WO2017013912A1 - 振れ補正装置 - Google Patents

振れ補正装置 Download PDF

Info

Publication number
WO2017013912A1
WO2017013912A1 PCT/JP2016/062386 JP2016062386W WO2017013912A1 WO 2017013912 A1 WO2017013912 A1 WO 2017013912A1 JP 2016062386 W JP2016062386 W JP 2016062386W WO 2017013912 A1 WO2017013912 A1 WO 2017013912A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive coils
drive
shake correction
coils
unit
Prior art date
Application number
PCT/JP2016/062386
Other languages
English (en)
French (fr)
Inventor
洋介 井上
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP16827476.9A priority Critical patent/EP3327499A4/en
Priority to CN201680002037.5A priority patent/CN106662791A/zh
Priority to US15/363,845 priority patent/US10502973B2/en
Publication of WO2017013912A1 publication Critical patent/WO2017013912A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the present invention relates to a shake correction apparatus.
  • the shake correction device is a device that corrects the influence of camera shake and the like in the image pickup device by moving a movable part on which a lens or an image pickup device is mounted.
  • Japanese Patent Application Laid-Open No. 2010-197519 discloses a movable part having three magnets arranged around a lens and a fixed part having three drive coils corresponding to each magnet.
  • a shake correction device (optical correction unit) having three driving units formed from the above has been proposed.
  • each of the three drive coils is arranged at 120 ° intervals so that the long side faces the tangential direction of the circumference centered on the optical axis.
  • each of the three Hall elements may be better to arrange each of the three Hall elements outside the windings constituting the drive coil in relation to other members.
  • the Hall element is arranged outside the winding, it is possible to detect the position of the movable part by providing a position detecting magnet corresponding to the Hall element.
  • the Hall element may generate a false signal by receiving both the magnetic field from the position detection magnet and the magnetic field generated from the drive coil.
  • the present invention has been made in view of the above circumstances, and provides a shake correction device that can accurately control the position of a movable portion even when a Hall element is disposed outside a drive coil winding. Objective.
  • a shake correction apparatus is a fixed device in which one of three drive coils and three magnets arranged to face the three drive coils is arranged.
  • a movable portion that moves relative to the fixed portion, the fixed portion, and the movable portion, wherein the movable portion moves with respect to the fixed portion.
  • At least three detection units arranged at positions outside the windings that are arranged on the side where the three drive coils of the unit are arranged, and the 3 Based on outputs from the three detection units, a movement amount calculation unit that calculates a movement amount and a movement direction of the action point of the three drive coils, and based on the output from the movement amount calculation unit, the three drive coils Control the current flowing through Comprising a drive control unit for moving the movable portion Te.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a mechanical configuration of an example of a lens shake correction unit.
  • FIG. 3A is a diagram illustrating a mechanical configuration of a fixing portion of an example of the body shake correction unit.
  • FIG. 3B is a diagram illustrating a mechanical configuration of a movable portion as an example of the body shake correction unit.
  • FIG. 4 is a block diagram relating to position control of the movable part in the imaging apparatus.
  • FIG. 5 is a diagram illustrating an example of the arrangement of drive coils and Hall elements. 6 is the same as FIG.
  • FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment of the present invention.
  • An imaging apparatus 1 illustrated in FIG. 1 includes a lens unit 10 and a camera body 20.
  • the lens unit 10 is attached to the camera body 20 via a mount (not shown) provided on the camera body 20.
  • the lens unit 10 and the camera body 20 are connected to be able to communicate with each other. Thereby, the lens unit 10 and the camera body 20 operate in cooperation.
  • the imaging device 1 is not necessarily an interchangeable lens type imaging device.
  • the imaging device 1 may be a lens-integrated imaging device.
  • the lens unit 10 includes a photographing optical system 12, a control circuit 16, and a camera shake detection unit 18.
  • the photographic optical system 12 includes, for example, a plurality of lenses and a diaphragm, and causes a light beam from a subject (not shown) to enter the image sensor 2211 of the body camera shake correction unit 22 of the camera body 20.
  • the imaging optical system 12 in FIG. 1 is configured by a plurality of lenses, but the imaging optical system 12 may be configured by a single lens.
  • the photographing optical system 12 may have a focus lens or may be configured as a zoom lens. In these cases, at least a part of the lenses of the photographing optical system 12 is configured to be movable along the Z direction that is the direction along the optical axis O.
  • the photographing optical system 12 of the present embodiment has a lens camera shake correction unit 14.
  • the lens camera shake correction unit 14 includes a movable portion 141 having a lens 1411 as an optical element constituting the photographing optical system 12 and a fixed portion 142 fixed to the main body of the lens unit 10.
  • This lens shake correction unit 14 moves the movable portion 141 by a VCM (voice coil motor) formed by the movable portion 141 and the fixed portion 142.
  • VCM voice coil motor
  • the control circuit 16 is composed of, for example, a CPU or an ASIC, and controls various operations of the lens unit 10 according to the control of the control circuit 24.
  • the control circuit 16 controls the lens camera shake correction unit 14.
  • the camera shake detection unit 18 is a gyro sensor, for example, and detects a shake generated in the lens unit 10.
  • the camera body 20 includes a body camera shake correction unit 22, a control circuit 24, and a camera shake detection unit 26.
  • the body camera shake correction unit 22 includes a movable part 221 provided with an image sensor 2211 and a fixed part 222 fixed to the main body of the camera body 20.
  • the imaging element 2211 generates a captured image related to the subject by imaging a subject (not shown). Further, the body shake correction unit 22 moves the movable part 221 by a VCM (voice coil motor) formed by the movable part 221 and the fixed part 222.
  • VCM voice coil motor
  • the control circuit 24 is composed of, for example, a CPU or an ASIC, and controls various operations of the camera body 20.
  • the control circuit 24 controls the body camera shake correction unit 22.
  • the camera shake detection unit 26 is a gyro sensor, for example, and detects a shake generated in the camera body 20.
  • FIG. 2 is a diagram illustrating a mechanical configuration of an example of the lens shake correction unit 14.
  • FIG. 2A shows the configuration of the movable portion 141
  • FIG. 2B shows the configuration of the fixed portion 142.
  • the movable portion 141 is a substantially annular member, and holds the lens 1411 at the inner peripheral portion thereof.
  • Drive coils 1412a, 1412b, and 1412c as three drive coils are disposed on the outer peripheral portion of the movable portion 141.
  • the three drive coils 1412a, 1412b, and 1412c are configured by a substantially rectangular winding, and the long side direction faces the center OA of the lens 1411 and the center OA of the lens 1411 is the center. Are arranged at equal intervals of 120 degrees.
  • the action points of the driving force in the three driving coils 1412a, 1412b, and 1412c (for example, the gravity center positions of the driving coils 1412a, 1412b, and 1412c) A, B, and C are arranged on the same circumference.
  • Three imaginary lines LA, LB, and LC that pass through the action points A, B, and C of the drive coils 1412a, 1412b, and 1412c and are parallel to the long sides of the drive coils 1412a, 1412b, and 1412c are the center OA of the lens 1411. Cross at.
  • Hall elements 1413a, 1413b, and 1413c serving as three detection units are disposed on the outer peripheral portion of the movable unit 141.
  • these three Hall elements 1413a, 1413b, and 1413c are the short sides on the inner peripheral side of the movable portion 141 among the short sides of the drive coils 1412a, 1412b, and 1412c (the leading ends of the drive coils 1412a, 1412b, and 1412c).
  • Imaginary circle C1 that is in contact with the drive coil 1412a, 1412b, and 1412c, and a virtual circle that is in contact with the short side on the outer peripheral side of the movable portion 141 (referred to as the rear end of the drive coils 1412a, 1412b, and 1412c).
  • C2 and the three drive coils 1412a, 1412b, and 1412c are arranged in a region formed by the long sides.
  • each of the three Hall elements 1413a, 1413b, 1413c passes through the action points A, B, C of the drive coils 1412a, 1412b, 1412c, and is perpendicular to the long sides of the drive coils 1412a, 1412b, 1412c.
  • the vertical virtual lines LAA, LBB, and LCC are vertical bisectors of the virtual lines LA, LB, and LC.
  • the Hall elements 1413a, 1413b, and 1413c are arranged outside the windings that constitute the drive coils 1412a, 1412b, and 1412c.
  • the Hall elements 1413a, 1413b, and 1413c are arranged in the air core portions of the drive coils 1412a, 1412b, and 1412c. This is to prevent the drive coils 1412a, 1412b, and 1412c from becoming large.
  • the fixed portion 142 is a substantially annular member corresponding to the movable portion 141, and has an opening 1421 having a diameter equivalent to that of the lens 1411 on the inner peripheral portion thereof.
  • Three permanent magnets 1422a, 1422b, and 1422c are disposed at positions corresponding to the drive coils 1412a, 1412b, and 1412c in the fixed portion 142.
  • three position detection permanent magnets 1423a, 1423b, and 1423c are disposed at positions corresponding to the Hall elements 1413a, 1413b, and 1413c in the fixed portion 142.
  • the voice coil motor (VCM) as three drive parts is formed by the combination of the drive coils 1412a, 1412b, 1412c and the permanent magnets 1422a, 1422b, 1422c.
  • the movable portion 141 moves according to the driving force generated in the drive coils 1412a, 1412b, and 1412c, the magnitude of the magnetic field received by the Hall elements 1413a, 1413b, and 1413c changes.
  • the relative position of the movable part 141 with respect to the fixed part 142 is detected from the change in the magnetic field.
  • the position of the movable portion 141 is controlled by controlling the magnitude of the current flowing through the drive coils 1412a, 1412b, and 1412c according to this position.
  • three springs 1414a, 1414b, 1414c are attached to the movable portion 141, and the movable portion 141 is pressurized against the fixed portion 142 by these springs 1414a, 1414b, 1414c.
