些实施例中,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,处理器500根据预定义的调度时序通过收发机510接收UE发送的上行数据之后,还用于:根据预定义的上行数据反馈时序,通过收发机510发送上行数据的反馈信息给UE。
其中,预定义的反馈时序为:当该上行传输装置在时隙m-k接收UE发送的上行数据时,k∈K,该上行传输装置在时隙m发送上行数据的反馈信息给UE,k∈K,m和k均为大于或等于零的整数,K表示k的取值的集合。
可选地,时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙m=0、1、10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9}。
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2 或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
在另外一些实施例中,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4}。
在另外一些实施例中,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6}。
在另外一些实施例中,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件, 即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
相应地,在UE侧,参见图16,本发明实施例提供的另一种上行数据的传输装置,包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
通过收发机610接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
在上行数据发送时隙,通过收发机610发送上行数据;
其中,时隙为长度小于1毫秒的时间单位,预定义的调度时序为:当网络侧采用时隙n发送上行调度信令时,该上行传输装置在时隙n+l发送上行数据给网络侧,l∈L,n和l均为大于或等于零的整数,L表示l的取值的集合。
可选地,时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙n=0、1、10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5}。
在另外一些实施例中,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};。
在另外一些实施例中,
对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7}。
在另外一些实施例中,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10}; 对于下行时隙n=12或13或32或33,L={6}。
在另外一些实施例中,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15}。
在另外一些实施例中,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
可选地,处理器600通过收发机610在上行数据发送时隙发送上行数据之后,还用于:
根据预定义的上行数据反馈时序,通过收发机610接收网络侧发送的上行数据的反馈信息,其中,预定义的反馈时序为:当网络侧在时隙m-k接收该上行传输装置发送的上行数据时,k∈K,网络侧在时隙m发送上行数据的反馈信息给该上行传输装置,k∈K,m和k均为大于或等于零的整数,K表示k的取值的集合。
可选地,时隙的长度为7个OFDM符号时:
在一些实施例中,对于下行时隙m=0、1、10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9}。
或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
在另外一些实施例中,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4}。
在另外一些实施例中,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
可选地,时隙的长度为3个OFDM符号时:
在一些实施例中,对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6}。
在另外一些实施例中,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5}。
在另外一些实施例中,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
综上所述,本发明实施例给出了一种上行数据的传输方法及装置,使在短时隙传输情况下的UE,在接收到调度信令之后,可以更快的进行上行传输数据准备,同时基站也能更快的对接收到的数据包进行解调并进行反馈或者重传调度。本发明实施例提供的方案能够缩短上行RTT时间,进一步降低用户面时延,提高整体的***性能。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (26)

