WO2017006878A1 - Resin-coated metal plate, resin composition, fin material for heat exchanger, and air-conditioner - Google Patents

Resin-coated metal plate, resin composition, fin material for heat exchanger, and air-conditioner Download PDF

Info

Publication number
WO2017006878A1
WO2017006878A1 PCT/JP2016/069696 JP2016069696W WO2017006878A1 WO 2017006878 A1 WO2017006878 A1 WO 2017006878A1 JP 2016069696 W JP2016069696 W JP 2016069696W WO 2017006878 A1 WO2017006878 A1 WO 2017006878A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
metal plate
following formula
represented
Prior art date
Application number
PCT/JP2016/069696
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 白石
角王 飯沼
英一郎 吉川
まどか 切石
美佳 西田
Original Assignee
株式会社神戸製鋼所
学校法人近畿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016097035A external-priority patent/JP6717659B2/en
Application filed by 株式会社神戸製鋼所, 学校法人近畿大学 filed Critical 株式会社神戸製鋼所
Priority to CN201680037912.3A priority Critical patent/CN107709001B/en
Publication of WO2017006878A1 publication Critical patent/WO2017006878A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Definitions

  • the present invention relates to a resin-coated metal plate, a resin composition, a fin material for a heat exchanger, and an air conditioner.
  • a metal plate is widely used as a fin in a heat exchanger of an air conditioner.
  • the metal plate fin has a disadvantage that the condensed water adheres to the fin during heating operation and freezes, so that ice or frost is filled between the plurality of fins, and the heat exchange performance of the heat exchanger is lowered.
  • it is necessary to perform a defrost operation, and there also exists a problem that the energy concerning a heat exchanger increases.
  • a technique that uses an organic compound that can provide a film with an appropriate hardness and that reduces odor.
  • examples of such techniques include those containing polyvinyl alcohol and polyvinylpyrrolidone (see JP-A-5-302042), those containing a zwitterionic group-containing polymer having a betaine structure (see JP-A-2008-308658), Examples thereof include those containing an anionic compound and a cationic compound (see JP 2011-89112 A).
  • the resin containing polyvinyl alcohol and polyvinyl pyrrolidone has a disadvantage that the deterioration with time of the resin is large. In particular, when heating and cooling of the fins are repeated by the defrosting operation of the air conditioner, the resin deteriorates, and frost formation and icing are likely to increase. Furthermore, the resin containing the zwitterionic group-containing polymer having the betaine structure and the resin containing the anion compound and the cation compound coexist with the cation and the anion, so that these ions react and the resin deteriorates during storage. There is an inconvenience that it is easy and a manufacturing cost increases.
  • the present invention has been made on the basis of the above-described circumstances, and has the effect of suppressing the solidification of moisture below freezing point and the effect of reducing frosting and icing due to the solidified moisture adhering to the resin-coated metal plate.
  • An object of the present invention is to provide a resin-coated metal plate that is less likely to be deteriorated due to temperature changes, has excellent stability of the composition before coating, and can be reduced in storage cost and low in manufacturing cost.
  • the resin-coated metal plate according to one aspect of the present invention is a resin-coated metal plate having a metal plate and a coating layer that covers at least one surface side of the metal plate, wherein the coating layer contains an alkylene glycol unit.
  • the resin-coated metal plate of the present invention has the effect of suppressing frost formation and icing due to the suppression of moisture solidification below freezing point and the adhesion of the solidified moisture to the resin-coated metal plate, but also deteriorates due to temperature changes. It is difficult, and the storage cost can be reduced and the manufacturing cost is low due to the excellent stability of the composition before coating.
  • “molecular weight of alkylene glycol unit” means the sum of atomic weights of atoms forming one unit of alkylene glycol unit in a compound.
  • the resin composition contains a plurality of compounds and there are a plurality of total values of the atomic weights in the compound, it means the number average value of these values.
  • the “group having a disulfide bond” refers to a group represented by —SS—R (R is a monovalent hydrocarbon group having 1 to 20 carbon atoms).
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • the term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure.
  • Main component refers to the most abundant component (for example, 50% by mass or more) on a mass basis.
  • the resin-coated metal plate of this embodiment mainly has a metal plate and a coating layer that covers at least one surface side of the metal plate. Moreover, it is preferable to further have an intermediate
  • the coating layer contains a compound having a polyalkylene glycol structure having an alkylene glycol unit, the molecular weight of the alkylene glycol unit is from 150 to 8000, and the content of the compound in the coating layer is from 5% by mass to 100%. It is below mass%.
  • the composition forming the coating layer contains a compound having a polyalkylene glycol structure having a molecular weight of 150 or more and 8000 or less in the above range, so that in the vicinity of the surface of the coating layer, Water molecules are bound by the polyalkylene glycol structure.
  • the freezing point of the water adhering to the resin-coated metal plate is lowered, and the water can exist as antifreeze water even below the freezing point.
  • the hydrophilicity of the said coating layer improves because a coating layer contains the said compound in the said ratio, and the fluidity
  • the above compound has high stability, it is not necessary to strictly control the storage conditions before coating the metal plate with the composition forming the coating layer, and the cost for storage is reduced.
  • the compound having a polyalkylene glycol structure contained in the composition for forming the coating layer is inexpensive and can be easily processed because it can form a film having an appropriate hardness.
  • the resin-coated metal plate has an advantage that the manufacturing cost can be reduced.
  • the metal plate is a base material of the resin-coated metal plate.
  • the metal plate can be a plate having various shapes such as a rectangle and a circle. Although it will not specifically limit as a main component of this metal plate if it is used for the fin of a heat exchanger, For example, aluminum, its alloy, stainless steel etc. are mentioned. Of these, aluminum and aluminum alloys are preferred.
  • the main component of the metal plate is aluminum or an aluminum alloy
  • aluminum or an aluminum alloy having an alloy number of 1000 as defined in JIS-H4000 (2014) is preferable from the viewpoint of thermal conductivity and workability, and an aluminum alloy having an alloy number of 1200 is preferable. More preferred.
  • the lower limit of the average thickness of the metal plate is preferably 0.06 mm, and more preferably 0.08 mm.
  • the upper limit of the average thickness is preferably 0.3 mm, and more preferably 0.25 mm.
  • the coating layer covers at least one surface of the metal plate.
  • the covering layer preferably covers both the front and back surfaces of the metal plate, and more preferably covers the entire surface of the metal plate.
  • the coating layer is formed from a resin composition containing a compound having a polyalkylene glycol structure (hereinafter also referred to as “specific compound”).
  • the polyalkylene glycol structure is a structure having an alkylene glycol unit represented by — (O— (CR a R b ) x) y—.
  • R a and R b are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • x is an integer of 2 to 4.
  • y is an integer of 1 to 200.
  • a plurality of R a may be the same or different, and a plurality of R b may be the same or different.
  • R ⁇ a> and R ⁇ b> a hydrogen atom, a methyl group, and an ethyl group are preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is more preferable.
  • X is preferably 2 or 3, and more preferably 2.
  • the polyalkylene glycol structure is preferably a polyethylene glycol structure or a polypropylene glycol structure.
  • the polyalkylene glycol structure is such a structure, the water molecule binding action by the polyalkylene glycol structure is more exhibited.
  • Y is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
  • the lower limit of the molecular weight of the alkylene glycol unit is 150, 200 is preferable, 300 is more preferable, 500 is more preferable, and 1000 is particularly preferable.
  • the upper limit of the molecular weight is 8000, preferably 6000, more preferably 5000, further preferably 4000, and particularly preferably 2800. If the molecular weight is smaller than the lower limit, the strength of the coating layer may be reduced. On the contrary, when the molecular weight exceeds the upper limit, the frost formation and the icing reduction effect of the coating layer may not be exhibited.
  • the specific compound may have a crosslinkable group.
  • the crosslinkable group is not particularly limited.
  • a group containing a polymerizable carbon-carbon double bond, a group containing a polymerizable carbon-carbon triple bond, an oxiranyl group (1,2-epoxy structure), an oxetanyl group ( 1,3-epoxy structure) and the like alkoxymethyl group, formyl group, acetyl group, dialkylaminomethyl group, dimethylolaminomethyl group, 2,3-epoxytricyclo [5.2.1.02.6 Decane group, 3,4-epoxytricyclo [5.2.1.02.6] decane group, isocyanate group, blocked isocyanate group, oxazoline group and the like.
  • epoxy groups, isocyanate groups, blocked isocyanate groups, and oxazoline groups are preferred.
  • a compound represented by the following formula (1) is preferable. If the above compound is represented by the following formula (1), in addition to the effect of the above polyalkylene glycol structure, a group such as an isocyanate group of the above compound is bonded to a hydroxyl group or the like in a metal plate or an intermediate layer. The adhesion between the coating layer and the metal plate is improved. Therefore, it is possible to reduce the detachment of the coating layer due to temperature change and moisture. Moreover, the intensity
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • X 1 and X 2 are each independently a hydrogen atom, an isocyanate group, —SH, —OH, —NH 2 , —CH ⁇ CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, an epoxy group,
  • At least one of X 1 and X 2 is an isocyanate group, —NH 2 , an epoxy group, a group represented by the following formula (1-1), a group represented by the following formula (1-2), A group represented by the formula (1-3) or a group represented by the following formula (1-4).
  • a 1 represents X 1 is an isocyanate group, —SH, —OH, —CH ⁇ CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, a group represented by the following formula (1-1), a group represented by the following formula ( In the case of a group represented by 1-2), a group represented by the following formula (1-3) or a group represented by the following formula (1-4), a —NH—C ( ⁇ O) — bond
  • X 1 is a hydrogen atom or an epoxy group, it is a single bond
  • X 1 is a single bond or —NH—C ( ⁇ O) — bond.
  • a 2 represents X 2 is an isocyanate group, —SH, —OH, —NH 2 , —CH ⁇ CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, or a group represented by the following formula (1-1)
  • a group represented by the following formula (1-2) a group represented by the following formula (1-3) or a group represented by the following formula (1-4)
  • —NH—C ( ⁇ O ) -Bond when X 2 is a hydrogen atom or an epoxy group, it is a single bond, and when X 2 is —NH 2 , it is a single bond or —NH—C ( ⁇ O) — bond.
  • B 1 and B 2 are an alkanediyl group, an arenediyl group, a methanediylarenediyl group or an arenediylmethanediylarenediyl group having 1 to 8 carbon atoms.
  • n is an integer of 2 to 4.
  • m is an integer of 1 to 200.
  • a plurality of R 1 may be the same or different, and a plurality of R 2 may be the same or different. When m is 2 or more, a plurality of n may be the same or different.
  • R a1 to R a3 are each independently an alkyl group having 1 to 8 carbon atoms or a phenyl group.
  • R a4 and R a5 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkylamino group having 1 to 8 carbon atoms.
  • R a6 is an alkanediyl group having 1 to 7 carbon atoms.
  • R ⁇ 1 > and R ⁇ 2 > a hydrogen atom and a methyl group are preferable, and a hydrogen atom is more preferable.
  • At least one of X 1 and X 2 is an isocyanate group, —NH 2 , an epoxy group or a group represented by the above formulas (1-1) to (1-4), and these groups are cross-linked with each other.
  • a group that can be bonded or cross-linked with other groups such as hydroxyl groups. Therefore, when the specific compound is a compound represented by the above formula (1), cross-linking by an isocyanate group occurs between the coating layer and the metal layer or the intermediate layer, and also in the coating layer due to the isocyanate group. Cross-linking occurs.
  • X 1 and X 2 are preferably a methyl group, an isocyanate group, —NH 2 and an epoxy group. Further, when X 1 or X 2 is a group having a disulfide structure represented by —S—S—R, this R is preferably a chain hydrocarbon group, and more preferably an alkyl group.
  • B 1 and B 2 are preferably an alkanediyl group and an arenediyl group having 1 to 8 carbon atoms, more preferably a methanediyl group, an ethanediyl group, a propanediyl group, a benzenediyl group, and a toluenediyl group.
  • N is preferably 2 or 3, more preferably 2.
  • the specific compound represented by the formula (1) preferably has a polyethylene glycol structure, or the specific compound represented by the formula (1) preferably has a polypropylene glycol structure. When the specific compound represented by the formula (1) has these structures, the water molecule binding action due to the polyalkylene glycol structure is more exhibited.
  • M is preferably an integer of 1 to 100, and more preferably an integer of 1 to 80.
  • R a1 to R a3 are preferably a methyl group, an ethyl group, a propyl group, a butyl group and a phenyl group, and more preferably a methyl group, an ethyl group and a phenyl group.
  • R a4 and R a5 are preferably an alkyl group having 1 to 8 carbon atoms and an alkylamino group, more preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and more preferably a methyl group and an ethyl group.
  • R a6 is preferably a propanediyl group, a butanediyl group, a pentanediyl group, a hexanediyl group or a heptanediyl group, more preferably a butanediyl group, a pentanediyl group or a hexanediyl group.
  • X 1 and X 2 are oxiranyl groups, A 1 and A 2 are single bonds, B 1 and B 2 are methanediyl groups, n is 2, R 1 and R A compound represented by the following formula (1-a) in which 2 is a hydrogen atom, X 1 and X 2 are —NH 2 , A 1 and A 2 are single bonds, and B 1 and B 2 are ethanediyl.
  • R 1 and R 2 being a hydrogen atom include compounds represented by the following formula (1-b).
  • a structure represented by the following formula (2-1), a structure represented by the following formula (2-2), or a structure including these hereinafter also referred to as “first structure”.
  • a structure represented by the following formula (3) hereinafter also referred to as “second structure”.
  • R 3 and R 4 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • p is an integer of 2 to 4.
  • q is an integer of 1 to 200.
  • Multiple R3 may be the same or different, a plurality of R 4 may be the same or different.
  • q is 2 or more, a plurality of p may be the same or different.
  • R 5 to R 9 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • X 3 is a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group, a mercapto group, a methoxy group or an ethoxy group.
  • r is an integer of 2 to 4.
  • s is an integer of 1 to 200.
  • t is an integer of 1 to 200.
  • a plurality of R 5 may be the same or different, and a plurality of R 6 may be the same or different. When s is 2 or more, a plurality of r may be the same or different.
  • the plurality of R 7 may be the same or different, the plurality of R 8 may be the same or different, and the plurality of R 9 may be the same or different.
  • R 3 to R 9 are preferably a hydrogen atom and a methyl group, and more preferably a hydrogen atom.
  • X 3 is preferably a hydrogen atom and a methyl group, and more preferably a methyl group.
  • the above p is preferably 2 or 3, and more preferably 2.
  • Q is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
  • the above r is preferably 2 or 3, more preferably 2.
  • S is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
  • T is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
  • R 10 to R 12 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • Z is a group represented by any of the following formulas (i-1) to (i-4).
  • u is an integer of 1 to 200. When u is 2 or more, the plurality of R 10 may be the same or different, the plurality of R 11 may be the same or different, and the plurality of R 12 may be the same or different.
  • L 1 is an alkanediyl group having 1 to 5 carbon atoms.
  • L 2 is an alkanediyl group having 1 to 8 carbon atoms, a phenylene group, a methylenephenylene group or a phenylenemethylenephenylene group
  • R 13 is an isocyanate group
  • the above formula (1-1 ) A group represented by the above formula (1-2), a group represented by the above formula (1-3), or a group represented by the above formula (1-4).
  • L 3 is an alkanediyl group having 1 to 5 carbon atoms.
  • R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 16 and R 17 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • R 10 to R 12 , R 14 and R 15 are preferably a hydrogen atom and a methyl group, and more preferably a hydrogen atom.
  • U is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
  • Z is preferably a group represented by the above formula (i-1) and a group represented by the above formula (i-3), and more preferably a group represented by the above formula (i-1).
  • Examples of the alkanediyl group having 1 to 5 carbon atoms represented by L 1 to L 3 include a methanediyl group, an ethanediyl group, a propanediyl group, and a butanediyl group. Among these, a methanediyl group and an ethanediyl group are preferable, and an ethanediyl group is more preferable.
  • R 13 is preferably an isocyanate group or a group represented by the above formula (1-1), more preferably an isocyanate group.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R 13 , R 14 , R 15 and R 16 include a methyl group, an ethyl group, a propyl group and a butyl group. Among these, a methyl group and an ethyl group are preferable.
  • the lower limit of the molar ratio of the first structure to the second structure in the specific compound is preferably 30/70, more preferably 40/60.
  • the upper limit of the molar ratio is preferably 99/1, and more preferably 95/5.
  • the molar ratio is less than the lower limit, the hydrophilicity of the coating layer is difficult to improve, and the effect of reducing frost formation and icing may be insufficient.
  • the molar ratio exceeds the upper limit, the water resistance of the coating layer is lowered, and the coating layer may be easily peeled off from the metal plate by condensed water.
  • the specific compound may have a structure other than the first structure and the second structure.
  • structures include structures derived from methacrylic acid, structures derived from methyl methacrylate, structures derived from ethyl methacrylate, structures derived from vinyl acetate, structures derived from acrylic acid, and vinyl alcohol.
  • examples thereof include a structure, a structure derived from vinyl sulfonic acid, a structure derived from vinyl pyrrolidone, a structure derived from vinyl pyridine, and a structure derived from styrene sulfonic acid.
  • the lower limit of the content of the specific compound with respect to the total solid content of the resin composition is 5% by mass, preferably 20% by mass, and more preferably 30% by mass.
  • an upper limit of the said content it is 100 mass%, 90 mass% is preferable and 85 mass% is more preferable.
  • the “total solid content of the resin composition” refers to the sum of components other than the solvent of the resin composition, and the mass of the total solid content is equal to the mass of the coating layer formed from the resin composition. .
  • the resin composition preferably further contains a hydrophilic compound.
  • a hydrophilic compound By further containing such a hydrophilic compound, the hydrophilicity of the coating layer can be further improved, and as a result, frost formation and icing of the resin-coated metal plate can be further reduced.
  • Examples of the form of inclusion of the hydrophilic compound include a form that exists in the resin composition as a compound different from the specific compound, and a form in which a part of the specific compound includes a structure derived from the hydrophilic compound. It is done.
  • hydrophilic compound examples include an anionic monomer having a carboxyl group, a sulfonic acid group, a phosphoric acid group, a cationic monomer having a functional group such as a quaternary salt of an amino group, and a nonionic monomer having a hydrogen bonding property. Is mentioned.
  • Such compounds include, for example, 2-acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid, alkali metal salts of these acids, hydroxymethyl methacrylate, acrylamide, and diethylacrylamide (for example, “KJ Chemicals” DEAA (registered trademark) "), N, N-dimethylacrylamide (for example,” DMAA (registered trademark) "of KJ Chemicals), N, N-dimethylaminopropylacrylamide (for example,” DMAPAA (registered trademark) "of KJ Chemicals) ), 2-hydroxyethyl acrylamide (for example, “HEAA (registered trademark)” of KJ Chemicals), N-alkyl acrylamide such as N-isopropyl acrylamide, N, N-dimethylaminoethyl acrylate, N-acryloyl morpholine (E.g.
  • N-alkyl acrylamide, N-vinyl lactams and melamine compounds are preferable as the hydrophilizing compound, and N-isopropylacrylamide, N-methylpyrrolidone and melamine compounds are more preferable.
  • the lower limit of the content of the hydrophilic compound relative to the total solid content in the resin composition is preferably 1% by mass, 3 mass% is more preferable.
  • the upper limit of the content is preferably 30% by mass, and more preferably 25% by mass.
  • the said resin composition contains the said hydrophilization compound as a part of said specific compound, as a minimum of the content rate of the structure originating in the said hydrophilization compound in the said specific compound, 1 mass% is preferable, and 3 mass % Is more preferable. On the other hand, as an upper limit of the said content rate, 30 mass% is preferable and 25 mass% is more preferable.
  • the hydrophilicity of the coating layer due to the hydrophilic compound may be insufficiently increased. Conversely, if the content or content ratio exceeds the upper limit, the water resistance and heat resistance of the coating layer may be reduced.
  • the said resin composition may contain another component in the range which does not impair the effect of this invention.
  • the other components include solvents, polymers other than the above specific compounds, silica particles, crosslinking agents, surfactants, surface conditioners, wetting and dispersing agents, antisettling agents, antioxidants, antifoaming agents, and rust inhibitors. , Antibacterial agents, fungicides and the like.
  • the polymer other than the specific compound examples include an oxazoline-containing polymer having an oxazoline group in the side chain.
  • the resin composition further includes such an oxazoline-containing polymer, the oxazoline-containing polymer reacts with the specific compound, and the strength of the coating layer can be further improved.
  • the oxazoline group reacts with the carboxyl group or the like in the intermediate layer, the bond between the coating layer and the intermediate layer can be made stronger.
  • such an oxazoline-containing polymer is excellent in hydrophilicity, the hydrophilicity of the coating layer can be further improved.
  • Examples of such an oxazoline-containing polymer include “Epocross (registered trademark)” manufactured by Nippon Shokubai Co., Ltd.
  • Silica particles are particles mainly composed of SiO 2 .
  • the coating layer is less likely to be deteriorated due to temperature change, and the stability of the composition before coating is improved, so that the storage cost can be further reduced. it can.
  • the shape of the silica particles may be a chain shape in addition to a substantially spherical shape.
  • the lower limit of the average particle size of the silica particles is preferably 1 nm, and more preferably 4 nm.
  • the upper limit of the average particle diameter is preferably 200 nm, and more preferably 20 nm.
  • the silica particles include colloidal silica and fumed silica. Examples of commercially available colloidal silica include Snowtex XS, SS, 40, N, UP (and above, Nissan Chemical Industries).
  • the lower limit of the content of the other components with respect to the total solid content in the resin composition is preferably 1% by mass, and more preferably 3% by mass.
  • the upper limit of the content is preferably 90% by mass, and more preferably 85% by mass.
  • the lower limit of the content of the specific compound in the coating layer is 5% by mass, preferably 20% by mass, and more preferably 30% by mass.
  • an upper limit of the said content it is 100 mass%, 90 mass% is preferable and 85 mass% is more preferable.
  • the content is smaller than the lower limit, the frost formation and the icing reduction effect of the resin-coated metal plate may be insufficient.
  • the lower limit of the average thickness of the coating layer is preferably 0.1 ⁇ m, more preferably 0.3 ⁇ m.
  • the upper limit of the average thickness is preferably 5 ⁇ m, and more preferably 3 ⁇ m.
  • the coating layer works as a heat insulating material, and there is a possibility that the heat exchange efficiency when the resin-coated metal plate is used as a fin of the heat exchanger is lowered.