  • balls 1415a, 1415b, and 1415c are interposed between the movable portion 141 and the fixed portion 142. Due to the action of these balls 1415a, 1415b, and 1415c, the movable portion 141 moves smoothly in a plane orthogonal to the optical axis O of the lens 1411 while being pressurized by the springs 1414a, 1414b, and 1414c.
  • FIG. 3 is a diagram illustrating a mechanical configuration of an example of the body camera shake correction unit 22.
  • FIG. 3A shows the configuration of the fixed portion 222
  • FIG. 3B shows the configuration of the movable portion 221.
  • FIG. 3B is a diagram illustrating a configuration of the movable portion 221 on a surface where the imaging element 2211 is not mounted.
  • the fixing portion 222 is a substantially rectangular member.
  • Driving coils 2222a, 2222b, and 2222c as three driving coils are arranged on the fixed portion 222.
  • these three drive coils 2222a, 2222b, and 2222c are constituted by a substantially rectangular winding, and the long side direction faces the center OB, and 120 degrees around the center OB. It is arranged at the position of the interval.
  • the center OB is a position on the fixed portion 222 in the vicinity of the optical axis O.
  • the action points of the driving force in the three driving coils 2222a, 2222b, and 2222c (for example, the positions of the centers of gravity of the driving coils 2222a, 2222b, and 2222c) A, B, and C are arranged on the same circumference. Further, three virtual lines LA, LB, and LC that pass through the action points A, B, and C of the drive coils 2222a, 2222b, and 2222c and are parallel to the long sides of the drive coils 2222a, 2222b, and 2222c cross at the center OB. .
  • three hall elements 2223a, 2223b, and 2223c are arranged as detection units.
  • these three Hall elements 2223a, 2223b, and 2223c are the short sides on the inner peripheral side of the fixed portion 222 among the short sides of the drive coils 2222a, 2222b, and 2222c (the tip portions of the drive coils 2222a, 2222b, and 2222c).
  • C2 and the three drive coils 2222a, 2222b, and 2222c are arranged in a region formed by the long sides.
  • each of the three Hall elements 2223a, 2223b, and 2223c passes through the action points A, B, and C of the drive coils 2222a, 2222b, and 2222c, and is perpendicular to the long sides of the drive coils 2222a, 2222b, and 2222c.
  • the hall elements 2223a, 2223b, and 2223c are arranged outside the windings that constitute the drive coils 2222a, 2222b, and 2222c.
  • the Hall elements 2223a, 2223b, and 2223c are arranged in the air core portions of the drive coils 2222a, 2222b, and 2222c. This is to prevent the drive coils 2222a, 2222b, and 2222c from becoming large.
  • the movable portion 221 is a substantially rectangular member corresponding to the fixed portion 222 and has an image sensor 2211.
  • Three permanent magnets 2212a, 2212b, and 2212c are arranged at positions corresponding to the drive coils 2222a, 2222b, and 2222c in the movable portion 221.
  • three permanent magnets 2213a, 2213b, and 2213c for position detection are arranged at positions corresponding to the hall elements 2223a, 2223b, and 2223c in the movable portion 221.
  • the voice coil motor (VCM) as three drive parts is formed by the combination of the drive coils 2222a, 2222b, and 2222c and the permanent magnets 2212a, 2212b, and 2212c.
  • the movable portion 221 moves according to the driving force generated in the drive coils 2222a, 2222b, and 2222c, the magnitude of the magnetic field received by the Hall elements 2223a, 2223b, and 2223c changes.
  • the relative position of the movable part 221 with respect to the fixed part 222 is detected from the change in the magnetic field.
  • the position of the movable portion 221 is controlled by controlling the magnitude of the current flowing through the drive coils 2222a, 2222b, and 2222c according to this position.
  • three springs 2214a, 2214b, and 2214c are attached to the movable portion 221, and the movable portion 221 is pressurized against the fixed portion 222 by these springs 2214a, 2214b, and 2214c.
  • balls 2215a, 2215b, and 2215c are interposed between the movable portion 221 and the fixed portion 222. Due to the action of these balls 2215a, 2215b, and 2215c, the movable portion 221 smoothly moves in a plane orthogonal to the optical axis O of the lens 1411 while being pressurized by the springs 2214a, 2214b, and 2214c.
  • FIG. 4 is a block diagram relating to position control of the movable part in the imaging apparatus 1 according to the present embodiment.
  • the configuration of FIG. 4 is provided in each of the control circuit 16 and the control circuit 24.
  • the drive coil 1412a and the drive coil 2222a are combined into the drive coil 31a
  • the drive coil 1412b and the drive coil 2222b are combined into the drive coil 31b
  • the drive coil 1412c and the drive coil 2222c.
  • the driving coil 31c is used.
  • the Hall element 1413a and the Hall element 2223a are collectively referred to as the Hall element 32a
  • the Hall element 1413b and the Hall element 2223b are collectively referred to as the Hall element 32b
  • the Hall element 1413c and the Hall element 2223c are collectively referred to as the Hall element 32c.
  • the position detecting permanent magnet 1423a and the permanent magnet 2213a are combined into a permanent magnet 33a
  • the position detecting permanent magnet 1423b and the permanent magnet 2213b are combined into a permanent magnet 33b
  • the position detecting permanent magnet 1423c and a permanent magnet. 2213c is collectively referred to as a permanent magnet 33c.
  • an XY coordinate system is defined as shown in FIG. 5 with the intersection point OC of the virtual lines LA, LB, LC extending from the action points A, B, C of the drive coils 31a, 31b, 31c as the origin.
  • the rotation amount of the X axis and the Y axis is ⁇ .
  • the directions in which the driving forces of the drive coils 31a, 31b, and 31c act are the A coordinate direction, the B coordinate direction, and the C coordinate direction, respectively.
  • the detection directions of the Hall elements 32a, 32b, and 32c are the a coordinate direction, the b coordinate direction, and The c coordinate direction is assumed.
  • the positions PA, PB, PC of the action points A, B, C of the drive coils 31a, 31b, 31c and the positions pa, pb, pc of the centers of the Hall elements 32a, 32b, 32c are respectively displayed in polar coordinates as follows: It is expressed in PA: (lAcosAA, lAsinAA) PB: (lBcosAB, lBsinAB) PC: (lCcosAC, lCsinAC) pa: (racos ⁇ a, rasin ⁇ a) pb: (rbcos ⁇ b, rbsin ⁇ b) pc: (rccos ⁇ c, rcsin ⁇ c)
  • lA is the distance between the position PA and the origin OC
  • lB is the distance between the position PB and the origin OC
  • lC is the distance between the position PC and the origin OC.
  • AA is an angle formed by the X axis and the virtual line LA
  • AB is an angle formed by the X axis and the virtual line LB
  • AC is an angle formed by the X axis and the virtual line LC.
  • ra is a distance between the position pa and the origin OC
  • rb is a distance between the position pb and the origin OC
  • rc is a distance between the position pc and the origin OC.
  • ⁇ a is an angle formed by an imaginary line La connecting the X axis, the position pa, and the origin OC
  • ⁇ b is an angle formed by an imaginary line Lb connecting the X axis, the position pb, and the origin OC
  • ⁇ c is This is an angle formed by an imaginary line Lc connecting the X axis, the position pc, and the origin OC.
  • the control circuit has three feedback circuits 30a, 30b, and 30c.
  • the feedback circuit 30a is a feedback circuit for current control of the drive coil 31a.
  • the feedback circuit 30b is a feedback circuit for current control of the drive coil 31b.
  • the feedback circuit 30c is a feedback circuit for current control of the drive coil 31c.
  • These feedback circuits 30a, 30b, and 30c are input with drive target information of the movable part from the drive instruction input part 34.
  • the drive target information includes a target movement amount ⁇ x in the X direction, a target movement amount ⁇ y in the Y direction, and a rotation amount ⁇ . These drive target information is set according to the amount of camera shake detected by the camera shake detector 18 or 26, for example.
  • the feedback circuit 30a includes a drive instruction generation unit 301a, a drive control unit 302a, a drive circuit 303a, an amplifier 304a, an analog / digital (A / D) conversion unit 305a, and a movement amount calculation unit 306a.
  • the feedback circuit 30b includes a drive instruction generation unit 301b, a drive control unit 302b, a drive circuit 303b, an amplifier 304b, an analog / digital (A / D) conversion unit 305b, and a movement amount calculation unit 306b. Yes.
  • the feedback circuit 30c includes a drive instruction generation unit 301c, a drive control unit 302c, a drive circuit 303c, an amplifier 304c, an analog / digital (A / D) conversion unit 305c, and a movement amount calculation unit 306c. Yes.
  • the drive instruction generation unit 301a converts the drive target ( ⁇ x, ⁇ y, ⁇ ) of the movable part input from the drive instruction input unit 34 into a drive target ⁇ PAt with the A coordinate direction as a reference.
  • the drive instruction generation unit 301b converts the drive target ( ⁇ x, ⁇ y, ⁇ ) of the movable part input from the drive instruction input unit 34 into a drive target ⁇ PBt with the B coordinate direction as a reference.
  • the drive instruction generation unit 301c converts the drive target ( ⁇ x, ⁇ y, ⁇ ) of the movable part input from the drive instruction input unit 34 into a drive target ⁇ PCt with the C coordinate direction as a reference.
  • the drive control unit 302a has a digital filter composed of a combination of a plurality of IIR (Infinite Impulse Response) filters, and a drive target and movement amount calculation unit based on the A coordinate direction output from the drive instruction generation unit 301a.
  • the drive current value generated based on the deviation from the current position output from 306a is output to the drive circuit 303a.
  • the drive control unit 302b has a digital filter configured by a combination of a plurality of IIR filters, and is output from the drive target and movement amount calculation unit 306b based on the B coordinate direction output from the drive instruction generation unit 301b.
  • the drive current value generated based on the deviation from the current position is output to the drive circuit 303b.
  • the drive control unit 302c has a digital filter composed of a combination of a plurality of IIR filters, and is output from the drive target and movement amount calculation unit 306c based on the C coordinate direction output from the drive instruction generation unit 301c.
  • the drive current value generated based on the deviation from the current position is output to the drive circuit 303c.
  • These drive current values represent current values that need to flow through the drive coils 31a, 31b, and 31c in order to drive the movable portion to the target position, and are generated by applying a digital filter to the deviation, for example.
  • the drive circuit 303a supplies a current to the drive coil 31a based on the drive current value output from the drive control unit 302a.
  • the drive circuit 303b supplies a current to the drive coil 31b based on the drive current value output from the drive control unit 302b.