  1. 一种上行数据的传输方法,其特征在于,该方法包括:
    网络侧确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给用户设备UE;
    所述网络侧根据预定义的调度时序接收所述UE发送的上行数据;
    其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧在时隙n发送所述上行调度信令时,所述网络侧在时隙n+l接收所述UE发送的上行数据,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
  2. 根据权利要求1所述的方法,其特征在于,所述时隙的长度为7个正交频分复用OFDM符号,一个无线帧中包含20个时隙;
    对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5};
    或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
    或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11};
    或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
    或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
  3. 根据权利要求1所述的方法,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
    或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
    或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
    或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
  4. 根据权利要求1所述的方法,其特征在于,所述网络侧根据预定义的调度时序接收所述UE发送的上行数据之后,该方法还包括:
    所述网络侧根据预定义的上行数据反馈时序发送所述上行数据的反馈信息给所述UE;
    其中,所述预定义的反馈时序为:当所述网络侧在时隙m-k接收所述UE发送的上行数据时,k∈K,所述网络侧在时隙m发送所述上行数据的反馈信息给所述UE,k∈K,m和k均为大于或等于零的整数,K表示所述k的取值的集合。
  5. 根据权利要求4所述的方法,其特征在于,所述时隙的长度为7个OFDM符号;
    对于下行时隙m=0或1或10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
    或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
    或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
    或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4};
    或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
  6. 根据权利要求4所述的方法,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
    或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5};
    或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
    或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
  7. 一种上行数据的传输方法,其特征在于,该方法包括:
    用户设备UE接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
    所述UE在所述上行数据发送时隙,发送上行数据;
    其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述UE在时隙n+l发送上行数据给所述网络侧,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
  8. 根据权利要求7所述的方法,其特征在于,所述时隙的长度为7个正交频分复用OFDM符号;
    对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12, L={5,7};对于下行时隙n=8或18,L={5};
    或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
    或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时n=2或12,L={7,11};
    或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
    或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
  9. 根据权利要求7所述的方法,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
    或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
    或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
    或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
  10. 根据权利要求7所述的方法,其特征在于,所述UE在所述上行数据发送时隙发送上行数据之后,该方法还包括:
    所述UE根据预定义的上行数据反馈时序,接收所述网络侧发送的所述上行数据的反馈信息,其中,所述预定义的反馈时序为:当所述网络侧在时隙 m-k接收所述UE发送的上行数据时,k∈K,所述网络侧在时隙m发送所述上行数据的反馈信息给所述UE,k∈K,m和k均为大于或等于零的整数,K表示所述k的取值的集合。
  11. 根据权利要求10所述的方法,其特征在于,所述时隙的长度为7个OFDM符号;
    对于下行时隙m=0或1或10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
    或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
    或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
    或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4};
    或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
  12. 根据权利要求10所述的方法,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
    或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5};
    或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
    或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1 或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
  13. 一种上行数据的传输装置,其特征在于,包括:
    确定单元,用于确定用于数据传输的时隙大小,并根据该时隙大小发送上行调度信令给用户设备UE;
    接收单元,用于根据预定义的调度时序接收所述UE发送的上行数据;
    其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述确定单元采用时隙n发送所述上行调度信令时,所述接收单元在时隙n+l接收所述UE发送的上行数据,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
  14. 根据权利要求13所述的装置,其特征在于,所述时隙的长度为7个正交频分复用OFDM符号;
    对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5};
    或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
    或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11};
    或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
    或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
  15. 根据权利要求13所述的装置,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
    或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
    或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
    或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
  16. 根据权利要求13所述的装置,其特征在于,所述确定单元,还用于:在所述接收单元根据预定义的调度时序接收所述UE发送的上行数据之后,根据预定义的上行数据反馈时序发送所述上行数据的反馈信息给所述UE;