  • middle layer is a layer which has resin as a main component and is laminated
  • the main component resin has an intermediate layer having the above group in the above range, the above group reacts with a compound or a metal plate in the coating layer, and as a result, the water resistance and heat resistance of the coating layer are improved.
  • the resin may have a hydroxyl group, an amino group, an imino group, a carboxyl group, a methoxycarbonyl group, a carboxylate group, or a combination thereof.
  • a hydroxyl group, an imino group, a carboxyl group, a carboxylate group, and a combination thereof are preferable.
  • the lower limit of the total content of the groups in the resin is preferably 0.5 mol / kg, more preferably 1 mol / kg, and even more preferably 2 mol / kg.
  • the upper limit of the total content is preferably 20 mol / kg, more preferably 15 mol / kg, and even more preferably 10 mol / kg. If the total content is smaller than the lower limit, the water resistance and heat resistance of the coating layer may be difficult to improve. Conversely, if the total content exceeds the upper limit, the strength of the intermediate layer may be reduced.
  • the resin is not particularly limited as long as it has the above group in the above ratio, and for example, a commercially available product can be used.
  • the lower limit of the average thickness of the intermediate layer is preferably 0.1 ⁇ m, more preferably 0.3 ⁇ m.
  • the upper limit of the average thickness is preferably 5 ⁇ m, and more preferably 3 ⁇ m. If the average thickness is smaller than the lower limit, the water resistance and heat resistance of the coating layer may be difficult to improve, and the strength of the intermediate layer may be reduced. On the contrary, when the average thickness exceeds the upper limit, the thickness of the resin-coated metal plate may be excessively increased.
  • the resin-coated metal plate may further include a layer other than the coating layer, the intermediate layer, and the metal plate.
  • examples of such other layers include a corrosion resistance improving layer.
  • the other layer is preferably provided between the covering layer and the intermediate layer, or between the intermediate layer and the metal layer.
  • Examples of the corrosion resistance improving layer include a chemical conversion coating layer and a corrosion resistance coating layer. Only one kind of these layers may be laminated, or two or more kinds may be laminated.
  • the said chemical conversion treatment film layer can be formed by processing the surface of a metal plate with the compound containing chromium, zirconium, titanium, etc.
  • Examples of the compound include inorganic oxides such as phosphate chromate, zirconium phosphate, zirconium oxide, chromate chromate, zinc phosphate and titanium phosphate, and organic-inorganic composite compounds such as acrylic-zirconium composites. It is done.
  • inorganic oxides such as phosphate chromate, zirconium phosphate, zirconium oxide, chromate chromate, zinc phosphate and titanium phosphate
  • organic-inorganic composite compounds such as acrylic-zirconium composites. It is done.
  • the said compound is phosphoric acid chromate
  • 1 mg / m ⁇ 2 > is preferable in conversion of Cr
  • 5 mg / m ⁇ 2 > is more preferable.
  • the upper limit of the adhesion amount is preferably 100 mg / m 2 and more preferably 80 mg / m 2 in terms of Cr.
  • the thickness of a chemical conversion treatment film layer may run short and it may become difficult to improve the corrosion resistance of a metal plate.
  • the amount of adhesion exceeds the upper limit, the thickness of the chemical conversion coating layer increases excessively, and the adhesion between the coating layer and the metal plate may decrease, or the thickness of the resin-coated metal plate is excessive. May increase.
  • the chemical conversion film layer is formed on the surface of the metal plate, it is preferable to degrease the surface of the metal plate using an alkaline degreasing solution before forming the film. Thereby, the adhesiveness of a chemical conversion treatment film layer and a metal plate improves.
  • the corrosion-resistant coating layer can be formed by applying and drying a resin on the surface of the metal plate.
  • this resin include polyester, polyolefin, epoxy resin, acrylic resin, and urethane resin.
  • the lower limit of the average thickness of the corrosion-resistant film layer is preferably 10 ⁇ m, more preferably 15 ⁇ m.
  • the upper limit of the average thickness is preferably 100 ⁇ m, and more preferably 80 ⁇ m. If the average thickness is smaller than the lower limit, the corrosion resistance of the metal plate may be difficult to improve. On the contrary, when the average thickness exceeds the upper limit, the thickness of the resin-coated metal plate may be excessively increased.
  • the resin-coated metal plate forms a coating layer by obtaining a resin composition that is a specific compound-containing solution by preparing the specific compound (resin composition preparing step), applying the resin composition to the metal plate, and drying by heating.
  • the process (coating layer formation process) to perform is mainly provided.
  • intermediate layer forming step it is preferable to further include a step of forming the intermediate layer by applying resin and heating and drying (intermediate layer forming step), and this step may be performed before the coating layer forming step.
  • Resin composition preparation process In the resin composition preparation step, the compound is synthesized, and the compound is mixed with a solvent to obtain a resin composition that is a compound-containing solution.
  • the formula (1) When the specific compound is represented by the formula (1) and X 1 and X 2 are isocyanate groups or groups represented by the formulas (1-1) to (1-4), the formula (1) In the compounds wherein X 1 and X 2 are an isocyanate group and a group other than the groups represented by the above formulas (1-1) to (1-4), the above isocyanate group or the above formulas (1-1) to (1)
  • the specific compound represented by the above formula (1) can be obtained by mixing the compound having the group represented by -4) and heating in a solvent.
  • the specific compound is a specific compound having the first structure and the second structure
  • a compound having a polyethylene glycol structure giving the first structure is obtained by copolymerization using a halogenated initiator of polyethylene glycol.
  • a specific compound having the first structure and the second structure can be obtained by dissolving this compound and the compound that gives the second structure in a solvent and heating.
  • the resin composition can be prepared by mixing with water or a hydrophilic organic solvent. Moreover, when the resin composition contains other components other than the specific compound, the resin composition can be easily prepared by further mixing other components with the specific compound and the solvent.
  • hydrophilic organic solvent examples include alcohols such as methanol, ethanol, n-propyl alcohol and t-butyl alcohol; aliphatic nitriles such as acetonitrile; aliphatic ketones such as acetone; and aliphatic sulfoxides such as dimethyl sulfoxide. And aliphatic carboxylic acids such as acetic acid.
  • the lower limit of the solid content concentration in the resin composition is preferably 1% by mass, and more preferably 1.5% by mass.
  • the upper limit of the solid content concentration is preferably 60% by mass, and more preferably 50% by mass. If the solid content concentration is smaller than the lower limit, a coating layer having a sufficient thickness may not be formed. Conversely, when the solid content concentration exceeds the upper limit, it may be difficult to apply the resin composition uniformly.
  • the intermediate layer is formed by applying a resin to a metal plate and drying by heating.
  • a known apparatus can be used, and examples thereof include a roll coater and a bar coater.
  • the lower limit of the heating temperature during drying is preferably 80 ° C, more preferably 100 ° C.
  • the upper limit of the heating temperature is preferably 280 ° C, more preferably 260 ° C.
  • the temperature is smaller than the said minimum, the time concerning drying becomes long and there exists a possibility that the manufacture efficiency of the said resin-coated metal plate may fall.
  • the temperature exceeds the upper limit, the intermediate layer or the metal plate may be altered.
  • the heating temperature means the material arrival temperature (PMT: Peak Metal Temperature) of the coated metal plate.
  • the lower limit of the heating time during the drying is preferably 3 seconds and more preferably 5 seconds.
  • the upper limit of the heating time is preferably 15 minutes, and more preferably 10 minutes. If the heating time is less than the lower limit, drying may be insufficient and the strength of the intermediate layer may be reduced. On the contrary, when the heating time exceeds the upper limit, the drying time becomes unnecessarily long, and the production efficiency of the resin-coated metal plate may be reduced.
  • the resin composition is applied to one surface of the intermediate layer.
  • the said resin composition is apply
  • the same apparatus as in the intermediate layer forming step can be cited.
  • the applied resin composition is heated and dried. By this heating, the solvent in the resin composition is removed and a coating layer is formed.
  • the upper limit of the coating amount is preferably 5 g / m 2, more preferably 3 g / m 2, more preferably 2 g / m 2. If the coating amount is smaller than the lower limit, a coating layer having a sufficient thickness may not be formed. On the contrary, when the coating amount exceeds the upper limit, the thickness of the coating layer may be excessively increased.
  • the lower limit of the heating temperature during drying is preferably 80 ° C, more preferably 100 ° C.
  • the upper limit of the heating temperature is preferably 280 ° C, more preferably 260 ° C.
  • the lower limit of the heating time during the drying is preferably 5 seconds and more preferably 3 seconds.
  • the upper limit of the heating time is preferably 15 minutes, and more preferably 10 minutes. If the heating time is less than the lower limit, drying may be insufficient and the strength of the coating layer may be reduced. On the contrary, when the heating time exceeds the upper limit, the drying time becomes unnecessarily long, and the production efficiency of the resin-coated metal plate may be reduced.
  • the composition forming the coating layer contains a compound having a polyalkylene glycol structure having a molecular weight of 150 or more and 8000 or less in the above range, so that the surface of the coating layer , Water molecules are bound by the polyalkylene glycol structure.
  • the freezing point of the water adhering to the resin-coated metal plate is lowered, and the water can exist as antifreeze water even below the freezing point.
  • the hydrophilicity of the said coating layer improves because a coating layer contains the said compound in the said ratio, and the fluidity
  • the above compound has high stability, it is not necessary to strictly control the storage conditions before coating the metal plate with the composition forming the coating layer, and the cost for storage is reduced.
  • the compound having a polyalkylene glycol structure contained in the composition for forming the coating layer is inexpensive and can be easily processed because it can form a film having an appropriate hardness. As a result, the manufacturing cost of the resin-coated metal plate can be reduced.
  • the heat exchanger fin includes the resin-coated metal plate.
  • size and shape of the said fin material for heat exchangers can be suitably adjusted according to the air conditioner using the said fin material for heat exchangers.
  • the said heat exchanger fin material is normally arrange
  • the air conditioner includes the heat exchanger fin material.
  • the air conditioner is provided with fins formed using the heat exchanger fin material.
  • members other than the fins can be known members.
  • the resin-coated metal plate according to one aspect of the present invention is a resin-coated metal plate having a metal plate and a coating layer that covers at least one surface side of the metal plate, wherein the coating layer contains an alkylene glycol unit.
  • the compound may be represented by the following formula (1). Since the compound is represented by the following formula (1), in addition to the effect of the polyalkylene glycol structure, a group such as an isocyanate group included in the compound is bonded to a hydroxyl group or the like in a metal plate or an intermediate layer. In addition, the adhesion between the coating layer and the metal plate is improved. Therefore, it is possible to reduce the detachment of the coating layer due to temperature change and moisture. Moreover, the intensity
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • X 1 and X 2 are each independently a hydrogen atom, an isocyanate group, —SH, —OH, —NH 2 , —CH ⁇ CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, an epoxy group,
  • At least one of X 1 and X 2 is an isocyanate group, —NH 2 , an epoxy group, a group represented by the following formula (1-1), a group represented by the following formula (1-2), A group represented by the formula (1-3) or a group represented by the following formula (1-4).
  • a 1 represents X 1 is an isocyanate group, —SH, —OH, —CH ⁇ CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, a group represented by the following formula (1-1), a group represented by the following formula ( In the case of a group represented by 1-2), a group represented by the following formula (1-3) or a group represented by the following formula (1-4), a —NH—C ( ⁇ O) — bond
  • X 1 is a hydrogen atom or an epoxy group, it is a single bond
  • X 1 is a single bond or —NH—C ( ⁇ O) — bond.
  • a 2 represents X 2 is an isocyanate group, —SH, —OH, —NH 2 , —CH ⁇ CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, or a group represented by the following formula (1-1)
  • a group represented by the following formula (1-2) a group represented by the following formula (1-3) or a group represented by the following formula (1-4)
  • —NH—C ( ⁇ O ) -Bond when X 2 is a hydrogen atom or an epoxy group, it is a single bond, and when X 2 is —NH 2 , it is a single bond or —NH—C ( ⁇ O) — bond.
  • B 1 and B 2 are an alkanediyl group, an arenediyl group, a methanediylarenediyl group or an arenediylmethanediylarenediyl group having 1 to 8 carbon atoms.
  • n is an integer of 2 to 4.
  • m is an integer of 1 to 200.
  • a plurality of R 1 may be the same or different, and a plurality of R 2 may be the same or different. When m is 2 or more, a plurality of n may be the same or different.
  • R a1 to R a3 are each independently an alkyl group having 1 to 8 carbon atoms or a phenyl group.
  • R a4 and R a5 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkylamino group having 1 to 8 carbon atoms.
  • R a6 is an alkanediyl group having 1 to 7 carbon atoms.
  • the compound has a structure represented by the following formula (2-1), a structure represented by the following formula (2-2), or a structure containing them, and the following formula (3): It is good to have the structure represented by these.
  • the said compound has these structures, deterioration of the resin layer in the case of repeating heating and cooling can be reduced, and the effect of reducing frost formation and icing after the defrosting operation can be promoted.
  • R 3 and R 4 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • p is an integer of 2 to 4.
  • q is an integer of 1 to 200.
  • a plurality of R 3 may be the same or different, and a plurality of R 4 may be the same or different. When q is 2 or more, a plurality of p may be the same or different.
  • R 5 to R 9 each independently represents a hydrogen atom, a methyl group or an ethyl group.
  • X 3 is a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group, a mercapto group, a methoxy group or an ethoxy group.
  • r is an integer of 2 to 4.
  • s is an integer of 1 to 200.
  • t is an integer of 1 to 200.
  • a plurality of R 5 may be the same or different, and a plurality of R 6 may be the same or different.
  • a plurality of r may be the same or different.
  • the plurality of R 7 may be the same or different, the plurality of R 8 may be the same or different, and the plurality of R 9 may be the same or different.
  • R 10 to R 12 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • Z is a group represented by any of the following formulas (i-1) to (i-4).
  • u is an integer of 1 to 200. When u is 2 or more, the plurality of R 10 may be the same or different, the plurality of R 11 may be the same or different, and the plurality of R 12 may be the same or different.
  • L 1 is an alkanediyl group having 1 to 5 carbon atoms.
  • L 2 is an alkanediyl group having 1 to 8 carbon atoms, a phenylene group, a methylenephenylene group or a phenylenemethylenephenylene group, R 13 is an isocyanate group, and the above formula (1-1) A group represented by the above formula (1-2), a group represented by the above formula (1-3), or a group represented by the above formula (1-4).
  • L 3 is an alkanediyl group having 1 to 5 carbon atoms.
  • R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 16 and R 17 are each independently a hydrogen atom, a methyl group or an ethyl group.
  • the resin-coated metal plate further includes an intermediate layer between the metal plate and the coating layer, the intermediate layer contains a resin as a main component, and the resin includes a hydroxyl group, an amino group, an imino group.
  • a carboxyl group, a methoxycarbonyl group, a carboxylate group, or a combination thereof, and the total content of the groups in the resin is preferably 0.5 mol / kg or more and 20 mol / kg or less.
  • the resin-coated metal plate has the effect of reducing frost formation and icing as described above, it is difficult to deteriorate due to temperature change, has excellent stability of the composition before coating, and can be manufactured at low cost. It can be suitably used as a fin material for an exchanger.
  • the main component of the metal plate is preferably aluminum or an alloy thereof. By using these metals as the main component of the metal plate, the resin-coated metal plate can be reduced in weight.
  • Another aspect of the present invention is a resin composition used for coating a metal plate, which contains a compound containing a polyalkylene glycol structure having an alkylene glycol unit, and the molecular weight of the alkylene glycol unit is 150 or more and 8000.
  • the resin composition is characterized in that the content of the compound in the resin composition is 5% by mass or more and 100% by mass or less. While the resin composition contains the above-mentioned compound, it has the effect of suppressing frost formation and icing due to suppression of moisture solidifying below freezing point and adhesion of the solidified moisture to the resin-coated metal plate, It is difficult to deteriorate due to temperature change, and the storage cost can be reduced by being excellent in the stability of the composition before coating.
  • the resin composition is excellent in storage stability, and when laminated on a metal plate, it can exhibit an effect of reducing frost formation and icing, and hardly deteriorates due to temperature change. Therefore, the resin composition can be suitably used as a paint.
  • Still another aspect of the present invention is a fin material for a heat exchanger and an air conditioner including the resin-coated metal plate. Since the said heat exchanger fin material and air conditioner are provided with the said resin coating metal plate, frost formation and icing are reduced, and a coating layer does not deteriorate easily with a temperature change. Further, the heat exchanger fin and the air conditioner are low in manufacturing cost.
  • Example 1 An aluminum plate having an average thickness of 0.1 mm was cut into a length of 20 cm and a width of 10 cm, and a solution in which 0.33 g of (A-1a) as a specific compound was dissolved in 9.67 g of tetrahydrofuran as a solvent (solid concentration) 3.3 mass%) was applied so that the average thickness was 0.5 ⁇ m. Then, the resin-coated metal plate was obtained by heating and drying at 150 ° C. for 3 minutes.
  • Examples 2 to 23 and Comparative Examples 1 to 5 Resin-coated laminates of Examples 2 to 23 and Comparative Examples 1 to 5 were obtained in the same manner as in Example 1 except that the types and contents of the compounds used were as shown in Tables 1 and 2. In Tables 1 and 2, “-” means that the corresponding compound or the like is not used.
  • Example 24 The intermediate layer was formed by applying (P-1) as another resin to an aluminum plate of the same material and size as in Example 1 so that the average thickness was 0.4 ⁇ m and drying by heating at 225 ° C. for 20 seconds. Formed. Thereafter, an average thickness of 0.5 ⁇ m of a solution (solid content concentration of 3.3 mass%) obtained by dissolving 0.33 g of (A-1b) as a specific compound in 9.67 g of tetrahydrofuran as a solvent on the intermediate layer is obtained. The resin-coated metal sheet was obtained by heating and drying at 150 ° C. for 3 minutes.
  • Example 25 to 30 Resin-coated metal plates of Examples 25 to 30 were obtained in the same manner as in Example 24 except that the compounds used and the resin of the intermediate layer were as shown in Table 2.
  • a solution solid content concentration 6.0% by mass
  • a solution solid content concentration 6.0% by mass
  • Example 7 a resin for forming a coating layer by copolymerizing the respective compounds in the ratios shown in Table 1 or Table 2 A composition was obtained.
  • Example 31 and Example 32 the respective compounds were mixed at a solid content mass ratio shown in Table 2 to obtain a resin composition forming a coating layer. “*)” In Table 2 indicates that the numerical value is a mass ratio of each compound.
  • A-1e O ⁇ C—N—C 6 H 3 (CH 3 ) —NH—C ( ⁇ O) —O— (CH 2 CH 2 O) n—CH 3 ,
  • A-4 Ammonium polyacrylate (“Aron A-30” manufactured by Toagosei Co., Ltd.) (Specific compound having a first structure and a second structure)
  • A-6e mac
  • A-7 Glycidyl methacrylate (compound represented by the following formula (a-2))
  • A-8 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate (Showa Denko KK, compound represented by the following formula (a-3))
  • A-9 N-vinylpyrrolidone (compound represented by the following formula (a-4))
  • A-10 N-isopropylacrylamide (compound represented by the following formula (a-5))
  • A-11 Melamine compound (DIC's “Beccamin M-3”)
  • A-12 Acrylic acid / sulfonic acid monomer copolymer (“AQUALIC GH-234” manufactured by Nippon Shokubai Co., Ltd.)
  • A-13 Ethylmethacrylate methacrylate betaine acrylate copolymer (“RAM Resin-4000” from Osaka Organic Chemical Industry Co., Ltd.)
  • A-14 Sodium polyacrylate (“Jurimer AC-10HN” from Nippon Shokubai Co., Ltd.)
  • A-15 Polyethyleneimine A (“Epomin SP-018” from Nippon Shokubai Co., Ltd.)
  • A-16 Colloidal silica ("Snowtex UP" by Nissan Chemical Industries)
  • P-1 Polyvinyl alcohol-grafted polyvinyl alcohol (Daiichi Kogyo Seiyaku Co., Ltd. "Bitscall V-7154”)
  • P-2 Polyethyleneimine B ("Polyethyleneimine 1000" from Junsei Co., Ltd.)
  • the molecular weight of the polyalkylene glycol structure in the composition forming the coating layer and the substituent of the intermediate layer are also shown in Table 1 and Table 2.
  • Examples 1 to 32 containing a crosslinkable group and a compound having a polyalkylene glycol structure having a molecular weight of 150 or more and 8000 or less frost formation was reduced as compared with the comparative example. Moreover, the stability of the composition-containing solution was also excellent. In particular, the initial frost suppression effect was high in all examples.
  • Examples 13 and 14 containing polyethylene glycol and glycidyl methacrylate in a mass ratio of 80:20 and having a polyalkylene glycol structure molecular weight of 300 and 1100 (200 or more and 2800 or less) were used after the defrosting operation. The frost formation was reduced more. Further, in Examples 21 to 23 having a hydrophilic compound, frost formation after the defrosting operation was further reduced. In Examples 24 to 32 having an intermediate layer, frost formation after immersion drying was further reduced, and the water resistance and heat resistance of the coating layer were excellent.
  • Comparative Examples 1 and 2 in which the molecular weight of the polyalkylene glycol structure exceeds 8000, the stability of the composition-containing solution was the same as that of the example, but frost formation was very much as compared with the example. Further, in Comparative Example 3 having no polyalkylene glycol, the amount of frost formed at the initial stage and after water-dried drying was larger than that in Examples. Furthermore, in Comparative Example 4 which did not have polyalkylene glycol and contained a polymer having a betaine structure, there was much frost formation at the initial stage and after the defrosting operation, and the stability of the composition-containing solution was also inferior. Moreover, in Comparative Example 5 which does not have polyalkylene glycol and contains a compound having an imino group, although frosting suppression was superior to other Comparative Examples, the stability of the composition-containing solution was inferior.
  • the resin-coated metal sheet of the present invention has the effect of reducing frost formation and icing, is hardly deteriorated by temperature change, has excellent stability of the composition before coating, and is manufactured at low cost. Therefore, it can be suitably used as a fin material for a heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention pertains to a resin-coated metal plate comprising a metal plate and a coating layer which covers at least one surface of the metal plate. The resin-coated metal plate is characterized in that the coating layer contains a compound which includes a polyalkylene glycol structure having an alkylene glycol unit, the molecular weight of the alkylene glycol unit being 150 to 8,000, and the amount of the compound contained in the coating layer being 5mass% to 100mass%.