  • the drive circuit 303c supplies a current to the drive coil 31c based on the drive current value output from the drive control unit 302c.
  • the amplifier 304a amplifies the first magnetic flux information signal output from the hall element 32a.
  • the amplifier 304b amplifies the first magnetic flux information signal output from the hall element 32b.
  • the amplifier 304c amplifies the first magnetic flux information signal output from the hall element 32c.
  • the amplification factors of the amplifiers 303a, 303b, and 303c are set according to the position detection resolution of the movable part. For example, when high resolution is required, a large amplification factor is set.
  • the first magnetic flux information signal output from the Hall element 32a includes a magnetic flux information signal based on the magnetic flux from the permanent magnet 33a for position detection. Further, the first magnetic flux information signal output from the hall element 32a includes a signal based on the second magnetic flux generated by the current flowing through the drive coil 31a.
  • the second magnetic flux is shown as being generated from a virtual magnetic flux generator 307a corresponding to the drive coil 31a.
  • the Hall element 32a is shown as outputting a first magnetic flux information signal in a state where the second magnetic flux generated by the magnetic flux generator 307a is superimposed on the magnetic flux from the permanent magnet 33a.
  • the Hall element 32b is shown as outputting a first magnetic flux information signal in a state in which the second magnetic flux generated by the magnetic flux generator 307b is superimposed on the magnetic flux from the permanent magnet 33b, and the Hall element 32c. Is shown as outputting the first magnetic flux information signal in a state where the second magnetic flux generated by the magnetic flux generator 307c is superimposed on the magnetic flux from the permanent magnet 33c.
  • the A / D conversion unit 305a converts the first magnetic flux information signal amplified by the amplifier 304a into a digital value.
  • the A / D conversion unit 305b converts the first magnetic flux information signal amplified by the amplifier 304b into a digital value.
  • the A / D conversion unit 305c converts the first magnetic flux information signal amplified by the amplifier 304c into a digital value.
  • the movement amount calculation unit 306a calculates the current position of the movable unit based on the first magnetic flux information signals from the A / D conversion units 305a, 305b, and 305c.
  • the movement amount calculation unit 306b calculates the current position of the movable unit based on the first magnetic flux information signals from the A / D conversion units 305a, 305b, and 305c.
  • the movement amount calculation unit 306c calculates the current position of the movable unit based on the first magnetic flux information signals from the A / D conversion units 305a, 305b, and 305c. Based on these calculated current positions, the drive control units 302a, 302b, and 302c update the drive current value.
  • the drive instruction input unit 34 outputs a drive target. That is, the drive instruction input unit 34 generates a drive target ( ⁇ x, ⁇ y, ⁇ ) so that the movable unit is driven to a position where image blur caused by hand shake or the like is canceled.
  • the drive target ( ⁇ x, ⁇ y, ⁇ ) is a drive target as a whole of the movable part based on the XY coordinates.
  • the drive instruction generation unit 301a converts the drive target ( ⁇ x, ⁇ y, ⁇ ) of the movable part input from the drive instruction input unit 34 into a drive target ⁇ PAt with the A coordinate direction as a reference.
  • the drive instruction generation unit 301b converts the drive target ( ⁇ x, ⁇ y, ⁇ ) of the movable part input from the drive instruction input unit 34 into a drive target ⁇ PBt with the B coordinate direction as a reference.
  • the drive instruction generation unit 301c converts the drive target ( ⁇ x, ⁇ y, ⁇ ) of the movable part input from the drive instruction input unit 34 into a drive target ⁇ PCt with the C coordinate direction as a reference.
  • the drive control unit 302a generates a drive current value based on the deviation between the target position from the drive instruction generation unit 301a and the current position from the movement amount calculation unit 306a, and outputs the generated drive current value to the drive circuit 303a.
  • the drive circuit 303a outputs a current corresponding to the drive current value to the drive coil 31a.
  • the drive control unit 302b generates a drive current value based on the deviation between the target position from the drive instruction generation unit 301b and the current position from the movement amount calculation unit 306b, and outputs the generated drive current value to the drive circuit 303b.
  • the drive circuit 303b outputs a current corresponding to the drive current value to the drive coil 31b.
  • the drive control unit 302c generates a drive current value based on the deviation between the target position from the drive instruction generation unit 301c and the current position from the movement amount calculation unit 306c, and sends the generated drive current value to the drive circuit 303c.
  • the drive circuit 303c outputs a current corresponding to the drive current value to the drive coil 31c.
  • the movable part moves according to the resultant force of the driving force generated in each of these drive coils 31a, 31b, 31c.
  • the Hall element 32a detects the first magnetic flux including the magnetic flux from the permanent magnet 33a and the second magnetic flux accompanying the supply of current to the drive coil 31a.
  • the hall element 32b detects a first magnetic flux including the magnetic flux from the permanent magnet 33b and the second magnetic flux accompanying the supply of current to the drive coil 31b.
  • the hall element 32c detects a first magnetic flux including the magnetic flux from the permanent magnet 33c and the second magnetic flux accompanying the supply of current to the drive coil 31c. If position control of the movable part is performed based on the first magnetic flux as described above, incorrect position control is performed by the amount corresponding to the second magnetic flux.
  • the Hall element is arranged outside the coil to reduce the influence of the second magnetic flux. However, a correction process for detecting the second magnetic flux and removing the influence may be performed.
  • the amplifier 304a When the first magnetic flux information signal is output from the hall element 32a, the amplifier 304a amplifies the first magnetic flux information signal with a predetermined amplification factor.
  • the A / D converter 305a samples the first magnetic flux information signal amplified by the amplifier 304a and converts it into a digital value.
  • the amplifier 304b amplifies the first magnetic flux information signal with a predetermined amplification factor.
  • the A / D converter 305b samples the first magnetic flux information signal amplified by the amplifier 304b and converts it into a digital value.
  • the amplifier 304c amplifies the first magnetic flux information signal with a predetermined amplification factor.
  • the A / D conversion unit 305c samples the first magnetic flux information signal amplified by the amplifier 304c and converts it into a digital value.
  • the movement amount calculation units 306a, 306b, and 306c move the action points A, B, and C of the drive coils 31a, 31b, and 31c. Calculate quantity and direction of movement. This calculation will be described below.
  • the movement amount calculation units 306a, 306b, and 306c calculate the current positions ⁇ pa, ⁇ pb, and ⁇ pc of the hall elements 32a, 32b, and 32c from the first magnetic flux information signal.
  • the movement amount calculation units 306a, 306b, and 306c store a table in which magnetic flux and position are associated with each other.
  • the movement amount calculation units 306a, 306b, and 306c calculate the center positions ⁇ pa, ⁇ pb, and ⁇ pc of the Hall elements 32a, 32b, and 32c with reference to the table from the input first magnetic flux information signal.
  • the movement amount calculation units 306a, 306b, and 306c use the current positions ⁇ pa, ⁇ pb, and ⁇ pc obtained with reference to the positions of the hall elements 32a, 32b, and 32c as the operation points A of the drive coils 31a, 31b, and 31c,
  • the current positions ⁇ PA, ⁇ PB, and ⁇ PC are converted with reference to the positions of B and C. This conversion is performed according to the following (Equation 2).
  • the current output to the drive coil 31a is controlled based on the deviation between the drive target ⁇ PAt and the current position ⁇ PA, and the current output to the drive coil 31b is controlled based on the deviation between the drive target ⁇ PBt and the current position ⁇ PB.
  • the current output to the drive coil 31c is controlled based on the deviation between the drive target ⁇ PCt and the current position ⁇ PC.
  • each of the movement amount calculation units 306a, 306b, and 306c uses the outputs of the three Hall elements 32a, 32b, and 32c to determine the action point of the driving force of the corresponding drive coil. A movement amount and a movement direction are calculated. As a result, even if the operating point of the driving force and the position of the Hall element do not coincide with each other, it is possible to detect the exact position of the movable part by calculating the movement amount at the operating point of the driving force from the Hall element output. Is possible.
  • the drive coils 31a, 31b, 31c and the hall elements 32a, 32b, 32c described above is as long as the hall elements 32a, 32b, 32c are not arranged inside the windings constituting the drive coils 31a, 31b, 31c.
  • the calculation amount in the movement amount calculation units 306a, 306b, and 306c can be further reduced. Thereby, the calculation processing time, memory resources, and power consumption can be further reduced.
  • the present invention has been described above based on the embodiments, but the present invention is not limited to the above-described embodiments, and various modifications and applications are naturally possible within the scope of the present invention.
  • the movable portion in the lens shake correction unit, is provided with the drive coil and the Hall element, and the fixed portion is provided with the permanent magnet.
  • a configuration in which a permanent magnet is provided and a driving coil and a Hall element are provided in the fixed portion may be employed.
  • the movable part is provided with a permanent magnet
  • the fixed part is provided with a drive coil and a hall element.
  • the movable part has a drive coil and a hall element.
  • a configuration may be employed in which a permanent magnet is provided in the fixed portion.
  • the imaging apparatus includes both the lens camera shake correction unit and the body camera shake correction unit, but may include only one of them.
  • the number of Hall elements is three, but the number of Hall elements may be four or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