    其中,所述预定义的反馈时序为:当所述接收单元在时隙m-k接收所述UE发送的上行数据时,k∈K,所述确定单元在时隙m发送所述上行数据的反馈信息给所述UE,k∈K,m和k均为大于或等于零的整数,K表示所述k的取值的集合。
  17. 根据权利要求16所述的装置,其特征在于,所述时隙的长度为7个OFDM符号;
    对于下行时隙m=0或1或10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
    或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
    或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
    或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4};
    或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11, K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
  18. 根据权利要求16所述的装置,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
    或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5};
    或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
    或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
  19. 一种上行数据的传输装置,其特征在于,包括:
    接收单元,用于接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
    发送单元,用于在所述上行数据发送时隙,发送上行数据;
    其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述发送单元在时隙n+l发送上行数据给所述网络侧,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
  20. 根据权利要求19所述的装置,其特征在于,所述时隙的长度为7个正交频分复用OFDM符号;
    对于下行时隙n=0或1或10或11,L={4};对于下行时隙n=2或12,L={5,7};对于下行时隙n=8或18,L={5};
    或者,对于下行时隙n=0或10,L={5};对于下行时隙n=1或8或11或18,L={6};对于下行时隙n=2或6或12或16,L={7};
    或者,对于下行时隙n=0或10,L={4};对于下行时隙n=1或11,L={4,6};对于下行时隙n=2或12,L={7,11};
    或者,对于下行时隙n=0或10,L={4,5};对于下行时隙n=1或11,L={5,6};对于下行时隙n=2或12,L={6,7};
    或者,对于下行时隙n=0或10,L={4,5,6};对于下行时隙n=1或11,L={6,7,8};对于下行时隙n=2或12,L={8,9,10,11}。
  21. 根据权利要求19所述的装置,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙n=0或1或2或3或20或21或22或23,L={8};对于下行时隙n=4或5或16或17或24或25或36或37,L={10};对于下行时隙n=12或13或32或33,L={6};
    或者,对于下行时隙n=0或20,L={6,7};对于下行时隙n=1或21,L={7,8};对于下行时隙n=2或22,L={8,9};对于下行时隙n=3或23,L={11,12};对于下行时隙n=4或24,L={14,15};
    或者,对于下行时隙n=0或20,L={8,9};对于下行时隙n=1或21,L={9,10};对于下行时隙n=2或22,L={10,11};对于下行时隙n=3或23,L={11,12,13};对于下行时隙n=4或24,L={13,14,15};
    或者,对于下行时隙n=0或20,L={4,5,6,7};对于下行时隙n=1或21,L={7,8,9,10};对于下行时隙n=2或22,L={10,11,12,13};对于下行时隙n=3或23,L={13,14,15,16};对于下行时隙n=4或24,L={16,17,18,19}。
  22. 根据权利要求19所述的装置,其特征在于,在所述发送单元在所述上行数据发送时隙发送上行数据之后,所述接收单元还用于:
    根据预定义的上行数据反馈时序,接收所述网络侧发送的所述上行数据的反馈信息,其中,所述预定义的反馈时序为:当所述网络侧在时隙m-k接收所述发送单元发送的上行数据时,k∈K,所述网络侧在时隙m发送所述上 行数据的反馈信息给所述上行数据传输装置,k∈K,m和k均为大于或等于零的整数,K表示所述k的取值的集合。
  23. 根据权利要求22所述的装置,其特征在于,所述时隙的长度为7个OFDM符号;
    对于下行时隙m=0或1或10或11,K={7};对于下行时隙m=2或12,K={5,7};对于下行时隙m=8或18,K={9};
    或者,对于下行时隙m=0或1或10或11,K={6};对于下行时隙m=2或8或12或18,K={5};对于下行时隙m=6或16,K={7};
    或者,对于下行时隙m=0或10,K={11};对于下行时隙m=1或11,K={8,7};对于下行时隙m=2或12,K={7,5};
    或者,对于下行时隙m=0或10,K={11,6};对于下行时隙m=1或11,K={6,5};对于下行时隙m=2或12,K={5,4};
    或者,对于下行时隙m=0或10,K={11,10,9};对于下行时隙m=1或11,K={9,8,7};对于下行时隙m=2或12,K={7,6,5,4}。
  24. 根据权利要求22所述的装置,其特征在于,所述时隙的长度为3个OFDM符号;
    对于下行时隙m=0或1或20或21,K={10};对于下行时隙m=2或3或16或17或22或23或36或37,K={8};对于下行时隙m=4或5或12或13或24或25或32或33,K={6};
    或者,对于下行时隙m=0或20,K={14,13};对于下行时隙m=1或21,K={13,12};对于下行时隙m=2或22,K={12,11};对于下行时隙m=3或23,K={9,8};对于下行时隙m=4或24,K={6,5};
    或者,对于下行时隙m=0或20,K={12,11};对于下行时隙m=1或21,K={11,10};对于下行时隙m=2或22,K={10,9};对于下行时隙m=3或23,K={9,8,7};对于下行时隙m=4或24,K={7,6,5};
    或者,对于下行时隙m=0或20,K={19,18,17,16};对于下行时隙m=1或21,K={16,15,14,13};对于下行时隙m=2或22,K={13,12,11,10};对于 下行时隙m=3或23,K={10,9,8,7};对于下行时隙m=4或24,K={7,6,5,4}。
  25. 一种上行数据的传输装置,其特征在于,包括:处理器、收发机和存储器;
    所述处理器,用于读取存储器中的程序,执行下列过程:
    确定用于数据传输的时隙大小,并根据该时隙大小通过收发机发送上行调度信令给用户设备UE;
    根据预定义的调度时序通过收发机接收所述UE发送的上行数据;
    其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述上行数据的传输装置采用时隙n发送所述上行调度信令时,所述上行数据的传输装置在时隙n+l接收所述UE发送的上行数据,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
  26. 一种上行数据的传输装置,其特征在于,包括:处理器、收发机、存储器;
    所述处理器,用于读取存储器中的程序,执行下列过程:
    通过收发机接收网络侧根据预定义的调度时序发送的上行调度信令,并根据该上行调度信令,确定在发送上行数据时所采用的上行数据发送时隙;
    在所述上行数据发送时隙,通过收发机发送上行数据;
    其中,所述时隙为长度小于1毫秒的时间单位,所述预定义的调度时序为:当所述网络侧采用时隙n发送所述上行调度信令时,所述上行数据的传输装置在时隙n+l发送上行数据给所述网络侧,l∈L,n为大于或等于零的整数,l为大于等于1的整数,L表示l的取值的集合。
PCT/CN2016/086896 2015-07-28 2016-06-23 一种上行数据的传输方法及装置 WO2017016351A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/747,750 US10334574B2 (en) 2015-07-28 2016-06-23 Uplink data transmission method and device
KR1020187005955A KR20180034630A (ko) 2015-07-28 2016-06-23 업링크 데이터 전송 방법 및 장치
EP16829718.2A EP3331305B1 (en) 2015-07-28 2016-06-23 Uplink data transmission method and device
JP2018504701A JP2018525914A (ja) 2015-07-28 2016-06-23 アップリンクデータの伝送方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510451485.0A CN106413106B (zh) 2015-07-28 2015-07-28 一种上行数据的传输方法及装置
CN201510451485.0 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017016351A1 true WO2017016351A1 (zh) 2017-02-02