Description

樹脂被覆金属板、樹脂組成物、熱交換器用フィン材及び空調機Resin-coated metal plate, resin composition, fin material for heat exchanger, and air conditioner
 本発明は、樹脂被覆金属板、樹脂組成物、熱交換器用フィン材及び空調機に関する。 The present invention relates to a resin-coated metal plate, a resin composition, a fin material for a heat exchanger, and an air conditioner.
 空調機の熱交換器におけるフィンとして、金属板を用いることが広く行われている。しかし、金属板フィンには、暖房運転時に結露水がフィンに付着し、凍結することで複数のフィン間に氷や霜が充填され、熱交換器の熱交換性能が低下するという不都合がある。また、フィンから氷や霜を除去するために、除霜運転を行う必要があり、熱交換器にかかるエネルギーが増加するという不都合もある。 A metal plate is widely used as a fin in a heat exchanger of an air conditioner. However, the metal plate fin has a disadvantage that the condensed water adheres to the fin during heating operation and freezes, so that ice or frost is filled between the plurality of fins, and the heat exchange performance of the heat exchanger is lowered. Moreover, in order to remove ice and frost from a fin, it is necessary to perform a defrost operation, and there also exists a problem that the energy concerning a heat exchanger increases.
 この問題を解決するために、各種樹脂で金属板を被覆し金属板への着霜を低減する技術が開発されている。この樹脂としては、例えば合成シリカ及び水性塗料を含むもの(特開昭55-164264号公報参照)が挙げられる。しかし、上記合成シリカ及び水性塗料を含む樹脂から得られる被膜は過度に硬いため、加工性が低下するという不都合がある。また、合成シリカに起因してセメント臭や埃臭といった不快な臭気が発生するという不都合もある。 In order to solve this problem, a technology has been developed that covers a metal plate with various resins to reduce frost formation on the metal plate. Examples of this resin include those containing synthetic silica and a water-based paint (see JP-A-55-164264). However, since the film obtained from the resin containing the synthetic silica and the water-based paint is excessively hard, there is an inconvenience that workability is lowered. There is also a disadvantage that unpleasant odors such as cement odor and dust odor are generated due to the synthetic silica.
 これに対し、適度な硬さの被膜が得られ、臭気が低減される有機化合物を用いる技術が開発されている。このような技術としては、例えばポリビニルアルコール及びポリビニルピロリドンを含むもの(特開平5-302042号公報参照)、ベタイン構造を有する両性イオン基含有ポリマーを含むもの(特開2008-308658号公報参照)、アニオン化合物及びカチオン化合物を含むもの(特開2011-89112号公報参照)等が挙げられる。 On the other hand, a technique has been developed that uses an organic compound that can provide a film with an appropriate hardness and that reduces odor. Examples of such techniques include those containing polyvinyl alcohol and polyvinylpyrrolidone (see JP-A-5-302042), those containing a zwitterionic group-containing polymer having a betaine structure (see JP-A-2008-308658), Examples thereof include those containing an anionic compound and a cationic compound (see JP 2011-89112 A).
 しかし、上記ポリビニルアルコール及びポリビニルピロリドンを含む樹脂は、樹脂の経時劣化が大きいという不都合がある。特に、空調機の除霜運転によりフィンに対する加熱及び冷却が繰り返されると樹脂が劣化し、着霜や着氷が増加し易くなる。さらに、上記ベタイン構造を有する両性イオン基含有ポリマーを含む樹脂やアニオン化合物及びカチオン化合物を含む樹脂は、陽イオン及び陰イオンが共存することで、これらのイオンが反応し樹脂が保管中に劣化し易いという不都合や、製造コストが増加するという不都合がある。 However, the resin containing polyvinyl alcohol and polyvinyl pyrrolidone has a disadvantage that the deterioration with time of the resin is large. In particular, when heating and cooling of the fins are repeated by the defrosting operation of the air conditioner, the resin deteriorates, and frost formation and icing are likely to increase. Furthermore, the resin containing the zwitterionic group-containing polymer having the betaine structure and the resin containing the anion compound and the cation compound coexist with the cation and the anion, so that these ions react and the resin deteriorates during storage. There is an inconvenience that it is easy and a manufacturing cost increases.
特開昭55-164264号公報JP 55-164264 A 特開平5-302042号公報JP-A-5-302042 特開2008-308658号公報JP 2008-308658 A 特開2011-89112号公報JP 2011-89112 A
 本発明は、上述のような事情に基づいてなされたものであり、水分が氷点下において凝固することの抑制及び凝固した水分が樹脂被覆金属板に付着することによる着霜や着氷の低減効果を有しつつ、温度変化により劣化し難く、塗布前の組成物の安定性に優れることで保存コストを低減でき、かつ製造コストも低い樹脂被覆金属板の提供を目的とする。 The present invention has been made on the basis of the above-described circumstances, and has the effect of suppressing the solidification of moisture below freezing point and the effect of reducing frosting and icing due to the solidified moisture adhering to the resin-coated metal plate. An object of the present invention is to provide a resin-coated metal plate that is less likely to be deteriorated due to temperature changes, has excellent stability of the composition before coating, and can be reduced in storage cost and low in manufacturing cost.
 本発明の一局面である樹脂被覆金属板は、金属板、及びこの金属板の少なくとも一方の面側を被覆する被覆層を有する樹脂被覆金属板であって、上記被覆層が、アルキレングリコール単位を有するポリアルキレングリコール構造を含む化合物を含有し、上記アルキレングリコール単位の分子量が150以上8000以下であり、上記被覆層における上記化合物の含有量が5質量%以上100質量%以下であることを特徴とする。 The resin-coated metal plate according to one aspect of the present invention is a resin-coated metal plate having a metal plate and a coating layer that covers at least one surface side of the metal plate, wherein the coating layer contains an alkylene glycol unit. A compound containing a polyalkylene glycol structure having a molecular weight of 150 to 8000, and a content of the compound in the coating layer of 5 to 100% by mass. To do.
 本発明の樹脂被覆金属板は、水分が氷点下において凝固することの抑制及び凝固した水分が樹脂被覆金属板に付着することによる着霜や着氷の低減効果を有しつつ、温度変化により劣化し難く、塗布前の組成物の安定性に優れることで保存コストを低減でき、かつ製造コストも低い。 The resin-coated metal plate of the present invention has the effect of suppressing frost formation and icing due to the suppression of moisture solidification below freezing point and the adhesion of the solidified moisture to the resin-coated metal plate, but also deteriorates due to temperature changes. It is difficult, and the storage cost can be reduced and the manufacturing cost is low due to the excellent stability of the composition before coating.
 以下、本発明に係る樹脂被覆金属板の実施形態について説明する。 Hereinafter, embodiments of the resin-coated metal plate according to the present invention will be described.
 なお、本明細書において、「アルキレングリコール単位の分子量」とは、化合物中におけるアルキレングリコール単位1ユニットを形成する原子についての原子量の総和を意味する。上記樹脂組成物が複数の化合物を含有する等により、化合物中の上記原子量の総和の値が複数存在する場合は、これらの値の数平均値を意味する。「ジスルフィド結合を有する基」とは、-SS-R(Rは、炭素数1~20の1価の炭化水素基である。)で表される基を指す。「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。「主成分」とは、質量基準で最も多い成分(例えば50質量%以上)を指す。 In the present specification, “molecular weight of alkylene glycol unit” means the sum of atomic weights of atoms forming one unit of alkylene glycol unit in a compound. When the resin composition contains a plurality of compounds and there are a plurality of total values of the atomic weights in the compound, it means the number average value of these values. The “group having a disulfide bond” refers to a group represented by —SS—R (R is a monovalent hydrocarbon group having 1 to 20 carbon atoms). The “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group. The term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure. “Main component” refers to the most abundant component (for example, 50% by mass or more) on a mass basis.
 [樹脂被覆金属板]
 本実施形態の樹脂被覆金属板は、金属板、及びこの金属板の少なくとも一方の面側を被覆する被覆層を主に有する。また、金属板と被覆層との間に中間層をさらに有することが好ましい。さらに、これら以外の層をさらに有してもよい。
[Resin-coated metal plate]
The resin-coated metal plate of this embodiment mainly has a metal plate and a coating layer that covers at least one surface side of the metal plate. Moreover, it is preferable to further have an intermediate | middle layer between a metal plate and a coating layer. Furthermore, you may have a layer other than these.
 上記被覆層は、アルキレングリコール単位を有するポリアルキレングリコール構造を含む化合物を含有し、上記アルキレングリコール単位の分子量が150以上8000以下であり、上記被覆層における上記化合物の含有量が5質量%以上100質量%以下である。 The coating layer contains a compound having a polyalkylene glycol structure having an alkylene glycol unit, the molecular weight of the alkylene glycol unit is from 150 to 8000, and the content of the compound in the coating layer is from 5% by mass to 100%. It is below mass%.
 本実施形態の樹脂被覆金属板は、被覆層を形成する組成物が、分子量が150以上8000以下であるポリアルキレングリコール構造を有する化合物を上記範囲で含有することで、被覆層の表面近傍において、ポリアルキレングリコール構造により水分子が束縛される。その結果、当該樹脂被覆金属板に付着した水分の凝固点が降下し、氷点下においても水分を不凍水として存在させることができる。また、被覆層が上記化合物を上記割合で含有することで、上記被覆層の親水性が向上し、樹脂被覆金属板表面における水分の流動性が高まる。これらの結果、被覆層の表面において水分が凍結し難くなり、かつ被覆層表面に水分が溜まり難くなり、着霜や着氷が低減できる。また、上記化合物の安定性に起因し、被覆層の温度変化や水分による劣化も低減することができる。さらに、上記化合物が高い安定性を有することで、被覆層を形成する組成物を金属板に被覆する前における保存条件を厳密に制御する必要が無く、保存にかかるコストが低下する。加えて、被覆層を形成する組成物が含有するポリアルキレングリコール構造を有する化合物は安価であり、かつ適度な硬さを有する被膜を形成できるため加工が容易となる。これらの結果、当該樹脂被覆金属板は、製造コストが低減できるという利点もある。 In the resin-coated metal plate of this embodiment, the composition forming the coating layer contains a compound having a polyalkylene glycol structure having a molecular weight of 150 or more and 8000 or less in the above range, so that in the vicinity of the surface of the coating layer, Water molecules are bound by the polyalkylene glycol structure. As a result, the freezing point of the water adhering to the resin-coated metal plate is lowered, and the water can exist as antifreeze water even below the freezing point. Moreover, the hydrophilicity of the said coating layer improves because a coating layer contains the said compound in the said ratio, and the fluidity | liquidity of the water | moisture content in the resin-coated metal plate surface increases. As a result, moisture hardly freezes on the surface of the coating layer, and moisture hardly accumulates on the surface of the coating layer, so that frost formation and icing can be reduced. Further, due to the stability of the above compound, the temperature change of the coating layer and the deterioration due to moisture can also be reduced. Furthermore, since the above compound has high stability, it is not necessary to strictly control the storage conditions before coating the metal plate with the composition forming the coating layer, and the cost for storage is reduced. In addition, the compound having a polyalkylene glycol structure contained in the composition for forming the coating layer is inexpensive and can be easily processed because it can form a film having an appropriate hardness. As a result, the resin-coated metal plate has an advantage that the manufacturing cost can be reduced.
 <金属板>
 上記金属板は、当該樹脂被覆金属板の基材である。金属板は、矩形、円形等様々な形状の板とすることができる。この金属板の主成分としては、熱交換器のフィンに用いられるものであれば特に限定されないが、例えばアルミニウム及びその合金、ステンレス鋼等が挙げられる。これらの中で、アルミニウム及びアルミニウム合金が好ましい。
<Metal plate>
The metal plate is a base material of the resin-coated metal plate. The metal plate can be a plate having various shapes such as a rectangle and a circle. Although it will not specifically limit as a main component of this metal plate if it is used for the fin of a heat exchanger, For example, aluminum, its alloy, stainless steel etc. are mentioned. Of these, aluminum and aluminum alloys are preferred.
 金属板の主成分がアルミニウム又はアルミニウム合金の場合、熱伝導性及び加工性の観点からJIS-H4000(2014)に規定する合金番号1000系のアルミニウム又はアルミニウム合金が好ましく、合金番号1200のアルミニウム合金がより好ましい。 In the case where the main component of the metal plate is aluminum or an aluminum alloy, aluminum or an aluminum alloy having an alloy number of 1000 as defined in JIS-H4000 (2014) is preferable from the viewpoint of thermal conductivity and workability, and an aluminum alloy having an alloy number of 1200 is preferable. More preferred.
 上記金属板の平均厚みの下限としては、0.06mmが好ましく、0.08mmがより好ましい。一方、上記平均厚みの上限としては、0.3mmが好ましく、0.25mmがより好ましい。上記平均厚みが上記下限より小さいと、当該樹脂被覆金属板の強度が低下するおそれがある。逆に、上記平均厚みが上記上限を超えると、当該樹脂被覆金属板を熱交換器のフィンとして用いた場合の熱交換効率が低下するおそれがある。 The lower limit of the average thickness of the metal plate is preferably 0.06 mm, and more preferably 0.08 mm. On the other hand, the upper limit of the average thickness is preferably 0.3 mm, and more preferably 0.25 mm. When the average thickness is smaller than the lower limit, the strength of the resin-coated metal plate may be reduced. Conversely, if the average thickness exceeds the upper limit, the heat exchange efficiency may be reduced when the resin-coated metal plate is used as a fin of a heat exchanger.
 <被覆層>
 被覆層は、金属板の少なくとも一方の面を被覆するものである。また、被覆層は金属板の表面及び裏面の両方を被覆することが好ましく、金属板の全面を被覆することがより好ましい。
<Coating layer>
The coating layer covers at least one surface of the metal plate. The covering layer preferably covers both the front and back surfaces of the metal plate, and more preferably covers the entire surface of the metal plate.
 (樹脂組成物)
 被覆層は、ポリアルキレングリコール構造を有する化合物(以下、「特定化合物」ともいう。)を含有する樹脂組成物から形成される。
(Resin composition)
The coating layer is formed from a resin composition containing a compound having a polyalkylene glycol structure (hereinafter also referred to as “specific compound”).
 上記ポリアルキレングリコール構造は、-(O-(CR)x)y-で表されるアルキレングリコール単位を有する構造である。ここで、R及びRはそれぞれ独立して、水素原子又は炭素数1~10のアルキル基である。xは、2~4の整数である。yは、1~200の整数である。複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。 The polyalkylene glycol structure is a structure having an alkylene glycol unit represented by — (O— (CR a R b ) x) y—. Here, R a and R b are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. x is an integer of 2 to 4. y is an integer of 1 to 200. A plurality of R a may be the same or different, and a plurality of R b may be the same or different.
 上記R及びRとしては、水素原子、メチル基及びエチル基が好ましく、水素原子及びメチル基がより好ましく、水素原子がさらに好ましい。 As said R <a> and R <b> , a hydrogen atom, a methyl group, and an ethyl group are preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is more preferable.
 上記xとしては、2及び3が好ましく、2がより好ましい。 X is preferably 2 or 3, and more preferably 2.
 また、上記xが2の場合、上記R及びRとしては、全てが水素原子であること、及び複数のR及びRのうち1つのみがメチル基であり、残りが水素原子であることが好ましい。すなわち、上記ポリアルキレングリコール構造としては、ポリエチレングリコール構造及びポリプロピレングリコール構造が好ましい。ポリアルキレングリコール構造がこれらの構造であることで、上述のポリアルキレングリコール構造による水分子の束縛作用がより発揮される。 Further, if the x is 2, examples of the R a and R b, that all of them are hydrogen atoms, and there is only one methyl group of the plurality of R a and R b, the remainder are hydrogen atoms Preferably there is. That is, the polyalkylene glycol structure is preferably a polyethylene glycol structure or a polypropylene glycol structure. When the polyalkylene glycol structure is such a structure, the water molecule binding action by the polyalkylene glycol structure is more exhibited.
 上記yとしては、1~100の整数が好ましく、1~80の整数がより好ましい。 Y is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
 上記アルキレングリコール単位の分子量の下限としては、150であり、200が好ましく、300がより好ましく、500がさらに好ましく、1000が特に好ましい。一方、上記分子量の上限としては、8000であり、6000が好ましく、5000がより好ましく、4000がさらに好ましく、2800が特に好ましい。上記分子量が上記下限より小さいと、被覆層の強度が低下するおそれがある。逆に、上記分子量が上記上限を超えると、被覆層の着霜及び着氷低減効果が発揮され難くなるおそれがある。 The lower limit of the molecular weight of the alkylene glycol unit is 150, 200 is preferable, 300 is more preferable, 500 is more preferable, and 1000 is particularly preferable. On the other hand, the upper limit of the molecular weight is 8000, preferably 6000, more preferably 5000, further preferably 4000, and particularly preferably 2800. If the molecular weight is smaller than the lower limit, the strength of the coating layer may be reduced. On the contrary, when the molecular weight exceeds the upper limit, the frost formation and the icing reduction effect of the coating layer may not be exhibited.
 また、上記特定化合物は架橋性基を有してもよい。この架橋性基としては、特に限定されないが、例えば重合性炭素-炭素二重結合を含む基、重合性炭素-炭素三重結合を含む基、オキシラニル基(1,2-エポキシ構造)、オキセタニル基(1,3-エポキシ構造)等のエポキシ基、アルコキシメチル基、ホルミル基、アセチル基、ジアルキルアミノメチル基、ジメチロールアミノメチル基、2,3-エポキシトリシクロ[5.2.1.02.6]デカン基、3,4-エポキシトリシクロ[5.2.1.02.6]デカン基、イソシアネート基、ブロックされたイソシアネート基、オキサゾリン基等が挙げられる。これらの中で、エポキシ基、イソシアネート基、ブロックされたイソシアネート基及びオキサゾリン基が好ましい。 Further, the specific compound may have a crosslinkable group. The crosslinkable group is not particularly limited. For example, a group containing a polymerizable carbon-carbon double bond, a group containing a polymerizable carbon-carbon triple bond, an oxiranyl group (1,2-epoxy structure), an oxetanyl group ( 1,3-epoxy structure) and the like, alkoxymethyl group, formyl group, acetyl group, dialkylaminomethyl group, dimethylolaminomethyl group, 2,3-epoxytricyclo [5.2.1.02.6 Decane group, 3,4-epoxytricyclo [5.2.1.02.6] decane group, isocyanate group, blocked isocyanate group, oxazoline group and the like. Of these, epoxy groups, isocyanate groups, blocked isocyanate groups, and oxazoline groups are preferred.
 上記特定化合物としては、下記式(1)で表されるものが好ましい。上記化合物が下記式(1)で表されるものであれば、上述のポリアルキレングリコール構造による効果に加え、上記化合物が有するイソシアネート基等の基が金属板や中間層におけるヒドロキシル基等と結合し、被覆層と金属板との密着性が向上する。そのため温度変化や水分による被覆層の脱離を低減できる。また、被覆層内において上記化合物同士が結合することで、被覆層の強度が向上する。これらの結果、被覆層の劣化をより低減できる。 As the specific compound, a compound represented by the following formula (1) is preferable. If the above compound is represented by the following formula (1), in addition to the effect of the above polyalkylene glycol structure, a group such as an isocyanate group of the above compound is bonded to a hydroxyl group or the like in a metal plate or an intermediate layer. The adhesion between the coating layer and the metal plate is improved. Therefore, it is possible to reduce the detachment of the coating layer due to temperature change and moisture. Moreover, the intensity | strength of a coating layer improves because the said compounds couple | bond together in a coating layer. As a result, the deterioration of the coating layer can be further reduced.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はエチル基である。X及びXは、それぞれ独立して、水素原子、イソシアネート基、-SH、-OH、-NH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、エポキシ基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である。但し、X及びXのうち少なくとも1つはイソシアネート基、-NH、エポキシ基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である。Aは、Xがイソシアネート基、-SH、-OH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である場合、-NH-C(=O)-結合であり、Xが水素原子又はエポキシ基の場合、単結合であり、Xが-NHの場合、単結合又は-NH-C(=O)-結合である。Aは、Xがイソシアネート基、-SH、-OH、-NH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である場合、-NH-C(=O)-結合であり、Xが水素原子又はエポキシ基の場合、単結合であり、Xが-NHの場合、単結合又は-NH-C(=O)-結合である。B及びBは、炭素数1~8のアルカンジイル基、アレーンジイル基、メタンジイルアレーンジイル基又はアレーンジイルメタンジイルアレーンジイル基である。nは、2~4の整数である。mは、1~200の整数である。複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。mが2以上の場合、複数のnは同一でも異なっていてもよい。 In the above formula (1), R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group. X 1 and X 2 are each independently a hydrogen atom, an isocyanate group, —SH, —OH, —NH 2 , —CH═CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, an epoxy group, A group represented by the formula (1-1), a group represented by the following formula (1-2), a group represented by the following formula (1-3), or a group represented by the following formula (1-4) It is. However, at least one of X 1 and X 2 is an isocyanate group, —NH 2 , an epoxy group, a group represented by the following formula (1-1), a group represented by the following formula (1-2), A group represented by the formula (1-3) or a group represented by the following formula (1-4). A 1 represents X 1 is an isocyanate group, —SH, —OH, —CH═CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, a group represented by the following formula (1-1), a group represented by the following formula ( In the case of a group represented by 1-2), a group represented by the following formula (1-3) or a group represented by the following formula (1-4), a —NH—C (═O) — bond And when X 1 is a hydrogen atom or an epoxy group, it is a single bond, and when X 1 is —NH 2 , it is a single bond or —NH—C (═O) — bond. A 2 represents X 2 is an isocyanate group, —SH, —OH, —NH 2 , —CH═CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, or a group represented by the following formula (1-1) In the case of a group represented by the following formula (1-2), a group represented by the following formula (1-3) or a group represented by the following formula (1-4), —NH—C (═O ) -Bond, when X 2 is a hydrogen atom or an epoxy group, it is a single bond, and when X 2 is —NH 2 , it is a single bond or —NH—C (═O) — bond. B 1 and B 2 are an alkanediyl group, an arenediyl group, a methanediylarenediyl group or an arenediylmethanediylarenediyl group having 1 to 8 carbon atoms. n is an integer of 2 to 4. m is an integer of 1 to 200. A plurality of R 1 may be the same or different, and a plurality of R 2 may be the same or different. When m is 2 or more, a plurality of n may be the same or different.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(1-1)及び(1-2)中、Ra1~Ra3は、それぞれ独立して、炭素数1~8のアルキル基又はフェニル基である。 In the above formulas (1-1) and (1-2), R a1 to R a3 are each independently an alkyl group having 1 to 8 carbon atoms or a phenyl group.