撮像装置(1)は、駆動コイル(31a、31b、31c)とホール素子(32a、32b、32c)とが配置された固定部と、永久磁石(33a、33b、33c)が配置された可動部とを備える。ホール素子(32a、32b、32c)は、駆動コイル(31a、31b、31c)を構成する巻線の外側に配置されている。移動量演算部(306a、306b、306c)は、ホール素子(32a、32b、32c)からの出力に基づいて、駆動コイル(31a、31b、31c)の作用点の移動量及び移動方向を演算する。駆動制御部(302a、302b、302c)は、移動量演算部(306a、306b、306c)からの出力に基づいて、駆動コイル(31a、31b、31c)に流す電流を制御して可動部を移動させる。

Description

振れ補正装置
 本発明は、振れ補正装置に関する。
 振れ補正装置は、レンズ又は撮像素子が搭載された可動部を移動させることにより、撮像装置における手振れ等の影響を補正する装置である。この振れ補正装置の構成に関し、日本国特開2010-197519号公報においては、レンズの周りに配置された3つの磁石を有する可動部と、各々の磁石と対応した3つの駆動コイルを有する固定部とから形成された3つの駆動部を有する振れ補正装置(光学補正ユニット)が提案されている。日本国特開2010-197519号公報における振れ補正装置では、3つの駆動コイルの各々は、長辺が光軸を中心とする円周の接線方向を向くように120°間隔で配置されている。そして、日本国特開2010-197519号公報における振れ補正装置では、可動部の位置を検出するために、3つのホール素子が駆動コイルを構成する巻線の内側に配置されている。また、日本国特開2006-174588号公報においては、レンズの周りに配置された3つの磁石を有する可動部と、各々の磁石と対応した3つの駆動コイルを有する固定部とから形成された3つの駆動部を有する振れ補正装置が提案されている。日本国特開2006-174588号公報における振れ補正装置も、可動部の位置を検出するために、3つのホール素子が駆動コイルを構成する巻線の内側に配置されている。
 振れ補正装置に3つの駆動部を配置する場合、他の部材との関係上で、3つのホール素子の各々を、駆動コイルを構成する巻線の外側に配置したほうがよい場合がある。ホール素子を巻線の外側に配置した場合には、そのホール素子と対応する位置検出用の磁石を設けることによって可動部の位置を検出することが可能である。しかしながら、この場合、駆動コイルによる駆動力の作用点とホール素子による位置の測定点は離間してしまうので、必ずしもホール素子の出力と可動部の実際の位置とが一致するとは限らない。また、ホール素子は、位置検出用の磁石からの磁界と駆動コイルから発生した磁界との両方の作用を受けることによって偽信号を発生してしまうこともある。
 本発明は、前記の事情に鑑みてなされたもので、駆動コイル巻き線の外側にホール素子を配置した場合であっても、精度よく可動部の位置を制御できる振れ補正装置を提供することを目的とする。
 前記の目的を達成するために、本発明の一態様の振れ補正装置は、3つの駆動コイルと前記3つの駆動コイルに対向して配置される3つの磁石とのうちの一方が配置された固定部と、光学素子及び撮像素子の一方と前記3つの駆動コイル及び前記3つの磁石のうちの他方とが配置されていて、前記固定部に対して移動する可動部と、前記固定部と前記可動部のうちの前記3つの駆動コイルが配置されているほうに配置されていて、前記3つの駆動コイルの各々を構成する巻き線の外側の位置に配置された少なくとも3つの検出部と、前記3つの検出部からの出力に基づいて、前記3つの駆動コイルの作用点の移動量及び移動方向を演算する移動量演算部と、前記移動量演算部からの出力に基づいて、前記3つの駆動コイルに流す電流を制御して前記可動部を移動させる駆動制御部とを具備する。
図1は、本発明の一実施形態に係る撮像装置の概略の構成を示す図である。 図2は、レンズ手振れ補正ユニットの一例のメカ構成を示す図である。 図3Aは、ボディ手振れ補正ユニットの一例の固定部のメカ構成を示す図である。 図3Bは、ボディ手振れ補正ユニットの一例の可動部のメカ構成を示す図である。 図4は、撮像装置における可動部の位置制御に係るブロック図である。 図5は、駆動コイル及びホール素子の配置の一例を示す図である。 図6は、図5において、AA=210°、AB=330°、AC=90°、lA=lB=lC=l、αa=30°、αb=150°、αc=270°、ra=rb=rc=rとなる配置関係の例を示す図である。 図7は、図6において、2r=lとなる配置関係の例を示す図である。
 以下、図面を参照して本発明の実施形態を説明する。図1は、本発明の一実施形態に係る撮像装置の概略の構成を示す図である。図1に示す撮像装置1は、レンズユニット10と、カメラボディ20とを有している。レンズユニット10は、カメラボディ20に設けられた図示しないマウントを介してカメラボディ20に装着される。レンズユニット10がカメラボディ20に装着されることによって、レンズユニット10とカメラボディ20とは通信自在に接続される。これにより、レンズユニット10とカメラボディ20とは協働して動作する。なお、撮像装置1は、必ずしもレンズ交換式の撮像装置でなくて良い。例えば、撮像装置1は、レンズ一体型の撮像装置であっても良い。
 レンズユニット10は、撮影光学系12と、制御回路16と、手振れ検出部18とを有している。撮影光学系12は、例えば複数のレンズ及び絞りを含み、図示しない被写体からの光束をカメラボディ20のボディ手振れ補正ユニット22の撮像素子2211に入射させる。図1の撮影光学系12は、複数のレンズによって構成されているが、撮影光学系12は、1枚のレンズで構成されていても良い。また、撮影光学系12は、フォーカスレンズを有していても良いし、ズームレンズとして構成されていても良い。これらの場合、撮影光学系12の少なくとも一部のレンズは、光軸Oに沿った方向であるZ方向に沿って移動自在に構成されている。
 また、本実施形態の撮影光学系12は、レンズ手振れ補正ユニット14を有している。レンズ手振れ補正ユニット14は、撮影光学系12を構成する光学素子としてのレンズ1411を備えた可動部141と、レンズユニット10の本体に固定された固定部142とを有している。このレンズ手振れ補正ユニット14は、可動部141と固定部142とによって形成されるVCM(ボイスコイルモータ)によって可動部141を移動させる。レンズ手振れ補正ユニット14の構成については後で詳しく説明する。
 制御回路16は、例えばCPUやASICで構成され、制御回路24の制御に従ってレンズユニット10の各種の動作を制御する。例えば、制御回路16は、レンズ手振れ補正ユニット14の制御を行う。
 手振れ検出部18は、例えばジャイロセンサであり、レンズユニット10に発生したぶれを検出する。
 カメラボディ20は、ボディ手振れ補正ユニット22と、制御回路24と、手振れ検出部26とを有している。
 ボディ手振れ補正ユニット22は、撮像素子2211を備えた可動部221と、カメラボディ20の本体に対して固定された固定部222とを有している。撮像素子2211は、図示しない被写体を撮像することによって被写体に係る撮像画像を生成する。また、ボディ手振れ補正ユニット22は、可動部221と固定部222とによって形成されるVCM(ボイスコイルモータ)によって可動部221を移動させる。ボディ手振れ補正ユニット22の構成については後で詳しく説明する。
 制御回路24は、例えばCPUやASICで構成され、カメラボディ20の各種の動作を制御する。例えば、制御回路24は、ボディ手振れ補正ユニット22の制御を行う。
 手振れ検出部26は、例えばジャイロセンサであり、カメラボディ20に発生したぶれを検出する。
 レンズ手振れ補正ユニット14の構成についてさらに説明する。図2は、レンズ手振れ補正ユニット14の一例のメカ構成を示す図である。ここで、図2(a)は可動部141の構成を示し、図2(b)は固定部142の構成を示している。
 図2(a)に示すように、可動部141は、略環状の部材であって、その内周部においてレンズ1411を保持している。この可動部141の外周部には、3つの駆動コイルとしての駆動コイル1412a、1412b、1412cが配置されている。例えば、これらの3つの駆動コイル1412a、1412b、1412cは、略長方形状の巻線によって構成されており、長辺方向がレンズ1411の中心OAを向くように、かつ、レンズ1411の中心OAを中心として120度ずつの等間隔の位置に配置されている。