Family

ID=57884072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086896 WO2017016351A1 (zh) 2015-07-28 2016-06-23 一种上行数据的传输方法及装置

Country Status (6)

Country Link
US (1) US10334574B2 (zh)
EP (1) EP3331305B1 (zh)
JP (1) JP2018525914A (zh)
KR (1) KR20180034630A (zh)
CN (1) CN106413106B (zh)
WO (1) WO2017016351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018417494B2 (en) * 2018-04-04 2021-12-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, and related product

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152053B (zh) * 2017-06-16 2023-05-09 ***通信有限公司研究院 传输时序确定及指示方法、通信设备及存储介质
CN110710140B (zh) * 2017-12-26 2021-02-26 Oppo广东移动通信有限公司 反馈资源的确定方法、ue、网络设备及计算机存储介质
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
CN111327410B (zh) * 2018-12-17 2021-05-18 华为技术有限公司 一种用于载波聚合***的通信方法、终端及网络设备
WO2020220998A1 (zh) * 2019-04-30 2020-11-05 大唐移动通信设备有限公司 混合自动重传请求反馈处理方法、装置及设备
US10892818B2 (en) * 2019-05-07 2021-01-12 Contec Co., Ltd. System, apparatus and method for managing satellite operation service
CN113572585B (zh) * 2020-04-29 2022-11-08 大唐移动通信设备有限公司 一种反馈码本、反馈信息的确定方法、装置、设备及介质
WO2022109782A1 (zh) * 2020-11-24 2022-06-02 Oppo广东移动通信有限公司 传输方法、发送端设备和接收端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400140A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 一种降低上行调度控制信令开销的方法及装置
CN101409582A (zh) * 2007-10-09 2009-04-15 大唐移动通信设备有限公司 一种降低上行调度控制信令开销的方法及装置
CN102638333A (zh) * 2012-03-22 2012-08-15 电信科学技术研究院 一种上行数据的调度方法及装置
CN103378961A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种数据传输方法和装置
US20150043488A1 (en) * 2013-08-09 2015-02-12 Broadcom Corporation Method and Apparatus for a User Equipment
CN104396173A (zh) * 2012-06-22 2015-03-04 Lg电子株式会社 用于设备对设备通信的调度方法及其装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752862B (zh) * 2011-04-20 2015-09-09 华为技术有限公司 上下行数据业务传输的方法、基站及用户设备
KR20130075620A (ko) 2011-12-27 2013-07-05 주식회사 팬택 인터밴드 tdd 전송 방식에서 pusch/phich 스케쥴링 타이밍을 제공하는 방법 및 장치
WO2013162321A2 (ko) * 2012-04-26 2013-10-31 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
US20150092637A1 (en) * 2012-05-25 2015-04-02 Lg Electronics Inc. Signal transceiving method and apparatus for same
WO2013191360A1 (ko) * 2012-06-20 2013-12-27 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
US10334569B2 (en) * 2013-06-05 2019-06-25 Texas Instruments Incorporated NLOS wireless backhaul downlink communication
JP6362118B2 (ja) * 2014-05-15 2018-07-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド データ送信装置及び方法
WO2016064039A1 (ko) * 2014-10-21 2016-04-28 엘지전자(주) 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
JP6658729B2 (ja) * 2015-03-06 2020-03-04 日本電気株式会社 無線局、無線端末装置、及びこれらの方法
EP3833096A1 (en) * 2015-07-17 2021-06-09 Ntt Docomo, Inc. User terminal, radio base station, and radio communication method
US9877321B2 (en) * 2015-12-23 2018-01-23 Nokia Solutions And Networks Oy Slot allocation in time division duplex systems
US10117188B2 (en) * 2016-04-01 2018-10-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400140A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 一种降低上行调度控制信令开销的方法及装置
CN101409582A (zh) * 2007-10-09 2009-04-15 大唐移动通信设备有限公司 一种降低上行调度控制信令开销的方法及装置
CN102638333A (zh) * 2012-03-22 2012-08-15 电信科学技术研究院 一种上行数据的调度方法及装置
CN103378961A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种数据传输方法和装置
CN104396173A (zh) * 2012-06-22 2015-03-04 Lg电子株式会社 用于设备对设备通信的调度方法及其装置
US20150043488A1 (en) * 2013-08-09 2015-02-12 Broadcom Corporation Method and Apparatus for a User Equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3331305A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018417494B2 (en) * 2018-04-04 2021-12-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, and related product
US11304202B2 (en) 2018-04-04 2022-04-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, and related product