 式(1-3)中、Ra4及びRa5は、それぞれ独立して、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基又は炭素数1~8のアルキルアミノ基である。 In formula (1-3), R a4 and R a5 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkylamino group having 1 to 8 carbon atoms.
 式(1-4)中、Ra6は、炭素数1~7のアルカンジイル基である。 In formula (1-4), R a6 is an alkanediyl group having 1 to 7 carbon atoms.
 上記R及びRとしては、水素原子及びメチル基が好ましく、水素原子がより好ましい。 As said R < 1 > and R < 2 >, a hydrogen atom and a methyl group are preferable, and a hydrogen atom is more preferable.
 上記X及びXのうち少なくとも1つは、イソシアネート基、-NH、エポキシ基又は上記式(1-1)~(1-4)で表される基であり、これらの基は互いに架橋結合し得る、又はヒドロキシル基等の他の基と架橋結合し得る基である。そのため、上記特定化合物が上記式(1)で表される化合物であることで、被覆層と金属層や中間層との間でイソシアネート基による架橋結合が生じ、又被覆層内においてもイソシアネート基による架橋結合が生じる。 At least one of X 1 and X 2 is an isocyanate group, —NH 2 , an epoxy group or a group represented by the above formulas (1-1) to (1-4), and these groups are cross-linked with each other. A group that can be bonded or cross-linked with other groups such as hydroxyl groups. Therefore, when the specific compound is a compound represented by the above formula (1), cross-linking by an isocyanate group occurs between the coating layer and the metal layer or the intermediate layer, and also in the coating layer due to the isocyanate group. Cross-linking occurs.
 上記X及びXとしては、メチル基、イソシアネート基、-NH及びエポキシ基が好ましい。また、上記X又はXが-S-S-Rで表されるジスルフィド構造を有する基である場合、このRとしては鎖状炭化水素基が好ましく、アルキル基がより好ましい。 X 1 and X 2 are preferably a methyl group, an isocyanate group, —NH 2 and an epoxy group. Further, when X 1 or X 2 is a group having a disulfide structure represented by —S—S—R, this R is preferably a chain hydrocarbon group, and more preferably an alkyl group.
 上記B及びBとしては炭素数1~8のアルカンジイル基及びアレーンジイル基が好ましく、メタンジイル基、エタンジイル基、プロパンジイル基、ベンゼンジイル基及びトルエンジイル基がより好ましい。 B 1 and B 2 are preferably an alkanediyl group and an arenediyl group having 1 to 8 carbon atoms, more preferably a methanediyl group, an ethanediyl group, a propanediyl group, a benzenediyl group, and a toluenediyl group.
 上記nとしては、2及び3が好ましく、2がより好ましい。 N is preferably 2 or 3, more preferably 2.
 また、上記nが2の場合、上記R及びRとしては、全てが水素原子であること、あるいは、複数のR及びRのうち1つのみがメチル基であり、残りが水素原子であることが好ましい。すなわち、上記式(1)で表される特定化合物がポリエチレングリコール構造を有すること、あるいは、上記式(1)で表される特定化合物がポリプロピレングリコール構造を有することが好ましい。上記式(1)で表される特定化合物がこれらの構造を有することで、上述のポリアルキレングリコール構造による水分子の束縛作用がより発揮される。 When n is 2, all of R 1 and R 2 are hydrogen atoms, or only one of a plurality of R 1 and R 2 is a methyl group, and the rest are hydrogen atoms. It is preferable that That is, the specific compound represented by the formula (1) preferably has a polyethylene glycol structure, or the specific compound represented by the formula (1) preferably has a polypropylene glycol structure. When the specific compound represented by the formula (1) has these structures, the water molecule binding action due to the polyalkylene glycol structure is more exhibited.
 上記mとしては、1~100の整数が好ましく、1~80の整数がより好ましい。 M is preferably an integer of 1 to 100, and more preferably an integer of 1 to 80.
 上記Ra1~Ra3としては、メチル基、エチル基、プロピル基、ブチル基及びフェニル基が好ましく例示され、メチル基、エチル基及びフェニル基がより好ましい。 R a1 to R a3 are preferably a methyl group, an ethyl group, a propyl group, a butyl group and a phenyl group, and more preferably a methyl group, an ethyl group and a phenyl group.
 上記Ra4及びRa5としては、炭素数1~8のアルキル基及びアルキルアミノ基が好ましく、メチル基、エチル基、プロピル基及びブチル基がより好ましく、メチル基及びエチル基がより好ましい。 R a4 and R a5 are preferably an alkyl group having 1 to 8 carbon atoms and an alkylamino group, more preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and more preferably a methyl group and an ethyl group.
 上記Ra6としては、プロパンジイル基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、へプタンジイル基が好ましく、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基がより好ましい。 R a6 is preferably a propanediyl group, a butanediyl group, a pentanediyl group, a hexanediyl group or a heptanediyl group, more preferably a butanediyl group, a pentanediyl group or a hexanediyl group.
 ポリアルキレングリコール構造が上記構造であることで、当該樹脂被覆金属板の着霜をより低減できる。 When the polyalkylene glycol structure is the above structure, frost formation on the resin-coated metal plate can be further reduced.
 上記式(1)で表される特定化合物としては、例えばX及びXがオキシラニル基、A及びAが単結合、B及びBがメタンジイル基、nが2、R及びRが水素原子であるものとして下記式(1-a)で表される化合物が、また、X及びXが-NH、A及びAが単結合、B及びBがエタンジイル基、nが2、R及びRが水素原子であるものとして下記式(1-b)で表される化合物がそれぞれ挙げられる。 As a specific compound represented by the above formula (1), for example, X 1 and X 2 are oxiranyl groups, A 1 and A 2 are single bonds, B 1 and B 2 are methanediyl groups, n is 2, R 1 and R A compound represented by the following formula (1-a) in which 2 is a hydrogen atom, X 1 and X 2 are —NH 2 , A 1 and A 2 are single bonds, and B 1 and B 2 are ethanediyl. Examples of the group, n being 2, and R 1 and R 2 being a hydrogen atom include compounds represented by the following formula (1-b).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、上記特定化合物としては、下記式(2-1)で表される構造、下記式(2-2)で表される構造又はこれらを含む構造(以下、「第1構造」ともいう。)と、下記式(3)で表される構造(以下、「第2構造」ともいう。)とを有するものも好ましい。上記化合物がこれらの構造を有することで、加熱及び冷却を繰り返した場合における樹脂層の劣化を低減することができ、除霜運転後の着霜及び着氷低減効果を促進できる。 Further, as the specific compound, a structure represented by the following formula (2-1), a structure represented by the following formula (2-2), or a structure including these (hereinafter also referred to as “first structure”). And a structure represented by the following formula (3) (hereinafter also referred to as “second structure”) are also preferable. When the said compound has these structures, deterioration of the resin layer in the case of repeating heating and cooling can be reduced, and the effect of reducing frost formation and icing after the defrosting operation can be promoted.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(2-1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はエチル基である。pは、2~4の整数である。qは、1~200の整数である。複数のR3は同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。qが2以上の場合、複数のpは同一でも異なっていてもよい。 In the above formula (2-1), R 3 and R 4 are each independently a hydrogen atom, a methyl group or an ethyl group. p is an integer of 2 to 4. q is an integer of 1 to 200. Multiple R3 may be the same or different, a plurality of R 4 may be the same or different. When q is 2 or more, a plurality of p may be the same or different.
 上記式(2-2)中、R~Rは、それぞれ独立して、水素原子、メチル基又はエチル基である。Xは、水素原子、ヒドロキシル基、メチル基、エチル基、メルカプト基、メトキシ基又はエトキシ基である。rは、2~4の整数である。sは、1~200の整数である。tは、1~200の整数である。複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。sが2以上の場合、複数のrは同一でも異なっていてもよい。tが2以上の場合、複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。 In the above formula (2-2), R 5 to R 9 are each independently a hydrogen atom, a methyl group or an ethyl group. X 3 is a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group, a mercapto group, a methoxy group or an ethoxy group. r is an integer of 2 to 4. s is an integer of 1 to 200. t is an integer of 1 to 200. A plurality of R 5 may be the same or different, and a plurality of R 6 may be the same or different. When s is 2 or more, a plurality of r may be the same or different. When t is 2 or more, the plurality of R 7 may be the same or different, the plurality of R 8 may be the same or different, and the plurality of R 9 may be the same or different.
 上記R~Rとしては、水素原子及びメチル基が好ましく、水素原子が好ましい。 R 3 to R 9 are preferably a hydrogen atom and a methyl group, and more preferably a hydrogen atom.
 上記Xとしては、水素原子及びメチル基が好ましく、メチル基がより好ましい。 X 3 is preferably a hydrogen atom and a methyl group, and more preferably a methyl group.
 上記pとしては、2及び3が好ましく、2がより好ましい。 The above p is preferably 2 or 3, and more preferably 2.
 上記qとしては、1~100の整数が好ましく、1~80の整数がより好ましい。 Q is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
 上記rとしては、2及び3が好ましく、2がより好ましい。 The above r is preferably 2 or 3, more preferably 2.
 上記sとしては、1~100の整数が好ましく、1~80の整数がより好ましい。 S is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
 上記tとしては、1~100の整数が好ましく、1~80の整数がより好ましい。 T is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(3)中、R10~R12は、それぞれ独立して、水素原子、メチル基又はエチル基である。Zは、下記式(i-1)~(i-4)のいずれかで表される基である。uは、1~200の整数である。uが2以上の場合、複数のR10は同一でも異なっていてもよく、複数のR11は同一でも異なっていてもよく、複数のR12は同一でも異なっていてもよい。 In the above formula (3), R 10 to R 12 are each independently a hydrogen atom, a methyl group or an ethyl group. Z is a group represented by any of the following formulas (i-1) to (i-4). u is an integer of 1 to 200. When u is 2 or more, the plurality of R 10 may be the same or different, the plurality of R 11 may be the same or different, and the plurality of R 12 may be the same or different.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(i-1)中、Lは、炭素数1~5のアルカンジイル基である。 In the above formula (i-1), L 1 is an alkanediyl group having 1 to 5 carbon atoms.
 上記式(i-2)中、Lは、炭素数1~8のアルカンジイル基、フェニレン基、メチレンフェニレン基又はフェニレンメチレンフェニレン基であり、R13は、イソシアネート基、上記式(1-1)で表される基、上記式(1-2)で表される基、上記式(1-3)で表される基又は上記式(1-4)で表される基である。 In the above formula (i-2), L 2 is an alkanediyl group having 1 to 8 carbon atoms, a phenylene group, a methylenephenylene group or a phenylenemethylenephenylene group, R 13 is an isocyanate group, and the above formula (1-1 ), A group represented by the above formula (1-2), a group represented by the above formula (1-3), or a group represented by the above formula (1-4).
 上記式(i-3)中、Lは、炭素数1~5のアルカンジイル基である。R14及びR15は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基である。 In the above formula (i-3), L 3 is an alkanediyl group having 1 to 5 carbon atoms. R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
 上記式(i-4)中、R16及びR17は、それぞれ独立して、水素原子、メチル基又はエチル基である。 In the above formula (i-4), R 16 and R 17 are each independently a hydrogen atom, a methyl group or an ethyl group.
 上記R10~R12、R14及びR15としては、水素原子及びメチル基が好ましく例示され、水素原子がより好ましい。 Examples of R 10 to R 12 , R 14 and R 15 are preferably a hydrogen atom and a methyl group, and more preferably a hydrogen atom.
 上記uとしては、1~100の整数が好ましく、1~80の整数がより好ましい。 U is preferably an integer of 1 to 100, more preferably an integer of 1 to 80.
 上記Zとしては、上記式(i-1)で表される基及び上記式(i-3)で表される基が好ましく、上記式(i-1)で表される基がより好ましい。 Z is preferably a group represented by the above formula (i-1) and a group represented by the above formula (i-3), and more preferably a group represented by the above formula (i-1).
 上記L~Lで表される炭素数1~5のアルカンジイル基としては、例えばメタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基等が挙げられる。これらの中で、メタンジイル基及びエタンジイル基が好ましく、エタンジイル基がより好ましい。 Examples of the alkanediyl group having 1 to 5 carbon atoms represented by L 1 to L 3 include a methanediyl group, an ethanediyl group, a propanediyl group, and a butanediyl group. Among these, a methanediyl group and an ethanediyl group are preferable, and an ethanediyl group is more preferable.
 上記R13としては、イソシアネート基及び上記式(1-1)で表される基が好ましく、イソシアネート基がより好ましい。 R 13 is preferably an isocyanate group or a group represented by the above formula (1-1), more preferably an isocyanate group.
 上記R13、R14、R15及びR16で表される炭素数1~5のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等が挙げられる。これらの中で、メチル基及びエチル基が好ましい。 Examples of the alkyl group having 1 to 5 carbon atoms represented by R 13 , R 14 , R 15 and R 16 include a methyl group, an ethyl group, a propyl group and a butyl group. Among these, a methyl group and an ethyl group are preferable.
 上記第1構造及び第2構造が上記構造を有することで、当該樹脂被覆金属板の着霜及び着氷低減効果をより促進できると考えられる。 It is considered that the frost formation and the icing reduction effect of the resin-coated metal plate can be further promoted by the first structure and the second structure having the above structure.
 上記特定化合物における上記第1構造の第2構造に対するモル比の下限としては、30/70が好ましく、40/60がより好ましい。一方、上記モル比の上限としては、99/1が好ましく、95/5がより好ましい。 The lower limit of the molar ratio of the first structure to the second structure in the specific compound is preferably 30/70, more preferably 40/60. On the other hand, the upper limit of the molar ratio is preferably 99/1, and more preferably 95/5.
 上記モル比が上記下限より小さいと、被覆層の親水性が向上し難くなり、着霜及び着氷低減効果が不十分となるおそれがある。逆に、上記モル比が上記上限を超えると、被覆層の耐水性が低下し、結露水により被覆層が金属板から剥離し易くなるおそれがある。 If the molar ratio is less than the lower limit, the hydrophilicity of the coating layer is difficult to improve, and the effect of reducing frost formation and icing may be insufficient. On the other hand, when the molar ratio exceeds the upper limit, the water resistance of the coating layer is lowered, and the coating layer may be easily peeled off from the metal plate by condensed water.
 また、上記特定化合物は、上記第1構造及び第2構造以外の構造を有してもよい。このような構造としては、例えばメタクリル酸に由来する構造、メタクリル酸メチルに由来する構造、メタクリル酸エチルに由来する構造、酢酸ビニルに由来する構造、アクリル酸に由来する構造、ビニルアルコールに由来する構造、ビニルスルホン酸に由来する構造、ビニルピロリドンに由来する構造、ビニルピリジンに由来する構造、スチレンスルホン酸に由来する構造等が挙げられる。 Further, the specific compound may have a structure other than the first structure and the second structure. Examples of such structures include structures derived from methacrylic acid, structures derived from methyl methacrylate, structures derived from ethyl methacrylate, structures derived from vinyl acetate, structures derived from acrylic acid, and vinyl alcohol. Examples thereof include a structure, a structure derived from vinyl sulfonic acid, a structure derived from vinyl pyrrolidone, a structure derived from vinyl pyridine, and a structure derived from styrene sulfonic acid.
 上記樹脂組成物の全固形分に対する上記特定化合物の含有量の下限としては、5質量%であり、20質量%が好ましく、30質量%がより好ましい。一方、上記含有量の上限としては、100質量%であり、90質量%が好ましく、85質量%がより好ましい。上記含有量が上記下限より小さいと、当該樹脂被覆金属板の着霜及び着氷低減効果が不十分となるおそれがある。「樹脂組成物の全固形分」とは、上記樹脂組成物の溶媒以外の成分の総和をいい、この全固形分の質量は、上記樹脂組成物から形成される被覆層の質量と同等である。 The lower limit of the content of the specific compound with respect to the total solid content of the resin composition is 5% by mass, preferably 20% by mass, and more preferably 30% by mass. On the other hand, as an upper limit of the said content, it is 100 mass%, 90 mass% is preferable and 85 mass% is more preferable. When the content is smaller than the lower limit, the frost formation and the icing reduction effect of the resin-coated metal plate may be insufficient. The “total solid content of the resin composition” refers to the sum of components other than the solvent of the resin composition, and the mass of the total solid content is equal to the mass of the coating layer formed from the resin composition. .
 (親水化化合物)
 上記樹脂組成物は、親水化化合物をさらに含有することが好ましい。このような親水化化合物をさらに含有することで、上記被覆層の親水性をより向上でき、その結果当該樹脂被覆金属板の着霜及び着氷をより低減できる。親水化化合物の含有の形態としては、上記特定化合物とは別の化合物として上記樹脂組成物中に存在する形態、及び上記特定化合物の一部に親水化化合物に由来する構造が含まれる形態が挙げられる。
(Hydrophilic compound)
The resin composition preferably further contains a hydrophilic compound. By further containing such a hydrophilic compound, the hydrophilicity of the coating layer can be further improved, and as a result, frost formation and icing of the resin-coated metal plate can be further reduced. Examples of the form of inclusion of the hydrophilic compound include a form that exists in the resin composition as a compound different from the specific compound, and a form in which a part of the specific compound includes a structure derived from the hydrophilic compound. It is done.
 上記親水化化合物としては、例えばカルボキシル基、スルホン酸基、リン酸基等を有するアニオン性モノマー、アミノ基の4級塩等の官能基を有するカチオン性モノマー、水素結合性を有するノニオン性モノマーなどが挙げられる。このような化合物の具体例としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、これらの酸のアルカリ金属塩、ヒドロキシメチルメタクリレート、アクリルアミド、ジエチルアクリルアミド(例えばKJケミカルズ社の「DEAA(登録商標)」)、N,N-ジメチルアクリルアミド(例えばKJケミカルズ社の「DMAA(登録商標)」)、N,N-ジメチルアミノプロピルアクリルアミド(例えばKJケミカルズ社の「DMAPAA(登録商標)」)、2-ヒドロキシエチルアクリルアミド(例えばKJケミカルズ社の「HEAA(登録商標)」)、N-イソプロピルアクリルアミド等のN-アルキルアクリルアミド、N,N-ジメチルアミノエチルアクリレート、N-アクリロイルモルホリン(例えばKJケミカルズ社の「ACMO(登録商標)」)、N-ビニルピロリドン等のN-ビニルラクタム類、メラミン化合物などが挙げられる。これらの化合物は単独で親水化化合物として用いてもよく、これらの化合物を用いた重合体や共重合体を親水化化合物として用いてもよい。 Examples of the hydrophilic compound include an anionic monomer having a carboxyl group, a sulfonic acid group, a phosphoric acid group, a cationic monomer having a functional group such as a quaternary salt of an amino group, and a nonionic monomer having a hydrogen bonding property. Is mentioned. Specific examples of such compounds include, for example, 2-acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid, alkali metal salts of these acids, hydroxymethyl methacrylate, acrylamide, and diethylacrylamide (for example, “KJ Chemicals” DEAA (registered trademark) "), N, N-dimethylacrylamide (for example," DMAA (registered trademark) "of KJ Chemicals), N, N-dimethylaminopropylacrylamide (for example," DMAPAA (registered trademark) "of KJ Chemicals) ), 2-hydroxyethyl acrylamide (for example, “HEAA (registered trademark)” of KJ Chemicals), N-alkyl acrylamide such as N-isopropyl acrylamide, N, N-dimethylaminoethyl acrylate, N-acryloyl morpholine (E.g. KJ Chemicals Inc. "ACMO (registered trademark)"), N- vinyl lactams such as N- vinylpyrrolidone, and the like melamine compound. These compounds may be used alone as a hydrophilic compound, or a polymer or copolymer using these compounds may be used as a hydrophilic compound.
 親水化化合物としては、これらの中で、N-アルキルアクリルアミド、N-ビニルラクタム類及びメラミン化合物が好ましく、N-イソプロピルアクリルアミド、N-メチルピロリドン及びメラミン化合物がより好ましい。 Among these, N-alkyl acrylamide, N-vinyl lactams and melamine compounds are preferable as the hydrophilizing compound, and N-isopropylacrylamide, N-methylpyrrolidone and melamine compounds are more preferable.
 上記樹脂組成物が上記親水化化合物を上記特定化合物とは異なる化合物として含有する場合、上記樹脂組成物中の全固形分に対する上記親水化化合物の含有量の下限としては、1質量%が好ましく、3質量%がより好ましい。一方、上記含有量の上限としては、30質量%が好ましく、25質量%がより好ましい。 When the resin composition contains the hydrophilic compound as a compound different from the specific compound, the lower limit of the content of the hydrophilic compound relative to the total solid content in the resin composition is preferably 1% by mass, 3 mass% is more preferable. On the other hand, the upper limit of the content is preferably 30% by mass, and more preferably 25% by mass.
 上記樹脂組成物が上記親水化化合物を上記特定化合物の一部として含有する場合、上記特定化合物中の上記親水化化合物に由来する構造の含有割合の下限としては、1質量%が好ましく、3質量%がより好ましい。一方、上記含有割合の上限としては、30質量%が好ましく、25質量%がより好ましい。 When the said resin composition contains the said hydrophilization compound as a part of said specific compound, as a minimum of the content rate of the structure originating in the said hydrophilization compound in the said specific compound, 1 mass% is preferable, and 3 mass % Is more preferable. On the other hand, as an upper limit of the said content rate, 30 mass% is preferable and 25 mass% is more preferable.
 上記含有量又は含有割合が上記下限より小さいと、親水化化合物による被覆層の親水性の増加が不十分となるおそれがある。逆に、上記含有量又は含有割合が上記上限を超えると、被覆層の耐水性や耐熱性が低下するおそれがある。 If the content or content ratio is less than the lower limit, the hydrophilicity of the coating layer due to the hydrophilic compound may be insufficiently increased. Conversely, if the content or content ratio exceeds the upper limit, the water resistance and heat resistance of the coating layer may be reduced.
 (その他の成分)
 上記樹脂組成物は、本発明の効果を損なわない範囲でその他の成分を含有してもよい。このその他の成分としては、例えば溶媒、上記特定化合物以外のポリマー、シリカ粒子、架橋剤、界面活性剤、表面調整剤、湿潤分散剤、沈降防止剤、酸化防止剤、消泡剤、防錆剤、抗菌剤、防カビ剤等が挙げられる。
(Other ingredients)
The said resin composition may contain another component in the range which does not impair the effect of this invention. Examples of the other components include solvents, polymers other than the above specific compounds, silica particles, crosslinking agents, surfactants, surface conditioners, wetting and dispersing agents, antisettling agents, antioxidants, antifoaming agents, and rust inhibitors. , Antibacterial agents, fungicides and the like.
 上記特定化合物以外のポリマーとしては、例えばオキサゾリン基を側鎖に有するオキサゾリン含有ポリマー等が挙げられる。上記樹脂組成物がこのようなオキサゾリン含有ポリマーをさらに有することで、オキサゾリン含有ポリマーと上記特定化合物等とが反応し、被覆層の強度をさらに向上できる。また、上記オキサゾリン基と上記中間層におけるカルボキシル基等とが反応するため、被覆層と中間層との結合をより強固なものとできる。さらに、このようなオキサゾリン含有ポリマーは親水性に優れるため、上記被覆層の親水性をさらに向上できる。このようなオキサゾリン含有ポリマーとしては、例えば日本触媒社の「エポクロス(登録商標)」等が挙げられる。 Examples of the polymer other than the specific compound include an oxazoline-containing polymer having an oxazoline group in the side chain. When the resin composition further includes such an oxazoline-containing polymer, the oxazoline-containing polymer reacts with the specific compound, and the strength of the coating layer can be further improved. Further, since the oxazoline group reacts with the carboxyl group or the like in the intermediate layer, the bond between the coating layer and the intermediate layer can be made stronger. Furthermore, since such an oxazoline-containing polymer is excellent in hydrophilicity, the hydrophilicity of the coating layer can be further improved. Examples of such an oxazoline-containing polymer include “Epocross (registered trademark)” manufactured by Nippon Shokubai Co., Ltd.