 このとき、3つの駆動コイル1412a、1412b、1412cにおける駆動力の作用点(例えば、駆動コイル1412a、1412b、1412cの各々の重心位置)A、B、Cは、同一円周上に並ぶ。また、駆動コイル1412a、1412b、1412cの作用点A、B、Cを通り、駆動コイル1412a、1412b、1412cの長辺と平行な3本の仮想線LA、LB、LCは、レンズ1411の中心OAにおいてクロスする。
 また、可動部141の外周部には、3つの検出部としてのホール素子1413a、1413b、1413cが配置されている。例えば、これらの3つのホール素子1413a、1413b、1413cは、駆動コイル1412a、1412b、1412cの短辺のうちの可動部141の内周側の短辺(駆動コイル1412a、1412b、1412cの先端部とする)に接する仮想円C1と、駆動コイル1412a、1412b、1412cの短辺のうちの可動部141の外周側の短辺(駆動コイル1412a、1412b、1412cの後端部とする)に接する仮想円C2と、3つの駆動コイル1412a、1412b、1412cの各々の長辺によって形成される領域内に配置されている。
 このとき、3つのホール素子1413a、1413b、1413cの各々は、駆動コイル1412a、1412b、1412cの作用点A、B、Cを通り、駆動コイル1412a、1412b、1412cの各々の長辺に対して垂直な垂直仮想線LAA、LBB、LCC上に配置される。図2(a)では、垂直仮想線LAA、LBB、LCCは、仮想線LA、LB、LCの垂直2等分線である。
 本実施形態においては、ホール素子1413a、1413b、1413cは、駆動コイル1412a、1412b、1412cを構成する巻線の内側ではなく、外側に配置されている。これは、駆動コイル1412a、1412b、1412cから発生する磁束の影響をなるべく受けないようするため、また、駆動コイル1412a、1412b、1412cの空芯部にホール素子1413a、1413b、1413cを配置する構成とすることによる、駆動コイル1412a、1412b、1412cの大型化を防止するためである。
 図2(b)に示すように、固定部142は、可動部141と対応した略環状の部材であって、その内周部にはレンズ1411と同等の径の開口1421を有している。この固定部142における駆動コイル1412a、1412b、1412cと対応する位置には、3つの永久磁石1422a、1422b、1422cが配置されている。また、固定部142におけるホール素子1413a、1413b、1413cと対応する位置には、3つの位置検出用の永久磁石1423a、1423b、1423cが配置されている。
 可動部141の駆動コイル1412a、1412b、1412cに電流を流すことで、永久磁石1422a、1422b、1422cにおいて発生している磁界との相互作用により、作用点A、B、Cにおいて図の矢印a、b、cで示すような方向の駆動力が発生し、可動部141は、レンズ1411の光軸Oと直交する平面内を滑らかに移動する。このように、本実施形態では、駆動コイル1412a、1412b、1412cと、永久磁石1422a、1422b、1422cとの組み合わせにより、3つの駆動部としてのボイスコイルモータ(VCM)が形成される。また、駆動コイル1412a、1412b、1412cにおいて発生した駆動力に従って可動部141が移動するとき、ホール素子1413a、1413b、1413cが受ける磁界の大きさが変化する。この磁界の変化から可動部141の固定部142に対する相対位置が検出される。この位置に従って駆動コイル1412a、1412b、1412cに流す電流の大きさを制御することにより、可動部141の位置が制御される。
 また、可動部141には、例えば3つのバネ1414a、1414b、1414cが取り付けられており、これらのバネ1414a、1414b、1414cによって可動部141は、固定部142に対して与圧されている。さらに、可動部141と固定部142との間にはボール1415a、1415b、1415cが介在されている。これらのボール1415a、1415b、1415cの作用により、可動部141は、バネ1414a、1414b、1414cによって与圧されつつも、レンズ1411の光軸Oと直交する平面内を滑らかに移動する。
 ボディ手振れ補正ユニット22の構成についてさらに説明する。図3は、ボディ手振れ補正ユニット22の一例のメカ構成を示す図である。ここで、図3Aは固定部222の構成を示し、図3Bは可動部221の構成を示している。ただし、図3Bは、撮像素子2211が搭載されていない面の可動部221の構成を示す図である。
 図3Aに示すように、固定部222は、略矩形の部材である。この固定部222には、3つの駆動コイルとしての駆動コイル2222a、2222b、2222cが配置されている。例えば、これらの3つの駆動コイル2222a、2222b、2222cは、略長方形状の巻線によって構成されており、長辺方向が中心OBを向くように、かつ、中心OBを中心として120度ずつの等間隔の位置に配置されている。中心OBは、光軸O近傍の固定部222上の位置である。
 このとき、3つの駆動コイル2222a、2222b、2222cにおける駆動力の作用点(例えば、駆動コイル2222a、2222b、2222cの各々の重心位置)A、B、Cは、同一円周上に並ぶ。また、駆動コイル2222a、2222b、2222cの作用点A、B、Cを通り、駆動コイル2222a、2222b、2222cの長辺と平行な3本の仮想線LA、LB、LCは、中心OBにおいてクロスする。
 また、固定部222には、3つの検出部としてのホール素子2223a、2223b、2223cが配置されている。例えば、これらの3つのホール素子2223a、2223b、2223cは、駆動コイル2222a、2222b、2222cの短辺のうちの固定部222の内周側の短辺(駆動コイル2222a、2222b、2222cの先端部とする)に接する仮想円C1と、駆動コイル2222a、2222b、2222cの短辺のうちの固定部222の外周側の短辺(駆動コイル2222a、2222b、2222cの後端部とする)に接する仮想円C2と、3つの駆動コイル2222a、2222b、2222cの各々の長辺によって形成される領域内に配置されている。
 このとき、3つのホール素子2223a、2223b、2223cの各々は、駆動コイル2222a、2222b、2222cの作用点A、B、Cを通り、駆動コイル2222a、2222b、2222cの各々の長辺に対して垂直な垂直仮想線LAA、LBB、LCC上に配置される。
 本実施形態においては、ホール素子2223a、2223b、2223cは、駆動コイル2222a、2222b、2222cを構成する巻線の内側ではなく、外側に配置されている。これは、駆動コイル2222a、2222b、2222cから発生する磁束の影響をなるべく受けないようするため、また、駆動コイル2222a、2222b、2222cの空芯部にホール素子2223a、2223b、2223cを配置する構成とすることによる、駆動コイル2222a、2222b、2222cの大型化を防止するためである。
 図3Bに示すように、可動部221は、固定部222と対応した略矩形の部材であって、撮像素子2211を有している。この可動部221における駆動コイル2222a、2222b、2222cと対応する位置には、3つの永久磁石2212a、2212b、2212cが配置されている。また、可動部221におけるホール素子2223a、2223b、2223cと対応する位置には、3つの位置検出用の永久磁石2213a、2213b、2213cが配置されている。固定部222の駆動コイル2222a、2222b、2222cに電流を流すことで、永久磁石2212a、2212b、2212cにおいて発生している磁界との相互作用により、作用点A、B、Cにおいて図の矢印a、b、cで示すような方向の駆動力が発生し、可動部221は、レンズ1411の光軸Oと直交する平面内を滑らかに移動する。このように、本実施形態では、駆動コイル2222a、2222b、2222cと、永久磁石2212a、2212b、2212cとの組み合わせにより、3つの駆動部としてのボイスコイルモータ(VCM)が形成される。また、駆動コイル2222a、2222b、2222cにおいて発生した駆動力に従って可動部221が移動するとき、ホール素子2223a、2223b、2223cが受ける磁界の大きさが変化する。この磁界の変化から可動部221の固定部222に対する相対位置が検出される。この位置に従って駆動コイル2222a、2222b、2222cに流す電流の大きさを制御することにより、可動部221の位置が制御される。