Also Published As

Publication number Publication date
CN106413106B (zh) 2019-09-17
US10334574B2 (en) 2019-06-25
CN106413106A (zh) 2017-02-15
JP2018525914A (ja) 2018-09-06
EP3331305A4 (en) 2018-07-18
EP3331305B1 (en) 2020-10-14
KR20180034630A (ko) 2018-04-04
US20180220411A1 (en) 2018-08-02
EP3331305A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
US20220046675A1 (en) Identifying a resource for transmitting a first uplink channel
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
TWI517625B (zh) 用於非期望下行次圖框之混合式自動重送請求-確認(harq-ack)處 理技術
EP4117214A1 (en) Method and user equipment (ue) for managing harq procedure for multiple numerologies
WO2017024539A1 (zh) 上行控制信息传输方法和装置
US20160337110A1 (en) Resource management method and device and computer storage medium
WO2014101233A1 (zh) 信息传输方法和装置
WO2012139465A1 (zh) 一种调度多子帧传输的方法及装置
US11405939B2 (en) Scheduling request indication
CN101931514B (zh) 一种混合自动重传请求中的通信方法、***和设备
KR102540856B1 (ko) 무선 통신 시스템에서의 데이터 확인응답
US20170164231A1 (en) Data transmission method and base station
JP2020523841A (ja) フィードバック情報の送受信方法、装置及び通信システム
WO2017132811A1 (zh) 上行信息传输的方法、装置
JP2019510399A (ja) フィードバック情報を送信するための方法および装置
WO2015027798A1 (zh) 一种tdd-fdd联合***中的传输方法和装置
TW201536085A (zh) 實體上行鏈路控制通道資源分配及使用
US11991702B2 (en) Resource reservation
JP2016518749A (ja) 限定されたharqプロセスを伴う分散型ネットワークトポロジにおけるより多くの伝送機会を使用するための方法および装置
TW201519680A (zh) 用於傳輸控制資訊的方法和設備
WO2017206740A1 (zh) 一种子帧类型通知、确定方法及装置
US20230283413A1 (en) Data and feedback relaying
CN104349475A (zh) 一种tdd-fdd跨载波调度的方法和装置
WO2018059370A1 (zh) 传输方法、移动通信终端及网络侧设备
WO2017008747A1 (zh) 一种下行数据的反馈信息的发送及接收处理方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15747750

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018504701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187005955

Country of ref document: KR

Kind code of ref document: A