 シリカ粒子は、SiOを主成分とする粒子である。上記樹脂組成物がシリカ粒子をさらに有することで、被覆層が温度変化による劣化をよりし難くなり、また、塗布前の組成物の安定性が向上することで、保存コストをより低減することができる。シリカ粒子の形状は、略球形状等の他、鎖状であってもよい。シリカ粒子の平均粒径の下限としては、1nmが好ましく、4nmがより好ましい。上記平均粒径の上限としては、200nmが好ましく、20nmがより好ましい。シリカ粒子としては、例えばコロイダルシリカ、ヒュームドシリカ等が挙げられる。コロイダルシリカの市販品としては、例えばスノーテックスXS、同SS、同40、同N、同UP(以上、日産化学工業社)等が挙げられる。 Silica particles are particles mainly composed of SiO 2 . When the resin composition further includes silica particles, the coating layer is less likely to be deteriorated due to temperature change, and the stability of the composition before coating is improved, so that the storage cost can be further reduced. it can. The shape of the silica particles may be a chain shape in addition to a substantially spherical shape. The lower limit of the average particle size of the silica particles is preferably 1 nm, and more preferably 4 nm. The upper limit of the average particle diameter is preferably 200 nm, and more preferably 20 nm. Examples of the silica particles include colloidal silica and fumed silica. Examples of commercially available colloidal silica include Snowtex XS, SS, 40, N, UP (and above, Nissan Chemical Industries).
 上記樹脂組成物が上記その他の成分を含有する場合、上記樹脂組成物中の全固形分に対する上記その他の成分の含有量の下限としては、1質量%が好ましく、3質量%がより好ましい。一方、上記含有量の上限としては、90質量%が好ましく、85質量%がより好ましい。 When the resin composition contains the other components, the lower limit of the content of the other components with respect to the total solid content in the resin composition is preferably 1% by mass, and more preferably 3% by mass. On the other hand, the upper limit of the content is preferably 90% by mass, and more preferably 85% by mass.
 上記被覆層における上記特定化合物の含有量の下限としては、5質量%であり、20質量%が好ましく、30質量%がより好ましい。一方、上記含有量の上限としては、100質量%であり、90質量%が好ましく、85質量%がより好ましい。上記含有量が上記下限より小さいと、当該樹脂被覆金属板の着霜及び着氷低減効果が不十分となるおそれがある。 The lower limit of the content of the specific compound in the coating layer is 5% by mass, preferably 20% by mass, and more preferably 30% by mass. On the other hand, as an upper limit of the said content, it is 100 mass%, 90 mass% is preferable and 85 mass% is more preferable. When the content is smaller than the lower limit, the frost formation and the icing reduction effect of the resin-coated metal plate may be insufficient.
 上記被覆層の平均厚みの下限としては、0.1μmが好ましく、0.3μmがより好ましい。一方、上記平均厚みの上限としては、5μmが好ましく、3μmがより好ましい。上記平均厚みが上記下限より小さいと、被覆層の強度が低下するおそれがある。逆に、上記平均厚みが上記上限を超えると、被覆層が断熱材として働き、当該樹脂被覆金属板を熱交換器のフィンとして用いた場合の熱交換効率が低下するおそれがある。 The lower limit of the average thickness of the coating layer is preferably 0.1 μm, more preferably 0.3 μm. On the other hand, the upper limit of the average thickness is preferably 5 μm, and more preferably 3 μm. When the average thickness is smaller than the lower limit, the strength of the coating layer may be reduced. On the contrary, when the average thickness exceeds the upper limit, the coating layer works as a heat insulating material, and there is a possibility that the heat exchange efficiency when the resin-coated metal plate is used as a fin of the heat exchanger is lowered.
 <中間層>
 中間層は、樹脂を主成分とし、被覆層と金属板との間に積層される層である。主成分の樹脂が上記基を上記範囲で有する中間層を有することで、上記基が被覆層中の化合物や金属板と反応し、その結果上記被覆層の耐水性及び耐熱性が向上する。
<Intermediate layer>
An intermediate | middle layer is a layer which has resin as a main component and is laminated | stacked between a coating layer and a metal plate. When the main component resin has an intermediate layer having the above group in the above range, the above group reacts with a compound or a metal plate in the coating layer, and as a result, the water resistance and heat resistance of the coating layer are improved.
 上記樹脂としては、ヒドロキシル基、アミノ基、イミノ基、カルボキシル基、メトキシカルボニル基、カルボキシレート基、又はこれらの組み合わせを有するとよい。これらの基の中で、ヒドロキシル基、イミノ基、カルボキシル基、カルボキシレート基及びこれらの組み合わせが好ましい。 The resin may have a hydroxyl group, an amino group, an imino group, a carboxyl group, a methoxycarbonyl group, a carboxylate group, or a combination thereof. Among these groups, a hydroxyl group, an imino group, a carboxyl group, a carboxylate group, and a combination thereof are preferable.
 上記樹脂における上記基の合計含有量の下限としては、0.5モル/kgが好ましく、1モル/kgがより好ましく、2モル/kgがさらに好ましい。一方、上記合計含有量の上限としては、20モル/kgが好ましく、15モル/kgがより好ましく、10モル/kgがさらに好ましい。上記合計含有量が上記下限より小さいと、被覆層の耐水性及び耐熱性が向上し難くなるおそれがある。逆に、上記合計含有量が上記上限を超えると、中間層の強度が低下するおそれがある。 The lower limit of the total content of the groups in the resin is preferably 0.5 mol / kg, more preferably 1 mol / kg, and even more preferably 2 mol / kg. On the other hand, the upper limit of the total content is preferably 20 mol / kg, more preferably 15 mol / kg, and even more preferably 10 mol / kg. If the total content is smaller than the lower limit, the water resistance and heat resistance of the coating layer may be difficult to improve. Conversely, if the total content exceeds the upper limit, the strength of the intermediate layer may be reduced.
 上記樹脂としては、上記基を上記割合で有するものであれば特に限定されず、例えば市販品を用いることができる。 The resin is not particularly limited as long as it has the above group in the above ratio, and for example, a commercially available product can be used.
 上記中間層の平均厚みの下限としては、0.1μmが好ましく、0.3μmがより好ましい。一方、上記平均厚みの上限としては、5μmが好ましく、3μmがより好ましい。上記平均厚みが上記下限より小さいと、被覆層の耐水性及び耐熱性が向上し難くなるおそれや、中間層の強度が低下するおそれがある。逆に、上記平均厚みが上記上限を超えると、当該樹脂被覆金属板の厚みが過度に増加するおそれがある。 The lower limit of the average thickness of the intermediate layer is preferably 0.1 μm, more preferably 0.3 μm. On the other hand, the upper limit of the average thickness is preferably 5 μm, and more preferably 3 μm. If the average thickness is smaller than the lower limit, the water resistance and heat resistance of the coating layer may be difficult to improve, and the strength of the intermediate layer may be reduced. On the contrary, when the average thickness exceeds the upper limit, the thickness of the resin-coated metal plate may be excessively increased.
 <その他の層>
 当該樹脂被覆金属板は、上記被覆層、中間層及び金属板以外の層をさらに有してもよい。このような他の層としては、例えば耐食性向上層等が挙げられる。他の層は、被覆層と中間層との間、又は中間層と金属層との間に設けられることが好ましい。
<Other layers>
The resin-coated metal plate may further include a layer other than the coating layer, the intermediate layer, and the metal plate. Examples of such other layers include a corrosion resistance improving layer. The other layer is preferably provided between the covering layer and the intermediate layer, or between the intermediate layer and the metal layer.
 上記耐食性向上層としては、例えば化成処理被膜層、耐食性皮膜層等が挙げられる。これらの層は、1種のみを積層してもよく、2種以上を積層してもよい。 Examples of the corrosion resistance improving layer include a chemical conversion coating layer and a corrosion resistance coating layer. Only one kind of these layers may be laminated, or two or more kinds may be laminated.
 (化成処理皮膜層)
 上記化成処理皮膜層は、金属板の表面をクロム、ジルコニウム、チタン等を含有する化合物で処理することで形成できる。
(Chemical conversion coating layer)
The said chemical conversion treatment film layer can be formed by processing the surface of a metal plate with the compound containing chromium, zirconium, titanium, etc.
 上記化合物としては、例えばリン酸クロメート、リン酸ジルコニウム、酸化ジルコニウム、クロム酸クロメート、リン酸亜鉛、リン酸チタン等の無機酸化物や、アクリル-ジルコニウム複合体等の有機-無機複合化合物などが挙げられる。 Examples of the compound include inorganic oxides such as phosphate chromate, zirconium phosphate, zirconium oxide, chromate chromate, zinc phosphate and titanium phosphate, and organic-inorganic composite compounds such as acrylic-zirconium composites. It is done.
 上記化合物がリン酸クロメートの場合、上記化成処理皮膜層を形成する際における金属板への上記化合物付着量の下限としては、Cr換算で1mg/mが好ましく、5mg/mがより好ましい。一方、上記付着量の上限としては、Cr換算で付着量100mg/mが好ましく、80mg/mがより好ましい。上記付着量が上記下限より小さいと、化成処理皮膜層の厚みが不足し、金属板の耐食性が向上し難くなるおそれがある。逆に、上記付着量が上記上限を超えると、化成処理被膜層の厚みが過度に増加し、被覆層と金属板との密着性が低下するおそれや、当該樹脂被覆金属板の厚みが過度に増加するおそれがある。 When the said compound is phosphoric acid chromate, as a minimum of the said compound adhesion amount to the metal plate in forming the said chemical conversion treatment film layer, 1 mg / m < 2 > is preferable in conversion of Cr, and 5 mg / m < 2 > is more preferable. On the other hand, the upper limit of the adhesion amount is preferably 100 mg / m 2 and more preferably 80 mg / m 2 in terms of Cr. When the said adhesion amount is smaller than the said minimum, there exists a possibility that the thickness of a chemical conversion treatment film layer may run short and it may become difficult to improve the corrosion resistance of a metal plate. On the contrary, if the amount of adhesion exceeds the upper limit, the thickness of the chemical conversion coating layer increases excessively, and the adhesion between the coating layer and the metal plate may decrease, or the thickness of the resin-coated metal plate is excessive. May increase.
 金属板の表面に化成処理皮膜層を形成する場合、皮膜形成前にアルカリ性脱脂液を用いて金属板の表面を脱脂することが好ましい。これにより、化成処理皮膜層と金属板との密着性が向上する。 When the chemical conversion film layer is formed on the surface of the metal plate, it is preferable to degrease the surface of the metal plate using an alkaline degreasing solution before forming the film. Thereby, the adhesiveness of a chemical conversion treatment film layer and a metal plate improves.
 (耐食性皮膜層)
 上記耐食性皮膜層は、金属板の表面に樹脂を塗布及び乾燥することで形成できる。この樹脂としては、例えばポリエステル、ポリオレフィン、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。
(Corrosion-resistant coating layer)
The corrosion-resistant coating layer can be formed by applying and drying a resin on the surface of the metal plate. Examples of this resin include polyester, polyolefin, epoxy resin, acrylic resin, and urethane resin.
 上記耐食性皮膜層の平均厚みの下限としては、10μmが好ましく、15μmがより好ましい。一方、上記平均厚みの上限としては、100μmが好ましく、80μmがより好ましい。上記平均厚みが上記下限より小さいと、金属板の耐食性が向上し難くなるおそれがある。逆に、上記平均厚みが上記上限を超えると、当該樹脂被覆金属板の厚みが過度に増加するおそれがある。 The lower limit of the average thickness of the corrosion-resistant film layer is preferably 10 μm, more preferably 15 μm. On the other hand, the upper limit of the average thickness is preferably 100 μm, and more preferably 80 μm. If the average thickness is smaller than the lower limit, the corrosion resistance of the metal plate may be difficult to improve. On the contrary, when the average thickness exceeds the upper limit, the thickness of the resin-coated metal plate may be excessively increased.
 <樹脂被覆金属板の製造方法>
 当該樹脂被覆金属板は、上記特定化合物の調製により特定化合物含有溶液である樹脂組成物を得る工程(樹脂組成物調製工程)、樹脂組成物の金属板への塗布及び加熱乾燥により被覆層を形成する工程(被覆層形成工程)を主に備える。
<Method for producing resin-coated metal plate>
The resin-coated metal plate forms a coating layer by obtaining a resin composition that is a specific compound-containing solution by preparing the specific compound (resin composition preparing step), applying the resin composition to the metal plate, and drying by heating. The process (coating layer formation process) to perform is mainly provided.
 また、中間層を形成する場合、樹脂の塗布及び加熱乾燥により中間層を形成する工程をさらに備え(中間層形成工程)、この工程を上記被覆層形成工程の前に行うとよい。 Further, when forming the intermediate layer, it is preferable to further include a step of forming the intermediate layer by applying resin and heating and drying (intermediate layer forming step), and this step may be performed before the coating layer forming step.
 (樹脂組成物調製工程)
 樹脂組成物調製工程では、上記化合物を合成し、この化合物を溶媒と混合して化合物含有溶液である樹脂組成物を得る。
(Resin composition preparation process)
In the resin composition preparation step, the compound is synthesized, and the compound is mixed with a solvent to obtain a resin composition that is a compound-containing solution.
 上記特定化合物が上記式(1)で表され、かつX及びXがイソシアネート基又は上記式(1-1)~(1-4)で表される基である場合、上記式(1)のX及びXがイソシアネート基及び上記式(1-1)~(1-4)で表される基以外の基である化合物に、上記イソシアネート基又は上記式(1-1)~(1-4)で表される基を有する化合物を混合し、溶媒中で加熱することにより上記式(1)で表される特定化合物を得ることができる。 When the specific compound is represented by the formula (1) and X 1 and X 2 are isocyanate groups or groups represented by the formulas (1-1) to (1-4), the formula (1) In the compounds wherein X 1 and X 2 are an isocyanate group and a group other than the groups represented by the above formulas (1-1) to (1-4), the above isocyanate group or the above formulas (1-1) to (1) The specific compound represented by the above formula (1) can be obtained by mixing the compound having the group represented by -4) and heating in a solvent.
 上記特定化合物が第1構造及び第2構造を有する特定化合物の場合、ポリエチレングリコールをハロゲン化した開始剤を用い共重合させることで、第1構造を与えるポリエチレングリコール構造を有する化合物を得る。この化合物と、第2構造を与える化合物とを溶媒中に溶解し、加熱することにより第1構造及び第2構造を有する特定化合物を得ることができる。 When the specific compound is a specific compound having the first structure and the second structure, a compound having a polyethylene glycol structure giving the first structure is obtained by copolymerization using a halogenated initiator of polyethylene glycol. A specific compound having the first structure and the second structure can be obtained by dissolving this compound and the compound that gives the second structure in a solvent and heating.
 上記特定化合物は親水性であるため、水又は親水性有機溶媒と混合することで樹脂組成物を調製することができる。また、上記特定化合物以外のその他の成分を樹脂組成物が含有する場合、特定化合物及び溶媒にさらにその他の成分を混合することで樹脂組成物を容易に調製できる。 Since the specific compound is hydrophilic, the resin composition can be prepared by mixing with water or a hydrophilic organic solvent. Moreover, when the resin composition contains other components other than the specific compound, the resin composition can be easily prepared by further mixing other components with the specific compound and the solvent.
 上記親水性有機溶媒としては、例えばメタノール、エタノール、n-プロピルアルコール、t-ブチルアルコール等のアルコール類;アセトニトリル等の脂肪族ニトリル類;アセトン等の脂肪族ケトン類;ジメチルスルホキシド等の脂肪族スルホキシド類;酢酸等の脂肪族カルボン酸類などが挙げられる。 Examples of the hydrophilic organic solvent include alcohols such as methanol, ethanol, n-propyl alcohol and t-butyl alcohol; aliphatic nitriles such as acetonitrile; aliphatic ketones such as acetone; and aliphatic sulfoxides such as dimethyl sulfoxide. And aliphatic carboxylic acids such as acetic acid.
 上記樹脂組成物における固形分濃度の下限としては、1質量%が好ましく、1.5質量%がより好ましい。一方、上記固形分濃度の上限としては、60質量%が好ましく、50質量%がより好ましい。上記固形分濃度が上記下限より小さいと、十分な厚みの被覆層を形成できないおそれがある。逆に、上記固形分濃度が上記上限を超えると、樹脂組成物を均等に塗布することが困難となるおそれがある。 The lower limit of the solid content concentration in the resin composition is preferably 1% by mass, and more preferably 1.5% by mass. On the other hand, the upper limit of the solid content concentration is preferably 60% by mass, and more preferably 50% by mass. If the solid content concentration is smaller than the lower limit, a coating layer having a sufficient thickness may not be formed. Conversely, when the solid content concentration exceeds the upper limit, it may be difficult to apply the resin composition uniformly.
 (中間層形成工程)
 中間層形成工程では、樹脂を金属板に塗布し、加熱乾燥することで中間層を形成する。この塗布に用いる装置としては、公知のものを用いることができ、例えばロールコート装置、バーコーター等が挙げられる。
(Intermediate layer forming process)
In the intermediate layer forming step, the intermediate layer is formed by applying a resin to a metal plate and drying by heating. As an apparatus used for this application, a known apparatus can be used, and examples thereof include a roll coater and a bar coater.
 上記乾燥時の加熱温度の下限としては、80℃が好ましく、100℃がより好ましい。一方、上記加熱温度の上限としては、280℃が好ましく、260℃がより好ましい。上記温度が上記下限より小さいと、乾燥にかかる時間が長くなり、当該樹脂被覆金属板の製造効率が低下するおそれがある。逆に、上記温度が上記上限を超えると、中間層や金属板が変質するおそれがある。ここで加熱温度とは、塗布金属板の材料到達温度(PMT:Peak Metal Temperature)を意味する。 The lower limit of the heating temperature during drying is preferably 80 ° C, more preferably 100 ° C. On the other hand, the upper limit of the heating temperature is preferably 280 ° C, more preferably 260 ° C. When the said temperature is smaller than the said minimum, the time concerning drying becomes long and there exists a possibility that the manufacture efficiency of the said resin-coated metal plate may fall. Conversely, if the temperature exceeds the upper limit, the intermediate layer or the metal plate may be altered. Here, the heating temperature means the material arrival temperature (PMT: Peak Metal Temperature) of the coated metal plate.
 上記乾燥時の加熱時間の下限としては、3秒が好ましく、5秒がより好ましい。一方、上記加熱時間の上限としては、15分が好ましく、10分がより好ましい。上記加熱時間が上記下限より小さいと、乾燥が不十分となり、中間層の強度が低下するおそれがある。逆に、上記加熱時間が上記上限を超えると、不必要に乾燥時間が長くなり、当該樹脂被覆金属板の製造効率が低下するおそれがある。 The lower limit of the heating time during the drying is preferably 3 seconds and more preferably 5 seconds. On the other hand, the upper limit of the heating time is preferably 15 minutes, and more preferably 10 minutes. If the heating time is less than the lower limit, drying may be insufficient and the strength of the intermediate layer may be reduced. On the contrary, when the heating time exceeds the upper limit, the drying time becomes unnecessarily long, and the production efficiency of the resin-coated metal plate may be reduced.
 (被覆層形成工程)
 被覆層形成工程では、まず中間層の一方の面に上記樹脂組成物を塗布する。中間層を形成しない場合は、金属板の一方の面に直接上記樹脂組成物を塗布する。この塗布に用いる装置としては、上記中間層形成工程におけるものと同様のものが挙げられる。
(Coating layer forming process)
In the coating layer forming step, first, the resin composition is applied to one surface of the intermediate layer. When not forming an intermediate | middle layer, the said resin composition is apply | coated directly to one side of a metal plate. As an apparatus used for this application, the same apparatus as in the intermediate layer forming step can be cited.
 次いで、塗布した上記樹脂組成物を加熱乾燥する。この加熱により上記樹脂組成物中の溶媒が除去され被覆層が形成される。 Next, the applied resin composition is heated and dried. By this heating, the solvent in the resin composition is removed and a coating layer is formed.
 上記金属板片面あたりの上記樹脂組成物の塗布量の下限としては、0.1g/mが好ましく、0.3g/mがより好ましく、0.4g/mがさらに好ましい。一方、上記塗布量の上限としては、5g/mが好ましく、3g/mがより好ましく、2g/mがさらに好ましい。上記塗布量が上記下限より小さいと、十分な厚みの被覆層を形成できないおそれがある。逆に、上記塗布量が上記上限を超えると、被覆層の厚みが過度に大きくなるおそれがある。 As a minimum of the application amount of the resin composition per one side of the metal plate, 0.1 g / m 2 is preferable, 0.3 g / m 2 is more preferable, and 0.4 g / m 2 is more preferable. On the other hand, the upper limit of the coating amount is preferably 5 g / m 2, more preferably 3 g / m 2, more preferably 2 g / m 2. If the coating amount is smaller than the lower limit, a coating layer having a sufficient thickness may not be formed. On the contrary, when the coating amount exceeds the upper limit, the thickness of the coating layer may be excessively increased.
 上記乾燥時の加熱温度の下限としては、80℃が好ましく、100℃がより好ましい。一方、上記加熱温度の上限としては、280℃が好ましく、260℃がより好ましい。上記温度が上記下限より小さいと、乾燥にかかる時間が長くなり、当該樹脂被覆金属板の製造効率が低下するおそれがある。逆に、上記温度が上記上限を超えると、被覆層、中間層又は金属板が変質するおそれがある。 The lower limit of the heating temperature during drying is preferably 80 ° C, more preferably 100 ° C. On the other hand, the upper limit of the heating temperature is preferably 280 ° C, more preferably 260 ° C. When the said temperature is smaller than the said minimum, the time concerning drying becomes long and there exists a possibility that the manufacture efficiency of the said resin-coated metal plate may fall. Conversely, when the temperature exceeds the upper limit, the covering layer, the intermediate layer, or the metal plate may be altered.
 上記乾燥時の加熱時間の下限としては、5秒が好ましく、3秒がより好ましい。一方、上記加熱時間の上限としては、15分が好ましく、10分がより好ましい。上記加熱時間が上記下限より小さいと、乾燥が不十分となり、被覆層の強度が低下するおそれがある。逆に、上記加熱時間が上記上限を超えると、不必要に乾燥時間が長くなり、当該樹脂被覆金属板の製造効率が低下するおそれがある。 The lower limit of the heating time during the drying is preferably 5 seconds and more preferably 3 seconds. On the other hand, the upper limit of the heating time is preferably 15 minutes, and more preferably 10 minutes. If the heating time is less than the lower limit, drying may be insufficient and the strength of the coating layer may be reduced. On the contrary, when the heating time exceeds the upper limit, the drying time becomes unnecessarily long, and the production efficiency of the resin-coated metal plate may be reduced.
 <利点>
 以上のように、当該樹脂被覆金属板は、被覆層を形成する組成物が、分子量が150以上8000以下であるポリアルキレングリコール構造を有する化合物を上記範囲で含有することで、被覆層の表面近傍において、ポリアルキレングリコール構造により水分子が束縛される。その結果、当該樹脂被覆金属板に付着した水分の凝固点が降下し、氷点下においても水分を不凍水として存在させることができる。また、被覆層が上記化合物を上記割合で含有することで、上記被覆層の親水性が向上し、樹脂被覆金属板表面における水分の流動性が高まる。これらの結果、被覆層の表面において水分が凍結し難くなり、かつ被覆層表面に水分が溜まり難くなり、着霜や着氷が低減できる。また、上記化合物の安定性に起因し、被覆層の温度変化や水分による劣化も低減することができる。さらに、上記化合物が高い安定性を有することで、被覆層を形成する組成物を金属板に被覆する前における保存条件を厳密に制御する必要が無く、保存にかかるコストが低下する。加えて、被覆層を形成する組成物が含有するポリアルキレングリコール構造を有する化合物は安価であり、かつ適度な硬さを有する被膜を形成できるため加工が容易となる。これらの結果、当該樹脂被覆金属板は、製造コストが低減できる。
<Advantages>