 また、可動部221には、例えば3つのバネ2214a、2214b、2214cが取り付けられており、これらのバネ2214a、2214b、2214cによって可動部221は、固定部222に対して与圧されている。さらに、可動部221と固定部222との間にはボール2215a、2215b、2215cが介在されている。これらのボール2215a、2215b、2215cの作用により、可動部221は、バネ2214a、2214b、2214cによって与圧されつつも、レンズ1411の光軸Oと直交する平面内を滑らかに移動する。
 図4は、本実施形態に係る撮像装置1における可動部の位置制御に係るブロック図である。図4の構成は、制御回路16と制御回路24のそれぞれに設けられている。ここで、レンズ手振れ補正ユニット14とボディ手振れ補正ユニット22とで可動部の位置制御に係るブロック図に相違はない。したがって、以下では両者を特に区別せずに説明する。
 また、以下の説明のために、駆動コイル1412aと駆動コイル2222aとをまとめて駆動コイル31a、駆動コイル1412bと駆動コイル2222bとをまとめて駆動コイル31b、駆動コイル1412cと駆動コイル2222cとをまとめて駆動コイル31cとする。また、ホール素子1413aとホール素子2223aとをまとめてホール素子32a、ホール素子1413bとホール素子2223bとをまとめてホール素子32b、ホール素子1413cとホール素子2223cとをまとめてホール素子32cとする。また、位置検出用の永久磁石1423aと永久磁石2213aとをまとめて永久磁石33a、位置検出用の永久磁石1423bと永久磁石2213bとをまとめて永久磁石33b、位置検出用の永久磁石1423cと永久磁石2213cとをまとめて永久磁石33cとする。
 さらに、駆動コイル31a、31b、31cの作用点A、B、Cから延びる仮想線LA、LB、LCの交点OCを原点として図5に示すようにXY座標系を定義しておく。ここで、X軸及びY軸の回転量をθとする。また、駆動コイル31a、31b、31cの駆動力の働く方向をそれぞれA座標方向、B座標方向、C座標方向とし、ホール素子32a、32b、32cの検出方向をそれぞれa座標方向、b座標方向、c座標方向とする。このとき、駆動コイル31a、31b、31cの作用点A、B、Cの位置PA、PB、PC及びホール素子32a、32b、32cの中心の位置pa、pb、pcは極座標表示でそれぞれ以下のように表される。 
   PA:(lAcosAA,lAsinAA)
   PB:(lBcosAB,lBsinAB)
   PC:(lCcosAC,lCsinAC)
   pa:(racosαa,rasinαa)
   pb:(rbcosαb,rbsinαb)
   pc:(rccosαc,rcsinαc)
ここで、lAは位置PAと原点OCとの距離であり、lBは位置PBと原点OCとの距離であり、lCは位置PCと原点OCとの距離である。また、AAはX軸と仮想線LAとのなす角であり、ABはX軸と仮想線LBとのなす角であり、ACはX軸と仮想線LCとのなす角である。また、raは位置paと原点OCとの距離であり、rbは位置pbと原点OCとの距離であり、rcは位置pcと原点OCとの距離である。また、αaはX軸と位置paと原点OCとを結ぶ仮想線Laとのなす角であり、αbはX軸と位置pbと原点OCとを結ぶ仮想線Lbとのなす角であり、αcはX軸と位置pcと原点OCとを結ぶ仮想線Lcとのなす角である。
 図4に示すように、制御回路は、3つのフィードバック回路30a、30b、30cを有している。フィードバック回路30aは、駆動コイル31aの電流制御のためのフィードバック回路である。また、フィードバック回路30bは、駆動コイル31bの電流制御のためのフィードバック回路である。さらに、フィードバック回路30cは、駆動コイル31cの電流制御のためのフィードバック回路である。これらのフィードバック回路30a、30b、30cには、駆動指示入力部34から可動部の駆動目標の情報が入力される。駆動目標の情報は、目標とするX方向の移動量Δx、目標とするY方向の移動量Δy、回転量Δθを含む。これらの駆動目標の情報は、例えば手振れ検出部18又は26で検出される手振れ量に応じて設定される。
 フィードバック回路30aは、駆動指示生成部301aと、駆動制御部302aと、駆動回路303aと、アンプ304aと、アナログ/デジタル(A/D)変換部305aと、移動量演算部306aとを有している。フィードバック回路30bは、駆動指示生成部301bと、駆動制御部302bと、駆動回路303bと、アンプ304bと、アナログ/デジタル(A/D)変換部305bと、移動量演算部306bとを有している。フィードバック回路30cは、駆動指示生成部301cと、駆動制御部302cと、駆動回路303cと、アンプ304cと、アナログ/デジタル(A/D)変換部305cと、移動量演算部306cとを有している。
 駆動指示生成部301aは、駆動指示入力部34から入力された可動部の駆動目標(Δx,Δy,Δθ)を、A座標方向を基準とした駆動目標ΔPAtに変換する。駆動指示生成部301bは、駆動指示入力部34から入力された可動部の駆動目標(Δx,Δy,Δθ)を、B座標方向を基準とした駆動目標ΔPBtに変換する。駆動指示生成部301cは、駆動指示入力部34から入力された可動部の駆動目標(Δx,Δy,Δθ)を、C座標方向を基準とした駆動目標ΔPCtに変換する。これらの変換は、以下の(式1)に従って行われる。
Figure JPOXMLDOC01-appb-M000001
 駆動制御部302aは、複数のIIR(Infinite Impulse Response)フィルタの組み合わせによって構成されるデジタルフィルタを有し、駆動指示生成部301aから出力されたA座標方向を基準とした駆動目標と移動量演算部306aから出力された現在位置との偏差に基づいて生成した駆動電流値を駆動回路303aに対して出力する。駆動制御部302bは、複数のIIRフィルタの組み合わせによって構成されるデジタルフィルタを有し、駆動指示生成部301bから出力されたB座標方向を基準とした駆動目標と移動量演算部306bから出力された現在位置との偏差に基づいて生成した駆動電流値を駆動回路303bに対して出力する。駆動制御部302cは、複数のIIRフィルタの組み合わせによって構成されるデジタルフィルタを有し、駆動指示生成部301cから出力されたC座標方向を基準とした駆動目標と移動量演算部306cから出力された現在位置との偏差に基づいて生成した駆動電流値を駆動回路303cに対して出力する。これらの駆動電流値は、可動部を目標位置まで駆動するために駆動コイル31a、31b、31cに流す必要のある電流値を表しており、例えば偏差に対してデジタルフィルタを適用することで生成される。
 駆動回路303aは、駆動制御部302aから出力された駆動電流値に基づいて、駆動コイル31aに電流を供給する。駆動回路303bは、駆動制御部302bから出力された駆動電流値に基づいて、駆動コイル31bに電流を供給する。駆動回路303cは、駆動制御部302cから出力された駆動電流値に基づいて、駆動コイル31cに電流を供給する。
 アンプ304aは、ホール素子32aから出力された第1の磁束情報信号を増幅する。アンプ304bは、ホール素子32bから出力された第1の磁束情報信号を増幅する。アンプ304cは、ホール素子32cから出力された第1の磁束情報信号を増幅する。アンプの303a、303b、303cの増幅率は、可動部の位置検出分解能に応じて設定される。例えば、高分解能が必要な場合には、大きな増幅率が設定される。
 ここで、ホール素子32aから出力される第1の磁束情報信号は、位置検出用の永久磁石33aからの磁束に基づく磁束情報信号を含む。さらに、ホール素子32aから出力される第1の磁束情報信号は、駆動コイル31aに電流が流れることによって生じた第2の磁束に基づく信号を含む。図4では、第2の磁束は、駆動コイル31aに対応した仮想的な磁束発生部307aから発生されるものとして示されている。そして、ホール素子32aは、永久磁石33aからの磁束に磁束発生部307aで発生された第2の磁束が重畳された状態の第1の磁束情報信号を出力するものとして示されている。同様に、ホール素子32bは、永久磁石33bからの磁束に磁束発生部307bで発生された第2の磁束が重畳された状態の第1の磁束情報信号を出力するものとして示され、ホール素子32cは、永久磁石33cからの磁束に磁束発生部307cで発生された第2の磁束が重畳された状態の第1の磁束情報信号を出力するものとして示されている。
 A/D変換部305aは、アンプ304aで増幅された第1の磁束情報信号をデジタル値に変換する。A/D変換部305bは、アンプ304bで増幅された第1の磁束情報信号をデジタル値に変換する。A/D変換部305cは、アンプ304cで増幅された第1の磁束情報信号をデジタル値に変換する。
 移動量演算部306aは、A/D変換部305a、305b、305cからの第1の磁束情報信号に基づいて可動部の現在位置を算出する。移動量演算部306bは、A/D変換部305a、305b、305cからの第1の磁束情報信号に基づいて可動部の現在位置を算出する。移動量演算部306cは、A/D変換部305a、305b、305cからの第1の磁束情報信号に基づいて可動部の現在位置を算出する。これらの算出された現在位置に基づいて駆動制御部302a、302b、302cは、駆動電流値を更新する。
 以下、図4で示した撮像装置1の動作を説明する。例えば、手ぶれが発生したときに駆動指示入力部34は、駆動目標を出力する。すなわち、駆動指示入力部34は、手ぶれ等に起因する像ぶれを打ち消す位置に可動部が駆動されるように駆動目標(Δx,Δy,Δθ)を生成する。
 駆動目標(Δx,Δy,Δθ)は、XY座標を基準とした可動部の全体としての駆動目標である。後の演算のため、駆動指示生成部301aは、駆動指示入力部34から入力された可動部の駆動目標(Δx,Δy,Δθ)を、A座標方向を基準とした駆動目標ΔPAtに変換する。駆動指示生成部301bは、駆動指示入力部34から入力された可動部の駆動目標(Δx,Δy,Δθ)を、B座標方向を基準とした駆動目標ΔPBtに変換する。駆動指示生成部301cは、駆動指示入力部34から入力された可動部の駆動目標(Δx,Δy,Δθ)を、C座標方向を基準とした駆動目標ΔPCtに変換する。
 駆動制御部302aは、駆動指示生成部301aからの目標位置と移動量演算部306aからの現在位置との偏差に基づいて駆動電流値を生成し、生成した駆動電流値を駆動回路303aに対して設定する。駆動回路303aは、駆動電流値に対応した電流を駆動コイル31aに出力する。駆動制御部302bは、駆動指示生成部301bからの目標位置と移動量演算部306bからの現在位置との偏差に基づいて駆動電流値を生成し、生成した駆動電流値を駆動回路303bに対して設定する。駆動回路303bは、駆動電流値に対応した電流を駆動コイル31bに出力する。駆動制御部302cは、駆動指示生成部301cからの目標位置と移動量演算部306cからの現在位置との偏差に基づいて駆動電流値を生成し、生成した駆動電流値を駆動回路303cに対して設定する。駆動回路303cは、駆動電流値に対応した電流を駆動コイル31cに出力する。これらの駆動コイル31a、31b、31cの各々で発生した駆動力の合力に従って可動部は移動する。
 可動部が移動すると、ホール素子32aは、永久磁石33aからの磁束と駆動コイル31aへの電流の供給に伴う第2の磁束とを含む第1の磁束を検出する。また、ホール素子32bは、永久磁石33bからの磁束と駆動コイル31bへの電流の供給に伴う第2の磁束とを含む第1の磁束を検出する。また、ホール素子32cは、永久磁石33cからの磁束と駆動コイル31cへの電流の供給に伴う第2の磁束とを含む第1の磁束を検出する。これらのような第1の磁束に基づいて可動部の位置制御がされると、第2の磁束の分だけ誤った位置制御がされてしまうことになる。本実施形態ではコイルの外側にホール素子を配置して第2の磁束の影響を小さくしているが、この第2の磁束を検出しその影響を除く補正処理を行っても良い。
 ホール素子32aから第1の磁束情報信号が出力されると、アンプ304aは、第1の磁束情報信号を所定の増幅率で増幅する。そして、A/D変換部305aは、アンプ304aで増幅された第1の磁束情報信号をサンプリングしてデジタル値に変換する。同様に、アンプ304bは、第1の磁束情報信号を所定の増幅率で増幅する。そして、A/D変換部305bは、アンプ304bで増幅された第1の磁束情報信号をサンプリングしてデジタル値に変換する。また、アンプ304cは、第1の磁束情報信号を所定の増幅率で増幅する。そして、A/D変換部305cは、アンプ304cで増幅された第1の磁束情報信号をサンプリングしてデジタル値に変換する。
 A/D変換部305a、305b、305cにおいて第1の磁束情報信号が取り込まれると、移動量演算部306a、306b、306cは、駆動コイル31a、31b、31cの作用点A、B、Cの移動量及び移動方向を演算する。以下この演算について説明する。
 まず、移動量演算部306a、306b、306cは、第1の磁束情報信号からそれぞれのホール素子32a、32b、32cの現在位置Δpa、Δpb、Δpcを算出する。例えば、移動量演算部306a、306b、306cには、磁束と位置とを対応付けたテーブルが記憶されている。移動量演算部306a、306b、306cは、入力された第1の磁束情報信号からテーブルを参照してホール素子32a、32b、32cの中心位置Δpa、Δpb、Δpcを算出する。
 次に、移動量演算部306a、306b、306cは、ホール素子32a、32b、32cの位置を基準として得られた現在位置Δpa、Δpb、Δpcを、駆動コイル31a、31b、31cの作用点A、B、Cの位置を基準とした現在位置ΔPA、ΔPB、ΔPCに変換する。この変換は以下の(式2)に従って行われる。
Figure JPOXMLDOC01-appb-M000002
 駆動目標ΔPAtと現在位置ΔPAとの偏差に基づいて駆動コイル31aに出力される電流が制御され、駆動目標ΔPBtと現在位置ΔPBとの偏差に基づいて駆動コイル31bに出力される電流が制御され、駆動目標ΔPCtと現在位置ΔPCとの偏差に基づいて駆動コイル31cに出力される電流が制御される。
 以上説明したように本実施形態によれば、移動量演算部306a、306b、306cの各々において、3つのホール素子32a、32b、32cの出力を用いて対応する駆動コイルの駆動力の作用点の移動量及び移動方向が算出される。これにより、駆動力の作用点とホール素子の位置が一致していなくても、ホール素子出力から駆動力の作用点での移動量を算出することにより正確な可動部の位置を検出することが可能である。
 [変形例] 
 以下、本実施形態の変形例を説明する。前述した駆動コイル31a、31b、31c及びホール素子32a、32b、32cの配置は、駆動コイル31a、31b、31cを構成する巻線の内側にホール素子32a、32b、32cが配置されない限りにおいては、特に限定されない。しかしながら、図5において、AA=210°、AB=330°、AC=90°、かつ、lA=lB=lC=lとなるように駆動コイル31a、31b、31cが配置され、αa=30°、αb=150°、αc=270°、かつ、ra=rb=rc=rとなるようにホール素子32a、32b、32cが配置されているとき、すなわち、図6のような配置関係(図2の配置関係と同じ)のときには、(式2)は、以下の(式3)のように簡略化される。 
Figure JPOXMLDOC01-appb-M000003
 (式3)の演算によって現在位置が求められることにより、移動量演算部306a、306b、306cにおける計算量の軽減が図られる。これにより、計算処理時間、メモリリソース、消費電力の削減が図られる。
 さらに、図6において、2r=lとなるように駆動コイル31a、31b、31cを構成する巻線の内側にホール素子32a、32b、32cが配置されているとき、すなわち図2及び図3で示したような構成であり、図7のような配置関係(図3の配置関係と同じ)のときには、(式3)は、以下の(式4)のように簡略化される。 
Figure JPOXMLDOC01-appb-M000004
 (式4)の演算によって現在位置が求められることにより、移動量演算部306a、306b、306cにおけるさらなる計算量の軽減が図られる。これにより、計算処理時間、メモリリソース、消費電力のさらなる削減が図られる。
 以上実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。例えば、前述した実施形態において、レンズ手振れ補正ユニットにおいては、可動部に駆動コイルとホール素子が設けられ、固定部に永久磁石が設けられているが、レンズ手振れ補正ユニット14の構成として、可動部に永久磁石が設けられ、固定部に駆動コイルとホール素子が設けられる構成が採用されてもよい。また、ボディ手振れ補正ユニットにおいては、可動部に永久磁石が設けられ、固定部に駆動コイルとホール素子が設けられているが、ボディ手振れ補正ユニットの構成として、可動部に駆動コイルとホール素子が設けられ固定部に永久磁石が設けられる構成が採用されてもよい。
 また、本実施形態においては、撮像装置は、レンズ手振れ補正ユニットとボディ手振れ補正ユニットの両方を有しているが、何れか一方のみを有していてもよい。
 また、本実施形態においては、ホール素子の数は3つであるが、ホール素子の数は4つ以上であってもよい。