As described above, in the resin-coated metal plate, the composition forming the coating layer contains a compound having a polyalkylene glycol structure having a molecular weight of 150 or more and 8000 or less in the above range, so that the surface of the coating layer , Water molecules are bound by the polyalkylene glycol structure. As a result, the freezing point of the water adhering to the resin-coated metal plate is lowered, and the water can exist as antifreeze water even below the freezing point. Moreover, the hydrophilicity of the said coating layer improves because a coating layer contains the said compound in the said ratio, and the fluidity | liquidity of the water | moisture content in the resin-coated metal plate surface increases. As a result, moisture hardly freezes on the surface of the coating layer, and moisture hardly accumulates on the surface of the coating layer, so that frost formation and icing can be reduced. Further, due to the stability of the above compound, the temperature change of the coating layer and the deterioration due to moisture can also be reduced. Furthermore, since the above compound has high stability, it is not necessary to strictly control the storage conditions before coating the metal plate with the composition forming the coating layer, and the cost for storage is reduced. In addition, the compound having a polyalkylene glycol structure contained in the composition for forming the coating layer is inexpensive and can be easily processed because it can form a film having an appropriate hardness. As a result, the manufacturing cost of the resin-coated metal plate can be reduced.
 [熱交換器用フィン材及び空調機]
 当該熱交換器用フィンは、上記樹脂被覆金属板を備える。当該熱交換器用フィン材の大きさ及び形状は、当該熱交換器用フィン材を用いる空調機に合わせ適宜調整可能である。また、当該熱交換器用フィン材は、通常、空調機内の熱交換部に配設される。つまり、当該空調機は、上記熱交換器用フィン材を備える。具体的には、当該空調機は、上記熱交換器用フィン材を用いて形成されたフィンが配設されたものである。当該空調機において、上記フィン以外の部材は公知のものを用いることができる。
[Fin material for heat exchanger and air conditioner]
The heat exchanger fin includes the resin-coated metal plate. The magnitude | size and shape of the said fin material for heat exchangers can be suitably adjusted according to the air conditioner using the said fin material for heat exchangers. Moreover, the said heat exchanger fin material is normally arrange | positioned in the heat exchange part in an air conditioner. In other words, the air conditioner includes the heat exchanger fin material. Specifically, the air conditioner is provided with fins formed using the heat exchanger fin material. In the air conditioner, members other than the fins can be known members.
 <利点>
 当該熱交換器用フィン材及び空調機は、上記樹脂被覆金属板を備えるため、着霜や着氷が低減され、かつ被覆層が温度変化により劣化し難い。また、当該熱高交換器用フィン及び空調機は製造コストも低い。
<Advantages>
Since the said heat exchanger fin material and air conditioner are provided with the said resin coating metal plate, frost formation and icing are reduced, and a coating layer does not deteriorate easily with a temperature change. Further, the high heat exchanger fin and the air conditioner are low in manufacturing cost.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面である樹脂被覆金属板は、金属板、及びこの金属板の少なくとも一方の面側を被覆する被覆層を有する樹脂被覆金属板であって、上記被覆層が、アルキレングリコール単位を有するポリアルキレングリコール構造を含む化合物を含有し、上記アルキレングリコール単位の分子量が150以上8000以下であり、上記被覆層における上記化合物の含有量が5質量%以上100質量%以下であることを特徴とする。 The resin-coated metal plate according to one aspect of the present invention is a resin-coated metal plate having a metal plate and a coating layer that covers at least one surface side of the metal plate, wherein the coating layer contains an alkylene glycol unit. A compound containing a polyalkylene glycol structure having a molecular weight of 150 to 8000, and a content of the compound in the coating layer of 5 to 100% by mass. To do.
 このような構成により、水分が氷点下において凝固することの抑制及び凝固した水分が樹脂被覆金属板に付着することによる着霜や着氷の低減効果を有しつつ、温度変化により劣化し難く、塗布前の組成物の安定性に優れることで保存コストを低減でき、かつ製造コストも低いという利点がある。 With such a configuration, it is difficult to deteriorate due to temperature change while suppressing moisture solidification below freezing point and reducing frosting and icing due to the solidified moisture adhering to the resin-coated metal plate. The superior stability of the previous composition is advantageous in that the storage cost can be reduced and the production cost is low.
 上記樹脂被覆金属板において、上記化合物が、下記式(1)で表されるものであるとよい。上記化合物が下記式(1)で表されるものであることで、上述のポリアルキレングリコール構造による効果に加え、上記化合物が有するイソシアネート基等の基が金属板や中間層におけるヒドロキシル基等と結合し、被覆層と金属板との密着性が向上する。そのため温度変化や水分による被覆層の脱離を低減できる。また、被覆層内において上記化合物同士が結合することで、被覆層の強度が向上する。これらの結果、被覆層の劣化をより低減できる。 In the resin-coated metal plate, the compound may be represented by the following formula (1). Since the compound is represented by the following formula (1), in addition to the effect of the polyalkylene glycol structure, a group such as an isocyanate group included in the compound is bonded to a hydroxyl group or the like in a metal plate or an intermediate layer. In addition, the adhesion between the coating layer and the metal plate is improved. Therefore, it is possible to reduce the detachment of the coating layer due to temperature change and moisture. Moreover, the intensity | strength of a coating layer improves because the said compounds couple | bond together in a coating layer. As a result, the deterioration of the coating layer can be further reduced.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はエチル基である。X及びXは、それぞれ独立して、水素原子、イソシアネート基、-SH、-OH、-NH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、エポキシ基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である。但し、X及びXのうち少なくとも1つはイソシアネート基、-NH、エポキシ基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である。Aは、Xがイソシアネート基、-SH、-OH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である場合、-NH-C(=O)-結合であり、Xが水素原子又はエポキシ基の場合、単結合であり、Xが-NHの場合、単結合又は-NH-C(=O)-結合である。Aは、Xがイソシアネート基、-SH、-OH、-NH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である場合、-NH-C(=O)-結合であり、Xが水素原子又はエポキシ基の場合、単結合であり、Xが-NHの場合、単結合又は-NH-C(=O)-結合である。B及びBは、炭素数1~8のアルカンジイル基、アレーンジイル基、メタンジイルアレーンジイル基又はアレーンジイルメタンジイルアレーンジイル基である。nは、2~4の整数である。mは、1~200の整数である。複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。mが2以上の場合、複数のnは同一でも異なっていてもよい。 In formula (1), R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group. X 1 and X 2 are each independently a hydrogen atom, an isocyanate group, —SH, —OH, —NH 2 , —CH═CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, an epoxy group, A group represented by the formula (1-1), a group represented by the following formula (1-2), a group represented by the following formula (1-3), or a group represented by the following formula (1-4) It is. However, at least one of X 1 and X 2 is an isocyanate group, —NH 2 , an epoxy group, a group represented by the following formula (1-1), a group represented by the following formula (1-2), A group represented by the formula (1-3) or a group represented by the following formula (1-4). A 1 represents X 1 is an isocyanate group, —SH, —OH, —CH═CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, a group represented by the following formula (1-1), a group represented by the following formula ( In the case of a group represented by 1-2), a group represented by the following formula (1-3) or a group represented by the following formula (1-4), a —NH—C (═O) — bond And when X 1 is a hydrogen atom or an epoxy group, it is a single bond, and when X 1 is —NH 2 , it is a single bond or —NH—C (═O) — bond. A 2 represents X 2 is an isocyanate group, —SH, —OH, —NH 2 , —CH═CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, or a group represented by the following formula (1-1) In the case of a group represented by the following formula (1-2), a group represented by the following formula (1-3) or a group represented by the following formula (1-4), —NH—C (═O ) -Bond, when X 2 is a hydrogen atom or an epoxy group, it is a single bond, and when X 2 is —NH 2 , it is a single bond or —NH—C (═O) — bond. B 1 and B 2 are an alkanediyl group, an arenediyl group, a methanediylarenediyl group or an arenediylmethanediylarenediyl group having 1 to 8 carbon atoms. n is an integer of 2 to 4. m is an integer of 1 to 200. A plurality of R 1 may be the same or different, and a plurality of R 2 may be the same or different. When m is 2 or more, a plurality of n may be the same or different.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(1-1)及び(1-2)中、Ra1~Ra3は、それぞれ独立して、炭素数1~8のアルキル基又はフェニル基である。
式(1-3)中、Ra4及びRa5は、それぞれ独立して、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基又は炭素数1~8のアルキルアミノ基である。
式(1-4)中、Ra6は、炭素数1~7のアルカンジイル基である。
In formulas (1-1) and (1-2), R a1 to R a3 are each independently an alkyl group having 1 to 8 carbon atoms or a phenyl group.
In formula (1-3), R a4 and R a5 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkylamino group having 1 to 8 carbon atoms.
In formula (1-4), R a6 is an alkanediyl group having 1 to 7 carbon atoms.
 さらに、上記樹脂被覆金属板において、上記化合物が、下記式(2-1)で表される構造、下記式(2-2)で表される構造又はこれらを含む構造と、下記式(3)で表される構造とを有するとよい。上記化合物がこれらの構造を有することで、加熱及び冷却を繰り返した場合における樹脂層の劣化を低減することができ、除霜運転後の着霜及び着氷低減効果を促進できる。 Further, in the resin-coated metal plate, the compound has a structure represented by the following formula (2-1), a structure represented by the following formula (2-2), or a structure containing them, and the following formula (3): It is good to have the structure represented by these. When the said compound has these structures, deterioration of the resin layer in the case of repeating heating and cooling can be reduced, and the effect of reducing frost formation and icing after the defrosting operation can be promoted.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(2-1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はエチル基である。pは、2~4の整数である。qは、1~200の整数である。複数のR は同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。qが2以上の場合、複数のpは同一でも異なっていてもよい。
式(2-2)中、R~Rは、それぞれ独立して、水素原子、メチル基又はエチル基である。Xは、水素原子、ヒドロキシル基、メチル基、エチル基、メルカプト基、メトキシ基又はエトキシ基である。rは、2~4の整数である。sは、1~200の整数である。tは、1~200の整数である。複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。sが2以上の場合、複数のrは同一でも異なっていてもよい。tが2以上の場合、複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。
In formula (2-1), R 3 and R 4 are each independently a hydrogen atom, a methyl group or an ethyl group. p is an integer of 2 to 4. q is an integer of 1 to 200. A plurality of R 3 may be the same or different, and a plurality of R 4 may be the same or different. When q is 2 or more, a plurality of p may be the same or different.
In formula (2-2), R 5 to R 9 each independently represents a hydrogen atom, a methyl group or an ethyl group. X 3 is a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group, a mercapto group, a methoxy group or an ethoxy group. r is an integer of 2 to 4. s is an integer of 1 to 200. t is an integer of 1 to 200. A plurality of R 5 may be the same or different, and a plurality of R 6 may be the same or different. When s is 2 or more, a plurality of r may be the same or different. When t is 2 or more, the plurality of R 7 may be the same or different, the plurality of R 8 may be the same or different, and the plurality of R 9 may be the same or different.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(3)中、R10~R12は、それぞれ独立して、水素原子、メチル基又はエチル基である。Zは、下記式(i-1)~(i-4)のいずれかで表される基である。uは、1~200の整数である。uが2以上の場合、複数のR10は同一でも異なっていてもよく、複数のR11は同一でも異なっていてもよく、複数のR12は同一でも異なっていてもよい。 In the formula (3), R 10 to R 12 are each independently a hydrogen atom, a methyl group or an ethyl group. Z is a group represented by any of the following formulas (i-1) to (i-4). u is an integer of 1 to 200. When u is 2 or more, the plurality of R 10 may be the same or different, the plurality of R 11 may be the same or different, and the plurality of R 12 may be the same or different.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(i-1)中、Lは、炭素数1~5のアルカンジイル基である。
式(i-2)中、Lは、炭素数1~8のアルカンジイル基、フェニレン基、メチレンフェニレン基又はフェニレンメチレンフェニレン基であり、R13は、イソシアネート基、上記式(1-1)で表される基、上記式(1-2)で表される基、上記式(1-3)で表される基又は上記式(1-4)で表される基である。
式(i-3)中、Lは、炭素数1~5のアルカンジイル基である。R14及びR15は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基である。
式(i-4)中、R16及びR17は、それぞれ独立して、水素原子、メチル基又はエチル基である。
In formula (i-1), L 1 is an alkanediyl group having 1 to 5 carbon atoms.
In the formula (i-2), L 2 is an alkanediyl group having 1 to 8 carbon atoms, a phenylene group, a methylenephenylene group or a phenylenemethylenephenylene group, R 13 is an isocyanate group, and the above formula (1-1) A group represented by the above formula (1-2), a group represented by the above formula (1-3), or a group represented by the above formula (1-4).
In the formula (i-3), L 3 is an alkanediyl group having 1 to 5 carbon atoms. R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
In formula (i-4), R 16 and R 17 are each independently a hydrogen atom, a methyl group or an ethyl group.
 また、上記樹脂被覆金属板において、上記金属板と被覆層との間に中間層をさらに有し、この中間層が主成分として樹脂を含有し、上記樹脂が、ヒドロキシル基、アミノ基、イミノ基、カルボキシル基、メトキシカルボニル基、カルボキシレート基、又はこれらの組み合わせを有するとよく、上記樹脂における上記基の合計含有量としては、0.5モル/kg以上20モル/kg以下が好ましい。このように、主成分の樹脂が上記基を上記範囲で有する中間層を有することで、上記基が被覆層中の化合物や金属板と反応し、その結果上記被覆層の耐水性及び耐熱性が向上する。 The resin-coated metal plate further includes an intermediate layer between the metal plate and the coating layer, the intermediate layer contains a resin as a main component, and the resin includes a hydroxyl group, an amino group, an imino group. , A carboxyl group, a methoxycarbonyl group, a carboxylate group, or a combination thereof, and the total content of the groups in the resin is preferably 0.5 mol / kg or more and 20 mol / kg or less. Thus, since the main component resin has the intermediate layer having the above group in the above range, the above group reacts with the compound or the metal plate in the coating layer, and as a result, the water resistance and heat resistance of the coating layer are increased. improves.
 当該樹脂被覆金属板は、上述のように着霜及び着氷低減効果を有しつつ、温度変化により劣化し難く、塗布前の組成物の安定性に優れ、かつ低コストで製造できるため、熱交換器のフィン材として好適に用いることができる。 Since the resin-coated metal plate has the effect of reducing frost formation and icing as described above, it is difficult to deteriorate due to temperature change, has excellent stability of the composition before coating, and can be manufactured at low cost. It can be suitably used as a fin material for an exchanger.
 上記金属板の主成分としては、アルミニウム又はその合金が好ましい。上記金属板の主成分がこれらの金属であることで、当該樹脂被覆金属板の軽量化が可能である。 The main component of the metal plate is preferably aluminum or an alloy thereof. By using these metals as the main component of the metal plate, the resin-coated metal plate can be reduced in weight.
 また、本発明の他の局面は、金属板の被覆に用いられる樹脂組成物であって、アルキレングリコール単位を有するポリアルキレングリコール構造を含む化合物を含有し、上記アルキレングリコール単位の分子量が150以上8000以下であり、上記樹脂組成物中の上記化合物の含有量が5質量%以上100質量%以下であることを特徴とする樹脂組成物である。当該樹脂組成物は、上記化合物を含有することで、水分が氷点下において凝固することの抑制及び凝固した水分が樹脂被覆金属板に付着することによる着霜や着氷の低減効果を有しつつ、温度変化により劣化し難く、塗布前の組成物の安定性に優れることで保存コストを低減できる。 Another aspect of the present invention is a resin composition used for coating a metal plate, which contains a compound containing a polyalkylene glycol structure having an alkylene glycol unit, and the molecular weight of the alkylene glycol unit is 150 or more and 8000. The resin composition is characterized in that the content of the compound in the resin composition is 5% by mass or more and 100% by mass or less. While the resin composition contains the above-mentioned compound, it has the effect of suppressing frost formation and icing due to suppression of moisture solidifying below freezing point and adhesion of the solidified moisture to the resin-coated metal plate, It is difficult to deteriorate due to temperature change, and the storage cost can be reduced by being excellent in the stability of the composition before coating.
 当該樹脂組成物は、保存安定性に優れ、金属板に積層することで着霜や着氷の低減効果を発揮でき、また温度変化により劣化しにくい。そのため、当該樹脂組成物は、塗料として好適に用いることができる。 The resin composition is excellent in storage stability, and when laminated on a metal plate, it can exhibit an effect of reducing frost formation and icing, and hardly deteriorates due to temperature change. Therefore, the resin composition can be suitably used as a paint.
 また、本発明のさらに他の局面は、上記樹脂被覆金属板を備える熱交換器用フィン材及び空調機である。当該熱交換器用フィン材及び空調機は、上記樹脂被覆金属板を備えるため、着霜や着氷が低減され、かつ被覆層が温度変化により劣化し難い。また、当該熱交換器用フィン及び空調機は、製造コストも低い。 Still another aspect of the present invention is a fin material for a heat exchanger and an air conditioner including the resin-coated metal plate. Since the said heat exchanger fin material and air conditioner are provided with the said resin coating metal plate, frost formation and icing are reduced, and a coating layer does not deteriorate easily with a temperature change. Further, the heat exchanger fin and the air conditioner are low in manufacturing cost.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 [合成例1]
 <上記式(1)で表される特定化合物(A-1a)の合成>
 反応容器中にキシレンを溶媒として、平均分子量200のポリオキシエチレンモノメチルエーテル100ミリモル及びトルエンジイソシアネート100ミリモルを投入し、攪拌しながら温度80℃にて10時間反応させた。その後、エバポレーターにてキシレンを除去することで、化合物(A-1a)を得た。
[Synthesis Example 1]
<Synthesis of Specific Compound (A-1a) Represented by Formula (1)>
In a reaction vessel, 100 mmol of polyoxyethylene monomethyl ether having an average molecular weight of 200 and 100 mmol of toluene diisocyanate were added using xylene as a solvent, and reacted at a temperature of 80 ° C. for 10 hours with stirring. Thereafter, xylene was removed by an evaporator to obtain a compound (A-1a).
 [合成例2~6]
 <上記式(1)で表される特定化合物(A-1b)~(A-1e)の合成>
 上記ポリオキシエチレンモノメチルエーテルの平均分子量をそれぞれ1000、2000、5000及び10000とした他は、上記合成例1と同様にして、化合物(A-1b)~(A-1e)を得た。
[Synthesis Examples 2 to 6]
<Synthesis of Specific Compounds (A-1b) to (A-1e) Represented by Formula (1)>
Compounds (A-1b) to (A-1e) were obtained in the same manner as in Synthesis Example 1 except that the average molecular weights of the polyoxyethylene monomethyl ether were 1000, 2000, 5000 and 10,000, respectively.
 [合成例7]
 <上記式(1)で表される特定化合物(A-2)の合成>
 合成例1の平均分子量200のポリオキシエチレンモノメチルエーテルに代えて平均分子量2000のポリエチレングリコールを用いた他は合成例1と同様にして、化合物(A-2)を合成した。
[Synthesis Example 7]
<Synthesis of Specific Compound (A-2) Represented by Formula (1)>
Compound (A-2) was synthesized in the same manner as in Synthesis Example 1 except that polyethylene glycol having an average molecular weight of 2000 was used instead of polyoxyethylene monomethyl ether having an average molecular weight of 200 in Synthesis Example 1.
 [合成例8]
 <上記式(1)で表される特定化合物(A-3)の合成>
 合成例1の平均分子量200のポリオキシエチレンモノメチルエーテルに代えて平均分子量1000のポリオキシプロピレンモノメチルエーテルを用いた他は合成例1と同様にして、化合物(A-3)を合成した。
[Synthesis Example 8]
<Synthesis of Specific Compound (A-3) Represented by Formula (1)>
Compound (A-3) was synthesized in the same manner as in Synthesis Example 1, except that polyoxyethylene monomethyl ether having an average molecular weight of 1000 was used instead of polyoxyethylene monomethyl ether having an average molecular weight of 200 in Synthesis Example 1.
 [合成例9]
 <第1構造と第2構造とを有する特定化合物(A-5a)の合成>
 反応容器中を10℃以下に保ちつつ、溶媒としての塩化メチレン、4,4’-アゾビス(4-シアノバレリック酸)50ミリモル及び五塩化リン250ミリモルを投入した後、常温で17時間攪拌して反応させることで、塩素化した開始剤(V-501Cl)を得た。この開始剤(V-501Cl)50ミリモルをジクロロメタンに溶解させ、開始剤溶液を調製した。
[Synthesis Example 9]
<Synthesis of Specific Compound (A-5a) Having First Structure and Second Structure>
While maintaining the inside of the reaction vessel at 10 ° C. or lower, methylene chloride, 50 mmol of 4,4′-azobis (4-cyanovaleric acid) and 250 mmol of phosphorus pentachloride as the solvent were added, followed by stirring at room temperature for 17 hours. To obtain a chlorinated initiator (V-501Cl). An initiator solution was prepared by dissolving 50 mmol of the initiator (V-501Cl) in dichloromethane.
 次に、反応容器中で、溶媒としてのジクロロメタンに平均分子量4000のポリエチレングリコール100ミリモル及びトリエチレンアミン1ミリモルを溶解させ、氷冷中で攪拌しながら上記開始剤溶液を滴下し、20時間反応させた。反応終了後、アセチルセルロール半透膜(重量平均分子量:3500)を用いて透析を行うことで、両末端にポリエチレングリコール鎖を有する開始剤(PEG-MAI)を得た。 Next, 100 mmol of polyethylene glycol having an average molecular weight of 4000 and 1 mmol of triethyleneamine are dissolved in dichloromethane as a solvent in a reaction vessel, and the above initiator solution is added dropwise with stirring in ice-cooling, and allowed to react for 20 hours. It was. After completion of the reaction, an initiator (PEG-MAI) having polyethylene glycol chains at both ends was obtained by dialysis using an acetylcellulose semipermeable membrane (weight average molecular weight: 3500).
 最後に、反応容器中で、溶媒としてのテトラヒドロフランにメタクリル酸グリシジル15ミリモル及び上記開始剤(PEG-MAI)15ミリモルを溶解させ、減圧下にて60℃20時間反応させた。反応終了後、再沈殿、ろ過及び真空乾燥を行うことで、化合物(A-5a)を得た。 Finally, in a reaction vessel, 15 mmol of glycidyl methacrylate and 15 mmol of the initiator (PEG-MAI) were dissolved in tetrahydrofuran as a solvent and reacted at 60 ° C. for 20 hours under reduced pressure. After completion of the reaction, compound (A-5a) was obtained by reprecipitation, filtration and vacuum drying.
 [合成例10]
 <第1構造と第2構造とを有する特定化合物(A-5b)の合成>
 上記開始剤(PEG-MAI)のメタクリル酸グリシジルに対する割合を20/80(モル比)とした他は上記合成例9と同様にして、化合物(A-5b)を得た。
[Synthesis Example 10]
<Synthesis of Specific Compound (A-5b) Having First Structure and Second Structure>
Compound (A-5b) was obtained in the same manner as in Synthesis Example 9 except that the ratio of the initiator (PEG-MAI) to glycidyl methacrylate was 20/80 (molar ratio).
 [合成例11]
 <第1構造と第2構造とを有する特定化合物の合成>
 反応容器中で、溶媒としての混合溶液(エタノール:水=5:1(質量比))に平均分子量1100のメトキシポリエチレングリコールメタクリレート(下記(A-6a)に示される化合物)36ミリモル及びメタクリル酸グリシジル(下記式(a-2)で表される化合物)4ミリモルを溶解させ、攪拌しながら2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩0.8ミリモルを滴下し、その後70℃にて10時間反応させた。反応終了後、エバポレーターにて溶媒を除去し、化合物(A-6a)と化合物(a-2)との共重合体を得た。
[Synthesis Example 11]
<Synthesis of a specific compound having a first structure and a second structure>
In a reaction vessel, a mixed solution (ethanol: water = 5: 1 (mass ratio)) as a solvent, 36 mmol of methoxypolyethylene glycol methacrylate (compound shown in (A-6a) below) having an average molecular weight of 1100 and glycidyl methacrylate (Compound represented by the formula (a-2) below) 4 mmol of 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride 0.8 mmol with stirring And then reacted at 70 ° C. for 10 hours. After completion of the reaction, the solvent was removed with an evaporator to obtain a copolymer of the compound (A-6a) and the compound (a-2).
 [合成例12~16]
 <第1構造と第2構造とを有する化合物の合成>
 上記式(2-2)におけるsの値がそれぞれ2、4、67、135及び340となるように各化合物の添加割合を調整した他は上記合成例11と同様にして、化合物(A-6b)~(A-6f)のそれぞれと、化合物(a-2)との共重合体を得た。
[Synthesis Examples 12 to 16]
<Synthesis of a compound having a first structure and a second structure>
Compound (A-6b) was prepared in the same manner as in Synthesis Example 11 except that the addition ratio of each compound was adjusted so that the value of s in the formula (2-2) was 2, 4, 67, 135 and 340, respectively. ) To (A-6f) and a compound of compound (a-2) were obtained.
 [実施例1]
 平均厚み0.1mmのアルミニウム板を縦20cm、横10cmに裁断し、その両面に特定化合物としての(A-1a)0.33gを溶媒としてのテトラヒドロフラン9.67gに溶解させた溶液(固形分濃度3.3質量%)を平均厚みが0.5μmとなるように塗布した。その後、150℃で3分加熱乾燥させることで樹脂被覆金属板を得た。
[Example 1]
An aluminum plate having an average thickness of 0.1 mm was cut into a length of 20 cm and a width of 10 cm, and a solution in which 0.33 g of (A-1a) as a specific compound was dissolved in 9.67 g of tetrahydrofuran as a solvent (solid concentration) 3.3 mass%) was applied so that the average thickness was 0.5 μm. Then, the resin-coated metal plate was obtained by heating and drying at 150 ° C. for 3 minutes.
 [実施例2~23及び比較例1~5]
 用いた化合物の種類及び含有量を表1及び表2の通りとした以外は実施例1と同様にして、実施例2~23及び比較例1~5の樹脂被覆積層板を得た。なお、表1及び表2中、「-」は該当する化合物等を用いていないことを意味する。
[Examples 2 to 23 and Comparative Examples 1 to 5]
Resin-coated laminates of Examples 2 to 23 and Comparative Examples 1 to 5 were obtained in the same manner as in Example 1 except that the types and contents of the compounds used were as shown in Tables 1 and 2. In Tables 1 and 2, “-” means that the corresponding compound or the like is not used.
 [実施例24]
 実施例1と同じ材質、大きさのアルミニウム板にその他の樹脂としての(P-1)を平均厚みが0.4μmとなるように塗布し、225℃で20秒加熱乾燥させることで中間層を形成した。その後、中間層上に特定化合物としての(A-1b)0.33gを溶媒としてのテトラヒドロフラン9.67gに溶解させた溶液(固形分濃度3.3質量%)を平均厚みが0.5μmとなるように塗布し、150℃で3分加熱乾燥させることで樹脂被覆金属板を得た。
[Example 24]
The intermediate layer was formed by applying (P-1) as another resin to an aluminum plate of the same material and size as in Example 1 so that the average thickness was 0.4 μm and drying by heating at 225 ° C. for 20 seconds. Formed. Thereafter, an average thickness of 0.5 μm of a solution (solid content concentration of 3.3 mass%) obtained by dissolving 0.33 g of (A-1b) as a specific compound in 9.67 g of tetrahydrofuran as a solvent on the intermediate layer is obtained. The resin-coated metal sheet was obtained by heating and drying at 150 ° C. for 3 minutes.
 [実施例25~30]
 用いた化合物及び中間層の樹脂を表2の通りとした以外は実施例24と同様にして、実施例25~30の樹脂被覆金属板を得た。
[Examples 25 to 30]
Resin-coated metal plates of Examples 25 to 30 were obtained in the same manner as in Example 24 except that the compounds used and the resin of the intermediate layer were as shown in Table 2.
 [実施例31]
 実施例1と同じ材質、大きさのアルミニウム板にその他の樹脂としての(P-1)を平均厚みが0.4μmとなるように塗布し、225℃で20秒加熱乾燥させることで中間層を形成した。その後、中間層上に、下記(A-16)のコロイダルシリカ及び特定化合物としての(A-17)の混合物(A-16/A-17の質量比=80/20)0.6gを溶媒としての水9.4gに溶解させた溶液(固形分濃度6.0質量%)を平均厚みが0.4μmとなるように塗布し、250℃で2分加熱乾燥させることで、樹脂被覆金属板を得た。
[Example 31]
The intermediate layer was formed by applying (P-1) as another resin to an aluminum plate of the same material and size as in Example 1 so that the average thickness was 0.4 μm and drying by heating at 225 ° C. for 20 seconds. Formed. Thereafter, on the intermediate layer, 0.6 g of a mixture of the following colloidal silica (A-16) and (A-17) as a specific compound (mass ratio of A-16 / A-17 = 80/20) was used as a solvent. A solution (solid content concentration 6.0% by mass) dissolved in 9.4 g of water was applied to an average thickness of 0.4 μm, and dried by heating at 250 ° C. for 2 minutes, whereby a resin-coated metal plate was obtained. Obtained.
 [実施例32]
 実施例1と同じ材質、大きさのアルミニウム板にその他の樹脂としての(P-1)を平均厚みが0.4μmとなるように塗布し、225℃で20秒加熱乾燥させることで中間層を形成した。その後、中間層上に、下記(A-16)のコロイダルシリカ及び特定化合物としての(A-18)の混合物(A-16/A-18の質量比=80/20)0.6gを溶媒としての水9.4gに溶解させた溶液(固形分濃度6.0質量%)を平均厚みが0.4μmとなるように塗布し、250℃で2分加熱乾燥させることで、樹脂被覆金属板を得た。
[Example 32]
The intermediate layer was formed by applying (P-1) as another resin to an aluminum plate of the same material and size as in Example 1 so that the average thickness was 0.4 μm and drying by heating at 225 ° C. for 20 seconds. Formed. Thereafter, on the intermediate layer, 0.6 g of a mixture of the following colloidal silica (A-16) and (A-18) as a specific compound (mass ratio of A-16 / A-18 = 80/20) was used as a solvent. A solution (solid content concentration 6.0% by mass) dissolved in 9.4 g of water was applied to an average thickness of 0.4 μm, and dried by heating at 250 ° C. for 2 minutes, whereby a resin-coated metal plate was obtained. Obtained.
 樹脂被覆金属板の製造に用いた化合物及び樹脂について、以下に示す。 The compounds and resins used for the production of the resin-coated metal plate are shown below.
 なお、実施例7、11~23、実施例28~30、比較例2及び比較例5においては、それぞれの化合物を表1又は表2に記載の割合で共重合させて被覆層を形成する樹脂組成物を得た。実施例31及び実施例32においては、それぞれの化合物を表2に記載の固形分質量比で混合し、被覆層を形成する樹脂組成物を得た。表2中の「*)」は、数値が各化合物の質量比であることを示す。 In Examples 7, 11 to 23, Examples 28 to 30, Comparative Example 2 and Comparative Example 5, a resin for forming a coating layer by copolymerizing the respective compounds in the ratios shown in Table 1 or Table 2 A composition was obtained. In Example 31 and Example 32, the respective compounds were mixed at a solid content mass ratio shown in Table 2 to obtain a resin composition forming a coating layer. “*)” In Table 2 indicates that the numerical value is a mass ratio of each compound.
 (上記式(1)で表される特定化合物)
A-1a:O=C-N-C(CH)-NH-C(=O)-O-(CHCHO)n-CH、n=4
A-1b:O=C-N-C(CH)-NH-C(=O)-O-(CHCHO)n-CH、n=22
A-1c:O=C-N-C(CH)-NH-C(=O)-O-(CHCHO)n-CH、n=45
A-1d:O=C-N-C(CH)-NH-C(=O)-O-(CHCHO)n-CH、n=113
A-1e:O=C-N-C(CH)-NH-C(=O)-O-(CHCHO)n-CH、n=227
A-2:O=C-N-C(CH)-NH-C(=O)-O-(CHCHO)n-C(=O)-NH-C(CH)-N=C=O、n=45
A-3:O=C-N-C(CH)-NH-C(=O)-O-(CHCH(CH)O)n-CH、n=17
A-17:ポリエチレングリコールジグリシジルエーテル(ナガセケムテックス社の「デナコールEX-861」)
A-18:Poly(ethylene glycol)bis(amine) Mw2000(Sigma-Aldrich社)
(Specific compound represented by the above formula (1))
A-1a: O═C—N—C 6 H 3 (CH 3 ) —NH—C (═O) —O— (CH 2 CH 2 O) n—CH 3 , n = 4
A-1b: O═C—N—C 6 H 3 (CH 3 ) —NH—C (═O) —O— (CH 2 CH 2 O) n—CH 3 , n = 22
A-1c: O═C—N—C 6 H 3 (CH 3 ) —NH—C (═O) —O— (CH 2 CH 2 O) n—CH 3 , n = 45
A-1d: O═C—N—C 6 H 3 (CH 3 ) —NH—C (═O) —O— (CH 2 CH 2 O) n—CH 3 , n = 113
A-1e: O═C—N—C 6 H 3 (CH 3 ) —NH—C (═O) —O— (CH 2 CH 2 O) n—CH 3 , n = 227
A-2: O═C—N—C 6 H 3 (CH 3 ) —NH—C (═O) —O— (CH 2 CH 2 O) n—C (═O) —NH—C 6 H 3 (CH 3 ) —N═C═O, n = 45
A-3: O═C—N—C 6 H 3 (CH 3 ) —NH—C (═O) —O— (CH 2 CH (CH 3 ) O) n—CH 3 , n = 17
A-17: Polyethylene glycol diglycidyl ether (“Denacol EX-861” manufactured by Nagase ChemteX Corporation)
A-18: Poly (ethylene glycol) bis (amine) Mw2000 (Sigma-Aldrich)
 (分散剤)
A-4:ポリアクリル酸アンモニウム(東亞合成社の「アロンA-30」)
 (第1構造と第2構造とを有する特定化合物)
A-5a:下記式(a-1)で表される化合物、n:m=50:50
A-5b:下記式(a-1)で表される化合物、n:m=80:20
(Dispersant)
A-4: Ammonium polyacrylate (“Aron A-30” manufactured by Toagosei Co., Ltd.)
(Specific compound having a first structure and a second structure)
A-5a: Compound represented by the following formula (a-1), n: m = 50: 50
A-5b: Compound represented by the following formula (a-1), n: m = 80: 20
 (第1構造を与える化合物)
A-6a:mac-PEG(上記式(2-2)で表される化合物、R~R=水素原子、R及びX=CH、r=2、s=23)
A-6b:mac-PEG(上記式(2-2)で表される化合物、R~R=水素原子、R及びX=CH、r=2、s=2)
A-6c:mac-PEG(上記式(2-2)で表される化合物、R~R=水素原子、R及びX=CH、r=2、s=4)
A-6d:mac-PEG(上記式(2-2)で表される化合物、R~R=水素原子、R及びX=CH、r=2、s=67)
A-6e:mac-PEG(上記式(2-2)で表される化合物、R~R=水素原子、R及びX=CH、r=2、s=135)
A-6f:mac-PEG(上記式(2-2)で表される化合物、R~R=水素原子、R及びX=CH、r=2、s=340)
(Compound giving the first structure)
A-6a: mac-PEG (compound represented by the above formula (2-2), R 5 to R 8 = hydrogen atom, R 9 and X 3 = CH 3 , r = 2, s = 23)
A-6b: mac-PEG (compound represented by the above formula (2-2), R 5 to R 8 = hydrogen atom, R 9 and X 3 = CH 3 , r = 2, s = 2)
A-6c: mac-PEG (compound represented by the above formula (2-2), R 5 to R 8 = hydrogen atom, R 9 and X 3 = CH 3 , r = 2, s = 4)
A-6d: mac-PEG (Compound represented by the above formula (2-2), R 5 to R 8 = hydrogen atom, R 9 and X 3 = CH 3 , r = 2, s = 67)
A-6e: mac-PEG (compound represented by the above formula (2-2), R 5 to R 8 = hydrogen atom, R 9 and X 3 = CH 3 , r = 2, s = 135)
A-6f: mac-PEG (Compound represented by the above formula (2-2), R 5 to R 8 = hydrogen atom, R 9 and X 3 = CH 3 , r = 2, s = 340)
 (第2構造を与える化合物)
A-7:メタクリル酸グリシジル(下記式(a-2)で表される化合物)
A-8:2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート(昭和電工社、下記式(a-3)で表される化合物)
(Compound giving second structure)
A-7: Glycidyl methacrylate (compound represented by the following formula (a-2))
A-8: 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate (Showa Denko KK, compound represented by the following formula (a-3))
 (親水化化合物)
A-9:N-ビニルピロリドン(下記式(a-4)で表される化合物)
A-10:N-イソプロピルアクリルアミド(下記式(a-5)で表される化合物)
A-11:メラミン化合物(DIC社の「ベッカミンM-3」)
(Hydrophilic compound)
A-9: N-vinylpyrrolidone (compound represented by the following formula (a-4))
A-10: N-isopropylacrylamide (compound represented by the following formula (a-5))
A-11: Melamine compound (DIC's “Beccamin M-3”)
 (その他の化合物及び樹脂)
A-12:アクリル酸/スルホン酸系モノマー共重合体(日本触媒社の「アクアリックGH-234」)
A-13:メタクリル酸エチルベタイン・アクリレート共重合体(大阪有機化学工業社の「RAMレジン-4000」)
A-14:ポリアクリル酸ナトリウム(日本触媒社の「ジュリマーAC-10HN」)
A-15:ポリエチレンイミンA(日本触媒社の「エポミンSP-018」)
A-16:コロイダルシリカ(日産化学工業社の「スノーテックスUP」)
P-1:ポリビニルアルコール-グラフトポリビニルアルコール(第一工業製薬社の「ビッツコールV-7154」)
P-2:ポリエチレンイミンB(純正化学社の「ポリエチレンイミン1000」)
(Other compounds and resins)
A-12: Acrylic acid / sulfonic acid monomer copolymer (“AQUALIC GH-234” manufactured by Nippon Shokubai Co., Ltd.)
A-13: Ethylmethacrylate methacrylate betaine acrylate copolymer (“RAM Resin-4000” from Osaka Organic Chemical Industry Co., Ltd.)
A-14: Sodium polyacrylate (“Jurimer AC-10HN” from Nippon Shokubai Co., Ltd.)
A-15: Polyethyleneimine A (“Epomin SP-018” from Nippon Shokubai Co., Ltd.)
A-16: Colloidal silica ("Snowtex UP" by Nissan Chemical Industries)
P-1: Polyvinyl alcohol-grafted polyvinyl alcohol (Daiichi Kogyo Seiyaku Co., Ltd. "Bitscall V-7154")
P-2: Polyethyleneimine B ("Polyethyleneimine 1000" from Junsei Co., Ltd.)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、被覆層を形成する組成物中のポリアルキレングリコール構造の分子量、及び中間層の置換基について、表1及び表2に併せて示す。 Further, the molecular weight of the polyalkylene glycol structure in the composition forming the coating layer and the substituent of the intermediate layer are also shown in Table 1 and Table 2.
 表1及び表2中の置換基は、以下の符合で表した。
a:ヒドロキシル基
b:カルボキシル基
c:カルボキシレート基
d:イミノ基
The substituents in Table 1 and Table 2 are represented by the following symbols.
a: hydroxyl group b: carboxyl group c: carboxylate group d: imino group
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 [評価]
 <着霜抑制>
 アクリル製の筒の内側上部に、冷媒流路、ペルティエ素子及び空気流路を備える銅板を配設し、この装置を温度2℃、相対湿度85%の環境下に3時間静置した。その後、銅板表面温度を10℃に調整し、銅板上であって上記筒内部の空気と接する位置に実施例及び比較例の樹脂被覆金属板を配設した。次いで、上記筒内部に1m/秒の風速で送風し、5分静置した。
[Evaluation]
<Frost suppression>
A copper plate having a refrigerant flow path, a Peltier element, and an air flow path was disposed on the inside upper part of the acrylic tube, and this apparatus was left to stand in an environment of a temperature of 2 ° C. and a relative humidity of 85% for 3 hours. Thereafter, the surface temperature of the copper plate was adjusted to 10 ° C., and the resin-coated metal plates of Examples and Comparative Examples were disposed on the copper plate at a position in contact with the air inside the cylinder. Next, the inside of the cylinder was blown at a wind speed of 1 m / sec and allowed to stand for 5 minutes.
 (初期の着霜)
 上記工程後、上記筒内部への送風を同じ風速で続けながら、上記銅板を冷却し、表面温度を-5℃とした。冷却開始から30分後の樹脂被覆金属板における霜の平均厚みを、断面方向から顕微鏡を用いて測定し、以下の基準で評価した。下記評価中、A及びBを合格とした。評価結果を表3及び表4に示す。
A:0.60mm未満
B:0.60mm以上0.75mm未満
C:0.75mm以上
(Initial frost formation)
After the step, the copper plate was cooled while the air flow into the cylinder was continued at the same wind speed, and the surface temperature was set to -5 ° C. The average thickness of frost in the resin-coated metal plate 30 minutes after the start of cooling was measured from the cross-sectional direction using a microscope, and evaluated according to the following criteria. During the following evaluations, A and B were considered acceptable. The evaluation results are shown in Tables 3 and 4.
A: Less than 0.60 mm B: 0.60 mm or more and less than 0.75 mm C: 0.75 mm or more
 (除霜運転後の着霜)
 上記初期評価から30分経過後、銅板を加熱し、表面温度を10℃として樹脂被覆金属板上の霜を除去した。目視により霜が完全に除去されたことを確認した後、再度銅板を冷却し、表面温度を-5℃とした。冷却開始から30分後の樹脂被覆金属板における霜の平均厚みを、断面方向から顕微鏡を用いて測定し、以下の基準で評価した。下記評価中、A及びBを合格とした。評価結果を表3及び表4に示す。
A:0.60mm未満
B:0.60mm以上0.75mm未満
C:0.75mm以上
(Frosting after defrosting operation)
After 30 minutes from the initial evaluation, the copper plate was heated, the surface temperature was set to 10 ° C., and frost on the resin-coated metal plate was removed. After confirming that frost was completely removed by visual inspection, the copper plate was cooled again, and the surface temperature was adjusted to -5 ° C. The average thickness of frost in the resin-coated metal plate 30 minutes after the start of cooling was measured from the cross-sectional direction using a microscope, and evaluated according to the following criteria. During the following evaluations, A and B were considered acceptable. The evaluation results are shown in Tables 3 and 4.
A: Less than 0.60 mm B: 0.60 mm or more and less than 0.75 mm C: 0.75 mm or more
 (浸水乾燥後の着霜)
 実施例及び比較例の樹脂被覆金属板を容器に入れ、この容器中に20℃の純水を0.1L/分の流速で8時間導入することで樹脂被覆金属板を浸水させた。その後、容器から樹脂被覆金属板を取り出し、80℃で16時間乾燥させた。この浸水及び乾燥を5回ずつ行い、その後上記手順と同様にして初期の着霜と除霜運転後の着霜を同様に測定した。評価結果を表3及び表4に示す。
(Frost after submerged drying)
The resin-coated metal plates of Examples and Comparative Examples were placed in a container, and pure water at 20 ° C. was introduced into the container at a flow rate of 0.1 L / min for 8 hours to immerse the resin-coated metal plate. Thereafter, the resin-coated metal plate was taken out from the container and dried at 80 ° C. for 16 hours. This water immersion and drying were performed 5 times each, and then the initial frost formation and the frost formation after the defrosting operation were measured in the same manner as in the above procedure. The evaluation results are shown in Tables 3 and 4.
 <組成物の安定性>
 実施例及び比較例の被覆層を形成するために用いた組成物について、塗布前の溶液を40℃で2週間静置し、静置前の溶液の粘度に対する静置後の溶液の粘度の比を算出した。この比について、以下の基準で評価した。下記評価中、Aを合格とした。評価結果を表3及び表4に示す。ここで、溶液の粘度は、粘度測定機(ブルックフィールド社の「デジタル粘度計 LVDV-1PRIME」)を用いて測定した。
A:1.2未満
C:1.2以上
<Stability of composition>
About the composition used in order to form the coating layer of an Example and a comparative example, the solution before application | coating is left still for 2 weeks at 40 degreeC, The ratio of the viscosity of the solution after stationary with respect to the viscosity of the solution before stationary Was calculated. This ratio was evaluated according to the following criteria. In the following evaluation, A was set to pass. The evaluation results are shown in Tables 3 and 4. Here, the viscosity of the solution was measured using a viscometer (“Digital Viscometer LVDV-1 PRIME” manufactured by Brookfield).
A: Less than 1.2 C: 1.2 or more
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表3及び表4に示されるように、架橋性基及び分子量が150以上8000以下であるポリアルキレングリコール構造を有する化合物を含有する実施例1~32では、比較例のものより着霜が低減され、また組成物含有溶液の安定性にも優れていた。特に、全実施例において初期の着霜抑制効果が高かった。また、ポリエチレングリコールとメタクリル酸グリシジルとを80:20の質量比で含有し、さらにポリアルキレングリコール構造の分子量が300及び1100(200以上2800以下)である実施例13及び14は、除霜運転後の着霜がより低減されていた。さらに、親水化化合物を有する実施例21~23も、除霜運転後の着霜がより低減されていた。また、中間層を有する実施例24~32は、浸水乾燥後の着霜がより低減されており、被覆層の耐水性及び耐熱性に優れていた。 As shown in Tables 3 and 4, in Examples 1 to 32 containing a crosslinkable group and a compound having a polyalkylene glycol structure having a molecular weight of 150 or more and 8000 or less, frost formation was reduced as compared with the comparative example. Moreover, the stability of the composition-containing solution was also excellent. In particular, the initial frost suppression effect was high in all examples. Examples 13 and 14 containing polyethylene glycol and glycidyl methacrylate in a mass ratio of 80:20 and having a polyalkylene glycol structure molecular weight of 300 and 1100 (200 or more and 2800 or less) were used after the defrosting operation. The frost formation was reduced more. Further, in Examples 21 to 23 having a hydrophilic compound, frost formation after the defrosting operation was further reduced. In Examples 24 to 32 having an intermediate layer, frost formation after immersion drying was further reduced, and the water resistance and heat resistance of the coating layer were excellent.
 一方、ポリアルキレングリコール構造の分子量が8000を超える比較例1及び2では、組成物含有溶液の安定性は実施例と同等であったが、実施例と比べ着霜が非常に多かった。また、ポリアルキレングリコールを有さない比較例3では、初期及び浸水乾燥後の着霜が実施例のものと比べ多かった。さらに、ポリアルキレングリコールを有さず、ベタイン構造を有する重合体を含有する比較例4では、初期及び除霜運転後の着霜が多く、また組成物含有溶液の安定性も劣っていた。また、ポリアルキレングリコールを有さず、イミノ基を有する化合物を含有する比較例5では、着霜抑制は他の比較例より優れていたものの、組成物含有溶液の安定性に劣っていた。 On the other hand, in Comparative Examples 1 and 2 in which the molecular weight of the polyalkylene glycol structure exceeds 8000, the stability of the composition-containing solution was the same as that of the example, but frost formation was very much as compared with the example. Further, in Comparative Example 3 having no polyalkylene glycol, the amount of frost formed at the initial stage and after water-dried drying was larger than that in Examples. Furthermore, in Comparative Example 4 which did not have polyalkylene glycol and contained a polymer having a betaine structure, there was much frost formation at the initial stage and after the defrosting operation, and the stability of the composition-containing solution was also inferior. Moreover, in Comparative Example 5 which does not have polyalkylene glycol and contains a compound having an imino group, although frosting suppression was superior to other Comparative Examples, the stability of the composition-containing solution was inferior.
 この出願は、2015年7月6日に出願された日本国特許出願特願2015-135685および2016年5月13日に出願された日本国特許出願特願2016-97035を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2015-135585 filed on July 6, 2015 and Japanese Patent Application No. 2016-97035 filed on May 13, 2016. The contents thereof are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 以上説明したように、本発明の樹脂被覆金属板は、着霜及び着氷低減効果を有しつつ、温度変化により劣化し難く、塗布前の組成物の安定性に優れ、かつ低コストで製造できるため、熱交換器のフィン材として好適に用いることができる。