Claims (8)

  1.  3つの駆動コイルと前記3つの駆動コイルに対向して配置される3つの磁石とのうちの一方が配置された固定部と、
     光学素子及び撮像素子の一方と前記3つの駆動コイル及び前記3つの磁石のうちの他方とが配置されていて、前記固定部に対して移動する可動部と、
     前記固定部と前記可動部のうちの前記3つの駆動コイルが配置されているほうに配置されていて、前記3つの駆動コイルの各々を構成する巻き線の外側の位置に配置された少なくとも3つの検出部と、
     前記3つの検出部からの出力に基づいて、前記3つの駆動コイルの作用点の移動量及び移動方向を演算する移動量演算部と、
     前記移動量演算部からの出力に基づいて、前記3つの駆動コイルに流す電流を制御して前記可動部を移動させる駆動制御部と、
     を具備する振れ補正装置。
  2.  前記3つの駆動コイルは、各々の作用点が円周上に位置するように配置されている請求項1に記載の振れ補正装置。
  3.  前記3つの駆動コイルは、前記3つの駆動コイルの各々の作用点を通り、かつ、前記3つの駆動コイルの各々の長辺に対して平行な仮想線がクロスするように配置されている請求項2に記載の振れ補正装置。
  4.  前記3つの駆動コイルは、前記仮想線が120度ずつ等間隔となるように、かつ、前記3つの駆動コイルの各々の作用点を通り、前記3つの駆動コイルの各々の長辺に対して垂直な垂直仮想線上に配置されている請求項3に記載の振れ補正装置。
  5.  前記3つの検出部の各々は、前記3つの駆動コイルの各々の先端部を通る第1の仮想円と前記3つの駆動コイルの各々の後端部を通る第2の仮想円と前記3つの駆動コイルのうちの2つの外周とによって囲まれる領域に配置されている請求項1に記載の振れ補正装置。
  6.  前記3つの検出部は、前記3つの駆動コイルの間に1つずつ配置されている請求項1に記載の振れ補正装置。
  7.  前記3つの検出部の各々は、前記3つの駆動コイルの各々の作用点を通り、前記3つの駆動コイルの各々の長辺に対して垂直な垂直仮想線上に配置されている請求項1に記載の振れ補正装置。
  8.  前記3つの検出部は、正三角形を形成するように配置されている請求項6又は7記載の振れ補正装置。
PCT/JP2016/062386 2015-07-17 2016-04-19 振れ補正装置 WO2017013912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16827476.9A EP3327499A4 (en) 2015-07-17 2016-04-19 DEVICE FOR CORRECTING VIBRATIONS
CN201680002037.5A CN106662791A (zh) 2015-07-17 2016-04-19 抖动校正装置
US15/363,845 US10502973B2 (en) 2015-07-17 2016-11-29 Shake correction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015142685A JP6611498B2 (ja) 2015-07-17 2015-07-17 振れ補正装置
JP2015-142685 2015-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/363,845 Continuation US10502973B2 (en) 2015-07-17 2016-11-29 Shake correction device

Publications (1)

Publication Number Publication Date
WO2017013912A1 true WO2017013912A1 (ja) 2017-01-26

Family

ID=57834243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062386 WO2017013912A1 (ja) 2015-07-17 2016-04-19 振れ補正装置

Country Status (5)

Country Link
US (1) US10502973B2 (ja)
EP (1) EP3327499A4 (ja)
JP (1) JP6611498B2 (ja)
CN (1) CN106662791A (ja)
WO (1) WO2017013912A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728122B2 (ja) * 2017-11-20 2020-07-22 株式会社タムロン アクチュエータ、及びそれを備えたレンズユニット、カメラ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240736A (ja) * 2006-03-07 2007-09-20 Nikon Corp ブレ補正装置及びカメラ
JP2009092888A (ja) * 2007-10-05 2009-04-30 Nikon Corp 光学機器
JP2013207441A (ja) * 2012-03-28 2013-10-07 Olympus Corp 可動部材制御装置及びそれを備えた撮像装置
JP2014056145A (ja) * 2012-09-13 2014-03-27 Tamron Co Ltd 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2015121637A (ja) * 2013-12-24 2015-07-02 ピーエス特機株式会社 手振れ補正ユニット
JP2016109889A (ja) * 2014-12-08 2016-06-20 株式会社シグマ 手振れ補正ユニット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133990B2 (ja) * 2004-10-01 2008-08-13 株式会社タムロン アクチュエータ及びそれを備えたレンズユニット及びカメラ
JP3952207B2 (ja) 2004-12-15 2007-08-01 株式会社タムロン アクチュエータ及びそれを備えたレンズユニット及びカメラ
JP2008122532A (ja) * 2006-11-09 2008-05-29 Sony Corp 像ぶれ補正装置、レンズ鏡筒及び撮像装置
JP5266091B2 (ja) 2009-02-24 2013-08-21 株式会社シグマ 光学補正ユニット、レンズ鏡筒及び撮像装置
JP2011169715A (ja) * 2010-02-18 2011-09-01 Panasonic Corp 位置検出機構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240736A (ja) * 2006-03-07 2007-09-20 Nikon Corp ブレ補正装置及びカメラ
JP2009092888A (ja) * 2007-10-05 2009-04-30 Nikon Corp 光学機器
JP2013207441A (ja) * 2012-03-28 2013-10-07 Olympus Corp 可動部材制御装置及びそれを備えた撮像装置
JP2014056145A (ja) * 2012-09-13 2014-03-27 Tamron Co Ltd 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2015121637A (ja) * 2013-12-24 2015-07-02 ピーエス特機株式会社 手振れ補正ユニット
JP2016109889A (ja) * 2014-12-08 2016-06-20 株式会社シグマ 手振れ補正ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327499A4 *

Also Published As

Publication number Publication date
EP3327499A4 (en) 2019-03-20
CN106662791A (zh) 2017-05-10
JP2017026696A (ja) 2017-02-02
US10502973B2 (en) 2019-12-10
EP3327499A1 (en) 2018-05-30
US20170075132A1 (en) 2017-03-16
JP6611498B2 (ja) 2019-11-27

Similar Documents

Publication Publication Date Title
US8090248B2 (en) Anti-vibration actuator and lens unit/camera equipped therewith
JP3952207B2 (ja) アクチュエータ及びそれを備えたレンズユニット及びカメラ
JP4606105B2 (ja) 像ブレ補正装置
CN1755507B (zh) 致动器、和具有该致动器的镜头单元及照相机
JP5463583B2 (ja) 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP5109450B2 (ja) ブレ補正装置及び光学機器
US8896711B2 (en) Anti-vibration actuator and lens unit and camera furnished with same
US7302172B2 (en) Anti-shake apparatus
US20070127904A1 (en) Parallel moving device, actuator, lens unit, and camera
JP2007156063A (ja) 平行移動装置およびこれを備えたアクチュエータ、レンズユニットおよびカメラ
JP2008233525A (ja) アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2015088956A (ja) 撮影装置及びその制御方法
JP2011180519A (ja) 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2008209435A (ja) ブレ補正装置及び光学装置
JP2007086808A (ja) アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP5884242B2 (ja) アクチュエータ、レンズユニット、及びカメラ
WO2017013912A1 (ja) 振れ補正装置
JP6268749B2 (ja) 撮影装置
JP2019057868A (ja) アクチュエータ、及びそれを備えたレンズユニット、撮像装置、及び空中移動体
JP2014089357A (ja) 手振れ補正装置
JP2021071574A (ja) 防振装置及び方法、及び撮像装置
JP4893954B2 (ja) 像振れ防止用アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2015050643A (ja) 撮影装置及びその調整制御方法
JP2010271584A (ja) 振れ補正装置を有する光学機器
JP2010266739A (ja) 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016827476

Country of ref document: EP