 
As described above, the resin-coated metal sheet of the present invention has the effect of reducing frost formation and icing, is hardly deteriorated by temperature change, has excellent stability of the composition before coating, and is manufactured at low cost. Therefore, it can be suitably used as a fin material for a heat exchanger.

Claims (10)

  1.  金属板、及びこの金属板の少なくとも一方の面側を被覆する被覆層を有する樹脂被覆金属板であって、
     上記被覆層が、アルキレングリコール単位を有するポリアルキレングリコール構造を含む化合物を含有し、
     上記アルキレングリコール単位の分子量が150以上8000以下であり、
     上記被覆層における上記化合物の含有量が5質量%以上100質量%以下であることを特徴とする樹脂被覆金属板。
    A resin-coated metal plate having a metal plate and a coating layer covering at least one surface side of the metal plate,
    The coating layer contains a compound containing a polyalkylene glycol structure having an alkylene glycol unit,
    The alkylene glycol unit has a molecular weight of 150 to 8000,
    Content of the said compound in the said coating layer is 5 mass% or more and 100 mass% or less, The resin-coated metal plate characterized by the above-mentioned.
  2.  上記化合物が下記式(1)で表される、請求項1に記載の樹脂被覆金属板。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はエチル基である。X及びXは、それぞれ独立して、水素原子、イソシアネート基、-SH、-OH、-NH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、エポキシ基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である。但し、X及びXのうち少なくとも1つはイソシアネート基、-NH、エポキシ基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である。Aは、Xがイソシアネート基、-SH、-OH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である場合、-NH-C(=O)-結合であり、Xが水素原子又はエポキシ基の場合、単結合であり、Xが-NHの場合、単結合又は-NH-C(=O)-結合である。Aは、Xがイソシアネート基、-SH、-OH、-NH、-CH=CH、ジスルフィド結合を有する基、アジド基、ビニルエーテル基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である場合、-NH-C(=O)-結合であり、Xが水素原子又はエポキシ基の場合、単結合であり、Xが-NHの場合、単結合又は-NH-C(=O)-結合である。B及びBは、炭素数1~8のアルカンジイル基、アレーンジイル基、メタンジイルアレーンジイル基又はアレーンジイルメタンジイルアレーンジイル基である。nは、2~4の整数である。mは、1~200の整数である。複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。mが2以上の場合、複数のnは同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(1-1)及び(1-2)中、Ra1~Ra3は、それぞれ独立して、炭素数1~8のアルキル基又はフェニル基である。
    式(1-3)中、Ra4及びRa5は、それぞれ独立して、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基又は炭素数1~8のアルキルアミノ基である。
    式(1-4)中、Ra6は、炭素数1~7のアルカンジイル基である。)
    The resin-coated metal plate according to claim 1, wherein the compound is represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 and R 2 are each independently a hydrogen atom, a methyl group or an ethyl group. X 1 and X 2 are each independently a hydrogen atom, an isocyanate group, —SH. , —OH, —NH 2 , —CH═CH 2 , a group having a disulfide bond, an azide group, a vinyl ether group, an epoxy group, a group represented by the following formula (1-1), and a group represented by the following formula (1-2) A group represented by the following formula (1-3) or a group represented by the following formula (1-4), provided that at least one of X 1 and X 2 is an isocyanate group; NH 2 , an epoxy group, a group represented by the following formula (1-1), a group represented by the following formula (1-2), a group represented by the following formula (1-3), or the following formula (1- 4) A 1 is a group in which X 1 is an isocyanate group, —SH, —OH, —CH═CH 2. A group having a disulfide bond, an azide group, a vinyl ether group, a group represented by the following formula (1-1), a group represented by the following formula (1-2), or a group represented by the following formula (1-3) A group or a group represented by the following formula (1-4) is a —NH—C (═O) — bond, and when X 1 is a hydrogen atom or an epoxy group, it is a single bond, and X 1 is for -NH 2, a single bond or -NH-C (= O) - is a bond .A 2 is, X 2 is an isocyanate group, -SH, -OH, -NH 2, -CH = CH 2, disulfide bonds , Azide group, vinyl ether group, group represented by the following formula (1-1), group represented by the following formula (1-2), group represented by the following formula (1-3), or In the case of a group represented by the formula (1-4), it is a —NH—C (═O) — bond, and X 2 is a hydrogen atom or an epoxy group. A single bond or a —NH—C (═O) — bond when X 2 is —NH 2. B 1 and B 2 are each an alkanediyl group having 1 to 8 carbon atoms, arenediyl A methanediylarenediyl group or an arenediylmethanediylarenediyl group, n is an integer of 2 to 4. m is an integer of 1 to 200. A plurality of R 1 may be the same or different. And a plurality of R 2 may be the same or different. When m is 2 or more, a plurality of n may be the same or different.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (1-1) and (1-2), R a1 to R a3 are each independently an alkyl group having 1 to 8 carbon atoms or a phenyl group.
    In formula (1-3), R a4 and R a5 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkylamino group having 1 to 8 carbon atoms.
    In formula (1-4), R a6 is an alkanediyl group having 1 to 7 carbon atoms. )
  3.  上記化合物が、下記式(2-1)で表される構造、下記式(2-2)で表される構造又はこれらを含む構造と、下記式(3)で表される構造とを有する、請求項1に記載の樹脂被覆金属板。
    Figure JPOXMLDOC01-appb-C000003
    (式(2-1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はエチル基である。pは、2~4の整数である。qは、1~200の整数である。複数のR は同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。qが2以上の場合、複数のpは同一でも異なっていてもよい。
    式(2-2)中、R~Rは、それぞれ独立して、水素原子、メチル基又はエチル基である。X は、水素原子、ヒドロキシル基、メチル基、エチル基、メルカプト基、メトキシ基又はエトキシ基である。rは、2~4の整数である。sは、1~200の整数である。tは、1~200の整数である。複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。sが2以上の場合、複数のrは同一でも異なっていてもよい。tが2以上の場合、複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよく、複数のRは同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (式(3)中、R10~R12は、それぞれ独立して、水素原子、メチル基又はエチル基である。Zは、下記式(i-1)~(i-4)のいずれかで表される基である。uは、1~200の整数である。uが2以上の場合、複数のR10は同一でも異なっていてもよく、複数のR11は同一でも異なっていてもよく、複数のR12は同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (式(i-1)中、Lは、炭素数1~5のアルカンジイル基である。
    式(i-2)中、Lは、炭素数1~8のアルカンジイル基、フェニレン基、メチレンフェニレン基又はフェニレンメチレンフェニレン基であり、R13は、イソシアネート基、下記式(1-1)で表される基、下記式(1-2)で表される基、下記式(1-3)で表される基又は下記式(1-4)で表される基である。
    式(i-3)中、Lは、炭素数1~5のアルカンジイル基である。R14及びR15は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基である。
    式(i-4)中、R16及びR17は、それぞれ独立して、水素原子、メチル基又はエチル基である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(1-1)及び(1-2)中、Ra1~Ra3は、それぞれ独立して、炭素数1~8のアルキル基又はフェニル基である。
    式(1-3)中、Ra4及びRa5は、それぞれ独立して、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基又は炭素数1~8のアルキルアミノ基である。
    式(1-4)中、Ra6は、炭素数1~7のアルカンジイル基である。)
    The compound has a structure represented by the following formula (2-1), a structure represented by the following formula (2-2) or a structure containing these, and a structure represented by the following formula (3). The resin-coated metal plate according to claim 1.
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (2-1), R 3 and R 4 are each independently a hydrogen atom, a methyl group or an ethyl group. P is an integer of 2 to 4. q is an integer of 1 to 200. The plurality of R 3 may be the same or different, the plurality of R 4 may be the same or different, and when q is 2 or more, the plurality of p may be the same or different.
    In formula (2-2), R 5 to R 9 each independently represents a hydrogen atom, a methyl group or an ethyl group. X 3 is a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group, a mercapto group, a methoxy group or an ethoxy group. r is an integer of 2 to 4. s is an integer of 1 to 200. t is an integer of 1 to 200. A plurality of R 5 may be the same or different, and a plurality of R 6 may be the same or different. When s is 2 or more, a plurality of r may be the same or different. When t is 2 or more, the plurality of R 7 may be the same or different, the plurality of R 8 may be the same or different, and the plurality of R 9 may be the same or different. )
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (3), R 10 to R 12 are each independently a hydrogen atom, a methyl group or an ethyl group. Z is any one of the following formulas (i-1) to (i-4): U is an integer of 1 to 200. When u is 2 or more, the plurality of R 10 may be the same or different, and the plurality of R 11 may be the same or different. The plurality of R 12 may be the same or different.)
    Figure JPOXMLDOC01-appb-C000005
    (In formula (i-1), L 1 is an alkanediyl group having 1 to 5 carbon atoms.
    In the formula (i-2), L 2 is an alkanediyl group having 1 to 8 carbon atoms, a phenylene group, a methylenephenylene group or a phenylenemethylenephenylene group, R 13 is an isocyanate group, and the following formula (1-1) A group represented by the following formula (1-2), a group represented by the following formula (1-3), or a group represented by the following formula (1-4).
    In the formula (i-3), L 3 is an alkanediyl group having 1 to 5 carbon atoms. R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
    In formula (i-4), R 16 and R 17 are each independently a hydrogen atom, a methyl group or an ethyl group. )
    Figure JPOXMLDOC01-appb-C000006
    (In the formulas (1-1) and (1-2), R a1 to R a3 are each independently an alkyl group having 1 to 8 carbon atoms or a phenyl group.
    In formula (1-3), R a4 and R a5 are each independently an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an alkylamino group having 1 to 8 carbon atoms.
    In formula (1-4), R a6 is an alkanediyl group having 1 to 7 carbon atoms. )
  4.  上記金属板と被覆層との間に中間層をさらに有し、この中間層が主成分として樹脂を含有し、上記樹脂が、ヒドロキシル基、アミノ基、イミノ基、カルボキシル基、メトキシカルボニル基、カルボキシレート基、又はこれらの組み合わせを有し、上記樹脂における上記基の合計含有量が0.5モル/kg以上20モル/kg以下である請求項1に記載の樹脂被覆金属板。 The intermediate layer further includes an intermediate layer between the metal plate and the coating layer, and the intermediate layer contains a resin as a main component, and the resin includes a hydroxyl group, an amino group, an imino group, a carboxyl group, a methoxycarbonyl group, a carboxy group. The resin-coated metal sheet according to claim 1, which has a rate group or a combination thereof, and the total content of the groups in the resin is 0.5 mol / kg or more and 20 mol / kg or less.
  5.  熱交換器のフィン材として用いられる請求項1に記載の樹脂被覆金属板。 The resin-coated metal plate according to claim 1, which is used as a fin material of a heat exchanger.
  6.  上記金属板の主成分がアルミニウム又はその合金である請求項1に記載の樹脂被覆金属板。 The resin-coated metal plate according to claim 1, wherein the main component of the metal plate is aluminum or an alloy thereof.
  7.  金属板の被覆に用いられる樹脂組成物であって、
     アルキレングリコール単位を有するポリアルキレングリコール構造を含む化合物を含有し、
     上記アルキレングリコール単位の分子量が150以上8000以下であり、
     上記樹脂組成物中の上記化合物の含有量が5質量%以上100質量%以下であることを特徴とする樹脂組成物。
    A resin composition used for coating a metal plate,
    Containing a compound comprising a polyalkylene glycol structure having an alkylene glycol unit;
    The alkylene glycol unit has a molecular weight of 150 to 8000,
    Content of the said compound in the said resin composition is 5 to 100 mass%, The resin composition characterized by the above-mentioned.
  8.  塗料として用いられる請求項7に記載の樹脂組成物。 The resin composition according to claim 7, which is used as a paint.
  9.  請求項1に記載の樹脂被覆金属板を備える熱交換器用フィン材。 A fin material for a heat exchanger comprising the resin-coated metal plate according to claim 1.
  10.  請求項9に記載の熱交換器用フィン材を備える空調機。 An air conditioner comprising the heat exchanger fin material according to claim 9.
PCT/JP2016/069696 2015-07-06 2016-07-01 Resin-coated metal plate, resin composition, fin material for heat exchanger, and air-conditioner WO2017006878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680037912.3A CN107709001B (en) 2015-07-06 2016-07-01 Resin-coated metal plate, resin composition, fin material for heat exchanger, and air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-135685 2015-07-06
JP2015135685 2015-07-06
JP2016097035A JP6717659B2 (en) 2015-07-06 2016-05-13 Resin coated metal plate, resin composition, fin material for heat exchanger and air conditioner
JP2016-097035 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017006878A1 true WO2017006878A1 (en) 2017-01-12

Family

ID=57685775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069696 WO2017006878A1 (en) 2015-07-06 2016-07-01 Resin-coated metal plate, resin composition, fin material for heat exchanger, and air-conditioner

Country Status (1)

Country Link
WO (1) WO2017006878A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123175A (en) * 1997-06-30 1999-01-26 Mitsubishi Alum Co Ltd Heat-exchanging material
JPH11237195A (en) * 1998-02-23 1999-08-31 Sky Alum Co Ltd Precoat fin material
JP2005344144A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd Hydrophilic surface-treated fin member for heat exchanger
JP2010096416A (en) * 2008-10-16 2010-04-30 Furukawa-Sky Aluminum Corp Precoat aluminum fin material for heat exchanger
JP2010155441A (en) * 2009-01-05 2010-07-15 Fujifilm Corp Hydrophilic member and method of manufacturing fin material for heat exchanger
JP2010197017A (en) * 2009-02-27 2010-09-09 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger and fin pressing method using the same
JP2012117702A (en) * 2010-11-29 2012-06-21 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger, method for manufacturing the same, and the heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123175A (en) * 1997-06-30 1999-01-26 Mitsubishi Alum Co Ltd Heat-exchanging material
JPH11237195A (en) * 1998-02-23 1999-08-31 Sky Alum Co Ltd Precoat fin material
JP2005344144A (en) * 2004-06-01 2005-12-15 Kobe Steel Ltd Hydrophilic surface-treated fin member for heat exchanger
JP2010096416A (en) * 2008-10-16 2010-04-30 Furukawa-Sky Aluminum Corp Precoat aluminum fin material for heat exchanger
JP2010155441A (en) * 2009-01-05 2010-07-15 Fujifilm Corp Hydrophilic member and method of manufacturing fin material for heat exchanger
JP2010197017A (en) * 2009-02-27 2010-09-09 Sumitomo Light Metal Ind Ltd Aluminum fin material for heat exchanger and fin pressing method using the same
JP2012117702A (en) * 2010-11-29 2012-06-21 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger, method for manufacturing the same, and the heat exchanger

Similar Documents

Publication Publication Date Title
JP5635848B2 (en) Laminated metal plate with icing and frost control layer formed
EP3395920B1 (en) Adhessive coating composition for electrical steel sheet, electrical steel sheet with adhesive coating layer, electrical steel sheet product, and method for manufacturing product
CN104884177B (en) Hydrophilic coating film method, aluminum fin material and the aluminum-made heat exchanger of aluminum fin material
EP3075882B1 (en) Composition for non-oriented electrical steel sheet, method of manufacturing non-oriented electrical steel sheet product, and non-oriented electrical steel sheet product
EP3187271B1 (en) Method for coating aluminum fin material with hydrophilic film, aluminum fin material, and aluminum heat exchanger
JP5503556B2 (en) Hydrophilic treatment agent for aluminum-containing metal material, hydrophilic treatment method, and hydrophilized aluminum-containing metal material
KR20180015155A (en) A hydrophilic treatment agent, a method for forming a hydrophilic film, and a hydrophilic film
JP6717659B2 (en) Resin coated metal plate, resin composition, fin material for heat exchanger and air conditioner
JP4164049B2 (en) Hydrophilic surface treatment fin material for heat exchanger
WO2017006878A1 (en) Resin-coated metal plate, resin composition, fin material for heat exchanger, and air-conditioner
WO2003082442A1 (en) Enthalpy exchanger
EP1254941A1 (en) Hydrophilizing agent, hydrophilizing fluid, and method of hydrophilizing
WO2017038251A1 (en) Surface treatment agent, film production method, and film-equipped metal material
JP3383914B2 (en) Aluminum fin material for heat exchanger
JPH0515176B2 (en)
EP4079820A2 (en) Electrical steel sheet adhesive coating composition, electrical steel sheet laminate, and method for manufacturing same
JP3274044B2 (en) Surface treated fin material for heat exchanger and method for producing the same
JP5469407B2 (en) Adhesive resin composition-coated metal plate and method for producing the same
JP4467264B2 (en) Fin coating composition and fin material
JP2021095475A (en) Antifreezing coated film material, coating method using the same, and application of the same
JP3734335B2 (en) Surface treatment fin material for heat exchanger and manufacturing method thereof
JP7502232B2 (en) Aluminum fin material
CN112457729B (en) Coating composition for heat exchange tube, heat exchange tube and coating method
JP2019073749A (en) Hydrophilic surface treatment aluminum containing metal material and heat exchanger
JP2023037459A (en) Aluminum fin material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821347

Country of ref document: EP

Kind code of ref document: A1